
G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 179–188, 2009.
© Springer-Verlag Berlin Heidelberg 2009

An Empirical Study of Categorical Dataset Visualization
Using a Simulated Bee Colony Clustering Algorithm

James D. McCaffrey

Microsoft MSDN / Volt VTE
One Microsoft Way

Redmond, WA 98052 USA
v-jammc@microsoft.com

Abstract. This study investigates the use of a biologically inspired meta-
heuristic algorithm to cluster categorical datasets so that the data can be
presented in a useful visual form. A computer program which implemented the
algorithm was executed against a benchmark dataset of voting records and pro-
duced better results, in terms of cluster accuracy, than all known published stu-
dies. Compared to alternative clustering and visualization approaches, the
categorical dataset clustering with a simulated bee colony (CDC-SBC) algo-
rithm has the advantage of allowing arbitrarily large datasets to be analyzed.
The primary disadvantages of the CDC-SBC algorithm for dataset clustering
and visualization are that the approach requires a relatively large number of in-
put parameters, and that the approach does not guarantee convergence to an
optimal solution. The results of this study suggest that using the CDC-SBC ap-
proach for categorical data visualization may be both practical and useful in
certain scenarios.

Keywords: Categorical data, category utility, cluster analysis, data visualiza-
tion, simulated bee colony algorithm.

1 Introduction

This paper presents a study of the use of a biologically inspired meta-heuristic algo-
rithm for processing large datasets composed of categorical data in order to present
the data in a useful visual form. The analysis and visualization of datasets which con-
tain categorical data has great practical importance. Examples include examining
sales data to forecast consumer purchasing behavior, examining telecommunications
data for possible terror-related activity, and examining medical information for vari-
ous clinical diagnoses. For the sake of concreteness, consider the artificial dataset
presented below. The nine tuples in the dataset are based on three attributes: color,
size, and temperature. Each of the three attributes can take on a single categorical
value: red, blue, green or yellow; small, medium, or large; and hot or cold, respective-
ly. With even this unrealistically small dataset, it is quite difficult for human observ-
ers to categorize or group the raw dataset in a meaningful way so that the categorized
data can then be presented in some visually descriptive form.

180 J.D. McCaffrey

001: Green Medium Hot
002: Blue Small Hot
003: Red Large Cold
004: Red Medium Cold
005: Yellow Medium Hot
006: Green Medium Hot
007: Red Small Hot
008: Red Large Cold
009: Blue Medium Hot

The primary source of the difficulty of clustering the data presented above is the fact
that the attribute values are categorical rather than numerical. It is not so obvious how
to compute a meaningful difference or a representative value for categorical tuples
such as (red, small, hot) and (blue, large, cold). Data clustering is a widely studied
problem domain. A search of the IEEE digital library Web site for the keyword “clus-
tering” returned a list of references to over 36,000 documents

In order to measure the quality of a particular clustering algorithm compared to al-
ternative approaches, some measure of clustering effectiveness must be employed.
One approach for evaluating the quality of a clustering algorithm which works on
categorical data is to generate a synthetic dataset which is based on some hidden,
underlying rule set, run the proposed clustering algorithm against the synthetic data-
set, and then gauge the quality of the resulting clusters using some form of similarity
or likelihood measure. Examples of similarity measures which can be used to evaluate
clustering effectiveness include the Simple Matching coefficient, Jaccard's coeffi-
cient, Dice's coefficient, the Cosine coefficient, and the Overlap coefficient [1]. Ex-
amples of likelihood measures which can be used to evaluate clustering effectiveness
include various forms of entropy functions and the category utility function [2]. The
category utility (CU) function is generally attributed to a 1985 paper by Gluck and
Corter [3]. The CU function is defined in terms of the bivariate distributions produced
by a clustering. Suppose a dataset is composed of t tuples where each tuple is based
on Ai attributes (i = 1... m) and where each attribute value, Vij, is a categorical value.
If a dataset under analysis is partitioned into a cluster set C = {Ck} (k = 1... n), then
the category utility function for the clustering scheme is given by the equation:

ሻܥሺܷܥ ൌ 1݊ ෍ ܲሺܥ௞ሻ ቎෍ ෍ ܲ൫ܣ௜ ൌ ௜ܸ௝ ห ܥ௞ሻ2 െ ෍ ෍ ܲሺܣ௜ ൌ ௜ܸ௝௝௜ ሻ௝௜ 2቏௡
௞ୀଵ ሺ1ሻ

The left-hand term in the brackets of equation (1) represents conditional probabilities
that each attribute takes on a particular categorical value, given the distribution of that
value within a cluster. The right-hand term is similar except that it represents uncon-
ditional probabilities of attribute values for the entire dataset. Therefore, the entire
term in the square brackets in equation (1) measures the difference of the probabilities
of finding attribute values in a cluster purely by chance and the probabilities of find-
ing those values given the clustering scheme.

