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Preface

It is with great pleasure that we present the proceedings of the 5th International
Symposium on Visual Computing (ISVC 2009), which was held in Las Vegas,
Nevada. ISVC offers a common umbrella for the four main areas of visual com-
puting including vision, graphics, visualization, and virtual reality. The goal is to
provide a forum for researchers, scientists, engineers, and practitioners through-
out the world to present their latest research findings, ideas, developments, and
applications in the broader area of visual computing.

This year, the program consisted of 16 oral sessions, one poster session, 7
special tracks, and 6 keynote presentations. Also, this year ISVC hosted the
Third Semantic Robot Vision Challenge. The response to the call for papers was
very good; we received over 320 submissions for the main symposium from which
we accepted 97 papers for oral presentation and 63 papers for poster presenta-
tion. Special track papers were solicited separately through the Organizing and
Program Committees of each track. A total of 40 papers were accepted for oral
presentation and 15 papers for poster presentation in the special tracks.

All papers were reviewed with an emphasis on potential to contribute to the
state of the art in the field. Selection criteria included accuracy and originality
of ideas, clarity and significance of results, and presentation quality. The review
process was quite rigorous, involving two to three independent blind reviews
followed by several days of discussion. During the discussion period we tried
to correct anomalies and errors that might have existed in the initial reviews.
Despite our efforts, we recognize that some papers worthy of inclusion may have
not been included in the program. We offer our sincere apologies to authors
whose contributions might have been overlooked.

We wish to thank everybody who submitted their work to ISVC 2009 for
review. It was because of their contributions that we succeeded in having a tech-
nical program of high scientific quality. In particular, we would like to thank
the ISVC 2009 Area Chairs, the organizing institutions (UNR, DRI, LBNL,
and NASA Ames), the industrial sponsors (Intel, DigitalPersona, Equinox, Ford,
Hewlett Packard, Mitsubishi Electric Research Labs, iCore, Toyota, Delphi, Gen-
eral Electric, Microsoft MSDN, and Volt), the International Program Commit-
tee, the special track organizers and their Program Committees, the keynote
speakers, the reviewers, and especially the authors that contributed their work
to the symposium. In particular, we would like to thank Mitsubishi Electric Re-
search Labs, Volt, Microsoft MSDN, and iCore, for kindly sponsoring several
“best paper awards” this year.

We sincerely hope that ISVC 2009 offered opportunities for professional
growth and that you enjoy these proceedings.

September 2009 ISVC09 Steering Committee and Area Chairs
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Efficient Random Sampling for Nonrigid Feature Matching . . . . . . . . . . . . 457
Lixin Fan and Timo Pylvänäinen
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Fernando Fariñaz Balseiro
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Paul A. Navrátil, Brandt Westing, Gregory P. Johnson,
Ashwini Athalye, Jose Carreno, and Freddy Rojas

Fast Spherical Mapping for Genus-0 Meshes . . . . . . . . . . . . . . . . . . . . . . . . . 982
Shuhua Lai, Fuhua (Frank) Cheng, and Fengtao Fan

Rendering Virtual Objects with High Dynamic Range Lighting
Extracted Automatically from Unordered Photo Collections . . . . . . . . . . . 992

Konrad Kölzer, Frank Nagl, Bastian Birnbach, and Paul Grimm

Effective Adaptation to Experience of Different-Sized Hand . . . . . . . . . . . 1002
Kenji Terabayashi, Natsuki Miyata, Jun Ota, and Kazunori Umeda

Image Processing Methods Applied in Mapping of Lubrication
Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1011

Radek Polǐsčuk
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Abstract. Hand is a very convenient interface for immersive human-computer 
interaction. Users can give commands to a computer by hand signs (hand post-
ures, hand shapes) or hand movements (hand gestures). Such a hand interface 
system can be realized by using cameras as input devices, and software for ana-
lyzing the images. In this hand interface system, commands are recognized by 
analyzing the hand shapes and its trajectories in the images. Therefore, success 
of the recognition of hand shape is vital and depends on the discriminative 
power of the hand shape representation. There are many shape representation 
techniques in the literature. However, none of them are working properly for all 
shapes. While a representation leads to a good result for a set of shapes, it may 
fail in another one. Therefore, our aim is to find the most appropriate shape re-
presentation technique for hand shapes to be used in hand interfaces. Our can-
didate representations are Fourier Descriptors, Hu Moment Invariant, Shape 
Descriptors and Orientation Histogram. Based on widely-used hand shapes for 
an interface, we compared the representations in terms of their discriminative 
power and speed.  

Keywords: Shape representation, hand recognition, hand interface. 

1   Introduction 

Hands play very important role in inter-human communication and we use our hands 
for pointing, giving commands and expressing our feelings. Therefore, it is reasonable 
to mimic this interaction in human-computer interaction. In this way, we can make 
computer usage natural and easier. Although several electro-mechanical and magnetic 
sensing devices such as gloves are now available to use with hands in human comput-
er interaction, they are expensive and uncomfortable to wear for long times, and re-
quire considerable setup process. Due to these disadvantages, vision based systems 
are proposed to provide immersive human computer interaction. Vision systems are 
basically composed of one or more cameras as input devices, and processing capabili-
ties for captured images. Such a system is so natural that a user may not be aware of 
interacting with a computer system. However, there is no unique vision based hand 
interface system that can be used in all types of applications. There are several rea-
sons for this. First, there is no computer vision algorithm which reconstructs a hand 
from an image. This is because a hand has a very complex model with 27 degrees of 
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freedom (DOF) [1]. Modeling the kinematic structure and dynamics are still open 
problems, and need further research [2].  Second, even if there was an algorithm 
which finds all 27 parameters of a hand, it would be very complex, and it may not be 
appropriate for real-time applications. Third, it is unnecessary to use complex algo-
rithms for a simple hand interface, since it consumes considerable or even all availa-
ble computing power of the system. Appearance-based techniques that analyze the 
image without using any 3-dimensional hand model work faster than 3-dimensional 
model based techniques and they are more appropriate for real time hand interface 
applications [2],[3].  

This study mainly focuses on appearance-based methods for static hand posture 
systems. However, the shape representations presented in this study can be incorpo-
rated as feature vectors to standard spatio-temporal pattern matching methods such as 
Hidden Markov Models (HMM) [18] or Dynamic Time Warping (DTW) [22] to rec-
ognize dynamic hand movements or hand gestures.    

Our initial motivation was to develop an application which was controlled by hand. 
In this application, the setting was composed of a camera located on top of the desk, 
and the user gave commands by hand. Although capturing from above limits possible 
hand shapes, this is very frequent setup for hand interface systems. For example, the 
system described by Quek et al. controls the behavior of a mouse by a hand on key-
board [4]. ITouch uses hand gestures appearing on the monitor similar to touch screen 
monitors [5]. Licsar and Sziranyi present another example that enables a user to man-
age presentation slides by hands [6]. Freeman et al. let the users play games by their 
hands [7]. Nevertheless, there is no study comparing techniques employed in such a 
setup. The aim of our paper is to assess various representations for hand shape recog-
nition system having a setup where a camera is located above the desk and is looking 
downward to acquire the upper surface of the hand. 

Usually, a hand interface system is composed of several stages: image acquisition, 
segmentation, representation, and recognition. Among those stages, segmentation is 
the main bottleneck in developing general usage HCI applications. Although there are 
many algorithms attempting to solve segmentation such as skin color modeling [24], 
Gauss Mixture Model for Background Subtraction [23] and Neural Network methods, 
all of them impose constraints on working environments such as illumination condi-
tion, stationary camera, static background, uniform background, etc. When the restric-
tion is slightly violated, a clean segmentation is not possible, and the subsequent  
stages fail. Remedy to this problem is to use more complex representations or algo-
rithms to compensate the deficiency of segmentation. However, there is also a limit 
on compensation. As a result, for the time being, even using the state-of-the-art seg-
mentation algorithms for color images, a robust HCI application is not possible. How-
ever, there is a good news recently on segmentation with a new hardware technology, 
which is called Time-of-Flight (ToF) depth camera [19]. It captures depth information 
for each pixel in the scene and the basic principle is to measure the distances for each 
pixel using the round-trip delay of light, which is similar to radar systems. This cam-
era is not affected by illumination changes at all. With this technology, clean segmen-
tation for HCI applications is possible using depth keying technique [20]. Microsoft’s 
Natal Project uses this technology to solve segmentation problem and enable users to 
interact with their body to control games [21]. Therefore, shape representations from 
clean segmentation can be used with this technology, and we used clean segmented 



 Which Shape Representation Is the Best for Real-Time Hand Interface System? 3 

hand objects in our study. We believe that future HCI applications will be using ToF 
camera to solve segmentation problem.  

The next stage after segmentation is representation, hand pixels are transformed in-
to a meaningful representation which is useful at recognition stage. Representation is 
very important for recognition since unsuccessful representation gives unsatisfactory 
results even with state-of-the-art classifiers. On the other hand, good representation 
always results in an acceptable result with an average classifier [8]. 

