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Abstract. In quantitative biology studies such as drug and siRNA
screens, robotic systems automatically acquire thousands of images from
cell assays. Because these images are large in quantity and high in con-
tent, detecting specific patterns (phenotypes) in them requires accurate
and fast computational methods. To this end, we have developed a geo-
metric global image feature for pattern retrieval on large bio-image data
sets. This feature is derived by applying spectral graph theory to lo-
cal feature detectors such as the Scale Invariant Feature Transform, and
is effective on patterns with as few as 20 keypoints. We demonstrate
successful pattern detection on synthetic shape data and fluorescence
microscopy images of GFP-Keratin-14-expressing human skin cells.

1 Introduction

Sophisticated microscopy and cell culture systems have enabled high-throughput
and high-content screens that yield thousands of images. Timely biological dis-
covery using these images requires computational methods that rapidly exploit
the voluminous amount of information they contain. In particular, many bi-
ological studies involve identification of cells with specific phenotypes (visual
appearances), either to identify compounds with a specific biological effect [1] or
to perform further data mining on the cell images [2]. The need for computerized
phenotype detection becomes evident when one considers the time required for
visual inspection of each cell.

Because traditional approaches to medical image analysis have proven less
than ideal for this task, the biomedical imaging community has begun to adopt
data mining and machine learning methods [3]. Pioneering work by Boland et
al. [4] demonstrated successful classification of cells into a fixed number of cat-
egories, using a neural network classifier trained on global features extracted
from manually-labeled cells. If automatic cell detection is provided, then their
method becomes applicable to large-scale phenotype detection. Recently, Jones
et. al [5] have combined cell segmentation, gentle boosting [6] on cell features,
and iterative learning into a framework for supervised detection of arbitrary
cell phenotypes. Because the features are cell-specific, their framework is reliant
on accurate cell segmentation, which may be challenging under certain imaging
conditions.

On the other hand, the trend in the computer vision community has been to
represent visual objects as unordered distributions of local descriptors produced
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by some detector [7]; examples of detectors include Harris detector specializa-
tions [8], the Scale-Invariant Feature Transform (SIFT) [9] and the derivative
Rotation-Invariant Feature Transform (RIFT) [10], as well as Speeded-Up Ro-
bust Features (SURF) [11]. Such unordered distributions, also known as bag-
of-words representations, have been popular due to their successful application
to natural (real-world) scenes [12]. Because natural scene objects are complex,
containing hundreds or thousands of local descriptors, bag-of-words methods
usually employ clustering to obtain representative descriptors [12]. Conversely,
some bio-image phenotypes are low in complexity and local feature count — for
instance, the biological image set in this paper contains ∼25 SIFT descriptors per
exemplar. This reduces the number of meaningful clusters that can be extracted,
which may limit the discriminative capabilities of bag-of-words approaches.

To overcome this problem, we propose a phenotype detection framework
whose key contribution is a global feature for visual objects derived from rela-
tionships between local descriptors, as opposed to the distribution of descriptors
that characterizes bag-of-words approaches. This global feature is a vector in
R

k, hence we describe it as geometric because it naturally admits the Euclidean
norm as one notion of inter-feature distance. Furthermore, it can be made both
scale- and rotation-invariant for local feature detectors with those properties,
such as SIFT. Additionally, our framework does not rely on segmentation; we
employ a general region-sampling technique that performs well for objects that
fit within cell-shaped regions. We demonstrate our framework’s capabilities on
synthetic and biological images, where in both cases the patterns of interest
express few (i.e. tens of) SIFT descriptors.

2 Global Features from Local Feature Detectors

In this section, we develop a geometric global feature for arbitrary closed regions
in an image. This global feature, which we call a region spectrum, is derived
from local feature descriptors such as SIFT [9], SURF [11] and RIFT [10]; these
descriptors characterize visually significant points of the image. The general idea
is to find all descriptors within a region of interest, then construct multiple graphs
whose vertices represent descriptors, and whose edge weights are proportional
to similarities between descriptor feature vectors. Collectively, the eigenvalues of
every graph’s Laplacian matrix make up the region spectrum, a vector describing
the region’s geometric properties.

