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Abstract. This study investigates the use of a biologically inspired meta-
heuristic algorithm to cluster categorical datasets so that the data can be  
presented in a useful visual form. A computer program which implemented the 
algorithm was executed against a benchmark dataset of voting records and pro-
duced better results, in terms of cluster accuracy, than all known published stu-
dies. Compared to alternative clustering and visualization approaches, the  
categorical dataset clustering with a simulated bee colony (CDC-SBC) algo-
rithm has the advantage of allowing arbitrarily large datasets to be analyzed. 
The primary disadvantages of the CDC-SBC algorithm for dataset clustering 
and visualization are that the approach requires a relatively large number of in-
put parameters, and that the approach does not guarantee convergence to an  
optimal solution. The results of this study suggest that using the CDC-SBC ap-
proach for categorical data visualization may be both practical and useful in 
certain scenarios. 

Keywords: Categorical data, category utility, cluster analysis, data visualiza-
tion, simulated bee colony algorithm. 

1   Introduction 

This paper presents a study of the use of a biologically inspired meta-heuristic algo-
rithm for processing large datasets composed of categorical data in order to present 
the data in a useful visual form. The analysis and visualization of datasets which con-
tain categorical data has great practical importance. Examples include examining 
sales data to forecast consumer purchasing behavior, examining telecommunications 
data for possible terror-related activity, and examining medical information for vari-
ous clinical diagnoses. For the sake of concreteness, consider the artificial dataset 
presented below. The nine tuples in the dataset are based on three attributes: color, 
size, and temperature. Each of the three attributes can take on a single categorical 
value: red, blue, green or yellow; small, medium, or large; and hot or cold, respective-
ly. With even this unrealistically small dataset, it is quite difficult for human observ-
ers to categorize or group the raw dataset in a meaningful way so that the categorized 
data can then be presented in some visually descriptive form. 
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001:  Green   Medium  Hot 
002:  Blue    Small   Hot 
003:  Red     Large   Cold 
004:  Red     Medium  Cold 
005:  Yellow  Medium  Hot 
006:  Green   Medium  Hot 
007:  Red     Small   Hot 
008:  Red     Large   Cold 
009:  Blue    Medium  Hot 
 

The primary source of the difficulty of clustering the data presented above is the fact 
that the attribute values are categorical rather than numerical. It is not so obvious how 
to compute a meaningful difference or a representative value for categorical tuples 
such as (red, small, hot) and (blue, large, cold). Data clustering is a widely studied 
problem domain. A search of the IEEE digital library Web site for the keyword “clus-
tering” returned a list of references to over 36,000 documents 

In order to measure the quality of a particular clustering algorithm compared to al-
ternative approaches, some measure of clustering effectiveness must be employed. 
One approach for evaluating the quality of a clustering algorithm which works on 
categorical data is to generate a synthetic dataset which is based on some hidden, 
underlying rule set, run the proposed clustering algorithm against the synthetic data-
set, and then gauge the quality of the resulting clusters using some form of similarity 
or likelihood measure. Examples of similarity measures which can be used to evaluate 
clustering effectiveness include the Simple Matching coefficient, Jaccard's coeffi-
cient, Dice's coefficient, the Cosine coefficient, and the Overlap coefficient [1]. Ex-
amples of likelihood measures which can be used to evaluate clustering effectiveness 
include various forms of entropy functions and the category utility function [2]. The 
category utility (CU) function is generally attributed to a 1985 paper by Gluck and 
Corter [3]. The CU function is defined in terms of the bivariate distributions produced 
by a clustering. Suppose a dataset is composed of t tuples where each tuple is based 
on Ai attributes (i = 1... m) and where each attribute value, Vij, is a categorical value. 
If a dataset under analysis is partitioned into a cluster set C = {Ck} (k = 1... n), then 
the category utility function for the clustering scheme is given by the equation: 

ሻܥሺܷܥ ൌ  1݊ ෍ ܲሺܥ௞ሻ ቎෍ ෍ ܲ൫ܣ௜ ൌ ௜ܸ௝ ห ܥ௞ሻ2 െ ෍ ෍ ܲሺܣ௜ ൌ  ௜ܸ௝௝௜ ሻ௝௜ 2቏௡
௞ୀଵ             ሺ1ሻ 

The left-hand term in the brackets of equation (1) represents conditional probabilities 
that each attribute takes on a particular categorical value, given the distribution of that 
value within a cluster. The right-hand term is similar except that it represents uncon-
ditional probabilities of attribute values for the entire dataset. Therefore, the entire 
term in the square brackets in equation (1) measures the difference of the probabilities 
of finding attribute values in a cluster purely by chance and the probabilities of find-
ing those values given the clustering scheme.  

