

Hierarchical Voronoi Graphs

Jan Oliver Wallgrün

Hierarchical
Voronoi Graphs

Spatial Representation and Reasoning
for Mobile Robots

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

The use of general descriptive names, registered names, trademarks, etc. in this publication does not

laws and regulations and therefore free for general use.

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is

or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.

imply, even in the absence of a specific statement, that such names are exempt from the relevant protective

reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,

© Springer-Verlag Berlin Heidelberg 2010

Library of Congress Control Number: 2009

Springer Heidelberg Dordrecht London New York

ISBN 978-3-642-10302-5 e-ISBN 978-3-642-10345-2
DOI 10.1007/978-3-642-10345-2

Date of oral examination: 19 August 2008

Prof. Benjamin Kuipers, Ph.D. (University of Texas at Austin, USA)

Reviewers:

Prof. Christian Freksa, Ph.D. (University of Bremen, Germany)

ACM Computing Classification (1998): I.2, J.2.

Cover design: KuenkelLopka GmbH

This thesis was accepted as doctoral dissertation by the Department of Mathematics and
Informatics, University of Bremen, under the title “Hierarchical Route Graph Repre-
sentations for Mobile Robots Based on Generalized Voronoi Graphs”. Based on this work
the author was granted the academic degree Dr.-Ing.

941853

Dr.-Ing. Jan Oliver Wallgrün
Cognitive Systems Group
Department of Mathematics and Informatics
University of Bremen
P.O. Box 330 440
28334 Bremen
Germany
wallgruen@informatik.uni-bremen.de

Foreword

What is space? Is there space when there are objects to occupy it or is there space only
when there are no objects to occupy it? Can there be space without objects? These
are old philosophical questions that concern the ontology of space in the philosophical
sense of ‘ontology’ – what is the nature of space?

Cognitive science in general and artificial intelligence in particular are less con-
cerned with the nature of things than with their mental conceptualizations. In spatial
cognition research we address questions like What do we know about space? How
is space represented? What are the representational entities? What are the repre-
sentational structures? Answers to these questions are described in what is called
ontologies in artificial intelligence. Different tasks require different knowledge, and
different representations of knowledge facilitate different ways of solving problems.
In this book, Jan Oliver Wallgrün develops and investigates representational structures
to support tasks of autonomous mobile robots, from the acquisition of knowledge to
the use of this knowledge for navigation.

The research presented is concerned with the robot mapping problem, the prob-
lem of building a spatial representation of an environment that is perceived by sen-
sors that only provide incomplete and uncertain information; this information usually
needs to be related to other imprecise or uncertain information. The routes a robot
can take can be abstractly described in terms of graphs where alternative routes are
represented by alternative branches in these route graphs. The proposed hierarchical
Voronoi graph representation provides a conceptualization of space excellently suited
for navigation, high-level spatial reasoning about environments, and agent-agent com-
munication about navigable space. The problem is that the Voronoi representations are
rather sensitive to measurement errors; therefore unique representations cannot easily
be derived in practice. In this book, Jan Oliver Wallgrün presents a number of signifi-
cant contributions to the state of the art in robot mapping by developing techniques for
generating stable Voronoi representations from real sensor data.

Robot mapping and the construction of Voronoi graphs can also be seen as a spatial
reasoning problem in which local spatial knowledge has to be consistently integrated
into global knowledge. On an abstract qualitative level, these kinds of spatial rea-
soning problems are studied in the area of qualitative spatial reasoning. Jan Oliver
Wallgrün successfully brings together these two distinct research areas; this results in
a multi-hypothesis tracking framework for topological mapping. From the perspective
of qualitative spatial reasoning, the work describes an instructive application domain
for comparing spatial calculi. It also provides valuable results regarding the applicabil-
ity of direction information and existing reasoning techniques. The research presented
in this book raises significant challenges for the development of spatial calculi and
spatial reasoning systems that have to be addressed by future theoretical research.

Bremen, Christian Freksa
July, 2009

v

Preface

Learning an internal spatial model of an initially unknown environment is considered
to be one of the fundamental capabilities for an autonomous spatial agent. It is no-
ticeable that—in contrast to what is known about mental spatial representations of
humans—most map learning approaches in robotics employ sensor-near representa-
tion formats in which the environment is described by providing precise locations of
environmental features using a single and absolute frame of reference. The question
of how the spatial properties of the environment should best be represented in order
to support fundamental tasks like navigation and communication about space is fre-
quently not addressed at all. Instead, the focus is on the problem of how to build
up a spatial model from uncertain sensor data for a representation approach which is
assumed as given.

One goal of the work described in this book is to take a more general view on
the robot mapping problem, explicitly distinguishing between the spatial representa-
tion perspective and the uncertainty handling perspective: The spatial representation
perspective is concerned with what kind of spatial information should be represented
and how this information should be represented in the model in order to adequately
support a broad range of spatial competences. The uncertainty handling perspective
addresses the question of how to deal with the inherent uncertainty that makes learning
of an environmental model such a challenging problem.

The main contributions of this work are made with respect to one particular spa-
tial representation approach, in which the environment is modeled as a hierarchical
route graph based on the generalized Voronoi diagram. From the spatial representa-
tion perspective, this approach is particularly well suited as the core representation
for environments with a clear route structure, such as most indoor environments. The
main challenge with regard to this kind of representation and the focus of this book is
the development of techniques that allow the robust construction of the spatial model
under uncertainty.

One underlying thesis of this work is that the combination of rather abstract repre-
sentations—like the route graphs considered here—with proven uncertainty handling
methods is a promising direction of research. It has the potential of leading to ap-
proaches which are at the same time robust and well-suited to realize high-level spatial
cognitive abilities. Another concern of this book is to investigate the application of
constraint satisfaction techniques stemming from research on qualitative spatial rea-
soning for consistently integrating local observations into survey knowledge in the
context of robot mapping.

The techniques developed in this book are concerned with three different aspects
of the model acquisition process: First, the problem of constructing the proposed hi-
erarchical representation from noisy 2D range data is considered, assuming that the
correct data association between perceived elements and the corresponding elements
in the robot’s internal model is given. The main results are a measure to assess the

vii

relevance and stability of Voronoi nodes and the methods to automatically build up the
hierarchy based on this measure.

Second, the data association problem is considered with the goal of achieving re-
liable identification of Voronoi nodes on the local level. A matching approach for
Voronoi graphs is developed which takes into account variations caused by sensor lim-
itations and allows the incorporation of geometric constraints.

Third, to deal with uncertainty on the global level, mapping is formulated as the
problem of finding a minimal route graph model that explains the history of observa-
tions and actions, an approach which has been proposed by Kuipers. The developed
solution consists of a best-first branch and bound search through the tree of possible
associations of nodes resulting in a simultaneous tracking of multiple map hypotheses.
The focus here is on investigating the adequacy of qualitative direction constraints and
the planarity constraint to significantly reduce the search space.

Besides the individual techniques developed in this work, which can be combined
in multiple ways, an overall mapping system is presented that is able to construct the
Voronoi-based hierarchical route graph representation directly from range data. Al-
though the described methods have been developed with regard to this particular rep-
resentation, contributions like the data association approach and the results concerning
global mapping using qualitative spatial constraints are more generally applicable and
provide insights that are also relevant outside the robot mapping domain.

Acknowledgements

Writing this book would not have been possible without the support and input from
numerous people I had the pleasure of meeting over the last few years during my time
as a doctoral candidate. I am deeply grateful for all the assistance I received.

First and foremost, I would like to thank my advisor, Christian Freksa, for his
continuous encouragement and guidance. I appreciate that he gave me the freedom
to explore and pursue my own ideas. At the same time, he always provided valuable
advice and feedback when I needed it and has been tremendously supportive. I am sin-
cerely grateful for the great time I had in his group and the inspiring interdisciplinary
research environment he has created.

I also want to express my gratitude to Benjamin Kuipers for his willingness to
review my thesis and for taking interest in my research. His pioneering work and in
particular his course at the ISCSI in Bad Zwischenahn in 2003 had a major impact on
this work.

I also owe many thanks to my colleagues and friends at the Cognitive Systems
group at the Universität Bremen for countless discussions and helpful suggestions with
regard to my work and for generally creating a very comfortable and entertaining work-
ing environment. In particular, I would like to thank Diedrich Wolter for being my first
address to discuss new ideas and for providing invaluable advice. Special thanks also
go to the other members of the R3-[Q-Shape] project, Frank Dylla, Lutz Frommberger,

viii Preface

and Reinhard Moratz. The collective project work has been highly enjoyable and had
a huge impact on my own research.

Several people directly contributed to this work and deserve my gratitude: Cyrill
Stachniss provided the FastSLAM implementations used for the evaluation part of this
work. I also utilized two exploration data sets made publically available by Nick Roy
and Dirk Hähnel. Martin Held’s software Vroni was used in the software implemen-
tations of some of the ideas described here. Stefan Dehm, Lutz Frommberger, Kai-
Florian Richter, Christoph Sippel, Holger Schultheis, and Thorsten Timm all helped to
improve this text by providing feedback on earlier versions and by proofreading it.

Financial support of my research by the German Research Foundation (DFG)
within the scope of the Spatial Inference project of the SPP Raumkognition and the
R3-[Q-Shape] project of the SFB/TR 8 Spatial Cognition is gratefully acknowledged.

Finally, I want to express my gratitude to my family for their constant encourage-
ment, love, and support, especially during the last months of intensive writing. This
book is dedicated to you.

Bremen, Jan Oliver Wallgrün
July, 2009

ixPreface

Contents

1 Introduction 1
1.1 The Robot Mapping Problem . 2
1.2 The Spatial Representation Perspective 3
1.3 The Uncertainty Handling Perspective 3
1.4 Combining Representation and Uncertainty Handling 4
1.5 Route Graphs Based on Generalized Voronoi Diagrams 5
1.6 Theses, Goals, and Contributions of This Book 6
1.7 Outline of This Book . 8

2 Robot Mapping 11
2.1 A Spatial Model for What? . 14

2.1.1 Navigation . 14
2.1.2 Systematic Exploration . 16
2.1.3 Communication . 16

2.2 Correctness, Consistency, and Criteria 17
2.2.1 Extractability and Maintainability 18
2.2.2 Information Adequacy . 18
2.2.3 Efficiency and Scalability 18

2.3 Spatial Representation and Organization 19
2.3.1 Basic Spatial Representation Approaches 19
2.3.2 Coordinate-Based Representations 20
2.3.3 Relational Representations 26
2.3.4 Organizational Forms . 31

2.4 Uncertainty Handling Approaches 36
2.4.1 Incremental Approaches . 37
2.4.2 Multi-pass Approaches . 41

2.5 Conclusions . 42

3 Voronoi-Based Spatial Representations 45
3.1 Voronoi Diagram and Generalized Voronoi Diagram 45
3.2 Generalized Voronoi Graph and Embedded Generalized Voronoi Graph 47
3.3 Annotated Generalized Voronoi Graphs 49

xi

3.4 Hierarchical Annotated Voronoi Graphs 50
3.5 Partial and Local Voronoi Graphs . 51
3.6 An Instance of the HAGVG . 53
3.7 Stability Problems of Voronoi-Based Representations 54
3.8 Strengths and Weaknesses of the Representation 55

4 Simplification and Hierarchical Voronoi Graph Construction 59
4.1 Relevance Measures for Voronoi Nodes 60
4.2 Computation of Relevance Values 64
4.3 Voronoi Graph Simplification . 69
4.4 HAGVG Construction . 72
4.5 Admitting Incomplete Information 73
4.6 Improving the Efficiency of the Relevance Computation 75
4.7 Incremental Computation . 80
4.8 Application Scenarios . 82

4.8.1 Incremental HAGVG Construction 82
4.8.2 Removal of Unstable Parts 82
4.8.3 Automatic Route Graph Generation from Vector Data 82

5 Voronoi Graph Matching for Data Association 85
5.1 The Data Association Problem . 85

5.1.1 Data Associations and the Interpretation Tree 86
5.1.2 Data Association Approaches 88

5.2 AGVG Matching Based on Ordered Tree Edit Distance 90
5.2.1 Ordered Tree Matching Based on Edit Distance 92
5.2.2 Overall Edit Distance . 97
5.2.3 Modeling Removal and Addition Costs 98
5.2.4 Optimizations . 99
5.2.5 Complexity . 99

5.3 Incorporating Constraints . 100
5.3.1 Unary Constraints Based on Pose Estimates and Node Similarity101
5.3.2 Binary Constraints Based on Relative Distance 104
5.3.3 Ternary Angle Constraints 106

5.4 Map Merging Based on a Computed Data Association 109

6 Global Mapping: Minimal Route Graphs Under Spatial Constraints 113
6.1 Theoretical Problem . 114
6.2 Branch and Bound Search for Minimal Model Finding 123

6.2.1 Search Through the Interpretation Tree 124
6.2.2 Best-First Branch and Bound Search Based on Solution Size . 126
6.2.3 Expand and Update Operations 128
6.2.4 Two Variants of the Minimal Model Finding Problem 134

6.3 Pruning Based on Spatial Constraints 136

xii Contents

6.3.1 Checking Planarity . 136
6.3.2 Checking Spatial Consistency 139
6.3.3 Incorporation into the Search Algorithm 143

6.4 Combining Minimal Route Graph Mapping and AGVG Representations 144

7 Experimental Evaluation 147
7.1 Relevance Assessment and HAGVG Construction 147

7.1.1 Efficiency of the Relevance Computation Algorithms 147
7.1.2 Combining the HAGVG Construction Methods with a Grid-

Based FastSLAM Approach 150
7.2 Evaluation of the Voronoi-Based Data Association 152
7.3 Evaluation of the Minimal Route Graph Approach 156

7.3.1 Solution Quality . 157
7.3.2 Pruning Efficiency . 160
7.3.3 Absolute vs. Relative Direction Information 163
7.3.4 Overall Computational Costs 166
7.3.5 Application to Real AGVG Data 168

7.4 A Complete Multi-hypothesis Mapping System 170
7.4.1 Local Metric Mapping and Local AGVG Computation 170
7.4.2 Data Association for Node Tracking and History Generation . 171
7.4.3 Global Mapping and Post-processing 171
7.4.4 Experiments . 171
7.4.5 Discussion . 172

8 Conclusions and Outlook 177
8.1 Summary and Conclusions . 177

8.1.1 Extraction and HAGVG Construction 178
8.1.2 Data Association and Matching 179
8.1.3 Minimal Route Graph Model Finding 179
8.1.4 Complete Mapping Approaches 180

8.2 Outlook . 181
8.2.1 Extensions of the Work Described in Chaps. 3–6 181
8.2.2 Combining Voronoi Graphs and Uncertainty Handling 182
8.2.3 Challenges for Voronoi-Based Representation Approaches . . 183
8.2.4 Challenges for Qualitative Spatial Reasoning 185
8.2.5 The Future: Towards Spatially Competent Mobile Robots . . 185

A Mapping as Probabilistic State Estimation 187
A.1 The Recursive Bayes Filter . 188
A.2 Parametric Filters . 190

A.2.1 Kalman Filter . 190
A.2.2 Extended Kalman Filter . 191

A.3 Nonparametric Filters . 192

xiiiContents

A.3.1 Particle Filter . 192
A.3.2 Rao-Blackwellized Particle Filter and FastSLAM 193

B Qualitative Spatial Reasoning 195
B.1 Qualitative Constraint Calculi . 195
B.2 Weak vs. Strong Operations . 198
B.3 Constraint Networks and Consistency 198
B.4 Checking Consistency . 200

Bibliography 203

xiv Contents

Notation

2M Power set of set M .

A
 B Edge connecting A and B in a route graph model.

E(G) Set of edges of graph G.

G(M) Route graph model of a map hypothesis M .

L(J) Set of hallway identifiers of junction observation J .

M2(d,m) Mahalanobis distance between feature d and feature m.

R(J) Spatial description of junction observation J .

R
[v]
i Accessible region corresponding to edge e[v]i of node v.

V (G) Set of nodes of graph G.

argminx∈M f(x) Argument x from set M that minimizes f(x) (arbitrarily
chosen when multiple such elements are contained in M)
or—when explicitly stated—the set of all x from M that
minimize f(x).

childiv ith child node of node v in an AGVG subtree.

deg(v) Degree of node v.

A[v]
i Set of nodes contained in accessible region R[v]

i of node v.

HT H Set of hallway traversals contained in historyH.

JOH Set of junction observations contained in historyH.

maxM Maximum from set M .

maxx∈M f(x) Maximum from {f(x) | x ∈M}.

lb(R[v]
i) If true, the rsm value of R[v]

i is a lower bound estimate.

lb(v) If true, the vnrm value of v is a lower bound estimate.

neighbori(v) ith neighbor node v in an AGVG.

xv

rsm(R[v]
i) Region significance value of accessible region R[v]

i .

connects(e) Yields the 2-element set of nodes incident to edge e.

cyclic(e) If true, edge e is part of a cycle in the graph.

mj(J) Function that maps junction observation J to a node in a
map hypothesis.

ml(l) Function that maps leaving hallway identifier l to an edge
in a map hypothesis.

other(e, v) Node incident to edge e that is not v, or v if e is a loop.

4(u)
v Subtree with v as root and ancestor u.

4u,v
w mm-subtree.

4u
v m-subtree.

vnrm(v) Voronoi node relevance value of Voronoi node v.

d(vi, vj) Shortest path distance between nodes vi and vj in a graph.

d ; m Feature d is matched with feature m.

dsucc(x, y) Distance between two objects x and y with regard to a
cyclic order specified by successor function succ.

e
[v]
i ith edge of node v (the edges are assumed to be numbered

in accordance with the cyclic edge order specified for v).

gp
[v]
i ith generating point of Voronoi node v.

i⊕ j Index of jth successor of the element with index i in a
cyclically ordered set of objects.

l(e) Length of edge e.

r(v) Radius of maximal inscribed circle of Voronoi node v.

s(J) Successor function specifying the cyclic order of leaving
hallways for junction observation J .

|M | Cardinality of set M .

||p− q|| Euclidean distance between p and q (length of vector p−q).

xvi Notation

Abbreviations

AGVG Annotated generalized Voronoi graph (Sect. 3.3).

EGVG Embedded generalized Voronoi graph (Sect. 3.2).

EKF Extended Kalman filter (Sect. 2.4.1.2).

GVD Generalized Voronoi diagram (Sect. 3.1).

GVG Generalized Voronoi graph (Sect. 3.2).

HAGVG Hierarchical annotated Voronoi graph
(Sect. 3.4).

ICNN Individual compatibility nearest neighbor (Sect. 5.1.2).

QSR Qualitative spatial reasoning.

RGE Route graph edge (Sect. 6.1).

RGN Route graph node (Sect. 6.1).

rsm Region significance measure (Sect. 4.1).

SLAM Simultaneous localization and mapping.

SSH Spatial semantic hierarchy.

VD Voronoi diagram (Sect. 3.1).

vnrm Voronoi node relevance measure (Sect. 4.1).

generalized

xvii

List of Figures

1.1 Important representational concepts 5

2.1 Incremental mapping information flow 12
2.2 Taxonomy of spatial representations 19
2.3 Occupancy grid representation. 21
2.4 Example of a geometric map representation. 23
2.5 Landmark-based representation. 24
2.6 View graph representation embedded in the environment 27
2.7 Route graph representation of an indoor environment 28
2.8 Different higher forms of organization 31

3.1 Voronoi diagram for a given set of point sites 46
3.2 Generalized Voronoi diagram . 47
3.3 Generalized Voronoi graph . 48
3.4 Hierarchical AGVG consisting of two layers 51
3.5 Incomplete AGVG structures . 52
3.6 Annotations to the GVG-based route graph 53
3.7 Structural deviations in GVGs . 55
3.8 Two-level HAGVG representation of the third floor of the Cartesium,

Universität Bremen . 57
3.9 HAGVG representation of the Acapulco Convention Center 58

4.1 Decomposition of free space into regions 61
4.2 Effects of distance and seclusion on the significance of a region 61
4.3 Computation of rsm values . 62
4.4 Relevance values assigned to nodes of an AGVG 63
4.5 Filtering of nodes caused by noise. 64
4.6 Relevance computation performed by the basic algorithm 67
4.7 Stepwise simplification example . 71
4.8 Link generation between two layers of an HAGVG 73
4.9 Computation of the relevance values for a local AGVG 74
4.10 Relevance computation of the improved algorithm 77
4.11 Incremental relevance value computation 81

xix

4.12 Simulation of route graph generation for different noise levels 83
4.13 Coarse route graph computed from a ground plan of a floor in the MZH

building, Universität Bremen . 83

5.1 The data association problem . 86
5.2 Part of an interpretation tree . 87
5.3 AGVG matching example . 91
5.4 Tree matching based on edit distance 93
5.5 Rooting AGVGs . 94
5.6 Edit operations for subtree matching 95
5.7 Comparison of the local geometry of Voronoi nodes 102
5.8 Matching two m-subtrees . 105
5.9 Matching two mm-subtrees . 107
5.10 Map transformation example . 111

6.1 Example walk of a robot through a graph environment 116
6.2 Representation of a history as an acyclic graph 117
6.3 Four possible map hypotheses . 120
6.4 Relations from the cardinal direction calculus 121
6.5 Two hypotheses resulting from merging two route graph nodes 125
6.6 Complete interpretation tree for a three-step walk 127
6.7 Effects of different versions of the minimal model finding algorithm

on the search space (part 1) . 129
6.8 Effects of different versions of the minimal model finding algorithm

on the search space (part 2) . 130
6.9 Two consecutive update operations 133
6.10 Expand operation . 135
6.11 Examples of a planar and a non-planar bidirected graph 137
6.12 Modifying a planar graph and the resulting changes to its genus 138
6.13 Modelling a route graph hypothesis in the cardinal direction calculus . 141
6.14 OPRA2 relations . 142
6.15 Set of OPRA2 constraints describing a route graph hypothesis 143

7.1 Test environments used for evaluation 148
7.2 Computation times for relevance value computation algorithms 149
7.3 Steps of the HAGVG construction in the combined grid-based Fast-

SLAM approach . 151
7.4 Different top-level AGVGs constructed with different thresholds . . . 153
7.5 Computation times for ICNN and AGVG matching 155
7.6 Computation times for AGVG matching without pose information . . 156
7.7 Comparison of solution quality . 159
7.8 Comparison of the number of solutions 160
7.9 Comparison of pruning efficiency 162

xx List of Figures

7.10 Comparison of absolute and relative direction information 164
7.11 Computation time comparison of complete minimal model algorithm . 167
7.12 Evaluation of minimal model approach adaptation for Voronoi graphs 169
7.13 Overall mapping system . 170
7.14 Example environment Intel Research Lab, Seattle 173
7.15 Representations computed by the complete mapping system 174
7.16 Parameters of the minimal model approach over exploration steps . . 175

B.1 Constraint network for the cardinal direction calculus 199
B.2 Non-atomic network with atomic refinements 200
B.3 Backtracking search through the refinements 201

xxiList of Figures

List of Tables

7.1 Data association quality of ICNN and AGVG matching 154
7.2 Comparison of solution quality of the minimal model approach 158
7.3 Comparison of the number of solutions 159
7.4 Comparison of pruning efficiency 161
7.5 Comparison of reasons for rejection for CompEnv 165
7.6 Comparison of reasons for rejection for VisOnly 165

xxiii

1

Chapter 1

Introduction

Artificial spatial agents, such as the mobile robots we will be concerned with in this
book, have a great deal in common with their natural counterparts, animals and hu-
mans. They are all embodied physical systems situated in the real world, important
characteristics regarded by many as a prerequisite for genuine intelligence (Pfeifer
& Bongard, 2007; Varela et al., 1992). They share the ability to perceive their en-
vironment and extract spatial information from their perceptions. They store spatial
information over time and this information affects their future decisions and actions.
And they are able to affect the state of their environment by their actions. An impor-
tant part of acting in space involves moving to other parts of the environment outside
of the agent’s current sensory scope and navigation between known places. Hence,
a spatial agent benefits from the ability to integrate local observations and to derive
spatial relationships on a larger scale.

The details of how spatial information is extracted, stored, and processed in hu-
mans and animals are still largely unclear and subject of ongoing research across many
disciplines. In this book, we follow the tradition of Braitenberg’s “law of uphill analy-
sis and downhill invention” (Braitenberg, 1984) in the sense that we attempt to design
artificial agents that demonstrate a certain set of competences, possibly drawing inspi-
ration from empirical studies about how these competences are achieved by humans or
animals. The results, positive and negative ones, can then be used to draw conclusions
about spatial information processing in natural agents.

The central object of attention of this book is the cognitive map (O’Keefe & Nadel,
1978; Tolman, 1948) or spatial model of an agent. We use these terms in a broad sense
for the entire collection of long-term spatial knowledge held by an agent. The set of
competences considered comprises the learning of a cognitive map based on obser-
vations of the environment (referred to as mapping) and its utilization for navigation
(including localization, path planning, etc.), autonomous exploration of a previously
unknown environment, and communication about space with other agents. The main
problem we are concerned with is the robot mapping problem of autonomously con-
structing and maintaining a suitable spatial model, a problem which has sparked off a
vast amount of research over the last few decades but still provides many challenges.

J.O. Wallgrün, Hierarchical Voronoi Graphs: Spatial Representation and Reasoning for Mobile Robots,
DOI 10.1007/978-3-642-10345-2_1, © Springer-Verlag Berlin Heidelberg 2010

2 Introduction

1.1 The Robot Mapping Problem

As Trullier et al. (1997) point out, animals and humans employ a diverse set of tech-
niques to achieve successful navigation ranging from basic capabilities like aligning
towards and approaching a visible target to advanced abilities like route planning and
taking shortcuts. Advanced navigational capabilities like route planning are not con-
ceivable without some kind of spatial representation that describes relations between
distinct places known to the agent and that can serve as a basis for planning and de-
cision making. However, this still leaves a wide area of possibilities about what kind
of information is actually memorized, how it is stored and organized, and how these
knowledge structures can be constructed from perceptions collected over time.

In the AI and robotics community, a common approach is to provide a mobile robot
with a set of basic reactive procedures (e.g., collision avoidance, motion behaviors) and
to model the cognitive map as a declarative knowledge representation implemented by
a particular data structure on which algorithms for incorporating new observations, for
localization, and for planning operate. Often this knowledge representation describing
the robot’s belief about the state of the environment is simply referred to as its map.

What makes designing a cognitive map data structure for a mobile robot together
with algorithms to learn and maintain this representation a hard problem is the fact
that all the agent’s knowledge about the world in general and the spatial aspects of the
environment in particular is inherently uncertain.1 Only a small part of the environ-
ment is perceivable by the robot at any given time; whatever happens in other parts
cannot be predicted with certainty. In addition, only some properties of the world are
measurable by the robot at all, and these measurements are error-prone and noisy. The
same holds for the actuation, which leads to uncertain results of performing a particu-
lar action. Finally, even if sensors and actuators would be perfect, the fact that every
somewhat interesting section of the world can only be modelled efficiently by making
use of approximations inescapably leads to uncertainty about the state of the world.

One important consequence of the inherent uncertainty is that it is usually not suffi-
cient to model the cognitive map as a set of facts about the environment that represents
the agent’s current belief. Rather it is necessary to consider alternative models, and the
robot might have different degrees of belief in the different alternatives. As a result,
adequate methods to model and manage the uncertainty need to be conceived.

As we see, there exist two different perspectives to look at the robot mapping
problem: (1) the spatial representation perspective asking what should be represented
in the cognitive map and how it should be represented, and (2) the uncertainty handling
perspective regarding the way uncertainty should be represented and handled in the
system. Both aspects have to be considered in order to develop adequate solutions to
the robot mapping problem.

1We here use the term uncertainty as a generic term for imperfect knowledge which does not allow
us to tell whether a particular statement is true or not. It is, however, also often used in a more specific
sense (see Smithson, 1989, for a taxonomy of different kinds of imperfect knowledge).

1.2 The Spatial Representation Perspective 3

1.2 The Spatial Representation Perspective

A spatial representation is supposed to provide all the information that is required to re-
liably and efficiently perform the tasks at hand. Localization, for instance, necessitates
the storage of information that allows the agent to recognize already visited places of
the environment. This typically involves information about salient features and spatial
relations holding between them. For path planning, the set of qualitatively distinct
ways through the environment is needed together with information for deciding on a
particular route. Communication with other agents (e.g., providing route directions)
typically requires both, information for place recognition and route information.

From the point of view of a data structure, the cognitive map of an agent operating
under time constraints should be organized in a way that allows performing the re-
quired operations (localization, incorporating new observations, route planning, etc.)
as efficiently as possible. As there usually exist trade-offs between the efficiency of
different operations, a reasonable demand is that the spatial model is optimized for best
overall performance. In addition, in order to represent large environments, the cogni-
tive mapping approach needs to scale well with the size of the represented environment
in terms of efficiency of the operations and space consumption. Scalability demands a
certain degree of sparseness and abstraction in the representation. Therefore, it is often
a good approach to refrain from storing information that is directly perceivable when
it is required or that is likely to change.

In the literature on mobile robot mapping, map construction is often studied as a
problem per se, largely ignoring operations that should be realized based on the map.
As a consequence, the proposed approaches are usually optimized for localization and
updating the map, and involve simple sensor-near representations. While approaches
like grid maps and geometric maps describe the boundaries of the free accessible space
and thus allow for performing route planning (though with some computational ef-
fort), landmark-based maps consisting solely of positions of salient features do not
allow the derivation of routes at all. On the other hand, approaches involving so-called
topological maps are often directly based on the graph of distinct routes through the
environment and are close to optimal with respect to the efficiency of route planning.
However, they often lack the detailed geometric descriptions required for robust local-
ization. Comparatively little research has been done on complex and heterogeneous
forms of spatial representations.

1.3 The Uncertainty Handling Perspective

Uncertainty concerns both, the construction and maintenance of a model of the envi-
ronment as well as the planning of actions and decision making based on this model.
Whenever the robot performs an action, for instance locomotion, the uncertainty about
the state of the world increases. New observations, on the other hand, can decrease the
uncertainty when they include known features of the environment.

4 Introduction

Various different ways of dealing with uncertainty in the spatial model have been
employed in robot mapping systems. The simplest but also most error-prone way is to
maintain a single model without representing the degree of belief in the relations and
properties stored in the model at all. For every new observation the model is modified,
resulting in a new world model. Approaches following this notion usually lack the
ability to recover from errors made in earlier steps

Better results can be expected if for every relation or property in the cognitive map,
the degree of belief in this fact is explicitly represented. The new world model is then
the most likely one given the old model and the current observation. The predominant
approach for describing and propagating belief values used in robotics is probability
theory. However some approaches use other methods like Dempster-Shafer theory or
fuzzy logic.

A different way to take uncertainty into account is to maintain a set of world mo-
dels instead of just a single one. Two approaches can be found in the literature: First,
a likelihood distribution over the space of all possible world models is maintained at
any time. Every time an action is performed or a new observation becomes avail-
able, the likelihood distribution is updated accordingly. The likelihood distribution
can usually only be represented approximately in these approaches. Second, a discrete
set of hypotheses is tracked with or without belief values assigned to each hypothe-
sis. Every time a hypothesis together with the current observation can be interpreted
as two or more successive world models, all these interpretations are included in the
set of overall hypotheses. The downside of approaches that track multiple hypotheses
simultaneously, however, is increased computational costs.

1.4 Combining Representation and Uncertainty Handling

This work has to a large degree been motivated by the observation that of the many
imaginable ways of combining spatial representation schemes with uncertainty hand-
ling mechanisms, only few combinations have been investigated extensively. The pre-
dominant approach in the last years has been to employ a plain global grid map or
feature-based representation scheme combined with an uncertainty handling method
that updates the likelihood distribution over all possible world models based on the
recursive Bayes filter.

Within this class of approaches, much progress has been made through the de-
velopment of sophisticated mathematical methods to represent and update the proba-
bility distributions. This raises the interesting question about whether the success of
these approaches can be ascribed simply to their powerful uncertainty handling mech-
anisms rather than to the way they represent the spatial information.

More abstract representations like topological maps typically only employ very
simple mechanisms for dealing with uncertainty, committing to a single hypothesis
whenever incorporating a new observation. Therefore, these approaches currently do
not achieve the same level of robustness and reliability. However, as pointed out earlier,

1.5 Route Graphs Based on Generalized Voronoi Diagrams 5

more abstract representations have advantages when the focus is not on the mapping
task alone, but on the entire bandwidth of spatial tasks, and generally they scale better
to larger environments due to their compactness.

As a result, we think that more attention should be directed towards investigating
ways to adapt the proven uncertainty handling methods for more abstract representa-
tion schemes with the goal of achieving a comparable level of robustness and relia-
bility. In this book, we lay the groundwork to achieve this with regard to one particular
spatial representation approach.

1.5 Route Graphs Based on Generalized Voronoi Diagrams

In this text, we will be concerned with one particular kind of spatial representation,
namely the route graph representation (Werner et al., 2000), a special sort of topolog-
ical map in which the environment is conceptualized as a network of distinct routes.
and this network is abstracted into a graph structure. As we will see, this kind of
representation is well suited to represent environments which possess a clear route
structure. Hence, a typical scenario we consider in this book is that of an office-like
indoor environment.

One means to derive the route structure of a planar environment from sensor data is
the generalized Voronoi diagram. It can for instance be computed from a geometric 2D
description extracted from range data as provided by a standard laser range finder. The
Voronoi diagram can then be abstracted into a graph, the generalized Voronoi graph
(see Fig. 1.1 for a first illustration of these concepts).

(a) (b) (c) (d)

Figure 1.1: Illustration of the most important representational concepts we are con-
cerned with in this work: (a) a general route graph model of a 2D environment, (b) the
generalized Voronoi diagram, (c) the corresponding generalized Voronoi graph, and
(d) a hierarchically organized route graph consisting of detailed layer and a coarser
layer

Besides such plain Voronoi-based route graph models of an environment, we con-
sider a hierarchical extension consisting of multiple route graph layers representing
the environment at different levels of granularity. These hierarchical Voronoi graph
representations allow performing important operations either on the most appropriate
level of detail or in a hierarchical manner.

6 Introduction

While from a spatial representation perspective Voronoi-based route graph repre-
sentations and their hierarchical extensions have many advantages over the low-level
representation approaches typically considered in today’s mapping systems, the reli-
able acquisition of this kind of representation under uncertainty still poses an open
problem. Most approaches involving a route graph representation only maintain a sin-
gle model and tend to fail when a wrong decision is made in the construction process
(e.g., when a loop is closed falsely).

It is our belief that to achieve a sufficient level of robustness of route graph model
learning, techniques to deal with uncertainty at different levels and methods to recover
from wrong decisions are required. In particular, the combination of route graph repre-
sentations with established multi-hypothesis tracking methods is a promising direction
of research.

1.6 Theses, Goals, and Contributions of This Book

The main goal of this work is to develop techniques for the Voronoi-based approach
that make the combination with standard uncertainty handling methods possible. Fur-
thermore, we want to demonstrate that this approach indeed leads to an improved ro-
bustness in the model acquisition process. The work is based on three main theses
which have greatly influenced our approach to the robot mapping problem:

1. In order to realize high-level spatial cognitive abilities like spatial reasoning and
communication about space on mobile robots, abstract levels of representation
and complex organizational forms of spatial knowledge are required.

2. By combining abstract representation approaches with uncertainty handling and
multi-hypothesis tracking methods, a similar level of robustness can be achieved
as currently shown by the state-of-the-art approaches based on low-level sensor-
near representations.

3. Relying on relations that can be more reliably observed reduces the problem of
uncertainty handling and increases the scalability of the mapping approach.

The first two theses have already been touched upon previously. The third thesis
expresses our believe that although most of the uncertainty handling methods have
been developed for coordinate-based representations using a single absolute frame of
reference, even better results can be achieved when combining them with representa-
tional approaches that are based on more abstract relations and employ multiple frames
of reference. Relying on more abstract relations means that, on the one hand, the level
of uncertainty in observations is decreased and, on the other hand, the size of the space
of possible hypotheses about the state of the environment is reduced or even turned
from a continuous space into a discrete one. Using finer relations only to describe lo-
cal configurations of objects for which these relations can be determined quite reliably

1.6 Theses, Goals, and Contributions of This Book 7

increases these effects while still providing enough detail, as, for instance, required for
localization.

In the concrete work concerning our goal of providing techniques that allow robust
model learning for our hierarchical Voronoi-based route graph representation, these
notions are implemented in the following way: We only resort to detailed geometric
information to specify the relative positions for local configurations of nodes. Mapping
on the global level instead is based on abstract relations of connectivity and very coarse
relations restricting the positions between the most relevant nodes. The high degree
of reliability in the observations of these relations allows us to treat them as hard
constraints and employ them to discard potential candidates when forming hypotheses
at the local level (correctly identifying perceived nodes) or global level (determining
the correct topology of the route graph).

In detail, the techniques for robust route graph model acquisition developed in this
book tackle the problem at three levels.

First, at the level of reliable extraction and automatic abstraction we consider the
problem of constructing the proposed hierarchical representation from 2D range data.
The problem of finding the correct data association between perceived nodes or sub-
graphs and the corresponding entities in the robot’s internal model is ignored in this
part of the work. We develop techniques to assess the relevance and stability of nodes
in a Voronoi graph derived from noisy sensor data, to autonomously create a hierarchy
of coarser levels of representation, and to complement this representation when new
information becomes available.

Second, on the level of local configurational knowledge we investigate the data as-
sociation problem for Voronoi graphs, which requires the identification of correspond-
ing elements in two Voronoi graphs. We extend existing data association approaches
by including topological constraints and by incorporating the relevance of nodes into
the matching process.

Third, at the global level we study the problem of map construction as the problem
of abducting the simplest model that explains the history of observations, an approach
that has been advocated by Kuipers (Kuipers et al., 2004; Remolina & Kuipers, 2004).
The result is a multi-hypothesis tracking approach that computes a minimal consis-
tent route graph model. We are especially interested in the question of the degree to
which coarse directional information shrinks the search space of possible route graph
hypotheses. In doing so, we apply techniques of spatial modeling and consistency
checking developed in the area of qualitative spatial reasoning, and analyze the effects
of qualitative direction and planarity constraints.

In the following, we briefly summarize the main contributions of this text.

• Hierarchical annotated generalized Voronoi graph representation: A hier-
archically organized representation consisting of multiple linked Voronoi graph
layers describing a planar environment at different levels of granularity and con-
taining additional annotations to the graph structure.

8 Introduction

• Relevance and stability assessment of Voronoi nodes: Measures and compu-
tation algorithms to assess the relevance of nodes in a Voronoi graph as well as
their stability under noisy conditions.

• Automatic generation of hierarchical Voronoi graph representations: Meth-
ods that enable a robot to derive coarser Voronoi graphs and build up a complete
hierarchical representation.

• Data association methods for Voronoi graphs: A matching algorithm for
Voronoi graphs that incorporates different kinds of constraints to achieve reli-
able data association.

• Multi-hypothesis approach for global mapping based on minimal model
finding: A best-first branch and bound search algorithm for minimal model
computation using pruning based on planarity and consistency of qualitative di-
rection information.

• Empirical evaluation of the effects of qualitative direction constraints: Sys-
tematic analysis of the effects of absolute and relative direction constraints as
well as planarity constraints on the space of possible route graph hypotheses.

• Overall Voronoi-based mapping system: A complete mapping system for 2D
range data that combines multi-hypothesis tracking and Voronoi-based route
graph representations and merges the individual results of this work into an over-
all system.

1.7 Outline of This Book

The remainder of this text is structured as follows. In Chap. 2, we explore the robot
mapping problem in detail and systematically review the relevant literature from the
spatial representation perspective and the perspective of uncertainty handling and with
regard to how both aspects have been combined. For this purpose, we introduce a two-
level taxonomy of elementary spatial representations and distinguish several organiza-
tion principles to combine them. The results of this analysis provide the motivation for
the work presented in the later chapters.

Next, in Chap. 3 we turn towards the particular spatial representation approach
we are concerned with in this work. We propose the hierarchical annotated Voronoi
graph as a suitable representation approach for well-structured planar environments.
We formally define the relevant concepts and structures and discuss advantages of the
representation as well as challenges with regard to autonomously constructing and
maintaining it under uncertainty.

In Chap. 4, we consider the problem of constructing the proposed hierarchical
representation from 2D range data. We propose a relevance and stability measure for
Voronoi nodes and describe the algorithms that allow us to reliably extract a Voronoi

1.7 Outline of This Book 9

graph from noisy sensor data and autonomously create a hierarchy of coarser levels of
representation.

Chapter 5 is concerned with the data association problem. We adapt and extend ex-
isting data association techniques for our needs and develop an approach to determine
the optimal matching of two Voronoi graphs that enforces structural compatibility and
geometric constraints.

Finally, we turn to the problem of global mapping in Chap. 6. Here we adopt
Kuipers’s framework of abducting the simplest model that explains a sequence of ob-
servations and actions. We present a branch and bound search algorithm through the
interpretation tree, which effectively tracks multiple hypotheses about the topology of
the environment. We also investigate the adequacy of qualitative spatial direction con-
straints and planarity constraints to efficiently prune the space of possible hypotheses
and apply the developed theoretical framework to our Voronoi graph representation.

The experimental evaluation and quantitative analysis of the individual techniques
developed in this book are presented in Chap. 7. We also explore several ways of
combining these methods and present a complete mapping system.

Finally, in Chap. 8 we summarize and discuss the results achieved in this work and
point out open questions and promising directions for future research.

As this work is based on techniques from two separate fields of AI research,
namely the area of probabilistic robotics and the area of qualitative spatial reason-
ing, we have added brief overviews on the fundamentals of both areas in Appendix A
and B, respectively.

11

Chapter 2

Robot Mapping

Robot mapping is concerned with developing techniques that enable a mobile robot to
construct and maintain a model of its environment based on spatial information gath-
ered over time. Typically, the spatial information stems from directly perceiving the
environment through external sensors. In addition, internal sensors like odometry pro-
vide information about change of location within the environment. There are, however,
many more ways of acquiring spatial information, including external representations
such as floor plans, sketches, or written descriptions, as well as direct communication
with other robots or with humans.

Most approaches to robot mapping are incremental in the sense that a new ob-
servation is used to adjust the current spatial model, leading to a new model. The
observation is then discarded. The adjustment of the model when new information
about the environment becomes available can be seen as a two-step process: First, in
the localization step corresponding features contained in the new information and in
the current model are identified (data association) and the robot’s position within the
model is updated based on the found correspondences (position update). Second, in
the map merging step the spatial information in the model is complemented and up-
dated based on the results of the localization step. The information flow of this general
incremental mapping cycle is illustrated in Fig. 2.1. The current spatial model serves
as input for the data association and map merging steps and is modified by the map
merging step.

Depending on the nature and source of the new information, one of the two sub-
operations of localization, data association or position update, or the map merging
step can be missing. For instance, the robot’s internal odometry sensors provide in-
formation about the robot’s position but not about environmental features. Thus, no
data association and no map merging take place. Communicated information on the
other hand may or may not provide any evidence about the robot’s current position. In
the first case, we will speak about position-related communication—an example could
be information in the form of a you-are-here map—and the information flow would
be similar to that of standard incremental mapping. An example of the second case,

J.O. Wallgrün, Hierarchical Voronoi Graphs: Spatial Representation and Reasoning for Mobile Robots,
DOI 10.1007/978-3-642-10345-2_2, © Springer-Verlag Berlin Heidelberg 2010

12 Robot Mapping

(direct observations,
 communicated information, ...)

(odometry)

Data association

Map merging

Position update

Spatial model

Representation approach

Mapping algorithm

External sensors Internal sensors

Figure 2.1: Incremental mapping information flow

which we will call position-unrelated communication, could be a floor plan which pro-
vides a lot of environmental information but no information about the robot’s current
position. In this case, the data association step would immediately be followed by the
map merging step without a position update in between.

Robot mapping is a challenging problem because of the uncertainty inherent in the
available spatial information and in the model itself, which always is an approximation
of the real world. While it is comparatively easy to localize the robot given an accu-
rate model of the environment (localization with an a priori map) or to generate an
accurate model if the exact location is known for every perceived sensor measurement
(mapping with known position), the combined problem is very hard because errors in
the model and the localization do affect each other. As a consequence, the errors can
grow without bounds. The robot mapping problem is therefore also referred to as the
simultaneous localization and mapping (SLAM) problem (Leonard & Durrant-Whyte,
1991). It is often considered as a state estimation problem and tackled by sophisticated
stochastic methods for dealing with the uncertainty, resulting in a research field com-
monly known as probabilistic robotics (Thrun, 2000; Thrun et al., 2005). We provide
an overview of the main techniques developed in this field in Appendix A.

Comparing different approaches to the robot mapping problem on a theoretical
level is a rather difficult endeavor. The main reason for this is the huge variety of ways
in which space can be represented without clear criteria for what makes a good or
even optimal representation. As argued in the introduction, over the last several years
the robot mapping community has focused on approaching the robot mapping prob-

Robot Mapping 13

lem from the uncertainty handling perspective. Sophisticated techniques for maintain-
ing probability distributions over high-dimensional state spaces have been developed.
However, as a consequence the SLAM problem has mainly been reduced to finding
algorithms that compute the most likely model from a sequence of actions and direct
sensor observations for an arbitrarily predetermined representation approach.

For the most part this representation approach falls into one of three main classes:
occupancy grids, geometric maps, or landmark-based maps. All three kinds of repre-
sentations describe the environment by providing precise locations of features within
a single global coordinate system. This raises the interesting question about why these
approaches differ so much from what has been discovered about human cognitive maps
(Golledge, 1999). For instance, it is known that human spatial knowledge is frag-
mented, incomplete, and distorted (Downs & Stea, 1973; Tversky, 1993) as well as
hierarchically organized (Briggs, 1973; Hirtle & Jonides, 1985; McNamara, 1986).

In this book, we aim for a more general view on what makes a good or optimal
robot mapping approach. Acquiring a spatial model is not regarded as a task per se,
but considered in the context of a larger set of competences that are supposed to be re-
alized with the help of the model. Hence, choosing a suitable representation approach
becomes part of the problem, and different approaches will be assessed based on how
well they support the operations required for different spatial tasks.

In the following, we will proceed by looking more closely at the most important
competences that rely on a spatial model of the environment. Based on the set of tasks
suggested there, we derive a set of criteria for comparing and evaluating different ap-
proaches to the robot mapping problem. Subsequently, we review the robot mapping
literature with respect to the spatial representations employed as well as the uncertainty
handling methods utilized, and make use of the identified evaluation criteria to com-
pare the different approaches. As a result of this analysis, we will argue that certain
promising directions of research have not yet been sufficiently explored. This insight
serves as a motivation for the main part of this work, which pursues research in this
direction.

In the remainder of this chapter, we will use the term (spatial) model or some-
times map for the entire spatial information a robot has stored about its environment
at a given moment in time. Depending on the considered approach, this can include
uncertainty information and different simultaneously considered alternatives. To talk
about a single alternative, we will use the term hypothesis. (Spatial) representation
(approach) will refer to the representation formalism used to formulate spatial know-
ledge in the model. We will further make the distinction between basic representation
approaches—elementary homogeneous representations—and organizational forms—
more complex structured representation formalisms that combine different basic rep-
resentation approaches. Finally, mapping approach is used in general to refer to the
combination of a spatial representation approach, uncertainty handling techniques, and
algorithms employed in a particular implementation.

14 Robot Mapping

2.1 A Spatial Model for What?

The problem of acquiring and maintaining a long-term spatial model of an environment
cannot be studied in isolation but has to be considered in the context of all the oper-
ations that are to be supported by the model. Although the concrete set of operations
clearly depends on the specific area of application, we believe that it is reasonable
to regard three tasks as fundamental for future mobile robot applications: the tasks
of (1) navigation, (2) systematic exploration, and (3) communication about space. We
will consider these tasks further below. Other forms of acting in space (e.g., manipulat-
ing a set of objects) while being based on spatial properties do not require a long-term
model of the environment. Instead, they can be explained as being guided by imme-
diate perception or based on a short-term local spatial model of the agent’s proximity.
Therefore, we will not consider such tasks in our discussion of environmental models
here.

2.1.1 Navigation

Montello (2005, p. 258) defines navigation as a “coordinated and goal-directed move-
ment of one’s self (one’s body) through the environment.” The purpose of navigation
is to move oneself in order to reach a particular (known) location. Levitt & Lawton
(1990) list three fundamental questions that need to be answered in order to achieve
successful navigation: “Where am I?”, “Where are other places relative to me?”, and
“How do I get to other places from here?”. Thus, it follows that a spatial represen-
tation needs to contain information that supports the ability to localize oneself with
respect to environmental features, information about the locations of relevant places,
and information that allows us to generate plans on how to reach these relevant places.

Research on animal and human navigation has identified a multitude of navigation
behaviors and techniques that contribute to achieving overall successful navigation
from low-level guidance-based behaviors over place recognition-triggered responses
to higher-level topological and metrical navigation abilities (cf. Trullier et al., 1997).
In work on human navigation it is common to distinguish between locomotion and
wayfinding (Darken et al., 1999; Montello, 2005). Locomotion comprises sensor-based
movement through the immediate surroundings while avoiding obstacles. Wayfinding
comprises all the higher-level cognitive processes involved in navigation like localiza-
tion and planning. While locomotion can be achieved reactively, wayfinding comprises
those abilities that rely on spatial information stored in memory.

From the perspective of operations and spatial competences, we can thus distin-
guish three main subtasks under the term navigation: localization, path planning, and
locomotion. Of these, only the first two require a global spatial model of the environ-
ment.

2.1 A Spatial Model for What? 15

2.1.1.1 Localization

To determine one’s location within a model of the environment can mean different
things depending on the level of abstraction employed in the model. In an accurate
geometric model, it would mean to determine the exact position and orientation of the
agent within the global coordinate system used, usually referred to as the robot’s pose.
For a more abstract representation, it could mean, for instance, to establish that one is
currently on the town hall square facing north.

In general, it gets easier to localize oneself when more information is included in
the model. This is because more ambiguities arise when certain kind of information
is not included or details are omitted, leading to increased perceptual aliasing. On the
other hand, a large amount of detailed information may very well lead to unacceptable
space consumption or processing times. However, it is also possible that information
required for localization is not distributed homogeneously but mainly provided at cer-
tain distinctive places (Kuipers, 2000), while navigation between these distinct places
is not based on location.

In robotics, three degrees of localization capabilities are distinguished: Local lo-
calization (or position tracking) refers to the ability of tracking your position correctly
when your starting position is known. The problem of global localization means that
the robot should be able to localize when starting at an unknown position. Finally,
the term kidnapped robot problem (Engelson & McDermott, 1992) is used when the
robot is supposed to recover from false localization: The robot wrongly assumes it is
at a particular place but is able notice its error and subsequently determines its correct
position.

2.1.1.2 Path Planning

Path planning is based on information about how places are connected with each other
and about the possibilities to move from one place to another. Hence, it depends on
the environment as well as the motion abilities of the robot. Possible connections can
be either represented directly, in which case path planning becomes the problem of
determining an optimal sequence of connections with respect to a given optimality
criterion, or derived based on a description of the traversable space (the free space)
and the agent’s motion abilities.

The resulting plan is a description of how to get to the goal location. This can
be specified in many different ways and at different levels of abstraction. It can, for
instance, be a detailed sequence of motions to perform, a reactive behavior to execute,
or an abstract route description containing references to places and environmental fea-
tures. In all cases, the plan has to be in line with the motion and sensor abilities of the
agent in order to be executable.

16 Robot Mapping

2.1.2 Systematic Exploration

Exploration is sometimes seen as a part of navigation, namely when an agent is sup-
posed to find a certain goal location in an unfamiliar environment. This tasks requires
a systematic exploration approach to be efficient. In robotics, however, exploration is
typically not goal-directed in the sense of reaching a particular goal location. Rather,
the purpose is to systematically cover all accessible parts of an environment, either to
construct a spatial model for later use or to systematically search or cover the entire
environment as in rescue or cleaning scenarios.

The most important aspect of exploration is to keep track of covered parts and parts
of the environment that still need to be explored in order to attain complete coverage.
In addition, it is often desirable to perform the exploration as efficiently as possible in
terms of time or travel distance. In this case, information that supports the decision of
which part to explore next needs to be provided by the representation as well.

2.1.3 Communication

Communication about space with other agents can take many forms. First, we can
distinguish direct and indirect communication. In the first case, information is directly
passed between the agents, typically in verbal form, possibly supported by gestures. In
contrast, indirect communication makes use of external representations. Examples are
sketches, all kinds of maps (such as topographical maps, you-are-here maps, or floor
plans), and written descriptions. The external representation is usually either graphical
or verbal.

In a second distinction, one could look at the purpose of the communicated in-
formation. Here we could distinguish communication with the goal of conveying in-
formation about the environment (like a city map or a verbal description of the city
center) from communication with the goal of providing navigational information like
route instructions supposed to guide you to a particular place.

Finally, as seen in the beginning of this chapter, communicated spatial information
can be position-related or unrelated, depending on whether or not it is adapted to the
receiving agent’s current position. For example, a city map is position-unrelated as the
agent first has to localize within the map in order to use it for navigation, while route
directions (“take the third street on the right, then ...”) are typically position-related
based on the current location of the conversational partner.

In order to communicate with agents that have completely different sensor and
motion capabilities, a suitable level of representation needs to be established on which
spatial information can be exchanged. To facilitate this, an agent’s spatial representa-
tion needs to bridge from low-level representations tuned for its own technical abilities
to more abstract levels of representation that other types of agents can utilize (Wolter
& Richter, 2004).

For communication with humans, a semantic level of description that makes use of
relevant human spatial concepts needs to be part of the representation, and the repre-

2.2 Correctness, Consistency, and Criteria 17

sentation needs to be able to mediate between this semantic information and the more
sensor-related levels. Anchoring semantic information in the spatial representation has
been investigated by Chatila & Laumond (1985) and Galindo et al. (2005).

2.2 Correctness, Consistency, and Criteria for Evaluating
Spatial Representations

As mentioned previously, it is not an easy endeavor to compare existing mapping ap-
proaches in order to decide which one is most suitable under particular conditions.
Assuming that at one point the robot has to make a decision for a single hypothesis,
the ultimate goal of the involved mapping algorithms is to derive what we could intu-
itively call the correct model of the environment from the available information (sensor
reading, actions performed, communicated information, background knowledge, etc.),
the model that best describes the real environment within the approximation bounds
predefined by the chosen representation approach.

However, taking into account the uncertainty of spatial information, we cannot ex-
pect that a robot mapping system always comes up with the correct solution. The avail-
able information may actually suggest a different state of the environment. Therefore,
the goal can only be to compute the most likely or plausible model given the available
evidence. Nevertheless, to evaluate the quality of a mapping approach, we would still
be interested in its ability to determine the correct model given enough time to gather
sufficient data.

Depending on the spatial representation approach chosen, it is common to replace
correctness as introduced above by the slightly weaker criterion of the resulting model
being consistent in the sense that certain crucial spatial properties are represented cor-
rectly while other less important ones may not be correct. For instance, again using the
example of a geometric model, small discrepancies in the obstacle boundaries can be
perfectly acceptable without diminishing the model’s usability, while a model in which
neighboring rooms overlap would be considered as inconsistent. In the same way, a
graph-like representation for a street network with coordinates assigned to the nodes
would be considered consistent as long as the graph correctly reflects the topology of
the network even if the coordinates do not reproduce the positions of the junctions ex-
actly. Usually, the criterion of consistency is only used intuitively in the robot mapping
literature, without giving concrete conditions that a consistent model has to satisfy.

With regard to the spatial representations used in different mapping systems, we
propose three general criteria to evaluate and compare different approaches: (1) ex-
tractability and maintainability, (2) information adequacy, and (3) efficiency and scal-
ability. We are going to discuss these criteria in the following.

18 Robot Mapping

2.2.1 Extractability and Maintainability

It is crucial that a spatial model formulated within the chosen spatial representation
approach can be constructed and maintained from the information available to the
robot. This means we need to be able to formulate algorithms that take the input
information and update the model accordingly. This requires managing the uncertainty
in the input information.

Generally, the information required by approaches that model the environment in a
low-level sensor-near way seems to be much easier to extract and maintain because no
sophisticated processing of the sensor data is needed. The effects of imperfect sensors
can be explicitly modeled statistically. On the other hand, more abstract representa-
tions may have the advantage that the modeled relations can be more reliably derived
from the sensor data, e.g., we might be able to reliably tell that a certain object is
between two other objects, while it is much harder to determine the exact shape and
location of an object.

Extractability and maintainability of representation approaches can also vary sig-
nificantly for different kinds of environments. For instance, an approach may only
be suitable for well-structured indoor environments or rely on artificial unique land-
marks. We will call representation approaches that can adequately represent arbitrary
environments universal.

2.2.2 Information Adequacy

Similarly crucial is that the chosen representation approach provides all the informa-
tion that is required for the operations that are supposed to work on the model. The in-
formation can be represented either explicitly, meaning that it can be retrieved without
further computation, or implicitly, for instance, when the distance between two objects
is computed via their coordinates (see Palmer, 1978, for a discussion of implicit and
explicit representations). The costs for accessing information implicitly stored in the
representation naturally can vary significantly.