2.1 Regions and Local Feature Descriptors

Formally, let D be the set of descriptors generated by a local feature detector
(e.g. SIFT) on an image domain Ω. Each descriptor d ∈ D is associated with
a position x = (x, y) on the image. In addition, d also contains features such
as local patch information. Generally, d is a real valued vector. For any closed
region R ⊆ Ω in the image, let DR ⊆ D be the set of descriptors whose associated
positions fall within R. This is illustrated in Fig. 1(a).
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In our experiments we used SIFT [9] to obtain local feature descriptors. SIFT
detects gradient maxima and minima in an image’s scale-space representation,
generating a descriptor d=(x, σ, θ,h) for each detected extremum. Here, x is the
keypoint location associating the descriptor to a position in the original image
and σ is the extremum’s scale coordinate1. θ is the dominant gradient orientation
of the region surrounding (x, σ) in scale-space, and h is a 128-bin histogram
of gradients in a θ-oriented window centered at (x, σ). We chose SIFT for its
robustness and utility in image registration tasks [9,13], though our method
works with any feature detector for which meaningful inter-descriptor distances
can be taken [11,10].

2.2 Region Graphs and Region Spectra

A region’s descriptor set DR can be used to construct one or more graphs GR,C ,
where C : DR×DR �→ [0, 1] is a “connectivity” function between two descriptors.
The vertex set of GR,C is DR, while its edge weights are wdi,dj = C(di,dj),
di,dj ∈ DR. Refer to Fig. 1(b) for an illustration. For SIFT descriptors, we
define three connectivity functions Cx, Cσ and Cθ:

Cx(di,dj) = exp(−αx‖xi − xj‖2) (1)

Cσ(di,dj) = exp(−ασ|σi − σj |2) (2)

Cθ(di,dj) = exp(−αθ min [|θi − θj |, 2π − |θi − θj |]2) (3)

where xi, σi and θi denote the x, σ and θ components of di respectively. αx, ασ

and αθ are scaling coefficients. These connectivity functions indicate descriptor
similarity in terms of image Euclidean distance x, scale σ and angle θ. We
did not use histogram h similarities in our experiments, as they do not improve
performance on our data sets, yet are relatively expensive to compute. Regarding
the coefficients α, our primary concern was avoiding numerical underflow; we set
ασ = αθ = 1 and αx = 10/(mean training exemplar area).

For each graph GR,C , we can generate its Laplacian matrix

L = I − DAD (4)
Ai,j = wdi,dj

Di,j =

{
(
∑

k wdi,dk
)−1/2

i = j and
∑

k wdi,dk
�= 0

0 otherwise

where I is the identity matrix [14]. Applying an eigendecomposition algorithm to
L yields λ, its vector of eigenvalues in ascending order. The number of eigenvalues
is equal to the number of descriptors in DR, which we denote by |DR|. Since each
connectivity function Cx, Cσ and Cθ gives rise to one graph, we may concatenate
the λ’s resulting from each graph, λx, λσ and λθ, to obtain the region spectrum
1 The SIFT computes σ as 2oi+of , where oi and of are the integer “octave” and

fractional “interval” described in [9].
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Fig. 1. Example illustration of the steps involved in generating geometric global fea-
tures. (a) Descriptors of two regions A and B are generated (e.g. using SIFT), (b)
Graphs GA,C and GB,C are formed by connecting descriptors within the regions A
and B. In this example, GA,C has six vertices while GB,C has five vertices. (c) Sample
k=4-vertex subsets from each graph to form subgraphs. (d) Each sample of 4 vertices
contributes one bin to its region’s EMD signature. The distance between regions A and
B is the EMD between their signatures.

sR = (λx, λσ, λθ), which serves as a global feature vector for regions. Some
properties of λ bear mentioning. First, λ is bounded in [0, 2]|DR|, and the smallest
eigenvalue λ1 = 0. Moreover, λ bounds invariants of GR,C such as the graph
diameter, distances between subgraphs, and random walk stationary distribution
convergence times [14]. These properties capture the collective behavior of the
set of local features in an image region R, hence turning local features into a
geometric global feature sR ∈ [0, 2]3|DR|. This feature’s notion of region similarity
is near-cospectrality, or similarity in Laplacian eigenspectra. Region spectra sR

have several notable properties:

1. sR is rotation invariant if the local feature detector is rotation invariant,
and the connectivity function C(di,dj) remains invariant when the same
rotation is applied to di and dj.
This is because C’s satisfying the latter condition generate isomorphic graphs
for any rotation of R, while isomorphic graphs have identical eigenspectra.
The three SIFT connectivity functions Cσ, Cx and Cθ are rotation invariant.