This paper compares four representation techniques which can be used in shape 
recognition systems. In the selection of these representations, the following criterions 
are used: discriminative power, speed and invariance to scale, translation and rotation. 
Selected representations are Fourier descriptors, Hu moment invariants, shape de-
scriptors, and orientation histogram. In Section 2, these selected representations are 
explained in detail. To assess the representations, bootstrapping is used to measure the 
quality of representations while decision tree is used as the classifier. Section 3 gives 
all the details concerning tests. In Section 4, we comment on the results in terms of 
discriminative power and real-time issues. Finally, we conclude the paper. 

2   Shape Representations 

Recognizing commands given by hand depends on the success of shape recognition, 
and thus, it is closely related to shape representation. Therefore, it is vital to select the 
appropriate shape representation for hand interfaces. Unfortunately, there is no unique 
representation that works for all sets of shapes. This is the motivation that leads us to 
compare and assess popular hand shape representations. Techniques for shape repre-
sentation can be mainly categorized as contour-based and region based [9]. Contour 
based techniques use the boundary of the shape while region based techniques employ 
all the pixels belonging to a shape. Each category is divided into two subcategories: 
structural and global.  Structural methods describe the shape as a combination of 
segments called primitives in a structural way such as a tree or graph. However, glob-
al methods consider the shape as a whole. Although there are many shape representa-
tion techniques in these categories, only some of them are eligible to be used in hand 
interfaces. We took into account certain criterions for selection. The first criterion is 
the computational complexity of finding the similarity of two shapes, i.e., matching. 
Contour based and region based structural methods such as polygon approximation, 
curve decomposition, convex hull decomposition, medial axis require graph matching 
algorithm for similarity, thus they are computationally complex [9]. Zhang et al. show 
that Fourier Descriptor (FD) which is a contour based global method performs better 
than Curvature Scale Space (CSS) which is also a contour based global method, in 
terms of matching and calculating representations [10]. Another contour-based global 
method, Wavelet Descriptor requires shift matching for similarity, which is costly 
compared to FD. Therefore, we have selected FD as a candidate. Freeman et al. use 
Orientation Histogram which is a region-based global method, for several applications 
controlled by hand [7],[11]. Since there is no comparison of Orientation Histogram 
with others, and authors promote it in terms of both speed and recognition perfor-
mance, we have also chosen it. Peura et al. claim that practical application does not 
need too sophisticated methods, and they use the combination of simple shape de-
scriptors for shape recognition [12]. Since Shape Descriptors are semantically simple, 



4 S. Genç and V. Atalay 

fast and powerful, we have chosen Shape Descriptors (SD) as well. Each Shape De-
scriptor is either a contour or a region based global method. Flusser asserts that mo-
ment-invariants such as Hu Moment Invariants are important [13] since they are fast 
to compute, easy to implement and invariant to rotation, scale and translation. There-
fore, Hu Moment Invariants are also selected for hand interface.   

In conclusion, we have opted for four shape representation techniques; Shape De-
scriptors, Fourier Descriptors, Hu Moment Invariants and Orientation Histogram to 
assess their discrimination power and speed on a hand shape data set. In the rest of 
this section, we describe each selected method. 

2.1   Shape Descriptors 

Shape Descriptor is a quantity which describes a property of a shape. Area, perimeter, 
compactness, rectangularity are examples of shape descriptors. Although a single 
descriptor may not be powerful enough for discrimination, a set of them can be used 
for shape representation [12]. In this study, five shape descriptors; compactness, ratio 
of principal axes, elliptical ratio, convexity and rectangularity are chosen because they 
are invariant to scale, translation and rotation, and easy to compute. Also they are 
reported as successful descriptors in [9],[12].  

2.1.1   Compactness 
A common compactness measure, called the circularity ratio, is the ratio of the area of 
the shape to the area of a circle (the most compact shape) having the same perimeter. 
Assuming P is the perimeter and A is the area of a hand shape, circularity ratio is 
defined as follows.  4  

 

For a circle, circularity ratio is 1, for a square, it is , and for an infinite long and narrow 

shape, it is 0. 

2.1.2   Ratio of Principal Axes 
Principal axes of a 2-dimensional object are two axes that cross each other orthogo-
nally in the centroid of the object and the cross-correlation of boundary points on the 
object in this coordinate system is zero [12]. Ratio of principal axes, ρ provides the 
information about the elongation of a shape. For a hand shape boundary B which is an 
ordered list of boundary points, ρ can be determined by calculating covariance matrix 
∑, of a boundary B, and then finding the ratio of ∑’s eigenvalues; λ1 and λ2. Eigen-
vectors e1, e2 of ∑ are orthogonal and cross-correlation of points in B with e1 and e2 is 
zero since ∑ is a diagonal matrix. The values of λ equal to the length of the principal 
axes. However, to find the ratio of λ1 and λ2 or principal axes, there is no need to ex-
plicitly compute eigenvalues, and ρ can be calculated as follows [12]: 

 ∑ ∑ ∑∑ ∑  , where ∑  represents covariance of i and j. 
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2.1.3   Elliptical Ratio 
Elliptical Ratio,  is the ratio of minor axis, b to major axis, a of an ellipse which is 
fitted to boundary points.     

Ellipse fitting is performed using a least-square fitness function. In the implementa-
tion, ellipse fitting algorithm proposed by Fitzgibbon et al. [14] and provided by 
OpenCV is used [17]. 

2.1.4   Convexity 
Convexity is the ratio of perimeter of the convex-hull,   to the perimeter of 
the shape boundary, , where convex hull is the minimum convex polygon cov-
ering the shape.    

2.1.5   Rectangularity 
Rectangularity measures the similarity of a shape to a rectangle. This can be calcu-
lated by the ratio of the area of the hand shape,  to the minimum bounding 
box of hand shape, . Minimum bounding box (MBB) is the smallest rectangle 
covering the shape.   

For a rectangle, rectangularity is 1; for a circle, it is 4. 

2.2   Fourier Descriptors 

Fourier Descriptors (FDs) represent the spectral properties of a shape boundary. Low 
frequency components of FDs correspond to overall shape properties; while high 
frequency components describe the fine details of the shape.  

FDs are calculated using Fourier Transform of shape boundary points, (xk,yk), 
k=0,…, N-1 where N is the number of points in the boundary. Boundary can be 
represented by an ordered list of complex coordinates called complex coordinate 
signature, as pk=xk+i yk, k=0,...,N-1 or a boundary can be represented by an ordered 
list of distances, rk, of each boundary point (xk,yk) to centroid of the shape (xc,yc) 
called centroid distance signature. 

Zhang and Lu compared the effect of four 1-dimensional boundary signatures for 
FDs; these signatures are complex coordinates, centroid distances, curvature signature 
and cumulative angular function [15]. The authors concluded that FDs derived from 
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centroid distance signature is significantly better than the others. Therefore, we use 
centroid signature of the boundary. To calculate FDs of a boundary, the following 
steps are pursued. 

 

1. Calculate the centroid of the hand shape boundary 
 1    1   
2. Convert each boundary point (xk,yk) to centroid distance rk,   , 0, … , 1 

3. Use Fourier Transform to obtain FDs. 1 ·  

FDf, f=0,...,N-1 are Fourier coefficients. 
4. Calculated FDs are translation invariant since centroid distance is relative to 

the centroid. In Fourier Transform, rotation in spatial domain means phase-
shift in frequency domain so using magnitude values of coefficients make 
FDs rotationally invariant. Scale invariance is achieved by dividing FDs by 
FD0. Since each rk is real valued, first half of FDs are the same with second 
half. Therefore, half of the FDs are enough to represent shape. As a result, a 
hand shape boundary is represented as follows [15]: 

  | || | , | || | , , /| |  

2.3   Hu Moment Invariants, Φ 

Hu derived 7 moments which are invariant to translation, rotation and scaling 
[13],[16]. This is why Hu moments are so popular and many applications use them in 
shape recognition systems. Each moment shows a statistical property of the shape. Hu 
Moment Invariants can be calculated as follows.  Note that µ shows the 2nd and 3rd 
order central and normalized moments. 

 

 
The main problem of Hu moments in classification are the large numerical va-

riances in the values of moment invariants. Therefore, the use of Euclidian distance to 
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compute similarity is not possible. In our implementation, decision tree is used as the 
classifier. 

2.4   Orientation Histogram 

Orientation Histogram (OH) is a histogram of local orientations of pixels in the image 
[11]. Freeman et al. applied the idea of OH to create fast and simple hand interfaces 
[7]. The basic idea of OH is that hand pixels may vary in illumination, and pixel-by-
pixel difference leads to huge error in total. Instead of using pixels themselves for 
comparison, their orientations are used to overcome the illumination problem. To 
make it translation invariant, orientations are collected in a histogram with 36 bins 
where each bin represents 10 degree. Scale and rotation invariance are not pointed in 
[11]. However, our implementation normalized the magnitude of the histogram to 
overcome scaling problem, and updated by shifting all orientations relative to peak 
one to make it rotationally invariant. Instead of using the whole image, its dimension 
is reduced to about 100 by 80 pixels for faster computation [11]. The problems of the 
method are also reported as two similar shapes can produce very different histograms, 
and hand shape must not be a small part of the image. Thinking each normalized 
histogram as a vector in 36 dimensional space, we classified them using a decision 
tree algorithm similar to other three methods. 