The fact that quality of categorical data clustering algorithms can be evaluated us-
ing the CU function raises the possibility of using the CU function as the basis of a 
clustering generation mechanism. This is the foundation of the approach used by the 
algorithm introduced in this study. Except in situations with very small datasets, the  
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2   Algorithms Inspired by Bee Behavior 

Algorithms inspired by the behavior of natural systems have been studied for decades. 
Examples include algorithms inspired by ants, biological immune systems, metallur-
gic annealing, and genetic recombination. A review of the literature on algorithms 
inspired by bee behavior suggests that the topic is evolving and that there is no con-
sensus on a single descriptive title for meta-heuristics based on bee behavior. Algo-
rithm names in the literature include Bee System, BeeHive, Virtual Bee Algorithm, 
Bee Swarm Optimization, Bee Colony Optimization, Artificial Bee Colony, Bees 
Algorithm, and Simulated Bee Colony. 

Common honey bees such as Apis mellifera take on different roles within their co-
lony over time [5]. A typical hive may have 5,000 to 20,000 individuals. Young bees 
(2 to 20 days old) nurse larvae, construct and repair the hive, guard the entrance to the 
hive, and so on. Mature bees (20 to 40 days old) typically become foragers. Foraging 
bees typically occupy one of three roles: active forgers, scout foragers, and inactive 
foragers. Active foraging bees travel to a food source, gather food, and return to the 
hive. Roughly 10% of foraging bees in a hive are employed as scouts. 

A 1997 study by Sato and Hagiwara used a model of honey bee behavior named 
Bee System to create a variation of the genetic algorithm meta-heuristic [6]. The algo-
rithm essentially added a model of the behavior of scout bees to introduce new poten-
tial solutions and avoid premature convergence to local minima solutions. A 2002 
study by Lucic and Teodorvic used a variation of the Bee System model to investigate 
solving complex traffic and transportation problems [7]. The study successfully used 
Bee System to solve eight benchmark versions of the traveling salesman problem. A 
2004 paper by Nakrani and Tovey presented a honey bee inspired algorithm for dy-
namic allocation of Internet services [8]. The study concluded that bee inspired algo-
rithms outperformed deterministic greedy algorithms in some situations. A 2005 study 
by Drias et al. used a meta-heuristic named Bee Swarm Optimization to study in-
stances of the Maximum Satisfiability problem [9]. The study concluded that Bee 
Swarm Optimization outperformed other evolutionary algorithms, in particular an ant 
colony algorithm. A 2006 paper by Basturk and Karaboga investigated a bee-inspired 
algorithm named Artificial Bee Colony to solve five multi-dimensional numerical 
problems [10]. The paper concluded that the performance of the bee algorithm was 
roughly comparable to solutions by differential evolution, particle swarm optimiza-
tion, and evolutionary algorithms. A 2009 study by McCaffrey demonstrated that an 
algorithm named Simulated Bee Colony outperformed existing deterministic algo-
rithms for generating pairwise test sets, for six out of seven benchmark problems [11]. 

3   Simulated Bee Colony Algorithm Implementation 

There are many ways to map honey bee foraging behavior to a specific algorithm 
which clusters categorical data in order to create a useful visual presentation. The 
three primary design features which must be addressed are 1.) design of a problem-
specific data structure that simulates a foraging bee's memory and which represents 
the location of a food source, which in turn represents a dataset clustering scheme, 2.) 
formulation of a problem-specific function which measures the goodness, or quality, 
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of a candidate partitioning, and 3.) specification of generic algorithm parameters such 
as the numbers of foraging, scout, and inactive bees in the colony, and the maximum 
number of times a bee will visit a particular food source. Suppose the dataset to be 
analyzed contains the data described in the Introduction section of this paper, with 
attributes of color (red, blue, green, yellow), size (small, medium, large), and tem-
perature (hot, cold), and a cluster size of n = 3 is specified. The screenshots shown in 
Fig. 3 and Fig. 4 show the result of a sample program run and illustrate many of the 
implementation details. 