2. sR is scale invariant for C’s and local feature detectors exhibiting scale-
invariance.
The function Cθ is scale invariant, while Cσ becomes scale-invariant if σi

and σj are substituted with oi = log2 σi and oj = log2 σj . Cx can also be
made scale invariant by substituting ‖xi − xj‖2 with ‖xi−xj‖2

σiσj
. In practice

however, the non-scale-invariant versions of Cx and Cσ (Eq. (1),(2)) yielded
better results on our data sets.

3. The equivalence class of graphs with the same (or similar) eigenspectra is
not limited to isomorphisms.
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Region spectra thus enable generalization in ways that are meaningful, yet
not immediately obvious from a visual standpoint.

3 Comparing Region Spectra

Despite their advantages, region spectra require further modifications to make
them a suitable feature for machine learning. The chief difficulty arises when
trying to compare sR’s with differing |DR| and consequently with different vector
lengths. This is an issue because many local feature detectors (SIFT included)
do not produce a fixed number of descriptors per region.

3.1 Region Signatures

The eigenvalues are related to distances between subgraph partitions of GR,C

[14], which are incomparable for graphs with small vertex sets of different sizes
due to discretization effects. Hence the eigenvalues of two regions should not be
compared directly, except when they contain the same number of descriptors.

To compare regionswith different descriptor counts, we makeuse of k-descriptor
combinations from the |DR| descriptors in R. There are

(|DR|
k

)
combinations, and

for each combinationwegenerate the induced subgraphSi⊆GR,C , i=1, · · · ,
(|DR|

k

)
,

followed by the three k-dimensional eigenvalue vectors sk,i
R = (λi

x, λi
σ, λi

θ), i =
1, · · · ,

(|DR|
k

)
corresponding to connectivity functionsCx, Cσ andCθ. Next,we con-

struct an Earth Mover’s Distance (EMD) [15] signature Sk
R : [0, 2]3k �→ R from

the
(|DR|

k

)
spectra sk,i

R . Each spectrum sk,i
R gives rise to one bin in [0, 2]3k, and the

squared Euclidean distance is used as the ground distance between bins. We refer
to the EMD signatures Sk

R as region signatures.
In practice, calculating all

(|DR|
k

)
region spectra will often be computationally

prohibitive. We alleviate this problem by estimating the EMD signatures Sk
R,

i.e. we randomly sample some number of subsets as a function2 of |DR| and k;
random sampling has been shown to be effective in estimating true distributions
[16]. Subset sampling and region signature creation are illustrated in Fig. 1(c,d).

3.2 Restoring Information with Neumann Eigenvalues

The eigenvalues of a k-descriptor subset’s induced subgraph S ⊆ GR,C do not
capture all information encoded in GR,C . However, we can restore some infor-
mation from GR,C by considering the Neumann eigenvalues of S. These eigen-
values arise from boundary conditions analogous to a “Neumann random walk”,
in which agents moving to a vertex v /∈ S immediately move to some neigh-
bor of v in S — in other words, they “reflect” off the subgraph boundary [14].
Neumann eigenvalues therefore incorporate information from descriptors near
to the k-descriptor subset. Since our graphs GR,C are fully connected, using the

2 10|DR|/k subsets for a given R in our experiments.
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Neumann eigenvalues of S restores the information encoded in GR,C to a signif-
icant extent. Intuitively, few subset samples will be needed to approximate the
full signature on all

(|DR|
k

)
subsets. The Neumann eigenvalues are obtained via

eigendecomposition of the modified Laplacian [14]:

LN = Dk×kIk×n(T − A)NDk×k (5)