Another aspect of information adequacy is that the level of detail is sufficient to
support the regarded operations. However, demand for low computational costs and
low space consumption (see below) warrants a certain pursuit of sparseness: A rep-
resentation should not contain superfluous information, information that is required
neither for any of the operations nor for maintaining the model itself, and required
information should only be represented at a level of detail that is really needed.

2.2.3 Efficiency and Scalability

The ways in which a certain kind of spatial information can be represented are lim-
itless. As a mobile robot typically is supposed to work in realtime, the operations
should be as efficient as possible. Efficiency significantly depends on the way the in-
formation is represented. Typically, there are trade-offs involved in which one way

2.3 Spatial Representation and Organization 19

Coordinate−based repr. Relational repr.

Occupancy−based repr. Geometric repr. Landmark−based rep. View graph repr. Route graph repr.

Figure 2.2: Taxonomy of spatial representation formalisms used for mobile robots

of representing things favors a certain operation while making other operations more
expensive. A good spatial representation, therefore, would be one which optimizes the
overall performance over all operations working on the spatial model, which is rather
difficult to assess. However, looking at the complete set of operations, and not only
at the efficiency of map construction and map maintenance, will give a much better
picture.

In addition to the efficiency aspect, we will use the term scalability to discuss how
well a representation approach scales with the size of the represented environment.
This concerns efficiency of operations as well as space consumption.

2.3 Spatial Representation and Organization

In the following, we review the literature on robot mapping regarding the spatial repre-
sentation approaches employed. We distinguish between different basic spatial repre-
sentation approaches, which are the elementary representation formalisms to describe
an environment in a homogeneous way, and different organizational forms, which de-
scribe different ways of combining basic spatial representation approaches to form
more complex representation structures. Such representations are often referred to as
hybrid representations (Buschka & Saffiotti, 2004).

2.3.1 Basic Spatial Representation Approaches

Basic spatial representation formalisms mainly differ in two ways: first, in the basic
entities used to formulate knowledge about the environment, and second, in the way
how configurations of the the basic entities are expressed in terms of spatial relations
holding between the entities.1 In order to structure this overview on current basic
representation formalisms, we use the taxonomy depicted in Fig. 2.2.

At the top level of the taxonomy, approaches are classified based on the way the
spatial relations between the basic entities are represented, leading to two main classes:
coordinate-based representations (often broadly referred to as metric representations

1As we will see later in this chapter, spatial relations can sometimes be represented rather indirectly
in the form of action sequences or motion behaviors.

20 Robot Mapping

in the literature) and relational representations (comprising, among others, approaches
traditionally referred to as topological maps). The distinction made here is the follow-
ing:

Definition 2.1 (Coordinate-based representation). Coordinate-based representations
express spatial relations between basic entities implicitly by providing coordinates for
each of the spatial objects within a single absolute coordinate system.

Definition 2.2 (Relational representation). Relational representations express spatial
relations between basic entities by explicitly stating that a certain relation holds be-
tween a certain set of objects.

The consequences of these two fundamentally different ways to describe configu-
rations will be discussed further below. On the second level of the taxonomy, a distinc-
tion is made based on the kind of basic spatial objects used, leading to three subclasses
of coordinate-based representations (occupancy-based representations, geometric rep-
resentations, and landmark-based representations), and two subclasses of relational
representations (view graph representations and route graph representations).

2.3.2 Coordinate-Based Representations

The defining property of coordinate-based representations is that configurations be-
tween basic entities are described implicitly through coordinates within a single abso-
lute coordinate system. As a consequence, it is not possible within these approaches to
leave the relations between certain entities completely unspecified and thus distinguish
between actually perceived relations and derived relations. This leads to the problem
that coordinate information needs to be as exact as possible or else global inconsisten-
cies may occur.

On the other hand, if many different spatial relations are required by the operations,
coordinate-based representations offer a universal basis from which many different
kinds of relations can be derived (e.g., distance, angles, adjacency).

The three most common kinds of basic entities used in coordinate-based repre-
sentations are cells (used in occupancy-based representations), geometric objects, and
landmarks extracted from the sensor information.

2.3.2.1 Occupancy-Based Representations

Occupancy-based representations represent occupied and free parts of space equitably
by decomposing space into cells and storing for each cell whether it is (at least par-
tially) occupied or (entirely) free. Typically, the decomposition is independent of the
distribution of objects in space and uniform in the sense that all cells have the same
shape and size. The dominant decomposition approach employed in robot mapping is
the grid map, in which (in the 2D case) a square-shaped raster is used and which allows
a simple mapping of locations in the world given in the form of coordinates in a global

2.3 Spatial Representation and Organization 21

Figure 2.3: An occupancy grid representation. The cells’ likelihood of being occu-
pied is represented by their gray values, ranging from white (unoccupied) to black
(occupied)

coordinate system to the indices of the corresponding cell in the grid and vice versa.
Typically, instead of a binary grid a so-called occupancy grid is employed in which
the uncertainty about the occupancy state of a cell is represented. In the majority of
cases, a likelihood value l ∈ [0, 1] is maintained for each cell. Figure 2.3 shows an
occupancy grid of an indoor environment.

Moravec and Elfes (Elfes, 1989; Moravec & Elfes, 1985) were the first to pro-
pose the use of occupancy grid representations for mobile robot navigation and world
modeling. They also formulated Bayesian update procedures based on a probabilistic
sensor model. Since then, these techniques for learning occupancy grid representa-
tions have been refined and combined with advanced probabilistic uncertainty hand-
ling methods. Occupancy grids are now used in many state-of-the-art mapping systems
(Grisetti et al., 2007a,b; Hähnel et al., 2003a; Thrun, 1998). The idea of occupancy
grids has also been adopted to model 3D space (see, for instance, Moravec, 1996).

An extension of occupancy grids called coverage maps has been proposed by
Stachniss & Burgard (2003a,b) together with suitable probabilistic map update meth-
ods. In coverage maps, the degree of coverage is represented as a probability distribu-
tion over the interval 0 (completely empty) to 1 (completely occupied) for each cell,
resulting in a more accurate description of the environment.

Occupancy grids provide a detailed description of the environment in a sensor-near
way, which does not require the extraction of higher entities from the sensor data. That
makes it comparatively easy to model the propagation of uncertainty and to develop
construction and maintenance methods because no explicit data association is required
and incorporating observations (merging step) only involves updating the likelihood
values of particular cells. In addition, an occupancy grid representation can slowly
adapt to changes in moderately dynamic environments and is universal in the sense
that any environment can be adequately modeled.

As an occupancy-based representation preserves most of the spatial information

22 Robot Mapping

contained in the sensor data, it in principle provides all the information required for
navigation and communication. In addition, the high level of detail allows for accurate
localization. However, the low-level nature of the represented information without
explicit modeling of obstacle boundaries makes many operations rather costly. Path
planning can for instance be achieved by value iteration (Howard, 1960; Thrun et al.,
1998a), but the search space is rather large compared to other representations. The
absence of high-level information or objects complicates the annotation with or the
derivation of semantic information as required for high-level reasoning or communi-
cation with humans.

With regard to systematic exploration, several techniques have been developed for
occupancy-based representations ranging from simply counting the number of times a
cell has been scanned, to the identification of so-called frontiers between the observed
and unobserved areas Yamauchi (1997), to decision-theoretic approaches based on
expected information gain (Bourgault et al., 2002).

The main drawback of occupancy-based representations is that they do not scale
well to large environments. The high space consumption for larger environments re-
sulting from the fact that the required space depends on the size of the environment and
not on the complexity of the environment directly implies strongly increasing compu-
tational costs as well. To adequately capture the details in more complex areas a high
cell resolution is required which is wasted in less complex areas. Techniques like quad-
or octrees (Samet, 1988; Zelinsky, 1992) have been employed to reduce the space con-
sumption problem but can also lead to increased computational costs.

2.3.2.2 Geometric Representations

Geometric representations use parameterized primitive geometric objects, i.e., points,
lines, curves, planes, etc. For these objects, we will adopt the term geom here. A
geometric representation basically consists of a list of geoms describing the boundaries
of free space located in a single coordinate system. Most approaches used for mobile
robots employ a single kind of geom. Figure 2.4 provides an example of a line-based
2D representation.

Chatila & Laumond (1985) describe an early geometric 2D representation used as
part of the world model of their robot HILARE. The representation consists of a set of
polygonal objects directly derived from sensor data.

In Crowley (1989), an early approach to construct a model consisting of line seg-
ments is described. The line segments are extracted from sonar range data while the
robot moves around. Every time a line segment has been detected, it is matched to
the model. If a suitable match is found, its parameters are updated accordingly. Oth-
erwise a new line segment is added to the model. The approach is only employed to
construct small local models of the robot’s immediate surroundings though. In Tardós
et al. (2002), techniques for computing a geometric map consisting of point objects
(corners) and line objects (walls) are developed.

A lot of work from the area of scan matching has been concerned with computing

2.3 Spatial Representation and Organization 23

Figure 2.4: Example of a geometric representation: The boundaries of obstacles are
represented by line segments

point set 2D representations from laser range data. For instance, Lu & Milios (1997)
use a spring-based energy minimization approach to align the individual scans in order
to derive a consistent representation. Several groups have developed similar techniques
for constructing complete geometric 3D models. Nüchter et al. (2004, 2005) use scan
matching of 3D scans together with a global relaxation method to compute a point set
representation for complete six degrees of freedom robot motion. A data reduction
technique is employed to decrease the number of points from each scan.

An approach for constructing a geometric 3D model consisting of planar surfaces is
described in Hähnel et al. (2003b). The approach is based on scan matching to compute
a raw 3D model and uses a local search procedure to generate a low-complexity plane
model. A different approach described in Liu et al. (2001) focuses on extracting a
compact 3D model from a given set of point measurements in 3D space.

Wolter, Latecki, and colleagues (Latecki et al., 2005a,b; Wolter et al., 2004) de-
scribe techniques based on shape matching to construct a geometric representation
consisting of (generalized) polylines. They employ shape similarity measures to match
polylines and complete scans and develop techniques to merge polylines when a new
scan is incorporated into the map.

Like occupancy-based representations, geometric representations can represent ar-
bitrary environments as long as geometric primitives are employed that allow us to
approximate the shapes of object boundaries sufficiently well (e.g., points, lines, poly-
lines). They are typically much more compact (depending on the geoms used), at
least if a merging method is employed to join corresponding entities instead of blindly
adding all perceived objects as new objects. However, developing adequate merging
schemes is a hard problem and for numerous approaches no merging scheme is de-
scribed.

As geometric representations describe the boundaries of free space, they are, on
the one hand, well-suited for localization and, on the other hand, also allow for path
planning. Path planning, however, usually requires the construction of a discrete search
space from the representation in order to apply path planning techniques; this produces

24 Robot Mapping

Figure 2.5: Landmark-based representation consisting of point landmarks referenced
in a global coordinate system

additional computational costs. Typical approaches here are roadmap approaches,
cell decomposition approaches, and potential field approaches (for an overview, see
Latombe, 1991).

One disadvantage of geometric representations is that they do not lend themselves
very well to systematic exploration: Keeping track of which parts of the environment
have been covered requires that the perceived area be explicitly represented and that
this description be continuously updated.

With regard to communication, approaches using more complex geometric primi-
tives (e.g., polygons) are usually much better suited than those based simply on points
or lines as they allow for describing complete objects which can then be used to attach
semantic information. Overall, only certain types of communication can be directly
achieved with geometric representations.

2.3.2.3 Landmark-Based Representations

Landmark-based representations represent the world as a set of salient objects (the
landmarks) extracted from the sensor data. The positions of the landmarks are spec-
ified in a global coordinate system (see Fig. 2.5). Both, geometric and landmark-
based representations have been subsumed under the term feature-based representa-
tions, mainly because they can be similarly stored as matrices and lend themselves to
the same kind of uncertainty handling techniques.2 However, from the spatial repre-
sentation perspective, the distinction makes sense because geometric representations
completely model the boundaries of free space, while landmark-based representations
focus on specific objects useful for localization and orientation. Besides the positions
of the landmarks, additional attributes can be used to discriminate similar landmarks
in the data association step.

In the literature, we mainly find simple point-like landmarks that are easy to extract
from camera data or range data, or artificial beacons often with a unique ID allowing
for unambiguous identification.

2The overall approach is also often referred to as stochastic maps.

2.3 Spatial Representation and Organization 25

An example for using natural landmarks is the work by Guivant & Nebot (2001).
They use tree trunks extracted from laser range data as landmarks to create a 2D map of
the Victoria Park in Sydney. Their data set has been used as a benchmark for landmark-
based mapping approaches by many other groups (e.g., Montemerlo & Thrun, 2003;
Montemerlo et al., 2003; Nieto et al., 2003).

Neira & Tardós (2001) use vision to extract vertical edges corresponding to cor-
ners and wall or window frames and project them onto the ground plane to map an
indoor environment. In Dissanayake et al. (2001), radar data is employed to map a
combination of natural and artificial (radar reflectors) point-like landmarks. The qual-
ity of a landmark candidate is assessed by checking its behavior as a stationary point
landmark; only stable candidates are incorporated.

Purely artificial landmarks are used, for instance, in Frese (2006b), where indis-
tinguishable landmarks detectable by vision are placed on the floor along the walls.
Identification of the landmarks here is based only on the relative positions, taking into
account larger constellations of landmarks for global loop closing.

Landmark-based approaches have also been successfully employed in the under-
water domain using artificial landmarks in the form of transponders as well as natu-
ral features extracted from sonar data (see, for instance, Newman & Leonard, 2003;
Williams et al., 2001).

Landmark-based representations are rather compact (depending on the density of
landmarks in the environment) and in general scale well to larger environments. They
have been extensively used in SLAM approaches, mainly because they lend them-
selves very well to probabilistic uncertainty handling. Sophisticated techniques for
maintaining these kinds of representations in the presence of uncertainty have been
developed. Unfortunately, the developed approaches typically lack the universality of
occupancy-based or geometric approaches as they are only applicable in environments
that provide the required landmarks in sufficient density.

Moreover, landmark-based approaches do not represent the boundaries of free
space. This makes them less suitable for path planning or systematic exploration. The
only kinds of environments in which this is not problematic are open environments, in
which the navigation between the landmarks is not much further restricted by obsta-
cles other than the landmarks themselves. How well landmark-based representations
support localization depends to a large degree on the ambiguity of landmarks and their
density in the environment. For instance, if the environment is densely covered by
landmarks which are easy to distinguish, the localization problem is simplified signif-
icantly.

Landmarks play an important role in human wayfinding (Denis, 1997; Lovelace
et al., 1999; Sorrows & Hirtle, 1999). Thus, they are well suited to support communi-
cation with humans. For instance, they can be used for providing and processing route
instructions if it is possible to enable the robot to recognize a set of landmarks similar
to those that humans use.

Overall, landmark-based representations are in many cases not adequate as exclu-

26 Robot Mapping

sive representations for a mobile robot, but they are well suited to be combined with
other approaches.

2.3.3 Relational Representations

Relational representations explicitly enumerate relations that hold between objects. As
a result, this allows us to express ignorance because the fact that a relation is not listed
means that this relation may or may not hold. In addition, the relational approach
allows us to keep track of which relations have been directly perceived and thus are
reliable, and what can be deduced from these relations. Moreover, as relational rep-
resentations usually deal with more abstract spatial relations, ensuring consistency is
somewhat simplified. In some approaches the spatial relations are provided indirectly
in an action-based form by specifying a sequence of movements or motion behaviors
that will move the agent between the locations.

Most relational representations employed in current mobile robots are graph-based
representations in which the nodes stand for the basic entities (e.g., views, places, ob-
jects) and the edges represent the relevant spatial relations (e.g., adjacency or connec-
tivity). They are often referred to as topological maps. We distinguish two kinds of
relational graph representations: view graph representations and route graph repre-
sentations. In view graph representations the nodes are not directly derived from the
environment but are more or less evenly distributed over the free space. Each node is
characterized by the view that is available from this particular position. The placement
of nodes is based on sufficient perceptual difference with adjacent nodes. In contrast,
in route graph representations the nodes are directly induced by the environment. A
route graph represents the environment as a network of distinct routes and the nodes
stand for distinctive places or particular landmarks encountered along the routes. Of-
ten, the route graph representation directly reflects the topology of the free space.

In principle, relational representations may consist of purely propositional state-
ments formulated in a logic-based language. But as graph-based implementations have
significant computational advantages because of their analogical nature, this approach
is rarely used. However, relational approaches containing graph representations have
successfully been embedded into logical frameworks (see for instance Remolina &
Kuipers, 2004).

2.3.3.1 View Graph Representations

In view graph representations the nodes are directly associated with the particular sen-
sor input, called a view, available at a particular location. A link between two nodes
accounts for the fact that both views have been seen in consecutive order, and thus the
spatial adjacency of the corresponding locations. The link provides the information
the robot requires to move between the two locations. Nodes have to be distributed
densely enough so that reliable locomotion between them is possible based on the
navigational capabilities of the robot. Construction of the view graph representation

2.3 Spatial Representation and Organization 27

Figure 2.6: View graph representation embedded in the environment

thus means creating a network of nodes that covers the entire environment. Figure 2.6
depicts a view graph embedded within the environment it represents (nodes are located
at the positions from which the views have been recorded).

Schölkopf and Mallot introduced the notion of a view graph (Schölkopf & Mallot,
1995) as a kind of minimal model that enables navigation and path planning. They
describe a neural network approach for learning the view graph representation from a
sequence of views and for using the view graph for navigation in a discrete maze-like
world. In later work (Franz et al., 1998), this approach is extended to open environ-
ments and implemented on a real robot. The views are given by panorama images from
a 360◦ camera and called snapshots. Navigation between views is achieved by a visual
homing procedure. Adjacent nodes in the view graph have to be close enough to-
gether so that the individual “catchment areas” of the homing procedure overlap. Due
to views being 360◦ images and treated independently of the robot’s orientation, and
the fact that only sufficiently distinctive views are stored in the graph, it is possible to
associate views with particular locations and visualize the view graph as embedded in
the environment. In Hübner & Mallot (2007), an extension of the view graph approach
involving global position estimates for the nodes is described. Strictly speaking, this
approach has to be classified as a hybrid approach combining coordinate-based and
relational descriptions.

The ELDEN system described in Yamauchi & Beer (1996) uses a topological map
representation that is adaptive, as the edges are annotated with confidence values.
Thus, it can to a certain degree deal with changes in the environment such as moved
objects, which cause changes in the topology of free space. The places are distributed
throughout the environment based on distance from other already established places:
If the robot is more than a certain distance away from the last visited place, a new
place node is created. Nodes represent regions of space. They are annotated with the
global coordinates of their centers and a local occupancy grid representing the geome-
try of the place. Matching of the grids is used for localization and for hill-climbing to
the center of the region. The edges are annotated with the heading information that is
updated each time the edge is traversed. The system relies on accurate dead reckoning
and has only been evaluated for small environments.

Duckett & Nehmzow (1999a,b) report on experiments with a view graph repre-

28 Robot Mapping

Figure 2.7: Route graph representation of an indoor environment

sentation that is very similar to that of Yamauchi and Beer. The system described in
Duckett & Nehmzow (1999a) learns the topological map from sonar, infrared sensors,
and compass readings. The nodes are annotated with local range data derived from
the sonar measurements. Relative distance and direction information is stored at the
edges. A neural network detects open areas and stores them as predicted places for fur-
ther exploration. For localization, the approach requires global coordinate estimates,
which are computed using a spring-based relaxation approach.

View graph approaches are representations very close to the actual sensorimotor
experience of the agent but abstract the continuous world into a discrete representation.
As such they are rather universally applicable as long as the sensor information is rich
enough so that perceptual aliasing does not become a problem. Also, complementing
the representation (merging step) is straightforward, and the data association problem
is at least reduced.

View graphs provide the information for successful navigation, but the resulting
paths tend to be suboptimal, especially when exact homing is required after every
step. Their scalability depends on the density of nodes required. The downside of
the representation is that almost no structural information about the environment is
represented and that the model varies depending on the sensor and motion abilities of
the agent and depending on the starting position. As a consequence, the representation
is not very well suited for systematic exploration and communication.

2.3.3.2 Route Graph Representations

The route graph concept has been introduced in Werner et al. (2000) as a general
model for environmental knowledge gained by integrating route information into sur-
vey knowledge by humans and animals, and also by artificial agents. We adopt it here
for graph representations in which the nodes stand for distinctive places induced by
the environment. The edges reflect distinctive paths connecting these places, allowing
travel from one place to another. Figure 2.7, for instance, shows a route graph for
an indoor environment in which the nodes correspond to rooms and junctions and the
edges correspond to doorways and hallways. Route knowledge is generally assumed
to play an important role in the development of human representations of large-scale
space (Siegel & White, 1975).

2.3 Spatial Representation and Organization 29

The TOUR model by Kuipers (1978), which is proposed as a psychological model
of human common-sense knowledge of large-scale space, describes a representation of
a street network environment consisting of places, paths, and regions. It can be learned
from abstract route descriptions consisting of sequences of turn and move actions. The
place and path descriptions represent the environment as a route graph.

In Kuipers & Byun (1988), these ideas have been transferred to the domain of
mobile robots operating in indoor environments. Reactive control procedures for hill-
climbing to locally distinctive places (represented by the graph nodes) in the environ-
ment or for moving through the environment form the basis for abstracting the envi-
ronment as a discrete graph structure. The edges stand for control procedures that need
to be executed in order to move the robot between the nodes connected by the edge
(e.g., following the midline of a corridor). The applicability of particular hill-climbing
or control procedures is derived from the properties of the immediate surroundings of
the robot. The approach explicitly allows for storing local (geo)metric information for
the nodes and edges. An exploration agenda is kept listing nodes with directions that
still need to be explored. Localization is based on matching the local description of
places and employing a topological rehearsal procedure that validates the hypothesis
that two places correspond by comparing the results of traveling to neighboring nodes.

These ideas have been further elaborated and refined within Kuipers’s framework
of the Spatial Semantic Hierarchy (SSH) (Kuipers, 2000; Kuipers & Byun, 1991;
Kuipers & Levitt, 1988; Remolina & Kuipers, 2004). The SSH contains a topological
level of representation that is derived from a sequence of views and actions. Recent
implementations of the topological level of the SSH (Kuipers et al., 2004; Modayil
et al., 2004) directly employ the Voronoi graphs (see below) of the environment and
an extension for open spaces (Beeson et al., 2005) to derive and identify places.

Levitt & Lawton (1990) describe an approach to environmental modeling for open
outdoor environments with landmarks. This approach contains a symbolic level of
representation which can be interpreted as route graph representation. The landmarks
create a natural partition of the environment into regions which can be identified based
on the currently visible panorama of landmarks.3 Adjacent regions share the same
panorama with one exception: The orientation of the triangle formed by a random
position in the region and the positions of two particular landmarks is reversed. An
undirected graph that reflects the adjacency relation is used for qualitative path plan-
ning. Navigation between adjacent regions can be achieved by simply crossing the line
connecting the two landmarks that make up the difference in the panorama.

Mataric (1992) proposes a distributed map representation that is completely in-
tegrated into a system based on the subsumption architecture (Brooks, 1986). The
nodes correspond to wall or corridor landmarks observed while exploring the environ-
ment using some boundary-following behavior. Nodes experienced consecutively are
linked. Localization and path planning are realized by spreading activation within the

3An error in this localization approach based on cyclic ordering of landmarks has been pointed out
and corrected by Schlieder (1993).

30 Robot Mapping

network of nodes, but closing cycles requires at least coarse position estimates for the
nodes.

In many approaches, the route network is extracted from the geometry of the envi-
ronment. One way to achieve this is to follow the idea of retracting free space onto a
set of one-dimensional curves called a roadmap (Latombe, 1991). One such retraction
is provided by the generalized Voronoi diagram (GVD) (Lee & Drysdale III, 1981;
Okabe et al., 2000) or the related idea of the medial axis transform (Blum, 1967).

Choset and colleagues (Choset & Nagatani, 2001; Nagatani et al., 1998) directly
use the generalized Voronoi graph (GVG), the graph abstraction of the GVD that con-
tains nodes for meet points and edges for the Voronoi curves, as the graph represen-
tation of the environment (see Chap. 3 for more details on GVDs and GVGs). The
robot navigates and explores the environment using sensor-based control laws that al-
low for driving along the edges of the GVG. Nagatani & Choset (1999) propose a
modified structure called the reduced GVG in which certain kinds of unstable nodes
referred to as weak meet points are removed. However, the problem of instabilities is
only reduced by this method, and more advanced techniques are needed, as we will
discuss in Chap. 4. Choset and colleagues also describe an extension of the GVG into
higher dimensional space (> 2 dimensions) called the hierarchical GVG, assuring that
the crucial properties of the GVG (especially connectedness) are preserved (Choset &
Burdick, 2000; Choset et al., 2000).

An alternative to the retraction approach has been described by Chatila & Lau-
mond (Chatila & Laumond, 1985) and Thrun & colleagues (Thrun, 1998; Thrun et al.,
1998a). In both approaches a route graph-like representation is derived from a global
coordinate-based representation (a geometric one in the former case and a grid-based
one in the latter) by first partitioning free space into regions and then capturing the
adjacency relation of the regions in the graph structure.

Obviously, route graph representations are tailored to path planning. The structure
directly provides a comparatively small search space that can be searched via standard
graph searching techniques like Dijkstra’s shortest path algorithm (Dijkstra, 1959) or
A* (Hart et al., 1968). In contrast, localization is often mentioned as a problem of
route graph representations. As theoretically investigated in Dudek et al. (1991) and
Rekleitis et al. (1999), topological rehearsal alone is not sufficient; at least one marker
is required to guarantee correct localization and map construction. However, in prac-
tice providing additional annotations that can be used to distinguish nodes and edges
can improve localization within the graph structure significantly.

One advantage of typical route graph representations is that they directly facilitate
systematic exploration. To cover the entire environment it is sufficient to trace all edges
of the graph, which can be easily achieved by keeping an account of untraversed edges
for each node. Furthermore, a representation of the route network of the environment
which explicitly represents decision points is very useful for route-based communi-
cation (e.g., generating a route description for or interpreting a route description of a
human). The compactness of the representation also makes it a good candidate when

2.3 Spatial Representation and Organization 31

Figure 2.8: Different higher forms of organization: an overlay representation, a hier-
archical representation, and a patchworks map

a complete map should be exchanged between multiple agents. In many approaches,
places represented by nodes correspond to important concepts such as rooms, which
makes it easy to anchor semantic information in the representation.

The main challenge for route graph-based representation approaches is to develop
robust methods to construct and maintain the representation. Here, the higher level of
abstraction becomes a problem as it is much harder to formulate suitable stochastic
models, and the lack of precise localization raises additional problems.

Finally, for route graph representations to be applicable, the environment needs
to possess a clear route structure. Open spaces or very unstructured environments
do not lend themselves to route graph-based modeling. For structured environments,
compactness and the fact that arbitrary additional information can be attached as anno-
tations to the graph structure make route graph representations a promising approach.

2.3.4 Organizational Forms

The previous section provided an overview on basic representation formalisms used
for environmental modeling, distinguishing five main classes which show different
and often orthogonal strengths and weaknesses, as pointed out by Thrun (1998).

Consequently, people have combined different representation formalisms into more
complex forms of organization. We will review these approaches in the following, dis-
tinguishing three main forms: overlays, hierarchical representations, and patchworks4

(see Fig. 2.8). These main forms of combining basic representation approaches can
themselves be combined in order to form even more complex forms of representation
(cf. Sect. 2.3.4.5).

When reviewing different organizational forms in the following, our main focus
is on which strengths and weaknesses are preserved and how the individual repre-
sentation approaches cooperate. Buschka et al. (Buschka, 2005; Buschka & Saffiotti,
2004) distinguish two modes of cooperation between different representations in a

4A classification similar to ours is derived in Buschka (2005).

32 Robot Mapping

combined representation which we will adopt here: Injection allows us to perform a
task within one basic representation based on information from another representation
which would otherwise not have been possible to perform (e.g., localization infor-
mation in a geometric representation is used to localize the robot within a route graph
representation). Synergy, on the other hand, occurs when two basic representations can
be used for the same task but the performance is increased by transferring information
between the representations (e.g., localization in the route graph representation alone
is possible but the result is improved by incorporating information from localization
on the geometrical level).

2.3.4.1 Plain Representation

For completeness, we introduce the term plain representation for approaches that only
use a single basic representation formalism to describe the environment. Most of the
approaches listed above fall into this category, though some of them are actually parts
of more complex organizations, as will be pointed out below.

2.3.4.2 Overlays

Overlay representations feature multiple layers of representation. Each layer employs
its own representation formalisms and covers the entire environment. The layers are
linked in a way that allows us to achieve injection or synergy effects.

Chatila & Laumond (1985) propose an overlay representation consisting of a geo-
metric level and a route graph representation. The route graph representation is actu-
ally a hierarchy of graph representations. Its lowest level is directly derived from the
geometric representation. Both layers evolve simultaneously while the robot explores
the environment.

A similar example is the approach described by Thrun (1998), in which the funda-
mental representation is a classical occupancy grid used for mapping the environment.
Once the environment has been mapped, a topological graph representation is derived
from the grid, in which the nodes correspond to regions that form a partition of the free
space. Thus, three layers are used in this approach: the occupancy grid representation,
a geometric representation describing the regions, and a route graph representation.

Overlay representations typically allow for choosing the best layer of representa-
tion to perform a particular operation. This happens at the cost of additional com-
putational efforts to maintain multiple representations and keep not only each layer
consistent by itself but also the layers consistent with each other. Typical coordinate-
based and graph-based overlays alleviate the problems of the relational representations
by improving localization and maintaining the representation either through injection
or synergy. However, the disadvantages of the coordinate-based approaches like high
space consumption and computational costs typically remain because a global consis-
tent coordinate-based representation still needs to be constructed. Overall, these kinds
of overlay approaches tend to not scale well to larger environments.

2.3 Spatial Representation and Organization 33

2.3.4.3 Hierarchical Organization

Hierarchical representations, like overlays, consist of multiple layers, all covering the
entire environment. The difference is that here all layers use the same representation
formalisms but represent the environment at different levels of granularity. The lowest
level provides a rather detailed image of the environment while the higher levels are
much coarser or more abstract. In the literature, we can find examples of both, hierar-
chical coordinate-based representations and hierarchical relational representations.

Fernández & González (1997, 2001) define a general framework for a hierarchi-
cal graph-based representation of space called the AH-graph (annotated hierarchical
graph). The AH-graph consists of multiple graph layers expressing structural infor-
mation between objects or places. Nodes on higher levels correspond to subgraphs on
the level below. Non-structural information like perceptual information about objects
or locations or information about the type of structural information described by the
edges is stored in form of annotations to the graph structure. Path planning within an
AH-graph by hierarchically refining paths and conditions under which this approach
yields optimal paths are discussed in Fernández & González (1998).

In Fernández & González (2001) and Fernández-Madrigal & González (2002) this
framework is extended to a multi-hierarchical model in which multiple graph-based
hierarchies are combined into a single description of the environment. The goal here
is to allow for choosing the most appropriate hierarchy for a given task.

In Remolina et al. (1999), the AH-graph model is adopted to describe an extension
of the topological level of the SSH, in which places are hierarchically organized into
regions. Different approaches for grouping places are discussed, from fully automatic
criteria to grouping based on user interaction.

The quad or octree representations mentioned in Sect. 2.3.2.1 can be seen as hi-
erarchical occupancy-based representations of space. However, the tree data structure
does not allow for operating exclusively on a chosen level of granularity, as informa-
tion within one level is only linked via the higher levels. A layered approach as in the
graph-based representations listed above would result in very high space requirements,
making occupancy-based representations less applicable to hierarchical organization.

Hierarchical organization of information allows us to represent information at dif-
ferent levels of granularity and to either choose the appropriate level for a given task
or perform tasks (e.g., path planning) hierarchically by switching to a finer or coarser
level as required, increasing the overall efficiency. Especially with regard to commu-
nication between heterogeneous agents, this way of bridging from low-level individual
levels of representations to more abstract and general levels of representation seems
very suitable.

The downside of the hierarchical approach is that additional effort is required to
maintain the connections between the layers and keep the individual levels of represen-
tation consistent with each other. Also, in most approaches constructing the hierarchy
is at least partially based on user interaction. Methods to derive high levels of abstrac-
tion autonomously still need to be developed.

34 Robot Mapping

2.3.4.4 Patchworks

In patchwork representations, subregions of the environment are represented individ-
ually by so-called local maps using a single representation formalism, and each using
its own frame of reference. The local maps are then related on a higher level to form
a global representation. In the literature, the most common forms of patchwork rep-
resentations are local coordinate-based maps related in a global graph-like relational
representation. In addition, we can find approaches that employ local coordinate-based
maps related in a global representation which is also coordinate-based.

Local Coordinate-Based and Global Relational Representation. Many authors
have proposed representations consisting of local coordinate-based maps linked to-
gether on a global topological level. The local maps can be linked either to nodes or
edges on the topological level. In some cases, the local maps completely cover the
environment, while in others they only describe important areas.

Simhon & Dudek (1998), for instance, employ local geometric maps linked to the
nodes of a topological graph representation and discuss how the local maps should
be distributed based on a given task (e.g., navigation). The edges linking the nodes
on the topological level correspond to control strategies for moving the robot between
adjacent local maps.

Yeap & Jefferies (1999) describe a computational model of cognitive mapping in
which local line-based geometric maps are constructed, bounded by so-called exits
which are identified based on occlusion in the range data. The local maps are disjoint
but cover the entire environment. On the topological level, adjacent local maps (those
that share at least one exit) are connected by links and links can be enriched with dif-
ferent kinds of information about the connected exits in the local maps. Means for
recognizing already visited local maps are discussed but the overall approach relies
on a robust detection of the exits independently of the side from which they are ap-
proached. This can be hard to achieve in practice, especially in cluttered environments.

In Lisien et al. (2003), a patchwork representation called Hierarchical Atlas is
proposed which combines local landmark-based maps with a global topological rep-
resentation. The topological map consists of the reduced generalized Voronoi graph
(Nagatani & Choset, 1999) which allows for path planning and systematic exploration.
The local landmark representations are attached to the edges of the graph. They sup-
port localization within the topological map by disambiguating edges as well as precise
localization within the region corresponding to an edge.

Local Coordinate-Based and Global Coordinate-Based Representation. Some
mapping approaches describe or can at least be interpreted as using local coordinate-
based representations located within a global coordinate system. For instance, scan
matching approaches that store scans together with position and orientation estimates
of the scans’ origins fall into this class (Lu & Milios, 1997; Nüchter et al., 2004, 2005),

2.3 Spatial Representation and Organization 35

although often enough the finally intended representation would merge all measure-
ments into a single frame of reference.

Another approach is the work by Chatila & Laumond (1985), in which geometric
representations of individual objects, each described within its own reference frame,
are related in a global coordinate system. Furthermore, certain kinds of landmark-
based mapping approaches employ submapping strategies in order to reduce the com-
putational burden of uncertainty handling (cf. Sect. 2.4.1.2).

A general framework for patchwork approaches is the Atlas framework described
in Bosse et al. (2003). The nodes in a topological map stand for local coordinate-
based maps (e.g., landmark-based or geometric maps) and edges represent adjacency
between the local maps. In addition, the edges represent the coordinate transformation
between the local maps. Local maps and global relations between them are both mod-
eled in a stochastic framework. Loop closing is performed based on matching local
maps.

Overall, patchwork maps are mainly used to restrict the problem of increasing un-
certainty to areas of manageable size, which are then modeled within their own frame
of reference, and to reduce computational effort by using a kind of divide-and-conquer
approach that avoids simultaneously tracking the relationships between all represented
objects. However, the problem of dealing with unbounded uncertainty accumulation
still arises when relating the local maps consistently on the global level (e.g., when
correctly closing a loop in the global topological map). In many approaches, the space
consumption is similar to that of the corresponding plain representation approach as
the local maps cover the complete environment.

2.3.4.5 Combining Different Organizational Forms

Aguirre & González (2002) describe a good example of a representation in which dif-
ferent organizational forms are combined into a complex representation structure. The
proposed representation can be seen as a patchwork representation of two components.
The local maps of the patchwork are overlays of a geometric representation and an oc-
cupancy grid, both describing the same local area. The global representation is formed
by a two-level hierarchy of graph-based representations. The local maps are attached
to the lower level of the hierarchy, which describes the environment at a fine level of
granularity, while the top level provides a coarser view of the environment that is used
to generate high-level plans. The representation is embedded in a hybrid deliberative-
reactive architecture, and the best available representation for the task is chosen based
on context, explicitly permitting a certain level of representation not to be available for
a certain area. The paper, however, focuses on the application of this complex orga-
nization for path planning and execution, and does not discuss global localization in
detail. In addition, the approach depends highly on a reliable detection of important
environmental features like doors and corridors.

A similar representation can be found in Galindo et al. (2005). A multi-level hier-

36 Robot Mapping

archy of graph representations is used and local grid maps are attached to the nodes of
the bottom level of the hierarchy. In addition, camera images of objects are attached
to nodes corresponding to the regions in which the objects have been encountered, and
the spatial hierarchy is linked to a semantic hierarchy. This work nicely demonstrates
the suitability of this kind of representation to interface with conceptual knowledge,
allowing for high-level symbolic reasoning and planning.

Furthermore, the SSH by Kuipers (Kuipers, 2000; Kuipers & Byun, 1991; Kuipers
& Levitt, 1988) already mentioned several times in this chapter describes a complex
form of organization of multiple spatial representations. As it has been developed as a
model of human knowledge and experience of large-scale space, it contains elements
like procedural competences and a memory of sensorimotor experiences that go be-
yond the declarative environmental models discussed here. Nevertheless, the SSH has
been realized on mobile robots several times, and organizational forms like patchworks
and overlays can be identified.

The SSH distinguishes five levels of spatial knowledge and multiple representa-
tions, each using its own ontology. The sensor level consists of sensorimotor con-
trol laws for leading the agent to locally distinctive states of the environment. At the
causal level, the continuous experience of moving between distinctive states based
on the control laws is abstracted as view-action-view triples. View here stands for
the sensory input available at a distinctive state. The topological level consists of a
graph model that best explains the experience of the causal level. The nodes corre-
spond to places in the environment and can be (hierarchically) grouped into regions,
while sequences of edges are grouped to form paths. The nodes may be linked to local
coordinate-based maps describing the neighborhood of the place in a patchwork-like
manner. The metrical level comprises an optional overlay of a coordinate-based rep-
resentation constructed from the patchwork by merging the local maps into a global
frame of reference.

The SSH has been completely axiomatized and inference rules for deriving know-
ledge from other levels have been formulated within suitable logical frameworks,
e.g., for deriving the topological level from the causal level using non-monotonic rea-
soning (Remolina & Kuipers, 2004).

2.4 Uncertainty Handling Approaches

After looking at the different ways proposed to represent the environment, we will
now regard the robot mapping problem from the second perspective mentioned, the
perspective of handling uncertainty. It has frequently been pointed out that the sources
of uncertainty are numerous: limitations of the sensors and noise in the measurements,
imperfect actuation, general unpredictability of dynamic environments, and the fact
that models of the environment have to be coarse approximations of the real world in
order to be computationally feasible (Thrun, 2000; Thrun et al., 2005). This implies
that a robot can never be certain about the current state of the environment.

2.4 Uncertainty Handling Approaches 37

In the following, we make two distinctions to classify uncertainty handling ap-
proaches appearing in the literature: The first distinction concerns the nature of the
update process of the spatial representation. Most real-time mapping systems (often
called online approaches) incorporate new observations incrementally: The current
representation is updated, leading to a new representation; the decisions made will not
be revised anymore in the future. Alternatively, sensor data is not processed sequen-
tially but a (heuristic) search for an optimal solution is performed in which previous
decisions can be retracted and the input data is processed in multiple passes. As we
are mainly interested in online mapping, we will focus on incremental approaches and
only briefly mention the most important multi-pass techniques.

Second, we distinguish approaches based on the number of hypotheses that are
being tracked simultaneously in the mapping approach. The three options here are
(1) a single hypothesis only, (2) multiple discrete hypotheses, and (3) keeping track of
the complete state space at any moment.

2.4.1 Incremental Approaches

In the following review of incremental approaches we pay special attention to the
question of which kinds of spatial representations have been combined with which
uncertainty handling approach.

2.4.1.1 Single Hypothesis Approaches

Single hypothesis approaches maintain one hypothesis about the state of the environ-
ment. Whenever a new observation becomes available, the hypothesis is updated in the
most plausible way. In probabilistic approaches, in which at least the uncertainty of
some individual facts is represented (e.g., a probability distribution for the current pose
of the robot), this means that the most likely model is constructed, and the approach is
often referred to as incremental maximum likelihood.

Traditionally, relational representation approaches only maintain a single hypothe-
sis about the state of the environment. We can find this approach both in work on view
graph representations (Franz et al., 1998; Schölkopf & Mallot, 1995) and in work
on route graph representations (Choset & Nagatani, 2001; Kuipers, 2000; Kuipers &
Byun, 1991; Kuipers, 1978; Kuipers & Byun, 1988; Kuipers & Levitt, 1988; Nagatani
et al., 1998). In all of these approaches, information is represented as facts without any
kind of uncertainty assessment. As relational approaches typically focus on qualitative
spatial relations that can be more reliably perceived, this is less problematic than for
coordinate-based representations. Nevertheless, combining observation and model in
the most plausible way can be a difficult task, and often the algorithms may fail to
construct the correct model under certain conditions.

Some relational approaches do maintain uncertainty information for at least some
individual facts contained in the model. Examples of this are the approach of Ya-
mauchi & Beer (1996), in which confidence values for edges in the graph-based repre-

38 Robot Mapping

sentations are employed; the approaches by Yamauchi & Beer (1996) and Duckett &
Nehmzow (1999a,b), which both explicitly represent the uncertainty in the robot posi-
tion; and the approach described in Hübner & Mallot (2007), which maintains position
estimates for the nodes.

Coordinate-based approaches often also only maintain a single map hypothesis.
Mostly, this holds for geometric representations in which new observations are matched
to and merged into the current map (Crowley, 1989; Wolter et al., 2004). Again, many
approaches here at least maintain a probability distribution over the robot’s pose space,
and sometimes also over individual object parameters.

The advantage of only maintaining a single hypothesis is the simplicity of the
approach, resulting in much lower computational cost. The downside is a general
brittleness of these approaches when the input data is ambiguous. As incremental
approaches do not have the ability to recover from wrong decisions made in the past, a
single error in the map update step is typically fatal and results in an unusable spatial
model.

To deal more adequately with ambiguous input data, one resorts to approaches
that try to maintain a discrete set of spatial models. However, before we discuss these
approaches, we turn to the other extreme of approaches that keep track of the complete
space of hypotheses by rigorously regarding the mapping problem as a probabilistic
state estimation problem.

2.4.1.2 Complete-State-Space Approaches

The common approach taken in probabilistic mapping is to maintain a probability
distribution over the space of all different hypotheses and to incrementally update it
based on new observations. A prerequisite for this approach is that the perception and
actuation processes can be adequately modeled stochastically. The theoretical basis
for updating the probability distribution is then given by the recursive Bayes filter (see
Appendix A for the technical details of probabilistic mapping).

In most realistic scenarios, however, it is infeasible to represent and compute the
probability distribution exactly. Therefore, approximations have to be used. During
the last two decades, very powerful approximation techniques have been developed or
adopted from other application areas. Most of them fall into one of two main classes:
parametric filters and nonparametric filters (cf. Thrun et al., 2005).

Parametric filters—based either on the Kalman (Kalman, 1960) or the Information
filter (Mutambara, 1998)—use normal distributions as approximations and have been
applied in combination with landmark-based representations and geometric represen-
tations. Smith & Cheeseman (1986) were the first to use the extended Kalman filter
(EKF) to formulate a solution to the landmark-based SLAM problem. This work has
spurred a huge amount of research on EKF-based SLAM (Castellanos et al., 1999;
Dissanayake et al., 2001; Guivant & Nebot, 2001). Besides the general inability to ad-
equately represent multimodal probability distributions, the main drawbacks or chal-
lenges of this approach are the quadratic space and time complexities: Incorporating

2.4 Uncertainty Handling Approaches 39

a new observation requires O(n2) time and the covariance matrix which needs to be
maintained has a size of O(n2) (where n is the number of landmarks). In addition, the
approach relies on correct data association.

In the last few years, several methods to reduce the quadratic time complexity of
the EKF and Information filter have been proposed (Frese & Hirzinger, 2001; Paskin,
2003; Thrun et al., 2002). Often these approaches employ some kind of submapping
strategy involving a (hierarchical) decomposition of space into subregions, e.g., the
Compressed EKF (Guivant & Nebot, 2003, 2001) and Treemap (Frese, 2006b; Frese
& Schröder, 2006).

Nonparametric filters approximate probability distributions by a finite set of sam-
ples. The dominant approach in this class is the so-called Rao-Blackwellized parti-
cle filter (Doucet et al., 2000), in which the probability distribution is factorized and
each particle stands for a particular robot trajectory and the map associated with this
trajectory. The probability of each sample is given by its importance factor. Rao-
Blackwellized particle filters have first been introduced for landmark-based represen-
tations under the name FastSLAM (Montemerlo & Thrun, 2003; Montemerlo et al.,
2003). A result of the factorization is that the positions of the landmarks within the
map can be tracked individually, each with its own extended Kalman filter.

In Hähnel et al. (2003a) the idea of Rao-Blackwellized particle filters is first used
in connection with a grid map representation. Again, the particles stand for entire
trajectories. The map corresponding to a particle is computed from the trajectory us-
ing standard occupancy grid mapping. Improvements of the original algorithms and
approaches to reduce the so-called particle depletion problem that arises when the
number of used particles is too small to adequately represent the probability distribu-
tion are described in Grisetti et al. (2007a,b). Eliazar & Parr (2003, 2004) describe a
standard particle filter approach to construct occupancy grid representations.

The approach of maintaining a probability distribution over the complete state
space has been very successful in achieving a high level of robustness under uncer-
tain conditions. Most current state-of-the-art mapping approaches fall into this class.
However, as mentioned, the approach is computationally demanding and the approxi-
mation techniques still tend to have limitations or are applicable only under particular
conditions. In addition, while current approaches show that a rigorous probabilistic
formulation is possible for representations that are still very close to the sensor data
(grid maps, landmark maps, and to a certain degree geometric representations), it is an
open problem how this approach could be adapted for more abstract forms of repre-
sentation and organization.

2.4.1.3 Multi-hypothesis Approaches

Maintaining a discrete set of hypotheses offers a way to reduce the brittleness of many
single hypothesis approaches. Multi-hypothesis approaches can better deal with ambi-
guities, although they carry additional computational costs as multiple spatial models
have to be maintained. At the same time, it has been seen as a way to deal with one

40 Robot Mapping

disadvantage of parametric complete-state-space approaches: their inability to ade-
quately represent multimodal probability distributions. Moreover, particle filter-based
approaches have a kind of multi-hypothesis flavor as each particle stands for one par-
ticular hypothesis. However, the fact that they form an approximate representation of
the actual probability distribution over the complete state space explains why they be-
long to the previous class. Two important questions in the context of multi-hypothesis
approaches are about when to instantiate a new hypothesis and when to discard a hy-
pothesis that has become implausible.

In the context of Kalman filter-based approaches, multi-hypothesis tracking tech-
niques have been developed to deal with the ambiguities arising in the data association
step, which would result in a multimodal probability distribution. Cox & Leonard
(1994) employ this idea—which originally was developed in work on object tracking
(e.g. Reid, 1979)—for robot mapping using a geometric representation with features
for walls and corners. The approach assumes that the poses of the robot are known.
This allows the use of an independent Kalman filter for each geom. Whenever there
exist multiple plausible associations for the current observation, which is determined
using validation gating (cf. Sect. 5.1.2), a hypothesis is split into multiple new hy-
potheses. Probabilities are assigned to the hypotheses and they are maintained in a
hypothesis tree with the current hypotheses forming the leaves. To deal with the prob-
lem of exponential growth, the authors consider multiple pruning strategies to remove
branches of the tree based on the assigned probabilities.

In Smith & Leonard (1997), this approach is extended to deal with the full SLAM
problem. Hypotheses for robot pose and feature map are tracked independently (ig-
noring correlations between the two robot and feature states).

While in the above approaches all hypotheses are constructed whenever a new ob-
servation becomes available, and hence all leaves are at the same level of the tree,
(Hähnel et al., 2003) proposes a lazy search through the hypothesis tree. In the de-
scribed approach, hypotheses are only updated when they have the potential to become
more likely than the currently considered hypothesis. Thus, the leaves of the tree are
at different levels depending on the number of observations that have already been
incorporated in the corresponding hypothesis. The lazy search is possible since the
log-likelihood values of the hypotheses decrease monotonically with the depth in the
tree.

In a newer implementation of Kuipers’s SSH (Kuipers et al., 2004), a topologi-
cal equivalent to the previously described multi-hypothesis approaches for coordinate-
based representations is presented. A tree of topological map hypotheses is main-
tained. Every time a new view-action-view triple is experienced, all hypotheses are
updated accordingly. This can lead to multiple successor hypotheses. Hypotheses
that violate the axioms of the topological level of the SSH are pruned. Active explo-
ration is used until the simplest hypothesis with respect to the logical theory has been
unambiguously identified. The experiments using an environment with nine places
demonstrate that the high level of abstraction of the involved representation (nodes

2.4 Uncertainty Handling Approaches 41

roughly correspond to junctions and edges correspond to hallways) together with the
hard constraints for pruning allow for an exhaustive search through the tree of hy-
potheses. While it remains open how this general approach scales to more complex
environments, an investigation of how the assumption that the graph hypotheses have
to be embedded into the plane affects the size of the space of hypotheses is conducted
in Savelli & Kuipers (2004).

In general, the multi-hypothesis approach seems to have great potential as a com-
promise for achieving a sufficient degree of robustness while avoiding the computa-
tional costs of complete-state-space approaches and still being rather universally ap-
plicable, as it does not assume known data associations. The main challenge is to find
good strategies to exploit all available information to reduce the search space enough
to avoid the exponential growth. It is especially promising for more abstract represen-
tations for which a complete probabilistic formulation might be hard to achieve but for
which the combinatorial problem is significantly reduced.

2.4.2 Multi-pass Approaches

In multi-pass approaches the input data is processed several times, allowing for revis-
ing past location estimates or recovering from wrong data associations, a property that
most incremental approaches are lacking. The most well-known family of multi-pass
approaches is based on a statistical approach known as expectation maximization (EM)
(Dempster et al., 1977). Thrun et al. (1998b) use this approach to build landmark-based
maps (landmarks were simulated by button presses). The idea is to search for the most
likely map given the input data by using hill-climbing in the likelihood space. The EM
algorithm alternates two steps, the expectation step and the maximization step. In the
expectation step, a sequence of pose estimates is determined based on the current most
likely map (localization with a given map), while the maximization step computes the
most likely map given the sequence of poses computed in the expectation step (map-
ping with given pose estimates). The result of the EM algorithm can then be used,
for instance, to construct a grid map from the pose estimates and sonar measurements
collected in addition to the landmark information. Although naturally the approach is
only guaranteed to converge to a local maximum, the experiments indicate that it per-
forms robustly in the presence of large odometry errors. A good initial map estimate
improves performance of the algorithm significantly.

Burgard et al. (1999) improve this approach and replace the manually added land-
marks by local grid maps. A modified maximization step is used in which deterministic
annealing is utilized in order to reduce the chance of getting stuck in a local maximum
because of a bad initial map. EM-based mapping has also been applied for the plane
fitting subproblem of learning compact geometric 3D models from laser range data
(Liu et al., 2001).

Other multi-pass mapping techniques have been developed in the context of scan
matching. Lu & Milios (1997) describe the problem of constructing a map from a
sequence of scans as a global optimization problem and compute a solution based on

42 Robot Mapping

minimizing an energy function using a spring model. Similarly, in the work of Nüchter
et al. on 6D SLAM (Nüchter et al., 2004, 2005) a global relaxation approach to diffuse
the accumulated error over all scans is employed in which the scans are registered
multiple times with respect to their neighboring scans.

2.5 Conclusions

We have looked at the multitude of mapping approaches described in the literature,
first from the perspective of spatial representation and then from the perspective of un-
certainty handling. For assessing different kinds of spatial representation, we referred
to the criteria proposed in Sect. 2.2 (extractability and maintainability, information
adequacy, efficiency and scalability) and the three main operations of navigation, sys-
tematic exploration, and communication (Sect. 2.1).

When looking at the spatial representations employed by the approaches listed in
the previous section on uncertainty handling, several major clusters become imme-
diately apparent. For all kinds of coordinate-based representations, ways to main-
tain multiple or even infinitely many hypotheses, as in the complete-state-space ap-
proaches, have been developed. In contrast, relational representations in almost all
cases rely on the correctness of a single hypothesis and thus tend not to work reliably
when the input data is ambiguous. So far, only very few attempts have been made to
develop or adapt powerful uncertainty handling approaches for relational representa-
tions.

On the other hand, as we have seen when looking at representation approaches
from the spatial representation perspective, relational approaches offer advantages over
coordinate-based representations that make such techniques desirable. One approach
to deal with this lack of reliable construction and maintenance methods is to aim for
complex forms of organization in which a coordinate-based approach is used to derive
a relational representation. However, as in the case of an overlay approach combin-
ing a global coordinate-based representation with a global graph representation, this
approach tends to preserve too many of the disadvantages of the chosen representa-
tions. It also seems implausible from a cognitive perspective, as humans are known to
develop knowledge about the geometric layout of an environment last, and this know-
ledge is usually systematically distorted (Siegel & White, 1975; Tversky, 1992).

We therefore argue that developing robust methods for directly constructing and
maintaining representations that are relational at the core but can be enriched with
other kinds of information will lead to robot mapping systems that scale much better
to larger environments and will perform much better in the context of the considered
broader set of tasks. To reach this robustness, investigating ways to combine relational
representations with more sophisticated uncertainty handling techniques is a necessity.
The fact that relational representations typically are based on relations that can be
detected more reliably should in principle make this combination even more robust
than in the case of representations based on information that can be observed only

2.5 Conclusions 43

very unreliably.
In this work, we follow this direction of research by investigating the combination

of a particular route graph representation with multi-hypothesis tracking and robust
uncertainty handling techniques. Our focus lies in developing basic methods that make
this combination possible. However, we also consider and compare three different
mapping systems realized based on these techniques.

45

Chapter 3

Voronoi-Based Spatial
Representations

In this chapter, we introduce the Voronoi-based route graph representation, which we
will be concerned with in the remainder of this book, and its hierarchical extension.
We will do this by going through a sequence of increasingly complex representations
starting from the standard Voronoi diagram. Note that some of the names used for
these structures are already in use in the robot mapping literature, but sometimes in a
different sense. Especially, in contrast to the hierarchical generalized Voronoi graph
of Choset et al. (Choset & Burdick, 2000; Choset et al., 2000), which is a general-
ization of Voronoi graphs to higher dimensions, our hierarchical Voronoi graphs are
hierarchically organized representations of 2D space.

3.1 Voronoi Diagram and Generalized Voronoi Diagram

The Voronoi diagram (VD) and the generalized Voronoi diagram (GVD) are both geo-
metric structures formed by sets of points inRn (all the examples here useR2). A VD
for a given set of point sites S as shown in Fig. 3.1(a) consists of the set of all points
that have at least two minimally distant sites in terms of Euclidean distance. All points
not part of the VD are closest to exactly one particular point site of S. The VD thus
partitions theRn into cells containing all the points closest to one of the sites.

Definition 3.1 (Voronoi diagram). Given a set S of different points in Rn and a func-
tion md : Rn → 2S , md(p) = argminq∈S ||q − p|| yielding the set of points from S
with minimal distance to p, the Voronoi diagram VDS of S is defined as

VDS = { p ∈ Rn | |md(p)| ≥ 2 } (3.1)

The VD consists of line segments and half-lines, which are both formed of points
with exactly two minimally distant points in S. These lines meet at so-called meet
points, which have at least three minimally distant points in S. Often the notion of

J.O. Wallgrün, Hierarchical Voronoi Graphs: Spatial Representation and Reasoning for Mobile Robots,
DOI 10.1007/978-3-642-10345-2_3, © Springer-Verlag Berlin Heidelberg 2010

46 Voronoi-Based Spatial Representations

(a) (b)

Figure 3.1: (a) The Voronoi diagram for a given set of point sites. It consists of line
segments and half-lines that meet at so-called meet points. (b) The maximal inscribed
circles for a meet point, a point on a line segment, and a point not belonging to the VD

a maximal inscribed circle is used to explain the concept of a Voronoi diagram (see
Fig. 3.1(b)): The maximal inscribed circle of a point p is the circle centered on p with
maximal radius that does not contain any of the points from S. For any point that
belongs to the VD, the maximal inscribed circle touches at least two point sites. In the
case of a meet point, the circle touches three or more point sites, while for any other
point of the VD it touches exactly two.

The generalized Voronoi diagram (GVD) extends the idea of the VD from point
sites to a set G of arbitrary geometric objects (e.g., lines, arcs). Accordingly, the GVD
is the set of all points of Rn that have at least two minimally distant closest points
belonging to different objects in G.