The fact that quality of categorical data clustering algorithms can be evaluated us-
ing the CU function raises the possibility of using the CU function as the basis of a
clustering generation mechanism. This is the foundation of the approach used by the
algorithm introduced in this study. Except in situations with very small datasets, the

 A

Fig. 1. Vis

CU function cannot be use
data. Complete analysis of
complete problem and req
dataset under analysis [2].
approach introduced by this
conjunction with the catego
sections of this paper, in e
searches the entire solution
tion which has a global m
CDC-SBC (Categorical Da
guish it from other algorithm
can be visually represented
uses modal values from eac
tion of categorical datasets
for visualization techniques
Model (IVDSRM) [4]. The

Fig. 2. The Info

The IVDSRM visualiza
four distinct data stages: ra
tion stage), visualizable da
(the view stage). Two type
mation operators (TO1 thro
tors (SO1 through SO4) wh
context of the IVDSRM fra
a Transformation Operator
ical dataset data. The cluste
ent visualizations such as th

0

1

2

3

4

5

Co
un

t

Clu

(R

An Empirical Study of Categorical Dataset Visualization

sualization of categorical data after clustering

ed to directly generate an optimal clustering of categor
f the effectiveness of any clustering algorithm is an N

quires a full enumeration of all possible partitions of
 Therefore an indirect approach must be employed. T
s study is to use a simulated bee colony algorithm (SBC
ory utility function. As will be explained in the follow
essence, the simulated bee colony algorithm intelligen

n space of all possible dataset partitions, seeking the pa
maximum category utility value. This algorithm is cal
ataset Clustering with a Simulated Bee Colony) to dis
ms in the literature. The resulting clustered categorical d
d in useful ways, such as the one shown in Fig. 1 wh
ch cluster. The integral relationship between the visuali
 and clustering is formalized in a widely cited framew
s called the Information Visualization Data State Refere
IVDSRM framework is summarized in Fig. 2.

ormation Visualization Data State Reference Model

tion framework models the creation of a visualization
aw data (the value stage), meta-data (the analytical abstr
ata (the visualization abstraction stage), and visualizat
es of operators can be applied to each data stage: transf
ough TO3), which create a new data stage, and stage ope
hich do not change the underlying structure of data. In
amework, the clustering technique presented in this pape
1 and produces clustering meta-data from the raw categ

ering meta-data can then be used to produce several dif
he modal histogram shown in Fig. 1.

Cluster c0 Cluster c1 Cluster c2

Cluster Modal Tuples

uster Analysis of Example Categorical Dataset

Red,Large,Cold) (Green,Medium,Hot) (Blue,Small,Hot)

181

rical
NP-
the

The
C) in
wing
ntly
arti-
lled

stin-
data
hich
iza-

work
ence

n as
rac-
tion
for-
era-
the

er is
gor-
ffer-

182 J.D. McCaffrey

2 Algorithms Inspired by Bee Behavior

Algorithms inspired by the behavior of natural systems have been studied for decades.
Examples include algorithms inspired by ants, biological immune systems, metallur-
gic annealing, and genetic recombination. A review of the literature on algorithms
inspired by bee behavior suggests that the topic is evolving and that there is no con-
sensus on a single descriptive title for meta-heuristics based on bee behavior. Algo-
rithm names in the literature include Bee System, BeeHive, Virtual Bee Algorithm,
Bee Swarm Optimization, Bee Colony Optimization, Artificial Bee Colony, Bees
Algorithm, and Simulated Bee Colony.

Common honey bees such as Apis mellifera take on different roles within their co-
lony over time [5]. A typical hive may have 5,000 to 20,000 individuals. Young bees
(2 to 20 days old) nurse larvae, construct and repair the hive, guard the entrance to the
hive, and so on. Mature bees (20 to 40 days old) typically become foragers. Foraging
bees typically occupy one of three roles: active forgers, scout foragers, and inactive
foragers. Active foraging bees travel to a food source, gather food, and return to the
hive. Roughly 10% of foraging bees in a hive are employed as scouts.