3   Experimental Results 

To evaluate the performance of 4 shape representations, we collected 10160 samples 
of widely-used 15 hand shapes from 5 different people. There is approximately the 
same number of samples for each person and hand commands. A sample set of  
collected 15 hand shapes are shown in Fig. 1. The evaluation is based mainly on dis-
crimination power and speed. Furthermore, we have also investigated the perfor-
mance with respect to the number of people and samples in the training set.  

 

Fig. 1. Hand commands used in our experiments 

We have first divided the samples into two sets: training set and test set.  Training 
set is used to train a decision tree for each representation, and samples in the test set 
are classified by the corresponding decision tree. Hit ratio, which is the percentage of 
correctly classified samples in the test set, is used as the measurement for discrimina-
tion power of each representation. The division of training and test set is based on two 
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parameters: number of people in the training set, and the percentage of the samples of 
each person selected for training. 

We first assessed the effect of training set size when the system is trained with 
samples only from one person. We selected randomly one person among 5 people, 
and used 10% of samples from each hand command of the selected person in training. 
All the remaining samples, that is, remaining 90% samples of the same person and all 
samples from other 4 people, were employed in test set. This test is repeated 5 times 
and the average of the hit ratios is used as the measurement of discrimination power 
for each representation. This procedure is repeated with 30% and 50% of samples in 
training for one person, and Fig. 2.a shows the results graphically. We repeated the 
above procedure for 2, 3, 4, and 5 people, and only the results for 5 people is depicted 
in Fig. 2.b. Results for all number of people with all number of training set size can be 
found in Table 1. 

Table 1. Hit ratios for all parameters used in the experiment 

 
 
Fig. 2.a and Fig. 2.b show the hit ratios of representations when 10%, 30% and 

50% of samples from the people used in training. It is observed that the performances 
of SD, FD and HU are not influenced considerably by increasing the number of sam-
ples from the same person. As a result, SD, FD and HU representations produce low 
variances for the representations of similar hand shapes from the same person. This is 
a desired property since a few training samples from a person are adequate to train the 
system for that person. 

Parameters Hit Ratios (%)

Num. of people Training Size (%) SD FD HU OH 

1 

10 55.63 65.08 62.1 38.15 

30 64.99 77.5 70.97 45.87

50 62.2 76.45 70.16 47.24 

2 

10 75.47 86.09 85.19 49.53 

30 75.54 88.11 86.48 55.82

50 75.97 87.9 85.6 57.12 

3 

10 81.05 89.29 89.81 53.23 

30 83.44 92.98 91.8 63.33

50 82.73 93 91.1 65.48 

4 

10 83.89 93.56 93.86 58.56 

30 87.05 94.12 94.82 67.38

50 87.07 94.05 94.27 69.65 

5 

10 87.29 96.84 95.73 63.45 

30 91.18 98.64 98.13 70.17

50 92.35 99.61 98.58 75.43 
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Abstract. In this paper, we propose a general-purpose methodology

for detecting multiple objects with known visual models from multi-

ple views. The proposed method is based Monte-Carlo sampling and

weighted mean-shift clustering, and can make use of any model-based

likelihood (color, edges, etc.), with an arbitrary camera setup. In partic-

ular, we propose an algorithm for automatic computation of the feasible

state-space volume, where the particle set is uniformly initialized. We

demonstrate the effectiveness of the method through simulated and real-

world application examples.

1 Introduction

Object detection is a crucial problem in computer vision and tracking applica-
tions. It involves a global search over the feasible state-space, and requires to
cope with an unknown number of targets, possible mutual occlusions, as well as
false measurements, arising from background clutter.

Using multiple cameras can greatly improve the detection results in terms of
precision and robustness, since the joint likelihood will be much more focused
on real targets, and mutual occlusions from a given view will be solved by the
others. Moreover, multiple cameras constrain the state-space of visible objects
to a smaller volume, where a target appears in all visual fields. This reduces the
search space of a great amount, and therefore facilitates the detection process.

For this purpose, a typical bottom-up approach usually consists of sampling
image features (e.g. segmenting color blobs) and matching them between cam-
eras, in order to perform a 3D triangulation and object localization: however,
this approach requires to explore all possible combinations of data that can
be associated to similar targets, possibly in presence of missing detections and
false alarms, as well as partial occlusions, which can make the problem of an
intractable complexity.

In a top-down approach, instead, a detection task can be seen as a global
optimization of a multi-modal likelihood function in state-space, which presents
strong local maxima around each target (detected by the optmization method),
as well as smaller peaks around false measurements. This optimization problem
involves generating and testing a number of state-space hypotheses, by projecting
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the relevant model features on each camera view, and comparing them locally
with the image measurements.

When two targets are too close with respect to the covariance of the mea-
surement noise, the related peaks merge to some extent, and are not anymore
distinguishable by the search method. Therefore, the measurement covariance
by itself sets a limit to the state-space resolution of the detector.

Evolutionary and Genetic Algorithms are well-known in the literature, in or-
der to cope with such multi-modal optimization problems [9]; however, their
computational complexity limits the application field, particularly when a real-
time (or near real-time) performance is required, such as object tracking.

In order to approach the problem from a general point of view, not restricted
to a particular form of the likelihood, or a given camera configuration, we choose
instead a Monte-Carlo based strategy, followed by unsupervised clustering of
state hypotheses, according to the respective likelihoods. This approach has the
advantage of neither requiring any prior assumption about the number of targets,
nor about the form of the likelihood, provided that a significant local maximum
is present around each target state.

The paper is organized as follows: Section 2 describes the general clustering
strategy, based on kernel representation and weighted mean-shift; Section 3 the
introduces the uniform sampling strategy for multiple camera views, on the
joint vieweing volume; Section 4 provides simulated and experimental results,
and Section 5 concludes the work with proposed future developments.

2 The Particle-Based Detector

In order to detect targets, we basically look for local maxima (or modes) of a
given likelihood, provided by any visual property of each target, and a suitable
matching strategy between model and image features. In general, this function
can integrate multiple visual cues, as well as data from multiple cameras. Such
a general formulation, together with an arbitrary number and relative location
of targets, makes the estimation problem of a complex and nonlinear nature.

Therefore, we approach the problem by means of a general and flexible method,
such as Monte-Carlo sampling. In particular, we represent our likelihood through
a discrete particle set (si, wi), where si are state hypotheses, weighted by their
likelihood wi. This representation is well-known in a tracking framework [7], and
can cope with nonlinear and multi-modal distributions.

In absence of any prior information about the possible location of targets, the
particle set is initialized with uniform distribution, covering the feasible state-
space volume where targets can be viewed by the multi-camera setup (Sec. 3).

Each peak of the likelihood will provide a cluster of high-weighted particles
around it, and therefore a weighted state-space clustering algorithm can be run,
in order to identify them. However, if the likelihood peaks are too large and
partially overlapping, the clusters will overlap as well, and the algorithm will
fail to separate them properly.

In a computer vision application, the width of the likelihood modes depends
on the modality used (edges, color, etc.), and on the related covariance. This
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parameter can be externally set (or internally computed), and it reflects the un-
certainty of the measurement process in feature- or state-space: a high-resolution
measurement has low covariance, with narrow peaks well-located around the tar-
gets, but also many local maxima in the neighborhood; on the other hand, a low-
resolution measurement will have a higher covariance, larger and less localized
peaks.

In order to identify the modes, we need a smooth representation that can be
locally optimized, such as a kernel-based representation [2][4]. More in detail, if
x is a one dimension variable, a weighted kernel density is represented by

p (x| θ) =
1
N

N∑
i=1

wi

h
k

(
x− xi

h

)
(1)

In this formula, k is the kernel, which has a maximum value in x = 0, and quickly
decays in a neighborhood of the origin; h is called bandwidth, and regulates the
width of the kernel around each point xi. The number of modes N is also a
parameter of this distribution, overall represented by the set of values

θ = (N, h, x1, ..., xN , w1, ..., wN ) (2)

A typical choice for the kernel is the Gaussian distribution

k (x) =
1√
2π
e−

x2
2 (3)

for which h = σ is the standard deviation, so that (1) represents a Mixture of
Gaussians. In a multi-dimensional space, the kernel representation generalizes
to

p (x| θ) =
1
N

N∑
i=1

wi

detH
K
(
H−1 (x− xi)

)
(4)

where the multi-variate kernel K is obtained as the product of univariate ones

K (x) =
D∏

d=1

k (xd) (5)

with D the space dimension. In the Gaussian case, Σ = HHT is the covariance
matrix of the multi-variate kernel.