Definition 3.2 (Generalized Voronoi diagram). Given a set G of geometric objects
in Rn, a function dist : Rn × G → R that yields the minimal distance between a
point p ∈ Rn and an object g ∈ G, and a function md : Rn → 2G, md(p) =
argminq∈G dist(p, q) yielding the set of objects from G with minimal distance to p in
terms of dist, the generalized Voronoi diagram GVDG of G is defined as

GVDG = { p ∈ Rn | |md(p)| ≥ 2 } (3.2)

In the remainder of this text, we will exclusively deal with GVDs for sets of line
segments in 2D extracted from laser range data or with their discrete counterparts
computed from grid maps. For dist(p, q) we take the function that yields the Euclidean
distance to the closest point belonging to the line segment at hand. In all cases, the
line segments form a simple polygon (potentially with polygonal holes) that describes
the boundary of the free space. We will only consider that part of the GVD that is
contained in free space and mask out the parts lying outside the polygon or inside the
holes. As a result, the GVD will always be connected.

One example of a GVD is given in Fig. 3.2(a). It shows a polygonal 2D environ-
ment and the GVD computed from the line segments describing the object boundaries.

3.2 Generalized Voronoi Graph and Embedded Generalized Voronoi Graph 47

(a) (b)

Figure 3.2: (a) The generalized Voronoi diagram (fine lines) derived from a polygonal
description of a 2D environment. It consists of meet points connected by Voronoi
curves. Some Voronoi curves end in concavities of the environment forming end
points. (b) Maximal inscribed circles for a meet point and a point on a Voronoi curve

Instead of line segments and half-lines, the GVD consists of one-dimensional curve
segments (either straight line segments or parabolic curve segments) that meet at the
meet points. We will use the term Voronoi curve for such a curve segment. In addition
to meet points, we have end points where a Voronoi curve terminates in a concavity of
the environment.

The concept of the maximal inscribed circle also applies for GVDs, as shown
in Fig. 3.2(b). We will call the points where the maximal inscribed circle of point
p touches the boundaries of objects in the environment the generating points of p.
The GVD can be computed in O(n log n) time, where n is either the number of line
segments or the number of cells in a grid map representation (see Aurenhammer, 1991;
Okabe et al., 2000).

3.2 Generalized Voronoi Graph and Embedded Generalized
Voronoi Graph

A basic form of route graph representation can be achieved by employing the general-
ized Voronoi graph (GVG), which is the graph analogue of a GVD. It contains nodes,
called Voronoi nodes, for every meet point and end point of the GVD. Two Voronoi
nodes are connected by an edge if the corresponding meet or end points in the GVD
are connected by a Voronoi curve. The GVG corresponding to the GVD of Fig. 3.2
is shown in Fig. 3.3. Please note that although the nodes are depicted at the positions
of the corresponding meet and end points, no geometric information is included in the
GVG.

48 Voronoi-Based Spatial Representations

Figure 3.3: The generalized Voronoi graph corresponding to the GVD of Fig. 3.2. For
visualization purposes, the nodes are placed at the positions of the corresponding meet
points and the edges reflect the shapes of Voronoi curves. However, this information
is not part of the GVG

Definition 3.3 (Generalized Voronoi graph). The generalized Voronoi graph of a GVD
D is an undirected pseudograph GVGD = (V,E) in which V contains exactly one
node for each meet point and end point of D, E contains exactly one edge for each
Voronoi curve in D, and e ∈ E is incident to v, w ∈ V if its corresponding Voronoi
curve connects the points corresponding to v and w in D.

The GVG has to be defined as a pseudograph because it may contain loops and
parallel edges. For simplicity, we will just speak of graphs in the following, always
referring to undirected pseudographs unless explicitly stating otherwise. We will use
the notations V (G) for the set of nodes of graph G and E(G) for the set of edges of
G. deg(v) stands for the degree of node v. We will also make use of the functions
connects(e), which yields the set of nodes connected by edge e, and other(e, v), which
yields the node from this set that is not v (or yields v in case e is a loop).

The GVG represents the connectivity of the GVD and, thus, also reflects the con-
nectivity of free space. However, even if we assume a robot has the GVG of the
environment given in advance, knows its starting position, and is able to reliably navi-
gate between meet points along the GVD, it would turn out that the GVG is still rather
inadequate as a route graph representation. The reason is that it is not possible to relate
the leaving Voronoi curves perceived at a meet point to the edges in the graph. What is
further required is a description of the combinatorial embedding of the GVG. A com-
binatorial embedding specifies for each node the cyclic order of edges incident to it in
the graph. We will call a GVG with a combinatorial embedding an embedded GVG
(EGVG). Given an EGVG, knowing along which edge an agent arrived at a node al-

3.3 Annotated Generalized Voronoi Graphs 49

lows us to unambiguously map perceived Voronoi curves to edges and track the robot’s
way through the graph.

In the following definition, we will use the notion of successor functions to spe-
cify the cyclic order of edges incident to a node in an EGVG. A successor function
maps each edge incident to a particular node v to the immediate successor edge in the
counterclockwise order of incident edges of v.

Definition 3.4 (Embedded GVG). An embedded generalized Voronoi graph is a triple
(V,E,O) where

• (V,E) is a GVG, and

• O = {succv1 , succv2 , ..., succvn} is a set of n=|V | successor functions of which
succvi specifies the counterclockwise cyclic order of edges incident to vi.

To refer to the edges incident to a node v in an EGVG, we will use the notation
e
[v]
i with 1 ≤ i ≤ deg(v) for the ith edge of v. In doing so, we assume that the edges

are numbered in accordance with the respective successor function of v (i.e., e[v]i+1 =

succv(e
[v]
i)), starting with an arbitrarily chosen edge e[v]1 .

3.3 Annotated Generalized Voronoi Graphs

In principle, the EGVG provides all the information that is required for navigating
through the environment. However, to achieve robust navigation in practice and to
allow for planning and communication, the representation needs to be enriched with
additional information. This additional information is stored in the form of annotations
to the nodes and edges of the EGVG.

Examples of node annotations are

• local descriptions of the corresponding meet point within its own frame of refe-
rence, containing for instance

– directions of leaving Voronoi curves

– directions to adjacent Voronoi nodes

– positions of generating points (equivalent to the radius of the maximal in-
scribed circle plus directions)

– a local coordinate-based representation of the neighborhood of the node,

• global position estimates for the node.

Examples of typical edge annotations are

• distance between the connected nodes (in terms of linear distance, length of the
Voronoi curve, or travel time),

50 Voronoi-Based Spatial Representations

• minimal clearance along the Voronoi curve,

• a local description of the shape of the Voronoi curve,

• a local coordinate-based representation of the area corresponding to the edge,

• explored/unexplored status information.

We will use the term annotated generalized Voronoi graph (AGVG) for all forms
of graphs that result from an EGVG by labeling its nodes and edges with additional
annotations. As an AGVG is not very useful in our context without its embedding,
we formalize the concept as an extension of the EGVG but leave out “embedded” in
the name and abbreviation. We formalize annotations as functions that map nodes and
edges to values from the domains of the corresponding attributes.

Definition 3.5 (Annotated GVG). An annotated GVG is a 5-tuple (V,E,O,AV , AE)
where

• (V,E,O) is an EGVG,

• AV = {a1, a2, ..., am} is a set of total functions ai : V → DV,i mapping each
node to a value from the domain DV,i of the corresponding node attribute,

• AE = {b1, b2, ..., bn} is a set of total functions bj : E → DE,j mapping each
edge to a value from the domain DE,j of the corresponding edge attribute.

Later in this text, we will, for instance, use the function r : V → R+
0 for the node

attribute that yields the radius of the maximal inscribed circle of a node.

3.4 Hierarchical Annotated Voronoi Graphs

A hierarchical AGVG (HAGVG) follows the notion of hierarchical representations as
discussed in Sect. 2.3.4.3. It can be used to describe an environment at different levels
of granularity. An HAGVG consists of multiple graph layers of increasing levels of
abstraction. Neighboring layers are linked with each other, which allows switching to
a coarser or finer level as the task at hand demands. The bottom layer of an HAGVG
could for instance consist of the original AGVG derived from the environment. Every
other layer in an HAGVG is derived from the layer below it by removing certain nodes
and edges. Methods for automatically extracting the higher levels will be developed in
Chap. 4.

In our approach, we allow nodes on a higher level to stand for node-bounded sub-
graphs at the level below, while edges may stand for edge-bounded subgraphs. The
links between the neighboring layers are given by abstraction relations that associate
nodes and edges from one layer with corresponding elements of the next highest layer.
A general definition of the HAGVG is given below.

3.5 Partial and Local Voronoi Graphs 51

Figure 3.4: A hierarchical AGVG consisting of two layers: The original AGVG at the
bottom and a coarser graph model at the top. Both layers are linked by an abstraction
relation

Definition 3.6 (Hierarchical AGVG). A hierarchical AGVG is a pair (L,A) where

• L = 〈L1, L2, ..., Ln〉 is a list of AGVGs Li = (Vi, Ei, AV,i, AE,i) (the layers)
with Vi+1 ⊆ Vi, and

• A = 〈abstraction1, abstraction2, ..., abstractionn−1〉 is a list of abstraction re-
lations abstractioni ⊆ (Vi ∪ Ei)× (Vi+1 ∪ Ei+1).

Figure 3.4 shows a two-layer HAGVG for the example environment used in this
chapter. The bottom layer is the original AGVG from Fig. 3.3. The top layer is a
coarser version in which several subgraphs of the bottom layer have been mapped to
edges at the top layer, as indicated for two exemplary cases.

3.5 Partial and Local Voronoi Graphs

Our main goal in this work is to develop techniques to construct (H)AGVG represen-
tations incrementally from local observations. In contrast to approaches that extract
a Voronoi representation from a complete geometric or grid map representation, the
graph model grows incrementally while new nodes and edges extracted from new ob-
servations are incorporated. As a consequence, as long as the robot has not explored
the entire environment, its (H)AGVG is actually only a partial (H)AGVG. A partial
(H)AGVG is a substructure of the complete (H)AGVG. It contains edges which are
marked as unexplored and end at nodes of degree 1. These node will be replaced once
the corresponding edge gets explored further.

A particularly important concept for our incremental construction approach is the
notion of a local AGVG. A local AGVG is an AGVG extracted from the robot’s current
perception or alternatively from a local map describing the robot’s immediate environ-

52 Voronoi-Based Spatial Representations

(a) (b)

Figure 3.5: Incomplete AGVG structures: (a) a local AGVG computed from the cur-
rent visibility polygon, (b) a partial AGVG. Dashed lines represent unexplored edges

ment. It only contains nodes and edges which have to be part of the global AGVG of
the environment.

We will only give a definition of the local GVD here. A local GVD can be ab-
stracted by a local (A)GVG similarly to the way it is in the global case. We assume
that the local information is given in form of a visibility polygon. A visibility poly-
gon consists of two kinds of line segments: (1) actual obstacle boundaries and (2) line
segments that are visibility boundaries. The visibility boundaries delimit areas of the
environment that are occluded or are out of sensor range. Under this assumption, the
local GVD is the set of all points that are part of the GVD of the visibility polygon and
for which at least two of the minimally distant objects are real obstacle boundaries and
not visibility boundaries. In the following definition, we assume that md(p), similarly
to Definition 3.2, yields the set of minimal distant objects from the set of line segments
forming the visibility polygon.

Definition 3.7 (Local GVD). Given a visibility polygon P , withB being the set of line
segments of P that are proper obstacle boundaries, the local GVD LGVDP of P is
given by

LGVDP = { p ∈ GVDP | |md(p) ∩B| ≥ 2 } (3.3)

Local GVDs typically contain Voronoi curves that neither terminate at a meet point
nor at an end point but somewhere within free space where their continuation cannot
be determined because of the presence of visibility boundaries nearby. These Voronoi
curves are the ones that will be represented as unexplored edges in the corresponding
local AGVG. Figure 3.5 shows on the left a local AGVG for the visibility polygon
shaded in gray. On the right, it shows a partial AGVG containing multiple unexplored
edges. It has been constructed by merging multiple local AGVGs. Computing the local
AGVG from a given visibility polygon by pruning parts from the complete AGVG of
the visibility polygon has been addressed in Wallgrün (2002).

3.6 An Instance of the HAGVG 53

3.6 An Instance of the HAGVG

In the concrete instances of (H)AGVG representations investigated throughout the fol-
lowing chapters, the following annotations to the graph structure are employed:

1. Nodes are labeled with a signature (see Fig. 3.6(a)) that contains the distance
to the generating points (which is the radius of the maximal inscribed circle)
and the angles to the lines connecting the node with its generating points with
respect to an arbitrarily chosen reference direction.

2. The approximate relative positions of nodes are represented by annotating the
edges with the approximate distances between the connected nodes and by an-
notating the nodes with the approximate angles to the leaving edges, again with
respect to the chosen reference direction (see Fig. 3.6(b)).

3. Every edge is annotated with a description of the shape of the Voronoi curve
corresponding to it. The Voronoi curve may deviate significantly from the direct
connection between the two nodes. The description simply consists of a se-
quence of intermediate points in the local reference frame of the edge. We will
use the term course adopted from Krieg-Brückner et al. (2005) for this descrip-
tion. Moreover, the approximate travel distance for moving along the Voronoi
curve is stored.

4. Additional edge attributes provide information about traversability of an edge
(sufficient distance to obstacles) and whether the edge leads to still unexplored
areas.

(a)

generating points

maximal inscribed circleα1

α2
α3

reference
direction (b)

e

reference
direction

β1

β2

β3

Figure 3.6: Different kinds of annotations to the AGVG-based route graph: (a) The
node signature contains the distance of the generating points (radius of the maximally
inscribed circle) and angles between the connections to the generating points. (b) Rel-
ative position information is given by the angles between leaving edges and the lengths
of the edges

54 Voronoi-Based Spatial Representations

Our HAGVG representation does not contain any information about the geometry
of the environment other than what is listed above. In particular, sensor information or
local metric maps used to extract a local AGVG are not stored. As a result, the overall
representation is relatively sparse. The signature information is helpful mainly for lo-
calization as it allows to compare two nodes based on the similarity of their signatures.
The relative positional information provided by the approximate angles between leav-
ing edges and their lengths allows us to geometrically match local configurations of
nodes, which also supports localization (cf. Chap. 5). A benefit of using relative met-
ric information is that the information can be globally inconsistent without diminishing
its usability for navigation.

Path planning can be performed based on the estimated travel distance annotated
to the edges using one of the standard graph search techniques for weighted graphs.
The HAGVG can be employed for more efficient hierarchical path planning when
the distances of the abstracting edges on higher levels correctly reflect the shortest
path through the abstracted subgraph. The first step of the hierarchical search is to
abstract start and goal nodes to nodes on the top level. A plan compiled on the top
level would then correspond to macro operations like driving from one door to the next
along a corridor. As this plan is not directly executable with the low-level navigation
procedures of the robot, each edge has to be recursively refined until a plan at the
detailed level of the original AGVG is reached.

The course information is mainly used for visualization, as movement along the
Voronoi curve can also be achieved through reactive behaviors. Systematic exploration
is supported by the corresponding edge status attributes, and different strategies can be
employed to select where the exploration should be continued next.

In principle, much more information could be attached to the graph structure. One
example would be information about landmarks, which could support the generation or
execution of route instructions, but we do not explicitly cover communication in this
work. Nevertheless, exchange of spatial information between heterogeneous agents
can benefit from the compact high levels of abstraction provided by the top layer(s) of
the HAGVG representation.

3.7 Stability Problems of Voronoi-Based Representations

One point of criticism raised against Voronoi-based representation approaches is that
the underlying GVD is very unstable under noisy conditions. Figure 3.7, for instance,
shows two GVGs computed from two laser scans recorded consecutively from exactly
the same position. The underlying GVDs are computed by segmenting the scan into
line segments using the iterative end-point fits method (Duda & Hart, 1973) and then
computing the GVD from the resulting polygonal description. As we can see, some
tiny concavities in the surrounding polygon stemming from noise will cause new end
nodes and edges leading into these concavities. As a result, we see small structural
deviations between the GVGs, for instance, in the top corner and on the right side. The

3.8 Strengths and Weaknesses of the Representation 55

(a) (b)

A

Figure 3.7: Structural deviations in the GVGs computed from two consecutive scans,
caused by noise and different line segmentations

same problem arises when the GVD is computed from a grid map representation.
Structural variations like this can be problematic for robust construction, localiza-

tion, and reliable reactive navigation between the nodes. One simple approach sug-
gested to deal with this problem is to prune all end points together with their edges, as
those are not relevant for navigation anyway (Nagatani & Choset, 1999). However, as
the example shows, noise can introduce new branches consisting of more than a single
edge. For instance, edge A in the example is not part of the left GVG and would not
be removed by this simple approach.

A more adequate approach able to detect and remove unstable parts of a GVG will
be developed in Chap. 4.

3.8 Strengths and Weaknesses of the Representation

Let us summarize why we believe the proposed hierarchical Voronoi-based route graph
representation is a very good choice for the spatial representation of a mobile robot,
and which problems and restrictions need to be addressed.

First of all, the choice of a route graph representation as the core has the following
advantages:

• It is a rather compact representation focusing on relevant aspects of the environ-
ment and, hence, scales well to larger environments.

• It directly models topology of free space and thus allows for very efficient path
planning.

• By directly modeling distinct routes through the environment, it becomes suit-
able for route-based communication.

• Metrical information stored in the form of annotations to the graph structure can
be globally inconsistent without diminishing the representation’s usability for
navigation.

56 Voronoi-Based Spatial Representations

• It allows for anchoring other kinds of information (e.g., landmark information,
sensor snapshots).

The downside of this choice is that the approach is restricted to clearly structured
environments like indoor environments. Even there, depending on the employed sen-
sors, open areas or clutter might cause problems. Moreover, localization and, as a
consequence, construction and maintenance of the representation are complicated by
the lack of detailed geometric information.

The Voronoi-based approach results in a few more benefits:

• The Voronoi diagram is a retraction of free space, which directly gives rise to
systematic and easily realizable exploration algorithms.

• Stable meet points can also serve as landmarks, allowing a combination with
stochastic mapping approaches (cf. Sect. 7.2).

One disadvantage of Voronoi-based route graphs in comparison with other kinds
of route graph representations proposed in the literature is that the density of nodes is
still comparatively high. This reduces the scalability and efficiency of operations like
path planning to a certain degree. In addition, methods to work around the mentioned
stability problems need to be developed. The chosen set of additional attributes stored
in our representation, such as signature and coarse relative metric information, is in-
tended to reduce perceptual aliasing and thus improve localization while still keeping
the representation compact.

The hierarchical organization further improves certain properties of the represen-
tation approach. Especially, operations such as path planning become even more effi-
cient. In addition, it improves the adequacy for communication tasks by bridging from
sensor information to higher levels of abstraction. This comes at the cost of increased
complexity for maintaining the representation, but we believe that this is unavoidable
if the goal is to open new areas of applications, especially with respect to human-robot
interaction.

While the representation has many advantages from the spatial representation per-
spective, the main challenge is to provide construction and maintenance procedures
that show a robustness comparable to that of state-of-the-art mapping approaches.

To conclude this chapter, in which we described our proposed Voronoi-based route
graph representation, we provide two examples of two-level HAGVG representations
derived from real 2D sensor data, anticipating some of the results of later chapters.
Figures 3.8 and 3.9 show the HAGVGs which have been constructed from exploration
data sets of two different environments. The individual layers are shown separately and
the links between the layers are omitted. Edges are drawn using the course information
and thus are not simply straight connections. In the following chapters, we will develop
and refine the techniques required to construct this kind of representation incrementally
from local sensor information or small local metric maps, without the need for building
a global metric map first.

3.8 Strengths and Weaknesses of the Representation 57

Figure 3.8: A two-level HAGVG representation consisting of the original AGVG (mid-
dle picture) and a coarser AGVG (top picture). The environment (bottom picture)
shown as an occupancy grid is the third floor of the Cartesium, Universität Bremen

58 Voronoi-Based Spatial Representations

Figure 3.9: A second example of an HAGVG representation, this time constructed
from a data set recorded in the Acapulco Convention Center (data set available at
http://radish.sourceforge.net/, courtesy of N. Roy)

59

Chapter 4

Simplification and Hierarchical
Voronoi Graph Construction

In the previous chapter, we proposed the HAGVG as an exhaustive environmental
model for a mobile robot. As stated, our general aim is that the graph representation be
learned incrementally from local information. Sensor information or locally computed
metric representations used to compute a local AGVG will be discarded immediately.

In this chapter, we will start by focusing on the problem of automatically deriv-
ing coarser AGVG representations and constructing complete HAGVG representa-
tions from a given AGVG. For this purpose, we will introduce relevance measures
for Voronoi nodes and the regions accessible via their edges. These measures serve
two aims:

1. being able to deal with the stability problems described in Sect. 3.7 by identify-
ing and removing unstable parts of an AGVG, and

2. assessing the significance of Voronoi nodes in an AGVG as a decision point for
navigation with the goal of deciding which nodes should be retained on higher
levels of abstraction.

As we will show, the two notions of stability and relevance for navigation are very
much related and thus can be covered by the same measures. The process of construct-
ing a coarser AGVG based on these measures will be referred to as simplification.
Simplification can be used for deriving more abstract levels of representation as well
as for removing unstable parts caused by noise. The work described in this chapter is
related to work on shape representation and matching approaches developed in the vi-
sion community that also employ Voronoi diagrams or skeletons (e.g., Mayya & Rajan,
1996; Ogniewicz & Kübler, 1995; Siddiqi & Kimia, 1996). However, the basic con-
ditions in these approaches are different as here a complete description of the shape’s
boundary can be used to simplify the Voronoi structures. In contrast, our incremen-
tal construction in which no global representation of the shape of the environment is

J.O. Wallgrün, Hierarchical Voronoi Graphs: Spatial Representation and Reasoning for Mobile Robots,
DOI 10.1007/978-3-642-10345-2_4, © Springer-Verlag Berlin Heidelberg 2010

60 Simplification and Hierarchical Voronoi Graph Construction

maintained requires a different approach, in which the simplification is purely based
on the information stored in the AGVG.

4.1 Relevance Measures for Voronoi Nodes

In the following, we first assume that we have a complete AGVG with no unexplored
edges. We will discuss the ramifications of allowing unexplored edges later in this
chapter.

The relevance measures we are going to propose below are only concerned with
inner nodes of the AGVG, which are those that correspond to meet points. Nodes
corresponding to end points do not represent decision points but mark ends of routes.
The foundation of the relevance measures are the following observations:

1. The relevance of a node depends on the properties of the regions accessible by
its leaving edges.

2. For a node to constitute a relevant decision point, at least three of those regions
need to be significant enough to be considered as alternative continuations when
arriving at it.

3. The significance of a region is higher when it contains more distant goals.

4. The significance of a region is higher when it leads to areas secluded from the
rest of the environment.

Figure 4.1 illustrates the idea of accessible regions of a node v. They emerge when
the free space of the environment is split up by the virtual lines connecting v with its
generating points. We will use the notation R[v]

i for the region that can be accessed
from node v via edge e[v]i without crossing one of these virtual connections. If multiple
leaving edges of a node are part of a cycle in the AGVG like e[A]

2 and e[A]
3 in Fig. 4.1(a),

their corresponding regions will be identical. The region R[A]
1 of A in Fig. 4.1(a) only

corresponds to a small niche and thus typically would not be considered as significant
for navigation. This leaves the node with only two significant regions, meaning it is
not really a relevant decision point. In contrast, the node representing the T-junction
in Fig. 4.1(b) has three rather significant accessible regions, which means it is a true
decision point.

As we assume that information about the environment stems from range sensors
like laser range finders, the principal property for assessing the significance of an ac-
cessible region is its shape. However, no detailed description of the shape is available
in the AGVG (e.g., no complete description of the boundaries of free space). Hence,
we have to content ourselves with certain available indicators. The idea of distance and
seclusion affecting the significance of a region proposed (points 3 and 4) is illustrated
in Fig. 4.2. There we see three examples of niches in a corridor always corresponding

4.1 Relevance Measures for Voronoi Nodes 61

(a)

A
1R[A]

2R[A]

3R[A]

(b)

R[A]
3

AR[A]
1

R[A]
2

Figure 4.1: Two examples illustrating how the connections from a node to its generat-
ing points decompose free space into a set of regions

to region R[A]
1 . Intuitively, one would arguably choose the example in the middle as

the one that fits the concept of a decision point best, while in the other two examples
the niche and hence also Voronoi node A appear much more insignificant. The main
difference between the first and second example is that one gets access to more distant
areas of space as measured by the distance from the Voronoi node to the most distant
node contained in the region (in this case the distance to either B or C).

However, as the comparison between the second and third example illustrates, dis-
tance alone is not sufficient as a relevance criterion. In both cases the distance to the
most distant node is almost identical. The main difference is that in the third case
almost the entire region is part of the corridor which is represented by the other two
edges, while it is clearly secluded in the middle example. This aspect can be measured
by looking at which part of the regions falls into the maximal inscribed circle of the
node and which part lies outside.

As a result, we propose to measure the significance of an accessible region of a
node v in an AGVG in terms of the length of the path to the most distant node belong-

(a)

A

B C

R[A]
3R[A]

2

R[A]
1

(b)

A

B C

R[A]
2

R[A]
1

R[A]
3

(c)

A

B C

R[A]
2

[A]
3

R[A]
1

R

Figure 4.2: An example of how distance and seclusion influence the significance of an
accessible region: The niche in (b) is clearly more significant than the examples in (a)
and (c)

62 Simplification and Hierarchical Voronoi Graph Construction

B

R[A]
1

R[A]
3

R[A]
2

e[A]
1

e[A]
3

e[A]
2

length of this path
determines rsm of R [A]

1

A

Figure 4.3: Computation of the rsm value of region R[A]
1 to the left of node A: The

length of the path to B lying within the maximal inscribed circle is subtracted from
the length of the complete path to B, yielding the length of the heavy solid drawn part

ing to that region without counting that part of the path that lies inside the maximal
inscribed circle of v. Assuming that the radius of the maximal inscribed circle of v is
given by r(v), d(vi, vj) stands for the shortest path distance between nodes vi and vj in
the AGVG, and the set A[v]

i contains all nodes contained in R[v]
i (those nodes that can

be reached from v via e[v]i without passing v again), we define the region significance
measure (rsm) as follows:

Definition 4.1 (Region significance measure). The region significance measure rsm
assigns a significance value fromR+

0 to each accessible region R[v]
i of a node v, given

by

rsm(R[v]
i) =

∞ , if e[v]i is part of a cycle

max

{(
max
w∈A[v]

i

d(v, w)

)
− r(v), 0

}
, otherwise

(4.1)

The first part of the definition assigns an rsm value of ∞ to accessible regions if
the corresponding edge is part of a cycle. As a result, cyclic regions will be treated as
maximally significant. Otherwise, the shortest paths to all the nodes belonging to the
accessible region are considered to determine the length of the longest one. Finally,
the radius of the maximal inscribed circle is subtracted from this path length. As a
result, only the part of the path to the most distant node that lies outside the maximal
inscribed circle is considered. Negative results for nodes located inside the maximal
inscribed circle are turned into a relevance value of 0 by the outer maximum operation.

Figure 4.3 illustrates this approach: B is a most distant node of region R[A]
1 in

terms of shortest path length. The radius of the maximal inscribed circle is subtracted,
effectively removing the dashed part of the path so that only the solid drawn part is
taken into account.

Now that we have a measure to assess the significance of accessible regions purely
based on the information contained in the AGVG, we can use the measure to determine

4.1 Relevance Measures for Voronoi Nodes 63

Figure 4.4: vnrm values assigned to the nodes of an AGVG depicted by the radii of
the corresponding circles. Non-filled circles stand for nodes with a vnrm value of∞

the relevance of a Voronoi node as a whole. As mentioned, to be considered relevant as
a decision point for navigation, a Voronoi node needs to have at least three accessible
regions of a certain significance. Two highly significant regions cannot make up for the
insignificance of the third region. Also, a higher number of regions more insignificant
than the third most significant region in the case of a node with degree > 3 will not
increase the significance of the node. For instance, two small niches on opposing
sides of the corridor will not result in a relevant decision point. Therefore, we define
a Voronoi node relevance measure (vnrm) that assigns the significance value of the
corresponding third most significant region to each inner node of an AGVG:

Definition 4.2 (Voronoi node relevance measure). The Voronoi node relevance mea-
sure vnrm : V → R+

0 assigns each Voronoi node v with deg(v) ≥ 3 a relevance value
given by

vnrm(v) = max3RSMv (4.2)

where RSMv is the multiset {rsm(R[v]
i) | 1 ≤ i ≤ deg(v)} and maxn of a multiset M

yields the n-highest value in M according to

maxnM =
{

max M , if n = 1
max(M \maxn−1M) , if n > 1

As a result of this definition, a node that has three or more edges which are part of
cycles in the AGVG will be assigned a vnrm value of ∞. In Fig. 4.4, the individual
vnrm values of the nodes in our exemplary environment are visualized by the radii
of the corresponding circles. Nodes that have a vnrm value of ∞ are displayed by
the non-filled circles. Important decision points, such as the junctions on the central
corridor, receive high values while nodes caused by minor concavities in the obstacle
boundaries have very low vnrm values.

64 Simplification and Hierarchical Voronoi Graph Construction

Figure 4.5: Nodes caused by noise in combination with line segmentation have very
low vnrm values and, hence, can be filtered out by a low threshold value

Voronoi nodes that are the result of noise can be seen as an extreme case of nodes
with an insignificant accessible region. As illustrated in Fig. 4.5, the region caused
by noise on the right is almost completely contained in the maximal inscribed circle;
this leads to a very low rsm value for that region. As a consequence, the relevance
measure is well suited to completely identify the complete unstable subgraph. This is
a considerable advantage over methods that only remove the last edge leading to the
unstable end node.

4.2 Computation of Relevance Values

In this section, we present a basic algorithm for computing the rsm values for the
accessible regions of Voronoi nodes in an AGVG and, derived from them, the vnrm
values of the nodes themselves. We assume that we have a complete AGVG at hand.
Extending the approach to deal with partial AGVGs containing unexplored edges as
well as efficiency improvements and incremental versions of the basic algorithm will
be discussed later in this section.

We start by describing the computation of the rsm values of the accessible regions
of a single node v. Our algorithm is a modified version of Dijkstra’s single source
shortest path algorithm (Dijkstra, 1959), which determines the distance from a given
start node to all other nodes in a weighted graph. Naturally, v is the source node and the
length of the Voronoi curves annotated to the edges of the AGVG are taken as weights.
The modifications we make are for detecting cyclic regions and for tracking which
node has been reached via which leaving edge of the starting node v. A pseudocode
version of the algorithm is given in Algorithm 1 and will be explained below. An
example run is given in Fig. 4.6.

The algorithm uses a set of auxiliary variables that for simplicity are treated as
global variables, although they are actually realized as attributes of the node and edge

4.2 Computation of Relevance Values 65

objects. These variables are

• rsmi (initialized to 0), which contain the current estimates of the rsm values
of the accessible regions R[v]

i and, thus, in the end contain the result of the
algorithm,

• cyci (initialized to false), which are set to true when region R[v]
i is detected to

be cyclic,

• dvi , storing the current shortest distance of vi from v,

• mvi (initialized to 0), which are used to mark nodes based on which accessible
region of v they belong to (mvi = 0 means that this node has not been reached
yet),

• closedvi (initialized to false), which, as in the standard Dijkstra algorithm, mark
if a node has been closed, meaning its distance from v has been determined,

• a set L, which contains the nodes that have been reached and still need to be
expanded.

Initialization In the initialization step of the algorithm the auxiliary variables are
initialized as stated above. L is initially empty. For v, mv is set to −1, which is a
special mark only used for the start node, dv is set to 0, and v is marked as closed.
Then a single expansion step is performed for v by calling the subprocedure expand
(to be explained in detail below) for each leaving edge of v. This expansion puts each
node adjacent to v into the list L and marks it with the number i of the edge e[v]i by
which it has been reached. In addition, the distance values dvi are updated according
to the length of the edge. The region numbers will be propagated through the graph,
in addition to the minimal distances being computed in the main part of the algorithm.
Figure 4.6(b) illustrates the state after the initialization step: v has been expanded. Its
neighbors are now contained in L (depicted by the surrounding circles) and are marked
with the region numbers 1 to 3. All nodes without a number still are marked as 0. The
rsmi variables for v are still 0.

Main Loop The main loop operates similarly to the standard Dijkstra algorithm:
Node w with the minimal current distance dw is taken from L and expanded. Neigh-
boring nodes are labeled with the same region number asw and put into L. In addition,
as the minimal distance of w has hereby been determined, we update the rsmi variable
for the corresponding region of v according to Eq. 4.1. Figure 4.6(c) and (d) show
this step for nodes A and B, respectively, resulting in rsm values of 5 and 7 based on
the length of the edges. After expanding B, L now contains five nodes: two for region
R

[v]
1 , one for R[v]

2 , and two for R[v]
3 .

66 Simplification and Hierarchical Voronoi Graph Construction

Expand Procedure The expand procedure performs the expansion of one edge con-
necting the currently considered node x with another node y. There are three main
cases that need to be distinguished:

1. my = 0: This means node y has not been reached yet. In this case y will be
marked as belonging to the same region as x (my is set to i); its distance dy will
be set to dx plus the length l(e) of the connecting edge e. Finally, y will be
added to L.

2. my > 0 and i = my: y has already been reached and is labeled with the same
region number as the one propagated from x. If the distance dx plus the length of
the connecting edge is smaller then the current distance dy, we have discovered
a new shortest path to y, and dy is updated.

3. my > 0 and i 6= my: Again, y has already been reached, but this time is labeled
with a different region number than the propagated one. This means a cycle
involving two leaving edges of v has been detected. Accordingly, the cyci flags
are set for both involved regions of v, signaling that no further expansion is
required for these regions. Their rsmi variables are set to∞.

We have already seen the first case applied in Figs. 4.6(b)–(d). In Fig. 4.6(e), C is
expanded and a cycle is detected (case 3) because the adjacent node D is labeled with
the region number 1, not 2. As a result, rsm1 and rsm2 are set to ∞ and expansion
stops in this part of the graph.

In Fig. 4.6(f), E is expanded, which leads to an updated rsm variable for region 3
because we have determined the shortest path to a new most distant node. Here, we
encounter an instance of case 2 because E’s neighbor F is labeled with the same
region number. As the distance via E is larger than the already known distance for E,
no distance update takes place.

Figures 4.6(g)–(i) show three more expansion steps in region 3. In the last two
expansions, no more nodes are added to L; only rsm3 is updated. Eventually, L is
empty and the rsmi variables contain the rsm values of all three regions. The third
highest value (in this case 17) is the vnrm value of v.

In the actual implementation of the algorithm the list L is realized as a priority
queue sorted by increasing distance dvi . As for the standard Dijkstra algorithm, the
time complexity is O(|E| + |V | log |V |) because of the need to access nodes in order
of increasing distance from the start node. The fact that an expansion is stopped when
a region has been shown to be cyclic improves the efficiency in practice, especially in
graphs with many cycles.

Computation of the rsm and vnrm values for all nodes in the graph changes the
problem into an all-pair shortest path problem in which the shortest paths from every
node to every other node have to be determined. No algorithm for this problem is
known that has a better worst-case complexity than what we get when applying Dijk-
stra’s single source shortest path algorithm for every node independently. This results

4.2 Computation of Relevance Values 67

?

?
?

v

(a) initial situation

0
1

2

3
0

0

(b) expansion of v

1

2

3

3

30

0 5

A

(c) expansion of A

1

2

3

3

3

0 5

7

1

1

B

(d) expansion of B

1

2

3

3

3

5

1

1

∞

∞

C
D

(e) expansion of C

1

2

3

3

312

1

1

∞

∞

3

F

E

(f) expansion of E

1

2

3

3

313

1

1

∞

∞

3

3

F

(g) expansion of F

1

2

3

3

316

1

1

∞

∞

3

3

G

(h) expansion of G

1

2

3

3

317

1

1

∞

∞

3

3vnrm=17

(i) after the computation

Figure 4.6: Relevance value computation for node v performed by the basic algorithm

68 Simplification and Hierarchical Voronoi Graph Construction

Algorithm 1 Basic relevance computation algorithm for a Voronoi node v
procedure computeRelevanceValues(Node v)

1: rsmi ← 0, for all 1 ≤ i ≤ deg(v) // initialization
2: cyci ← false, for all 1 ≤ i ≤ deg(v)
3: closedvi ← false, for all 1 ≤ i ≤ |V |
4: mvi ← 0, for all 1 ≤ i ≤ |V |
5: L← ∅
6: mv ← −1; dv ← 0; closedv ← true
7: for all e[v]i , 1 ≤ i ≤ deg(v) do
8: expand(e[v]i ,v,i)
9: end for

10: while |L| > 0 do // main loop
11: w ← argminl∈L dl
12: L← L \ w
13: if not closedmw and not cycmw

then
14: closedw ← true
15: rsmmw = max{dw − r(v), 0}
16: for all i, 1 ≤ i ≤ deg(w) do
17: expand(e[w]

i ,w,mw)
18: end for
19: end if
20: end while
21: vnrmv ← max3{rsmi | 1 ≤ i ≤ deg(v)}

procedure expand(Edge e, Node x, Integer i)
1: y ← other(e, x)
2: if not closedy then
3: if my 6= 0 and i 6= my then
4: cyci ← true; rsmi =∞
5: cycmy

← true; rsmmy =∞
6: else if my = 0 or dx + l(e) < dy then
7: dy ← dx + l(e); my ← i
8: L← L ∪ {y}
9: end if

10: else if mx = −1 then
11: cyci ← true; rsmi ←∞
12: end if

4.3 Voronoi Graph Simplification 69

in an O(|V |2 log |V | + |E||V |) time complexity. Accordingly, we execute our rele-
vance computation method for each node with degree 3 or higher. The computed rsm
and vnrm values are stored as annotations to the nodes and edges in the graph for later
use. Later in this chapter we will present efficiency improvements of the algorithm
that only compute rsm values as far as they are really required by the simplification
algorithm described in the next section. In addition, we provide an incremental update
procedure which avoids unnecessary recomputation of rsm values when an AGVG is
constructed incrementally.

4.3 Voronoi Graph Simplification

After developing the techniques to assess the relevance or stability of a Voronoi node,
we turn to the simplification algorithm that in its basic version takes an AGVG G and
a relevance threshold θ and transforms G into a simplified AGVG G′ in which less
relevant parts have been removed.

The coarser AGVGG′ computed by the simplification algorithm has the following
properties:

1. G′ is connected (assuming G was connected).

2. All inner nodes remaining in G′ have a vnrm value ≥ θ.

3. All inner nodes remaining have an edge for each accessible region with rsm
value ≥ θ.

4. G′ contains at least two nodes (assuming G had at least two nodes) and no node
has a degree of 2.

5. The result of the algorithm is uniquely determined assuming no two regions have
the exact same rsm values.

A pseudocode version of the basic simplification algorithm is given in Algorithm 2.
The algorithm starts with a list of all inner nodes ofG. It iterates through the list, taking
the node with the smallest vnrm value from the list and processing it, until all nodes
have been processed or only two nodes remain in the graph. Processing a node consists
of going through its accessible regions in order of increasing rsm values. Regions with
an rsm value smaller than the given threshold θ are pruned until all such regions have
been removed or the node has been reduced to degree 2. Pruning a regionR[v]

i consists
of removing all nodes and edges that are accessible from v via edge e[v]i . Since cyclic
regions have an rsm value of∞, the pruned region always is a separated subgraph. It
may itself contain cycles though. All nodes pruned from G are also removed from the
node list L. In case the pruning has indeed reduced v to degree 2, it is removed fromG
and the two adjacent nodes are connected by a new edge whose attributes are derived
from the two replaced edges.

70 Simplification and Hierarchical Voronoi Graph Construction

Algorithm 2 AGVG simplification algorithm
procedure simplify (AGVG G, θ)

1: L← {v ∈ V (G) | deg(v) ≥ 3}
2: while |L| > 0 and |V (G)| ≥ 2 do
3: v ← argminl∈L vnrm(l)
4: L← L \ v
5: repeat
6: n← argmin1≤i≤deg(v) rsm(R[v]

i)

7: r ← rsm(R[v]
n)

8: if r < θ then
9: prune subgraph accessible via e[v]i

10: remove all pruned nodes from L
11: end if
12: until deg(v) < 3 or r ≥ θ
13: if deg(v) = 2 then
14: remove v together with its edges and connect nodes adjacent to v
15: end if
16: end while

In Fig. 4.7, we apply the simplification algorithm to a part of the simple polygonal
environment used throughout this work. Figure 4.7(a) shows the original AGVG with
the rsm values annotated to the edges that correspond to the nodes’ third most relevant
region. Thus, the numbers also correspond to the nodes’ vnrm values. As this particu-
lar graph does not contain nodes with degree > 3, they also represent all regions that
are candidates for pruning.

The first pruning step is shown in Fig. 4.7(b): The node with lowest vnrm value
is taken from the queue and the region with rsm value 7.4 is pruned. As a result the
degree of the node is reduced to 2 and the node is removed together with its two edges
and replaced by a new edge connecting its remaining two neighbors. Figure 4.7(c)
shows the next pruning steps up to an rsm value of 30.7. Similarly, Figs. 4.7(d) and
(e) show the results for threshold values of 60 and 100, respectively. Even for higher
threshold values no further simplification would take place because the graph now only
contains two nodes. In Figs. 3.8 and 3.9 of Chap. 3 we already saw some examples of
applying this approach to real environments, and more will follow in Chap. 7.

Pruning subtrees is a linear operation, and instead of removing pruned nodes from
L, we use an additional flag to mark nodes that have been pruned. These are then
ignored when taken from the list. Hence, the dominating part is sorting the nodes in
increasing order, and the algorithm has a worst-case time complexity of O(n log n),
where n is the number of nodes in the AGVG.

4.3 Voronoi Graph Simplification 71

(a)

30.2

23.7

20.1

34.0

27.2

24.6
28.5

30.1

30.7

12.7

11.417.2

30.1

7.4

43.9 57.9

62.6

304.4

85.1

303.4

(b)

30.2

23.7

20.1

34.0

27.2

24.6
28.5

30.1

30.7

12.7

11.417.2

30.1

43.9 57.9

62.6

304.4

85.1

303.4

(c)

43.9 57.9

62.6

304.4

85.1

303.4

(d)
62.6

304.4

85.1

303.4

(e)

304.4
303.4

Figure 4.7: Steps of the simplification algorithm for a simple polygonal environment

72 Simplification and Hierarchical Voronoi Graph Construction

4.4 HAGVG Construction

In the previous section, we described a basic version of the simplification algorithm
that removes irrelevant parts of the original AGVG based on a given threshold value.
In order to construct a hierarchical Voronoi graph representation, this algorithm has to
be modified in two ways:

1. Instead of destructively modifying the given AGVG, it constructs a new coarser
AGVG which is then added as a new layer.

2. In addition, it generates links between the given AGVG and the derived coarser
AGVG.

Given an AGVG L1 and a set of n threshold values θ1, θ2, ..., θn, one can then
construct an HAGVG with n+ 1 layers by iteratively applying the modified algorithm
to Li and θi for 1 ≤ i ≤ n.

The links between two layers of an HAGVG realize the corresponding abstraction
relations. Downward links allow changing to a finer level of granularity, while upward
links can be used to change to a coarser level of representation. A node or edge on
the higher level can correspond to a set of nodes and arcs on the lower level. In our
implementation, the downward links always connect nodes and edges on the higher
level to the same nodes and edges on the lower level. For the upward links, we have to
distinguish two basic cases as shown in Fig. 4.8:

1. When region R[v]
i is pruned from a node v (Algorithm 2, line 9), all nodes and

edges reachable via e[v]i need to be linked to the node representing v on the
higher level (Fig. 4.8(a)).

2. When a node v with degree 2 is removed (Algorithm 2, line 14), the node and its
edges e[v]1 and e[v]2 need to be linked to the new edge constructed from e

[v]
1 and

e
[v]
2 on the higher level (Fig. 4.8(b)).

As nodes with pruned regions can themselves be removed by further pruning, we
first propagate information about removed parts before actually changing the upward
links. The whole modified simplification algorithm performs the following steps:

1. Create a clone G′ of the input AGVG G and link nodes and edges in G′ with
corresponding nodes and edges in G (downward links).

2. Attach a list lv′i initialized as {vi} to each node v′i in G′; do the same for all
edges e′i in G′.

3. Perform simplification on G′:

4.5 Admitting Incomplete Information 73

(a) (b)

Figure 4.8: Two cases that need to be distinguished when constructing the links be-
tween two layers: (a) pruning of a region and (b) removal of a node with degree 2

• When pruning a region of v′i (case 1), set lv′i to the union of itself and all
lists from the pruned nodes and edges.
• When removing a node v′i of degree 2 (case 2) resulting in a new edge e′j ,

set le′j = lv′i ∪ le[v
′
i
]

1

∪ l
e
[v′

i
]

2

.

4. For each remaining node or edge x in G′, link all elements from G in lx with x
(upward links).

4.5 Admitting Incomplete Information

In the context of mobile robot mapping, most of the time no complete AGVG is avail-
able as we assumed in the previous sections. However, we still want to be able to
compute coarser route graph layers from the partially constructed global AGVG that
the robot has built up so far. In addition, hierarchical localization based on a matching
scheme that utilizes the relevance values of the nodes in both the map and the local
AGVG requires us to compute the relevance values for the inevitably incomplete local
AGVGs.

In both cases, we still employ the same algorithm we applied in the case of com-
plete information. All nodes of degree 1 that mark the end of a still unexplored edge
are treated in the same way as the corner nodes. However, without knowing the com-
plete AGVG, the values computed from an incomplete or local AGVG will often be
only lower bound estimates of the actual relevance values. Every rsm value computed
for a non-cyclic region in which the local AGVG has unexplored edges will be a lower
bound of the real rsm value and will be marked as such by introducing a new boolean
attribute lb(R[v]

i).
For the vnrm value we can distinguish two cases:

1. The third most relevant region or an even less relevant region of the node has an
rsm value which is a lower bound estimate. In this case, the vnrm value as given

74 Simplification and Hierarchical Voronoi Graph Construction

B

R[A]
1

R[A]
2

R[A]
3

A

Figure 4.9: Computation of the relevance values for a local AGVG: While the rsm
values for regions R[A]

2 and R
[A]
3 of node A can be computed precisely, the value

computed for R[A]
1 only yields a lower bound on the actual rsm value because it is

not known how the GVD continues behind B

by the rsm value of the third most relevant region is only a lower bound estimate
as well.

2. If all rsm values from the third most relevant region to the least relevant one are
known precisely, the vnrm value of the node is known precisely as well.

If the vnrm value of a node v is only a lower bound estimate, we record this fact
using the additional node attribute lb(v). Both cases are illustrated in Fig. 4.9. It shows
a local AGVG for a position in a room with an open door. Node B marks a point at
which the course of the underlying GVD cannot be determined further because the
GVD structure beyond B is unknown. As a result, the rsm value computed for region
R

[A]
1 by treating B as a corner node is only a lower bound estimate. On the other hand,

the rsm values for regions R[A]
2 and R[A]

3 can be computed exactly because they do not
contain unexplored edges. The fact that these values are higher than the estimate for
R

[A]
1 means that vnrm(A) = rsm(R[A]

1) is also only a lower bound estimate. If either
rsm(R[A]

2) or rsm(R[A]
3) would have been smaller than rsm(R[A]

1), vnrm(A) would
have been known exactly because the third highest rsm value would have been known.

How nodes for which the vnrm value is a lower bound estimate should be treated
depends on the task at hand. In our simplification algorithm, nodes with vnrm values
marked as lower bounds are excluded from being considered for pruning, i.e., they
are treated like nodes with a vnrm value of∞. This approach is advantageous in this
context because it still allows us to use the simplification to filter out unstable parts
of an AGVG without accidentally removing important nodes which just happen to be
close to a visibility boundary.

For our mapping approach, the existence of lower bound estimates of nodes in the
partially constructed AGVG means that these need to be updated whenever new parts
are added to a partially constructed AGVG. This will often allow us to replace the old
estimates by better or even precise lower bound values. Incremental updating of the
relevance values is further discussed in Sect. 4.7.

4.6 Improving the Efficiency of the Relevance Computation 75

4.6 Improving the Efficiency of the Relevance Computation

As mentioned, computing the rsm and vnrm values for all nodes in an AGVG has
an O(|V |2 log |V | + |E||V |) worst-case time complexity. However, as we have also
seen, determining the vnrm value of a node only requires the precise rsm values for the
third most relevant regions and the even less relevant regions. Similarly, the simpli-
fication algorithm never operates on the two most relevant regions when it prunes an
AGVG. Therefore, in this section and the next, we discuss improvements of the value
computation based on two related ideas:

• As simplification and computation of vnrm values does not require the rsm val-
ues of the two most relevant regions for a given node, rsm value computation can
be stopped as soon as it becomes clear which two regions are the most relevant
ones.

• When AGVGs are constructed incrementally and the current AGVG is comple-
mented by a new subgraph, it is not necessary to recompute relevance values for
nodes for which only the two most relevant regions have changed.

As a result of improvements made based on these ideas, the relevance computation
becomes very fast in practice. A quantitative analysis of this improvement is given in
Chap. 7.

When looking at the basic relevance computation algorithm (Algorithm 1), one
observation is that not only does each individual rsmi variable increase monotonically
during the computation, but so does the sequence of updated rsm values computed in
line 15 of Algorithm 1. This results from the fact that nodes are expanded in order of
increasing distance from the start node. The only exception is when cyclic regions are
detected and their rsm values are set to∞.

As a consequence, assuming that no cyclic regions have been found so far and we
have just expanded the last remaining node of a region, we only have to proceed if there
are more than two regions which still have remaining unexpanded nodes. Otherwise,
these other two regions have to be the most relevant ones (cyclic or not) and it is not
necessary to compute their exact rsm values.

One additional complication arises from the fact that each detected cyclic region
takes away one place for a region for which we do not need to compute the rsm value.
When one cyclic region has been found, we only can have one additional open region.
When two or more have been found, the values of all remaining regions have to be
computed. Thus, given a variable openRegions that counts the number of regions for
which the rsm value has not yet been determined and a variable cyclicRegions counting
the number of regions that have been determined to be cyclic so far, the criterion for
when computation can be stopped can be formulated as follows:

openRegions ?= max{2− cyclicRegions, 0} (4.3)

76 Simplification and Hierarchical Voronoi Graph Construction

The improved relevance computation algorithm given in Algorithms 3 and 4 is
based on this criterion. The openRegions variable is initialized with the degree of the
start node, while the cyclicRegions variable is initialized with 0. They are continu-
ously updated whenever cyclic regions are detected or non-cyclic regions are closed.
Detecting closure of a region is realized by maintaining counter variables openNodesi
for each region. They count the number of nodes that have been marked for this region
but have not been expanded yet.

The computation is terminated when the number of open regions becomes 0 or
when the termination criterion (Eq. 4.3) is satisfied. As a side product of this ap-
proach, we can now directly determine the vnrm value of the node from the termina-
tion conditions. For instance, when we have just closed a non-cyclic region R[v]

i and
the termination criterion is satisfied, it follows that vnrm(v) = rsmi. When the termi-
nation criterion is met and open regions remain, we set their rsm value to∞ to make
sure that they are treated correctly by the simplification algorithm.

Besides these modifications, another efficiency improvement is made which is not
reflected in the pseudocode: Whenever it becomes clear that an edge is part of a cycle
in the graph, this fact is stored permanently as an attribute cyclic(e) of this edge (in
contrast to the cyci variables, which are reinitialized for each call of the value computa-
tion algorithm). When relevance computation for a node v starts and one of its leaving
edges has the cyclic attribute set to true, the corresponding value can immediately be
set to∞ and no further expansion is needed for this edge.

In Fig. 4.10, we give an example of how this improved value computation works.
At first, the value computation algorithm is applied to node A. The nodes belonging
to regions 1 and 2 are far away from A; thus all expansion takes place in region 3. In
Fig. 4.10(b), node B is expanded. An internal cycle within region 3 is detected and
the cyclic attribute for the corresponding edge is set to true. The expansion proceeds
until the last node of region 3 has been expanded in Fig. 4.10(c). This means that
openNodes3 has just become 0 and hence the number of open regions is reduced by 1.
Now the termination criterion is checked and indeed, as we only have two more open
regions and no cyclic region found so far, it is satisfied and the vnrm value of A is set
to the value of rsm3.

The next node for which the relevance computation algorithm is called is node C,
which is of degree 4 (Fig. 4.10(d)). We already know that e[C]

2 is part of a cycle and
therefore rsm2 is set to∞. The number of open regions is decremented and the number
of cyclic regions is incremented. In this situation, the termination criterion says that
we need to compute the rsm values of two more regions. This happens for regions
3 and 4 (Fig. 4.10(e)). When closing region 4 the criterion is met and computation
terminates setting vnrmC to 4, which is the rsm value of region 4.

4.6 Improving the Efficiency of the Relevance Computation 77

?

? ?

openRegions=3
cyclicRegions=0

A

(a) relevance computation for A

0

10

1

2

3

3

3

cyclic=true

3
0

openRegions=3
cyclicRegions=0

A

B

(b) detection of an internal cycle

∞

∞
vnrm=141

2

3

3
cyclic=true

3

3

3

14

openRegions=2
cyclicRegions=0

3
A

(c) computation for A terminates

vnrm=14

cyclic=true

openRegions=3
cyclicRegions=1

?
?

?
∞

C

(d) relevance computation for C

vnrm=14

cyclic=true

openRegions=1
cyclicRegions=1

4

3
∞1

4

3

∞

vnrm=4

2

C

(e) computation for C terminates

Figure 4.10: Illustration of the improved relevance computation algorithm: (a)–(c)
show the computation for node A, while (d) and (e) show the computation for node C,
which reuses the information that one of its edges belongs to a cycle

78 Simplification and Hierarchical Voronoi Graph Construction

Algorithm 3 Main procedure of the improved relevance computation algorithm
procedure computeRelevanceValues(Node v)

1: rsmi ← 0, for all 1 ≤ i ≤ deg(v) // initialization
2: cyci ← false, for all 1 ≤ i ≤ deg(v)
3: openNodesi ← 0, for all 1 ≤ i ≤ deg(v)
4: openRegions← deg(v)
5: cyclicRegions← 0
6: closedvi ← false, for all 1 ≤ i ≤ |V |
7: mvi ← 0, for all 1 ≤ i ≤ |V |
8: L← ∅
9: mv ← −1; dv ← 0; closedv ← true

10: for all e[v]i , 1 ≤ i ≤ deg(v) do
11: expand(e[v]i ,v,i)
12: end for
13: while |L| > 0 and openRegions > 0 do // main loop
14: w ← argminl∈L dl
15: L← L \ w
16: if not closedw and not cycmw

then
17: closedw ← true
18: openNodesmw

← openNodesmw
− 1

19: rsmmw = max{dw − r(v), 0}
20: i← 1
21: while i ≤ deg(w) and openRegions> 0 do
22: expand(e[w]

i ,w,mw)
23: i← i+ 1
24: end while
25: if not cycmw

and openNodesmw
= 0 then

26: openRegions← openRegions− 1
27: if openRegions = max{2− cyclicRegions, 0} then
28: vnrmv ← rsmi

29: openRegions← 0
30: for all j, 1 ≤ j ≤ deg(v) do
31: if not cycj and openNodesj > 0 then rsmj ←∞ end if
32: end for
33: end if
34: end if
35: end if
36: end while

4.6 Improving the Efficiency of the Relevance Computation 79

Algorithm 4 Expand procedure of the improved relevance computation algorithm
procedure expand(Edge e, Node x, Integer i)

1: y ← other(e, x)
2: if not closedy then
3: if my 6= 0 and i 6= my then
4: if not cyci then
5: cyci ← true; rsmi =∞
6: openRegions← openRegions− 1
7: cyclicRegions← cyclicRegions + 1
8: end if
9: if not cycmy

then
10: cycmy

← true; rsmmy =∞
11: openRegions← openRegions− 1
12: cyclicRegions← cyclicRegions + 1
13: end if

if openRegions = 0 then vnrmv ←∞ end if
14: else
15: if my = 0 then openNodesi ← openNodesi + 1 end if
16: if my = 0 or dx + l(e) < dy then
17: dy ← dx + l(e), my ← i
18: my ← i
19: L← L ∪ {y}
20: end if
21: end if
22: else if mx = −1 then
23: cyci ← true; rsmi ←∞
24: openRegions← openRegions− 1
25: cyclicRegions← cyclicRegions + 1

if openRegions = 0 then vnrmv ←∞ end if
26: end if

80 Simplification and Hierarchical Voronoi Graph Construction

4.7 Incremental Computation

In the context of incremental mapping and HAGVG construction, further computation
time can be saved by not recomputing all rsm and vnrm values when the current AGVG
is complemented by new information. Our approach for appending a new AGVG H
to our current AGVG G is the following:

1. For each node and each accessible region, variables are used to track whether
the corresponding rsm and vnrm values need to be recomputed. For all nodes of
H these are set to true; for all nodes of G they are initially set to false.

2. G and H are connected and nodes of G for which an unexplored edge has just
been connected are stored in a list L.

3. For each node of L the regions corresponding to the now connected edges are
marked for recomputation.

4. For each node v of L a depth-first search is started (not including the newly
connected edges), and all non-cyclic regions encountered that have to contain v
are marked for recomputation.