A 1997 study by Sato and Hagiwara used a model of honey bee behavior named
Bee System to create a variation of the genetic algorithm meta-heuristic [6]. The algo-
rithm essentially added a model of the behavior of scout bees to introduce new poten-
tial solutions and avoid premature convergence to local minima solutions. A 2002
study by Lucic and Teodorvic used a variation of the Bee System model to investigate
solving complex traffic and transportation problems [7]. The study successfully used
Bee System to solve eight benchmark versions of the traveling salesman problem. A
2004 paper by Nakrani and Tovey presented a honey bee inspired algorithm for dy-
namic allocation of Internet services [8]. The study concluded that bee inspired algo-
rithms outperformed deterministic greedy algorithms in some situations. A 2005 study
by Drias et al. used a meta-heuristic named Bee Swarm Optimization to study in-
stances of the Maximum Satisfiability problem [9]. The study concluded that Bee
Swarm Optimization outperformed other evolutionary algorithms, in particular an ant
colony algorithm. A 2006 paper by Basturk and Karaboga investigated a bee-inspired
algorithm named Artificial Bee Colony to solve five multi-dimensional numerical
problems [10]. The paper concluded that the performance of the bee algorithm was
roughly comparable to solutions by differential evolution, particle swarm optimiza-
tion, and evolutionary algorithms. A 2009 study by McCaffrey demonstrated that an
algorithm named Simulated Bee Colony outperformed existing deterministic algo-
rithms for generating pairwise test sets, for six out of seven benchmark problems [11].

3 Simulated Bee Colony Algorithm Implementation

There are many ways to map honey bee foraging behavior to a specific algorithm
which clusters categorical data in order to create a useful visual presentation. The
three primary design features which must be addressed are 1.) design of a problem-
specific data structure that simulates a foraging bee's memory and which represents
the location of a food source, which in turn represents a dataset clustering scheme, 2.)
formulation of a problem-specific function which measures the goodness, or quality,

 An Empirical Study of Categorical Dataset Visualization 183

of a candidate partitioning, and 3.) specification of generic algorithm parameters such
as the numbers of foraging, scout, and inactive bees in the colony, and the maximum
number of times a bee will visit a particular food source. Suppose the dataset to be
analyzed contains the data described in the Introduction section of this paper, with
attributes of color (red, blue, green, yellow), size (small, medium, large), and tem-
perature (hot, cold), and a cluster size of n = 3 is specified. The screenshots shown in
Fig. 3 and Fig. 4 show the result of a sample program run and illustrate many of the
implementation details.

Fig. 3. Screenshot of initialization phase of the CDC-SBC implementation

The CDC-SBC algorithm implementation used in this study models a bee as an ob-

ject with four data members. The primary data member is a two-dimensional integer
array named MemoryMatrix which corresponds to a bee's memory of the location of a
food source, which in turn represents a dataset clustering. A Status field identifies the
bee's role (1 = an active forager). A CategoryUtility field is a value which is a meas-
ure of the quality of the memory matrix, as described in the Introduction section of
this paper. A NumberVisits field is a counter that tracks the number of times the bee
object has visited a particular food source. The honey bee colony as a whole is mod-
eled as an array of bee objects. The CDC-SBC algorithm iterates through each bee in
the colony and examines the current bee's Status field. If the current bee is an active
forager, the algorithm simulates the action of the bee leaving the hive to go to the
current food source in memory. Once there, the bee examines a single neighbor food
source. A neighbor food source is one which, relative to the current food source, has a
single tuple assigned to a different cluster. If the quality of the neighbor food source is
superior to the current food source, the foraging bee's memory is updated with the
neighbor location and the NumberVisits counter is reset to 0.

After examining a neighbor food source, an active bee returns to the hive. If the re-
turning bee has reached a threshold for the maximum number of visits to its food
source in memory, that bee becomes inactive and a randomly selected inactive bee is

C:\CDC-SBC\Run\bin\Debug> Run.exe

Begin cluster analysis of categorical data using SBC

Number clusters = 3

Initializing Hive

Number Active bees = 60
Number Inactive bees = 20
Number Scout bees = 20
Maximum number of cycles = 10,000
Maximum cycles without improvement = 10,000
Maximum visits to a food source = 10
Probability waggle dance will convince = 0.9000
Probability a bee accepts a worse source = 0.0100

Hive initialized

184 J.D. McCaffrey

Fig. 4. Screenshot of execution and results of the CDC-SBC implementation

converted to an active forager. Otherwise the returning bee performs a simulated
waggle dance to all inactive bees in the hive. This dance conveys the goodness of the
current food source / clustering in the dancing bee's memory. Inactive bees with food
sources in memory which have lower quality than the returning bee's food source will
update their memories to the returning bee's memory with probability = 0.90. Scout
bees are not affected by the waggle dances of returning foragers. Instead, scouts leave
the hive, examine a randomly selected food source, return to the hive, and perform a
waggle dance to the audience of currently inactive bees.