Concerning the clustering method, in order to keep the most general set-
ting, we make use of unsupervised clustering, through the weighted Mean-Shift
algorithm [2]. Mean-shift is a kernel-based, non-parametric and unsupervised
clustering method, that finds local maxima of the kernel density by gradient as-
cent, starting from each sample point, and assigns to the same cluster all paths
that converge to the same peak; therefore, it simultaneously finds the number
and location of modes, and assigns the sample points to each cluster as well.
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By restricting the attention to isotropic kernels (H = hI), the density can be
locally optimized by computing the weighted mean-shift vector

mh (x) =

⎡⎣∑n
i=1 wig

(∥∥x−xi

h

∥∥2
)
xi∑n

i=1 wig
(∥∥x−xi

h

∥∥2) − x

⎤⎦ (6)

where g = −k′ its first derivative of the kernel, and afterwards updating the
position x→ x+mh. The iteration is stopped when the update vector becomes
smaller than a given threshold: ‖mh‖ < ε.

Chosing the correct bandwidth h can be critical, in order to ensure that the
correct number of particle clusters will be found. For our purposes, we simply
choose h proportional to the minimum distance between detectable targets in
state-space (resolution of the detector), which is of course application-dependent:
for example, if the detected targets are small objects, the minimum distance will
be smaller than for people detection.

During mean-shift clustering, it still may happen that small, spurious clusters
of a few sample points are detected. These clusters are stationary points (where
the mean-shift gradient is zero) but usually located on non-maxima, such as
saddle points. Therefore, they are removed by a simple procedure: if a cluster
center, located on a local maximum, is perturbed by a small amount, and the
mean-shift algorithm is run again from this location, then it will converge again
to the same point. Otherwise, the cluster center must be located on a saddle
point.

3 Redundant Multi-camera Setup: Sampling from the
View-Volume Intersection

In a multi-camera context, we need first to initialize the particle set with a
uniform distribution in 3D space. This requires defining the sampling volume
for this distribution, in particular concerning the positional degrees of freedom
(x, y, z translation).

In general, we consider here redundant multi-camera settings (Fig. 1), as op-
posed to complimentary ones. In a redundant configuration, the fields of view
overlap to a large extent, so that the object can simultaneously be seen from all
cameras, at any pose. This has the advantage of a more informative measurement
set, which allows 3D tracking of complex objects. By contrast, a complimentary
setup consists of almost non-overlapping camera views, where the object to be
tracked can be completely seen only by one camera at a time.

In particular, when dealing with a redundant configuration, we need to sam-
ple hypotheses uniformly from the subset of state-space configurations that are
visible from all cameras. This requires computing the joint viewing volume of m
cameras. For this purpose, each camera provides 6 clipping planes, which overall
define a truncated pyramid: 4 lateral planes defined by the 4 image sides, and
the focal length, while the two frontal planes define the minimum and maximum
depth of detectable objects.
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31 2

W

Fig. 1. Redundant, multi-camera configuration for object tracking

These planes can be expressed (in camera-centered or world-centered coor-
dinates) by means of 3 points in space. For example, the left clipping plane
contains the upper-left and lower-left corners of the image, plus the camera cen-
ter. In camera coordinates, then we have

cxu,l = (−rx
2
,−ry

2
, f) (7)

cxl,l = (−rx
2
,
ry
2
, f) (8)

cc = (0, 0, 0)

These points can be transformed to world coordinates, by applying the respective
camera transformation matrix TW,c

W x = TW,c ·c x (9)

Therefore, the left clipping plane of camera c, πc,1 is given in homogeneous
coordinates by the null-space of the (3 × 4) matrix [6] (dropping the reference
frame W )

π = null

⎛⎝⎡⎣xT
u,l

xT
l,l

cT

⎤⎦⎞⎠ (10)

so that all visible points from camera c must lie in the half-space defined by

πT
c,1x ≤ 0 (11)

where the sign of π can be chosen, for example, in order to make sure that
the image center (0, 0, f) (expressed in world coordinates) is contained in the
half-space. The same procedure can be applied to the other clipping planes in a
similar way.

If we denote by πc,i, i = 1, ..., 6 the world-related planes of camera c, its
viewing polyhedron is defined by the homogeneous inequalities

Acx ≤ 0; Ac ≡

⎡⎣πT
c,1
. . .
πT

c,6

⎤⎦ (12)
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and finally, the overall intersection is given by the convex polyhedron, defined
by

Ax ≤ 0; A ≡

⎡⎣ A1
. . .
AC

⎤⎦ (13)

This equation could be used in principle to directly select a uniform sample of
visible points inside it. For this purpose, most popular methods in the literature
refer to Markov-Chain Monte-Carlo (MCMC) strategies, starting from the well-
known work [5]. However, due to its computational complexity and the presence
of several parameters in the algorithm, in the present work we propose a simpler
approach, that consists in uniformly sampling from the 3D bounding box of
the polyhedron, and discarding all samples which do not satisfy (13). This will
produce uniformly distributed points, at the price of discarding many samples,
and therefore requiring a longer (and less predictable) time before reaching the
desired number of valid points.

In order to compute the bounding box of the polyhedron, we also need to
explicitly compute its vertices in 3D space, from the implicit formula (13). This
is known as the vertex enumeration problem, and can be solved via the primal-
dual method of [1].

A final note concerns the choice of the two main parameters for our algorithm
(namely, the kernel size and the number of hypotheses), for which we employ
the following criterion:

– The kernel width h determines the resolution of our detector, since two
likelihood peaks closer than h lead to a single, detected mode in the mean-
shift optimization.

– The number of hypotheses n determines the spatial density of the sample,
which depends on the kernel size h: we need to make sure that at least one
sample point falls into any sphere of radius h, in order for the mean-shift
algorithm to work and not getting stuck into zero-density regions. Therefore,
if VS(h) is the volume of a sphere of radius h, and VB is the volume of the
bounding box for sampling (which is larger than the polyhedron volume),
we can choose n = VB/VS .

4 Applications and Experimental Results

In Fig. 2, we show an example result of the sampling procedure, applied to a
3-camera configuration. The three viewing volumes (indicated with different col-
ors) intersect in the central polyhedron, which is filled by uniformly distributed
points. Its bounding box is also shown in black.

As a first experiment, we run the proposed system on a simulated scenario: a
set of randomly chosen targets provide “virtual measurements”, by generating
for each target o a measurement zo around the true state s̄o, plus Gaussian
noise vo

zo = s̄o + vo (14)
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Fig. 2. Uniform sample from the joint viewing volume of a 3-camera configuration

with the same covariance matrix V for all targets. This model corresponds to a
Mixture of Gaussians likelihood

P (z| s) ∝
∑

o

exp(−1
2

(zo − s)T
V −1 (zo − s)) (15)

for any state hypothesis s within the joint volume. The state here is represented
by 3D position, s = (x, y, z).

Four targets are selected at random within the viewing volume. In this exam-
ple, all targets are separated in space by more than 100mm, and the kernel size
is h = 30, so that the detector has no difficulties in distinguishing them. A set of
n = 2000 sample points is drawn within the volume, and their likelihood values
are computed. After performing mean-shift clustering, the detected modes are
shown with different colors on the right side of Fig. 3.
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Fig. 3. Result of the simulated experiment, with 4 targets and a Gaussian likelihood

on each target. Left: true targets (black dots) and the uniform Monte-Carlo set. Right:

result of weighted mean-shift clustering, and respective cluster centers (the red cluster

center is not visible, because almost coincident with the true target position).

As it can be seen, the detected modes are in the correct number, and their
location is in a good accordance with the real target positions.

Subsequently, we tested the system on real camera images. As image likeli-
hood, we compute the Bhattacharyya distance between color histograms, often
used for object tracking [4][8]

B (q, p (s)) =

[
1−
∑

b

√
qbpb

] 1
2

(16)

where q is a reference histogram, collected from an image of the object, and p(s)
is the observed histogram, from image pixels underlying the projected object
area, under pose hypothesis s (Fig. 4, left side). The sum is performed over
(D ×D) histogram bins (D = 10 is a common choice in Hue-Saturation space).

On a multi-camera setup, by assuming independence of the camera measure-
ments, the corresponding likelihood is

P (z|s) ∝
∏
c

exp
(
−B

2 (q, pc (s))
2σ2

)
(17)

where pc(s) is the image histogram at pose s, projected on camera c, and σ2 is
the measurement noise covariance (the same for all cameras and targets).

In Fig. 4, we can see the detection result for 4 real targets. The object model
is given by a yellow sphere of radius 65mm, and the reference histogram is
collected from a single image of the object. On the left side of the picture, we
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Fig. 4. Left: Camera images, with re-projection of the detected targets. Right: detected

targets in 3D space, and particle clusters after mean-shift optimization.

can see the 3 camera images with superimposed projections of the estimated
target locations; on the right side, the 3D positions of the detected targets in
the common viewing volume, together with the particle clusters after mean-shift
optimization, are shown.