5. All nodes of G with degree ≥ 3 for which at least one of the regions marked
for recomputation is not among the two most relevant regions are marked for
recomputation.

6. The relevance computation algorithm is called for all nodes which are marked
for recomputation.

This basic approach is illustrated in Fig. 4.11: Figure 4.11(a) shows the two graphs
(the dark nodes are the nodes of G, while the others belong to H) and the previously
unexplored but now connected edges as dashed lines. The arrows mark regions which
have been marked for recomputation. These are the regions from nodes in H and the
regions corresponding to the just-connected edges in G. In Fig. 4.11(b), we see the
result of propagating recomputation marks from node A. Doing the same for node B
in Fig. 4.11(c) leads to more regions being marked for recomputation. At node C, the
corresponding region is already marked for recomputation, at which point the depth-
first search backtracks so that each region is only considered once. Hence, determining
the nodes that require recomputation requires linear time. Finally, Fig. 4.11(d) shows
the nodes which require recomputation: Node A, for instance, requires recomputation
because (among other things) its third most relevant region has been extended. In
contrast, for nodeB the two most relevant regions have changed and no recomputation
is needed.

4.7 Incremental Computation 81

A

B

(a) connecting the graphs

A

B

(b) propagating recomputation marks for A

A

B

C

(c) propagating recomputation marks for B

A

B

(d) nodes that require recomputation

Figure 4.11: Incremental value computation scheme: Nodes that require recomputa-
tion are determined by looking at which regions would require recomputation

82 Simplification and Hierarchical Voronoi Graph Construction

4.8 Application Scenarios

We close this chapter by briefly looking at possible application scenarios in which the
techniques developed in this chapter could be employed. The intended application in
our case, of course, is incremental construction and maintenance of an HAGVG as a
spatial representation for a mobile robot. In addition, the approach can be employed
to filter out unstable parts of an AGVG. Furthermore, as a side product the approach
can be used to construct route graphs from vector data like floor plans.

4.8.1 Incremental HAGVG Construction

For constructing and maintaining an HAGVG representation the number of layers in
the HAGVG and the corresponding threshold values are currently determined in ad-
vance. The bottom layer is maintained by appending newly perceived nodes and edges
and by updating the relevance values as described in Sect. 4.7. The higher levels are
currently recomputed completely when new information is complemented. So far, no
need to increase the efficiency by developing an incremental procedure has been en-
countered in practice.

4.8.2 Removal of Unstable Parts

For removing unstable nodes and edges caused by noise, one can employ the simplifi-
cation algorithm with a rather low threshold value and only keep the resulting AGVG.
Figure 4.12 demonstrates this approach. It shows in Figs. 4.12(a) and 4.12(b) the
AGVGs for the noise ratio of a real laser scanner used and for an unrealistically high
noise ratio, respectively. As is clearly visible, the high noise ratio together with the
segmentation of the range data results in a high number of additional nodes and edges
in the AGVG. In both cases, the simplification resulted in the route graph shown in
Fig. 4.12(c), with only slight variations in the exact positions of the nodes. Further
testing by reducing the threshold value revealed that spurious nodes and edges caused
by the noise can very reliably be filtered out by using a very small threshold value
(θ < 100mm), though, of course, nodes and edges caused by existing concavities of
the same order of magnitude will be filtered out as well.

4.8.3 Automatic Route Graph Generation from Vector Data

Although this is not the intended area of application, our approach can be used to
automatically generate route graphs from vector data, for instance, representing floor
plans. However, it should be mentioned that the presence of a complete geometric
description allows for formulating improved measures that take other properties of the
regions into account. It also may allow the derivation of semantic information (e.g., a
decomposition into particular rooms and corridors), leading to route graphs that are
better suited for human usage.

4.8 Application Scenarios 83

(a) (b) (c)

Figure 4.12: Simulation of route graph generation for different noise levels: (a) shows
the AGVG constructed with a range sensor with low sensor noise and (b) with high.
Identical coarse route graphs are computed from both AGVGs via simplification (c)

To illustrate the applicability of our approach we used the 2D model of a floor
in the MZH building of the Universitä Bremen shown in Fig. 4.13. Computing the
AGVG and applying the simplification algorithm afterwards resulted in the depicted
route graph. This route graph could, for instance, serve as a starting point for gener-
ating route descriptions leading from a given location to a specific goal. Extracting
or manually annotating additional semantic information (doors, hallways, etc.) should
facilitate the automatic generation of route instructions, at least in a simple navigation
system-like language. The number of nodes here has been reduced from 350 in the
original AGVG to 73 in the simplified route graph, and the number of edges from 353
to 76.

Figure 4.13: A coarse route graph computed by the simplification algorithm from a
ground plan of a floor in the MZH building, Universität Bremen

84 Simplification and Hierarchical Voronoi Graph Construction

In this chapter, we were concerned with the problem of extracting an AGVG repre-
sentation from sensor data and of autonomously building up a complete HAGVG from
it. With regard to adding new information to the HAGVG we made the assumption that
the correct correspondences between nodes and edges are given. In the next chapter,
we turn to the question of how to proceed when this is not the case.

85

Chapter 5

Voronoi Graph Matching for Data
Association

In this chapter, we will be concerned with the problem of identifying correct cor-
respondences between an AGVG extracted from local information about the robot’s
surroundings and the memorized map AGVG. Identifying the correct correspondences
is a crucial step for complementing the map AGVG incrementally by inserting newly
perceived parts from the local AGVGs and for localization in general. We develop a
matching approach based on the notion of edit distance that compares the graph struc-
tures and the annotations of the AGVGs. Results from the previous chapter with regard
to assessing the stability of Voronoi nodes are incorporated into the matching process
in order to adequately deal with potential variations in the AGVGs.

5.1 The Data Association Problem

In the data association step of a robot mapping approach, features from the current
local observation are identified with features in the agent’s spatial model. Depending
on the particular approach, the features can be single reflection points in the range
data of a laser scanner, corners, line segments or more complex geometric structures,
landmarks, or, as in our case, the nodes and edges making up an AGVG. The question
always is, which feature from the local perception and which feature from the spatial
model correspond to the same object in the physical world? The problem of deter-
mining the correct correspondences is referred to as the data association problem or
correspondence problem in robotics and is considered as “arguably one of the most
challenging problems in SLAM” (Bailey et al., 2006). Figure 5.1 illustrates the prob-
lem as it typically occurs in robot mapping: The features from the model have been
mapped into observation space. Now the correct matching as indicated by the con-
necting lines has to be determined. In probabilistic approaches this is typically done
by taking into account the uncertainty in the feature positions indicated by the ellipses
in the figure.

J.O. Wallgrün, Hierarchical Voronoi Graphs: Spatial Representation and Reasoning for Mobile Robots,
DOI 10.1007/978-3-642-10345-2_5, © Springer-Verlag Berlin Heidelberg 2010

86 Voronoi Graph Matching for Data Association

observed features
model features

Figure 5.1: The data association problem: The currently observed features have to be
assigned to corresponding features in the map. Some observed features might not be
part of the map yet. Uncertainty in the positions of the map features is indicated by the
ellipses

The individual demands on a data association algorithm depend on the overall
mapping framework it is embedded in. For instance, multiple hypothesis approaches in
which data association has to be performed for many different hypotheses have a bias
towards computationally efficient solutions, while for single hypothesis approaches it
is usually advisable to trade off efficiency for reliability. Other important aspects are
the similarity distribution and density of features in the environment.

We proceed by formally describing the data association problem and reviewing the
most common approaches in the context of mobile robot mapping.

5.1.1 Data Associations and the Interpretation Tree

For the following considerations, we assume that the local observation is given by a
data set D = {d1, d2, ..., dm} containing m features. A second set of features, the
model set M = {m1,m2, ...,mn}, represents the features stored in our map or, alter-
natively, in a representation of the previous observation. Generally, a data association
can be seen as a relation between the elements ofD and those ofM . However, in most
mapping scenarios no general m-to-n mappings between the feature sets are possible.
If one assumes that no perceived feature can correspond to multiple model features—
as we will do in this work—a data association can be defined as a total function from
the index set of D to the index set of M extended by 0, which will be used for features
that are regarded as new and not yet contained in M :

Definition 5.1 (Data association). A data association between a given data set D =
{d1, d2, ..., dm} and a given model set M = {m1,m2, ...,mn} is a total function
da : {1, 2, ...,m} → {0, 1, 2, ..., n} that maps the indices of the features from D to
those of features from M or to 0. da(i) = j means that di is associated with mj and
da(i) = 0 means that di is not associated with any feature from M .

5.1 The Data Association Problem 87

d
1
 m

1
d

1
 m

2
d

1
 m

3
d

1
 0

d
2
 m

2
d

2
 m

3

d
3
 m

2
d

3
 m

3
d

3
 0d

3
 m

1

d
2
 0d

2
 m

1

{ d
1
 m

2
, d

2
 m

3
, d

3
 0 }

Figure 5.2: Part of the interpretation tree for a given data and model set, both consisting
of three features. A path from the root to a leaf describes a particular data association

Alternatively to writing da(i) = j, we will use the notation di ; mj , and use
di ; 0 instead of da(i) = 0. An individual assignment di ; mj will also be referred
to as a matching or pairing. We will use the term partial data association for the case
where not all elements from D have been assigned yet, so that da is a partial function.

The set of all possible data associations in a given situation can be represented as
a so-called interpretation tree (Grimson, 1990), as depicted in Fig. 5.2. At each level
of the tree, a particular element of D is associated either with an element of M or with
0. Thus, the branching factor at each node is n+ 1 and the overall number of possible
data associations is (n+ 1)m. The leaves of the interpretation tree represent complete
data associations determined by the assignments made along the path from the root
node to the leaf. Inner nodes represent partial data associations. A data association
algorithm has to select one of these possibilities as the solution to the data association
problem.

If we consider Voronoi nodes of AGVGs as the features making up the data and
model sets, a further restriction is appropriate: As Voronoi nodes are point features
that can be either perceived or not, but never be partially perceived (e.g., because of
occlusion), no two perceived Voronoi nodes can correspond to the same one in the
model set. This restriction has been termed the all-different constraint in the literature.
Consequently, for a data association to satisfy the all-different constraint, the mapping
to the elements of M has to be injective. Naturally, this restriction does not concern
the elements that are mapped to 0.

Definition 5.2 (All-different constraint). A data association da between a data set
D = {d1, d2, ..., dm} and a model setM = {m1,m2, ...,mn} satisfies the all-different
constraint if

da(i) = k ∧ da(j) = k =⇒ i = j ∨ k = 0 (5.1)

holds.

88 Voronoi Graph Matching for Data Association

Even with the all-different constraint in place, the number of possible data asso-

ciations from which the most plausible one has to be determined is still
m∑
i=1

(
m
i

)(
n
i

)
i!

(Wolter, 2008). Hence, additional information needs to be exploited in order to come
up with feasible solutions to the data association problem. Examples of information
that has been employed for this purpose are feature similarity, position estimates, co-
visibility, and configurational knowledge. We provide a brief overview of the basic
techniques relevant for this text in the next section.

5.1.2 Data Association Approaches

In order to determine the compatibility of an observed feature and a map feature in a
non-stochastic approach when the position from which the observation was made is
known, one would typically consider the Euclidean distance between the features after
transferring both into the same coordinate system. In EKF-based stochastic mapping
approaches (see Appendix A.2.2), in which the map consists of a mean vector for the
robot pose and feature positions together with the corresponding covariance matrix,
the analogous approach is to determine the compatibility by way of their Mahalanobis
distance (Mahalanobis, 1936). The Mahalanobis distance is the point distance between
two vectors scaled by their statistical variation.

Definition 5.3 (Mahalanobis distance). Assuming di and mj stand for the respective
means of a data feature and a map feature, µ and Σ are the mean vector and covari-
ance matrix of the map, and the measurement model for feature mj is given by gj(x)
plus additive Gaussian noise with 0 mean and covariance matrix Ri, the (squared)
Mahalanobis distance M2(di,mj) of di and mj is given by:

M2(di,mj) = (di − gj(µ))T Σ̄−1
ij (di − gj(µ)) (5.2)

where
Σ̄ij = GjΣGTj +Ri

and

G =
∂gj
∂x

∣∣∣∣
µ

Σ̄ij here is the covariance of the so-called innovation di−g(µ). M2(di,mj) forms
a chi-squared probability distribution. In the validation gate test (Bar-Shalom & Fort-
mann, 1988), a threshold χ2 is used for the Mahalanobis distance and all associations
with M2(di,mj) ≤ χ2 are assessed as compatible. χ2 is chosen so that a certain per-
centage of the probability mass lies between 0 and χ2. The concrete value depends on
the dimensionality of the feature vectors.

In Fig. 5.1, the validation gates for the map feature are visualized by the ellipses.
An observation is compatible with a map feature if it falls into the corresponding el-
lipse. The figure also shows that data association using the validation gate is usually

5.1 The Data Association Problem 89

Algorithm 5 The individual compatibility nearest neighbor algorithm
procedure ICNN(D = {d1, d2, ..., dm},M = {m1,m2, ...,mn})

1: for all i = 1 to m do
2: k ← argmin

1≤j≤n
M2(di,mj)

3: if M2(di,mk) < χ2 then
4: da(di)← k
5: else
6: da(di)← 0
7: end if
8: end for

still ambiguous: An observation may be compatible with multiple map features or
multiple observations may be compatible with the same map feature. One simple ap-
proach to resolve such ambiguities often used in combination with validation gating is
nearest neighbor assignment. This means each observed feature di is associated with
the closest map feature mj in terms of M2(di,mj) (or Euclidean distance in a non-
stochastic setting) that is compatible. Hence, the time complexity of the approach is
O(mn) where m is again the number of observed features and n is the number of fea-
tures in the map. Neira & Tardós (2001) call the combination of validation gating and
nearest neighbor assignment the individual compatibility nearest neighbor (ICNN) al-
gorithm. As we will use a variant of this approach for comparison later in this work,
we provide a pseudocode version in Algorithm 5.

A simple approach sometimes used to enforce the all-different constraint in com-
bination with the ICNN algorithm is to only consider map features which have not
been paired previously. However, this approach often yields suboptimal solutions with
regard to the overall distance between matched features. Finding the optimal data as-
sociation complying to the all-different constraint can be formulated as a maximum
weight matching problem in a bipartite graph and be solved by the Hungarian method
in O(mn2) time where n is the number of nodes and m is the number of edges in the
bipartite graph (Kuhn, 1955; Munkres, 1957).

As pointed out by Neira & Tardós (2001), testing individual compatibility of pair-
ings neglects the fact that observations obtained from the same position are correlated
and, hence, accepts hypotheses that contain mutually exclusive pairings. Avoiding this
problem requires us to consider the complete set of simultaneously observed features,
a procedure often called batch association. Neira and Tardós propose a batch associa-
tion approach called joint compatibility branch and bound (JCBB), which is a branch
and bound search for the hypothesis with the largest number of jointly compatible pair-
ings. The downside of this approach is the increased computational costs caused by
considering an exponentially sized space of hypotheses. The authors give an empiri-
cally determined estimate of O(1.53n) for the complexity of their algorithm, where n
is the number of features in the map.

90 Voronoi Graph Matching for Data Association

Another approach to batch association is to employ hard constraints based on the
configuration of features to filter out data associations which are not jointly compat-
ible. For instance, Wolter (2008) shows that optimal matching with general m-to-n
correspondences can be computed in O(m2n2) time when the matching is subject to
cyclic order constraints. Relative geometric constraints, which play an important role
in our approach, have been employed by multiple authors (e.g., Arras et al., 2003;
Bailey, 2001; Lim & Leonard, 2000). For instance, Bailey (2001) employs binary
distance constraints between pairs of features that have to be preserved by the data
association. The solution is based on a maximum clique search in the correspondence
graph formed by compatible pairings of features.

As we see, many data association approaches are based on graph-theoretical meth-
ods. Graph matching approaches in particular are very relevant for our case, as the
AGVGs we are concerned with are annotated graph structures (see Bunke, 2000;
Bunke & Messmer, 1997, for a general overview on graph matching). Many important
graph matching problems have been shown to be NP-complete, such as exact sub-
graph isomorphism (Garey & Johnson, 1979) or inexact graph matching and inexact
subgraph matching (Abdulkader, 1998). However, for some restricted types of graphs
polynomial solutions do exist. For instance, the graph isomorphism problem has been
shown to be solvable in polynomial time for planar graphs (Hopcroft & Wong, 1974).

In the remainder of this chapter, we develop an AGVG matching approach for data
association in which we exploit the fact that graph topology and combinatorial embed-
ding restrict the set of valid data associations. Our approach is based on inexact graph
matching techniques because we need to take into account variations resulting from the
instability of the underlying GVD. We employ the notion of edit distance (Eshera &
Fu, 1986; Sanfeliu & Fu, 1983) to describe the similarity of AGVGs. Matching based
on edit distance has been applied to structural shape descriptions similar to Voronoi
graphs in the area of computer vision (e.g., Sebastian et al., 2004). Our approach can
be seen as an adaptation of this work to AGVG representations and to the data asso-
ciation problem in which local graph and model graph may only partially overlap. In
addition to the edit distance-based matching, absolute position estimates and relative
geometric constraints are applied to further reduce the set of considered matchings.

5.2 AGVG Matching Based on Ordered Tree Edit Distance

In the context of mapping with Voronoi graph representations, data association in-
volves the identification of node and edge features computed from local data with node
and edge features from either the map or the previously computed local Voronoi graph.
A typical situation showing two consecutively perceived AGVGs overlaid based on an
estimate of the robot pose is shown in Fig. 5.3. The circles depict the maximal in-
scribed circles for inner Voronoi nodes, while the crosses mark the generating points.
The thinly drawn edges are unexplored ones. Each AGVG contains branches that are
not contained in the other AGVG.

5.2 AGVG Matching Based on Ordered Tree Edit Distance 91

Figure 5.3: A typical AGVG matching problem: The local and the model AGVG each
contain branches not contained in the other. In addition, node positions, positions of
generating points (crosses), and radii of the inscribed circles vary

Besides providing position estimates for observed features and map features, the
AGVG representation offers additional information that can be exploited in order to
improve the data association algorithms. This includes

• node signature information,

• information about the graph topology and embedding in the plane,

• stability information, and

• geometric information about the local configurations of nodes.

The uncertainty of global position estimates can grow without bounds (e.g., while
moving along a large loop in the environment) and become less useful for identifying
the correct data association. Configurational information based on relative geometric
relations holding between features perceived simultaneously or in short order, on the
other hand, is generally much better suited to identify the right data association. As
the distribution of Voronoi nodes is typically rather dense and signature information
is usually insufficient to reliably identify nodes, an approach that makes heavy use of
structural information (graph topology and combinatorial embedding) and geometric
constraints is particularly promising.

92 Voronoi Graph Matching for Data Association

As a result of the instability problems of Voronoi graphs, however, it cannot be
expected that the overlapping parts of the two compared AGVGs are completely iso-
morphic with regard to the graph structure. Hence, our approach will be based on
inexact graph matching techniques. It will employ the concept of edit distance, which
captures the costs of transforming one AGVG into the other. Furthermore, we restrict
ourselves to the matching of trees because tree matching problems can in most cases
be solved more efficiently than the corresponding graph matching problems1, and this
does not significantly restrict the applicability of the approach. In practice, we enforce
acyclicity in the AGVGs by splitting the most distant edges that belong to a cycle.

Resulting from the fact that our AGVGs are combinatorially embedded, our match-
ing is one between ordered trees. This is a crucial property for our approach because
computing the edit distance for unordered labeled trees has been shown to be NP-
complete (Zhang et al., 1992), while it is in P for ordered trees (Zhang & Shasha,
1989). We start the presentation of our data association algorithm by first defining the
underlying tree matching together with the required edit operations and their costs. In
later sections, we extend this approach by incorporating additional constraints.

5.2.1 Ordered Tree Matching Based on Edit Distance

The basic idea of the edit distance approach for inexact tree (or graph) matching is to
define costs for operations that modify the trees (e.g., operations for adding or deleting
nodes and edges), and compute a cost-minimal sequence of operations that transforms
both trees into the same tree. A sequence of transformation operations directly implies
a matching between the nodes (and edges) of the two graphs. An example of this idea
involving two treesA andB is given in Fig. 5.4. Assuming that the only edit operation
allowed is deleting a complete branch, and that the cost for this operation is the sum
of nodes in the removed subtree, cutting off branch a in A and branch b in B is the
cost-optimal solution for transforming both trees into the same tree, and, hence, their
edit distance is 2.

In our approach to matching two tree-formed AGVGs G and G′, we start by con-
sidering all possible initial matches of a node u from G with a node u′ from G′. This
choice turns the AGVGs into rooted trees with respective root nodes u and u′, as
shown in Fig. 5.5. In addition to being rooted, the fact that for each node the edges are
cyclically ordered as specified by the nodes’ combinatorial embedding means that the
resulting trees also are ordered. Hence, if u and u′ have the same degree n, there are
n ways of mapping the edges of u to those of u′ while preserving the cyclic orders, a
process that we will refer to as aligning. The different alignment variants can then be
specified by providing a single edge offset parameter. For each start matching u ; u′

and edge offset i, the edit distance can be computed from the edit distances of match-
ing the corresponding subtrees of u and u′. Thus, the key component of our approach

1For instance, tree isomorphism and subtree isomorphism problems can be solved in polynomial time
(Aho et al., 1974).

5.2 AGVG Matching Based on Ordered Tree Edit Distance 93

Tree A Tree B

b

a

delete bdelete a

Figure 5.4: Tree matching based on edit distance: The trees A and B can be trans-
formed into the same tree by deleting branch a in tree A and branch b in tree B

is an edit distance distsubtree for subtrees in an AGVG, and we start by defining the
required edit operations, their costs, and how the subtree edit distance is computed.

5.2.1.1 Edit Distance for Subtrees in AGVGs

In the remainder of this chapter, we will use the following notations: For nodes of the
observed data AGVG G we use u, v, w, etc., while using u′, v′, w′, etc. for nodes from
the model AGVG G′. We will denote a subtree with root v and ancestor u as 4(u)

v .
Providing the ancestor u here only serves the purpose of specifying which of v’s edges
leads upward in the tree, namely the one leading to u, and which ones lead to v’s child
nodes. Hence, we put the ancestor label in brackets.

Given two subtrees and assuming that their roots correspond, the correspondences
between their edges are uniquely determined. We write childi(v) for the ith child node
of node v in a given subtree which is the node connected to the ith successor edge of
the edge connecting v to its parent in the cyclic edge order.

For the root node u of a rooted AGVG, only the order of child nodes is deter-
mined, but it is not clear which adjacent node should be considered as the first one.
For such cases we introduce the function neighbori(v) = other(e[v]i , v) to refer to the
node connected to v via edge e[v]i . In addition, we will use the notation i ⊕ j for
the index of the jth successor of the element with index i in a cyclically ordered set.
For instance, child(2⊕2)(v) for a node with three children is equivalent to child1(v).
neighbor(1⊕2)(v) with deg(v) = 3 is equivalent to neighbor3(v).

Figure 5.6 shows an example situation of two subtrees 4(u)
v and 4(u′)

v′ with roots
v and v′ that should be compared. We consider three different matching cases which

94 Voronoi Graph Matching for Data Association

u u'v

w

x v'

x'

w'

v

u

w x v'

u'

w' x'

Figure 5.5: Choosing u and u′ as the roots of two tree-formed AGVGs results in two
rooted and ordered trees. If u and u′ both have degree n, there are n possible mappings
of subtrees of u to subtrees of u′

directly correspond to our edit operations. The names of the operations are chosen
from the perspective of modifications made to the subtree of the local AGVG.

1. Match operation: The match operation implies that the two root nodes v and
v′ will be considered as matched. This means that no modification is required,
but the costs for matching each of the subtrees formed by the child nodes of v to
those of the corresponding child nodes of v′ have to be considered. We assume
here that v and v′ have the same degree and, hence, the same number of child
nodes. As we will see later, we will reject matchings for which this is not the
case beforehand (cf. Sect. 5.3.1).

2. Delete operation: With this operation we conclude that node v is not contained
in the model and, hence, it has to be deleted from subtree4(u)

v together with all
the subtrees formed by its child nodes except one. This remaining child subtree
will then need to be matched to the model subtree 4(u′)

v′ . Consequently, the
delete operation actually subsumes deg(v) − 1 different cases of modification,
one for each subtree of v. To compute the minimal costs, all cases have to be
considered and the one that results in the lowest costs has to be chosen.

3. Add operation: The add operation is symmetrical to the delete operation. We
assume here that the root node of the model subtree has not been perceived,
so that this node would have to be added to the local AGVG before node v.
Analogously to the delete case, now one of the child subtrees of v′ needs to
correspond to 4(u)

v , while all other subtrees would have to be added together
with v′. Again, all cases have to be considered to determine the one that results
in minimal costs.

5.2 AGVG Matching Based on Ordered Tree Edit Distance 95

v

x y

match v and v'

v'

w w' x' y'

(u) (u')

w

(v)

w'

(v')

x

(v)

x'

(v')

y

(v)

y'

(v')

? ? ?and and

delete v

or or v'

w' x' y'

v

x yw

(u)

v

x yw

(u)

v

x yw

(u) (u')

y

(u)

? v'

(u')

w

(u)

? v'

(u')

x

(u)

? v'

(u')

add v'

oror
v'

w' x' y'

v'

w' x' y'

v'

w' x' y'

v

x yw

(u) (u')(u')(u')

v

(u)

? y'

(u')

v

(u)

? w'

(u')

v

(u)

? x'

(u')

Figure 5.6: The three edit operations for matching subtrees from two AGVGs: match-
ing the root nodes, deleting the root of the local AGVG, and adding the root of the map
AGVG

96 Voronoi Graph Matching for Data Association

Based on the three operations described above, we can now recursively define the
edit distance of two rooted and ordered subtrees 4(u)

v and 4(u′)
v′ . First, the edit dis-

tance distsubtree(4(u)
v ,4(u′)

v′) is the minimum over the costs resulting from applying

the individual operations: distmatch(4(u)
v ,4(u′)

v′) for the costs of the match operation,

distdel(4(u)
v ,4(u′)

v′) for the delete operation, and distadd(4(u)
v ,4(u′)

v′) for the add oper-
ation. In addition, the recursion terminates if either v or v′ marks the end of a still not
completely explored edge. We introduce the node attribute unknown(v) to indicate if
this is the case. If unknown(v) is true, the costs for matching the subtrees are simply
0. If unknown(v′) is true, we want the costs to be based on 4(u)

v in order to penalize
for leaving parts of the local AGVG unmatched. For now, we only introduce a cost
function unmatched(4(u)

v). This function will be defined later in this chapter. The
overall distsubtree edit distance then is

distsubtree(4(u)
v ,4(u′)

v′) =8><>:
0 , if unknown(v)

unmatched(4(u)
v) , if unknown(v′)

min
n

distmatch(4(u)
v ,4(u′)

v′), distdel(4(u)
v ,4(u′)

v′), distadd(4(u)
v ,4(u′)

v′)
o

, otherwise
(5.3)

The edit distance distmatch(4(u)
v ,4(u′)

v′) resulting from applying the match oper-
ation is the sum of the edit distances resulting from matching corresponding child
subtrees:

distmatch(4(u)
v ,4(u′)

v′) =
deg(v)−1∑
i=1

distsubtree

(
4(v)

childi(v)
,4(v′)

childi(v′)

)
(5.4)

The edit distance distdel(4(u)
v ,4(u′)

v′) for the delete operation is defined based on
two components: First, removalj(v) are the costs for removing the subtree correspond-
ing to the jth child of v. We will later define these costs based on the rsm values of
the corresponding accessible region introduced in Chap. 4. Second, we have to add
the costs of matching one of the child subtrees to 4(u′)

v′ as given by distsubtree. To de-
termine the best case, we have to consider all deg(v) − 1 possibilities and for each
possibility sum up the costs for removing the other child subtrees. Then we add the
costs for the recursive matching to it. Deletion is not possible if deg(v) = 1 because
we have arrived at an end node where a Voronoi curve ends in a corner of the envi-
ronment. In this case the costs for the delete operation will be∞. distdel(4(u)

v ,4(u′)
v′)

5.2 AGVG Matching Based on Ordered Tree Edit Distance 97

then is defined as follows:

distdel(4(u)
v ,4(u′)

v′) =8>>>>>>><>>>>>>>:
min

1≤i≤deg(v)−1

8>>>>><>>>>>:
0@deg(v)−1X

j=1,j 6=i

removalj(v)

1A
| {z }
costs for deleting all except ith subtree

+ distsubtree

“
4(v)

childi(v),4
(u′)
v′

”
| {z }

costs for matching ith subtree

9>>>>>=>>>>>;
, if deg(v) > 1

∞ , otherwise
(5.5)

The costs for the add operation are computed accordingly, this time employing
additionj(v′) for the costs of adding the entire jth child subtree of v′ to4(u)

v . Similarly
to the delete case, the costs will be ∞ if deg(v′) = 1 as no terminal node can be
inserted in the middle of an edge.

distadd(4(u)
v ,4(u′)

v′) =8>>>>>>><>>>>>>>:
min

1≤i≤deg(v′)−1

8>>>>><>>>>>:
0@deg(v′)−1X

j=1,j 6=i

additionj(v
′)

1A
| {z }

costs for adding all except ith subtree

+ distsubtree

“
4(u)

v ,4(v′)
childi(v′)

”
| {z }

costs for matching ith subtree

9>>>>>=>>>>>;
, if deg(v′) > 1

∞ , otherwise
(5.6)

Clearly, when computing the minimal distance for different choices of start nodes,
we have a problem with overlapping subproblems (the computation of distsubtree for
a particular subtree) and optimal structure (distsubtree is computed recursively from
the edit distances of smaller subtrees). Hence, we employ a dynamic programming
approach to compute the overall best matching. The already computed distsubtree values
for pairs of subtrees from the observed AGVG and the model AGVG are stored either
in an array or in a hash table. As each edge in an AGVG defines two subtrees, one for
each orientation of the edge, the maximal number of entries is 2× e× 2× f , where e
is the number of edges in the observed AGVG and f in the model AGVG. In addition
to the costs, we store the operation that resulted in the lowest costs, and in case of the
delete or add operation we also store the parameter i which resulted in the minimal
edit distance. This allows for reconstructing the sequence of operations that lead to the
minimal edit distance.

We now proceed by explaining how the edit distance of subtrees is used to compute
the best overall matching.

5.2.2 Overall Edit Distance

Based on the edit distance for subtrees, we can now define distnode(u, u′), the edit
distance for an initial matching of two nodes u and u′. The overall edit distance of

98 Voronoi Graph Matching for Data Association

two AGVGs distAGVG(G,G′) is then defined as the optimum over all possible initial
matchings.

As we already mentioned, when considering a start matching of two compatible
nodes u and u′, both of degree n, there exist n possible ways of aligning the edges
of u and u′ in a way that preserves the cyclic order information. Assuming that the
minimal cost for the variant with edge offset i is given by distaligned(u, u′, i), the costs
for this start matching are given by the minimum over all possible i:

distnode(u, u′) = min
1≤i≤deg(u)

distaligned(u, u′, i) (5.7)

For an alignment given by edge offset i, the edit distance distaligned(u, u′) is given
by the sum of the costs of transforming the subtrees of corresponding edges into each
other:

distaligned(u, u′, i) =
deg(u)∑
j=1

distsubtree

(
4(u)

neighborj(u)
,4(u′)

neighbor(j⊕i)(u
′)

)
(5.8)

As mentioned, the overall edit distance is then computed as the minimal one over
all possible start matchings:

distAGVG(G,G′) = min
v∈V (G),v′∈V (G′)

{
distnode(v, v′)

}
(5.9)

The set of recursive equations Eqs. 5.3–5.9 directly describes our basic matching
algorithm. Following the dynamic programming approach, every time we require a
distsubtree value, we first check if this value has already been computed and, thus, is
stored in the table. Only if this is not the case is the recursive computation triggered,
and the result is then added to the table.

5.2.3 Modeling Removal and Addition Costs

As our edit distance approach is supposed to model the typical variations of AGVGs
resulting from sensor limitations, the relevance and stability measures developed in
Chap. 4 are well suited to describe the costs for deleting or adding subtrees. Therefore,
the costs for deleting or adding subtrees of a node, additionj(u) and removalj(u), are
determined by way of the rsm values of the corresponding accessible regions R[u]

j :

additionj(u) = removalj(u) = rsm(R[u]
j) (5.10)

As we store the rsm values as attributes to the edges, we do not need to consider
the other nodes contained in the subtrees that are supposed to be removed. Hence,
computing the complete sums in Eqs. 5.5 and 5.6 only requires O(k) time with k =
deg(v).

5.2 AGVG Matching Based on Ordered Tree Edit Distance 99

The costs unmatched(4(u)
v) for leaving a complete subtree unmatched when the

other subtree consists of an unknown node are determined in the same way: We simply
add up the rsm values of the accessible regions R[v]

i which correspond to the ith child
of v:

unmatched(4(u)
v) =

deg(v)−1∑
i=1

rsm(R[v]
i) (5.11)

By choosing the penalty costs for unmatched parts to be of the same order of mag-
nitude as the costs for removal and addition operations, we prevent that the matching
algorithm prefers solutions with only very little overlap between the two AGVGs. This
approach is advantageous in our case because for applications like incremental map-
ping or tracking of Voronoi nodes the overlap between compared AGVGs is generally
very large. For other kinds of applications, a different approach for balancing the
individual costs might be better suited.

5.2.4 Optimizations

The top-down dynamic programming approach allows restricting the computation of
distsubtree values to those that are really required for the AGVGs at hand. This is usually
only a fraction of the maximal entry number. In addition, this approach facilitates the
utilization of branch and bound techniques to further increase the efficiency of the edit
distance computation. This is done at two different levels of the computation:

1. At the global level, we pass the edit distance of the best complete solution found
so far down the recursion. As soon as the accumulated costs pass the current
optimal solution, the computation backtracks to a higher level.

2. At the local level, when computing the best operation for a given subtree, we
also pass the costs of the best operation tested so far on to the computation of
the other operations. Again, this often allows stopping computation early. Since
a successful match operation often results in lower cost solutions, we test this
operation before trying the delete and add operations.

An additional heuristic we use to improve the efficiency of the branch and bound
approach concerns the order in which we generate the start matchings in distAGVG.
Since nodes with a high vnrm value will typically result in higher cost solutions when
not matched, it is advantageous to attempt finding assignments for them early on.
Therefore, we generate the start matchings in order of decreasing vnrm values.

5.2.5 Complexity

The exploitation of the ordered tree structure in the matching process results in a data
association algorithm with a rather low time complexity considering that the general
interpretation tree is exponentially sized. As mentioned above, the size of a table

100 Voronoi Graph Matching for Data Association

storing all distsubtree values is 4 × e × f for a local AGVG with e edges and a model
AGVG with f edges. As we consider trees, this lies in O(mn) where m and n are
the number of nodes in the trees, respectively. Computing a table entry when the
entries of the required subtrees are already known requires O(k2) time, where k is the
maximal node degree occurring in both trees (typically 3). The quadratic dependency
on k results from the computation of distdel and distadd (see Eqs. 5.5 and 5.6). Hence,
setting up the complete table can be done in O(mnk2) time.

The computation of distnode from a set up table takes O(k2) time because k table
entries have to be added for k ways of aligning the edges of the two nodes. Finally,
the overall distAGVG function for matching two trees requires m× n times the compu-
tation of distnode. As a result, the overall time complexity of the matching remains in
O(mnk2).

As k can be considered constant, the resulting O(mn) time complexity of the
matching algorithm is that of the same order as of the standard nearest neighbor al-
gorithm. In addition, it only yields data associations that comply to the constraints
arising from graph topology and combinatorial embedding. Moreover, because of the
top-down approach and optimizations described in the previous section, it is usually
sufficient to compute a small fraction of all table entries. The effects of these additional
efficiency improvements are hard to grasp theoretically and, hence, are not reflected
in the coarse complexity assessment given here. As we will see in the next section, a
further reduction of matchings that actually need to be considered can be achieved by
incorporating hard constraints based on additionally available information.

5.3 Incorporating Constraints

In the following, we extend the basic edit distance approach for matching tree-formed
AGVGs by incorporating a set of hard constraints into the matching process. This
exploitation of additional information further reduces the number of valid matchings,
but the extensions we have to make in order to incorporate certain kinds of constraints
increase the worst-case complexity of the matching approach. In exchange, we gain
a significant improvement of the matching quality. The restriction to local constraints
holding between neighboring entities ensures that the computational costs remain ac-
ceptable. In principle, it would have been possible to model the restrictions stemming
from the additional information as soft constraints and to incorporate them as addi-
tional costs into the edit distance. However, we prefer hard constraints as they allow
us to reject matchings early and no additional parameters for weighing the constraints
are required.

Constraints on potential data associations can be distinguished based on their arity:
Unary constraints apply to individual matchings of features from the data AGVG and
the model AGVG based on the properties of the features. Binary constraints, on the
other hand, concern pairs of matchings, and ternary constraints concern triples of
matchings. The following kinds of constraints will be considered in the next sections:

5.3 Incorporating Constraints 101

1. unary distance constraints for Voronoi nodes based on estimated robot pose and
unary node similarity constraints,

2. binary distance constraints holding between adjacent nodes (in terms of both,
line-of-sight distance and distance based on edge length), and

3. ternary constraints about angles formed by edges.

To restrict possible matchings between observed Voronoi nodes and Voronoi nodes
in the map based on estimated position, we need to introduce additional attributes to
store global position estimates for the nodes in an AGVG. We assume that this is done
using a probabilistic approach involving Gaussian probability distributions (cf. Ap-
pendix A.2).

5.3.1 Unary Constraints Based on Pose Estimates and Node Similarity

Unary hard constraints concern the compatibility of two features that are supposed to
be matched with each other. The first condition we already mentioned previously is
that the node degrees of two nodes v and v′ need to agree in order to be matched:

compatibledeg(v, v′)⇐⇒ deg(v) = deg(v′) (5.12)

When absolute position estimates for the nodes are available, these can be used
to restrict possible matchings in the same way as is done in the ICNN approach
(cf. Sect. 5.1.2). Hence, another unary constraint we consider is that the Mahalanobis
distance between two nodes v and v′ is below a given threshold γM 2:

compatibleabsdist(v, v
′)⇐⇒M2(v, v′) < γM (5.13)

As we mentioned, when comparing two nodes in a subtree the correspondences be-
tween their edges is already given. The same naturally holds for the generating points
of the two nodes. As a result, whenever absolute position information is available, we
demand that the Mahalanobis distance between all corresponding generating points
falls below the given threshold γM :

compatibleabsdist-gp(v, v′) ⇐⇒ ∀k, 1 ≤ k ≤ deg(v) : M2(gp[v]
k , gp

[v′]
(k⊕i)) < γM

(5.14)

gp
[v]
k here stands for the kth generating point of v, and i is the offset between the

generating points of v and v′ as implied by the alignment of the subtrees.
In the next criterion, we capture the compatibility of the local geometry as de-

scribed by the nodes’ signature information. This information consists of the radii

2For simplicity, we equate nodes with their respective feature vectors here.

102 Voronoi Graph Matching for Data Association

v

α [v]
2

α [v]
1

α [v]
3

v'

α [v']
3

α [v']
2

α [v']
1

gp[v']
1

gp[v]
1

gp[v]
2

gp[v]
3

gp[v']
3

gp[v']
2

aligned

Figure 5.7: Comparison of the local geometry of Voronoi nodes: The given edge align-
ment allows the comparison of the angles between corresponding generating points. In
addition, the difference between the radii of the maximal inscribed circles is taken into
account

r(v) of the nodes’ respective maximal inscribed circle and angles between the connec-
tions to the generating points. Figure 5.7 illustrates how we measure the relative angles
for two nodes with degree 3: As the alignment between the two nodes is given by the
edge offset parameter i, generating point gp[v]

j of v corresponds to gp[v′]
(j⊕i) of v′ (i = 1

in the example). Hence, we compare the angle between the generating points gp[v]
j

and gp[v]
(j⊕1), α

[v]
j , with the corresponding angle α[v′]

(j⊕i). For the corresponding angles
the difference needs to be under a given error tolerance γa in order to be considered
compatible. The same goes for the difference in the radii of inscribed circles, resulting
in the following compatibility criterion:

compatiblelocalgeom(v, v′) ⇐⇒
(
∀j, 1 ≤ j ≤ deg(v) : |α[v]

j − α
[v′]
(j⊕i)| < γa

)
∧ |r(v)− r(v′)| < γradius

(5.15)

Finally, we consider the relevance values assigned to the nodes and their leaving
edges as described in the previous chapter. The basic approach here again is to tolerate
certain differences in the vnrm and rsm values. However, we have to take into account
that some of the values are lower bound estimates as both AGVGs are typically incom-
plete. Therefore, we first define an appropriate difference measure diffvnrm for vnrm
values that becomes 0 when the lower vnrm value is only a lower bound:

diffvnrm(v, v′) =

0 , if (lb(v) ∧ vnrm(v) ≤ vnrm(v′))

∨ (lb(v′) ∧ vnrm(v′) ≤ vnrm(v))
|vnrm(v)− vnrm(v′)|, otherwise

(5.16)

5.3 Incorporating Constraints 103

diffrsm(R[v]
j , R

[v′]
j) can be defined analogously. As the relevance compatibility cri-

terion we then get

compatiblerelevance(v, v
′) ⇐⇒ diffvnrm(v, v′) < γrel

∧
(
∀j, 1 ≤ j ≤ deg(v) : diffrsm(R[v]

j , R
[v′]
(j⊕i))

)
(5.17)

We subsume the unary constraints defined in Eqs. 5.12–5.17 in this section under
a single compatibility criterion for nodes in a subtree called compatibleunary(v, v′).
When testing compatibility of node matchings, we generally check the different criteria
in order of increasing computational costs, which is reflected in the definition below.

compatibleunary(v, v′) ⇐⇒ compatibledeg(v, v′) ∧ compatiblerelevance(v, v
′)

∧ compatibleabsdist(v, v
′) ∧ compatibleabsdist-gp(v, v′)

∧ compatiblelocalgeom(v, v′)
(5.18)

Incorporating the unary constraint into the overall edit distance computation is
straightforward. Since it concerns the matching of two (aligned) nodes, it has to be
included into the definitions of distaligned(u, u′, i) (Eq. 5.8) and distmatch(4(u)

v ,4(u′)
v′)

(Eq. 5.4).
First, modifying distaligned(u, u′, i) yields

dist′aligned(u, u′, i) =
deg(u)∑
j=1

dist′subtree

(
4(u)

neighborj(u)
,4(u′)

neighbor(j⊕i)(u
′)

)
, if compatibleunary(u, u′)

∞ , otherwise
(5.19)

The edge offset parameter used in the compatibility criteria here is directly given
by i. As compatibledeg, compatibleabsdist, and compatibleabdist-gp do not depend on
the edge alignment, they can be included in the definition of distnode(u, u′) (Eq. 5.7).
However, we refrain from providing a modified definition here.

For distmatch(4(u)
v ,4(u′)

v′) we obtain

dist′match(4(u)
v ,4(u′)

v′) =
deg(v)∑
i=1

dist′subtree

(
4(v)

childi(v)
,4(v′)

childi(v′)

)
, if compatibleunary(v, v′)

∞ , otherwise
(5.20)

Here the edge offset needed for the compatibility criterion is given indirectly by
the alignment of the edges that connect the v and v′ to their respective parents in the

104 Voronoi Graph Matching for Data Association

tree. All other equations are identical to their original definitions. Therefore, we will
not define dist′AGVG, dist′subtree, dist′del, and dist′add here. Instead, we now turn away
from unary constraints towards binary compatibility criteria.

5.3.2 Binary Constraints Based on Relative Distance

Although we encountered geometric aspects in the constraints described in the previ-
ous section, this only served to assess the similarity of nodes and did not concern the
geometric configuration of the nodes in an AGVG. Specifying the configuration of ob-
jects can be done in different ways. For instance, Bailey (2001) compares the relative
distances for each pair of matched features. This approach is generally well suited for
the task of describing a local configuration of point objects in the plane. It only fails
to distinguish the two mirror images of a configuration. An alternative approach—the
one we are going to adopt here—is to describe the geometric configuration of nodes in
an AGVG in terms of distances between adjacent nodes and the angles formed at the
nodes by the straight edges. While this approach has the downside that it is less strict
because error tolerances can add up along the path connecting two nodes, it has one
crucial advantage: The first approach cannot not be employed without breaking the
optimal substructure condition underlying the dynamic programming approach. The
best matching of a subtree here does not necessarily lead to an optimal solution to the
overall problem because the best matching for the overall solution now depends on the
compatibility with matches made at a higher level of the compared trees.

In the latter approach, on the other hand, the dependency is restricted to the next
higher matching (in the case of binary distance constraints) or the next two higher
matchings (in the case of ternary angle constraints), as we will see in the following.
This allows an extension of our approach that increases the worst-case complexity to
a much lesser degree. But before we look into this in more detail, we will define the
binary distance criterion that we are going to use.

Our binary criterion restricting pairs of matchings u ; u′ and v ; v′ describes
the distance between neighboring nodes. This happens in terms of both their line-of-
sight distance llos derived from the edge lengths (and possible intermediate angles) and
the distance lcourse along the Voronoi curves derived from the course information and
stored as attributes of the edges.

The binary distance criterion, which we simply call compatiblebinary, is then given
by

compatiblebinary((u, u′), (v, v′)) ⇐⇒ |llos(u, v)− llos(u′, v′)| < γllos

∧ |lcourse(u, v)− lcourse(u′, v′)| < γlcourse

(5.21)

As we mentioned previously, even for the chosen approach of incorporating con-
figurational information, we have to modify our matching approach because the best
matching of two subtrees for the overall solution now depends on the previous node

5.3 Incorporating Constraints 105

u

v

u'

v'

matched

observed m-subtree

nodes considered
as deleted

nodes considered
as added

u
v map m-subtree u'

v'

Figure 5.8: Matching two m-subtrees: The m-subtrees consist of root nodes u and
u′ which are considered as matched, followed by a sequence of edges with interme-
diate nodes considered as deleted (in the case of the local AGVG) or added (global
AGVG), and subtrees with v and v′ as roots for which the next edit operation needs to
be determined

matching. Consequently, we turn from simple subtrees to matching subtree structures
that consist of matched root nodes u and u′ followed by sequences of edges whose in-
termediate nodes are considered as deleted (or added in the case of the model AGVG),
and that lead to the currently considered nodes v and v′. We will call this kind of struc-
ture m-subtree (because it contains one matched node) and denote it by 4u

v , leaving
out the brackets that we used for simple subtrees. Figure 5.8 illustrates the concept of
an m-subtree.

Since each m-subtree in a tree-formed AGVG can be specified by an ordered pair
of nodes, the matched node u and the currently considered node v, the number of
m-subtrees in an unrooted tree with n nodes is n(n + 1). Hence, going from simple
subtrees to m-subtrees increases the number of possible matchings and, as a result, the
worst-case complexity toO(m2n2). However, the additional constraints further reduce
the fraction of the subproblems that actually need to be considered. For the equations
defining the edit distance, the change to m-subtrees mainly concerns distmatch, while in
all other equations we only need to replace simple subtrees4(u)

v with m-subtrees4u
v .

For distmatch we obtain

dist′′match(4u
v ,4u′

v′) =
deg(v)−1∑
i=1

dist′′subtree

(
4v

childi(v)
,4v′

childi(v′)

)
, if compatibleunary(v, v′)
∧ compatiblebinary((u, u′), (v, v′))

∞ , otherwise
(5.22)

We again refrain from providing the rest of the modified equations and directly

106 Voronoi Graph Matching for Data Association

come to the final version of our algorithm, which allows to express the complete posi-
tional information by also including the angles formed by the edges.

5.3.3 Ternary Angle Constraints

In the following, we want to include the angle β(u, v, w) formed by connecting a node
v with one of its ancestors u and one of its child nodes w into the matching scheme.
Hence, we are now dealing with ternary constraints involving three pairs of matched
nodes u ; u′, v ; v′, and w ; w′.

We define the criterion for accepting such a matching in a way that it is still true
if either u = v or u′ = v′, and, hence, no angle is defined for one of the AGVGs.
However, we explicitly demand that v 6= w and v′ 6= w′. The reasons for this will
become clear in a moment. The ternary compatibility then is

compatibleternary((u, u′), (v, v′), (w,w′))⇐⇒ u = v ∨ u′ = v′

∨ |β(u, v, w)−β(u′, v′, w′)|
< γangle

(5.23)

In order to make the matching of subtrees independent of previous matchings at
higher levels, we need to draw both u and v into the considered structure when making
a decision for w. Hence, we have to make the step from m-subtrees to mm-subtrees.
mm-subtrees consist of

1. a node u considered as matched,

2. a first sequence of edges whose intermediate nodes are considered as deleted (or
added),

3. another matched node v,

4. a second sequence of edges with intermediate deleted (or added) nodes,

5. a subtree with the currently considered node w as its root.

Admitting that the matched nodes u and v are identical and hence the first sequence
of deleted or added nodes is empty allows us to treat m-subtrees as a special case of
mm-subtrees. This is important because when starting the matching for the chosen
start modes of the AGVGs in distnode and distaligned, we have to start with an m-subtree
as no previously matched node exists. Our definition enables us to get by with a single
definition of distsubtree.

An example of an mm-subtree matching is shown in Fig. 5.9. We denote mm-
subtrees as 4u,v

w . Modifying the edit distance equations by replacing m-subtrees by
mm-subtrees and including the compatibleternary criterion yields our final matching
algorithm. We provide the complete set of edit distance equations below.

5.3 Incorporating Constraints 107

u

v

u'

v'

matched

observed mm-subtree

w'

matched

u,v
w map mm-subtree u',v'

w'

w

nodes considered
as deleted

nodes considered
as added

Figure 5.9: Matching of mm-subtrees: mm-subtrees result from extending m-subtrees
with another matched node and a sequence of deleted (or added) nodes. w and w′ are
the nodes for which the next edit operation needs to be determined

From the definitions of the edit distances for the three edit operations, only distmatch
changes by including compatibleternary, while the others simply replace m-subtrees
with mm-subtrees:

dist′′′match(4u,v
w ,4u′,v′

w′) =8>>><>>>:
deg(w)−1P

i=1

dist′′′subtree

“
4v,w

childi(w),4
v,w
childi(w′)

”
, if compatible(u, v)
∧ compatible((v, v′), (w, w′))
∧ compatibleternary((u, u′), (v, v′), (w, w′))

∞ , otherwise
(5.24)

dist′′′del(4u,v
w ,4u′,v′

w′) =8><>: min
1≤i≤deg(w)−1

(
deg(w)−1P
j=1,j 6=i

removalj(w)

!
+ dist′′′subtree

“
4u,v

childi(w),4
u′,v′

w′

”)
, if deg(w) > 1

∞ , otherwise
(5.25)

dist′′′add(4u,v
w ,4u′,v′

w′) =8><>:
deg(w′)−1

min
i=1

(
deg(w′)−1P
j=1,j 6=i

additionj(w
′)

!
+ dist′′′subtree

“
4u,v

w ,4u′,v′

childi(w′)

”)
, if deg(w′) > 1

∞ , otherwise
(5.26)

108 Voronoi Graph Matching for Data Association

Similarly, dist′′′subtree directly corresponds to distsubtree, and dist′′′node to distnode:

dist′′′subtree(4u,v
w ,4u′,v′

w′) =8><>:
0 , if unknown(w)
unmatched(4u,v

w) , if unknown(w′)

min
n

dist′′′match(4u,v
w ,4u′,v′

w′), dist′′′del(4u,v
w ,4u′,v′

w′), dist′′′add(4u,v
w ,4u′,v′

w′)
o

, otherwise

(5.27)

dist′′′node(u, u
′) = min

1≤i≤deg(u)
dist′′′aligned(u, u′, i) (5.28)

dist′′′aligned is the mentioned special case where the computation starts with actual
m-subtrees represented by mm-subtrees with identical u and v. No parent node exists
and, hence, no angle will be checked here. Including an angle constraint for the root
node would make the optimal solutions for subtrees of u dependent on the matchings
in its other subtrees, breaking the optimal substructure condition.

dist′′′aligned(u, u′, i) =
deg(u)∑
j=1

dist′subtree

(
4u,u

neighborj(u)
,4u′,u′

neighbor(j⊕i)(u
′)

)
, if compatibleunary(u, u′)

∞ , otherwise
(5.29)

Finally, the overall edit distance remains unchanged:

dist′′′AGVG(G,G′) = min
v∈V (G),v′∈V (G′)

{
dist′′′node(v, v

′)
}

(5.30)

With regard to complexity, the change from m-subtrees to mm-subtrees means that
the size of a table containing all dist′′′subtree values now depends cubicly on m and n.
We already know that the number of mm-subtrees4u,v

w with u = v in a graph with n
nodes is n(n+1) because they correspond to m-subtrees. The number of mm-subtrees
with u 6= v 6= w depends on the structure of the graph. In the worst case, the graph
is a linear chain. In this case, we get n(n+1)(2n+1)

6 − n(n+1)
2 additional mm-subtrees.

As a result, the overall number of mm-subtrees in the worst-case is of order O(n3)
and we get an upper boundary on the time complexity ofO(m3n3). However, AGVGs
typically are not linear chains but approximately 3-regular graphs. In addition, when
we will evaluate the proposed AGVG matching algorithm experimentally in Chap. 7,
it will turn out that the actual computational costs are much lower, while the approach
achieves a very high level of robustness.

Besides being usable for tracking individual Voronoi nodes or for localization, the
data association computed by our matching algorithm can be employed to update the
model AGVG based on the observed information. In the last section of this chapter,
we will briefly sketch how this can be done. The described procedure is analogous
to the way the actual data association can be retrieved when the matching algorithm
terminates.

5.4 Map Merging Based on a Computed Data Association 109

5.4 Map Merging Based on a Computed Data Association

When the data association should be used to incorporate newly perceived subgraphs
into the map, this can be done straightforwardly by following the operations that lead
to the minimal edit distance. When computing the edit distance, we therefore not only
store the computed dist′′′subtree values but also the operation chosen for this particular
subproblem. When this operation is a delete or add operation, we also record the i for
which the minimal distance has been achieved (see Eqs. 5.25 and 5.26). In addition
to this, we need to keep the pair of start nodes and the edge offset used in the best
matching to recover the complete sequence of operations (see Eqs. 5.28 and 5.30).

Incorporating new subgraphs into the model AGVG has to take place for every
delete operation as this means that subtrees contained in the local AGVG are not con-
tained in the map. The entire map transformation algorithm works analogously to the
edit distance computation. We provide a pseudocode version in Algorithm 6. The
procedure names have been chosen in accordance with the names of the edit distance
functions. The main procedure transformAGVG basically combines dist′′′AGVG, dist′′′node,
and dist′′′aligned. In addition to new parts being added to the model AGVG, information
about already known features which have been matched can be updated (e.g., updating
the position estimates of the nodes). This happens in line 3 of transformAGVG and in
line 1 of the transformMatch function.

In Fig. 5.10, we again see the matching example from Fig. 5.3. The optimal match-
ing computed by our algorithm is given by the two matched node pairs connected by
the small ellipses, and the edit operations are marked by the letters ‘a’ for add and ‘d’
for delete. On the right, we see how the model AGVG has been complemented with
the additional branches from the local AGVG. The basic update approach sketched
here can be further extended by incorporating improved techniques for deciding which
features should be kept in the map. For instance, an add operation contained in the
optimal matching is an indication that a node contained in the map may have been a
spurious one that had better be removed.

Possible applications of the data association algorithm for AGVGs developed in
this chapter are the tracking of Voronoi nodes, localization within a given map AGVG,
and the incremental adding of new information to the map. As the quantitative com-
parison with the basic ICNN data association algorithm in Sect. 7.2 will show, our ap-
proach achieves a much smaller error rate. The experimental analysis will also show
that the matching is much more efficient in practice than could be expected from the
theoretically determined worst-case time complexity of O(m3n3). The computational
costs are only slightly increased compared to the ICNN algorithm. The approach is
still sufficiently fast to be applicable in multi-hypothesis approaches in which the data
association has to be computed for each hypothesis. However, on its own it does not
offer a sufficient solution to the problem of constructing a global route graph repre-
sentation as it will not close loops in the environment. Therefore, we now turn to the
question of how global mapping for AGVGs can be achieved.