4 Results

Two common metrics for measuring the effectiveness of clustering algorithms are
precision and recall [12]. Suppose some dataset contains t tuples and some clustering
algorithm assigns each tuple to one of n clusters. Let ai represent the number of tuples
correctly assigned to cluster i. Let bi represent the number of tuples which have been
incorrectly assigned to cluster i. And let ci represent the number of tuples which have
been incorrectly rejected from cluster i (and incorrectly assigned to some cluster j

All cycles completed

Best clustering matrix found is
0 0 1 1 0 0 0 1 0
1 0 0 0 1 1 0 0 1
0 1 0 0 0 0 1 0 0

Corresponding category utility is 0.3971

Cluster c0 =
003 (Red Large Cold)
004 (Red Medium Cold)
008 (Red Large Cold)

mode: Red Large Cold

Cluster c1 =
001 (Green Medium Hot)
005 (Yellow Medium Hot)
006 (Green Medium Hot)
009 (Blue Medium Hot)

mode: Green Medium Hot

Cluster c2 =
002 (Blue Small Hot)
007 (Red Small Hot)

mode: Blue Small Hot

End SBC visualization run

 An Empirical Study of Categorical Dataset Visualization 185

where j ≠ i). Then the precision for cluster i is given by pi = ai / (ai + bi). The recall for
cluster i is given by ri = ai / (ai + ci). The precision for a given cluster can be thought
of as a measure of accuracy, and the recall can be thought of as a measure of com-
pleteness. The micro-precision of a clustering result is computed as a whole, across all
clusters, using overall numbers of correctly assigned tuples, incorrectly assigned
tuples, and incorrectly rejected tuples.

4.1 Experiment #1 – Congressional Voting Data

In order to evaluate the effectiveness of the CDC-SBC algorithm and resulting data
visualizations compared to alternative clustering algorithms, the CDC-SBC algorithm
was executed against the UCI voting dataset. The voting dataset consists of actual
congressional votes from the U.S. House of Representatives on 16 issues in 1984.
Results of running the CDC-SBC algorithm against the voting dataset (with party
affiliation omitted) and the corresponding values for seven other categorical data
clustering algorithms are shown in Table 1.

Table 1. Effectiveness of different clustering algorithms on the benchmark UCI voting dataset

Algorithm Correct Precision CU CU'
CDC-SBC 383 0.8805 1.4711 2.9422

COBWEB 378 0.8690 1.4506 2.9011

Ahmad-K 377 0.8667 1.4465 2.8929

LIMBO 376 0.8644 1.4424 2.8847

K-Means 376 0.8644 1.4424 2.8847

Huang-K 364 0.8368 1.3931 2.7861

COOLCAT 363 0.8345 1.3890 2.7779

ROCK 345 0.7931 1.3150 2.6300

The values in the column labeled Correct in Table 1 are the number of tuples in the

voting dataset which were correctly clustered as Democrat or Republican by each
algorithm. The Precision column is the micro-precision value as described above,
which in this situation is just the number of tuples which are correctly clustered, di-
vided by the total number of tuples (t = 435) in the voting dataset. The CU column is
the category utility of the clustering produced by each algorithm, as defined by equa-
tion (1). The CU' column is a slightly different definition of category utility used by
some studies, which is not normalized for number of clusters. Because the number of
clusters in this situation is 2, the values in the CU' column are simply twice the values
in the CU column, and have been included solely to provide a consistent comparison
with the reported results of other studies.

The COBWEB clustering algorithm incrementally builds a probabilistic hierarchy
tree of clusters from a dataset using category utility to measure clustering effective-
ness [13]. The Ahmad-K clustering algorithm is a variation of the Huang-K algo-
rithm, which in turn is based on the simple k-means algorithm [14]. The LIMBO
algorithm is based on a concept called the information bottleneck, which is essentially
a measure of entropy [12]. The COOLCAT clustering algorithm is an iterative tech-
nique that uses a greedy algorithm based combined with an entropy measure [2]. The

186 J.D. McCaffrey

ROCK algorithm uses a hierarchical approach in conjunction with a distance measure
modeled on graph theory [15].