 

 
 

Fig. 3. Screenshot of initialization phase of the CDC-SBC implementation 

 
The CDC-SBC algorithm implementation used in this study models a bee as an ob-

ject with four data members. The primary data member is a two-dimensional integer 
array named MemoryMatrix which corresponds to a bee's memory of the location of a 
food source, which in turn represents a dataset clustering. A Status field identifies the 
bee's role (1 = an active forager). A CategoryUtility field is a value which is a meas-
ure of the quality of the memory matrix, as described in the Introduction section of 
this paper. A NumberVisits field is a counter that tracks the number of times the bee 
object has visited a particular food source. The honey bee colony as a whole is mod-
eled as an array of bee objects. The CDC-SBC algorithm iterates through each bee in 
the colony and examines the current bee's Status field. If the current bee is an active 
forager, the algorithm simulates the action of the bee leaving the hive to go to the 
current food source in memory. Once there, the bee examines a single neighbor food 
source. A neighbor food source is one which, relative to the current food source, has a 
single tuple assigned to a different cluster. If the quality of the neighbor food source is 
superior to the current food source, the foraging bee's memory is updated with the 
neighbor location and the NumberVisits counter is reset to 0. 

After examining a neighbor food source, an active bee returns to the hive. If the re-
turning bee has reached a threshold for the maximum number of visits to its food 
source in memory, that bee becomes inactive and a randomly selected inactive bee is  
 

C:\CDC-SBC\Run\bin\Debug> Run.exe 
 
Begin cluster analysis of categorical data using SBC 
 
Number clusters = 3 
 
Initializing Hive 
 
Number Active bees = 60 
Number Inactive bees = 20 
Number Scout bees = 20 
Maximum number of cycles = 10,000 
Maximum cycles without improvement = 10,000 
Maximum visits to a food source = 10 
Probability waggle dance will convince = 0.9000 
Probability a bee accepts a worse source = 0.0100 
 
Hive initialized 
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Fig. 4. Screenshot of execution and results of the CDC-SBC implementation 

 
converted to an active forager. Otherwise the returning bee performs a simulated 
waggle dance to all inactive bees in the hive. This dance conveys the goodness of the 
current food source / clustering in the dancing bee's memory. Inactive bees with food 
sources in memory which have lower quality than the returning bee's food source will 
update their memories to the returning bee's memory with probability = 0.90. Scout 
bees are not affected by the waggle dances of returning foragers. Instead, scouts leave 
the hive, examine a randomly selected food source, return to the hive, and perform a 
waggle dance to the audience of currently inactive bees. 

4   Results 

Two common metrics for measuring the effectiveness of clustering algorithms are 
precision and recall [12]. Suppose some dataset contains t tuples and some clustering 
algorithm assigns each tuple to one of n clusters. Let ai represent the number of tuples 
correctly assigned to cluster i. Let bi represent the number of tuples which have been 
incorrectly assigned to cluster i. And let ci represent the number of tuples which have 
been incorrectly rejected from cluster i (and incorrectly assigned to some cluster j 

 
All cycles completed 
 
Best clustering matrix found is 
0 0 1 1 0 0 0 1 0 
1 0 0 0 1 1 0 0 1 
0 1 0 0 0 0 1 0 0 
 
Corresponding category utility is 0.3971 
 
Cluster c0 = 
003 ( Red     Large   Cold    ) 
004 ( Red     Medium  Cold    ) 
008 ( Red     Large   Cold    ) 
------------------------------- 
mode: Red     Large   Cold 
 
Cluster c1 = 
001 ( Green   Medium  Hot     ) 
005 ( Yellow  Medium  Hot     ) 
006 ( Green   Medium  Hot     ) 
009 ( Blue    Medium  Hot     ) 
------------------------------- 
mode: Green   Medium  Hot 
 