110 Voronoi Graph Matching for Data Association

Algorithm 6 Map transformation algorithm for local AGVG G and map AGVG G′

procedure transformAGVG(AGVG G, AGVG G′)
1: v, v′ ← argminv∈G,v′∈G′ dist′′′node(v, v

′)
2: o← edge offset which resulted in minimal costs
3: update v′

4: for i = 1 to deg(v) do
5: transformSubtree(4v,v

childi(v)
,4v′,v′

childi⊕o(v′))
6: end for

procedure transformSubtree(4u,v
w ,4u′,v′

w′)

1: if operation(4u,v
w ,4u′,v′

w′) = match then
2: transformMatch(4u,v

w ,4u′,v′

w′)
3: else if operation(4u,v

w ,4u′,v′

w′) = delete then
4: transformDelete(4u,v

w ,4u′,v′

w′)
5: else if operation(4u,v

w ,4u′,v′

w′) = add then
6: transformAdd(4u,v

w ,4u′,v′

w′)
7: end if

procedure transformMatch(4u,v
w ,4u′,v′

w′)
1: update w′

2: for i = 1 to deg(w) do
3: transformSubtree(4v,w

childi(w),4
v′,w′

childi(w′)
)

4: end for
procedure transformDelete(4u,v

w ,4u′,v′

w′)

1: p← parameter(4u,v
w ,4u′,v′

w′)
2: add w′ with childi subtrees, i 6= p, between v′ and w′ into4u′,v′

w′)
3: transformSubtree(4u,v

childp(w),4
u′,v′

w′)

procedure transformAdd(4u,v
w ,4u′,v′

w′)

1: p← parameter(4u,v
w ,4u′,v′

w′)
2: transformSubtree(4u,v

w ,4u′,v′

childp(w′))

5.4 Map Merging Based on a Computed Data Association 111

(a)

dd

d

a

(b)

Figure 5.10: Map transformation based on the optimal matching: (a) The small ellipses
show the two matched node pairs, and the letters ‘d’ and ‘a’ mark where the corres-
ponding edit operation has been performed. (b) The complemented model AGVG

113

Chapter 6

Global Mapping: Minimal Route
Graphs Under Spatial Constraints

The matching of AGVGs as described in the previous chapter works well as long as
the annotated metric information is reliable. This makes the approach well suited for
identifying correspondences in AGVGs perceived in short order. However, while the
robot moves around, the uncertainty, for instance in the position estimates of the nodes,
accumulates and can grow without bounds. As a result of this and due to the fact that
our matching algorithm currently does not bridge between different parts of the map
AGVG, correctly closing cycles in the graph which correspond to large loops in the
environment becomes difficult.

Therefore, a global mapping framework has to be built on top of the AGVG match-
ing, which is the topic of this chapter. Our approach is to deal with the global mapping
and loop closing problem by focusing on determining the correct discrete graph topol-
ogy, relying on coarse but dependable spatial information instead of relying on the
uncertainty-afflicted concrete metric annotations. The idea is to first determine the
correct high-level graph structure using a multi-hypothesis tracking approach to deal
with the uncertainty at the topological level. A concrete (H)AGVG can then be derived
from a specific hypothesis.

As a consequence of this idea, we here regard the global mapping problem as the
problem of determining the correct topology of a graph-like environment from a se-
quence of observations and interpret it as the task of finding a minimal route graph
model that is consistent with the observations. The minimal model finding formula-
tion of the mapping problem directly leads to a multi-hypothesis approach in which
multiple consistent route graph hypotheses are tracked simultaneously.

The problem of exploration and map learning in graph-like environments has been
investigated by several authors (Bender et al., 1998; Dudek et al., 1991, 1996, 1997;
Rekleitis et al., 1999). Kuipers et al. (Kuipers, 1985; Kuipers & Byun, 1991) describe
a rehearsal procedure to verify if two observed nodes can correspond only based on
node signature information. This procedure involves moving to known neighbored

J.O. Wallgrün, Hierarchical Voronoi Graphs: Spatial Representation and Reasoning for Mobile Robots,
DOI 10.1007/978-3-642-10345-2_6, © Springer-Verlag Berlin Heidelberg 2010

114 Global Mapping: Minimal Route Graphs Under Spatial Constraints

nodes and actively matching the neighborhoods up to a given distance. Dudek et al.
(1991) point out that without further information successful map learning cannot be
guaranteed. They also show that for undirected graphs a single movable marker is suf-
ficient and that exploration requires O(mn) edge traversals for a graph with m nodes
and n edges. In Dudek et al. (1996), a passive map-learning approach is described in
which a tree of all possible graph models is maintained.

Kuipers proposed formulating topological mapping as an abductive learning prob-
lem of finding the minimal model that explains a sequence of observations and actions
(Kuipers et al., 2004; Remolina & Kuipers, 2004). In Kuipers et al. (2004), a tree
of all models consistent with the axioms of the SSH is maintained in a way similar
to the approach of Dudek et al. (1996). The simplest model is given by a prioritized
circumscription policy. Places are derived from local metric maps and compared us-
ing descriptions of the local topology. The number of models in the tree can grow
exponentially with the number of performed actions.

Planarity of the mapped environment has been exploited in the context of marker-
based exploration in Rekleitis et al. (1999) and in the context of abductive map learning
in Savelli & Kuipers (2004). In both cases, the result is a significant increase in the
computational efficiency of the respective approaches.

In this work, we investigate the minimal model learning approach from the per-
spective of spatial consistency and as an application of spatial reasoning techniques
developed in the area of qualitative spatial reasoning. An overview on the relevant
concepts and techniques from this area of research is provided in Appendix B. Our fo-
cus is on direction information and we are especially interested in how different kinds
of direction information (in the form of different qualitative spatial calculi) affects the
size of the space of hypotheses which are consistent with the given information. In
addition, we consider planarity as a constraint and require that the route graph models
be embedded in the plane without crossing edges. We study the problem in a branch
and bound search framework based on the estimated solution size, which results in a
further reduction of the explored search space.

We proceed by first investigating the problem of finding the minimal route graph
model in the simplified theoretical setting of a general graph world. Later, we adapt
the developed approach to the Voronoi-based representations described in this book.

6.1 Theoretical Problem

Consider the following problem: A robot is roaming through a graph-like environment
like the one shown in Fig. 6.1. The environment consists of junctions and straight hall-
ways connecting the junctions. Whenever the robot arrives at a junction, it observes
and memorizes a set of leaving hallways with some additional (qualitative) direction
information. The direction information can either be absolute with regard to a given
reference direction (e.g., “corridor x branches off to the north”) or relative (e.g., “corri-
dors x and y meet at an obtuse angle”). We will call a description of such a perception

6.1 Theoretical Problem 115

of a junction a junction observation, and define it as follows.

Definition 6.1 (Junction observation). A junction observation is given by a triple J =
(L, succ, R) where

• L is a set {l1, l2, ..., lm} of pairwise different elements from a set H of hallway
identifiers, one for each perceived leaving hallway,

• succ : L → L is a total function specifying the immediate successor in the
counterclockwise cyclic order in which the leaving hallways are perceived, and

• R is a spatial description induced by the directions of the leaving hallways in L
with regard to a given set of direction relations.

Given a junction observation J , we will write L(J), s(J), and R(J) to refer to the
respective elements of the triple J . We will not further define the nature of the spatial
description R here because it depends on the particular formalism used to describe the
directions of the leaving hallways. An example could be a description using cardinal
direction relations n, nw,w, etc. which consists of unary relation tuples, e.g., n(l1),
sw(l2), and so on. The description could also involve binary relations holding between
pairs of leaving hallways. Using cardinal directions, the second junction observation
J2 from the example in Fig. 6.1 could be given by

J2 = ({l1, l2, l3, l4}, succ(li) = l(i⊕1), {n(l1), w(l2), s(l3), e(l4)})

Later in this chapter, we will need to specify the distance of two objects x and
y (either leaving hallways in a junction observation or edges incident to a particular
node) with regard to the cyclic order defined by a successor function succ. For this
purpose, we define the following distance function:

dsucc(x, y) = k ⇐⇒ y = succk(x) ∧ @l < k : y = succl(x) (6.1)

succk(x) here stands for the k-times composition of successor function succ with
itself and, hence, the kth successor of x in the cyclic order. For instance, for J2 we get
dsucc(l2, l4) = 2 and dsucc(l3, l2) = 3.

Junction observations are connected by hallway traversal actions consisting of
leaving the current junction via one of the observed leaving hallways and arriving
at the next junction via one of the leaving hallways belonging to the next junction
observation.

Definition 6.2 (Hallway traversal). A hallway traversal is described by a quadruple
T = (Js, ls, Je, le) where Js and Je are junction observations with Je 6= Js and ls
and le are leaving hallway identifiers with ls ∈ L(Js) and le ∈ L(Je). It describes the
action of taking leaving hallway ls after observing Js and arriving via le of the next
junction observation Je.

116 Global Mapping: Minimal Route Graphs Under Spatial Constraints

J

J 1

3

2J

J 4

A

J 5

B C D

E F G

l1,2

l1,1

l2,1

〈 J1 = ({l1,1, l1,2}, succ1(x), R1), // 1st junction observation

T1 = (J1, l1,2, J2, l2,1), // 1st hallway traversal

J2 = ({l2,1, l2,2, l2,3, l2,4}, succ2(x), R2), // 2nd junction observation

T2 = (J2, l2,3, J3, l3,1), // 2nd hallway traversal

J3 = ({l3,1, l3,2}, succ3(x), R3), // ...

T3 = (J3, l3,2, J4, l4,1),

J4 = ({l4,1, l4,2, l4,3}, succ4(x), R4),

T5 = (J4, l4,2, J5, l5,1),

J5 = ({l5,1, l5,2, l5,3, l5,4}, succ5(x), R5) 〉

Figure 6.1: The robot walks through a simple environment passing five junctions
(dashed arrow). On the right is the history of junction observations and hallway traver-
sal actions made by the robot

We will call Js the start observation and Je the end observation of the hallway
traversal T and use functions startj(T), starth(T), and endj(T), endh(T) for referring
to the respective elements of hallway traversal T .

A list of alternating junction observations and hallway traversals corresponding to
a walk of the robot through the graph will be referred to as a history.

Definition 6.3 (History). A historyH is a list 〈J1, T1, J2, T2, ..., Tn−1, Jn〉 of pairwise
different junction observations Ji and pairwise different hallway traversals Tj with

• ∀i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j : L(Ji) ∩ L(Jj) = ∅

• ∀i, 1 ≤ i ≤ n− 1 : startj(Ti) = Ji ∧ endj(Ti) = Ji+1

While junction observations directly correspond to physical junctions in the en-
vironment, a leaving hallway identifier l ∈ L(J) does not correspond to a physical
hallway in our formalization but rather to a “directed hallway” leading away from the
junction corresponding to the observation J . Hence, we demand that the leaving hall-
way identifiers used in the individual junction observations be disjoint in the definition
above. Figure 6.1 shows on the right the complete history corresponding to the walk
given by the dashed arrow. Each succi function here is given by succi(li,j) = li,(j⊕1).
In the following, we will use the notation JOH for the set of junction observations
contained in histories H and HT H for the contained hallway traversals. In addition,
LHH stands for the union of all L(J) for all J ∈ JOH and, thus, contains all leaving
hallway identifiers used.

Histories can be displayed as acyclic graphs, which we will call history graphs in
the following and which will serve as the starting point for our actual minimal model
finding algorithm. A history graph can be seen as the maximal route graph model of
the environment that explains the history (maximal without adding completely unre-
lated nodes). This means that no junction observations or leaving hallways are unified
except when they definitely have to correspond to the same physical junction because
the robot just backtracked along previously traversed hallways. History graphs consist
of two kinds of nodes: nodes that stand for junctions which have been observed and

6.1 Theoretical Problem 117

(a)

J1 J5J2
J3

J4

(b)

J7

J1 J2
J3

J , J4

J5

6

Figure 6.2: Representation of a history as an acyclic graph: Black nodes depict visited
places, while white nodes stand for unvisited ones. (a) The graph corresponding to
the history given in Fig. 6.1. (b) The resulting graph if the robot would continue by
moving back from junction B to junction F and then turning right into the hallway
leading to E

nodes that stand for the not yet observed end points of leaving hallways that have not
been traversed.

Figure 6.2 shows on the left the history graph for the history from Fig. 6.1. Black
nodes stand for the observed junctions and white nodes for the unobserved ones. As
no backtracking took place, each black node stands for a single junction observation
and each edge connecting two black nodes corresponds to a hallway traversal.

The right picture in Fig. 6.2 shows the graph that would result from continuing
the walk by moving back to junction F (resulting in junction observation J5) and then
moving to E (junction observation J7). As moving back to F means that the robot
moves back along the last traversed hallway, J4 and J6 have to correspond to the
same junction and, hence, have to be unified in every valid route graph model derived
from the history. As a result, the history graph remains unchanged by the traversal
action. In contrast, continuing the walk by moving to E results in assigning J7 to the
corresponding white node, changing it into a black node, and adding new edges and
white nodes for the new leaving hallways (one in this case).

Following this construction scheme, complementing the history graph based on
a hallway traversal and junction observation pair takes constant time and, hence, the
complete construction takes O(n) time for a history of length n (n hallway traversals
and n+1 junction observations). The history graph representation is not strictly equiv-
alent to the definition of a history though, as the exact number and order of traversal
actions and observations cannot be retrieved without further information being stored.
However, when annotated with the direction information included in the junction ob-
servations and with the final position of the robot and the last traversed edge, it contains
all the information needed to transform it into smaller route graph models that are still
valid explanations of the history. When depicting history graphs or smaller route graph
models derived from the history graph, we will typically not provide the direction re-
lations explicitly, but in most cases place the nodes in compliance with the direction

118 Global Mapping: Minimal Route Graphs Under Spatial Constraints

information.
Given a particular history, we are now interested in the problem of finding the

minimal route graph model that explains the sequence of observations and traversal
actions. As explanations we consider route graph models together with mappings from
the history to walks through the hypothetical graphs. Route graph model here refers to
an undirected graph together with a combinatorial embedding similar to the EGVGs
defined in Chap. 3 but without loops or parallel edges, as we restrict ourselves to
environments consisting of straight hallways. In order to avoid confusion with the
nodes in the search tree discussed later in this chapter, we will refer to the nodes and
edges of a route graph hypothesis explicitly as route graph nodes (RGNs) and route
graph edges (RGEs), respectively.

A hypothesis (route graph model and mapping) is a valid explanation of the history
if the following holds: We can draw the RGNs of the combinatorial embedded route
graph into the plane with all RGEs being non-crossing straight line segments so that
the hypothetical walk through this route graph model would then reproduce the history.
This condition can be split into three classes of constraints that have to be satisfied in
order to offer a valid explanation for a given history:

• Structural constraints: Under the term structural constraints we subsume all
constraints that are not linked to the actual assignment of coordinates to the
RGNs by the drawing: (1) The hypothetical walk through the given route graph
hypothesis needs to reproduce the sequence of leaving hallway numbers of the
original walk. (2) The cyclic order of leaving hallways needs to match the cyclic
order of leaving edges of the corresponding nodes. (3) The distance between the
arriving and leaving hallway in the cyclic order of leaving hallways needs to
match for each passing of a node.

• Planarity constraint: The combinatorial embedding given by the cyclic edge
orderings needs to be planar and the drawing must be a straight-line drawing of
this embedding.

• Direction constraints: For each passed RGN, the drawing of the graph into the
plane needs to induce the same direction relations for the leaving hallways as
described in the junction observations.

To provide a more formal definition of these constraints, we first introduce the
concept of a map hypothesis, which captures the structural constraints as these can be
directly applied when constructing a hypothetical route graph model from a given his-
tory. We then define a map hypothesis to be consistent when the planarity constraint
and direction constraints are satisfied. As already indicated previously, a map hypoth-
esis not only consists of a route graph model but also contains a description of how
the perceived junction hallways of the history map to the RGNs and RGEs of the route
graph model. This mapping defines the hypothetical walk through the route graph that
corresponds to the history.

6.1 Theoretical Problem 119

Definition 6.4 (Map hypothesis). Given a history H = 〈J1, T1, J2, T2, ..., Tn−1, Jn〉,
a map hypothesis MH for aH is a triple (G,mj,ml), where

• G = (V,E,O) is an undirected graph (V,E) with node set V = {v1, v2, ..., vn},
edge set E ⊆ V × V , and combinatorial embedding given by a set O =
{succv1 , succv2 , ..., succvn} of successor functions of which succvi specifies the
cyclic order of edges incident to vi,

• mj : JOH → V is a total function mapping the junction observations from H
to nodes of G, and

• ml : LHH → E is a total function mapping the leaving hallway identifiers from
H to edges of G,

that satisfies the following conditions:

• ∀J ∈ JOH : (∀l ∈ L(J) : mj(J) ∈ ml(l)) (incidence preservation)

• ∀T ∈ HT H : ml(startl(T)) = ml(endl(T)) = {startj(T), endj(T)} ∈ E
(traversal-edge mapping)

• ∀J ∈ JOH : |L(J)| = deg(mj(J)) (degree match)

• ∀J ∈ JOH, s = s(J) :
(
∀l ∈ L(J) : succmj(J)(ml(l)) = ml(s(l))

)
(cyclic order preservation)

• ∀i, 1 < i < n, s = s(Ji) :
ds(endl(Ti−1), startl(Ti)) = dsuccmj(Ji)

(ml(endl(Ti−1)),ml(startl(Ti)))

(cyclic order distance preservation)

The first two conditions of the definition above simply ensure that junction ob-
servations and their leaving hallways are mapped to incident RGNs and RGEs and
that the leaving hallways of a hallway traversal are mapped to the same RGE. The
other three conditions are the structural constraints mentioned earlier: matching num-
bers of leaving hallways, preservation of the cyclic order information, and preserved
distance between the arriving hallway and the leaving one in the cyclic order. We in-
troduce the functionG(M) for accessing the route graph modelG in a map hypothesis
M = (G,mj,ml).

Figure 6.3 shows four map hypotheses for the history given in Fig. 6.1. Each hy-
pothesis is depicted by one drawing of the route graph into the plane. All examples
preserve the combinatorial embedding of the hypothesis but not all consist only of
straight lines and avoid crossing edges. The walk resulting from the mapping of the
history to the route graph is shown by the dashed arrows. Disregarding the direction
information, the walks resulting from the mappings would in all cases correctly repro-
duce the history of observations and hallway traversals.

120 Global Mapping: Minimal Route Graphs Under Spatial Constraints

(a)

N

N

1

N N2N 3 4

5N N 6

N 7
N 8 9

a

a

aa

1a
2

3a a 4

5a

6a

7

8 9

10a 11a

mj(J1) = N1, ml(l1,1) = a1, ml(l1,2) = a2,

mj(J2) = N3, ml(l2,1) = a2, ml(l2,2) = a3, ml(l2,3) = a7, ml(l2,4) = a4,

mj(J3) = N9, ml(l3,1) = a7, ml(l3,2) = a11,

mj(J4) = N8, ml(l4,1) = a11, ml(l4,2) = a9, ml(l4,3) = a10,

mj(J5) = N5, ml(l5,1) = a9, ml(l52
) = a6, ml(l5,3) = a5, ml(l5,4) = a8

(b)

N

a

a

a

N

a

a

N

a

N

1

2
3N

4 N 5
6

1
2

3a

a

4

5 6 7

8

mj(J1) = N1, ml(l1,1) = a1, ml(l1,2) = a2,

mj(J2) = N3, ml(l2,1) = a2, ml(l2,2) = a3, ml(l2,3) = a7, ml(l2,4) = a4,

mj(J3) = N6, ml(l3,1) = a7, ml(l3,2) = a8,

mj(J4) = N5, ml(l4,1) = a8, ml(l4,2) = a7, ml(l4,3) = a4,

mj(J5) = N2, ml(l5,1) = a6, ml(l5,3) = a3, ml(l5,4) = a1, ml(l5,5) = a5

(c)

N

aN

N
a

a

N
a

a

N

a

1

2

N 3 4

5
N 6 N 7

N 8 N 9 10

1 2

3

4a
5a

6

a 7

8 9

10a 11a

mj(J1) = N1, ml(l1,1) = a1, ml(l1,2) = a2,

mj(J2) = N6, ml(l2,1) = a2, ml(l2,2) = a6, ml(l2,3) = a9, ml(l2,4) = a7,

mj(J3) = N10, ml(l3,1) = a9, ml(l3,2) = a11,

mj(J4) = N9, ml(l4,1) = a11, ml(l4,2) = a8, ml(l4,3) = a10,

mj(J5) = N3, ml(l5,1) = a8, ml(l5,2) = a4, ml(l5,3) = a3, ml(l5,4) = a5

(d)

N

a

aa

1

N N
2N 3 4

N 5 N 6 N 7

1a
2

3a 4a

5 a 6 7

8a 9a

mj(J1) = N1, ml(l1,1) = a1, ml(l1,2) = a2,

mj(J2) = N3, ml(l2,1) = a2, ml(l2,2) = a3, ml(l2,3) = a7, ml(l2,4) = a4,

mj(J3) = N7, ml(l3,1) = a7, ml(l3,2) = a9,

mj(J4) = N6, ml(l4,1) = a9, ml(l4,2) = a6, ml(l4,3) = a8,

mj(J5) = N2, ml(l5,1) = a6, ml(l5,2) = a3, ml(l5,3) = a1, ml(l5,4) = a5

Figure 6.3: Four possible map hypotheses for the history of Fig. 6.1, given by the
depictions of their route graph models and the mappings mj and ml. Only the examples
in (a) and (d) are consistent. The model in (d) is also a minimal route graph model; it
corresponds to the original environment

6.1 Theoretical Problem 121

n

ne

sesw

nw

eq

A

B

ew

s

n

Figure 6.4: Relations from the cardinal direction calculus

Let us for now again assume that the spatial information is given in form of qual-
itative cardinal direction relations. The exact relations we are going to use are those
of the cardinal direction calculus (Ligozat, 1998), a calculus for qualitative spatial rea-
soning which we are going to introduce more formally in Sect. 6.3.2.1 (see Appendix
B for more details on qualitative spatial calculi). In the cardinal direction calculus, n,
w, s, and e correspond to specific angles, while nw, sw, se, and ne comprise angle
intervals as indicated in Fig. 6.4.

Storing the cardinal directions derived from compass readings for each leaving
hallway of a junction observation results in the following spatial descriptions Ri for
our exemplary history from Fig. 6.1:

R1 = {sw(l1,1), s(l1,2)}
R2 = {n(l2,1), w(l2,2), s(l2,3), e(l2,4)}
R3 = {n(l3,1), w(l3,2)}
R4 = {e(l4,1), n(l4,2), w(l4,3)}
R5 = {s(l5,1), e(l5,2), ne(l5,3), sw(l5,4)}

The drawing of the hypothesis of Fig. 6.3(a) shows that this hypothesis is consistent
with the spatial information as it would correctly reproduce the cardinal directions
for each junction observation. The drawing of the second hypothesis (Fig. 6.3(b)),
however, is not consistent with the spatial information contained in the history: A
spatial inconsistency arises because the hallway leaving from N5 to the west has been
connected with the one leaving N3 to the east. As we assume straight hallways, it
follows that N5 has to be to the east of N3. Locally, this information is consistent.
However, as it is also known thatN6 is south ofN3 andN5 is west ofN6, it follows that
N5 has to be in the southwest sector of N3. This contradicts our previous conclusion
that N5 lies to the east of N3. This reasoning shows not only that the depicted drawing
is inconsistent with respect to the direction information, but also that no such drawing
can exist for the given hypothesis. Hence, the entire hypothesis is inconsistent and
does not offer a valid explanation of the history.

122 Global Mapping: Minimal Route Graphs Under Spatial Constraints

A second cause of inconsistency within a hypothesis is shown in the third example
(Fig. 6.3(c)). Here the drawing is spatially consistent with regard to the direction
information and it preserves the cyclic edge orders. However, it has crossing edges
(N5-N6 and N3-N9) and, more importantly, no drawing without crossing edges exists
because for this graph the combinatorial embedding is not planar.

These two inconsistent examples illustrate that the structurally valid map hypothe-
ses can still be inconsistent with the available information or the underlying assump-
tion that the environment is planar. This leads to the following definition of a consistent
map hypothesis.

Definition 6.5 (Consistent map hypothesis). A map hypothesis MH = (G,mj,ml) is
consistent if there exists a straight-line drawingD(G) ofG into the plane that satisfies
the following conditions:

• for every node in G, the natural cyclic order of leaving edges in the drawing
D(G) corresponds to the cyclic edge order specified in the combinatorial em-
bedding (cyclic order preservation),

• the line segments in D(G) corresponding to the RGEs of G do not cross each
other (planar drawing), and

• for every junction observation J ∈ JOH, the spatial description induced by
D(G) for node mj(J) matches the spatial description one gets by replacing all
l ∈ L(J) with ml(l) in description R(J) (matching direction information).

The general idea of the minimal route graph model approach to the global mapping
problem is to prefer among all consistent map hypotheses the one that is minimal in
terms of the number of RGNs in the route graph. We will call such a hypothesis a
minimal route graph model.

Definition 6.6 (Minimal route graph model). Given the set CMH of consistent map
hypotheses for H, M ∈ CMH is a minimal route graph model for H if and only if no
N ∈ CMH exists with |V (G(N))| < |V (G(M))|.

The last example in Fig. 6.3(d) shows a second consistent map hypothesis, the one
that corresponds to the original environment. The number of RGNs is smaller than in
the first example and no consistent hypothesis with even less RGNs exists for the given
history. Hence, it is a minimal route graph model for this particular history.

Following the minimal route graph model approach, the problem of mapping an
unknown environment becomes a combinatorial optimization problem of incremen-
tally computing one or all minimal consistent map hypotheses from the observations
gathered during exploration. One thing that makes this problem interesting and com-
plex is the fact that it combines combinatorial aspects with questions of spatial con-
sistency. While the space of structurally possible map hypotheses grows exponentially
with the length of the history, the direction constraints and planarity restriction reduce
the search space by allowing us to prune inconsistent branches.

6.2 Branch and Bound Search for Minimal Model Finding 123

The fact that the definition of a consistent map hypothesis is based on the existence
of a drawing of the graph that satisfies certain conditions is a further indication of the
complexity of the problem: Clearly, it it infeasible to consider all drawings as there are
infinitely many straight-line drawings of a graph. General techniques like describing
the constraints in a system of (geometric) equations are typically much too expensive
computationally to be applicable.

On the positive side, there exist techniques that solve individual aspects of the
problem. For instance, checking whether a graph with combinatorial embedding is
planar—which means that a drawing without crossing edges exists that preserves the
combinatorial embedding—can be done in O(n) time. In addition, for every planar
drawing there exists one with straight edges. Consequently, we can filter out many
inconsistent hypotheses by discarding all hypotheses with non-planar embeddings.

With regard to additional spatial information, in our case the direction relations,
techniques for checking the consistency of a set of qualitative spatial relations have
been developed in the research field of qualitative spatial reasoning. These techniques
allow for determining whether a given network of spatial constraints is satisfiable.
Again, employing these techniques allows filtering out a substantial part of inconsistent
hypotheses. The minimal route graph model problem provides an interesting testbed
for these kinds of approaches as it benefits from expressive spatial formalisms for
which the consistency problem can be solved efficiently. One of our goals in this work
is to investigate the suitability of existing qualitative direction calculi for this kind of
problem and identify potential need for further research in this area.

In the following, we describe an approach to determine a minimal route graph
model based on individually enforcing the planarity constraint and the consistency
of the direction information. As a result of the individual constraint checking, the
approach is incomplete in the sense that it may not filter out all inconsistent map hy-
potheses. For instance, it could happen that there exists a drawing for a given map
hypothesis that is planar and one that is compliant with the direction constraints but
not one that is both. However, not finding all constraints is still preferable to not using
the available information at all. We start by first looking at the combinatorial optimiza-
tion problem and developing a best-first branch-and-bound-based search procedure to
solve it. In the next section, we integrate planarity and spatial consistency checks into
the framework. The results of the empirical evaluation of this approach for two spatial
calculi are provided in Sect. 7.3.

6.2 Branch and Bound Search for Minimal Model Finding

In this section, we describe a solution to the minimal route graph model problem that
consists of a branch and bound search through the search tree of possible associations
of RGNs and, hence, junction observations. The search starts with the history graph
and effectively folds the graph onto itself by unifying the RGNs with their correspond-
ing junction observations. A lower bound estimate of the model size as implied by

124 Global Mapping: Minimal Route Graphs Under Spatial Constraints

the associations already made is used to efficiently guide the search towards a minimal
model in a best-first manner. As a result, the approach effectively performs an A*
search through the interpretation tree.

6.2.1 Search Through the Interpretation Tree

Deriving route graph hypotheses from a history of junction observations and hallway
traversals is mainly a problem of correctly identifying junction observations that cor-
respond to the same physical junction in the environment. Hence, similarly to ap-
proaches on data association we encountered in the previous chapter, a solution to the
problem can be formulated as a search through the tree of possible associations, the
interpretation tree. In the case of the data association problem we had two disjoint sets
of objects, the data set and the model set. Here, however, we only have one set of ob-
jects, the RGNs. In principle, each RGN can be associated with multiple other RGNs,
resulting in a partition of the set of junction observations into equivalence classes. We
still end up with a tree-formed search space in which each level corresponds to match-
ing one particular RGN and each edge corresponds to one particular matching if we
make matching assignments in the following way (see also Fig. 6.6):

• At each level in the interpretation tree, the corresponding RGN can only be
matched to objects already matched at a higher level. Hence, the fact that junc-
tion observations mapped to RGNA and RGNB should correspond to the same
physical junction could be expressed by first assigning A to 0 (new junction)
and then at a lower level matching B to A.

• When more than two RGNs should be unified (more than two junction observa-
tions correspond to the same physical junction), each RGN has to be matched
with the one previously associated in the tree: Assuming A, B, and C should be
unified to form a single junction and are associated in this order in the tree, first
A is assigned to 0, then B is assigned to A, and finally C is assigned to B.

For the following discussion we extend the graph representation for histories and
derived route graph hypotheses so that it allows us to describe the partial matchings
corresponding to inner nodes of the interpretation tree. This is done by distinguishing
RGNs in the graph depending on whether they have already been matched or not.
Already matched RGNs are depicted by circles as before, black for visited ones and
white for unvisited ones. Not yet assigned RGNs are depicted by black and white
crosses instead (see Fig. 6.5).

An additional deviation from the standard interpretation tree is that an assignment
can lead to multiple child nodes as there may exist multiple route graph hypotheses re-
sulting from joining two RGNs. One could argue that this would not be required if one
would match hallways instead of junctions, but as our hypotheses also comprises junc-
tions that have not been observed and for which consequently the number of leaving
hallways objects is unknown, we think the chosen approach is more adequate.

6.2 Branch and Bound Search for Minimal Model Finding 125

G/H

b

G/H
a

HH

G
a

b

c

H G

d

E

F

Figure 6.5: Assigning H to G results in two possibilities because the hallway d can
correspond to either a or b. Therefore, this matching results in two successor nodes in
the interpretation tree

Multiple successor nodes can arise when there exist multiple ways to map the
leaving hallways of the matched junctions onto each other while preserving the cyclic
order information. Figure 6.5 shows an example of such a situation: The picture shows
at the top the partially constructed route graph hypothesis corresponding to a node in
the search tree. We now assume that we want to identify RGN H with RGN G. Since
G is an unvisited junction and H is a visited one, the RGE d of G must correspond
to one of the leaving RGEs of H , either to a or to b. It cannot correspond to c as
RGNs E and F have already been assigned and, thus, cannot be unified anymore in
this hypothesis. As a result two successor hypotheses are possible, shown below, and
there would be two child nodes for this particular matching in the interpretation tree.

A complete search tree for a small example walk consisting of three junction ob-
servations is shown in Fig. 6.6. While in principle each RGN could be matched with
any of the RGNs associated at a higher level, two junctions can only be connected by
a single hallway, and matchings can directly imply other matchings. As a result, not
all matchings occur in the interpretation tree depicted in the figure. Still, the number
of map hypotheses grows exponentially with the length of the history.

As also illustrated in Fig. 6.6, we store the following information for each node in
the search tree: a (partial) route graph hypothesis reflecting the partial matching and
and an RGN list which contains all RGNs from the original history graph. For already
matched RGNs the list states the assigned other RGN. For the still unassigned RGNs,
the RGN list contains a list of matching candidates called its match list. Additional
stored information not shown in the figure includes the mapping from the history to
the junctions and hallways in the route graph model, given in the form of annotations
to the RGNs and RGEs and the robot’s current location within the route graph.

Several examples of node hypotheses are included in Fig. 6.6. H1 is the original
history graph, with all nodes depicted by crosses because no assignments have been
made yet. As RGN A is the first RGN considered, it has to be new, which results in

126 Global Mapping: Minimal Route Graphs Under Spatial Constraints

node hypothesis H2. B, C, and D are the end points of the leaving hallways of A
and, hence, have to be new junctions as well (their match lists only contain 0), which
leads to hypothesis H5. At the next level, E can only be matched to B or C (or to
0) and not to A because a connecting RGE between A and D already exists. H5, H7,
H14, and H33 are intermediate node hypotheses along the marked path through the
tree leading to H83. As all nodes in H83 are assigned, it is a complete map hypothesis.
It is also the hypothesis that reflects the actual environment. The remaining examples
are alternative complete map hypotheses of which H47 assumes less junctions than
H83, while H112 requires more. In H83, it has been hypothesized that C, E, and G
correspond to a single physical junction and, as mentioned, this has to be realized by
associating E with C before associating F with E.

Overall, expanding a node in the interpretation tree during the search for the min-
imal model involves the following three steps: (1) The first still unassigned RGN in
the RGN list is chosen; (2) the successor nodes for every matching of this RGN with
a candidate in its match list are generated; (3) the successor nodes are added to a list
containing the current fringe of the search tree. More details on the generation of
successor nodes will be given in Sect. 6.2.3.2.

6.2.2 Best-First Branch and Bound Search Based on Solution Size

As it is our goal to find a minimal consistent map hypothesis in terms of the number
of RGNs, upper and lower bounds on the model size over all hypotheses that can be
generated from a particular node in the search tree can be used to decide whether
an optimal solution can be contained in this part of the search space. Nodes with a
lower bound higher than the currently found minimal upper bound can be completely
excluded from the search. Hence, by employing a branch and bound search approach,
we achieve a reduction of the search space.

In addition, a lower bound estimate can be used to efficiently guide the search
towards a minimal model in a best-first manner by always expanding the node with the
currently smallest lower bound. Once the chosen node with the minimal lower bound
contains a hypothesis in which all nodes have been assigned, we have found a minimal
map hypothesis.

Every inner node in the search tree contains a route graph model with still unas-
signed RGNs. Hence, it stands for a set of map hypotheses which can be generated by
performing the remaining assignments. A lower bound on the number of RGNs con-
tained in a map hypothesis in this set can be computed efficiently in the following way
based on the node’s RGN list: Every RGN that is assigned to 0 counts as one because
it will occur as an RGN in any of the derived map hypotheses. The same holds for
every still unassigned RGN for which the match list only contains 0 since this RGN
cannot be matched with an already established RGN any longer. All other RGNs from
the list have either been matched with an already counted RGN or their match lists still
allow for such a matching. Hence, they do not count.

The resulting estimate is only a lower bound on the minimal number of RGNs

6.2 Branch and Bound Search for Minimal Model Finding 127

3
st

ep
 e

xa
m

p
le

H

GD
F

D A

F E
BC

D A

Se
ar

ch
 t

re
e

Se
q

u
en

ce
 o

f o
b

se
rv

at
io

n
s

En
vi

ro
n

m
en

t

0 0 0 0 B C

C
0

0

A E
0

C
E

0

B
0

C
0

C
E

0

B
0

A
B

E
0

AE
0 A

E
0

E
0

B
0

E
B

n

B A C
E

0

C
0

C A

E
0

A
A

A B
E

0

B
E

0

A
A

A

B
C

E
0

C
E

0
B

E
0

B
C

0
B

C
E

0

E
0

A
A

A
A

B
0

H
->

G
->

F-
>

E-
>

D
->

C
->

B
->A
->

B
/E

/G
A

/G

D
F

A
->

0
B

->
0

C
->

0
D

->
0

E-
>

B
F-

>
C

G
->

A
H

->
E

H

C

A
->

0
B

->
0

C
->

0
D

->
0

E-
>

0
F-

>
0

G
->

0
H

->
0

B
A

E

D

C

F G

H

B
A

E

D

C

F G

H

A
->

0
B

->
0

C
->

0
D

->
0

E:
 B

,C
,0

F:
 B

,C
,0

G
: A

,B
,C

,E
,0

H
: A

,B
,C

,E
,0

B
/F

A
/H

D

G

A
->

0
B

->
0

C
->

0
D

->
0

E-
>

0
F-

>
C

G
->

0
H

->
A

E
C

B
A

E

D

C

F G

H

A
: 0

B
: 0

C
: 0

D
: 0

E:
 B

,C
,0

F:
 B

,C
,0

G
: A

,B
,C

,E
,0

H
: A

,B
,C

,E
,0

B
A

E

D

C

F G

H

A
->

0
B

: 0
C

: 0
D

: 0
E:

 B
,C

,0
F:

 B
,C

,0
G

: A
,B

,C
,E

,0
H

: A
,B

,C
,E

,0

B
AD

C
/E

/G

F
H

A
->

0
B

->
0

C
->

0
D

->
0

E-
>

C
F-

>
0

G
->

E
H

->
0

B
/E

/H
A

/G

D
C

/F

A
->

0
B

->
0

C
->

0
D

->
0

E-
>

B
F-

>
C

G
->

A
H

->
E

B
AD

C
/E

/G

F
H

A
->

0
B

->
0

C
->

0
D

->
0

E-
>

C
F-

>
0

G
->

E
H

: B
,0

B
AD

C
/E

F G

H

A
->

0
B

->
0

C
->

0
D

->
0

E-
>

C
F-

>
n

G
: B

,E
,0

H
: B

,E
,0

B
AD

C
/E

F G

H

A
->

0
B

->
0

C
->

0
D

->
0

E-
>

C
F:

 B
,0

G
: A

,B
,E

,0
H

: A
,B

,E
,0

H
1

H
2

H
5

H
7

H
14

H
33

H
47

H
56

H
83

H
99

H
11

2

Figure 6.6: The complete interpretation tree resulting from a three-step walk through
a simple environment. The environment and the sequence of observations are given
at the top of the figure. The node data (graphs and RGN lists) is depicted for several
nodes in the search tree

128 Global Mapping: Minimal Route Graphs Under Spatial Constraints

because later assignments may actually lead to cases in which the match list of an
RGN is reduced to 0. This would result in an additional junction. However, to get a
better lower bound would require us to perform a costly analysis of the dependencies
in the match lists, while in our case we simply have to update some counters during
the search.

In summary, the lower bound on the model size for a node in the search tree is
defined as follows.

Definition 6.7 (Model size lower bound). Given a node n in the interpretation tree,
the model size lower bound mslb(n) of n is defined as

mslb(n) = N +O (6.2)

whereN is the number of RGNs assigned to 0 in the RGN list of n andO is the number
of RGNs with 0 as the only element in their respective match lists.

In the implementation of the search algorithm described here, the current fringe
of the search tree is stored in a priority queue sorted by the nodes’ lower bounds. In
case two nodes have the same lower bounds, a secondary criterion and, if needed, a
tertiary one are used to sort the nodes. The secondary criterion is the number of still
unassigned RGNs in the RGN lists. As a consequence, nodes deeper in the tree and,
hence, closer to a complete map hypothesis will be preferred. The tertiary criterion
is the upper bound msub(n) on the possible minimal model size for node n. It is
computed by summing up the number of RGNs assigned to 0 and the RGNs that still
need to be assigned and have 0 in their match list.

Definition 6.8 (Model size upper bound). Given a node n in the interpretation tree,
the model size upper bound msub(n) of n is defined as

msub(n) = N + P (6.3)

whereN is the number of RGNs assigned to 0 in the RGN list of n and P is the number
of RGNs with 0 contained in their match list.

To provide an example of the results of applying the best-first branch and bound
search as described in this section, Fig. 6.7 shows at the top the original interpretation
tree from Fig. 6.6 and in the middle the parts searched for a minimal model using the
best-first branch and bound algorithm. The order in which the nodes are expanded
is given by the numbers within the circles representing the nodes. The bottom figure
shows the result of applying the same approach but searching until all minimal models
have been found.

6.2.3 Expand and Update Operations

The main operation of the search procedure is the expansion of a node in which the
child nodes based on all possible matchings are generated. However, in order to in-
corporate newly available history information without performing a new search from

6.2 Branch and Bound Search for Minimal Model Finding 129

0 0 0 0 B C

C
0

0

A E
0

C
E

0

B
0

C
0

C
E

0

B
0

A
B

E
0

AE
0 A

E
0

E
0

B
0

E
B

n

B A C
E

0

C
0

C A

E
0

A
A

A B
E

0

B
E

0

A
A

A

B
C

E
0

C
E

0
B

E
0

B
C

0
B

C
E

0

E
0

A
A

A
A

B
0

H
->

G
->

F-
>

E-
>

D
->

C
->

B
->A
->

H
->

G
->

F-
>

E-
>

D
->

C
->

B
->A
->

0 0 0 0 B C

C
0

0

A E
0

C
E

n

B
n

C
n

C
E

n

B
n

A
B

E
n

AE
n A

E
n

E
n

B
n

E
B

n

B A C
E

n

C
n

C A

E
n

A
A

A B
E

n

B
E

n

A
A

A

B
C

E
n

C
E

n
B

E
n

B
C

n
B

C
E

n

E
n

A
A

A
A

B
n

8/
4

8/
4

8/
4

8/
4

8/
4

7/
4

5/
4

5/
4 4/

4
4/

4
5/

5

5/
4

4/
4

4/
4

4/
4

4/
4

5/
5

5/
5

7/
5

6/
5

5/
5

5/
5

6/
6

6/
5

5/
5

6/
6

7/
6

6/
6

6/
6

6/
6

7/
7

7/
4

5/
4

5/
4

4/
4

4/
4

5/
5

5/
4

7/
5

4/
4

4/
4

4/
4

4/
4

5/
5

5/
5

6/
5

5/
5

5/
5

6/
6

6/
5

5/
5

6/
6

6/
5

5/
5

6/
6

7/
6

6/
6

6/
6

6/
6

7/
7

8/
7

6/
5

6/
5

5/
5

5/
5

6/
6

6/
5

5/
5

5/
5

5/
5

5/
5

6/
6

6/
6

6/
5

6/
5

6/
5

5/
5

5/
5

6/
6

5/
5

5/
5

5/
5

5/
5

6/
6

6/
6

8/
6

7/
6

6/
6

6/
6

7/
7

7/
6

7/
6

6/
6

6/
6

6/
6

6/
6

7/
7

7/
7

8/
7

7/
7

7/
7

7/
7

8/
8

1 2 3 4 5 6 7 8

0 0 0 0 B C

C
0

0

A E
0

C
E

n

B
n

C
n

C
E

n

B
0

A
B

E
0

AE
0 A

E
n

E
n

B
n

E
B

n

B A C
E

n

C
n

C A

E
n

A
A

A B
E

n

B
E

n

A
A

A

B
C

E
n

C
E

n
B

E
n

B
C

n
B

C
E

n

E
0

A
A

A
A

B
n

H
->

G
->

F-
>

E-
>

D
->

C
->

B
->A
->

8/
4

8/
4

8/
4

8/
4

8/
4

7/
4

5/
4

5/
4 4/

4
4/

4
5/

5

5/
4

4/
4 4/

4

4/
4 4/

4

5/
5

5/
5

7/
5

6/
5

5/
5

5/
5

6/
6

6/
5

5/
5

6/
6

7/
6

6/
6

6/
6

6/
6

7/
7

7/
4

5/
4

5/
4 4/

4
4/

4
5/

5

5/
4

7/
5

4/
4 4/

4

4/
4 4/

4

5/
5

5/
5

6/
5

5/
5

5/
5

6/
6

6/
5

5/
5

6/
6

6/
5

5/
5

6/
6

7/
6

6/
6

6/
6

6/
6

7/
7

8/
7

6/
5

6/
5

5/
5

5/
5

6/
6

6/
5

5/
5

5/
5

5/
5

5/
5

6/
6

6/
6

6/
5

6/
5

6/
5

5/
5

5/
5

6/
6

5/
5

5/
5

5/
5

5/
5

6/
6

6/
6

8/
6

7/
6

6/
6

6/
6

7/
7

7/
6

7/
6

6/
6

6/
6

6/
6

6/
6

7/
7

7/
7

8/
7

7/
7

7/
7

7/
7

8/
8

1 2 3 4 5 6 7 8

9 10
11

12 13 14

15 16
17

Figure 6.7: Effects of different versions of the minimal model algorithm (part 1): At
the top the entire search tree, in the middle the tree searched with branch and bound for
the first minimal model, and at the bottom the same searching for all minimal models

130 Global Mapping: Minimal Route Graphs Under Spatial Constraints

H
->

G
->

F-
>

E-
>

D
->

C
->

B
->A
->

0 0 0 0 B C

C
0

0

A E
n

C
E

0

B
n

C
0

C
E

0

B
0

A
B

E
n

AE
n A

E
0

E
0

B
n

E
B

0

B A C
E

n

C
0

C A

E
n

A
A

A B
E

0

B
E

n

A
A

A

B
C

E
0

C
E

0
B

E
0

B
C

0
B

C
E

0

E
n

A
A

A
A

B
0

8/
4

8/
4

8/
4

8/
4

8/
4

7/
4

5/
4

5/
4

4/
4

4/
4

5/
5

5/
4

4/
4

4/
4

4/
4

4/
4

5/
5

5/
5

7/
5

6/
5

5/
5

5/
5

6/
6

6/
5

5/
5

6/
6

7/
6

6/
6

6/
6

6/
6

7/
7

7/
4

5/
4

5/
4

4/
4

4/
4

5/
5

5/
4

7/
5

4/
4

4/
4

4/
4

4/
4

5/
5

5/
5

6/
5

5/
5

5/
5

6/
6

6/
5

5/
5

6/
6

6/
5

5/
5

6/
6

7/
6

6/
6

6/
6

6/
6

7/
7

8/
7

6/
5

6/
5

5/
5

5/
5

6/
6

6/
5

5/
5

5/
5

5/
5

5/
5

6/
6

6/
6

6/
5

6/
5

6/
5

5/
5

5/
5

6/
6

5/
5

5/
5

5/
5

5/
5

6/
6

6/
6

8/
6

7/
6

6/
6

6/
6

7/
7

7/
6

7/
6

6/
6

6/
6

6/
6

6/
6

7/
7

7/
7

8/
7

7/
7

7/
7

7/
7

8/
8

p

d
,p

p

p

p
d

d

d
d

d
,p

d
,p

p

d
d

d
d

d
,p

d
,p

d

d
p

p
p

p
d

d
d

d

H
->

G
->

F-
>

E-
>

D
->

C
->

B
->A
->

0 0 0 0 B C

C
0

0

A E
n

C
E

0

B
n

C
0

C
E

n

B
0

A
B

E
n

AE
n A

E
0

E
0

B
n

E
B

n

B A C
E

n

C
0

C A

E
n

A
A

A B
E

0

B
E

n

A
A

A

B
C

E
n

C
E

n
B

E
n

B
C

n
B

C
E

n

E
n

A
A

A
A

B
0

8/
4

8/
4

8/
4

8/
4

8/
4

7/
4 5/

4

5/
4

4/
4

4/
4

5/
5

5/
4

4/
4

4/
4

4/
4

4/
4

5/
5

5/
5

7/
5 6/

5

5/
5

5/
5

6/
6

6/
5 5/

5
6/

6

7/
6

6/
6

6/
6

6/
6

7/
7

7/
4 5/

4

5/
4

4/
4

4/
4

5/
5

5/
4

7/
5

4/
4

4/
4

4/
4

4/
4

5/
5

5/
5

6/
5 5/

5
5/

5
6/

6

6/
5

5/
5

6/
6

6/
5 5/

5
6/

6

7/
6

6/
6

6/
6

6/
6

7/
7

8/
5 6/

5

6/
5

5/
5

5/
5

6/
6

6/
5

5/
5

5/
5

5/
5

5/
5

6/
6

6/
6

6/
5

6/
5

6/
5 5/

5
5/

5
6/

6

5/
5

5/
5

5/
5

5/
5

6/
6

6/
6

8/
6

7/
6

6/
6

6/
6

7/
7

7/
6

7/
6

6/
6

6/
6

6/
6

6/
6

7/
7

7/
7

8/
7

7/
7

7/
7

7/
7

8/
8

10

11

12

13

14 15

1 2 3 4 5 6
7

8 9

p

d
,p

p

p

d
d

d
,p

d
,p

p

d

d
,p

d
,p

d

d
p

Figure 6.8: Effects of different versions of the minimal model algorithm (part 2): At
the top the tree pruned by planarity and direction constraints and at the bottom the
result of applying constraint-based pruning and branch and bound search

6.2 Branch and Bound Search for Minimal Model Finding 131

Algorithm 7 Main loop of the minimal model finding algorithm
procedure minimalModel(HistoryH, PriorityQueue Q)

1: minimalModelFound← false
2: while |Q| > 0 and not minimalModelFound do
3: n← pop(Q)
4: if not uptodate(n) then
5: L← update(n,H)
6: insert all elements from L into Q
7: else if node has unassigned RGNs then
8: L← expand(n)
9: insert all elements from L into Q

10: else
11: minimalModelFound← true
12: insert n into Q
13: end if
14: end while

scratch, a second operation is required in which the node information is updated based
on the new action and observation. We will refer to these two operations as the expand
and update operations.

A pseudocode version of the main loop of the actual search procedure is shown
in Algorithm 7. This procedure is called whenever new history information becomes
available and terminates when a minimal model has been found. The current fringe
of the search tree is provided in the form of the priority queue Q sorted by criteria
described in the previous section. In the main loop, the first element is taken from
Q. It is then tested whether this node n is up-to-date (meaning all history information
has been incorporated) or not. If this is not the case, the update operation will be per-
formed, which incorporates the next hallway traversal and junction observation. Like
the expand operation, the update operation may result in multiple successor hypothe-
ses. Therefore, it returns a list of new nodes which are inserted into Q.

If the node n does not need to be updated, it is checked whether it still has unas-
signed RGNs. If this is the case, n is expanded and successor nodes which are returned
as a list are inserted into Q. Otherwise, n has to be a minimal model and the search
terminates. Before that, n is put back into the queue so that we can continue with the
search when new history information becomes available.

In the following, we consider the update and expand operations in more detail.

6.2.3.1 Update Operation

The update operation updates a node n based on one new hallway traversal T and
a new junction observation J . The result is a set of updated successor nodes. The
following steps have to be performed:

132 Global Mapping: Minimal Route Graphs Under Spatial Constraints

1. A list L is initialized as empty; in the end this list will contain the successor
nodes.

2. The robot’s location within the route graph hypothesis of n is updated based on
T .

3. Case 1: If the new location loc is an already visited RGN, we check whether
J fits the current location. If this is the case, a copy s of n is added to L.
Then mj(J) is set to loc and each ml(li) for a leaving hallway in J is set to the
corresponding RGE in s. If J and the visited RGN do not match, no successor
nodes for n will be created, effectively closing this branch of the interpretation
tree.

4. Case 2: If the new location is an unvisited RGN, there may be multiple ways to
map the already existing RGEs to the observed leaving hallways. Every existing
RGE needs to be mapped to a different leaving hallway while the cyclic order
needs to be preserved. For each valid mapping the following is done: A new
node si is constructed in which the graph has been updated accordingly. A new
edge ending at a new unvisited RGN is attached at the right position in the cyclic
order for each leaving hallway that does not correspond to an existing RGE. mj
and ml are updated as in case 1 and the nodes si are added to L.

5. For each node from L, new RGNs are added to the RGN list for each end point
of the leaving hallways in J (even though no actual RGN may have been added
to the route graph model), and their match lists are set accordingly.

6. L is returned as the result of the update operation.

To illustrate this procedure, two examples of update operations are depicted in
Fig. 6.9. On the left, we see the current node hypothesis before the first update op-
eration. All RGNs except E are already matched. The new hallway traversal to be
incorporated now leads the robot from C to B/D as indicated by the dashed arrow. A
depiction of the new junction observation can be found between the arrows. It contains
two more leaving hallways in addition to the arriving one. The end points of these will
require the instantiation of two more RGNs, F and G. B/D is an unvisited RGN in
the given hypothesis (case 2), which means that every existing RGE needs to corre-
spond to an observed leaving hallway but not vice versa, and we already know that the
RGE connecting C and B/D corresponds to the leaving hallway via which the robot
arrived. Therefore, two mappings are possible, leading to the two new hypotheses at
the end of the arrows. In the first one, F is identified with A, and as a result its match
list is set to {A}. For G a new unvisited RGN is generated and connected to B/D
with a new edge. In the second hypothesis, G and A are identified, resulting in similar
changes to the graph and RGN list.

Let us now assume, another hallway traversal is performed and both hypotheses
are updated. Again, the traversed hallway is marked by the dashed arrows and the

6.2 Branch and Bound Search for Minimal Model Finding 133

B/D

A
C

E

A->0
B->0
C->0
D->B
E: 0 F

G

A->0
B->0
C->0
D->B
E: 0
F: A
G: E,0

A->0
B->0
C->0
D->B
E: 0
F: E,0
G: A

H

I

A->0
B->0
C->0
D->B
E: 0
F: E,0
G: A
H: C,E,0
I: C,E,0

G

A/F

B/D

C
E

F

B/D

C
E A/G

observation observation

I
F

B/D

C
E A/G

H

Figure 6.9: Example of two consecutive update operations resulting in one valid suc-
cessor hypothesis

new observation is shown between the arrows. For the first hypothesis, the traversal
would mean that the robot moves to A/F , which is a visited junction (case 1) with
two RGEs overall. In this case, there must be a one-to-one mapping between existing
RGEs and leaving hallways, which in this example is not possible as there are three
observed leaving hallways. Therefore, the hypothesis is discarded. In contrast, updat-
ing the second hypothesis results in another instance of case 2, but here with only one
possible mapping between RGEs and observed hallways. Hence, only a single updated
hypothesis will be generated.

6.2.3.2 Expand Operation

Expanding a node based on matching the next unmatched variable RGN X with an
RGN W higher in the RGN list involves the generation of child nodes with modified
graph structures and RGN lists for every valid way of folding the graph onto itself so
thatX andW are merged. The list of new child nodes is returned in the same way as it
is by the update operation. In more detail, the expand operation performs the following
steps:

1. A listL is initialized as empty, which in the end will contain the successor nodes.

2. AsX andW can both be visited or unvisited RGNs, four general cases of merg-
ing have to be distinguished. Typically, there are multiple possibilities of merg-
ing X with W ; and for some cases multiple ways of mapping the RGEs of X to
the RGEs of W exist that preserve the cyclic order information. For every pos-
sible way of merging and edge mapping a new node ci is created and processed
by the following steps:

• The graph hypothesis is transformed according to the merging variant and
edge mapping. For RGEs of X that correspond to existing RGEs of W

134 Global Mapping: Minimal Route Graphs Under Spatial Constraints

the entire subtree attached to this edge needs to be matched recursively
in accordance with the match lists of the involved RGNs. This can lead
to additional possibilities, in which case the node ci is further split into
multiple new ones, or to contradictions, in which case the hypothesis is
discarded.

• X is marked as matched to W in the RGN list.

• For all unmatched RGNs that get merged in the recursive process, their
match list is set to the RGN they are merged with because their matching
is now determined as well.

• W is removed from the match lists of the remaining unmatched variables.

• ci is added to L.

3. L is returned as the result of the expand operation.

As mentioned, there are four general cases of merging, which we will not discuss
in detail here. Instead, we will restrict ourselves to providing one rather complex
example of matching a visited RGN to an unvisited one. We use the notation A
 B
to refer to the RGE connecting the RGNs A and B.

The starting hypothesis of our example can be seen at the top of Fig. 6.10. RGNs
A− F are already assigned; the others are unassigned. The variable to be matched in
this expansion step isG and we consider the matching with RGNB. AsB is unvisited,
there are two possible merging variants, one in which RGE A
 B corresponds to
RGE G
 I and one in which it corresponds to G
 H .

In the first case, G is merged with B and the RGE G
 I is removed. The unvis-
ited end node I is merged with A and its match list is changed accordingly. Finally, B
is removed from the remaining match lists and the new node is added to the successor
list L.

In the second case, H corresponds to B, but H is a visited RGN with two more
RGEs. As we are comparing two visited RGNs now, there has to be a one-to-one
mapping between the RGEs so that RGE H
 K has to correspond to A
 D and
H
 J to A
 C/F . Both RGE pairs are merged in the following. As I is only an
unvisited end point, the recursion ends on this side. However, J is a visited RGN which
has to correspond to unvisited RGN C/F and there are two possible edge mappings.
This means that the current hypothesis has to be split into two new ones, one for each
mapping. In the first one, J
 M is merged with C/F
 E, in the second one,
J
 L with C/F
 E. In both cases, the recursion ends. Overall, we end up with
three successor nodes for the original node depicted in the bottom row of the figure.