The data in Table 1 were derived from several sources and should be interpreted
somewhat cautiously. Most of the studies represented in Table 1 reported result values
for the UCI voting dataset in terms of category utility. In the situations where the
number of correct tuples was not reported (COOLCAT, COBWEB, LIMBO), an
auxiliary program, developed as part of this study, which computes the number of
correct values for a given category utility was employed to produce the values shown
in the Correct column of Table 1. The results for the K-Means algorithm were deter-
mined by executing the WEKA data analysis tool [16]. Further, published results
differ slightly for the ROCK, COOLCAT, and COBWEB algorithms, presumably
because of differences in input parameters to the algorithms. In situations where the
differences in reported values for these algorithms could not be resolved, the data in
Table 1 represent arithmetic means of reported results.

The results of the CDC-SBC algorithm and the seven other algorithms listed in
Table 1 represent the best clustering results of the benchmark UCI voting dataset
discovered by a comprehensive review of the literature. The data indicates that the
CDC-SBC algorithm produced more accurate results than all previously published
algorithms for clustering the UCI voting dataset.

4.2 Experiment #2 – Synthetic Datasets

In order to evaluate the efficiency of the CDC-SBC algorithm and its resulting data
visualizations, the algorithm was executed against six synthetic datasets. The results
are shown in Table 2.

Table 2. Accuracy of the CDC-SBC algorithm on synthetic datasets

Dataset Attributes
Attribute
Values Tuples Clusters Partitions Precision

DS0 3 (4,3,2) 9 2 3.02 * 103 1.00

DS1 4 (5,5,5,5) 20 3 5.81 * 108 1.00

DS2 5 (2,3,4,3,2) 36 4 1.97 * 1020 1.00

DS3 6 (3,3,..,3) 50 5 7.40 * 1032 1.00

DS4 10 (2,2,…,2) 200 2 8.03 * 1059 0.98

DS5 16 (2,2,…,2) 435 2 4.44 * 10130 0.95

After the synthetic datasets had been generated, a program which implemented the

CDC-SBC algorithm was executed using each synthetic dataset (without cluster val-
ues) as input. The micro-precision was computed for each resulting clustering, and is
listed in Table 2. For all synthetic dataset inputs, the maximum number of iterations
of the main SBC algorithm loop was limited to a count of 108 or until a partitioning
result with precision of 1.00 was discovered. The column in Table 2 which is labelled
Partitions holds the total number of possible partitions for the associated synthetic
dataset, computed using Stirling numbers of the second kind, and is a measure of
dataset complexity.

 An Empirical Study of Categorical Dataset Visualization 187

The results in Table 2 suggest that the CDC-SBC algorithm is highly effective at
clustering datasets which contain self-consistent data. The results also suggest that the
CDC-SBC algorithm is at least reasonably effective at clustering datasets which have
huge search spaces. The results for dataset D05 are particularly noteworthy; the CDC-
SBC algorithm correctly placed 413 out of 435 tuples from a problem domain with
over 10130 possible partitions.

5 Conclusions

The results of this study demonstrate the feasibility of using a simulated bee colony
meta-heuristic algorithm in conjunction with the category utility function to cluster
categorical datasets so that the data can be usefully visualized. Because the scope of
this study is limited and is for the most part empirical, it is not possible to draw de-
finitive conclusions from the results. However, when taken as a whole the results
suggest that categorical data visualization using the CDC-SBC technique is a promis-
ing technique which has the potential to outperform existing algorithms in terms of
clustering accuracy and accuracy of any resulting visualization format, and that the
technique merits further investigation. One disadvantage of the CDC-SBC algorithm
compared to alternative approaches is that CDC-SBC requires a relatively large num-
ber of generic algorithm parameters such as the numbers and percentages of each type
of bee object, and simulation probabilities such as the probability that an active forag-
ing bee will accept a neighbor solution with a lower category utility value than the
current CU value. Because algorithms based on bee behavior are relatively unex-
plored, there are very few guidelines available for selecting input parameters and trial
and error is often required to tune the algorithm for better performance. Additionally,
because the CDC-SBC algorithm is probabilistic, there is no guarantee that the algo-
rithm will produce an optimal solution to any clustering problem.