5 Conclusion and Future Work

We presented a Monte-Carlo methodology for generic multi-camera, multi-target
detection. The proposed method can be applied to a variety of likelihood func-
tions in computer vision, as well as to generic, calibrated camera setups.

One limitation of the proposed system is the number of targets that can
simultaneously be detected, still limited to a few units: a maximum of 7-8 targets
have successfully been detected with the simulated experiment of Sec. 4 which,
as explained at the end of Sec. 3, depends on the spatial resolution desired (i.e.
the kernel bandwidth h).

A possible improvement of the system may use an adaptive version of mean-
shift algorithm [3], where the bandwidth parameter is selected and modified
according to the data points, in order to give the best clustering results.
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Abstract. This paper proposes a discriminative object class detection and recog-
nition based on spatial configuration of local shape features. We show how sim-
ple, redundant edge based features overcome the problem of edge fragmentation
while the efficient use of geometrically related feature pairs allows us to construct
a robust object shape matcher, invariant to translation, scale and rotation. These
prerequisites are used for weakly supervised learning of object models as well
as object class detection. The object models employing pairwise combination of
redundant shape features exhibit remarkably accurate localization of similar ob-
jects even in the presence of clutter and moderate view point changes which is
further exploited for model building, object detection and recognition.

1 Introduction

The study of shape for object description and recognition has a long research tradi-
tion, dating back into the early days of the computer vision field. Several recent works
have explored the idea of coupling local, contour-based features together with their ge-
ometric relations as effective means of discriminating object categories using shape.
Promising results in the context of object class recognition and object localization have
been achieved, solely operating on boundary-based representations. In [12,10] code-
books of class discriminative shape features, drawn from a corpus of training images,
are augmented with geometric relations encoded in pointers to an object instances cen-
troid. A similar representation was suggested by Ferrari et al. [5], however building
on a more generic alphabet of shape features, derived from groups of adjacent contour
segments. In contrast, [9,3] model global shape by means of ensembles of pairwise
relations between local contour features.

In our work we exploit pairwise relationships between local shape fragments to con-
struct a robust shape matching technique that is invariant to translation, scale and ro-
tation. This method allows us to localize objects in the scene using the model based
on spatial arrangement of local shape fragments discussed in Section 3. The use of this
technique for model extraction as well as object detection and classification is investi-
gated in Sections 4 and 5.
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2 The Shape Based Object Model

In this work, an object’s shape is represented by an overcomplete set of weak local fea-
tures together with their spatial relations: Local, edge-based features are embedded in a
global geometric shape model, organized as a star-like configuration around an object’s
centroid. The aspects of this type of representation has been extensively investigated
in the context of part-based object class recognition [11,4], showing the advantage of
considerably reduced computational burden during training and testing compared to
fully connected constellation models. Star-like representations also found successful
application in contour-based object detection methods: Opelt et al. [10] and Shotton
et al. [12] concentrated on the use of class-discriminative codebooks of boundary frag-
ments, while Ferrari et al. [5] employ a generic alphabet of shape features, derived from
groups of adjacent contour segments.

To further increase the explanatory power of the rather weak features, we group
them into pairs and exploit their pairwise constraints and their geometric relationship
to the centroid to arrive at an efficient matching process which is invariant to changes
in translation, scale, and orientation while still being able to handle moderate shape
deformations. Ensembles of pairwise relations between edge-based features have been
previously used in the same context by [9]. However, the proposed encoding only al-
lowed for translational invariance during the matching process.

3 Features and Matching

Our choice of shape features is based on two criteria: Achieving invariance to transla-
tion, scaling and rotation and minimizing the sensitivity w.r.t. edge fragmentation. We
start with edges obtained by Canny’s edge detector and then coarsely segment each
edge into a chain of straight segments by splitting at high curvature points (see Fig-
ure 1). Similar in spirit to [5], these edge fragments are used to construct a basic feature
that represent local contours in the form of a pair of adjacent segments and the key point
at the segment intersection. Segment adjacency is defined in terms of overall distance
from the key point to the associated segment boundaries (referred later as “relaxed seg-
ment adjacency”) – thus allowing pairing of segments that correspond to different edges
or non-consecutive segments along the same edge. Although this is a very weak feature
that does not allow for reliable scale and orientation estimation, the negative effect of
edge fragmentation is compensated by relaxed segment adjacency and the introduced
redundancy.

In order to create a feature that is fully invariant to similarity transformation and
increase its discriminative power we pair individual key points as shown in Figure 1
(lower-right corner). The key point pair is described by two sets of parameters:

– matching features fij = [βij1, βij2, βij1, βij2] ∈ F4 where F represents real numbers
in the range−π..π that describe segment angles relative to the vector connecting key
points i and j. Note that fij is invariant to similarity transformations.

– geometrical relationships used for estimation of relative scale, orientation and object
centroid location during feature matching gij = [dij , αij , ∆xij , ∆yij , ∆xic, ∆yic].
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The ∆xic and ∆yic represent spatial relation between i − th key point and the ob-
ject centroid c. Object centroid is either known (model) or estimated during object
detection.

Note that such defined feature pair is an ordered set of key points i and j.

ki

k j

c

si1 si2

ij1
ij2

ji1
ji2

dij
ij

cs

1

2

f ij matching
region

Fig. 1. Left: Example of local shape features. Green lines and white markers depict edge segments
and the associated key points respectively. The lower-left corner shows an example of key point
association to segments belonging to different edges or non-consecutive segments along the same
edge. The lower-right corner shows an example of key point pair. Right: Example of feature
discretization (2D case for clarity) that allows for matching of feature sub-sets instead of exostive
correspondence estimation (see Section 3.1).

Geometrical relations between local image features have been previously used to
disambiguate feature correspondences in object recognition, see Section 2. Here we
extend the use of feature pairs (referred as features from now on) to obtain feature
matching, registration and object detection that is invariant to translation, scale and
orientation.

The problem of feature matching and subsequently fitting the object model m to the
feature set from target image t is defined as a three stage process:

1. Feature matching that estimates feature similarity, relative scale and orientation be-
tween the model and the target sets as well as the centroid position in the target
image. Feature matching also produces soft correspondences between model and
target features, where each feature in the model set correspond to k most simi-
lar target features. We have chosen k = 20 which gives a good balance between
accuracy and efficiency of the model fitting.

2. Estimation of potential centroid locations in the target image with Hough-style vot-
ing.

3. Iterative model fitting around detected centroids combined with feature correspon-
dence pruning. The model fitting establishes relative scale and orientation between
uniquely corresponding features that minimizes global fitting error.
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3.1 Feature Matching

The feature matching between model and target sets involves estimation of similarity
between key point pairs in the compared features, estimation of relative scale, orien-
tation as well as centroid location for the target features. The dissimilarity between
feature p, corresponding to key point pairs ij, from the model set m and feature q, cor-
responding to key point pairs i′j′, from the target set t is obtained by comparing fm,p

and ft,q:
εf (p, q) = (|fm,p − ft,q| mod π) (1)

The relative scale and orientation are given by ζp,q=dp/dq andωp,q =((αp−αq)modπ)
respectively. Note that because of using key point pairs the relative scale and orientation
are non-ambiguous. The estimation of centroid location in the target image is given by:

xct(p, q) =
(
∆xic(∆xp∆xq +∆yp∆yq)+

∆yic(∆yp∆xq −∆xp∆yq)
)
/d2

p + xi′

yct(p, q) =
(
∆xic(∆xp∆yq −∆yp∆xq)+

∆yic(∆xp∆xq +∆yp∆yq)
)
/d2

p + yi′

(2)

where xi′ and yi′ correspond to the position of the first key point in the feature q.
The negative aspect of using feature pairs is higher computational complexity. In a

typical case feature matching would compare all possible combinations of features in
two feature sets – if the model and target sets contain K = 1000 key points each1 the
matching procedure has to compare (K2 −K)× (K2 −K) ≈ 1012 pair combinations
which corresponds to quadratic complexity and leads to prohibitively high execution
times. However, due to the simplicity of the feature descriptor we can partition features
into a 4D array F representing a discrete space of F4. Each cell of the array F contains
a sub-set of features corresponding to the cell span in F4, thus the matching of features
in a single cell of the array Fm (model features) is confined only to the same cell in the
array Ft (target features) and adjacent cells as shown in Figure 1. The cell span cs de-
fines the similarity threshold at which relative segment angles are no longer compared.
We have chosen a conservative value of cs = 30◦ which allows maximum angle differ-
ence between two segments of 45◦ and produces 124 cells in the array. The efficiency
benefit of this solution depends on the particular distribution of features in Fm,t spaces
e.g. when features are distributed uniformly the speed up factor equals to 1

3124. Typical
matching times range from below a second (K = 200) to about 30 seconds (K = 1000
- complex scenes) on a 3GHz multi-core processor (which can be further improved by
using GPU)2.