6.2.4 Two Variants of the Minimal Model Finding Problem

Up to now, we have described a version of the minimal model finding problem in
which each model is a complete closed environment which might contain unvisited

6.2 Branch and Bound Search for Minimal Model Finding 135

B

A DC/F

E

GH

I

J

K

L

M

A->0
B->0
C->0
D->0
E->0
F->C
G: B,F,0
H: A,B,E,F,0
I: A,B,E,F,0
J: A,B,E,F,I,0
K: A,B,E,F,I,0
L: A,B,E,F,G,I,K,0
M: A,B,E,F,G,I,K,0

B/G

A/I DC/F

E

H

J

K

L

M

A->0
B->0
C->0
D->0
E->0
F->C
G->B
H: E,F,0
I: A
J: E,F,I,0
K: E,F,I,0
L: E,F,G,I,K,0
M: E,F,G,I,K,0 A/H D/KC/F/J

E/M

IL

A->0
B->0
C->0
D->0
E->0
F->C
G->B
H: A
I: 0
J: F
K: D
L: I,0
M: E

B/G

A/H DC/F

E

I

K

L

M

A->0
B->0
C->0
D->0
E->0
F->C
G->B
H:A
I: A,B,E,F,0
J: A,B,E,F,I,0
K: A,B,E,F,I,0
L: A,B,E,F,G,I,K,0
M: A,B,E,F,G,I,K,0

B/G

J

A/HC/F/J

E/L

I

M

A->0
B->0
C->0
D->0
E->0
F->C
G->B
H: A
I: 0
J: F
K: D
L: E
M: I,0

B/G

D/K

H A

Figure 6.10: Example of matching G to B in an expand operation, resulting in three
different child nodes

junctions that form the end points of perceived but never traversed hallways. A less
complex version of the problem can be obtained by restricting the models to visited
places and allowing hallways with open endings. This problem is less complex because
the number of possible matchings is reduced significantly and because the lack of
information about the unvisited junctions allows for more variations in general.

In the experimental analysis of this work, we will compare both variants of the
algorithm. The version dealing with complete environments will be referred to as the
CompEnv variant, while the version only determining the layout of the visited parts of
the environment will be called the VisOnly variant.

The implementation of the VisOnly variant is simply a modified version of the
CompEnv algorithm in which variables are only instantiated for junction observations
and not for the end points of the leaving hallways. As a result, the search tree from
Fig. 6.6 would be reduced to a simple linear chain of three edges as none of the visited
RGNs can be joined. While this illustrates the reduced complexity of the VisOnly
variant, it is an extreme case as the history only consists of three junction observations
and no junction is visited twice.

136 Global Mapping: Minimal Route Graphs Under Spatial Constraints

Besides the complexity issues, the question of which variant is better suited in
practice needs to be answered in the context of a concrete application scenario. The
advantage of the CompEnv variant is that it includes a certain predictive power which
can, for instance, be useful to predict shortcuts when applied to route networks like
street networks or the hallway networks used as an example here. However, for more
low-level graph abstractions like Voronoi graphs, CompEnv often leads to a higher
number of wrong predictions until the entire environment has been explored.

After providing a solution to the purely combinatorial problem, we now turn to
the question of how additional constraints, based either on planarity or on direction
information, can be incorporated into the search algorithm.

6.3 Pruning Based on Spatial Constraints

As mentioned previously, our approach is to check planarity constraints and consis-
tency of the direction information separately. We start with a discussion of the pla-
narity constraint.

6.3.1 Checking Planarity

In this work, we are exclusively dealing with graph environments that are plane graphs.
This means that they are embedded into the plane without crossing edges. This fact
allows us to reduce the set of possible hypotheses. Each graph hypothesis for which
the cyclic order information does not describe a planar embedding can be immediately
discarded because such a graph cannot be drawn into the plane without crossing edges
in a way that preserves the cyclic edge orders. The criterion for deciding whether a
general graph with a combinatorial embedding describes a planar embedded graph is
that its genus is 0. The genus of an undirected graph G = (V,E) is given by Euler’s
formula:

genus(G) = (|E|+ 2c− |V | − i− f)/2 (6.4)

where c is the number of connected components in the graph, i is the number of nodes
of degree 0 (isolated nodes), and f is the number of faces formed by traversing edges
in accordance with the cyclic ordering information (a more precise definition will be
given below). We only consider connected graphs without isolated nodes here and thus
the formula becomes

genus(G) = (|E| − |V | − f)/2 + 1 (6.5)

Our approach to planarity checking is similar to the one described in Savelli &
Kuipers (2004). First of all, it is advantageous to internally transform the undirected
route graphs into bidirected graphs in which each RGE from the original graph is
represented by a pair of edges with opposite directions. The information that e and
f correspond to the same RGE and thus are reversals of each other (rev(e) = f and

6.3 Pruning Based on Spatial Constraints 137

Figure 6.11: Two bidirected graphs of which the first has three faces and thus according
to Eq. 6.5 depicts a planar embedding, while the second with an additional (undirected)
edge has two faces, which means the embedding is not planar

rev(f) = e) is stored in the form of edge attributes1. In addition, the cyclic order
information is transformed so that now each RGN v is annotated with the cyclic order
of directed edges which have v as source. In the following, we assume that pred(e)
and succ(e) yield the predecessor and successor edge of e in the cyclic order of leaving
directed edges at the source node of e. One can then define sequences of edges by a
function next(e) as follows:

next(e) = succ(rev(e)) (6.6)

Based on this function, each directed edge now is part of exactly one cycle of
directed edges e1, e2, ..., en with e1 = en and ei+1 = next(ei). These cycles are called
the faces of the graph. Figure 6.11 shows two combinatorial embedded graphs. Their
faces are depicted by the dashed arrows. The left graph has three faces, while the right
one with an additional (undirected) edge has only two. As a consequence, Eq. 6.5
yields that genus = 0 for the first graph and genus = 1 for the second graph. Hence,
only the first depicts a planar combinatorial embedding.

Planarity checking can be performed in linear time (Hopcroft & Tarjan, 1974;
Lempel et al., 1967). We integrate planarity checking into our search algorithm by rep-
resenting the route graph hypotheses as bidirected graphs and updating the face infor-
mation and pointers for pred, succ, and next whenever we modify the graph structure.
As soon as Eq. 6.5 is violated, the hypothesis at hand can be discarded as the planarity
constraint is violated. In our approach, the faces are numbered and each edge of the
bidirected graph stores the number of the face it belongs to (given by facenumber(e)).
The relevant operation which has the potential of changing planarity in our approach
is inserting a new edge into the graph. After inserting an edge which results in the two
new directed edges e and rev(e) and updating the successor information, three cases
have to be distinguished, illustrated in Fig. 6.12:

1The resulting structure is often referred to as a “map” (Mehlhorn et al., 1999) but we will not use this
term here in order to avoid ambiguities.

138 Global Mapping: Minimal Route Graphs Under Spatial Constraints

Figure 6.12: Three cases of modifying a graph, starting with the planar graph at the
top left. Only in the last case (bottom right) does the genus change, and, hence, the
resulting embedding is not planar

1. next(e) = rev(e): This is the case when we insert a new node and connect it to
an old one. The number of faces stays the same while the number of nodes and
edges increase by one, leaving the genus unchanged. The face numbers of both,
e and rev(e) are set to the number of next(rev(e)).

2. facenumber(next(e)) = facenumber(next(rev(e))): The new edge connects two
already contained nodes and splits an existing face into two new ones. The total
number of faces increases by 1. The face number of e is set to the number of the
old cycle, while rev(e) gets a new number, and numbers of all edges belonging to
the same face as rev(e) are updated accordingly. Since the number of edges also
increased by one and the node remained unchanged, the genus again remains
unchanged.

3. facenumber(next(e)) 6= facenumber(next(rev(e))): In this case, the old face
would be replaced by a new one that combines both faces, and hence the face
number would decrease by 1. The edge number would increase by one, while
the number of nodes remains the same. As a result, the genus would increase to
1. Since this means that the embedding is not planar anymore, the hypothesis
can be immediately discarded.

While the first and third case require constant time, the second case takes linear
time in the number of edges because of the need to update the face numbers for one
face. We provide more details on the incorporation of the planarity check into the
overall search algorithm in Sect. 6.3.3.

6.3 Pruning Based on Spatial Constraints 139

6.3.2 Checking Spatial Consistency

One of the main goals of the work described in this chapter is to investigate how the
presence of spatial information provided in the form of qualitative direction relations
that only represent coarse information but can be perceived reliably reduces the num-
ber of hypotheses that have to be considered. Checking the consistency of a route
graph hypothesis with regard to spatial constraints stemming from the perceived di-
rections of the leaving hallways requires us to determine whether an assignment of
points in the plane to the RGNs of the hypothesis exists which induces the same set of
relations.

Hence, we are faced with a constraint satisfaction problem in which the domain
(points in R2) is infinite. However, research on qualitative spatial reasoning has pro-
duced constraint-based techniques to deal with this kind of problem. The solution typ-
ically consists of a qualitative constraint calculus defining a set of spatial relations and
algebraic operations like converse and composition on the set of relations. Depend-
ing on the particular calculus, consistency checking can be performed by employing
the so-called algebraic closure algorithm or a more involved backtracking search over
the set of all possible scenarios which are then tested again by the algebraic closure
algorithm. The algebraic closure algorithm requires O(n3) time, where n is the num-
ber of related objects. We provide an overview on these concepts and techniques in
Appendix B.

Based on these result, our approach is to formulate the perceived direction infor-
mation in the form of qualitative direction relations from particular qualitative spatial
calculi, derive a network of constraints from the given route graph hypothesis, and
apply the standard consistency check methods to the constraint network. For perform-
ing the consistency check we use the spatial reasoning toolbox SparQ, which provides
implementations of a large set of spatial calculi and the standard reasoning techniques
(Wallgrün et al., 2006, 2007).

As we are particularly interested in comparing the effects of absolute and relative
direction information on the search space and on the number of solutions, we have cho-
sen the absolute cardinal direction calculus (Ligozat, 1998) and the relative OPRA2

calculus (Moratz, 2006; Moratz et al., 2005) for our analysis.
Both calculi cannot be considered as ideal, but no better candidates or other reason-

ing formalisms exist to our knowledge. Hence, the problem investigated here can also
be seen as a challenge for qualitative spatial reasoning research. As an ideal calculus
we would consider one with the following properties:

1. good computational properties with regard to the consistency check,

2. expressive enough to rule out many hypotheses,

3. dealing with relations that are easily and reliably accessible,

4. able to express the cyclic edge order information.

140 Global Mapping: Minimal Route Graphs Under Spatial Constraints

The cardinal direction calculus, on the one hand, is rather efficient as a large
tractable subset exists for which the algebraic closure algorithm decides consistency
(cf. Appendix B.4). This subset contains all relations required in our context. The
downside is that the calculus does not allow for expressing the cyclic ordering infor-
mation about the leaving RGEs in the route graph. As a result, it can happen that a
constraint network deemed consistent by the consistency check only has solutions for
which the cyclic order information is not preserved.

TheOPRA2 calculus, on the other hand, can express the cyclic ordering informa-
tion. However, employing the algebraic closure algorithm to OPRA2 constraint net-
works generated from our route graph hypotheses only results in an incomplete method
to rule out inconsistent cases. This is also true if the much more inefficient backtrack-
ing search would be employed because algebraic closure does not decide consistency
even if the constraints are all base relations. We still have chosen OPRA2 as to our
knowledge no relative direction calculus exists with significantly better computational
properties. In addition, the calculus offers a similar level of granularity as that of the
cardinal direction calculus. This is beneficial for the comparison. How problematic
the application of an incomplete consistency checking method is has to be evaluated
experimentally.

In the next two sections, we describe how we model the direction information for
both calculi.

6.3.2.1 Modeling Spatial Configurations in the Cardinal Direction Calculus

The cardinal direction calculus is an absolute binary qualitative direction calculus de-
scribing the cardinal direction of one point object from another point object using the
nine base relations we saw in Fig. 6.4. Here, we use the base relations from the calculus
to describe the directions of leaving hallways as seen from the corresponding junction,
but then transfer this information into a constraint over the possible positions of the
connected junctions in the plane. As a result, each RGE in a route graph hypothesis
yields a direction constraint between the connected RGNs.

Absolute direction information like the cardinal direction information can actually
be exploited in multiple ways in the minimal model finding algorithm. It can be used
to enforce three different requirements:

1. Valid direction orderings: When adding a new RGE to an RGN, it can only be
inserted into the cyclic edge order at a position where the edges also preserve
the cyclic order of cardinal directions. For instance, a resulting cyclic order of
edges with directions n, s, w is not valid as w would have to appear between n
and s.

2. Valid junction matching: When matching two RGNs, mappings of RGEs are
only valid if corresponding RGEs have the same directions.

6.3 Pruning Based on Spatial Constraints 141

3. Global consistency: There needs to be a way of assigning coordinates to the
RGN such that the direction constraints are satisfied.

As we explained, the global consistency check requires the full constraint reason-
ing approach based on the algebraic closure algorithm. Therefore, we first generate
a constraint network from the given route graph hypothesis. This constraint network
consists of one variable for each RGN and one constraint represented by a directed
edge for each RGE. In Fig. 6.13, we see part of a route graph hypothesis and the cor-
responding set of derived constraints that make up the constraint network. For all other
pairs of junctions, the constraint holding between them is the disjunction of all base
relations except eq. The constraint network is then fed into SparQ, which performs the
consistency check. If the algebraic closure algorithm discovers an inconsistency, the
hypothesis at hand can be discarded.

A

B C

D E

A ne B

A n C

B w C

B ne D

C n E

Figure 6.13: A route graph hypothesis and the cardinal direction constraints derived
from it

6.3.2.2 Modeling Spatial Configurations in the OPRA2 Calculus

The second calculus employed and investigated in this book is the OPRA2 calculus.
In contrast to the cardinal direction calculus, it is a relative calculus describing the
relative orientation of two objects to each other. Hence, a robot would only need to
be able to estimate the angles between the leaving hallways and would not require a
compass to determine OPRA2 relations.
OPRA2 is actually one particular instance of a calculus from the Oriented Point

Relation Algebra (OPRAm) family. m here is the granularity parameter used to deter-
mine the number of base relations that are distinguished (Moratz, 2006; Moratz et al.,
2005). The domain of (OPRAm) is the set of oriented points (points in the plane with
an additional direction parameter).

For a given granularity parameter m ∈ N the concrete set of OPRAm relations
is derived as follows: For each of the two related oriented points, m lines are used to

142 Global Mapping: Minimal Route Graphs Under Spatial Constraints

(a)

1

3

2

5

7

0 7

6

5
1

0

4

4
A

B

(b)

A
B

0

1

2

3
4

5

6

7

Figure 6.14: OPRA2 relations between two oriented points: (a) the relationA 2∠1
7 B,

(b) A 2∠1 B

partition the plane into 2m planar and 2m linear regions. Figure 6.14(a) shows the par-
tition forOPRA2. The orientation of the two points is depicted by the arrows starting
atA andB, respectively. The regions are numbered from 0 to 4m−1. Region 0 always
coincides with the orientation of the point. An OPRAm base relation relOPRAm is
then given by a pair (i, j) where i is the number of the region of A which contains B,
while j is the number of the region of B which contains A. These relations are usually
written as A m∠ji B, Thus, the example in Fig. 6.14(a) depicts the relation A 2∠1

7 B.
Additional base relations called same relations describe situations in which the posi-
tions of both oriented points coincide. In these cases, the relation is determined by the
number s of the region of A which contains the orientation arrow of B (as illustrated
in Fig. 6.14(b)). These relations are written as A 2∠s B (A 2∠1 B in the example).
The complete setR of OPRAm relations again is the power set of the base relations.

When we employ the OPRA2 calculus to describe the relative directions of leav-
ing hallways in the junction observations, the leaving hallways are seen as oriented
points positioned on the RGN and pointing in the corresponding direction. The in-
duced spatial descriptionR(J) for a junction observation J then consists of anOPRA2

relation for each pair of leaving hallways from L(J).
For a relative direction calculus like OPRA2, only two ways of exploiting the

direction information exist, in contrast to the three ways we encountered in the case
of absolute direction information. The reason is that enforcement of valid direction
ordering is not applicable because no such order exists for relative information. En-
forcing valid junction matchings, however, is still possible but now constrains the valid
mappings by way of the relations holding between pairs of RGEs.

For the global consistency check, anOPRA2 constraint network is generated from
the route graph hypothesis. Analogously to the generation of the description of a
junction observation, one oriented point variable is introduced for each pair of RGN
and incident RGE. Hence, we end up with 2 × n variables in the constraint network,
where n is the number of RGEs in the hypothesis, while we only had one per junction
in the case of absolute cardinal directions. The process of generating the constraint
network is illustrated in Fig. 6.15.

The names of the oriented points here are formed from the name of the corres-

6.3 Pruning Based on Spatial Constraints 143

A

B
C

D E

AB
AC

BA

BC

BD

CA

CE

CB

AB 2∠1 AC

BA 2∠7 BC

BA 2∠4 BD

BC 2∠5 BD

CA 2∠2 CB

CA 2∠4 CE

CB 2∠2 CE

AB 2∠0
0 BA

AC 2∠0
0 CA

BC 2∠0
0 CB

BD 2∠0
0 DB

CE 2∠0
0 EC

Figure 6.15: Set of OPRA2 constraints describing the given route graph hypothesis.
A junction of n hallways is represented by n oriented points

ponding RGN and the name of the other RGN incident to the RGE (e.g., AB for the
oriented point at RGN A and the RGE leading to B). For each RGN, we generate the
constraints holding between each pair of leaving RGEs which are all same relations.
In addition, we need to state that XY and Y X are facing each other (relation 2∠0

0),
forming a single hallway. The complete set of constraints is shown on the right side of
the figure.

Finally, consistency again is checked by using the algebraic closure algorithm of
SparQ. However, as we already mentioned, this is only an incomplete method that may
not discover all inconsistent constraint networks.

6.3.3 Incorporation into the Search Algorithm

Planarity checking and spatial direction constraints are incorporated into the search
algorithm to discard inconsistent hypotheses as soon as possible and thus prune large
subtrees of the search tree.

Spatial direction constraints are utilized in both the update and the expand opera-
tions. In the update operation, only valid junction matchings need to be enforced in
order to verify that the hypothesis is consistent with the new information. In the ex-
pand operation, enforcement of valid direction orderings plays a role when adding a
new RGE to an unvisited RGN, but only when an absolute direction calculus is used.
Valid junction mappings are enforced when two RGNs are merged. A global consis-
tency check is performed for every successor hypothesis that results from performing
a matching.

Planarity checks only need to be performed when a node in the search tree is ex-
panded. The update operation at most appends new RGEs together with a new unvis-
ited RGN and never connects two existing RGNs. However, it still requires that the
planarity-related information be updated correctly. In addition, when the match lists of
the new RGNs are set, only RGNs that share a face with the new RGN are considered.

144 Global Mapping: Minimal Route Graphs Under Spatial Constraints

In the expand operation, planarity is checked whenever a new edge connecting two
existing RGNs is inserted while transforming the graph structure.

The effects of both the planarity constraint and the direction constraints can be
seen in the top picture of Fig. 6.8. A significant number of branches have been cut off
because inconsistency of the hypothesis has been discovered (marked by the cross).
The reasons for discarding a particular node are indicated by the letters below the cross
(‘p’ for planarity, ‘d’ for direction information). For some nodes, both planarity and
spatial consistency are violated. Leaf nodes containing a consistent map hypothesis
are tagged by a check mark.

The bottom search tree shows the result of applying pruning based on planarity
constraint and direction information together with the branch and bound search. From
112 nodes in the original search tree, only 36 are considered. Ten nodes are rejected
because of planarity violation and ten because of inconsistent direction information.
While generation of successor nodes and the update operation can be performed in
polynomial time (with the global consistency check being the most costly operation),
the size of the search tree grows exponentially with the length of history. Therefore, the
important question is whether combining constraint-based pruning and best-first search
can achieve a sufficient reduction of the search space to make the overall approach
feasible. An experimental analysis of this issue based on randomly created graph
environments and exploration runs will be conducted in Sect. 7.3.

6.4 Combining Minimal Route Graph Mapping and AGVG
Representations

In the last section of this chapter, we discuss how the minimal model finding approach
developed above can be applied to construct AGVG representations from a sequence of
observed Voronoi nodes and traversals of Voronoi curves. Obviously, this global map-
ping approach should be based on the most relevant of the Voronoi nodes and only add
the other nodes when the general topology of the environment has been established.

The AGVG setting deviates in several aspects from the theoretical scenario we
studied in the previous sections:

• node signatures provide additional information about RGNs,

• start and end nodes of RGEs (Voronoi curves) can often be perceived together,

• multiple connections between two RGNs are possible,

• reliable perception of direction relations is not given for linear relations or near
the sector boundaries,

• connections are typically not straight lines.

6.4 Combining Minimal Route Graph Mapping and AGVG Representations 145

The information contained in the signatures of Voronoi nodes can be used as an ad-
ditional criterion to decide whether two nodes are compatible as described in Chap. 5.
The second point in the list refers to the fact that in a Voronoi-based mapping approach
the robot typically not only perceives a single Voronoi node but a local Voronoi graph
as defined in Sect. 3.5. This kind of information allows us to extend the route graph
model without explicitly traversing each edge and, in addition, helps reduce the prob-
lems caused by the other deviations from the theoretical framework as we will see
below. The simplest way to incorporate this additional information into the framework
is by adding virtual traversal actions and junction observations to the history whenever
a complete connection is perceived without actually traversing it. These virtual actions
and observations simulate traversing the connecting Voronoi curve and then returning
to the starting Voronoi node.

Including the possibility of multiple connections between two Voronoi nodes in
the framework is straightforward. It only requires a change in the way the match lists
are constructed in the update operation. This change, in principle, increases the size of
the search space. However, the fact that the adjacent nodes are often part of the local
observation means that the difference is negligible in practice.

More serious problems are raised by the last two points in the list. First of all, we
cannot expect that the direction relations of leaving Voronoi curves can be completely
reliably observed in practice. This is especially true for the linear sectors included in
the two direction calculi, which is a general point of criticism with regard to typical
qualitative spatial calculi. As a consequence, instead of always employing base rela-
tions from the respective calculus, we utilize disjunctions of base relations whenever
the perceived direction is a linear relation or lies close to the boundary of a relation
sector. For instance, the perceived cardinal direction relation n and a direction be-
longing to ne but very close to n would both be stored as the disjunction {ne, n, nw}.
When employing disjunctions instead of only base relations, the requirement that di-
rections of matched hallways be identical has to be replaced with the demand that the
intersection of the direction relations not be empty.

A further problem for the utilization of direction information is the fact that Voronoi
curves are typically not straight connections between two Voronoi nodes but, as the
name suggests, curved. Therefore, we cannot expect that a connection leaving node
A to the southwest arrives at node B from the northeast and that consequently B has
to lie southwest of A. If the connecting Voronoi curve is completely contained in the
local observation, this is not a problem as the correct cardinal direction can be read
off directly. In situations in which this is not the case, we simply mark the traversal
action and refrain from employing the direction information for this edge in the global
consistency check. However, we still can use the local direction of the leaving Voronoi
curve for matching junction observations.

The last two points and the adaptations made to deal with them mainly concern the
pruning of the search space based on global consistency. The extended use of coarse
information in the form of disjunctions leads to a diminished inferential power. As a

146 Global Mapping: Minimal Route Graphs Under Spatial Constraints

result the efficiency of this kind of pruning can be significantly reduced. Enforcement
of valid direction orderings and valid junction matchings are affected to a lesser degree.

Overall, while these adaptations may sound rather drastic, the effects in practice
are less severe because of the already mentioned extended observation range. A quan-
titative analysis will be performed as part of the evaluation described in the next chap-
ter (Sect. 7.3.5). This analysis will be based on simulated exploration runs through
AGVGs of real environments. In addition, we will apply the minimal model approach
within an overall Voronoi-based mapping system that combines all the techniques de-
veloped in this work in Sect. 7.4.

147

Chapter 7

Experimental Evaluation

In this chapter, we provide a compilation of the different experimental analyses we
conducted in order to evaluate the techniques and approaches developed in the pre-
vious four chapters. The evaluation also involves the integration of our methods into
different kinds of mapping systems. At the end of the chapter, we describe a map-
ping approach that combines all developed techniques into an overall multi-hypothesis
mapping system.

7.1 Relevance Assessment and HAGVG Construction

We start this chapter by presenting the evaluation done for the Voronoi node rele-
vance assessment, the AGVG simplification, and the HAGVG construction techniques
described in Chap. 4. This evaluation consists of two parts: First, we analyze the ef-
ficiency of the relevance value computation algorithms in order to demonstrate that
the relevance computation is sufficiently fast in practice. Second, we combine these
techniques in an overlay representation approach with the goal of showing its ability to
generate suitable hierarchical route graph representations for several data sets of real
environments.

7.1.1 Efficiency of the Relevance Computation Algorithms

To empirically evaluate the efficiency of the relevance value, we implemented a ran-
dom graph generator that produces pseudo-AGVGs. It first produces a 3-regular graph
for a given number of edges. The nodes are placed on a hexagonal grid and each node
is connected with its three neighbors in the grid. In a second step the number of nodes
is varied by splitting nodes of degree 3 into three nodes of degree 1 while ensuring that
the graph remains connected. This procedure allows us to generate AGVGs with a de-
sired edge-node ratio. This ratio is directly related to the number of cycles appearing in
the graph: the higher the edge-node ratio, the higher the number of cycles in the graph.
In a final step, the length attributes of the edges and the radius attributes of the nodes

J.O. Wallgrün, Hierarchical Voronoi Graphs: Spatial Representation and Reasoning for Mobile Robots,
DOI 10.1007/978-3-642-10345-2_7, © Springer-Verlag Berlin Heidelberg 2010

148 Experimental Evaluation

(a) (b) (c)

Figure 7.1: Examples of the three types of randomly generated test environments that
are used in this chapter: (a) a grid environment, (b) a Delaunay triangulation-based
random graph, and (c) a pseudo-AGVG

are varied randomly. An example of such a pseudo-AGVG is shown in Fig. 7.1(c). The
edge-node ratio of the generated pseudo-AGVGs lies between 1 (tree-formed AGVG)
and 1.5 (3-regular AGVG).

In our comparison, we systematically varied the number of edges and nodes in
the randomly generated AGVGs and applied both the basic variant and the improved
variant of the relevance computation algorithm to the resulting graphs. The resulting
computation times on a 2 GHz Pentium M CPU are shown in Figs. 7.2(a) and 7.2(c).1

All data points are averages taken over 30 different pseudo-AGVGs. Figures 7.2(b)
and 7.2(d) each show two cuts through the data sets for fixed edge-node ratios, one
for a high ratio (|E||V | > 1.47) and one for a ratio close to 1 (|E||V | < 1.1). As the data
shows, the computation time of the basic version of the value computation algorithm
increases significantly when the ratio of edges to nodes goes towards 1. The reason is
that in this case the graphs contain almost no cycles and almost the complete graph is
expanded for each node.

In contrast, the improved version only shows a slight increase towards lower edge-
node ratios as typically only a small part of the graph needs to be considered even for
tree-like structures. Overall, the computation times stayed below 40 ms even for very
large graphs with 1,000 nodes and edges.

As a result, the improved algorithm is efficient enough for all applications con-
sidered in this work, even for utilization within a particle filter mapping approach in
which an update of the relevance values has to take place for every sample in each
update step. If required, a further reduction of computation time can be achieved by
employing the presented incremental update method described in Sect. 4.7.

1Both diagrams show an increasing number of gaps for higher edge and node numbers and an edge-
node ratio close to 1. These are cases in which the random graph generator failed to create suitable
instances in reasonable time.

7.1 Relevance Assessment and HAGVG Construction 149

(a) (b)
 0

 50

 100

 150

 0 200 400 600 800 1000

tim
e

[m
s]

|E|

Computation times of basic relevance computation alg.
|E|/|V|<1.1

|E|/|V|>1.47

(c) (d)
 0

 50

 100

 150

 0 200 400 600 800 1000

tim
e

[m
s]

|E|

Computation times of improved relevance computation alg.
|E|/|V|<1.1

|E|/|V|>1.47

Figure 7.2: Computation times for (a) the basic relevance value computation algorithm
and (c) the improved version depending on the number of nodes and edges in the
randomly generated pseudo-AGVGs. (b) and (d) show the curves for AGVGs with a
high edge-node ratio and graphs with an edge-node ratio close to 1

150 Experimental Evaluation

7.1.2 Combining the HAGVG Construction Methods with a Grid-Based
FastSLAM Approach

In a first experiment to assess the ability of the developed HAGVG generation meth-
ods to construct adequate route graph representations for real environments perceived
through 2D range sensors, we combined them with a grid-map-based FastSLAM ap-
proach (Hähnel et al., 2003a; Stachniss et al., 2005). The result is an overlay represen-
tation approach with a grid map representation at the bottom and an HAGVG on top
of it. In contrast to our general approach of building the route graph representation di-
rectly by incrementally merging locally computed AGVGs, we derive here the lowest
AGVG layer of the HAGVG from the global grid map representation.

The grid map is constructed using a Rao-Blackwellized particle filter as described
in Appendix A.3.2.2. In contrast, to the approach described in Thrun (1998), the
HAGVG is computed not only after a complete grid map has been constructed, but
each time a new observation is incorporated. However, we only compute it for the
most likely particle.

Before we can apply our HAGVG construction techniques, we have to compute
the underlying AGVG from the occupancy grid. This is done by the following steps:

1. A threshold is applied to the smoothed occupancy grid of the most likely particle,
turning it into a binary grid in which each cell is classified as either occupied or
empty.

2. Another binary grid representing a discrete GVD of the environment is extracted
by employing a flux-based thinning approach (see Dimitrov et al., 2000).

3. The GVG is constructed by tracing the pixels forming the discrete GVD. In
addition, attributes (e.g., the node signatures) are determined and annotated to
the graph structure. The result is the final AGVG.

In Figs. 3.8 and 3.9 of Chap. 3, we saw two results of this approach for two dif-
ferent environments. In both cases, two-level HAGVGs have been constructed. Fig-
ure 7.3 illustrates the individual steps of the combined approach for the environment
from Fig. 3.8: Figure 7.3(a) shows the occupancy grid belonging to the most likely
particle while the exploration is still in progress. The trajectories corresponding to all
30 particles used are shown by the red polylines. In Fig. 7.3(b), we see the smoothed
grid map and the discrete GVD resulting from the thinning approach. Figures 7.3(c)
and (d) show the constructed AGVG. Figure 7.3(d) also depicts the nodes’ maximal
inscribed circles and visualizes the vnrm values of the nodes by the node radii. In
Fig. 7.3(e), we see the simplified top-level AGVG which has been extracted with a
threshold value of θ = 2,500 mm. The graph has been reduced from 168 nodes and
202 edges to 46 nodes and 61 edges by the simplification. For the second environment
(Fig. 3.9) the approach lead to a reduction from 1,040 nodes and 1,189 edges to 308
nodes and 456 edges.

7.1 Relevance Assessment and HAGVG Construction 151

(a) (b)

(c) (d)

(e)

Figure 7.3: Steps of the HAGVG construction in the combined grid-based FastSLAM
approach: the grid of the most likely particle together with trajectories correspond-
ing to all particles (a), the smoothed grid with the extracted GVD (b), the constructed
AGVG (c), the AGVG again together with maximal inscribed circles and vnrm val-
ues depicted by node radius (d), and the top-level AGVG derived with a threshold of
2,500 mm (e)

152 Experimental Evaluation

In Fig. 7.4, we show the results of applying different threshold levels to compute a
coarser AGVG. The threshold values chosen are 500 mm, 1,000 mm, 4,500 mm, and
11,000 mm.

The experiments with the real environments reflect the results obtained for the arti-
ficially created AGVGs in the previous section. For the first environment, the basic al-
gorithm took 19 ms and 11,968 expansion steps, while the improved version took 2 ms
and 2,597 steps. For the second example, the values were 368 ms, 142,360 expansions
and 24 ms, 20,650 expansions, respectively. The limiting factor in this overlay-based
mapping approach turned out to be the extraction of the discrete GVD, which has a
complexity of O(n log n) where n is number of cells in the grid. This started to cause
delays when we applied the approach to data sets of very large environments and re-
veals the downsides of the overlay approach, which requires recomputation of the route
graph representation for each step.

7.2 Evaluation of the Voronoi-Based Data Association

We evaluated the performance of our AGVG matching approach by comparing its per-
formance with that of the standard ICNN data association approach. The goal of this
evaluation was to determine the differences in the quality of the computed associations
and the required computation times. The compared versions are the complete AGVG
matching approach as described in Sect. 5.3.3 and the ICNN algorithm given in Algo-
rithm 5 treating the Voronoi nodes as features and including two modifications: (1) We
replace the validation gate in line 3 by the unary compatibility criterion from Eq. 5.18,
but without the local geometry criterion compatiblelocalgeometry, which is not applicable
without reference to the graph topology of the AGVG. (2) We enforce the all-different
constraint by not considering already matched map features for further assignments.
In doing so, we match the nodes from the local AGVG in order of decreasing relevance
as given by their vnrm values. As one advantage of the AGVG matching approach is
that, as a batch association method, it is not completely reliant on pose estimates, we
also evaluate its performance when no pose information is available.

For the comparison of ICNN and AGVG matching, we incorporated both data
association algorithms into a feature-based FastSLAM algorithm based on Voronoi
nodes with the goal of generating different data association problems. A description of
the feature-based Rao-Blackwellized particle filter approach underlying this algorithm
is given in Appendix A.3.2.1. The feature-based FastSLAM algorithm maintains the
global position estimates for the Voronoi nodes used for the matching.

The following modifications were made for the evaluation:

• The input of the algorithm is a sequence of local AGVGs extracted from small
local metric maps describing the robot’s immediate surroundings (see Sect. 7.4.1
for a more detailed description). A low threshold value of θ = 5 mm is used to
filter out unstable parts based on our simplification algorithm. The local metric

7.2 Evaluation of the Voronoi-Based Data Association 153

Figure 7.4: Different top-level AGVGs constructed with θ = 500 mm, θ = 1,000 mm,
θ = 4,500 mm, and θ = 11,000 mm

154 Experimental Evaluation

maps are computed from exploration data collected by a robot equipped with a
laser scanner. Ground truth information about the identity of the Voronoi nodes
has been manually added to the AGVGs. In addition, the input data contains
odometry information relating the local AGVGs.

• For each particle, a complete map AGVG is stored instead of only a set of
Voronoi node features.

• Every time a data association needs to be computed, this is done for both ICNN
and our AGVG matching, and the results are stored together with the required
computation times.

• The update of the map AGVG is based on the the results of the AGVG matching.

In our experiments, we ran the algorithm for two different environments using dif-
ferent start positions in the data sets. The local maps contained on average 19 Voronoi
nodes. The size of the map AGVG varied between 9 and 588 nodes.

To compare the data association quality of the two algorithms, we recorded the
number of wrong assignments in each data association. As correct associations are
more critical when they concern more relevant Voronoi nodes, we also determined
the average vnrm values of the wrongly associated Voronoi nodes. In addition, we
recorded the computation time for each data association. For the AGVG matching
algorithm we also determined the fraction of entries in the edit distance table that
actually had to be calculated. The experiment was performed on a 2 GHz Pentium M
CPU.

Table 7.1 summarizes the results regarding the data association quality for the ex-
periment using the global position estimates. AGVG matching shows a significantly
increased data association quality. 94.67% of all decisions are correct in contrast to
71.50% for the modified ICNN algorithm. Additionally, the average relevance of
wrongly associated nodes is much lower, which means the errors are made for more
irrelevant nodes. In particular, we observed that AGVG matching never made wrong
associations for the most relevant Voronoi nodes of the local map, while ICNN fre-
quently inverts the assignments of very relevant Voronoi nodes positioned close to
each other.

Method Average
number of

errors per data
association

Percentage of
correct

assignments

Average vnrm
value for

wrong
assignments

ICNN 3.42 71.50% 0.55
AGVG matching 0.64 94.67% 0.19

Table 7.1: Comparison of data association quality of ICNN and AGVG matching

7.2 Evaluation of the Voronoi-Based Data Association 155

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300 350 400 450 500 550 600

co
m

pu
ta

tio
n

tim
e

[m
s]

nodes in map

Computation time over map size
ICNN

AGVG matching

Figure 7.5: Comparison of average computation times of ICNN and AGVG matching
depending on the number of nodes in the map AGVG

While an improved data association quality was to be expected because AGVG
matching is a batch association technique whereas ICNN makes individual assign-
ments, the more important question is about the computational costs at which this
improvement can be achieved. Figure 7.5 depicts the average computation times over
the size of the map AGVG (given by the number of Voronoi nodes). It turns out that
the increase in computational costs is surprisingly low. In contrast to the theoretical
upper bound of cubic dependency on the size of the map AGVG, the increase in com-
putation time was almost linear in the investigated range of map sizes. This shows
the effectiveness of the constraint-based pruning and the employed branch and bound
techniques. On average, only 0.00001% of the entries in the edit distance table had to
be computed.

We then repeated the previous experiment for the AGVG matching algorithm, but
this time without employing the pose information in the matching algorithm. This
means that the compatibility criteria compatibleabsdist and compatibleabsdist-gp were re-
moved from compatibleunary (Eq. 5.18). The result of this experiment was that in
87.8% of all cases the AGVG matching approach determined the same data associ-
ation as with pose information and, hence, was able to localize the robot correctly.
In the absence of pose information, AGVG matching still achieved 83.21% correct
assignments. As a result, the approach is also well suited for global localization or
map merging applications. We observed that cases in which the matching resulted in
an entirely wrong localization typically involved local AGVGs with very few nodes,
leading to a high level of ambiguity. The average computation times shown in Fig. 7.6
were noticeably higher than in the first experiment as more possibilities needed to be
explored. However, the approach still scaled well with the size of the map AGVG.
The average percentage of calculated entries in the edit distance table increased to
0.00009% but remained very low in general.

156 Experimental Evaluation

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350 400 450 500 550 600

co
m

pu
ta

tio
n

tim
e

[m
s]

nodes in map

Computation time over map size

Figure 7.6: Average computation times of AGVG matching without pose information

Overall, the experiments described in this section demonstrate that the AGVG
matching approach achieves an excellent ratio between quality and computational cost.
As a result, the approach is not only well suited when a high level of reliability in the
data association is required (e.g., in single-hypothesis Kalman-filter-based approaches)
but also when computational efficiency is required, as in a particle-filter-based map-
ping approach, in which multiple data associations need to be determined in each up-
date step. Furthermore, the exploitation of configurational information makes it appli-
cable for tasks in which no pose information is available. The main shortcoming of
the approach is that it does not form hypotheses which involve closing a loop in the
AGVG. Hence, if it is the goal to use a mapping approach like the feature-based parti-
cle filter employed in the experiment for global mapping, an extension for loop closing
would be required. For tracking and localization purposes this is not necessary.

7.3 Evaluation of the Minimal Route Graph Approach

With regard to the minimal route graph model approach to global mapping described
in Chapter 6, we were especially interested in the following aspects:

• the ability of the overall approach to disambiguate different route graph hypothe-
ses and derive correct route graph models,

• the ability of the approach to prune the search space,

• the individual contributions of planarity and direction constraints,

• the differences between absolute and relative direction constraints,

• and the applicability of the approach to Voronoi graph representations.

7.3 Evaluation of the Minimal Route Graph Approach 157

We evaluated these questions in several experiments, which are described in the
following.

7.3.1 Solution Quality

We first investigated how much the planarity constraint and qualitative direction infor-
mation helps in order to improve the solution quality by ruling out incorrect hypotheses
and, as a result, increase the frequency with which the correct solution is found by the
minimal model approach. Note that with ‘correct’ we mean here that the hypothesis
reflects the actual environment and not only that it is a consistent map hypothesis as
defined in Definition 6.5.

To measure the quality of a solution, we use a simple error measure: We count the
number of wrong decisions in a hypothesis. A wrong decision is made when either two
RGNs have been merged that correspond to different junctions in the environment or
two RGNs that correspond to the same junction have not been merged. We will refer
to this quality measure for map hypotheses as their error distance.

In the experiment, we employed randomly generated environments of the three
types shown in Fig. 7.1. The aim of employing these three types is to get a good mix-
ture of environments with different properties that are likely to affect the performance
of the minimal model approach. Grid environments (Fig. 7.1(a)), for instance, show a
high degree of perceptual aliasing as most junctions look the same even when absolute
direction information is available. Thus, they are more dependent on pruning effects
of planarity and global spatial consistency.

The second type of environment shown in Fig. 7.1(b) consists of graphs that have
been constructed by randomly placing the nodes in the plane, computing the Delaunay
triangulation for these points, and finally removing edges randomly. As a result, we get
graphs which still contain many small cycles but the perceptual aliasing is significantly
reduced. In addition, multiple leaving edges of a node may have the same qualitative
direction so that their cyclic order cannot be expressed when using the cardinal direc-
tion calculus. This allows investigating whether this indeed leads to results that do not
satisfy the conditions of a consistent map hypothesis. The third type of environment
used consists of the pseudo-AGVGs (Fig. 7.1(c)) we encountered in Sect. 7.1.1. In
contrast to the other two types, these environments are connected to a lesser degree
and, hence, contain larger loops and more tree-formed substructures.

To ensure that even searching without pruning is possible in reasonable time, we
used rather small problem instances. We randomly generated environments and histo-
ries so that the number of junctions contained in the correct model would vary between
4 and 16. We will from now on refer to this parameter as the size of the environment.
The length of the involved histories varied between 1× and 2× the size of the envi-
ronment. We then determined (1) how often the solution of the minimal model finding
approach was indeed the correct solution and (2) the average error distance. This was
done for both variants of the minimal model algorithm, CompEnv and VisOnly, and
for the following settings:

158 Experimental Evaluation

• only structural constraints,

• structural constraints and planarity constraint,

• structural constraints and cardinal direction constraints,

• structural constraints, planarity constraint, and cardinal direction constraints.

The observed frequencies in which the correct solution was found and the error
distance averaged over 15,600 runs (20 histories for each of the 13 different sizes for
60 different environments, 20 of each type) are summarized in Table 7.2. For the
CompEnv variant, the correct model is only found very rarely in all four settings.
However, as the average error distances show, the planarity constraint and in particular
the direction constraints significantly improve the solution quality. While the planarity
constraint achieves a 26.27% reduction of error distance, the direction information
decreases the error distance by 85.70%. Combining both planarity and direction con-
straints only gives slightly better results than without applying the planarity constraint.
Overall, the application of the constraints is highly beneficial but in most cases not
sufficient to resolve all ambiguities, typically with regard to junctions that have not
been visited.

For the VisOnly case in which unvisited junctions are not included in the model,
the improvements are even more drastic. While already the basic approach has a much
better success rate and average error distance, the application of the cardinal direction
information finds the correct model in 98.15% of all trials and has an extremely low
average error distance of 0.20, or 0.17 when combined with the planarity constraint.
Figure 7.7 shows how the average error distances increase with the size of the correct
model throughout the experiment. The high number of correctly identified models, at
least in the VisOnly case, is also an indication that the incompleteness of the approach
does not often lead to wrong models in practice.

Method Correct
model found

Average error
distance

CompEnv structural only 4.77% 9.86
structural and planarity 5.97% 7.27
structural and cardinal dir. 50.62% 1.41
structural, planarity, and cardinal dir. 50.92% 1.18

VisOnly structural only 59.00% 5.63
structural and planarity 64.77% 4.07
structural and cardinal dir. 97.92% 0.20
structural, planarity, and cardinal dir. 98.15% 0.17

Table 7.2: Experimental results regarding the solution quality for the different settings

7.3 Evaluation of the Minimal Route Graph Approach 159

(a)

 0

 5

 10

 15

 20

 25

 5 10 15

er
ro

r d
is

ta
nc

e

size [number of junctions in correct model]

Error distance over size for CompEnv
CompEnv, structural

CompEnv, structural+planarity
CompEnv, structural+cardinal directions

CompEnv, structural+planarity+cardinal directions

(b)

 0

 5

 10

 15

 20

 25

 5 10 15

er
ro

r d
is

ta
nc

e

size [number of junctions in correct model]

Error distance over size for VisOnly
VisOnly, structural

VisOnly, structural+planarity
VisOnly, structural+cardinal directions

VisOnly, structural+planarity+cardinal directions

Figure 7.7: Average error distance depending on the size of the correct model for the
CompEnv variant (a) and for the VisOnly variant (b)

In a second experiment, we modified the search procedure so that it runs until all
hypotheses up to the same size as the correct hypothesis have been found. This al-
lows a better assessment of the ambiguity of the available information in the different
settings. We recorded the overall number of hypotheses found and the number of hy-
potheses which are smaller than the correct hypothesis. The results of this experiment
are summarized in Table 7.3. The number of models found depending on the size of
the environment is shown Fig. 7.8. Note that we use a logarithmic scale for the y-axes
because of the rapid growth, especially in the setting which does not involve additional
constraints.

Method Models
found

Smaller
models

found

CompEnv structural only 8387.85 8356.87
structural and planarity 334.18 314.51
structural and cardinal dir. 59.08 53.50
structural, planarity, and cardinal dir. 14.28 10.16

VisOnly structural only 1686.48 1450.08
structural and planarity 237.18 191.85
structural and cardinal dir. 3.61 1.77
structural, planarity, and cardinal dir. 3.09 1.49

Table 7.3: Experimental results regarding ambiguity of information for the different
settings

Overall, the planarity assumption reduced the number of models found by 96.02%
in the case of CompEnv and by 85.94% for VisOnly. However, this still leaves a
rather significant number of alternative models, most of which are actually smaller
than the correct solution. The cardinal direction constraints yield a 99.30% reduction

160 Experimental Evaluation

(a)

 100000

 10000

 1000

 100

 10

 1

 5 10

nu
m

be
r o

f m
od

el
s

fo
un

d

size [number of junctions in correct model]

Models found over size for CompEnv
CompEnv, structural

CompEnv, structural+planarity
CompEnv, structural+cardinal directions

CompEnv, structural+planarity+cardinal directions

(b)

 100000

 10000

 1000

 100

 10

 1

 5 10 15 20

nu
m

be
r o

f m
od

el
s

fo
un

d

size [number of junctions in correct model]

Models found over size for VisOnly
VisOnly, structural

VisOnly, structural+planarity
VisOnly, structural+cardinal directions

VisOnly, structural+planarity+cardinal directions

Figure 7.8: Average number of route graph models found depending on the environ-
ment size for (a) the CompEnv variant and (b) VisOnly (y-axis logarithmically scaled)

for CompEnv and 99.79% for VisOnly. Combining both kinds of constraints results
in reductions of 99.83% and 99.82%, respectively. This shows that CompEnv bene-
fits more from also including planarity checking in addition to the cardinal direction
constraints than VisOnly. An explanation for this is that merging unvisited junctions
allows for many hypotheses which can only be ruled out by not being planar. In the
case of VisOnly, many of these hypotheses have already been ruled out earlier by direc-
tion constraints that are not satisfied. It is also important to note that while the number
of possible models in all settings grows with the size of the environment, many of these
will be ruled out when the length of the exploration history is increased.

In summary, as both experiments show, the planarity constraint and in particular
the cardinal direction constraints are able to resolve most of the model ambiguities
remaining on the structural level, leading to a largely increased solution quality. In the
following, we look more closely on how these constraints affect the search space of
our minimal model finding approach.

7.3.2 Pruning Efficiency

To investigate the effects of the individual settings on the size of the hypothesis space
that has to be searched, we again performed random experiments, running the search
until all solutions up to the size of the correct solution had been determined. By doing
so, we mask out the effects of varying solution quality which otherwise would distort
the comparison. However, this also means that we do not take into account the effects
of applying the branch and bound search approach.

To determine the pruning efficiency, we recorded three values for each trial: (1) the
number of expanded nodes in the search tree, (2) the number of nodes that are put into
the queue, and (3) the maximal queue size occurring during the search. The number of
node expansions gives a good indication of the computational costs involved. The ra-
tio of expanded nodes and hypotheses added to the queue then allows us to determine
the effects of the different settings on the average branching factor in the search tree.

7.3 Evaluation of the Minimal Route Graph Approach 161

Finally, the maximal queue size tells us how many hypotheses were tracked simulta-
neously during the search and, hence, reflects the space consumption.

The results of this experiment are summarized in Table 7.4. Figure 7.9 shows how
the respective values develop with increasing size of the environment. Logarithmic
scale is used for the y-axes in the diagrams for the number of expanded nodes and
maximal queue size.

Method Exp.
nodes

Queued
nodes

Branch.
factor

Max.
queue

size

CompEnv structural only 2407.09 10795.72 4.49 833.96
structural and planarity 284.97 619.93 2.38 86.17
structural and cardinal dir. 39.84 98.70 2.48 13.58
structural, planarity, card. dir. 21.85 35.90 1.64 6.10

VisOnly structural only 790.61 2523.01 3.19 160.88
structural and planarity 254.25 508.79 2.00 47.87
structural and cardinal dir. 20.72 24.45 1.18 2.95
structural, planarity, card. dir. 20.11 23.21 1.15 2.76

Table 7.4: Statistics concerning the pruning efficiency of the different settings

Although the values are not directly comparable as the experiment was run for dif-
ferent size ranges for CompEnv and VisOnly, we clearly see that the CompEnv variant
of the minimal model finding problem is much more complex than the VisOnly vari-
ant. All values increase significantly faster with increasing environment size. The
planarity constraint leads to an 88.16% decrease in node expansions for CompEnv and
67.84% for VisOnly. The average branching factors have been decreased by 46.99%
to 2.38 (CompEnv) and by 37.30% to 2.00 (VisOnly). For the cardinal direction con-
straints, we see a very high reduction of node expansions of 98.35% for CompEnv and
97.38% for VisOnly. Interestingly, for CompEnv the average branching factor of 2.48
is higher than for the planarity constraint. Looking at Fig. 7.9(c), we see that for larger
environment sizes the initial growth of the branching factor for the planarity constraint
slows down and becomes more effective than the cardinal direction constraints. By
combining both, an extreme reduction in node expansions of 99.99% was achieved for
CompEnv, which corresponds to an average branching factor of 1.64. For VisOnly, we
get the common picture that the cardinal direction constraints are more effective than
for the planarity constraint, leading to a 99.97% reduction (branching factor 1.18), and
that the combination only leads to a minor further improvement.

The average maximal queue sizes occurring in the experiment reflect what we al-
ready saw for the number of node expansions and the average branching factor. When
using planarity and cardinal direction constraints, on average only about six hypothe-
ses had to be tracked simultaneously for CompEnv, and less than three for VisOnly.
We conclude that the planarity assumption and the coarse direction information given

162 Experimental Evaluation

(a)

 10000

 1000

 100

 10

 1

 5 10

ex
pa

nd
ed

 n
od

es

size [number of junctions in correct model]

Expanded nodes over size for CompEnv
CompEnv, structural

CompEnv, structural+planarity
CompEnv, structural+cardinal directions

CompEnv, structural+planarity+cardinal directions

(b)

 10000

 1000

 100

 10

 1

 5 10 15 20
ex

pa
nd

ed
 n

od
es

size [number of junctions in correct model]

Expanded nodes over size for VisOnly
VisOnly, structural

VisOnly, structural+planarity
VisOnly, structural+cardinal directions

VisOnly, structural+planarity+cardinal directions

(c)
 0

 1

 2

 3

 4

 5

 5 10

br
an

ch
in

g
fa

ct
or

size [number of junctions in correct model]

Branching factor over size for CompEnv
CompEnv, structural

CompEnv, structural+planarity
CompEnv, structural+cardinal directions

CompEnv, structural+planarity+cardinal directions

(d)
 0

 1

 2

 3

 4

 5

 5 10 15 20

br
an

ch
in

g
fa

ct
or

size [number of junctions in correct model]

Branching factor over size for VisOnly
VisOnly, structural

VisOnly, structural+planarity
VisOnly, structural+cardinal directions

VisOnly, structural+planarity+cardinal directions

(e)

 10000

 1000

 100

 10

 1

 5 10

m
ax

im
al

 q
ue

ue
 s

iz
e

size [number of junctions in correct model]

Maximal queue size over size for CompEnv
CompEnv, structural

CompEnv, structural+planarity
CompEnv, structural+cardinal directions

CompEnv, structural+planarity+cardinal directions

(f)

 10000

 1000

 100

 10

 1

 5 10 15 20

m
ax

im
al

 q
ue

ue
 s

iz
e

size [number of junctions in correct model]

Maximal queue size over size for VisOnly
VisOnly, structural

VisOnly, structural+planarity
VisOnly, structural+cardinal directions

VisOnly, structural+planarity+cardinal directions

Figure 7.9: Comparison of the pruning efficiency of the different settings for CompEnv
(a, c, e) and VisOnly (b, d, f)

7.3 Evaluation of the Minimal Route Graph Approach 163

by the qualitative cardinal relations lead to a much increased efficiency of the mini-
mal model finding approach, which would otherwise only be feasible for very small
problem instances. In the following, we investigate the performance of another form
of direction information, namely relative direction information.

7.3.3 Absolute vs. Relative Direction Information

One of the goals of our analysis was to compare the effects of employing absolute
direction information (e.g., relations from the cardinal direction calculus) and relative
direction information (e.g., OPRA2 relations). For this purpose, we repeated the
previous experiments for determining the solution quality and pruning efficiency, using
the complete branch and bound search approach and searching until the first minimal
model has been found. The two settings used (again for both CompEnv and VisOnly
variants) were

• structural constraints, planarity constraint, and cardinal direction constraints,
and

• structural constraints, planarity constraint, and OPRA2 constraints.

Besides the previously considered parameters, we distinguished the exact rea-
sons for rejecting a hypothesis. The reasons are (1) direction ordering violation,
(2) junction matching violation, and (3) global consistency violation as distinguished
in Sect. 6.3.2.1. As also discussed there, direction ordering only plays a role for ab-
solute direction information. In addition, it can only occur at unvisited junctions and,
hence, when using the CompEnv variant.

Figure 7.10 shows the diagrams for the relevant assessment parameters. With re-
gard to solution quality, the change from absolute to relative direction information
increased the average error distance from 1.64 to 1.82 for CompEnv and from 0.44
to 0.68 for VisOnly. The average number of expanded nodes increased from 49.12
to 82.60 (branching factor from 1.33 to 1.42) for CompEnv and from 12.79 to 13.93
(branching factor from 1.21 to 1.24) for VisOnly. The average maximal queue size
increased from 17.17 to 35.72 and from 3.74 to 4.31, respectively.

This decrease in performance is not surprising as relative direction information in
general allows for more perceptual aliasing. Taking this into account, the decrease in
performance seems to be rather mild and still much lower than for the less constrained
settings investigated in the previous experiments. In particular for the VisOnly variant,
the approach still performs very well.

When we look at the reasons for rejection that are summarized in Tables 7.5 and
7.6, we see that direction ordering violation does not play an important role at all. Junc-
tion matching violations and global consistency violations show about the same rejec-
tion ratios for absolute and relative direction information in the case of the CompEnv
variant. Global consistency violation occurs much more often than rejection caused by
junction matching violations.

164 Experimental Evaluation

(a)

 0

 5

 10

 5 10 15

er
ro

r d
is

ta
nc

e

size [number of junctions in correct model]

Error distance over size for CompEnv
CompEnv, cardinal directions

CompEnv, opra2

(b)

 0

 5

 10

 5 10 15

er
ro

r d
is

ta
nc

e

size [number of junctions in correct model]

Error distance over size for VisOnly
VisOnly, cardinal directions

VisOnly, opra2

(c)
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 5 10 15

ex
pa

nd
ed

 n
od

es

size [number of junctions in correct model]

Expanded nodes over size for CompEnv
CompEnv, cardinal directions

CompEnv, opra2

(d)
 0

 10

 20

 30

 40

 50

 5 10 15

ex
pa

nd
ed

 n
od

es

size [number of junctions in correct model]

Expanded nodes over size for VisOnly
VisOnly, cardinal directions

VisOnly, opra2

(e)
 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 5 10 15

br
an

ch
in

g
fa

ct
or

size [number of junctions in correct model]

Branching factor over size for CompEnv
CompEnv, cardinal directions

CompEnv, opra2

(f)
 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 5 10 15

br
an

ch
in

g
fa

ct
or

size [number of junctions in correct model]

Branching factor over size for VisOnly
VisOnly, cardinal directions

VisOnly, opra2

(g)
 0

 50

 100

 150

 200

 5 10 15

m
ax

im
al

 q
ue

ue
 s

iz
e

size [number of junctions in correct model]

Maximal queue size over size for CompEnv
CompEnv, cardinal directions

CompEnv, opra2

(h)

 0

 5

 10

 15

 20

 5 10 15

m
ax

im
al

 q
ue

ue
 s

iz
e

size [number of junctions in correct model]

Maximal queue size over size for VisOnly
VisOnly, cardinal directions

VisOnly, opra2

Figure 7.10: Performance comparison of absolute direction information (cardinal di-
rection relations) and relative direction information (OPRA2 relations)

7.3 Evaluation of the Minimal Route Graph Approach 165

Method Reason % of rejected
hypotheses

cardinal direction calculus direction ordering violation 0.59%
junction matching violation 23.84%
global consistency violation 75.57%

OPRA2 relations direction ordering violation —
junction matching violation 23.09%
global consistency violation 76.91%

Table 7.5: Distribution of reasons for rejection involving the direction information
(CompEnv variant)

Method Reason % of rejected
hypotheses

cardinal direction calculus direction ordering violation —
junction matching violation 78.73%
global consistency violation 21.27%

OPRA2 relations direction ordering violation —
junction matching violation 55.59%
global consistency violation 44.41%

Table 7.6: Distribution of reasons for rejection involving the direction information
(VisOnly variant)

166 Experimental Evaluation

For VisOnly, the picture changes significantly. While for relative direction in-
formation global consistency violations still are the reason for about 44.41% of all
rejections, only 21.27% are caused by global inconsistencies in the case of absolute
direction information. The general increase of junction matching violations clearly
results from the fact that for VisOnly complete information about all junctions is avail-
able. This allows rejection of many hypotheses early, before global consistency is even
tested. The difference between absolute and relative direction information in the case
of VisOnly shows that absolute direction information reduces perceptual aliasing to
a much higher degree and, hence, increases the predominance of rejections based on
junction matching violations.