Cluster c2 = 
002 ( Blue    Small   Hot     ) 
007 ( Red     Small   Hot     ) 
------------------------------- 
mode: Blue    Small   Hot 
 
End SBC visualization run 
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where j ≠ i). Then the precision for cluster i is given by pi = ai / (ai + bi). The recall for 
cluster i is given by ri = ai / (ai + ci). The precision for a given cluster can be thought 
of as a measure of accuracy, and the recall can be thought of as a measure of com-
pleteness. The micro-precision of a clustering result is computed as a whole, across all 
clusters, using overall numbers of correctly assigned tuples, incorrectly assigned 
tuples, and incorrectly rejected tuples. 

4.1   Experiment #1 – Congressional Voting Data 

In order to evaluate the effectiveness of the CDC-SBC algorithm and resulting data 
visualizations compared to alternative clustering algorithms, the CDC-SBC algorithm 
was executed against the UCI voting dataset. The voting dataset consists of actual 
congressional votes from the U.S. House of Representatives on 16 issues in 1984. 
Results of running the CDC-SBC algorithm against the voting dataset (with party 
affiliation omitted) and the corresponding values for seven other categorical data 
clustering algorithms are shown in Table 1. 

Table 1. Effectiveness of different clustering algorithms on the benchmark UCI voting dataset 

Algorithm Correct Precision CU CU' 
CDC-SBC 383 0.8805 1.4711 2.9422 

COBWEB 378 0.8690 1.4506 2.9011 

Ahmad-K 377 0.8667 1.4465 2.8929 

LIMBO 376 0.8644 1.4424 2.8847 

K-Means 376 0.8644 1.4424 2.8847 

Huang-K 364 0.8368 1.3931 2.7861 

COOLCAT 363 0.8345 1.3890 2.7779 

ROCK 345 0.7931 1.3150 2.6300 

 
The values in the column labeled Correct in Table 1 are the number of tuples in the 

voting dataset which were correctly clustered as Democrat or Republican by each 
algorithm. The Precision column is the micro-precision value as described above, 
which in this situation is just the number of tuples which are correctly clustered, di-
vided by the total number of tuples (t = 435) in the voting dataset. The CU column is 
the category utility of the clustering produced by each algorithm, as defined by equa-
tion (1). The CU' column is a slightly different definition of category utility used by 
some studies, which is not normalized for number of clusters. Because the number of 
clusters in this situation is 2, the values in the CU' column are simply twice the values 
in the CU column, and have been included solely to provide a consistent comparison 
with the reported results of other studies. 

The COBWEB clustering algorithm incrementally builds a probabilistic hierarchy 
tree of clusters from a dataset using category utility to measure clustering effective-
ness [13]. The Ahmad-K clustering algorithm is a variation of the Huang-K algo-
rithm, which in turn is based on the simple k-means algorithm [14]. The LIMBO 
algorithm is based on a concept called the information bottleneck, which is essentially 
a measure of entropy [12]. The COOLCAT clustering algorithm is an iterative tech-
nique that uses a greedy algorithm based combined with an entropy measure [2]. The 
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ROCK algorithm uses a hierarchical approach in conjunction with a distance measure 
modeled on graph theory [15]. 

The data in Table 1 were derived from several sources and should be interpreted 
somewhat cautiously. Most of the studies represented in Table 1 reported result values 
for the UCI voting dataset in terms of category utility. In the situations where the 
number of correct tuples was not reported (COOLCAT, COBWEB, LIMBO), an 
auxiliary program, developed as part of this study, which computes the number of 
correct values for a given category utility was employed to produce the values shown 
in the Correct column of Table 1. The results for the K-Means algorithm were deter-
mined by executing the WEKA data analysis tool [16]. Further, published results 
differ slightly for the ROCK, COOLCAT, and COBWEB algorithms, presumably 
because of differences in input parameters to the algorithms. In situations where the 
differences in reported values for these algorithms could not be resolved, the data in 
Table 1 represent arithmetic means of reported results. 