In addition to clustering accuracy, an advantage of the CDC-SBC algorithm com-
pared to existing approaches is that CDC-SBC can in principle be applied to arbitrari-
ly large datasets. A promising potential extension of CDC-SBC is to investigate
datasets with mixed categorical and numerical data. According to a mathematical
analysis of the category utility function by Mirkin, in spite of a significantly different
outward appearance compared to traditional numerical clustering measures, the CU
function is in fact closely related to the square-error criterion used in numerical clus-
tering [17]. This raises the possibility of adapting the CDC-SBC algorithm to deal
with mixed data using a unified form of CU function.

References

1. Liu, Y., Ouyang, Y., Sheng, H., Xiong, Z.: An Incremental Algorithm for Clustering

Search Results. In: Proceedings of the 2008 IEEE International Conference on Signal Im-
age Technology and Internet Based Systems, pp. 112–117 (2008)

2. Barbara, D., Li, Y., Couto, J.: COOLCAT: An Entropy-Based Algorithm for Categorical
Clustering. In: Proceedings of the 11th International Conference on Information and
Knowledge Management, pp. 582–589 (2002)

188 J.D. McCaffrey

3. Gluck, M., Corter, J.: Information, Uncertainty, and the Utility of Categories. In: Program
of the 7th Annual Conference of the Cognitive Science Society, pp. 283–287 (1985)

4. Chi, E.: A Taxonomy of Visualization Techniques using the Data State Reference Model.
In: Proceedings of the IEEE Symposium on Information Visualization, pp. 69–75 (2000)

5. Seeley, T.D.: The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies.
Harvard University Press, Boston (1995)

6. Sato, T., Hagiwara, M.: Bee System: Finding Solution by a Concentrated Search. In: Pro-
ceedings of the IEEE International Conference on Systems, Man, and Cybernetics, vol. 4,
pp. 3954–3959 (1997)

7. Lucic, P., Teodorovic, D.: Transportation Modeling: An Artificial Life Approach. In: Pro-
ceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence,
pp. 216–223 (2002)

8. Nakrani, S., Tovey, C.: On Honey Bees and Dynamic Server Allocation in Internet Host-
ing Centers. Adaptive Behavior - Animals, Animats, Software Agents, Robots, Adaptive
Systems 12(3-4), 223–240 (2004)

9. Drias, H., Sadeg, S., Yahi, S.: Cooperative Bees Swarm for Solving the Maximum
Weighted Satisfiability Problem. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.)
IWANN 2005. LNCS, vol. 3512, pp. 318–325. Springer, Heidelberg (2005)

10. Basturk, B., Karaboga, D.: An Artificial Bee Colony (ABC) Algorithm for Numeric Func-
tion Optimization. In: Proceedings of the IEEE Swarm Intelligence Symposium, pp. 687–
697 (2006)

11. McCaffrey, J.: Generation of Pairwise Test Sets using a Simulated Bee Colony Algorithm.
In: Proceedings of the 10th IEEE International Conference on Information Reuse and Inte-
gration (2009)

12. Andritsos, P., Tsaparas, P., Miller, R., Sevcik, K.: LIMBO: Scalable Clustering of Cate-
gorical Data. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Kou-
barakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 123–146.
Springer, Heidelberg (2004)

13. Fisher, D.: Knowledge Acquisition via Incremental Conceptual Clustering. Machine
Learning 2(2), 139–172 (1987)

14. Ahmad, A., Dey, L.: A k-Mean Clustering Algorithm for Mixed Numeric and Categorical
Data. Data Knowledge and Engineering 63(2), 503–527 (2007)

15. Hsu, C., Chen, C., Su, Y.: Hierarchical Clustering of Mixed Data Based on Distance Hie-
rarchy. Information Sciences 177(20), 4474–4492 (2007)

16. Holmes, G., Donkin, A., Witten, I.: WEKA: A Machine Learning Workbench. In: Pro-
ceedings of the 2nd Austraila and New Zealand Conference on Intelligent Information
Systems, pp. 357–361 (1994)

17. Mirkin, B.: Reinterpreting the Category Utility Function. Machine Learning 45(2), 219–
228 (2001)

	An Empirical Study of Categorical Dataset Visualization Using a Simulated Bee Colony Clustering Algorithm
	Introduction
	Algorithms Inspired by Bee Behavior
	Simulated Bee Colony Algorithm Implementation
	Results
	Experiment #1 – Congressional Voting Data
	Experiment #2 – Synthetic Datasets

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