Ti,j =

{∑n
h=1 wdi,dh

i = j

0 otherwise

Ni,j =

⎧⎪⎨
⎪⎩

1 i = j

0 i ≤ k and i �= j

wdi,dj/
∑k

h=1 wdi,dh
otherwise, i.e. i > k

where vertices have been relabeled so that the k chosen descriptors correspond to
matrix indices {1, . . . , k}. T is an n×n diagonal matrix of vertex degrees, N is an
n× k matrix that redistributes edge weights according to the Neumann random
walk, and A is as defined in (4) (taking into account the relabeling). Dk×k is
D from (4) (relabeled) but truncated to the upper left k × k block, while Ik×n

denotes a k × n matrix with 1’s on the main diagonal and 0’s everywhere else.

4 Pattern Detection Using Region Signatures

We now describe our machine learning framework for pattern detection using
region signatures. Given a set of images I, our framework ranks them according
to its confidence that the pattern of interest is present, and also provides the
approximate center of each detection.

A brief summary of our method follows. We begin by training a ν-SVM clas-
sifier [17] on user-provided training exemplars — image regions with the pattern
of interest — as well as non-exemplars, which can be provided or obtained from
a bootstrapping procedure that will be discussed shortly. For each image Ω ∈ I,
we generate a series of random region masks and subject the mask regions to
the ν-SVM classifier, which outputs 1 for the exemplar class and 0 for the non-
exemplar class. The classification outcomes are averaged for each pixel to gen-
erate a score landscape (Figs. 3,4), whose local maxima are detected and sorted
in descending score order. By ranking the local maxima lists for all images in
lexical descending order, we obtain the required detection confidence ranking for
I. Moreover, the local maxima coordinates locate detected patterns of interest.

4.1 Pattern Detection without Segmentation

In order to detect patterns, we could segment each image Ω ∈ I into regions and
classify them using the SVM. However, this requires a segmentation algorithm
that a priori separates the pattern of interest from other image regions. Finding
such an algorithm can be a difficult task onto itself.
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Instead of segmentation, we employ a general technique we term masking
that is similar to sliding-window techniques. Given an image Ω ∈ I, we start by
generating a set of masks M, where each mask M ∈ M is a set of randomly-
generated regions R ⊆ Ω. For each mask M , we compute region signatures sR

for every R ∈ M . The sR are then classified in {0, 1} via the trained SVM,
where 1 indicates the class of exemplars and 0 otherwise. In our experiments, we
generated enough masks to cover each pixel ≥50 times. Finally, we generate Ω’s
score landscape ΦΩ(x) (Figs. 3,4), the average classification of all random mask
regions R covering pixel x. Local maxima xm of ΦΩ then correspond to detected
patterns of interest, where ΦΩ(xm) is the detection confidence, a value in [0, 1]
with 1 representing perfect confidence and 0 representing no confidence.

Since the score landscape may have numerous local maxima, we employ a
DBSCAN-like [18] algorithm to group local maxima into significant clusters.
Each cluster is assigned a score equal to the greatest maxima inside it, and
clusters are sorted in descending score order to get a maxima list for Ω. By
sorting all image maxima lists in descending lexical order, we obtain a ranking
for all images in I. Comparing this ranking with the ground truth then gives a
Receiver Operating Characteristic (ROC) curve.

Ideally, the randomly-generated regions should have shapes that fully contain
the pattern of interest, yet contain little in the way of other regions. In our
experiments, the patterns of interest are either cell-shaped or fit reasonably well
into cell-shaped regions. Thus, we employed the following procedure to generate
masks with cell-shaped regions:

1. Initialize a blank image with larger dimensions than Ω.
2. Place random seeds on the image, and convolve with a Gaussian filter.

Fig. 2. Example images and masks from the MPEG-7 and skin cell image sets. LEFT:
Skin cell image (resolution 696x520) with example mask region overlaid (parame-
ters (mσ, mp, mt) = (16.0, 10−3, 0.9)). Two exemplars of the phenotype of interest
(Keratin-14 aggregates) are indicated by arrows. RIGHT: MPEG-7 montage image (res-
olution 1000x1000), with example mask region overlaid (parameters (mσ, mp, mt) =
(40.0, 2.5−4, 0.9)). The upper right insert shows the 4 classes to be detected, with 3
exemplars each.
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3. Threshold at some (high) percentile, which generates connected components.
4. Place an Ω-sized window at the image center, and extract all connected

components in the window. By overlaying these connected components onto
Ω, we obtain a mask M .