The two main conclusions from the experiment described here are that relative di-
rection information is inferior to absolute direction information in terms of solution
quality and pruning efficiency and that it depends to a larger degree on global consis-
tency checking. Nevertheless, it is still applicable and has the advantage that it often
can be obtained more easily, and sometimes also more reliably.

However, while experimenting with larger problem instances, it became clear that
the application of theOPRA2 calculus is much more problematic when we turn from
effects on the search space to computational costs in general. This aspect will be
further elaborated in the next section.

7.3.4 Overall Computational Costs

When investigating the pruning efficiency in Sect. 7.3.2, we restricted ourselves to
small problem instances which allowed us to apply the model finding approach even
without planarity and direction constraints. In addition, we focused on the effects
of the different settings on the search space. For the complete minimal model find-
ing approaches featuring all kinds of constraints, we further investigated how the ap-
proaches perform for larger problem instances. This investigation yielded two main
results: First, even when applying all constraints, the CompEnv variant seems to be
applicable only to small environments. Second, the computational costs of global con-
sistency checking when employing the relative OPRA2 calculus quickly becomes
excessive, making this approach infeasible for large environments for both CompEnv
and VisOnly.

The first point is illustrated in Figs. 7.11(a) and 7.11(b), which show the node
expansions for CompEnv and VisOnly for increasing size of the environment. In com-
parison to the VisOnly variant, the number of node expansions grows very rapidly.
Even for cardinal direction information, the computation takes several seconds for
environments with only about 20 junctions. Hence, the CompEnv variant seems lim-
ited to scenarios with a small number of junctions in which the ability to predict the
structure of unvisited parts is worth the increased computational costs in practice. In
larger environments, employing spatial reasoning to more local prediction problems
(e.g., “could this hallway be a shortcut leading to junction X?”) seems to be a more
promising approach.

7.3 Evaluation of the Minimal Route Graph Approach 167

(a)
 0

 1000

 2000

 3000

 5 10 15 20

ex
pa

nd
ed

 n
od

es

size [number of junctions in correct model]

Expanded nodes over size for CompEnv
CompEnv, cardinal directions

CompEnv, opra2

(b)
 0

 1000

 2000

 3000

 5 10 15 20 25 30
ex

pa
nd

ed
 n

od
es

size [number of junctions in correct model]

Expanded nodes over size for VisOnly
VisOnly, cardinal directions

VisOnly, opra2

(c)
 0

 10000

 20000

 30000

 5 10 15

co
m

pu
ta

tio
n

tim
e

[m
s]

size [number of junctions in correct model]

Computation time over size for CompEnv
CompEnv, cardinal directions

CompEnv, opra2

(d)
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 5 10 15

co
m

pu
ta

tio
n

tim
e

[m
s]

size [number of junctions in correct model]

Computation time over size for VisOnly
VisOnly, cardinal directions

VisOnly, opra2

(e)
 0

 10000

 20000

 30000

 5 10 15

co
m

pu
ta

tio
n

tim
e

[m
s]

size [number of junctions in correct model]

SparQ computation time over size for CompEnv
CompEnv, cardinal directions

CompEnv, opra2

(f)
 0

 1000

 2000

 3000

 4000

 5000

 5 10 15

co
m

pu
ta

tio
n

tim
e

[m
s]

size [number of junctions in correct model]

SparQ computation time over size for VisOnly
VisOnly, cardinal directions

VisOnly, opra2

Figure 7.11: Comparison of computational costs of the overall minimal model finding
approach for CompEnv and VisOnly

168 Experimental Evaluation

The second result concerning the global consistency checking for OPRA2 is il-
lustrated in Figs. 7.11(c)–7.11(f). In Figs. 7.11(c) and 7.11(d) we see the overall com-
putation time on a 2.6 GHz Opteron CPU. It becomes immediately apparent that the
computation time for OPRA2 increases much more rapidly compared to that of the
cardinal direction calculus than could be explained by the increase in node expansions.
The reason for this becomes clear when we look at the time spent on the global con-
sistency check with SparQ, which is depicted in Figs. 7.11(e) and 7.11(f). While the
computation times for the cardinal direction calculus only make up a small fraction of
the overall computation costs, they rise sharply forOPRA2. In some cases they make
up 90% of the overall computation time.

There are at least two issues that contribute to this explosion in computational
costs for the global consistency check. One reason is the large number of base rela-
tions in the OPRA2 calculus. For the 64 base relations, it is not feasible to maintain
the complete composition table in memory, which would consist of 264 × 264 entries.
Hence, every composition result required by the algebraic closure algorithm is com-
puted by SparQ from the results of composing the individual base relations making up
the relations.

The second problem concerns the size of constraint networks. As we mentioned,
the number of variables for the cardinal direction calculus corresponds to the number
of RGNs in the hypothesis. ForOPRA2, we get 2× the number of edges as variables.
As the time complexity of the algebraic closure algorithm grows cubically with the
number of variables, the combination of these two aspects quickly leads to the quick
rise in computational costs which we observed in the diagrams.

Overall, the problem of high computational costs for the global consistency check
of OPRA2 is unfortunate because, as we saw, for VisOnly global consistency check-
ing contributes much more to the pruning of the search space than in the case of the
cardinal direction calculus. Still, leaving out the global consistency check and relying
entirely on junction matching is an option for larger environment as long as no rela-
tive calculus with better properties is available. Otherwise, it seems that the VisOnly
variant in combination with absolute direction information is the only one that scales
sufficiently well to larger environments.

In the next section, we investigate the applicability of this approach to Voronoi
graph representations.

7.3.5 Application to Real AGVG Data

To evaluate the applicability of the minimal route graph model approach to AGVG
representations, we employed AGVGs computed from real exploration data follow-
ing the approach described in Sect. 7.1.2. We then generated random paths through
the AGVGs and simulated the adaptations described in Sect. 6.4. We assumed that a
neighbor of the current Voronoi node is simultaneously perceived if both are less than
2.5 m apart. If this is not the case, no direction relation is derived for this connection.
Over the complete experiment, the neighbor was not perceived for 37% of all edges.

7.3 Evaluation of the Minimal Route Graph Approach 169

(a)

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30

er
ro

r d
is

ta
nc

e

size [number of junctions in correct model]

Error distance over size for card. directions
cardinal directions, original
cardinal directions, AGVG

(b)

 0

 5

 10

 15

 20

 0 5 10 15 20

er
ro

r d
is

ta
nc

e

size [number of junctions in correct model]

Error distance over size for opra2
opra2, original
opra2, AGVG

(c)
 0

 50

 100

 150

 0 5 10 15 20 25 30

ex
pa

nd
ed

 n
od

es

size [number of junctions in correct model]

Expanded nodes over size for card. directions
cardinal directions, original
cardinal directions, AGVG

(d)
 0

 50

 100

 150

 0 5 10 15 20

ex
pa

nd
ed

 n
od

es

size [number of junctions in correct model]

Expanded nodes over size for opra2
opra2, orgininal

opra2, AGVG

Figure 7.12: Comparison of the original minimal model approach with its adaptation
for AGVGs for cardinal direction constraints and OPRA2 constraints

In the experiment, we restricted ourselves to the VisOnly variant and compared
the version with simulated adaptations with the original version without adaptations
for both cardinal direction constraints and OPRA2 constraints. The results of the
experiment are summarized in Fig. 7.12. It shows that the required adaptations only
lead to a minor degradation of performance with regard to solution quality as given by
the average error distance and with regard to pruning efficiency as given by the average
number of node expansions. Overall, the average error distance increased from 0.79
to 1.48 for the cardinal direction calculus and from 2.11 to 3.21 for OPRA2. The
average number of node expansions increased from 54.87 to 59.25 and from 110.74 to
142.29, respectively.

These results allow the conclusion that the effects of perceiving entire connections
and additional information about junctions (node signatures) sufficiently compensate
for the overall weaker direction information. Another factor certainly is that, as we
saw, the VisOnly variant relies to a lesser degree on rejections caused by global con-
sistency violations. The results of actually applying the approach to Voronoi data from
a real exploration experiment in contrast to the simulated exploration used here will be
described in the next section.

170 Experimental Evaluation

7.4 A Complete Multi-hypothesis Mapping System

In our last experiment, we combine the techniques developed in Chaps. 4–6 of this
book into a single multi-hypothesis mapping system. We use the extraction and data
association methods to extract a history of passed relevant Voronoi nodes from local
metric maps. The minimal model approach is then applied to generate a hypothesis
about the topological structure of the environment. Based on such a hypothesis, a
complete AGVG representation can be constructed and finally turned into an HAGVG.
Figure 7.13 illustrates the interplay between the different components of the mapping
system. We briefly describe the components in more detail, before we turn to the
experimental evaluation.

HAGVG construction

local grid map

partial AGVGs route graph
hypothesis

HAGVG

Minimal model search

AGVG matching &
history extraction

Local AGVG extraction

Metric mapper

Map AGVG
construction

local AGVG

history information

map AGVG

Figure 7.13: Overall multi-hypothesis mapping system integrating the techniques de-
veloped in this book

7.4.1 Local Metric Mapping and Local AGVG Computation

A single 180◦ scan typically does not provide sufficient information to compute a
local AGVG. Therefore, we use a probabilistic grid mapping approach to compute
local metric maps representing the robot’s immediate surroundings. We then extract
the local AGVG from these maps. The local map for a particular position of the robot
is constructed from the laser scans taken along the last 5 m of travel distance before
the robot reached that position and the next 5 m of travel distance. As a result, the
history extraction slightly lags behind the actual motion of the robot but the quality of
the extracted local AGVGs is increased.

The extraction of the local AGVGs is performed in the same way as that described

7.4 A Complete Multi-hypothesis Mapping System 171

in Sect. 7.1.2. It includes the removal of uncertain parts from the graph due to un-
known areas in the local grid map. As a consequence, the resulting AGVG is typically
not connected and we further reduce it to the component that describes the immediate
neighborhood of the robot’s current position. Finally, the relevance values are com-
puted and the simplification algorithm is used with a very low threshold value to prune
the most irrelevant parts of the local AGVG.

7.4.2 Data Association for Node Tracking and History Generation

The data association module uses the AGVG matching algorithm developed in Chap. 5
to identify correspondences between consecutive local AGVGs. Based on the result
of the data association and the relevance values of the Voronoi nodes, new history
information is generated. The result is a sequence of passed Voronoi nodes and edges.
Whenever a Voronoi node with a relevance above a given threshold is passed, a new
pair of traversal action and junction observation is handed over to the minimal model
computation module to be added to the history.

Similarly to the previous experiment, two cases are distinguished for each direction
constraint (cf. Sect. 6.4): If both relevant nodes are part of the same local map, the
direction will be treated as a constraint on the positions of these two nodes, which
can be employed for global consistency checking. If this is not the case, only the
direction relations for the leaving edges are stored, and these will not be used for
global consistency checking.

In addition, the merging algorithm of Sect. 5.4 is used to construct local route
graphs for the edges traversed between two Voronoi nodes that are added to the history.
These partial AGVGs can then be used to construct a complete route graph from the
result of the global minimal model computation.

7.4.3 Global Mapping and Post-processing

The output of the tracking module is an extension to the exploration history, consisting
of a new Voronoi curve traversal and Voronoi node observation. This new information
is used by the minimal route graph finding module to update the search tree and com-
pute a new minimal hypothesis which becomes the new current map hypothesis. For
the minimal model computation, we use the VisOnly variant of the algorithm.

When a new minimal model has been computed, a complete route graph can be
constructed by replacing the edges in the hypothesis with the partial AGVGs computed
by merging local AGVGs. Finally, the techniques from Chap. 4 can be used to generate
a complete HAGVG representation from this global AGVG.

7.4.4 Experiments

In the experiments we performed with the described mapping system, we tested its
ability to create correct map hypothesis for a real exploration data set. The environment

172 Experimental Evaluation

used is shown in Fig. 7.14. The figure shows a grid map of the environment together
with the trajectory of the robot. During the exploration, the robot first traversed the
main loop of the environment twice in clockwise direction. On the third round, it
also entered all the rooms along the main loop. Then, it traversed the main loop in
counterclockwise direction. Finally, it moved along the smaller loop lying inside the
main loop and back again.

Placed around the central grid map, Fig. 7.14 shows a selection of local grid maps
generated during the exploration together with the extracted local AGVGs. Voronoi
nodes relevant enough to be included into the history are marked by the black circles
around them. The local maps are mainly from the first traversals of the main loop and
the inner loop.

The history generated for this exploration run consists of 150 traversal actions and
151 junction observations. Using the cardinal direction calculus, the overall minimal
route graph model computed was indeed the correct model of the environment. The
picture at the top of Fig. 7.15 depicts this route graph model. In the bottom figure, we
see the complete AGVG constructed by replacing the edges with their respective partial
AGVGs. The picture in the middle shows a coarser layer derived via simplification.
Together with the AGVG in the bottom figure, it could form an HAGVG representation
of the environment.

We also repeated the experiment employing the OPRA2 calculus instead of the
cardinal direction calculus. The resulting minimal model had an error distance of 3
resulting from wrongly merging RGNs in the room at the bottom that could be entered
via two different doors. However, while the computation took 16 seconds for the
cardinal direction calculus, it took over ten hours for OPRA2.

Figure 7.16 shows how error distance of the current minimal model, number of
node expansions, and queue size develop over the 150 exploration steps for both spatial
calculi. The diagram for the error distance shows that the variant using the cardinal
direction calculus immediately settles for the correct hypothesis when the first loop
traversal is completed in step 23, while this takes almost the entire second loop for
OPRA2. We later see another increase in error distance caused by entering the new
rooms. We also see that the number of node expansions required and the number of
tracked alternative hypotheses is significantly higher for OPRA2. However, the main
reason for the hugely increased computation time is again the time required for the
global consistency checking.

7.4.5 Discussion

The complete mapping system described in this section mainly serves the purpose of a
demonstrator for the techniques developed in this book. The experiments have shown
that at least the VisOnly variant of the minimal model finding approach combined with
the cardinal direction constraints is applicable to construct AGVG representations from
real range data. Relevance assessment, simplification, and AGVG matching were em-
ployed to extract the required history information, while the developed hierarchization

7.4 A Complete Multi-hypothesis Mapping System 173

Figure 7.14: Grid map of the environment used to test the overall mapping system with
selected local maps (data set has been recorded at the Intel Research Lab, Seattle, and
is available at http://radish.sourceforge.net/, courtesy of D. Hähnel)

174 Experimental Evaluation

Figure 7.15: Representations computed by the overall mapping system: a depiction
of the computed minimal route graph model (top), the constructed complete AGVG
(bottom), and a coarser version generated by simplification (middle)

7.4 A Complete Multi-hypothesis Mapping System 175

(a)

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

er
ro

r d
is

ta
nc

e

step

Error distance over step number
cardinal directions

opra2

(b)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

ex
pa

nd
ed

 n
od

es

step

Expanded nodes over steps
cardinal directions

opra2

(c)

 0

 50

 100

 150

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

qu
eu

e
si

ze

step

Queue size over steps
cardinal directions

opra2

Figure 7.16: Development of error distance, node expansions, and queue size during
the exploration experiment

176 Experimental Evaluation

approach allowed us to derive a complete HAGVG representation.
In contrast to the overlay approach used in Sect. 7.1.2, the AGVG is constructed di-

rectly, without the need for a global coordinate-based representation. When compared
with the feature-based FastSLAM approach employed in Sect. 7.2, one advantage is
that keeping track of all sound hypotheses prevents the particle depletion problem.
Moreover, the contained relative metric information can be globally inconsistent with-
out diminishing the applicability of the representation for navigation.

One disadvantage of the approach described here is that it relies on the correctness
of the history information. When we experimented with different data sets that, for in-
stance, contained dynamics caused by people moving in the vicinity of the robot, these
often lead to deviations in the local AGVGs and the generated history information that
would cause the minimal model computation to fail. Besides improving the methods
for extracting the history information, an alternative approach would be to extend the
approach so that it can cope with ambiguity in the history information.

Overall, there are many ways in which the fundamental techniques described in
this book can be integrated and combined with existing mapping approaches in order
to develop robust mapping systems for Voronoi-based spatial representation. We will
point out some promising directions for future research in the next and final chapter of
this text.

177

Chapter 8

Conclusions and Outlook

We conclude this book by summarizing and discussing the results achieved and by
providing an outlook on promising directions of future research arising from the work
described in the previous chapters.

8.1 Summary and Conclusions

We started this work with the observation that most work on robot mapping is concen-
trated on developing powerful techniques for uncertainty handling for a small number
of elementary low-level representation approaches: grid-based representations, geo-
metric representations, and landmark-based representations. However, as we argued,
in order to realize or explain high-level spatial cognitive abilities, more emphasis needs
to be put on representational matters. Robot mapping needs to be studied in a general
setting involving the perspectives of both spatial representation and uncertainty hand-
ling. In addition, it needs to explicitly take into account the operations that employ the
environmental model to successfully solve spatial tasks.

Although more abstract forms of representation and more complex forms of orga-
nization have been proposed, we observed that only a small number of attempts have
been made to achieve a high level of robustness in the presence of uncertainty for these
approaches. This led to the main thesis of this work, namely that the combination of
uncertainty handling methods developed for the traditional representations with ab-
stract high-level representations is a very promising direction of research. It has the
potential to lead to mobile robots with a much higher level of spatial capabilities and
competences and, hence, to open up a new range of applications.

In the following, we directed our attention at one particular class of representations,
namely route graph representations, derived as abstractions of the generalized Voronoi
diagram of the environment. With the annotated generalized Voronoi graph (AGVG)
containing a particular set of node and edge attributes, we introduced a concrete repre-
sentation approach and proposed a hierarchical organization of this representation, the
HAGVG. As we discussed, the advantages of this hierarchical AGVG representation

J.O. Wallgrün, Hierarchical Voronoi Graphs: Spatial Representation and Reasoning for Mobile Robots,
DOI 10.1007/978-3-642-10345-2_8, © Springer-Verlag Berlin Heidelberg 2010

178 Conclusions and Outlook

are compactness and good scalability, well-suitedness for global route planning and
route-based communication, the ability to consistently represent environments without
requiring metrical consistency, and the ability to serve as a core structure for anchoring
any kind of additional information in the form of further annotations. Furthermore, the
approach directly facilitates systematic exploration of an environment in order to con-
struct a complete environmental model. Parts of the proposed annotations are intended
to help distinguish different places and, hence, improve localization without the need
for a complete geometric model.

We also identified several limitations of the approach. The area of applicability
is restricted as the approach presupposes that the environment shows a clearly pro-
nounced route structure, e.g., indoor environments or path networks. Moreover, insta-
bility of the underlying generalized Voronoi diagram when the input data is noisy poses
a challenge for the development of reliable construction and maintenance methods.

The focus of this book then has been on developing fundamental techniques re-
quired for the construction and maintenance of the HAGVG representation, mainly
with regard to a mobile robot equipped with a laser scanner or similar range sensors
which yield a 2D geometric description of the robot’s surroundings. This work has
been conducted on three levels.

First, we were concerned with the reliable autonomous extraction of AGVGs and
hierarchical construction from a data structure point of view. The correct identification
of corresponding features was taken for granted. Second, we studied the problem of
robust data association for local matching and tracking of Voronoi nodes. Third, we
turned to the global mapping problem, which we formulated as the problem of finding
a minimal route graph model under spatial constraints. We studied this problem with a
focus on effects of reliable qualitative directional information in combination with the
planarity constraint.

In the following, we briefly summarize the results achieved for each of these three
areas and with regard to the overall mapping approaches discussed in the evaluation
chapter.

8.1.1 Extraction and HAGVG Construction

Concerning the extraction of AGVGs and the construction of a hierarchical represen-
tation, we proposed measures for the relevance of a Voronoi node and the regions ac-
cessible via its edges. The relevance values can be computed without requiring a com-
plete geometric description of the environment, simply from the information stored
in an AGVG. We developed efficient computation and incremental update algorithms.
Based on the measures, we developed a simplification algorithm for AGVGs. This
algorithm forms the core of our hierarchy generation scheme used to autonomously
build up HAGVGs which represent the environment at different levels of granularity.

We also demonstrated that the concept of relevance coincides well with the sta-
bility of Voronoi nodes under noisy conditions. As a result, the approach can also
be employed to deal with problems of the graph construction process caused by the

8.1 Summary and Conclusions 179

instability of the underlying Voronoi diagram. The described approach worked very
reliably and served as a basis for the other techniques developed in this book.

8.1.2 Data Association and Matching

To achieve reliable data association, we extended constraint-based branch and bound
approaches by incorporating structural constraints arising from the graph topology and
the combinatorial embedding of AGVGs. We developed a dynamic programming ap-
proach based on edit distance to match AGVGs. The relevance values of nodes were
used to determine the costs of the different edit operations. We incorporated several
types of constraints in order to reduce the search space: (1) unary constraints derived
from node similarity and, if available, position estimates, (2) binary distance con-
straints, and (3) ternary angle constraints. In order to achieve a high level of efficiency,
we restricted the approach to tree-formed AGVGs (which we enforced if needed) and
exploited the fact that the resulting trees are ordered as specified by the planar embed-
ding of the AGVGs.

When we evaluated and compared our approach with a standard individual com-
patibility nearest neighbor approach, it proved to yield very low error rates with only
a mild increase in computational costs. The approach worked very well to locally
track Voronoi features, even when no odometry information is available. However, the
approach in its current form does not support loop closing.

8.1.3 Minimal Route Graph Model Finding

Bringing together work from topological mapping and qualitative spatial reasoning,
we finally formulated global mapping of a graph-like environment as the problem of
finding a minimal route graph model that explains a sequence of junction observations
and hallway traversal actions. A solution to the problem has been developed consist-
ing of a best-first branch and bound search through the interpretation tree of possible
associations of junctions.

We integrated planarity and spatial consistency checking into the search algorithm
in order to prune the search space. For spatial consistency checking, we employed
constraint-based reasoning techniques based on qualitative spatial calculi. In our eval-
uation we focused on direction information and compared the effects of absolute and
relative direction information. We also compared two versions of the algorithm, one
that computes complete environment models (CompEnv) and one that only models the
junctions that have actually been observed (VisOnly).

The results of the evaluation using randomly generated graph worlds as well as data
extracted from a few selected real environments showed that the combination of the
planarity constraint and in particular the direction constraints significantly reduced the
search space and ambiguity of the history. This resulted in a very high rate of correctly
mapped environments once the exploration paths covered a large enough fraction of

180 Conclusions and Outlook

the environments. One general advantage of the approach is that as soon as the cor-
rect model has been determined, the time needed for incorporating new observations
becomes constant.

When combining the VisOnly variant with absolute direction information, the ap-
proach was efficient enough for all the environments we used in the experiments.
However, employing relative direction information in the form of relations from the
OPRA2 calculus quickly led to runtime problems caused by the global consistency
test, which does not scale sufficiently well to larger environments.

The CompEnv variant, on the other hand, allows making predictions about con-
nections and junctions that have not been observed directly. This can, for instance,
help to find shortcuts. However, the experiments showed that this approach is limited
to smaller environments because of the increased complexity of the problem. Hence,
it can only be employed beneficially in suitable environments (e.g., a network of hall-
ways) and when observations are provided on a very high level of abstraction (e.g., the
robot can detect junctions, rooms, etc.).

In order to apply the theoretical minimal model finding framework to our Voronoi-
based representations, a set of modifications and relaxations was required. However, it
turned out that these adaptations only lead to a small decrease in overall performance.

8.1.4 Complete Mapping Approaches

The evaluation of the techniques developed in this work also involved three different
examples of combining the (H)AGVG representation with uncertainty handling meth-
ods which demonstrated that this approach is indeed fruitful. The overlay approach
consisting of a grid map representation generated via a FastSLAM approach and an
HAGVG demonstrated the robustness of the route graph extraction and abstraction
methods. The approach, however, does not scale well to very large environments be-
cause of the high space consumption and the increased computation time needed to
extract the underlying Voronoi graph.

By employing a feature-based FastSLAM approach that uses the developed ex-
traction and data association techniques and builds up the route graph representation
directly, we were able to avoid these problems, but our approach does not facilitate
loop closing. In addition, the approach is subject to the particle depletion problem.

In the final mapping system, we used the extraction methods and the data associa-
tion techniques in order to derive a history of observations and actions at a high level of
abstraction. Applying the minimal route graph model finding approach then allowed
us to determine the correct route graph hypothesis. This approach has the advantage
that no absolute coordinates need to be assigned to the Voronoi nodes and the relative
metric information contained in the route graph may be globally inconsistent without
diminishing its applicability. However, like many other approaches to robot mapping,
this approach still depends on the correctness of the extracted history and, hence, the
extraction and data association processes. Unfortunately, errors at these levels cannot

8.2 Outlook 181

be ruled out entirely and extensions of the approach are required, for instance involving
multiple alternative histories.

Nevertheless, this overall mapping system demonstrates that with the developed
techniques we have achieved a significant progress towards the robust learning of
Voronoi-based route graph representations for mobile robots. Part of this is due to
the fact that fine metric relations are only considered at a local level, while at the top
level we were more concerned with abstract relations of connectivity and coarse di-
rection relations. This made the discrete multiple-hypothesis approach to the global
mapping problem feasible. Techniques such as the data association based on ordered
tree matching also could easily be adapted for other kinds of route graph representa-
tions used for robot mapping. The minimal route graph model finding framework is
very general with regard to the actual representation approach and application area,
and can be employed whenever local observations of decision points should be in-
tegrated into a global graph model. To give an example, an outdoor robot able to
reliably detect ways and paths in a park could very well use the minimal route graph
model framework for global mapping without employing a Voronoi-based approach.

8.2 Outlook

We close this text by discussing open questions and promising continuations aris-
ing from the work presented here. We start at the technical level and then gradually
broaden our view coming back to the main theses of the work, resulting research di-
rections, and general challenges for the field of mobile robot research.

8.2.1 Extensions of the Work Described in Chaps. 3–6

In Chap. 3, we argued that it is one advantage of the route graph representation that
it makes it easy to anchor additional information in the form of further attributes to
its nodes and edges. From a representational point of view, one such kind of infor-
mation that is very relevant for navigation and route-based communication in humans
is landmark information, e.g., information about salient objects encountered along a
route segment or at a decision point (Richter, 2007). In addition, distinct landmarks
have the potential to greatly improve localization and further reduce ambiguities with
regard to different map hypotheses. Hence, it would be desirable to include and exploit
landmark information in the Voronoi-based mapping approach. However, to make the
step from simple geometric features to distinct landmarks that can support human-
robot communication, largely increased sensor and object recognition capabilities are
required on the side of the robot.

With regard to the relevance measure for Voronoi nodes and the automatic hierar-
chy generation approach, one thing that could be improved is the treatment of cycles.
As we explained, we treat leaving edges that are part of cycles as maximally relevant,
which is reasonable when we consider real loops within the environmental structure.

182 Conclusions and Outlook

For small cycles caused by clutter or small obstacles, this approach can yield non-
intuitive results. While it should be possible to adapt the relevance measures to dis-
tinguish these two situations, we believe that aiming at a way to compute the Voronoi
graph from a local description which excludes all kinds of clutter and objects (e.g., only
with respect to the walls in an indoor environment) will be more advantageous. We
will come back to this point again below.

In the work on minimal route graph model finding under hard spatial constraints in
Chap. 6, we focused on directional information, restricting the relative positions of the
junctions in a route graph model. The reason for doing so is that directions of leaving
hallways can often be perceived very reliably, which makes them a good candidate
for pruning. Still, other kinds of spatial information can be available as well, and
while direction information here is treated as information about junctions, information
regarding the traversed hallways can also be used.

The first thing that comes to mind here is information about the length of a tra-
versed hallway, which would restrict the distance between the connected junctions.
While extending the theoretical framework for this kind of information is straight-
forward, the lack of qualitative distance calculi or real positional calculi comprising
distance and direction information already shows that distance information is not such
a good candidate for use as a hard constraint for pruning.

As we also discussed in Chap. 6, the individual checking of planarity and consis-
tency of the direction information means that the entire procedure has to be classified
as an incomplete method that may not discover and discard all inconsistent hypotheses.
The facts that the cardinal direction calculus cannot express the cyclic edge orderings
of the combinatorial embedded AGVGs and that the consistency check based on alge-
braic closure is incomplete in the case of the OPRA2 calculus can cause additional
undiscovered inconsistencies. Although we found no indication that this is a problem
in practice during the experimental evaluation, a complete approach would naturally
be desirable. However, it seems doubtful that a complete approach can be achieved
without increasing the computational costs in a way that makes the application within
the search algorithm infeasible.

One thing we did not investigate closer in this work is the effects of applying finer-
grained qualitative information. For relative direction information, this would directly
be possible by switching to a higher granularity parameter within theOPRAm calculi
family. For absolute direction information, one option would be to employ a variant of
the Star calculus (Renz & Mitra, 2004). In general, if the sensor system can reliably
provide information at this finer granularity, a noticeable increase in pruning efficiency
and solution quality can be expected.

8.2.2 Combining Voronoi Graphs and Uncertainty Handling

The three different ways of combining Voronoi-based route graph representations and
uncertainty handling methods considered in Chap. 7 of this book have to be seen more
as case studies in order to evaluate the developed techniques rather than as perfect

8.2 Outlook 183

solutions. For instance, the final overall mapping system discussed in Sect. 7.4, as
mentioned, still has the shortcoming that it relies on a correct sequence of Voronoi
node observations and Voronoi curve traversal actions, which in turn is reliant on cor-
rect tracking of these features while the robot moves through the environment. Hence,
robustness could be further increased by considering alternative histories whenever the
data association becomes ambiguous. Alternatively, uncertainty arising from extrac-
tion and data association might be expressed in the history and incorporated into the
search algorithm.

Another promising approach would be to combine the constraint-based framework
with probabilistic methods to estimate the likelihood of the individual hypotheses by
incorporating information that is currently not used on the global level, e.g., global
position estimates. This likelihood assignments could be used in multiple ways: to
distinguish between multiple existing minimal hypotheses, to reject hypotheses for
which the likelihood falls below a certain threshold, or to limit the number of hypothe-
ses tracked by discarding the least likely ones when the number of hypotheses starts to
exceed the limit.

In principle, it would also be possible to drop the minimal model idea and turn the
algorithm into one that searches for the most likely route graph hypothesis as in the
lazy data association approach described by Hähnel et al. (2003), while still enforc-
ing the hard constraints. The crucial problem of these approaches is to formulate an
adequate probabilistic model of the processes involved in the Voronoi graph computa-
tion. In how far rough approximations, e.g., based on similarity, can be employed here
remains to be investigated.

8.2.3 Challenges for Voronoi-Based Representation Approaches

One downside of Voronoi-based representations we have already mentioned multiple
times is their restricted applicability as the environment needs to suit a route-based
approach. For robots equipped with laser range finders, problems can arise even in
indoor environments, either when the environment contains very large open areas or
when it is extremely cluttered.

Large open areas can cause problems because when the limited range of the laser
scanner prevents the detection of even the nearest obstacle boundaries, no local GVD
can be computed. With the range of today’s laser range finders and the computation
of the GVD from a local metric map this problem becomes less severe. Alternatively,
Beeson et al. (2005) recently proposed an extension of the GVG called the extended
Voronoi graph in which open areas are represented by edges enclosing them at a certain
distance from the boundaries. Incorporating this approach into our system seems in
principle possible, but would require us to rework some of the techniques.

Highly cluttered environments, on the other hand, can cause a lot of difficulties
because they can lead to a high density of nodes and mini-cycles (e.g., when a robot
only sees the legs of chairs and tables in a cafeteria). Again, we suggest that the most
adequate approach is to deal with these kinds of problems on the extraction level by

184 Conclusions and Outlook

generating an intermediate representation only containing the most stable obstacles
and computing the underlying GVD from there. However, this requires scene under-
standing capabilities which are beyond current technology.

In recent years, a lot of research has been undertaken to extend 2D mapping ap-
proaches to full 3D mapping. From the perspective of a route graph representation,
this step only would make sense if the agent is also able to freely move in 3D space.
As this is not the case for the wheeled mobile robots we have been considering here,
it seems more reasonable to exploit the 3D sensor information in order to improve the
computation of a normal 2D embedded route graph. For instance, for the extraction
of the underlying GVD, a local metric 3D representation would be advantageous. It
would for instance remove problems caused by situations in which the robot some-
times does and sometimes does not see certain obstacles because of varying height
or inclination of the laser scanner. In addition, local information to improve the lo-
calization could be extracted from the 3D map as well and then annotated to the 2D
route graph. The resulting system would consolidate local 3D geometric information
into local 2D information and then further into local route graphs which are integrated
in order to produce the global route graph representation. If indeed a 3D embedded
equivalent of the (H)AGVG is needed, a good starting point would be an extension of
the GVG to higher dimensions proposed by Choset which ensures that the resulting
structure is still a connected network of one-dimensional curves (Choset & Burdick,
2000; Choset et al., 2000).

One major problem of the Voronoi-based approach and similar route graph ap-
proaches that we have not touched on in this work is dealing with dynamics. As the
Voronoi-based approach attempts to determine the topology of free space, it is particu-
larly sensitive to changes that affect this topology. For instance, an object temporarily
placed in the middle of a hallway will induce a change from a single Voronoi curve
to two new ones passing this object to the left and right. Such changes can signifi-
cantly complicate the matching and may require a modification of the graph structure
of already mapped areas when they are detected.

Overall, different kinds of dynamics will need to be tackled at different levels,
and most of them are more adequately dealt with by working around the sensor and
recognition limitations of current robots instead of within the context of mapping.
Changes caused by objects moving around the robot, for instance, may be filtered
from the sensor data or their effects could be completely masked out by following our
long-term suggestion of basing the Voronoi computation only on stable objects. The
latter approach could also deal with changes caused by the replacement of movable
objects. Adequately dealing with topological changes as caused, for instance, by doors
will only be possible by incorporating improved object recognition capabilities and
background knowledge into the mapping process. From the mapping point of view,
the hardest problem is probably caused by long-term changes to the main structure
of an environment, e.g., by moving the inner walls within a configurable building.
However, these kinds of changes also tend to confuse humans and may well just trigger

8.2 Outlook 185

the learning of a new model from scratch.
Finally, while in this work we have only considered mapping as a passive proce-

dure that processes the history of observations and actions, another interesting direc-
tion of research would be to use the state of the multi-hypothesis search tree used in
the minimal model approach in order to actively guide the exploration behavior of the
robot. For instance, the robot could be deliberately moved to a place that allows decid-
ing between two possible hypotheses. As a result, the number of hypotheses that need
to be tracked simultaneously could be reduced significantly.

8.2.4 Challenges for Qualitative Spatial Reasoning

Aside from the robot mapping problem, this book has also resulted in some interesting
observations with regard to abstract spatial reasoning. The results with regard to spatial
consistency checking based on qualitative direction information can well be seen as a
challenge for future research on qualitative spatial reasoning. As we have argued, none
of the currently existing directional spatial calculi ideally fit the demands arising from
our theoretical problem.

The cardinal direction calculus, for instance, while having good computational
properties cannot express cyclic ordering information. For relative directional calculi
like the OPRA2 calculus, the standard constraint reasoning techniques like algebraic
closure are typically incomplete. In addition, even the application of the standard
algebraic closure algorithm quickly became infeasible for OPRA2.

Therefore, either new qualitative calculi or new reasoning techniques for consis-
tency checking are needed. Alternatively, if there is a fundamental conflict between
the different demands, the involved trade-offs have to be investigated further. Finally,
calculi integrating different aspects of space would ultimately be required if the theo-
retical problem is to be extended by other qualitative spatial information in addition to
the directional information.

8.2.5 The Future: Towards Spatially Competent Mobile Robots

At the beginning of this text, we argued that in order to advance towards more capa-
ble robots able to operate in large-scale heterogeneous environments, to communicate
about space with other robots or with humans, and to interpret and utilize external-
ized spatial information in the form of sketches or real maps, a turning away from
the simple homogeneous and sensor-near representation approaches is required. The
hierarchical route graph representations considered in this work naturally can only be
seen as a tiny step in this direction, providing a suitable conceptualization for indoor
environments, street networks, etc. And while realization of higher cognitive abilities
based on this kind of representation was outside the scope of this text, work in this
direction has already started, e.g., with regard to carrying out verbal route instructions
(Shi et al., 2007). However, to achieve the overall goal, it seems likely that such an
approach will only be one building block in the pool of representation schemes or

186 Conclusions and Outlook

conceptualizations, from which a robot can choose the most suitable one based on the
properties of the considered part of the environment or the task at hand.

From the previous discussions concerning the general improvement of robustness
and dealing with dynamics, it should have become clear that we think that progress
with regard to more abstract spatial representations and complex forms of organiza-
tion depends to a large degree on progress achieved in other areas of robotics and AI
research. The key components in our opinion are improved object recognition and
scene analysis capabilities and the inclusion of background knowledge, spatial and
also non-spatial (e.g., regarding stability, temporal aspects, or typical behavior), into
the mapping process. As we pointed out, the techniques developed in this work can
directly benefit from advancement in these fields.

In the long term, such a development could mean that robot mapping will turn
more and more into an all-embracing AI-complete problem. At any rate, there can be
little doubt that robot mapping will remain a challenging and exciting field of research
for years to come.

187

Appendix A

Mapping as Probabilistic State
Estimation

In the following, we provide a brief summary of the fundamental mapping techniques
developed in the area of probabilistic robotics. For more detailed overviews, we refer
you to Thrun et al. (2005), Thrun (2002), and Frese (2006a).

In probabilistic robotics, robot mapping is treated as a state estimation problem:
The robot’s environment is a dynamic system with a state that is only partially observ-
able by the robot through its perceptions and is affected by the indeterministic results
of its actions. Thus, the robot can only estimate the true state of the environment from
its history of observations and actions (provided by odometry measurements or motion
controls).

The state of the environment is described as a set of random variables that are
often continuous and comprise variables for all modeled properties of the external
world as well as for the robot’s own state. For instance, if the environment is modeled
by the positions of five important point landmarks in a two-dimensional coordinate
system, this would result in 5 × 2 continuous random variables (two variables for
each landmark, representing its x and y coordinates) plus typically three continuous
variables describing the robot’s pose. The complete state is then referred to by a single
n-dimensional random vector x with one dimension for each random variable. In a
dynamic system, state variables may change over time. Typically, discrete time steps
are assumed and indices are used to indicate the time step considered, e.g., xt for the
state at time step t, starting with x0.

The state estimation problem now is the task of computing the conditional joint
probability density function p(xt|a1:t, o1:t) over all state variables from a given start-
ing distribution p(x0) and the sets of observations o1:t = o1, ..., ot and actions a1:t =
a1, ..., at. ai here is the action that leads from xi−1 to xi, oi is the observation corres-
ponding to xi, and we assume that the robot starts in x0 by performing action a1. The
conditional probability distribution represents the robot’s belief about the state of the
world.

188 Mapping as Probabilistic State Estimation

Generally, it is assumed that a successor state xt only depends on the previous state
xt−1 and (although indeterministically) on the action at chosen at time point t−1. This
means the entire history of states passed before xt−1 plays no role once xt−1 is known.
This is known as the Markov property. The dynamic system then becomes a (partially
observable) Markov chain and p(xt|a1:t, o1:t) = p(xt|xt−1, at).

However, the Markov property is only an approximation when it comes to robot
applications in the real world. One reason for this is that the state model is always only
an approximate model of the current state of the world, focusing on the most relevant
aspects for the application at hand. Hence, some parameters affecting the result of
actions are typically not modeled. For instance, if the state vector does not contain the
current status of the robot’s battery, the result of the robot’s actions does not depend on
the current state alone but also on the sequence of actions that lead to it (if the series
of actions has completely exhausted the battery, the robot is unlikely to move at all).

A.1 The Recursive Bayes Filter

In probabilistic robotic approaches it is assumed that development of the state of the
dynamic system is determined by the laws of probability theory. The fundamental
formula underlying these approaches is the recursive Bayes filter, which is derived by
applying Bayes law to express the posterior probability distribution p(xt|o1:t, a1:t):

p(xt|o1:t, a1:t) =
p(ot|xt, o1:t−1, a1:t) p(xt|o1:t−1, a1:t)

p(ot|o1:t−1, a1:t)
(Bayes law) (A.1)

= η p(ot|xt, o1:t−1, a1:t) p(xt|o1:t−1, a1:t) (A.2)

where η is the normalization factor that ensures that the probabilities integrate to one.
η is independent of xt and can be reformulated by applying the formula of total prob-
ability:

η =
1

p(ot|o1:t−1, a1:t)

=
1∫

p(ot|xt, o1:t−1, a1:t) p(xt|o1:t−1, a1:t) dxt
(tot. prob.) (A.3)

Assuming that the Markov property holds as described above, Eq. A.2 can now
be reduced by realizing that given the state xt, the previous history of actions, ob-
servations, and states provides no further evidence for the probability distribution of
receiving observation ot:

p(xt|o1:t, a1:t) = η p(ot|xt, o1:t−1, a1:t) p(xt|o1:t−1, a1:t)
= η p(ot|xt) p(xt|o1:t−1, a1:t) (Markov prop.) (A.4)

p(ot|xt) is typically referred to as the sensor model as it describes the probability
of obtaining a particular observation given the current state of the world and has to be
determined for the sensor apparatus of the robot at hand.

A.1 The Recursive Bayes Filter 189

In the next two steps, Eq. A.4 is turned into a recursive version: p(xt|o1:t, a1:t) is
computed from p(xt−1|o1:t−1, a1:t−1). First, the law of total probability is applied to
the rightmost term:

p(xt|o1:t, a1:t) = η p(ot|xt) p(xt|o1:t−1, a1:t)

= η p(ot|xt)
∫
p(xt|xt−1, o1:t−1, a1:t) p(xt−1|o1:t−1, a1:t) dxt−1

(tot. prob.) (A.5)

Then, at is removed from p(xt−1|...) under the conditional independence assump-
tion that controls are not selected based on current state:

p(xt|o1:t, a1:t) = η p(ot|xt)
∫
p(xt|xt−1, o1:t−1, a1:t) p(xt−1|o1:t−1, a1:t) dxt−1

= η p(ot|xt)
∫
p(xt|xt−1, o1:t−1, a1:t) p(xt−1|o1:t−1, a1:t−1) dxt−1

(cond. ind.) (A.6)

In a final step, the Markov property is used again to simplify the leftmost term of
the integral by considering that given the current state and the action taken in this state,
past actions and observations bear no further evidence on the successor state and thus
can be dropped from the conditional probability:

p(xt|o1:t, a1:t) = η p(ot|xt)
∫
p(xt|xt−1, o1:t−1, a1:t) p(xt−1|o1:t−1, a1:t−1) dxt−1

= η p(ot|xt)
∫
p(xt|xt−1, at) p(xt−1|o1:t−1, a1:t−1) dxt−1

(Markov prop.) (A.7)

The term p(xt|xt−1, at) is the so-called motion model that similarly to the sensor
model has to be determined for the robot. Given these two models, the recursive Bayes
filter as provided in Eq. A.7 describes how the probability distribution for time step t
can be determined from the probability distribution for time step t− 1.

However, in most realistic cases exact computation and representation of the prob-
ability distribution is not feasible. Exceptions are discrete state spaces, where the inte-
gral is replaced by a sum, and situations in which the probabilities follow a particular
parametric distribution and can be computed by a closed form version of Eq. A.7 (see
Sect. A.2 about parametric filters). In all other cases, approximations have to be em-
ployed which can broadly be classified into parametric filters (Sect. A.2) and particle
filters (Sect. A.3).

In general, incorporating a new action by computing the result of the integral in
Eq. A.7 is referred to as the prediction step, while incorporating a new observation by
multiplication of the sensor model with the result of the prediction step (followed by
normalization) is called the correction step.

190 Mapping as Probabilistic State Estimation

A.2 Parametric Filters

Parametric filters employ parametric probability density functions in order to repre-
sent p(xt|o1:t, a1:t). As a consequence, their application is limited to scenarios in
which p(xt|o1:t, a1:t) is either guaranteed to always follow this particular parametric
distribution or at least to be reasonably approximated by this kind of parametric distri-
bution.

The main approaches in this class are the Kalman filter (Kalman, 1960) and the
information filter (Mutambara, 1998), which both employ multivariate normal distri-
butions. We will only describe the Kalman and its extension, the extended Kalman
filter, here.

A.2.1 Kalman Filter

The Kalman filter was developed as a filtering method for systems which fulfill the
following conditions:

1. the state space is continuous (no discrete state variables),

2. the Markov assumption underlying the recursive Bayes filter holds,

3. the motion model is linear Gaussian (linear in its arguments plus Gaussian noise),

4. the sensor model is linear Gaussian,

5. the initial state probability p(x0) is Gaussian.

Under these conditions the posterior of the Bayes filter always stays normally dis-
tributed and the integral and multiplications of Eq. A.7 can be computed in closed
form.

In the Kalman filter, the normal probability distributions are represented by their
means and covariance matrices. The linear Gaussian assumption for the motion model
means that the system develops according to the linear equation:

xt = Atxt−1 +Btat + vt (A.8)

where At and Bt are non-random matrices ensuring the linearity of the state transition
and vt is an additive random noise vector that is normally distributed with 0 mean and
covariance matrix Qt.

The linear Gaussian sensor model assumption means that observations depend on
the state according to the equation:

ot = Ctxt + wt (A.9)

where Ct is a non-random matrix and wt is an additive noise vector that is normally
distributed with 0 mean and covariance matrix Rt.

A.2 Parametric Filters 191

The closed form formulas for updating the mean and covariance matrix based on
the recursive Bayes filter are then given by

µt = Atµt−1 +Btat (A.10)

Σt = AtΣt−1A
T
t +Qt (A.11)

Kt = ΣtC
T
t (CtΣtC

T
t +Rt)−1 (A.12)

µt = µt +Kt(ot − Ctµt) (A.13)

Σt = (I −KtCt)Σt (A.14)

I here stands for the identity matrix, and the auxiliary quantityKt is called Kalman
gain. The difference between observation and expected observation (ot − Ctµt) in
Eq. A.13 is referred to as the innovation.

In the context of robot localization and mapping, the most limiting factor of the
Kalman filter is that it does not provide a good approximation when multiple distinct
hypotheses exist (for instance, being in one particular room or another in the case of
localization), meaning that the real probability distribution is multimodal. In contrast,
the normal distribution employed in the Kalman filter is unimodal. When using the
Kalman filter to approximate a multimodal distribution, the mean will most likely lie
somewhere between the modes of the real distribution.

During mapping, the mean vector and covariance matrix grow whenever an ob-
served feature is classified as not yet contained in the map during the data association
step. The Kalman filter approach generally relies on a correct data association as oth-
erwise the filter tends to diverge rather quickly. The size of the covariance matrix Σt

grows quadratically with the number of features contained in the map. If the dimen-
sionality of the observation vector is small compared to the dimensionality n of the
state space, the time complexity of the Kalman filter is dominated by the O(n2) costs
of the matrix multiplications.

A.2.2 Extended Kalman Filter

The requirements of linear state transition and linear sensor model are rather restrictive
and rarely hold in practice. Therefore, different extensions have been conceived for the
Kalman filter, in which the linearity assumption is weakened. In the extended Kalman
filter a normally distributed approximation of the posterior is computed by using a
linear approximation of the motion model and the sensor model when computing the
covariance matrices in the prediction and correction steps. The linearizations used are
the first-order Taylor expansions developed around µt and µt, respectively.

As we are now considering potentially nonlinear functions, the motion model and
sensor model of Eqs. A.8 and A.9 are replaced with

xt = f(at, xt−1) + vt (A.15)

ot = g(xt) + wt (A.16)

192 Mapping as Probabilistic State Estimation

This results in the following update equations for the extended Kalman filter:

µt = f(at, µt−1) (A.17)

Σt = FtΣt−1F
T
t +Qt (A.18)

Kt = ΣtG
T
t (GtΣtG

T
t +Rt)−1 (A.19)

µt = µt +Kt(ot − g(µt)) (A.20)

Σt = (I −KtGt)Σt (A.21)

where f and g have been replaced by the Jacobians Ft = ∂f
∂x

∣∣∣
µ,at

and Gt = ∂g
∂x

∣∣∣
µt

in

Eqs. A.18, A.19, and A.21 because of the linearization.
The time complexity of the extended Kalman filter is the same as for the basic

Kalman filter.

A.3 Nonparametric Filters

In contrast to parametric filters, nonparametric filters can approximate arbitrary prob-
ability distributions. They typically represent the probability distributions by a finite
number of samples over the state space. Two main groups can be distinguished: His-
togram filters partition the state space into regions and store a single probability value
for each region. In a particle filter the samples are randomly drawn from the probabil-
ity distribution they represent. We will focus on particle filters here.

A.3.1 Particle Filter

In the particle filter approach, a set of n samples (or particles) xk,t, 0 ≤ k < n
is maintained at each time step. The probability is represented by the density of the
particles. More precisely, the likelihood for a particular state xt to be part of the sample
set at time step t is supposed to be proportional to p(xt|a1:t, o1:t).

The basic particle filter algorithm works as follows:

1. For every sample xk,t−1 from the previous sample set, a sample xk,t is randomly
determined according to p(xt|at,xk,t−1) (prediction step).

2. For every new sample xk,t, an importance factor wk,t is computed which is the
probability of observing ot given xk,t (correction step):

wk,t = p(ot|xk,t) (A.22)

3. Particles xk,t are randomly chosen from the set xk,t determined in step 1 accord-
ing to the importance weights determined in step 2 (resampling step). The result
is a new set of particles representing the posterior for time step t.

A.3 Nonparametric Filters 193

Due to its stochastic nature, the particle filter has a variance which depends on the
number of particles used: the higher the number of particles, the lower the variance.
Strictly speaking, the particle filter only converges to the correct posterior for an infi-
nite number of particles. A related problem is the so-called particle depletion problem,
the problem that no particle may reside near the correct state because the number of
particles is too small to cover all regions with a high probability (the probability dis-
tribution has too many modes). Overall, the “right” number of particles depends on
the dimensionality of the state space and the complexity of the represented probabil-
ity distribution. For many applications, a rather small number of particles has been
demonstrated to be sufficient.

The variance problem caused by losing diversity of particles can be alleviated by
reducing the frequency of resampling. In this case, the important factors are also stored
and, when no resampling is done, are updated by the following operation:

wk,t = p(ot|xk,t) wk,t−1 (A.23)

In a resampling step, the importance factors then have to be reinitialized to 1. The
decision on when to perform resampling can, for instance, be based on the variance of
the importance factors: If the variance is high, resampling is advisable; otherwise not.

A.3.2 Rao-Blackwellized Particle Filter and FastSLAM

One important particle filter approach is the so-called Rao-Blackwellized particle filter
(Doucet et al., 2000). The general idea is to marginalize out substructures from the
posterior distribution. In the context of robot mapping, the key realization is that if
the state vector xt is split into two parts, the robot’s pose st and the rest of the state
variables simply referred to as the map m, the posterior for the complete history of
poses s0:t (the robot’s trajectory), and m can be factorized in the following way:

p(s0:t,m|o1:t, a1:t) = p(s0:t|o1:t, a1−t) p(m|s0:t, o1:t, a1:t) (A.24)

The result is a product of two probability distributions: The right term describes the
problem of estimating the map for known poses and can typically be computed exactly.
The left part is a probability distribution that estimates the trajectory of the robot from
the history of observations and actions and will be computed approximately using a
particle filter approach. Accordingly, Rao-Blackwellized particle filters developed for
robot mapping work in the following way: The particles represent the distribution
over all trajectories, which means each particle represents a particular trajectory. In
addition, each particle maintains its own map posterior p(m|s0:t, o1:t, a1:t) based on
its trajectory.

Rao-Blackwellized particle filters for robot mapping have been first described for
a simple discrete state space by Murphy (2000) and then been realized on real robots
for feature-based representations by Montemerlo et al. (2002) and later for grid maps
(Hähnel et al., 2003a) under the term FastSLAM.

194 Mapping as Probabilistic State Estimation

A.3.2.1 Feature-Based FastSLAM

Montemerlo et al. applied the idea of Rao-Blackwellized particle filters to feature-
based representations (Montemerlo, 2003; Montemerlo et al., 2002). In this case, the
map m consists of the positions mi of l landmarks. Given the sequence of poses
s0:t, the position of each feature is conditionally independent of the positions of the
other features. Thus, each feature location can be marginalized out individually and
Eq. A.24 is replaced with:

p(s0:t,m|o1:t, a1:t) = p(s0:t|o1:t, a1:t)
l∏

i=1

p(mi|s0:t, o1t , a1t) (A.25)

Each particle of the particle filter used for p(s0:t|o1:t, a1:t) then maintains a set
of extended Kalman filters, one for estimating the position of each landmark. The
landmark estimators are organized in a binary tree so that the resampling step can be
performed in logarithmic time, resulting in an overall time complexity of O(n log l)
for one update, where n is the number of particles employed. In addition, the pre-
diction step and the correction step only require the robot’s current pose and not the
complete trajectory; therefore each particle only needs to maintain the current pose.
Data association can be performed for each particle individually or by sampling over
different data associations. An improvement that incorporates ot in the prediction step
is described in Montemerlo et al. (2003) and the resulting algorithm is called Fast-
SLAM 2.0.

A.3.2.2 Grid-Based FastSLAM

In the approach developed in Hähnel et al. (2003a) (see also Stachniss et al. (2005)) the
maps associated with each particle are grid maps which are updated using a standard
occupancy grid mapping approach to compute p(m|s0:t, o1:t, a1:t) = p(m|s0:t, o1:t).
The particle filter is only updated after several steps and is based on odometry estimates
derived from scan matching and a learned parametric motion model. This results in
a significant performance gain, allowing us to map large environments or use fewer
particles.

A similar improvement to the prediction step as developed in the FastSLAM 2.0
algorithm is described for the grid-based variant in Grisetti et al. (2007a). More im-
provements are discussed in Grisetti et al. (2007b).

195

Appendix B

Qualitative Spatial Reasoning

Research on qualitative spatial reasoning (QSR) started at the end of the 1980s inspired
by earlier work on temporal reasoning (Allen, 1983; van Beek, 1992; Freksa, 1992a).
One goal of this research field is the development of efficient reasoning formalisms
about sets of qualitative spatial relations. The most important reasoning problem is
the satisfiability problem of deciding whether a set of spatial statements is consistent.
The results of this research typically come in the form of so-called constraint calculi
for expressing and reasoning about a particular aspect of space like mereotopology
(Egenhofer, 1989; Randell et al., 1992; Renz & Nebel, 1999), direction and orientation
(Dylla & Moratz, 2005; Frank, 1991; Freksa, 1992b; Ligozat, 1993, 1998; Moratz
et al., 2000, 2005; Renz & Mitra, 2004; Schlieder, 1995), and position (Moratz et al.,
2003). The expressiveness is limited to conjunctive relational statements, but as a
result a better efficiency is achieved compared to more general reasoning approaches
such as full geometric reasoning. Overviews on QSR research can be found in Cohn
& Hazarika (2001) and Ligozat & Renz (2004).

B.1 Qualitative Constraint Calculi

An n-ary qualitative constraint calculus is concerned with n-ary relations over a po-
tentially infinite domain D of (spatial) objects. The most common forms are binary
calculi (n = 2) and ternary constraint calculi (n = 3). Typically the relations are
derived from a jointly exhaustive and pairwise disjoint (JEPD) set of so-called base
relations B.

Definition B.1 (JEPD set of n-ary relations). A set of n-ary relations B ⊆ 2D
n

over a
domain D is called jointly exhaustive and pairwise disjoint (JEPD) if the relations of
B coverDn (

⋃
R∈B R = Dn) and no two relations overlap (∀R,S ∈ B : R∩S = ∅).

The complete set of relations considered in a calculus is the set of general relations
RB derived from the base relations B as follows.

196 Qualitative Spatial Reasoning

Definition B.2 (Set of general relations of a set of JEPD relations). Given a JEPD set
of n-ary relations B, the set of general relations RB of B is the set of all unions of
relations from B:

RB =

{
R ⊆ Dn | ∃X ⊆ B : R =

⋃
x∈X

x

}
(B.1)

In the following, we will simply write {B1, B2, ..., Bm} for the general relation
which is the union of the base relations B1, B2, ..., Bm ∈ B. ∅ will be used for the
empty relation and U for the universal relation (U =

⋃
B∈B B = Dn).

A qualitative constraint calculus employs operations defined over its set of general
relations for elementary reasoning. The calculus has to be closed under these opera-
tions, meaning that the result is always again a relation from RB. The operations can
be grouped into three classes:

1. set-theoretic operations,

2. unary operations that permute the order of objects in the relation tuples, and

3. composition operations that combine information from two (or more) relations.

The set-theoretic operations are the standard complement (̄), union (∪), and inter-
section (∩) operations applied to the relations ofRB.