The feature matching produces a set of soft correspondences, allowing association
between a single model feature and k target features, which is a necessary measure to
account for feature ambiguity and presence of multiple similar objects in the scene. The
feature correspondences produce a centroid estimates according to (2) which are accu-
mulated to generate hypotheses about the object location in the analyzed scene using a

1 The images in the tested databases produce between 200 and 1000 key points.
2 For simplicity we assumed that model and target have identical number of key points.
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Fig. 2. The top row shows locations of estimated centroids in the target image (right image) given
the model obtained from the features enclosed by the bounding box (left image). Despite the
noisy model that contains also elements of the background, significant edge fragmentation and the
differences in appearance (textures resulting in additional clutter) the strongest voting maximum
is closely aligned with the true location of the object centroid. The bottom row shows accumulator
arrays and voting maxima tracking across different resolutions. Images are best viewed in color.

Fig. 3. Example of the object localisation by matching and fitting a noisy model (contents of the
bounding box in the left image). The second image shows the features extracted from the target
image and the estimated location of the object centroid (strongest voting maximum). The right
figure shows the alignment of the model (green, thick lines) with the uniquely corresponding
features in the target image (red, thin lines). Note the amount of clutter in the target image.

Hough-like voting scheme [2]. The spread of the accumulated centroid votes depends
on factors such as the amount of clutter present, overall shape similarity between model
and target objects, and the relative scale at which features have been extracted [7]. Since
this cannot be established a-priori, we adopt a simple multi-resolution refinement step,
searching for voting maxima which are stable across different levels of granularity of
the accumulator array as shown in Figure 2.

3.2 Model Fitting

Depending on the allowable degrees of freedom (e.g., rigid and non-rigid deforma-
tions), finding correspondences between model and image features often poses a costly
combinatorial problem which gets quickly out of hands for more than a rather moderate
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number of features involved. Typically, efficient strategies for searching less then opti-
mal matching solutions are adopted to make the problem more tractable. Among those,
approaches based on Integer Quadratic Programming [3], graph cuts [13], and spectral
matching [8] have been shown to give excellent results in the context of object class
recognition.

However, despite their efficiency, the number of features that can be coped with is
limited to few hundred. Since our approach operates on a large number of feature pairs,
the amount of initial pair correspondences to be optimized requires a more efficient ap-
proach. E.g. forK = 1000 model key points and k = 20 correspondences per key point
pair we obtain up to (K2 − K) × k ≈ 20 × 106 soft correspondences, unfortunately
ruling out the use of the aforementioned methods. Therefore, we adopted a more practi-
cally usable and efficient procedure based on iterations of coarse model alignment and
feature pruning.

Specifically, an initial model position is obtained from the estimated centroid, while
relative scale and orientation are estimated from the soft feature correspondences that
casted votes for the centroid3. Since the initial estimation of position, scale and ori-
entation cannot be expected to be accurate, it is optimized in an iterative process that
combines model fitting and soft-correspondence pruning until unique correspondences
are found. Here, due to the centroidal alignment, only a moderately sized sub-set of soft
correspondences voting on the centroid has to be processed in subsequent iterations of
the fitting procedure.

The following simplified fitting procedure is repeated for every centroid:

1. Obtain a list of soft correspondences that casted votes for the centroid (the list is
produced during voting for each maximum in the voting accumulator at lowest
resolution) C = [(p1, q1), (p2, q2), ..., (pM , qM )], where (pm, qm) are indexes of
corresponding pairs in the model and target sets respectively. The correspondences
are weighted (wm) inversely proportional to the distance between their vote and the
position of maximum in the voting accumulator.

2. Estimate scale ς and orientation ω of model relative to the corresponding target
features:

ς =
1∑

M wm
exp

(∑
M

wm log
(
d(qm)
d(pm)

))
(3)

where d(pm) and d(qm) are spatial distances between key point pairs p and q re-
spectively.

ω =
1∑

M wm

∑
M

wm ((αq − αp) mod π) (4)

3. Transform the model: scale by the factor ς, rotate by ω and translate to the target
centroid.

4. Estimate a similarity score sp,q for corresponding features that is a combination of
spatial misalignment εs(p, q) and feature similarity εf (p, q):

s(p, q) = exp

(
− (εs(p, q) + ςσsεf(p, q))2

2 (ςσs)
2

)
(5)

3 The fitting is repeated for each centroid detected in the target image.
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where εs(p, q) is an Euclidean distance between transformed model key points and
target key points in the corresponding features and σs is a parameter which binds
spatial and angular alignment errors. Proposed measure produces similarity score
1 for perfectly aligned features (εs(p, q) = 0 and εf (p, q) = 0) and approaches 0
when εs(p, q) >> σs or εf(p, q) → 2π. All results presented in this paper were
achieved with σs set to 0.1 of the maximum model extent (bounding box) although
our experiments has shown that range between 0.05 and 0.2 produces almost iden-
tical fitting results.

5. Find all model features pr that correspond to more than one target feature and for
each feature pr discard a correspondence that produced minimum similarity score.

6. Return to step 2 if any of the model features correspond to multiple target features.

Examples of feature matching and model fitting are shown in Figure 4.

4 Model Extraction

Our primary concern is the construction of object class model that contains a suffi-
cient number of discriminative and repeatable features to maximize accuracy of object
detection and classification.

In [10] and [12] the initial set of training features is reduced using a simple clustering
technique and the discriminative features are selected by a training stage based on Ad-
aBoost. Our approach follows this scheme. However, instead of initial feature reduction
we produce a set of “sub-models” that represent groups of geometrically similar object
instances in the training data set. The aim of sub-models is to capture a distinctive shape
variations within the whole training set in terms of overall shape similarity and centroid
localisation accuracy (see Figure 5). Such partitioning allows as to a) build more spe-
cific object models that increase fitting accuracy, b) minimize matching complexity and
c) obtain more accurate feature alignment than it is possible with ordinary clustering
approach.

The extraction of sub-models is a pre-processing step before the learning discrimina-
tive model, meant as a coarse data partitioning. The purpose of sub-models is to obtain
a compact feature set from similar object instances and ensure that each sub-model
preserves geometrical characteristics of represented shape. The sub-model extraction
procedure consist of object instance grouping and feature compacting as follows:

1. Grouping starts with matching object instances in the training set, giving an esti-
mate of global shape similarity and centroid estimation accuracy for every matched
pair. The global shape similarity between an instance a and b is an average of fea-
ture similarities (5) obtained from model fitting Sa,b = (

∑
M s(pm, qm))/M (in-

stance a is the model and instance b is the target). Note that these estimates are
asymmetric in general (Sa,b 
= Sb,a) due to different number of features in both
instances and potential presence of non-repeatable background inside the bounding
boxes. For that reason a symmetric similarity between two instances is defined as
Ŝa,b = Sa,b + Sb,a.

2. Object instances are grouped using a hierarchical clustering on the global shape sim-
ilarity Ŝ with an additional constraint on maximum allowed centroid error ec(a, b)
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Fig. 4. Examples of object localisation (using noisy models) in the presence of scale, orientation,
view point change and occlusion. The first column contains images of the model (enclosed by the
bounding box) that are matched to the target images in the second column. Estimated centroids
are shown in the target images while the model fitting is visualized in the third column.

and scale estimation error es(a, b). The centroid localisation error is an Euclidean
distance between detected and true positions of the centroid relative to the bound-
ing box of instance b while the scale estimation error compares ς (3) to the relative
scale of bounding boxes in instances a and b. These constraints ensure that object in-
stances with high centroid and scale estimation errors will not be grouped together.
We have used conservative error thresholds ec < 2σs and 0.75 < es < 1.3 (relative
scale) for all evaluated image databases. The centroid and scale accuracy constraints
typically result in 8-12 groups (see Figure 5 as an example).

3. In the final step features are compacted within each group of object instances. Cor-
responding key points from different object instances (exhibiting both feature sim-
ilarity and global spatial alignment) form cliques that are averaged into a single
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Fig. 5. Example of object instance grouping in the training data set based on overall shape similar-
ity, centroid detection and scale estimation accuracy. Each row contains a group of similar object
instances (note the figure is split into two columns). The final result depends on the training data,
intra-class variability and the bounding box background variability. This example shows that it
is possible to obtain meaningful groups of real objects with a low number of outliers. Resulting
sub-models (only a subset is shown for clarity) display a reduced set of features, each visualized
with a gray intensity corresponding to the associated strength.

model key point. A key point clique can be viewed as a connected graph with
key point based nodes and correspondence based edges. The strength of the result-
ing key point is a sum of similarity scores (5) from all correspondences between
merged key points and is used as a weight during casting centroid votes. Examples
of sub-models produced by key point merging are shown in Figure 5.

The outline of our final feature selection and classifier learning is as follows. We com-
bine sub-models into a global set of a spatially related features which will be pruned
during the learning process. The sub-models are matched to the validation images to
obtain a set of positive and negative training examples in terms of similarity and align-
ment of individual features. The role of sub-models is to localise and estimate pose of
similar objects or shape structures in the validation images. The positive and negative
examples however contain similarity scores (5) of every feature in the global model set
that are transformed according to previously estimated pose and centroid location. Pos-
itive examples are obtained whenever one or more sub-models locates the same type
of object in the validation image while negative examples are drawn from other object
types and the background. The final object classifier and feature selection are produced
by applying the Gentle-Boost learner to the set of positive and negative examples.