Three parameters are involved: Gaussian filter standard deviation in pixels mσ,
seed distribution defined as the independent probability mp that a given pixel
will become a seed, and threshold percentile mt. In our experiments, we adjust
them so that the mean region size approximately matches training exemplar
region sizes; refer to Fig. 2 for example masks used in each experiment.

Some regions may have too few descriptors to take k-descriptor samples. These
regions do not contribute to the score landscape ΦΩ, except for regions with
exactly zero descriptors (such as blank or low-detail regions of the image) —
these are assumed to have classification 0. If the proportion of non-contributing
regions for some location x exceeds 0.8, we set ΦΩ(x) to 0. Such locations are
not being sampled adequately, hence they are ambiguous and should not be
considered during maxima detection.

4.2 Classifying Regions Using Support Vector Machines

We employ a ν-SVM classifier [17] on EMD signatures with K(SR1 ,SR2) =
exp(−γE(SR1 ,SR2)) as the kernel function, where SR1 and SR2 are region sig-
natures, γ > 0 is a scale parameter, and E is the EMD function with the squared
Euclidean distance ‖b1 − b2‖2 as the ground distance3 between signature bins
b1 and b2. Although we cannot prove that K(SR1 ,SR2) is positive semidefinite,
we did compute the spectra for a large sample of kernel matrices from our exper-
iments, and did not find any negative eigenvalues. We also note that a similar
kernel was used in [7], but with the unmodified Euclidean distance (rather than
its square) as the ground distance.

The SVM is trained with exemplar regions containing the pattern of interest
labeled as class 1, and non-exemplar regions labeled as class 0. If the user does
not provide non-exemplar regions, they may be generated by bootstrapping, in
which images known to lack the pattern of interest are masked (Section 4.1).

5 Experiments

We demonstrate our framework’s performance on two image sets: the 216-image
MPEG-7 CE Shape-1 Part-B database subset used by Sebastian et al. in [19],
and a 304-image subset of the GFP-Keratin-14-expressing human skin cell flu-
orescence microscopy images used by Law et al. in [20]. Both image sets are
single-channel. These choices reflect two distinct applications, namely shape re-
trieval and bio-image phenotype detection.
3 To be specific, we use the squared normalized Euclidean distance, in which every

bin dimension is rescaled to have standard deviation 1.0 (over all training data).
This allows us to use γ = 1.0 as a reasonable starting point for parameter tuning.
Another possibility would be to use the squared Mahalanobis distance.



Region Graph Spectra as Geometric Global Image Features 261

Note that we did not use the MPEG-7 image subset as-is; instead we generated
29 montage images with 5-10 randomly placed shape images in each (Fig. 2).
None of the 216 images were used more than once. Furthermore, some of the
shapes overlap in the montage images. Using montages rather than invididual
shapes demonstrates the functionality of our masking technique.

The common experimental setup was as follows:

1. Annotate exemplar regions with the pattern of interest, in the form of closed
polygons. Skin cell image exemplars required the consensus of 5 individuals.

2. Divide the images for k-fold cross-validation — 2 folds for MPEG-7 mon-
tages, 5 for skin cell images.

3. Train the ν-SVM classifier using the exemplar regions as class 1, while boot-
strapping (Section 4.2) to obtain non-exemplar regions as class 0.

4. Apply masking (Section 4.1) to score and rank images. We adjusted masking
parameters independently for both experiments (Fig. 2).