The results of the CDC-SBC algorithm and the seven other algorithms listed in  
Table 1 represent the best clustering results of the benchmark UCI voting dataset 
discovered by a comprehensive review of the literature. The data indicates that the 
CDC-SBC algorithm produced more accurate results than all previously published 
algorithms for clustering the UCI voting dataset. 

4.2   Experiment #2 – Synthetic Datasets 

In order to evaluate the efficiency of the CDC-SBC algorithm and its resulting data 
visualizations, the algorithm was executed against six synthetic datasets. The results 
are shown in Table 2. 
 

Table 2. Accuracy of the CDC-SBC algorithm on synthetic datasets 
 

Dataset Attributes 
Attribute 
Values Tuples Clusters Partitions Precision 

DS0 3 (4,3,2) 9 2 3.02 * 103 1.00 

DS1 4 (5,5,5,5) 20 3 5.81 * 108 1.00 

DS2 5 (2,3,4,3,2) 36 4 1.97 * 1020 1.00 

DS3 6 (3,3,..,3) 50 5 7.40 * 1032 1.00 

DS4 10 (2,2,…,2) 200 2 8.03 * 1059 0.98 

DS5 16 (2,2,…,2) 435 2 4.44 * 10130 0.95 

 
After the synthetic datasets had been generated, a program which implemented the 

CDC-SBC algorithm was executed using each synthetic dataset (without cluster val-
ues) as input. The micro-precision was computed for each resulting clustering, and is 
listed in Table 2. For all synthetic dataset inputs, the maximum number of iterations 
of the main SBC algorithm loop was limited to a count of 108 or until a partitioning 
result with precision of 1.00 was discovered. The column in Table 2 which is labelled 
Partitions holds the total number of possible partitions for the associated synthetic 
dataset, computed using Stirling numbers of the second kind, and is a measure of 
dataset complexity. 
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The results in Table 2 suggest that the CDC-SBC algorithm is highly effective at 
clustering datasets which contain self-consistent data. The results also suggest that the 
CDC-SBC algorithm is at least reasonably effective at clustering datasets which have 
huge search spaces. The results for dataset D05 are particularly noteworthy; the CDC-
SBC algorithm correctly placed 413 out of 435 tuples from a problem domain with 
over 10130 possible partitions. 

5   Conclusions 

The results of this study demonstrate the feasibility of using a simulated bee colony 
meta-heuristic algorithm in conjunction with the category utility function to cluster 
categorical datasets so that the data can be usefully visualized. Because the scope of 
this study is limited and is for the most part empirical, it is not possible to draw de-
finitive conclusions from the results. However, when taken as a whole the results 
suggest that categorical data visualization using the CDC-SBC technique is a promis-
ing technique which has the potential to outperform existing algorithms in terms of 
clustering accuracy and accuracy of any resulting visualization format, and that the 
technique merits further investigation. One disadvantage of the CDC-SBC algorithm 
compared to alternative approaches is that CDC-SBC requires a relatively large num-
ber of generic algorithm parameters such as the numbers and percentages of each type 
of bee object, and simulation probabilities such as the probability that an active forag-
ing bee will accept a neighbor solution with a lower category utility value than the 
current CU value. Because algorithms based on bee behavior are relatively unex-
plored, there are very few guidelines available for selecting input parameters and trial 
and error is often required to tune the algorithm for better performance. Additionally, 
because the CDC-SBC algorithm is probabilistic, there is no guarantee that the algo-
rithm will produce an optimal solution to any clustering problem. 

In addition to clustering accuracy, an advantage of the CDC-SBC algorithm com-
pared to existing approaches is that CDC-SBC can in principle be applied to arbitrari-
ly large datasets. A promising potential extension of CDC-SBC is to investigate  
datasets with mixed categorical and numerical data. According to a mathematical 
analysis of the category utility function by Mirkin, in spite of a significantly different 
outward appearance compared to traditional numerical clustering measures, the CU 
function is in fact closely related to the square-error criterion used in numerical clus-
tering [17]. This raises the possibility of adapting the CDC-SBC algorithm to deal 
with mixed data using a unified form of CU function. 
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