The Gentle-Boost classifier has a typical form of linear combination of weak classi-
fiers:

H(d) =
∑
M

am

(
s(pm,d, qm,d) > θm

)
+ bm (6)

where am, bm and θm are learned parameters, d indicates a particular centroid/pose
detection (more than one possible per image) while pm,d and qm,d are corresponding
model and target features (model features are transformed). Depending on the training
data sets the typical number of discriminative features selected varied between 300 and
400. The features that were dropped during classifier training are also removed from
sub-models.
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The extraction of training examples plays a critical role in obtaining a robust classi-
fier. These examples must account for inaccuracy in centroid and pose estimation that is
caused by the intra-class shape variability or change of view related to projective trans-
formation. The examples produced by matching of sub-models to the validation images
must be therefore artificially expanded by injecting potential errors into centroid and
pose estimation in a similar manner as in [6,12]. These additional examples are pro-
duced by computing alignment of features and thus similarity measures for displaced
centroid positions and slight scale variations. This procedure produces not only an addi-
tional positive examples (around the true centroid position) but also negative examples
when the model is shifted toward the boundary of the bounding box in the validation
image.

The process of feature selection and classifier training is repeated for every database
separately. The negative examples used for boosting are obtained from the training im-
ages of the trained class (background outside of the bounding box) and training sets of
other classes. This is done to obtain an object class detector that is not only able to dis-
criminate object of particular type from a typical background but also to discriminate it
from other object classes.

5 Evaluation

We test our approach on five databases listed in Table 1 that has been previously used for
evaluation of other shape based detectors. We select a relatively small number of images
(< 10%) for sub-model extraction and another set of images to serve as validation data.
The overall training data set do not exceed 25% of the whole database in each case. Tests
were conducted on the combined set of test images drawn together from all databases.

To evaluate our approach we measure object detection and image classification ac-
curacy for each object class separately. By object detection we understand localisation
and classification of object instances as follows. We use sub-models to produce hy-
potheses d on object location (centroid) as described in Section 3.1 and 3.2. Next, the
classification score H(d) (6) is computed for each hypothesis. We use a simple non-
maxima suppression on |H(d)| to locally eliminate “weak” detections in overlapping
regions (within 50% of the bounding box area). Remaining hypotheses d are classified
as an “object” H(d) > Θ or “background”H(d) � Θ, where Θ is a global confidence
threshold regulating trade off between true and false positives. Resulting classification
is compared against the ground truth to produce statistics on the number of true and
false positives as a function of threshold Θ. A particular detection is associated with
the object class if the area overlap between the detected (scaled) bounding box and
the annotated bounding box is greater than 50% (assuming it contains the same object
type) [1]. For the image classification results, the detection exhibiting the strongest clas-
sification confidence maxd |H(d)| is used to decide whether an instance of the object
class is present in the image or not.

Table 1 provides the image classification and object detection accuracy along with
the receiver operating characteristic (ROC) curve for the image classification case. The
result of our evaluation gives an indication of how well the particular object class is
discriminated against the background and other object classes. This is in our opinion
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Table 1. Classification and detection performance on 5 image databases. The second column
shows the true positive ratio for image classification at equal error rate (EER). Third column
shows the area under ROC curve (ROC-AUC). The fourth column represents the area under
Precision-Recall curve (PR-AUC) for the detection of object instances. Right: The ROC curve
represents image classification accuracy for each of the tested databases, showing a trade off
between true positives and false positives as the global confidence threshold is varied.

database tp
(EER)

ROC-
AUC

PR-
AUC

horses
(Weizmann)

0.970 0.985 0.993

cows
(Darmstadt)

0.966 0.947 0.829

cars
(Darmstadt)

0.956 0.975 0.909

motorbikes
(Caltech)

0.957 0.986 0.993

bikes
(Graz)

0.815 0.867 0.782
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a more realistic and challenging test scenario than the typical object detection against
background only [12,10].

We benchmark our method against state-of-the-art approach from Shotton et al. [12].
Our approach achieves particularly good performance on the database of horses (PR-
AUC of our method 0.993 vs. 0.968/0.785 in [12]) and bicycles (our 0.782 vs. 0.6959
[12]) considering that they were not split into side/front views as in [12]. Detection
accuracy of motorbikes is almost identical in the two methods. Detection accuracy of
Cows is worse than in [12], however the problem is primarily related to cows being
confused with horses (not done in [12]) as well as imbalance in the number of test
images (5:1) between these two databases.

6 Conclusions

We have presented a novel shape matcher and its application to discriminative object
recognition. The shape matcher efficiently utilizes pairs of local shape fragments for
robust model localisation. Although feature pairs have been previously exploited for
matching and object recognition, we extend their use to provide invariance to rotation
and scale effortlessly. Reported results show that our approach tolerates moderate view
point changes, clutter and partial object occlusion (see Figures 4). Evaluation of object
detection accuracy proves that the method is capable of outperforming state-of-the art
detectors on challenging databases, containing multiple views of the same object class.

Our analysis of the method properties indicates that the combination of redundant
features and the use of feature pairs plays a crucial role in object localisation and pose
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estimation while the use of sub-models (Section 4) significantly improves object de-
tection accuracy. The use of multiple object models per class, feature sharing between
these models and verification of different model extraction approaches is a primary fo-
cus of future work.
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Abstract. In this paper, we present an adaptation the Bag of Features
(BoF) concept to 3D shape retrieval problems. The BoF approach has

recently become one of the most popular methods in 2D image retrieval.

We extent this approach from 2D images to 3D shapes. Following the

BoF outline, we address the necessary modifications for the 3D extension

and present novel solutions for the parameterization of 3D patches, a 3D

rotation invariant similarity measure for these patches and a method for

the codebook generation. We experimentally evaluate the performance

of our methods on the Princeton Shape Benchmark.

1 Introduction

The retrieval of digitized 3D objects is a rising topic. Similar to 2D image re-
trieval, which recently has become a very popular research topic, the constantly
growing size of available 3D data triggers the need for effective search meth-
ods. There have been several practically important applications to 3D object
retrieval, such as retrieving 3D protein structures from very large databases in
bio-informatics and computational chemistry [1] or the retrieval of 3D objects
from depth images (laser range scans) in robot navigation [2].

We apply our methods to a more academic problem setting given by the
Princeton Shape Benchmark (PSB) [3], which has become a standard benchmark
for 3D shape retrieval.

1.1 Related Work

We limit our brief review of the related work to methods which have been applied
to the Princeton Shape Benchmark and thus can be compared to our results
later on.

The Spherical Extent Function (EXT) [4] projects the distance of the
object center to each point of the object surface onto the enclosing outer sphere.
The resulting spherical distance map is then expanded in Spherical Harmonics
from which the SHabs (4) feature is extracted. The Spherical Harmonic De-
scriptor (SHD) [5] is very similar to EXT, it also computes SHabs over several
radii, but organizes the results in a 2D histogram. The Light Field Descriptor

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 34–43, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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(LFD) [6] uses multiple 2D views of 3D shapes. Rotation invariance is achieved
by a collection of 100 2D views per object, which are rendered orthogonal to the
outer enclosing sphere of the object. Then a set of 2D features (mostly geometric
and Zernike moments) is computed for each 2D view. Currently, LFD is the best
performing approach on the PSB.

All of these methods have in query samplesdatabase
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Fig. 1. Schematic overview of the ”Bag of Fea-

tures” concept

common that they try to model
object shapes at a global level
which has the disadvantage that
the assumption that objects of
the same class are sharing the
same base shape is not always
adequate - especially when one
considers more semantic group-
ings with high intra-class vari-
ance as presented by the PSB.
In 2D image retrieval, these
problems have been approached
quite successfully by BoF meth-
ods (see section 2). Hence, there
have been several previous at-
tempts to introduce a BoF ap-
proach for 3D shape retrieval,
like [7], using Spin Images as
local 3D patch descriptors.
However, the results of these at-
tempts were rather poor (see ex-
periments), which we suspect to
be mostly due to the limited discrimination power of spin images. We try to over-
come these problems by the use of other local 3D patch descriptors.

2 3D Shape Retrieval with Local Patches

2.1 The Bag of Features Concept

One ”state of the art” approach in modern 2D image retrieval is commonly
known under the name Bag of Features (BoF) [8][9]. The method of BoF is
largely inspired by the Bag of Words [10] concept which has been used in text
retrieval for quite some time.

Even though there are countless variations of retrieval algorithms emerging
under the label Bag of Features [8][9] and it is hard to capture the actual BoF
algorithm, there is a common concept which is shared by all of theses methods.