5. Use the rankings to compute ROC curves and Area Under Curves (AUCs).

5.1 MPEG-7 Results

The MPEG-7 subset contains 18 classes of 12 shapes each, which we randomly
placed into 29 1000x1000 montage images. We chose 4 shape classes for retrieval:
fountains, forks, elephants and bones (Fig. 2). For each class 11-12 training
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Fig. 3. LEFT: MPEG-7 database subset — average ROC curves and AUCs for detect-
ing fountains, forks, elephants and bones. The curves may be non-monotonic due to
binning effects on the small image set. RIGHT: Fork detection example score landscape
(top) and original image (bottom). In the score landscape, black represents score 0,
white represents score 1.
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Fig. 4. LEFT: Skin Cell image set — average ROC curves and AUCs for detecting
Keratin-14 aggregates. Legends for each ROC curve are given as “(γ, r, α), AUC”.
GRAPH INSET: Tuning over γ = {1.00, 0.30, 0.10, 0.03}, r =1 and ν =0.5. MAIN
GRAPH: Tuning over γ =0.03, r={1, 2, 3, 4, 5} and ν =α/(1 + r), α∈{0.5, 1.0, 1.5}.
Also shown are “SWAP”, a training/validation-set-exchanged 5-fold cross-validation
averaged over 5 trials with γ = 0.03, r = 5, and ν = 1/6, and “Law et al.”, the results
of Law et al.’s deterministic aggregate-specific detector [20]. RIGHT: Example score
landscape (top) and original image (bottom) with annotated exemplar. In the score
landscape, black represents score 0, white represents score 1.

exemplars were annotated4, and the montages divided into 2 folds with 5-6
exemplars each. As all exemplars contained 20 to ∼50 descriptors each, we set
the number of descriptors per subset k =20. The SVM was trained with a 1 : 5
ratio of exemplars to non-exemplars (i.e. we bootstrapped 5 non-exemplars for
every training exemplar), ν = 1/6 and γ =0.03.5 Masking was carried out with
(mσ, mp, mt) = (40.0, 2.5× 10−4, 0.9) (Fig. 2).

Fig. 3 shows the ROC curves and AUC for each class, averaged over 10 trials
of 2-fold cross validation. We took timings using one core of a 3.0GHz Intel Core
2 system running x86-64 Linux; training and bootstrapping took ∼10 seconds
per fold, while each image’s score landscape took 4-5 minutes to generate. The
time spent on maxima finding was negligible in comparison to score landscape
generation.

5.2 Skin Cell Results

The phenotype (pattern) of interest was Keratin-14 aggregates, which manifest
as fields of bright dots (Fig. 2). The image set contained 304 single-channel

4 We omitted occluded shapes from the exemplar set.
5 These parameters were selected based on Section 5.2’s tuning.
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images of 696x520 resolution, of which 152 had at least one exemplar. There
were 193 exemplar regions in total, containing 25.3±17.4 descriptors on aver-
age with significant right skew in the distribution. Based on this, we set the
number of descriptors per subset k = 10, which required us to discard 19
exemplar regions containing ≤ 10 descriptors. The masking parameters were
(mσ, mp, mt) = (16.0, 10−3, 0.9) (Fig. 2). ROC curves and AUCs are averaged
over 10 trials of 5-fold cross-validation, unless otherwise indicated.

We tuned the SVM kernel width γ for values {1.00, 0.30, 0.10, 0.03}, using
ν = 0.5 and a 1 : 1 ratio of exemplars to bootstrapped non-exemplars. Having
identified γ = 0.03 as yielding the optimal AUC, we proceeded to tune the boot-
strap ratio and ν. First, we selected ratios of the form 1 : r, r ∈ {1, 2, 3, 4, 5}.
Then, since ν upper-bounds the fraction of training set outliers [17], for each
r we selected ν = α/(1 + r) for α ∈ {0.5, 1.0, 1.5}. Choosing ν in this man-
ner protects the smaller exemplar set from over-penalization by the ν-SVM’s
regularization.

All AUCs and some ROC curves from our tuning are shown in Fig. 4. To
demonstrate the effect of a small training set, we include a 5-fold cross-validation
with training and validation sets exchanged. We also include results for Law et
al.’s spot detector [20]. We emphasize that their detector is application-specific,
whereas our method can be trained to recognize arbitrary patterns. Our worst
runtimes are from the 1 : 5 exemplar-to-non-exemplar ratio: training and boot-
strapping took ∼4 min/fold, while score landscapes took ∼4.5 minutes each.
Again, maxima finding takes negligible time compared to score landscape gen-
eration. In comparison, the method of Jones et al. requires ∼ 2.5 minutes to
preprocess each 3-channel 512x512 image, on a 2.4GHz Intel CPU [5].