Definition B.3 (Complement, union, intersection). Given relations R,S ∈ RB, the
operations of complement, union, and intersection are defined as follows:

R̄ = U \R = { x | x ∈ U ∧ x 6∈ R } (complement) (B.2)

R ∪ S = { x | x ∈ R ∨ x ∈ S } (union) (B.3)

R ∩ S = { x | x ∈ R ∧ x ∈ S } (intersection) (B.4)

A set of general relations is trivially closed under these three operations. The
results of the operations can directly be computed by applying the set-theoretic op-
erations to the set notation introduced above (e.g., {B1, B4, B7} ∩ {B4, B7, B8} =
{B4, B7}).

For general n-ary calculi two operations are required to construct all permutations
of the ordering of objects in the relation tuples: The converse operation (^) exchanges
the order of the last and second-to-last objects in the tuples, while the rotation opera-
tion (_) rotates the relation tuples to the right.

Definition B.4 (Converse, rotation). Given a relation R ∈ RB, the operations of
converse and rotation are defined as follows:

R^ = { (d1, ..., dn−2, dn, dn−1) ∈ Dn | (d1, ..., dn−2, dn−1, dn) ∈ R } (converse)
R_ = { (dn, d1, ..., dn−1) ∈ Dn | (d1, ..., dn−1, dn) ∈ R } (rotation)

(B.5)

B.1 Qualitative Constraint Calculi 197

Converse and rotation can be used to generate all permutations of the tuples and
thus allow for a change of perspective: From knowing that relation R holds between
objects A, B, C ((A,B,C) ∈ R), it follows that the relation holding between B,A,C
is (R^)_ (the rotation of the converse ofR). For binary calculi, converse and rotation
do exactly the same thing, namely swap the elements of all relation pairs, and thus
typically only converse is specified. Given that our set of general relations is closed
under converse and rotation, these two operations can be specified by providing the
results in table form. In principle, it is sufficient to provide the result of applying them
to the set of base relations. The result for general relations can then be computed by
taking the union of the results for the contained base relations.

Finally, the composition (◦) operation takes two relations and combines them into
a new relation. For better readability, we define the composition for binary and ternary
calculi individually instead of giving a general definition.1

Definition B.5 (Binary composition). Given two binary relations R,S ∈ RB, their
composition is defined as

R ◦ S = { (A,C) ∈ D2 | ∃B ∈ D : (A,B) ∈ R ∧ (B,C) ∈ S } (B.6)

Definition B.6 (Ternary composition). Given two ternary relations R,S ∈ RB, their
composition is defined as

R ◦ S = { (A,B,D) ∈ D3 | ∃C ∈ D : (A,B,C) ∈ R ∧ (B,C,D) ∈ S } (B.7)

As for the converse and rotation operations, the composition operation of a calculus
is typically specified as a table, either for only the base relations (an m×m matrix for
m base relations) or for the complete set of general relations (a 2m × 2m matrix for m
base relations). In the first case, the composition of two general relations is computed
by taking the union of the component-wise compositions.

We now have all the parts in place to give a definition of an n-ary qualitative con-
straint calculus.

Definition B.7 (n-ary qualitative constraint calculus). An n-ary qualitative constraint
calculus is an 8-tuple (D,B,̄ ,∪,∩,^ ,_ , ◦) where

• the domain D is a potentially infinite set of objects,

• the set of base relations B ⊆ 2D
n

is a finite, nonempty JEPD set of n-ary rela-
tions over D,

• ,̄∪,∩, ^,_ , ◦ are the operations over the set of general relations RB of B as
defined above, and

• RB is closed under ,̄∪,∩, ^,_ , ◦.
1Ternary composition has also been defined as a ternary operator in Condotta et al. (2006).

198 Qualitative Spatial Reasoning

One simple example of a binary calculus used in this work is the cardinal direc-
tion calculus by Ligozat (1998) (cf. Fig. 6.4). It consists of nine base relations for
relating points in the plane (D = R

2) corresponding to the eight cardinal directions
n, ne, w, sw, s, se, e, ne and the equal relation eq. The relations are typically written
as A ne B instead of (A,B) ∈ ne, and the meaning is that object A is to the northeast
of B.

Tables for the converse and composition of the cardinal direction calculus state,
for instance, that the converse of se is nw (if A is to the southeast of B, B is to the
northwest of A) and that the composition of n and sw is {nw,w, sw} (if A is to the
north of B and B is to the southwest of C, it follows that A is either to the northwest,
to the west, or to the southwest of C).

B.2 Weak vs. Strong Operations

In our definition of a qualitative constraint calculus, we demand that the set of general
relations be closed under converse, rotation, and composition (as well as under the
three set-theoretic operations). However, for many sets of JEPD base relations, the
corresponding general relations are not closed at least under some of these operations
(typically under composition). Often it can be shown that no finite set of relations
exists that contains the base relations and is closed under all operations.

In this case, some kind of approximation has to be used in order for us to still
remain with a finite set of relations. This is done by weakening the definition of the
problematic operations by taking the smallest relation fromRB that contains the result
of the strong operation. For instance, a weak composition (in the binary case) would
be defined as the union of base relations that have a nonempty intersection with the
result of the strong composition:

R ◦w S = { B ∈ B | B ∩ (R ◦ S) 6= ∅ } (B.8)

The consequences of having to resort to weak operations for constraint-based rea-
soning as described in the next section are still the topic of ongoing research. A dis-
cussion of this matter can be found in Renz & Ligozat (2005).

B.3 Constraint Networks and Consistency

For the following considerations, we restrict ourselves to binary constraint calculi. All
techniques can be straightforwardly transferred to calculi of a higher arity.

A qualitative constraint calculus provides a formal language restricted to stating
conjunctive relational facts holding between object constants. This can for instance
be used to describe an observed spatial configuration of objects. Uncertainty can be
expressed by referring to general relations that are unions of multiple base relations,
where U represents complete ignorance.

B.3 Constraint Networks and Consistency 199

C

D

A E

B

{n}

{se,e,nw}

{n,ne}
{sw}

{eq}

Figure B.1: A constraint network for the cardinal direction calculus

Such a set of relation statements over a finite set of objects can be depicted as
a constraint network, as shown in Fig. B.1. The objects are denoted by the nodes
and each directed edge is labeled by a constraint which is a relation from RB of the
employed calculus. If the edge connecting object A with object B is annotated with
relation R, this means that the pair of values from D (e.g., coordinates in the plane)
that can be assigned to A and B is restricted to being one contained in R. If no edge
connects two nodes, this corresponds to an edge labeled with the universal relation U ,
which is usually omitted.

A constraint network defines a particular kind of constraint satisfaction problem
(CSP). We will call it a spatial CSP here.

Definition B.8 (Spatial constraint satisfaction problem). A spatial constraint problem
is a triple (QCC,V, C) consisting of a finite set V of variables V1, ..., Vm over the
domain of a given qualitative constraint calculusQCC and a set C of binary constraints
Cij ∈ RB (1 ≤ i < j ≤ m) holding between Vi and Vj whereRB is the set of general
relations of QCC.

A spatial CSP has a solution if one can assign values from the spatial domain to
the variables so that all constraints are satisfied.

Definition B.9 (Assignment). An assignment is a total function assign : V → D that
maps each variable from a spatial CSP to a value from the domain.

Definition B.10 (Solution). A solution of a spatial CSP is an assignment assign which
satisfies all the constraints:

∀Vi, Vj ∈ V, 1 ≤ i < j ≤ m : (assign(Vi), assign(Vj)) ∈ Cij (B.9)

One fundamental reasoning problem of QSR is the satisfiability or consistency
problem, concerned with whether a spatial CSP has a solution or not.

Definition B.11 (Satisfiable, consistent). A spatial CSP is said to be satisfiable or
consistent if it has at least one solution.

200 Qualitative Spatial Reasoning

In contrast to many other kinds of CSPs, the domain in our case is infinite. There-
fore, special techniques for checking consistency had to be developed which are based
on the operations of the calculus. Before we turn to these techniques, we need to define
two more concepts.

Definition B.12 (Scenario, atomic). A spatial CSP (or constraint network) is called a
scenario or atomic if all constraints are base relations.

Definition B.13 (Refinement). A refinement of a spatial CSP P with variable set V
and constraints Cij is another spatial CSP P ′ over the same set of variables with
C ′ij ⊆ Cij for all 1 ≤ i < j ≤ |V|.

Thus, refinements can be constructed by removing base relations from the con-
straints of a CSP. If a constraint network contains constraints that are not base rela-
tions (meaning it is not a scenario), we are often interested in finding a scenario that
is a refinement of this network. If we can show this scenario to be consistent, we
know that the original network is consistent as well. Figure B.2 shows in (a) a non-
atomic network and in (b) and (c) the two only scenarios which are refinements of this
network.

(a)

C

A B

{n}

{sw}

{sw,w}

(b)

C

A B

{n}

{sw}

{sw}

(c)

C

A B

{n}

{sw}

{s}

Figure B.2: A non-atomic constraint network (a) with possible scenarios (b) and (c)

B.4 Checking Consistency

The techniques developed for relational constraint problems are based on weaker forms
of consistency called local consistencies which can be enforced based on the opera-
tions of the calculus and which are under particular conditions sufficient to decide
consistency. If this is the case, enforcing this local consistency without one constraint
becoming the empty relation proves consistency of the original network.

One important form of local consistency is path consistency, which (in binary
CSPs) means that for every triple of variables each consistent evaluation of the first
two variables can be extended to the third variable in such a way that all constraints
are satisfied. To enforce path consistency, a syntactic procedure called the algebraic
closure algorithm is used (Mackworth, 1977; Montanari, 1974). The algorithm runs

B.4 Checking Consistency 201

A

A

A

A

A
B

C

B

C

B

C

B

C
{a}

...

...

{n}
{sw,w}

{nw,w}

B

C

{nw}

{sw,w}
{n}

{nw}

{sw}
{n}

{nw}

{w}{w}

{sw,w}
{n}

algebraically closed?

Figure B.3: Backtracking search through the refinements until an algebraically closed
scenario is found

in O(n3) time and in essence performs the following operation on triples of variables
Vi, Vj , Vk until a fix point has been reached:

Cik = Cik ∩ (Cij ◦ Cjk) (B.10)

If one constraint becomes the empty relation in the process, the original network
was inconsistent. It has to be noted that for some algorithms this procedure does
not actually enforce path consistency but only approximates it. Moreover, for some
calculi, algebraic closure is not sufficient to decide overall consistency in general but it
is sufficient if the network is a scenario. In this case, a backtracking search can be used
in which all possible scenarios of the original network are generated by recursively
splitting constraints as indicated in Fig. B.3. Each generated scenario is checked using
the algebraic closure algorithm. If one is shown to be consistent, the original network
is consistent as well. If no consistent scenario exists, inconsistency of the original
network has been shown. Unfortunately, this approach has an exponential worst-case
time complexity.

For some calculi larger so-called maximal tractable subsets of relations including
the base relations are known for which algebraic closure decides consistency. These
subsets can be used to increase performance of the backtrack algorithm by only refin-
ing until all constraints are relations from the subset (Ladkin & Reinefeld, 1992). Even
when algebraic closure cannot be employed as a decision procedure for consistency, it
can still be used as an incomplete method that may not discover all inconsistencies.

The standard constraint-based reasoning techniques described here have been real-
ized for the most common spatial calculi in the SparQ toolbox (Wallgrün et al., 2006,
2007). This toolbox is used to implement the approach described in Chap. 6 of this
book.

203

Bibliography

Abdulkader, A. M. (1998). Parallel Algorithms for Labelled Graph Matching. Ph.D.
thesis, Colorado School of Mines.

Aguirre, E. & González, A. (2002). Integrating fuzzy topological maps and fuzzy geo-
metric maps for behavior-based robots. International Journal of Intelligent Systems,
17(3):333–368.

Aho, A., Hopcroft, J., & Ullman, J. (1974). The Design and Analysis of Computer
Algorithms. Addison-Wesley.

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications
of the ACM, 26(11):832–843.

Arras, K., Castellanos, J., Schilt, M., & Siegwart, R. (2003). Feature-based multi-
hypothesis localization and tracking using geometric constraints. Robotics and Au-
tonomous Systems Journal, 44(1).

Aurenhammer, F. (1991). Voronoi diagrams – A survey of a fundamental geometric
data structure. ACM Computing Surveys, 23(3):345–405.

Bailey, T. (2001). Mobile Robot Localisation and Mapping in Extensive Outdoor Envi-
ronments. Ph.D. thesis, Australian Centre for Field Robotics, University of Sydney.

Bailey, T., Nieto, J., & Nebot, E. (2006). Consistency of the FastSLAM algorithm. In
IEEE International Conference on Robotics and Automation (ICRA-06), (pp. 424–
429).

Bar-Shalom, Y. & Fortmann, T. E. (1988). Tracking and Data Association. Academic
Press.

van Beek, P. (1992). Reasoning about qualitative temporal information. Artificial
Intelligence, 58:297–326.

Beeson, P., Jong, N. K., & Kuipers, B. (2005). Towards autonomous topological place
detection using the Extended Voronoi Graph. In IEEE International Conference on
Robotics and Automation (ICRA-05), (pp. 4373–4379).

204 Bibliography

Bender, M. A., Fernández, A., Ron, D., Sahai, A., & Vadhan, S. (1998). The power
of a pebble: Exploring and mapping directed graphs. In STOC ’98: Proceedings
of the Thirtieth Annual ACM Symposium on Theory of Computing, (pp. 269–278).
New York, NY, USA: ACM.

Blum, H. (1967). A transformation for extracting new descriptors of shape. In
W. Wathen-Dunn (ed.), Models for the Perception of Speech and Visual Form, (pp.
362–381). MIT Press.

Bosse, M., Newman, P., Leonard, J., Soika, M., Feiten, W., & Teller, S. (2003). An
Atlas framework for scalable mapping. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA-03).

Bourgault, F., Makarenko, A., Williams, S., Grocholsky, B., & Durrant-Whyte, H.
(2002). Information based adaptive robotic exploration. In Proceedings IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS-02), vol. 1, (pp.
540–545).

Braitenberg, V. (1984). Vehicles: Experiments in Synthetic Psychology. MIT Press.

Briggs, R. (1973). Urban cognitive distance. In R. Downs & D. Stea (eds.), Image and
Environment: Cognitive Mapping and Spatial Behaviour, (pp. 361–388). Chicago:
Aldine.

Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE
Journal of Robotics And Automation, 2:14–23.

Bunke, H. (2000). Graph matching: Theoretical foundations, algorithms, and applica-
tions. In International Conference on Vision Interface, (pp. 82–88).

Bunke, H. & Messmer, B. (1997). Recent advances in graph matching. International
Journal on Pattern Recognition and Artificial Intelligence, 11(1):69–203.

Burgard, W., Fox, D., Jans, H., Matenar, C., & Thrun, S. (1999). Sonar-based mapping
with mobile robots using EM. In Proceedings 16th International Conference on
Machine Learning, (pp. 67–76).

Buschka, P. (2005). An Investigation of Hybrid Maps for Mobile Robots. Ph.D. thesis,
Örebro University.

Buschka, P. & Saffiotti, A. (2004). Some notes on the use of hybrid maps for mo-
bile robots. In Proceedings of the 8th International Conference on Intelligent Au-
tonomous Systems (IAS-04), (pp. 547–556).

Castellanos, J. A., Montiel, J. M. M., Neira, J., & Tardós, J. (1999). The SPmap:
A probabilistic framework for simultaneous localization and map building. IEEE
Transactions on Robotics and Automation, 15(5):948–952.

Bibliography 205

Chatila, R. & Laumond, J.-P. (1985). Position referencing and consistent world model-
ing for mobile robots. In IEEE International Conference on Robotics and Automa-
tion (ICRA-85), (pp. 138–145).

Choset, H. & Burdick, J. (2000). Sensor-based exploration: The Hierarchical General-
ized Voronoi Graph. The International Journal of Robotics Research, 19(2):96–125.

Choset, H. & Nagatani, K. (2001). Topological simultaneous localization and mapping
(SLAM): Toward exact localization without explicit localization. IEEE Transactions
on Robotics and Automation, 17(2):125–137.

Choset, H., Walker, S., Eiamsa-Ard, K., & Burdick, J. (2000). Sensor-based explo-
ration: Incremental construction of the Hierarchical Generalized Voronoi Graph.
The International Journal of Robotics Research, 19(2):126 – 148.

Cohn, A. G. & Hazarika, S. M. (2001). Qualitative spatial representation and reason-
ing: An overview. Fundamenta Informaticae, 46(1-2):1–29.

Condotta, J.-F., Ligozat, G., & Saade, M. (2006). A generic toolkit for n-ary qualitative
temporal and spatial calculi. In Proceedings of the 13th International Symposium
on Temporal Representation and Reasoning (TIME’06), (pp. 78–86).

Cox, I. J. & Leonard, J. J. (1994). Modeling a dynamic environment using a Bayesian
multiple hypothesis approach. Artificial Intelligence, 66(2):311 – 344.

Crowley, J. (1989). World modeling and position estimation for a mobile robot using
ultrasonic ranging. In Proceedings of IEEE International Conference on Robotics
and Automation (ICRA-89), (pp. 674–680).

Darken, R. P., Allard, T., & Achille, L. B. (1999). Spatial orientation and wayfinding
in large-scale virtual spaces II: Guest editors’ introduction. Presence: Teleoperators
& Virtual Environments, 8(6):iii–vi.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society, B,
39:1–38.

Denis, M. (1997). The description of routes: A cognitive approach to the production
of spatial discourse. Cahiers Psychologie Cognitive, 16(4):409–458.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271.

Dimitrov, P., Phillips, C., & Siddiqi, K. (2000). Robust and efficient skeletal graphs.
In Proceedings IEEE Conference on Computer Vision and Pattern Recognition, (pp.
417–423).

206 Bibliography

Dissanayake, M. G., Newman, P., Clark, S., Durrant-Whyte, H., & Csorba, M. (2001).
A solution to the simultaneous localization and map building (SLAM) problem.
IEEE Transactions on Robotics and Automation, 17(3):229–241.

Doucet, A., de Freitas, N., Murphy, K. P., & Russell, S. J. (2000). Rao-Blackwellised
particle filtering for dynamic Bayesian networks. In Proceedings of the 16th Con-
ference on Uncertainty in Artificial Intelligence (UAI ’00), (pp. 176–183). Morgan
Kaufmann Publishers Inc.

Downs, R. M. & Stea, D. (1973). Cognitive maps and spatial behavior: Process and
products. In R. M. Downs & D. Stea (eds.), Image and Environment. Chicago:
Aldine.

Duckett, T. & Nehmzow, U. (1999a). Exploration of unknown environments using a
compass, topological map and neural network. In Proceedings 1999 IEEE Interna-
tional Symposium on Computational Intelligence in Robotics and Automation, (pp.
312–317).

Duckett, T. & Nehmzow, U. (1999b). Knowing your place in real world environments.
In 1999 Third European Workshop on Advanced Mobile Robots (Eurobot’99). Pro-
ceedings, (pp. 135–142).

Duda, R. O. & Hart, P. E. (1973). Pattern Classification and Scene Analysis. John
Wiley & Sons.

Dudek, G., Jenkin, M., Milios, E., & Wilkes, D. (1991). Robotic exploration as graph
construction. IEEE Transactions on Robotics and Automation, 7(6):859–865.

Dudek, G., Freedman, P., & Hadjres, S. (1996). Using multiple models for environ-
mental mapping. Journal of Robotic Systems, 13(8):539–559.

Dudek, G., Jenkin, M., Milios, E., & Wilkes, D. (1997). Map validation and robot self-
location in a graph-like world. Robotics and Autonomous Systems, 22(2):159–178.

Dylla, F. & Moratz, R. (2005). Exploiting qualitative spatial neighborhoods in the
situation calculus. In C. Freksa, M. Knauff, B. Krieg-Brückner, B. Nebel, & T. Bar-
kowsky (eds.), Spatial Cognition IV. Reasoning, Action, Interaction: International
Conference Spatial Cognition 2004, vol. 3343 of Lecture Notes in Artificial Intelli-
gence, (pp. 304–322). Berlin, Heidelberg: Springer.

Egenhofer, M. J. (1989). A formal definition of binary topological relationships. In
W. Litwin & H.-J. Schek (eds.), 3rd International Conference, FODO 1989 on
Foundations of Data Organization and Algorithms, vol. 367 of Lecture Notes in
Computer Science, (pp. 457–472). Springer.

Elfes, A. (1989). Using occupancy grids for mobile robot perception and navigation.
Computer, 22(6):46–57.

Bibliography 207

Eliazar, A. I. & Parr, R. (2003). DP-SLAM: Fast, robust simultaneous localization and
mapping without predetermined landmarks. In Proceedings of the Eighteenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI-03), (pp. 1135–1142).

Eliazar, A. I. & Parr, R. (2004). DP-SLAM 2.0. In Proceedings of the 2004 IEEE
International Conference on Robotics and Automation (ICRA-04), (pp. 1314–1320).

Engelson, S. & McDermott, D. (1992). Error correction in mobile robot map learning.
In Proceedings of the IEEE Conference on Robotics and Automation, (pp. 2555–
2560).

Eshera, M. A. & Fu, K. S. (1986). An image understanding system using attributed
symbolic representation and inexact graph-matching. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8(5):604–618.

Fernández, J. A. & González, J. (1997). A general world representation for mobile
robot operations. In Seventh Conference of the Spanish Association for the Artificial
Intelligence (CAEPIA’97), (p. 3544).

Fernández, J. A. & González, J. (1998). Hierarchical graph search for mobile robot
path planning. In Proceedings 1998 IEEE International Conference on Robotics
and Automation (ICRA-98), (pp. 656–661).

Fernández, J. A. & González, J. (2001). Multi-Hierarchical Representations of Large-
Scale Space – Applications to Mobile Robots. Microprocessor-based and Intelligent
Systems Engineering. Kluwer Academic Publishers.

Fernández-Madrigal, J. A. & González, J. (2002). Multihierarchical graph search.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(1):103–113.

Frank, A. (1991). Qualitative spatial reasoning about cardinal directions. In Proceed-
ings of the American Congress on Surveying and Mapping (ACSM-ASPRS), (pp.
148–167).

Franz, M. O., Schölkopf, B., Mallot, H. A., & Bülthoff, H. H. (1998). Learning view
graphs for robot navigation. Autonomous Robots, 5(1):111–125.

Freksa, C. (1992a). Temporal reasoning based on semi-intervals. Artificial Intelli-
gence, 54(1):199–227.

Freksa, C. (1992b). Using orientation information for qualitative spatial reasoning. In
A. U. Frank, I. Campari, & U. Formentini (eds.), Theories and Methods of Spatio-
Temporal Reasoning in Geographic Space, vol. 639 of Lecture Notes in Computer
Science, (pp. 162–178). Berlin: Springer.

Frese, U. (2006a). A discussion of simultaneous localization and mapping. Au-
tonomous Robots, 20(1):25–42.

208 Bibliography

Frese, U. (2006b). Treemap: An O(log n) algorithm for indoor simultaneous localiza-
tion and mapping. Autonomous Robots, 21(2):103–122.

Frese, U. & Hirzinger, G. (2001). Simultaneous localization and mapping – A dis-
cussion. In Proceedings of the IJCAI Workshop on Reasoning with Uncertainty in
Robotics, (pp. 17–26).

Frese, U. & Schröder, L. (2006). Closing a million-landmarks loop. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-
06), (pp. 5032–5039).

Galindo, C., Saffiotti, A., Coradeschi, S., Buschka, P., Fernández-Madrigal, J. A.,
& González, J. (2005). Multi-hierarchical semantic maps for mobile robotics. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS-05), (pp. 3492–3497).

Garey, M. R. & Johnson, D. S. (1979). Computers and Intractability. Freeman.

Golledge, R. G. (1999). Human wayfinding and cognitive maps. In R. G. Golledge
(ed.), Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes, (pp.
5–45). Johns Hopkins Press.

Grimson, W. E. L. (1990). Object Recognition by Computer – The Role of Geometric
Constraints. MIT Press, Cambridge, MA.

Grisetti, G., Stachniss, C., & Burgard, W. (2007a). Improved techniques for grid
mapping with Rao-Blackwellized particle filters. IEEE Transactions on Robotics,
23:34–46.

Grisetti, G., Tipaldi, G., Stachniss, C., Burgard, W., & Nardi, D. (2007b). Fast and
accurate SLAM with Rao-Blackwellized particle filters. Journal of Robotics & Au-
tonomous Systems, 55(1):30–38.

Guivant, J. & Nebot, E. (2003). Solving computational and memory requirements of
feature-based simultaneous localization and mapping algorithms. IEEE Transac-
tions on Robotics and Automation, 19(4):749– 755.

Guivant, J. & Nebot, E. M. (2001). Optimization of the simultaneous localization
and map-building algorithm for real-time implementation. IEEE Transactions on
Robotics and Automation, 17(3):242–257.

Hähnel, D., Burgard, W., Fox, D., & Thrun, S. (2003a). An efficient FastSLAM algo-
rithm for generating maps of large-scale cyclic environments from raw laser range
measurements. In Proc. of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS-03), (pp. 206–211).

Bibliography 209

Hähnel, D., Burgard, W., & Thrun, S. (2003b). Learning compact 3D models of indoor
and outdoor environments with a mobile robot. Robotics and Autonomous Systems,
44:15–27.

Hähnel, D., Burgard, W., Wegbreit, B., & Thrun, S. (2003). Towards lazy data asso-
ciation in SLAM. In Proceedings of the 11th International Symposium of Robotics
Research (ISRR’03).

Hart, P., Nilsson, N., & Raphael, B. (1968). A formal basis for the heuristic de-
termination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4:100–107.

Hirtle, S. C. & Jonides, J. (1985). Evidence of hierarchies in cognitive maps. Memory
& Cognition, 13:208–217.

Hopcroft, J. & Tarjan, R. (1974). Efficient planarity testing. Journal of the ACM,
21(4):549–568.

Hopcroft, J. E. & Wong, J. K. (1974). Linear time algorithm for isomorphism of planar
graphs (preliminary report). In STOC ’74: Proceedings of the Sixth Annual ACM
Symposium on Theory of Computing, (pp. 172–184). New York, NY, USA: ACM.

Howard, R. A. (1960). Dynamic Programming and Markov Processes. New York:
Wiley.

Hübner, W. & Mallot, H. A. (2007). Metric embedding of view-graphs. Autonomous
Robots, 23(3):183–196.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
Transactions of the ASME—Journal of Basic Engineering, (pp. 35–45).

Krieg-Brückner, B., Frese, U., Lüttich, K., Mandel, C., Mossakowski, T., & Ross, R.
(2005). Specification of an Ontology for Route Graphs. In C. Freksa, M. Knauff,
B. Krieg-Brückner, B. Nebel, & T. Barkowsky (eds.), Spatial Cognition IV. Rea-
soning, Action, Interaction: International Conference Spatial Cognition 2004, vol.
3343 of Lecture Notes in Artificial Intelligence, (pp. 390–412). Springer.

Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval
Research Logistics Quarterly, 2:83–97.

Kuipers, B. (1985). A map-learning critter. Tech. Rep. AITR85-17, AI Laboratory, UT
Austin.

Kuipers, B. (2000). The Spatial Semantic Hierarchy. Artificial Intelligence, (119):191–
233.

210 Bibliography

Kuipers, B. & Byun, Y.-T. (1991). A robot exploration and mapping strategy based on
a semantic hierarchy of spatial representations. Journal of Robotics and Autonomous
Systems, (8):47–63.

Kuipers, B., Modayil, J., Beeson, P., MacMahon, M., & Savelli, F. (2004). Local met-
rical and global topological maps in the hybrid Spatial Semantic Hierarchy. In Pro-
ceedings IEEE International Conference on Robotics and Automation 2004 (ICRA-
04), (pp. 4845–4851).

Kuipers, B. J. (1978). Modeling spatial knowledge. Cognitive Science, 2:129–153.

Kuipers, B. J. & Byun, Y.-T. (1988). A robust, qualitative method for robot spatial
learning. In AAAI 88. Seventh National Conference on Artificial Intelligence, (pp.
774–779).

Kuipers, B. J. & Levitt, T. S. (1988). Navigation and mapping in large-scale space. AI
Magazine, 9(2):25–43.

Ladkin, P. & Reinefeld, A. (1992). Effective solution of qualitative constraint prob-
lems. Artificial Intelligence, 57:105–124.

Latecki, L. J., Lakämper, R., Sun, X., & Wolter, D. (2005a). Geometric robot map-
ping. In Proceedings of the 12th International Conference on Discrete Geometry
for Computer Imagery (DGCI-05), Poitiers, France, vol. 3429 of Lecture Notes in
Computer Science, (pp. 11–22). Springer.

Latecki, L. J., Lakämper, R., & Wolter, D. (2005b). Incremental multi-robot mapping.
In Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS-05), (pp. 3846–3851).

Latombe, J.-C. (1991). Robot Motion Planning. Kluwer Academic Publishers.

Lee, D. T. & Drysdale III, R. L. S. (1981). Generalization of Voronoi diagrams in the
plane. SIAM Journal on Computing, 10(1):73–87.

Lempel, A., Even, S., & Cederbaum, I. (1967). An algorithm for planarity testing
of graphs. In P. Rosenstiehl (ed.), Theory of Graphs, (pp. 215–232). Gordon and
Breach.

Leonard, J. J. & Durrant-Whyte, H. F. (1991). Simultaneous map building and local-
ization for an autonomous mobile robot. In Proceedings of IEEE/RSJ International
Workshop on Intelligent Robots and Systems, (pp. 1442–1447).

Levitt, T. & Lawton, D. (1990). Qualitative navigation for mobile robots. Artificial
Intelligence, 44:305–360.

Bibliography 211

Ligozat, G. (1993). Qualitative triangulation for spatial reasoning. In A. U. Frank
& I. Campari (eds.), Spatial Information Theory: A Theoretical Basis for GIS,
(COSIT’93), Marciana Marina, Elba Island, Italy, vol. 716 of Lecture Notes in
Computer Science, (pp. 54–68). Springer.

Ligozat, G. (1998). Reasoning about cardinal directions. Journal of Visual Languages
and Computing, 9:23–44.

Ligozat, G. & Renz, J. (2004). What is a qualitative calculus? A general frame-
work. In C. Zhang, H. W. Guesgen, & W.-K. Yeap (eds.), PRICAI 2004: Trends in
Artificial Intelligence, 8th Pacific Rim International Conference on Artificial Intelli-
gence, Proceedings, vol. 3157 of Lecture Notes in Computer Science, (pp. 53–64).
Springer.

Lim, J. H. & Leonard, J. J. (2000). Mobile robot relocation from echolocation
constraints. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(9):1035–1041.

Lisien, B., Silver, D., Kantor, G., Rekleitis, I., & Choset, H. (2003). Hierarchical
simultaneous localization and mapping. In Proceedings of the 2003 IEEE/RSJ In-
terational Conference on Intelligent Robots and Systems (IROS-03), (pp. 448–453).

Liu, Y., Emery, R., Chakrabarti, D., Burgard, W., & Thrun, S. (2001). Using EM to
learn 3D models with mobile robots. In Proceedings of the International Conference
on Machine Learning (ICML), (pp. 329–336).

Lovelace, K. L., Hegarty, M., & Montello, D. R. (1999). Elements of good route
directions in familiar and unfamiliar environments. In C. Freksa & D. M. Mark
(eds.), Spatial Information Theory. Cognitive and Computational Foundations of
Geopraphic Information Science (COSIT), vol. 1661 of Lecture Notes on Computer
Science, (pp. 65–82). Berlin: Springer.

Lu, F. & Milios, E. (1997). Globally consistent range scan alignment for environment
mapping. Autonomous Robots, 4(4):333–349.

Mackworth, A. (1977). Consistency in networks of relations. Artificial Intelligence,
8(1):99–118.

Mahalanobis, P. (1936). On the generalized distance in statistics. In Proceedings of
the National Institute of Sciences of India, vol. 12, (pp. 49–55).

Mataric, M. J. (1992). Integration of representation into goal-driven behavior-based
robots. IEEE Transactions on Robotics and Automation, 8(3):304–312.

Mayya, N. & Rajan, V. T. (1996). Voronoi diagrams of polygons: A framework for
shape representation. Journal of Mathematical Imaging and Vision, 6(4):355–378.

212 Bibliography

McNamara, P. T. (1986). Mental representations of spatial relations. Cognitive Psy-
chology, 18:87–121.

Mehlhorn, K., Näher, S., Seel, M., Seidel, R., Schilz, T., Schirra, S., & Uhrig, C.
(1999). Checking geometric programs or verification of geometric structures. Com-
putational Geometry: Theory and Applications, 12(1-2):85–103.

Modayil, J., Beeson, P., & Kuipers, B. (2004). Using the topological skeleton for
scalable global metrical map-building. In Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS-04), (pp. 1530–1536).

Montanari, U. (1974). Networks of constraints: Fundamental properties and applica-
tions to picture processing. Information Science, 7(2):95–132.

Montello, D. (2005). Navigation. In P. Shah & A. Miyake (eds.), The Cambridge
Handbook of Visuospatial Thinking, chap. 7, (pp. 257–294).

Montemerlo, M. (2003). FastSLAM: A Factored Solution to the Simultaneous Lo-
calization and Mapping Problem with Unknown Data Association. Ph.D. thesis,
Robotics Institute, Carnegie Mellon University. Tech. report CMU-RI-TR-03-28.

Montemerlo, M. & Thrun, S. (2003). Simultaneous localization and mapping with un-
known data association using FastSLAM. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA-03), (pp. 1985–1991).

Montemerlo, M., Thrun, S., Koller, D., & Wegbreit, B. (2002). FastSLAM: A factored
solution to the simultaneous localization and mapping problem. In Proceedings of
the AAAI National Conference on Artificial Intelligence, (pp. 593–598).

Montemerlo, M., Thrun, S., Koller, D., & Wegbreit, B. (2003). FastSLAM 2.0: An
improved particle filtering algorithm for simultaneous localization and mapping that
provably converges. In Proceedings of the Sixteenth International Joint Conference
on Artificial Intelligence (IJCAI-03), (pp. 407–411).

Moratz, R. (2006). Representing relative direction as binary relation of oriented points.
In Proceedings of the 17th European Conference on Artificial Intelligence (ECAI
2006), (pp. 407–411).

Moratz, R., Renz, J., & Wolter, D. (2000). Qualitative spatial reasoning about line seg-
ments. In W. Horn (ed.), Proceedings of the 14th European Conference on Artificial
Intelligence (ECAI), (pp. 234–238). Berlin, Germany: IOS Press.

Moratz, R., Nebel, B., & Freksa, C. (2003). Qualitative spatial reasoning about relative
position: The tradeoff between strong formal properties and successful reasoning
about route graphs. In C. Freksa, W. Brauer, C. Habel, & K. F. Wender (eds.),
Spatial Cognition III, vol. 2685 of Lecture Notes in Artificial Intelligence, (pp. 385–
400). Berlin, Heidelberg: Springer.

Bibliography 213

Moratz, R., Dylla, F., & Frommberger, L. (2005). A relative orientation algebra with
adjustable granularity. In Proceedings of the Workshop on Agents in Real-Time and
Dynamic Environments (IJCAI 05).

Moravec, H. & Elfes, A. (1985). High resolution maps from angle sonar. In Proceed-
ings of the IEEE Conference on Robotics and Automation (ICRA-85), (pp. 116–121).

Moravec, H. P. (1996). Robot spatial perception by stereoscopic vision and 3D evi-
dence grids. Tech. Rep. CMU-RI-TR-96-34.

Munkres, J. (1957). Algorithms for the assignment and transportation problems. Jour-
nal of the Society of Industrial and Applied Mathematics, 5(1):32–38.

Murphy, K. (2000). Bayesian map learning in dynamic environments. In S. A. Solla,
T. K. Leen, & K.-R. Müller (eds.), Advances in Neural Information Processing Sys-
tems 12, (pp. 1015–1021). The MIT Press.

Mutambara, A. (1998). Decentralized Estimation and Control for Multisensor Sys-
tems. USA: CRC Press.

Nagatani, K. & Choset, H. (1999). Toward robust sensor based exploration by con-
structing reduced generalized Voronoi graph. In Proceedings 1999 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS-99), (pp. 1687–1692).

Nagatani, K., Choset, H., & Thrun, S. (1998). Towards exact localization without
explicit localization with the generalized Voronoi graph. In Proceedings 1998 IEEE
International Conference on Robotics and Automation (ICRA-98), (pp. 342–348).

Neira, J. & Tardós, J. D. (2001). Data association in stochastic mapping using the joint
compability test. IEEE Transactions on Robotics and Automation, 17:890–897.

Newman, P. M. & Leonard, J. J. (2003). Pure range-only subsea SLAM. In IEEE
International Conference on Robotics and Automation (ICRA-03), (pp. 1921–1926).

Nieto, J., Guivant, J., Nebot, E., & Thrun, S. (2003). Real time data association for
FastSLAM. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA-03), (pp. 412–418).

Nüchter, A., Surmann, H., Lingemann, K., Hertzberg, J., & Thrun, S. (2004). 6D
SLAM with an application in autonomous mine mapping. In Proceedings IEEE
2004 International Conference Robotics and Automation (ICRA-04), (pp. 1998–
2003).

Nüchter, A., Lingemann, K., Hertzberg, J., & Surmann, H. (2005). 6D SLAM with
approximate data association. In Proceedings of the 12th International Conference
on Advanced Robotics (ICAR-05), (pp. 242 – 249).

214 Bibliography

Ogniewicz, R. L. & Kübler, O. (1995). Hierarchic Voronoi Skeletons. Pattern Recog-
nition, 28(3):343–359.

Okabe, A., Sugihara, K., Chiu, S. N., & Boots, B. (2000). Spatial Tessellations –
Concepts and Applications of Voronoi Diagrams. John Wiley and Sons.

O’Keefe, J. & Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford
University Press.

Palmer, S. E. (1978). Fundamental aspects of cognitive representation. In E. Rosch
& B. Lloyd (eds.), Cognition and Categorization, (pp. 259–303). Hillsdale, NJ: Erl-
baum.

Paskin, M. A. (2003). Thin junction tree filters for simultaneous localization and map-
ping. In Proceedings of the Eighteenth International Joint Conference on Artificial
Intelligence (IJCAI-03), (pp. 1157–1166).

Pfeifer, R. & Bongard, J. C. (2007). How the Body Shapes the Way We Think: A New
View of Intelligence. Cambridge, MA: MIT Press.

Randell, D. A., Cui, Z., & Cohn, A. (1992). A spatial logic based on regions and
connection. In B. Nebel, C. Rich, & W. Swartout (eds.), Principles of Knowledge
Representation and Reasoning: Proceedings of the Third International Conference
(KR’92), (pp. 165–176). San Mateo, CA: Morgan Kaufmann.

Reid, D. (1979). An algorithm for tracking multiple targets. IEEE Transactions on
Automatic Control, 24(6):843–854.

Rekleitis, I., Dujmovic, V., & Dudek, G. (1999). Efficient topological exploration.
In Proceedings 1999 IEEE International Conference on Robotics and Automation
(ICRA-99), (pp. 676–681).

Remolina, E. & Kuipers, B. (2004). Towards a general theory of topological maps.
Artificial Intelligence, 152(1):47–104.

Remolina, E., Fernández, J. A., Kuipers, B., & González, J. (1999). Formalizing re-
gions in the spatial semantic hierarchy: An AH-graphs implementation approach. In
Proceedings of the International Conference on Spatial Information Theory: Cogni-
tive and Computational Foundations of Geographic Information Science, vol. 1661,
(pp. 109–124).

Renz, J. & Ligozat, G. (2005). Weak composition for qualitative spatial and temporal
reasoning. In Proceedings of the 11th International Conference on Principles and
Practice of Constraint Programming (CP 2005), (pp. 534–548).

Bibliography 215

Renz, J. & Mitra, D. (2004). Qualitative direction calculi with arbitrary granularity.
In C. Zhang, H. W. Guesgen, & W.-K. Yeap (eds.), PRICAI 2004: Trends in Artifi-
cial Intelligence, 8th Pacific Rim International Conference on Artificial Intelligence,
Auckland, New Zealand, Proceedings, vol. 3157 of Lecture Notes in Computer Sci-
ence, (pp. 65–74). Springer.

Renz, J. & Nebel, B. (1999). On the complexity of qualitative spatial reasoning: A
maximal tractable fragment of the region connection calculus. Artificial Intelli-
gence, 108(1-2):69–123.

Richter, K.-F. (2007). A uniform handling of different landmark types in route direc-
tions. In S. Winter, M. Duckham, L. Kulik, & B. Kuipers (eds.), Spatial Information
Theory (COSIT), vol. 4736 of Lecture Notes in Computer Science, (pp. 373–389).
Berlin: Springer.

Samet, H. (1988). An overview of quadtrees, octrees and related hierarchical data
structures. In NATO ASI Series, Vol. F40, Theoretical Foundations of Computer
Graphics, (pp. 51–68). Springer-Verlag Berlin Heidelberg.

Sanfeliu, A. & Fu, K. (1983). A distance measure between attributed relational graph.
IEEE Transactions on Systems, Man and Cybernetics, 13:353–362.

Savelli, F. & Kuipers, B. (2004). Loop-closing and planarity in topological map-
building. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS-04), (pp. 1511–1517).

Schlieder, C. (1993). Representing visible locations for qualitative navigation. In N. P.
Carreté & M. G. Singh (eds.), Qualitative Reasoning and Decision Technologies,
(pp. 523–532).

Schlieder, C. (1995). Reasoning about ordering. In A. U. Frank & W. Kuhn (eds.),
Spatial Information Theory – A Theoretical Basis for GIS, (pp. 341–349).

Schölkopf, B. & Mallot, H. (1995). View-based cognitive mapping and path planning.
Adaptive Behavior, 3(3):311–348.

Sebastian, T. B., Klein, P. N., & Kimia, B. B. (2004). Recognition of shapes by
editing their shock graphs. IEEE Transactions on Pattern Analysis and Machine
Intelligence,, 26(5):550–571.

Shi, H., Mandel, C., & Ross, R. J. (2007). Interpreting route instructions as qualitative
spatial actions. In T. Barkowsky, M. Knauff, G. Ligozat, & D. Montello (eds.),
Spatial Cognition V - Reasoning, Action, Interaction, vol. 4387 of Lecture Notes in
Artificial Intelligence, (pp. 327–345). Springer.

Siddiqi, K. & Kimia, B. B. (1996). A shock grammar for recognition. In IEEE Con-
ference on Computer Vision and Pattern Recognition, (pp. 507–513).

216 Bibliography

Siegel, A. & White, S. (1975). The development of spatial representations of large-
scale environments. In H. Reese (ed.), Advances in Child Development and Beha-
vior, vol. 10, (pp. 9–55). Academic Press.

Simhon, S. & Dudek, G. (1998). A global topological map formed by local met-
ric maps. In Proceedings 1998 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS-98). Innovations in Theory, Practice and Applications,
(pp. 1708–1714).

Smith, C. M. & Leonard, J. J. (1997). A multiple hypothesis approach to concurrent
mapping and localization for autonomous underwater vehicles. In Proceedings of
International Conference on Field and Service Robotics.

Smith, R. C. & Cheeseman, P. (1986). On the representation and estimation of spatial
uncertainty. The International Journal of Robotics Research, 5(4):56–68.

Smithson, M. (1989). Ignorance and Uncertainty: Emerging Paradigms. New York:
Springer.

Sorrows, M. E. & Hirtle, S. C. (1999). The nature of landmarks for real and electronic
spaces. In C. Freksa & D. M. Mark (eds.), Spatial Information Theory. Cognitive
and Computational Foundations of Geopraphic Information Science (COSIT), vol.
1661 of Lecture Notes on Computer Science, (pp. 37–50). Berlin: Springer.

Stachniss, C. & Burgard, W. (2003a). Exploring unknown environments with mobile
robots using coverage maps. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI-03), (pp. 1127–1132).

Stachniss, C. & Burgard, W. (2003b). Mapping and exploration with mobile robots
using coverage maps. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS-03), (pp. 476–481).

Stachniss, C., Hähnel, D., Burgard, W., & Grisetti, G. (2005). On actively closing
loops in grid-based FastSLAM. Advanced Robotics – The International Journal of
the Robotics Society of Japan (RSJ), 19(10):1059–1080.

Tardós, J., Neira, J., Newman, P., & Leonard, J. (2002). Robust mapping and local-
ization in indoor environments using sonar data. International Journal of Robotics
Research, 21(4):311–330.

Thrun, S. (1998). Learning metric-topological maps for indoor mobile robot naviga-
tion. Artificial Intelligence, 99(1):21–71.

Thrun, S. (2000). Probabilistic algorithms in robotics. AI Magazine, 21(4):93–109.

Thrun, S. (2002). Robotic mapping: A survey. Tech. rep., Carnegie Mellon University,
Computer Science Department.

Bibliography 217

Thrun, S., Bücken, A., Burgard, W., Fox, D., Fröhlinghaus, T., Hennig, D., Hofmann,
T., Krell, M., & Schmidt, T. (1998a). Map learning and high-speed navigation in
RHINO. In D. Kortenkamp, R. Bonasso, & R. Murphy (eds.), AI-based Mobile
Robots: Case Studies of Successful Robot Systems. MIT Press, Cambridge, MA.

Thrun, S., Burgard, W., & Fox, D. (1998b). A probabilistic approach to concurrent
mapping and localization for mobile robots. Machine Learning, 31(1-3):29–53.

Thrun, S., Koller, D., Ghahramani, Z., Durrant-Whyte, H., & Ng, A. (2002). Simul-
taneous mapping and localization with sparse extended information filters. In J.-D.
Boissonnat, J. Burdick, K. Goldberg, & S. Hutchinson (eds.), Proceedings of the
Fifth International Workshop on Algorithmic Foundations of Robotics.

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic Robotics. MIT Press.

Tolman, E. C. (1948). Cognitive maps in rats and men. The Psychological Review,
55(4):189–208.

Trullier, O., Wiener, S. I., Berthoz, A., & Meyer, J.-A. (1997). Biologically-based arti-
ficial navigation systems: Review and prospects. Progress in Neurobiology, 51:483–
544.

Tversky, B. (1992). Distortions in cognitive maps. Geoforum, 23:131–138.

Tversky, B. (1993). Cognitive maps, cognitive collages and spatial mental models. In
A. Frank & I. Campari (eds.), Spatial Information Theory: A Theoretical Basis for
GIS – Proceedings of COSIT’93, (pp. 14–24). Berlin: Springer.

Varela, F. J., Thompson, E. T., & Rosch, E. (1992). The Embodied Mind: Cognitive
Science and Human Experience. The MIT Press.

Wallgrün, J. O. (2002). Exploration und Pfadplanung für mobile Roboter basierend
auf Generalisierten Voronoi-Graphen. Diplomarbeit, Fachbereich Informatik, Uni-
versität Hamburg.

Wallgrün, J. O., Frommberger, L., Dylla, F., & Wolter, D. (2006). SparQ user manual
v0.6. Tech. Rep. 007-07/2006, SFB/TR 8 Spatial Cognition, Universität Bremen.

Wallgrün, J. O., Frommberger, L., Wolter, D., Dylla, F., & Freksa, C. (2007). Quali-
tative spatial representation and reasoning in the SparQ-toolbox. In T. Barkowsky,
M. Knauff, G. Ligozat, & D. Montello (eds.), Spatial Cognition V: Reasoning, Ac-
tion, Interaction: International Conference Spatial Cognition 2006, vol. 4387 of
Lecture Notes in Computer Science, (pp. 39–58). Springer Berlin Heidelberg.

Werner, S., Krieg-Brückner, B., & Herrmann, T. (2000). Modelling navigational
knowledge by route graphs. In C. Freksa, C. Habel, W. Brauer, & K. F. Wender

218 Bibliography

(eds.), Spatial Cognition II – Integrating Abstract Theories, Empirical Studies, For-
mal Methods, and Pratical Applications, vol. 1849 of LNCS,LNAI, (pp. 295–316).
Springer.

Williams, S. B., Newman, P. M., Rosenblatt, J., Dissanayake, G., & Durrant-Whyte,
H. F. (2001). Autonomous underwater navigation and control. Robotica, 19(5):481–
496.

Wolter, D. (2008). Spatial Representation and Reasoning for Robot Mapping – A
Shape-Based Approach, vol. 48 of Springer Tracts in Advanced Robotics. Springer
Berlin/Heidelberg.

Wolter, D. & Richter, K.-F. (2004). Schematized aspect maps for robot guidance. In
Proceedings of the ECAI Workshop Cognitive Robotics (CogRob).

Wolter, D., Latecki, L. J., Lakämper, R., & Sun, X. (2004). Shape-based robot map-
ping. In Proceedings of the 27th German Conference on Artificial Intelligence (KI-
2004), (pp. 439–452).

Yamauchi, B. (1997). A frontier-based approach for autonomous exploration. In Pro-
ceedings of the 1997 IEEE International Symposium on Computational Intelligence
in Robotics and Automation, (p. 146).

Yamauchi, B. & Beer, R. (1996). Spatial learning for navigation in dynamic environ-
ments. IEEE Transactions on Systems, Man and Cybernetics, 26(3):496–505.

Yeap, W. K. & Jefferies, M. E. (1999). Computing a representation of the local envi-
ronment. Aritificial Intelligence, 107:265–301.

Zelinsky, A. (1992). A mobile robot exploration algorithm. IEEE Transactions on
Robotics and Automation, 8(6):707–717.

Zhang, K. & Shasha, D. (1989). Simple fast algorithms for the editing distance be-
tween trees and related problems. SIAM Journal on Computing, 18(6):1245–1262.

Zhang, K., Statman, R., & Shasha, D. (1992). On the editing distance between un-
ordered labeled trees. Information Processing Letters, 42(3):133–139.

	191201_1_En_BookFrontmatter_OnlinePDF
	Hierarchical Voronoi Graphs
	Foreword
	Preface
	Acknowledgements
	Contents
	Notation
	Abbreviations
	List of Figures
	List of Tables

	191201_1_En_1_Chapter_OnlinePDF
	Chapter 1 Introduction
	1.1 The Robot Mapping Problem
	1.2 The Spatial Representation Perspective
	1.3 The Uncertainty Handling Perspective
	1.4 Combining Representation and Uncertainty Handling
	1.5 Route Graphs Based on Generalized Voronoi Diagrams
	1.6 Theses, Goals, and Contributions of This Book
	1.7 Outline of This Book

	191201_1_En_2_Chapter_OnlinePDF
	Chapter 2 Robot Mapping
	2.1 A Spatial Model for What?
	2.1.1 Navigation
	2.1.1.1 Localization
	2.1.1.2 Path Planning

	2.1.2 Systematic Exploration
	2.1.3 Communication

	2.2 Correctness, Consistency, and Criteria for Evaluating Spatial Representations
	2.2.1 Extractability and Maintainability
	2.2.2 Information Adequacy
	2.2.3 Efficiency and Scalability

	2.3 Spatial Representation and Organization
	2.3.1 Basic Spatial Representation Approaches
	2.3.2 Coordinate-Based Representations
	2.3.2.1 Occupancy-Based Representations
	2.3.2.2 Geometric Representations
	2.3.2.3 Landmark-Based Representations

	2.3.3 Relational Representations
	2.3.3.1 View Graph Representations
	2.3.3.2 Route Graph Representations

	2.3.4 Organizational Forms
	2.3.4.1 Plain Representation
	2.3.4.2 Overlays
	2.3.4.3 Hierarchical Organization
	2.3.4.4 Patchworks
	2.3.4.5 Combining Different Organizational Forms

	2.4 Uncertainty Handling Approaches
	2.4.1 Incremental Approaches
	2.4.1.1 Single Hypothesis Approaches
	2.4.1.2 Complete-State-Space Approaches
	2.4.1.3 Multi-hypothesis Approaches

	2.4.2 Multi-pass Approaches

	2.5 Conclusions

	191201_1_En_3_Chapter_OnlinePDF
	Chapter 3 Voronoi-Based SpatialRepresentations
	3.1 Voronoi Diagram and Generalized Voronoi Diagram
	3.2 Generalized Voronoi Graph and Embedded Generalized Voronoi Graph
	3.3 Annotated Generalized Voronoi Graphs
	3.4 Hierarchical Annotated Voronoi Graphs
	3.5 Partial and Local Voronoi Graphs
	3.6 An Instance of the HAGVG
	3.7 Stability Problems of Voronoi-Based Representations
	3.8 Strengths andWeaknesses of the Representation

	191201_1_En_4_Chapter_OnlinePDF
	Chapter 4 Simplification and HierarchicalVoronoi Graph Construction
	4.1 Relevance Measures for Voronoi Nodes
	4.2 Computation of Relevance Values
	4.3 Voronoi Graph Simplification
	4.4 HAGVG Construction
	4.5 Admitting Incomplete Information
	4.6 Improving the Efficiency of the Relevance Computation
	4.7 Incremental Computation
	4.8 Application Scenarios
	4.8.1 Incremental HAGVG Construction
	4.8.2 Removal of Unstable Parts
	4.8.3 Automatic Route Graph Generation from Vector Data

	191201_1_En_5_Chapter_OnlinePDF
	Chapter 5 Voronoi Graph Matching for Data Association
	5.1 The Data Association Problem
	5.1.1 Data Associations and the Interpretation Tree
	5.1.2 Data Association Approaches

	5.2 AGVG Matching Based on Ordered Tree Edit Distance
	5.2.1 Ordered Tree Matching Based on Edit Distance
	5.2.1.1 Edit Distance for Subtrees in AGVGs

	5.2.2 Overall Edit Distance
	5.2.3 Modeling Removal and Addition Costs
	5.2.4 Optimizations
	5.2.5 Complexity

	5.3 Incorporating Constraints
	5.3.1 Unary Constraints Based on Pose Estimates and Node Similarity
	5.3.2 Binary Constraints Based on Relative Distance
	5.3.3 Ternary Angle Constraints

	5.4 Map Merging Based on a Computed Data Association

	191201_1_En_6_Chapter_OnlinePDF
	Chapter 6 Global Mapping: Minimal Route Graphs Under Spatial Constraints
	6.1 Theoretical Problem
	6.2 Branch and Bound Search for Minimal Model Finding
	6.2.1 Search Through the Interpretation Tree
	6.2.2 Best-First Branch and Bound Search Based on Solution Size
	6.2.3 Expand and Update Operations
	6.2.3.1 Update Operation
	6.2.3.2 Expand Operation

	6.2.4 Two Variants of the Minimal Model Finding Problem

	6.3 Pruning Based on Spatial Constraints
	6.3.1 Checking Planarity
	6.3.2 Checking Spatial Consistency
	6.3.2.1 Modeling Spatial Configurations in the Cardinal Direction Calculus
	6.3.2.2 Modeling Spatial Configurations in the OPRA2 Calculus

	6.3.3 Incorporation into the Search Algorithm

	6.4 Combining Minimal Route Graph Mapping and AGVG Representations

	191201_1_En_7_Chapter_OnlinePDF
	Chapter 7 Experimental Evaluation
	7.1 Relevance Assessment and HAGVG Construction
	7.1.1 Efficiency of the Relevance Computation Algorithms
	7.1.2 Combining the HAGVG Construction Methods with a Grid-Based FastSLAM Approach

	7.2 Evaluation of the Voronoi-Based Data Association
	7.3 Evaluation of the Minimal Route Graph Approach
	7.3.1 Solution Quality
	7.3.2 Pruning Efficiency
	7.3.3 Absolute vs. Relative Direction Information
	7.3.4 Overall Computational Costs
	7.3.5 Application to Real AGVG Data

	7.4 A Complete Multi-hypothesis Mapping System
	7.4.1 Local Metric Mapping and Local AGVG Computation
	7.4.2 Data Association for Node Tracking and History Generation
	7.4.3 Global Mapping and Post-processing
	7.4.4 Experiments
	7.4.5 Discussion

	191201_1_En_8_Chapter_OnlinePDF
	Chapter 8 Conclusions and Outlook
	8.1 Summary and Conclusions
	8.1.1 Extraction and HAGVG Construction
	8.1.2 Data Association and Matching
	8.1.3 Minimal Route Graph Model Finding
	8.1.4 Complete Mapping Approaches

	8.2 Outlook
	8.2.1 Extensions of theWork Described in Chaps. 3–6
	8.2.2 Combining Voronoi Graphs and Uncertainty Handling
	8.2.3 Challenges for Voronoi-Based Representation Approaches
	8.2.4 Challenges for Qualitative Spatial Reasoning
	8.2.5 The Future: Towards Spatially Competent Mobile Robots

	191201_1_En_BookBackmatter_OnlinePDF
	Appendix A
	Mapping as Probabilistic State Estimation
	A.1 The Recursive Bayes Filter
	A.2 Parametric Filters
	A.2.1 Kalman Filter
	A.2.2 Extended Kalman Filter

	A.3 Nonparametric Filters
	A.3.1 Particle Filter
	A.3.2 Rao-Blackwellized Particle Filter and FastSLAM
	A.3.2.1 Feature-Based FastSLAM
	A.3.2.2 Grid-Based FastSLAM

	Appendix B
	Qualitative Spatial Reasoning
	B.1 Qualitative Constraint Calculi
	B.2 Weak vs. Strong Operations
	B.3 Constraint Networks and Consistency
	B.4 Checking Consistency

	Bibliography