6 Conclusion

We have described a global geometric image feature for pattern retrieval called
a region signature. This feature derives the collective behavior of local image
descriptors from graphs of their differences. By utilizing the EMD as a distance
measure between region signatures, the latter can be used with ν-SVM clas-
sifiers and image masking to perform pattern detection without segmentation.
Our framework demonstrates good performance on synthetic shapes and real
biological images — in particular, it retrieves patterns with only tens of local
descriptors, a quantity far smaller than typically used [12,7]. We also note that
the EMD distance allows region signatures to be employed in image clustering.

Acknowledgements

We would like to thank Ivy Yan Nei Law, Yudistira Mulyadi, Boyang Zheng and
Peili Yu for assistance related to this work.



264 Q. Ho, W. Yu, and H.K. Lee

References

1. Yarrow, J.C., Feng, Y., Perlman, Z.E., Kirchhausen, T., Mitchison, T.J.: Pheno-
typic Screening of Small Molecule Libraries by High Throughput Cell Imaging.
Combinatorial Chemistry & High Throughput Screening 6, 279–286 (2003)

2. Bakal, C., Aach, J., Church, G., Perrimon, N.: Quantitative Morphological Signa-
tures Define Local Signaling Networks Regulating Cell Morphology. Science 316,
1753–1756 (2007)

3. Peng, H.: Bioimage informatics: a new area of engineering biology. Bioinformat-
ics 24, 1827–1836 (2008)

4. Boland, M.V., Markey, M.K., Murphy, R.F.: Automated recognition of patterns
characteristic of subcellular structures in fluorescence microscopy images. Cytom-
etry 33, 366–375 (1998)

5. Jones, T.R., Carpenter, A.E., Lamprecht, M.R., et al.: Scoring diverse cellular
morphologies in image-based screens with iterative feedback and machine learning.
PNAS 106, 1826–1831 (2009)

6. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical
view of boosting. Annals of Statistics 28, 337–374 (2000)

7. Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for
classification of texture and object categories: A comprehensive study. IJCV 73,
213–238 (2007)

8. Schmid, C., Mohr, R.: Local grayvalue invariants for image retrieval. PAMI 19,
530–535 (1997)

9. Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV 60, 91–
110 (2004)

10. Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local
affine regions. PAMI 27(8), 1265–1278 (2005)

11. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. In:
Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–
417. Springer, Heidelberg (2006)

12. Everingham, M., Zisserman, A., Williams, C.K.I., Gool, L.V.: The 2006 pascal
visual object classes challenge (voc2006) results. Technical report, University of
Oxford (2007)

13. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors.
PAMI 27, 1615–1630 (2005)

14. Chung, F.R.K.: Spectral Graph Theory. American Mathematical Society, Provi-
dence (1997)

15. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for
image retrieval. IJCV 40, 99–121 (2000)

16. Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, Heidelberg
(2002)

17. Schlkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector
algorithms. Neural Computation 12, 1207–1245 (2000)

18. Ester, M., Kriegel, H.-p., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: International Conference on
KnowledgeDiscovery andDataMining, pp. 226–231. AAAIPress,MenloPark (1996)

19. Sebastian, T., Klein, P., Kimia, B.: Recognition of shapes by editing their shock
graphs. PAMI 26, 550–571 (2004)

20. Law, Y.N., Ogg, S., Common, J., Tan, D., Lane, E.B., Yip, A.M., Lee, H.K.:
Automated protein distribution detection in high-throughput image-based sirna
library screens. Journal of Signal Processing Systems 55, 1–13 (2009)


	Region Graph Spectra as Geometric Global Image Features
	Introduction
	Global Features from Local Feature Detectors
	Regions and Local Feature Descriptors
	Region Graphs and Region Spectra

	Comparing Region Spectra
	Region Signatures
	Restoring Information with Neumann Eigenvalues

	Pattern Detection Using Region Signatures
	Pattern Detection without Segmentation
	Classifying Regions Using Support Vector Machines

	Experiments
	MPEG-7 Results
	Skin Cell Results

	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