Local Features: The central aspect of the BoF concept is to move away from a
global image description and to represent images as a collection of local proper-
ties. These local properties are derived in form of (invariant) image features,
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e.g. the very popular SIFT features [11], which are computed on small sub-
images called patches. The patches, are simply small rectangular regions which
are extracted around interest points (see section 4).

Codebook Representation: The second main aspect of the ”Bag of Features”
concept is the way images are represented as collections of local features and
how two or more of these representations can be compared. The basic idea here
is to use a class independent clustering over the feature representations of all
patches (from all database samples). The representatives of the resulting clusters
are then used as entries of a unified (class independent) codebook [12]. Each
patch is then mapped against the entries of this codebook, such that an image
is represented as the histogram over the best codebook matches of its patches.
The similarity of images can then be obtained by comparing the BoF histograms,
e.g. by histogram intersection.

Figure 1 gives a schematic overview of the computation steps in the codebook
generation and retrieval stage of the ’Bag of Features” concept.

3 Mathematical Foundations

A key aspect of our 3D extension of the BoF concept is the idea to parameterize
the 3D patches as spheres and to provide a fast rotation invariant similarity mea-
sure for these spherical patches. The spherical representation is a natural choice
for local 3D patches which allows us to rely on the well established mathemat-
ical foundations of the angular momentum theory [13] to perform all necessary
computation in the harmonic domain.

Spherical Harmonics (SH): [13] form an orthonormal base on the 2-sphere. Ana-
logical to the Fourier Transform, any given real valued and continuous signal f on
a sphere with its parameterization over the angles Θ,Φ (latitude and longitude
of the sphere) can be represented by an expansion in its harmonic coefficients:

f(Θ,Φ) =
∞∑
l=0

m=l∑
m=−l

f̂ l
mY

l
m(Θ,Φ), (1)

where l denotes the band of expansion,m the order for the l-th band, f̂ l
m the har-

monic coefficients and Y l
m the complex conjugate of the harmonic base functions

Y l
m that are computed as:

Y l
m(Θ,Φ) =

√
2l+ 1

4π
(l −m)!
(l +m)!

P l
m(cosΘ)eimΦ, (2)

where P l
m is the associated Legendre polynomial.

Rotations in SH: Rotations R(ϕ, θ, ψ)f in the Euclidean space find their equiv-
alent representation in the harmonic domain in terms of the so called Wigner
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D-Matrices [13], which form an irreducible representation of the rotation group
SO(3). For each band l, Dl(ϕ, θ, ψ) (or abbreviated Dl(R)) defines a band-wise
rotation in the SH coefficients, using the Euler notation in zyz-convention with
ϕ, ψ ∈ [0, 2π[ and θ ∈ [0, π[ to parameterize the rotations R ∈ SO(3). Hence, a
rotation in the Euclidean space can be estimated in the harmonic domain (with
a maximum expansion band bmax), by

Rf ≈
bmax∑
l=0

l∑
m=−l

l∑
n=−l

Dl
mn(R)f̂ l

mY
l
m. (3)

The SHabs Feature: A SH representation of spherical signals raises the demand
for a (rotational invariant) similarity measure between two or more signals. A
popular choice [5] is to use the band-wise absolute values of the harmonic power-
spectrum, which we refer to as SHabs feature:

SHabs(f̂ l) :=
m=l∑

m=−l

‖f̂ l
m‖. (4)

The main drawback of the SHabs features is that it obtains its rotation invariance
by neglecting the phase information. Hence, SHabs is an incomplete feature
which suffers from its ambiguities.

Fast Correlation in SH: We follow a different approach to obtain a rotation
invariant similarity measure between harmonic expansions: the full correlation
over all possible rotation angles: The full correlation f#g : SO(3) → R of two
signals f and g under the rotation R ∈ SO(3) on a 2-sphere is given as:

(f#g)(R) :=
∫
S2

f(Rg) dφdθdψ. (5)

Fehr et. all. [14] proposed a method for a fast computation of (5) in the harmonic
domain by use the Convolution Theorem. Starting from the substitution of f and
g in (5) by their SH expansions

(f#g)(R) =
∑
lmn

Dl
mn(R)f̂ l

mĝ
l
n, (6)

their method provides the correlation value for each possible ration in a dis-
crete 3D matrix C# which represents the angular space over the rotation angles
(φ, θ, ψ):

C# = F−1(Ĉ#), (7)

with

Ĉ#(m,h,m′) =
bmax∑
l=0

dl
mh(π/2)dl

hm′(π/2)f̂ l
mĝ

l
m′ (8)

and m,h,m′ ∈ {−l, . . . , l}. The rotation invariant correlation maximum is then
simply the maximum value in C#. Please refer to [14] details on (7) and proofs.
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Normalized Cross-Correlation: We follow an approach which is widely known
from the normalized cross-correlation of 2D images: First, we subtract the mean
from both functions prior to the correlation and then divide the results by the
variances:

(f#g)norm(R) :=
∫
S2

(
f −E(f)

)(
R
(
g −E(g)

))
σfσg

sinΘdΦdΘ. (9)

Analogous to Fourier transform, we obtain the expectation values E(f) and E(g)
directly from the 0th SH coefficient. The variances σf and σg can be estimated
from the band-wise energies:

σf ≈
√∑

l

|f̂l|2. (10)

Discrete Spherical Harmonic Expansions: For practical applications, we need a
discrete version of the Spherical Harmonic transform, i.e. we need to obtain the
frequency decomposition of 3D signals at discrete positions x ∈ X on discrete
spherical surfaces S of radius r:

S[r] (x) := {x′ ∈ R3| ‖x− x′‖2 = r}. (11)

To obtain the discrete Vectorial Harmonic transformation SH
(
S[r](x)

)
, we pre-

compute discrete approximations Ỹ l
m[r] of the orthonormal harmonic base func-

tions as:
SH
(
X |S[r](x)

)l
m

:=
∑

xi∈S[r](x)

X(xi)Ỹ l
m[r](xi). (12)

In order to compute the harmonic transformation of the neighborhoods around
each voxel of X , we perform a fast convolution of the pre-computed based func-
tions with the discrete input data:

SH[r] (X)lm = X ∗ Ỹ l
m[r]. (13)

4 Algorithm

Our approach directly follows the Bag of Features scheme (see figure 1). With ex-
ception of an additional preprocessing, we simply walk through the BoF pipeline
step by step and replace 2D specific algorithms with our own 3D methods.

Preprocessing: Prior to the actual BoF pipeline, we apply a series of pre-processing
steps to the objects in the PSB database: primarily, we have to render the objects
from triangular mesh format to a volume representation where the voxels inside
the object are set to 1 and the voxels outside to 0. We use this rendering step to
align the object in the geometric center of the volume and to normalize the object
size to a fixed height of the object bounding box. Thus, we obtain translation and
scale invariant volume representations of the models.
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Sampling Points: The next step, and first in the actual BoF pipeline, is to de-
termine the location of the local patches. In the original 2D setting, where the
objects of interest are located in more or less cluttered scenes, the detection of
interest points is a crucial step: important parts of the target objects should not
be missed, while the overall number of interest points directly affects the com-
putational complexity, so that one tries to avoid large numbers of false positive
points. For our 3D case, the selection of the interest points is by far less cru-
cial since we have already segmented objects. Hence, we simply apply a simple
equidistant sampling on the object surface.

Extracting Local Patches: The next step is to extract the local patches p(x) at
the location of the sampling points. In contrast to the original 2D case, were the
patches are rectangular areas, we extract spherical patches which are centered
in the respective sampling points.

Given the volume rendering of a model X and sampling points at positions x,
the associated patches are then represented by a series of m concentric spherical
neighborhoodsX |S[ri](x) (12) at different radii ri ∈ {r1, . . . , rn}. We then expand
the local patches radius by radius in Spherical Harmonics. Hence, we define a
patch p(x) as collection of radius-wise harmonic expansions up to some upper
band l = bmax around x :

p(x) :=
{
SH
(
X |S[r1](x)

)
, . . . ,SH

(
X |S[rn](x)

)}
. (14)

Figure 3a and 3b illustrate the patch extraction. The motivation to use spherical
instead of rectangular patches is obvious considering that we need to obtain full
rotation invariance, which often times can be neglected in the case of 2D image
retrieval.

Generating the Codebook: While the preprocessing and patch extraction has to
be done for all reference and query objects, we now turn to the off-line procedure
which is only performed on the initial database. The off-line stage has two dif-
ferent stages: first, we have to generate a problem specific but class independent

(a) (b) (c)

Fig. 3. (a) Extracting spherical patches at the sampling points. (b) extraction of

spherical neighborhoods (patches) around the sampling points. (c) Example clustering

results where patches were extracted at all object voxels.



40 J. Fehr, A. Streicher, and H. Burkhardt

Fig. 4. Sample generalized codebook entry: the figure illustrates the location (blue

circle) of a sample codebook entry on several different objects

codebook of local patches, which is done via clustering, and then, we have to
represent the database samples in terms of histograms over the codebook.

After the extraction of the patches, we use a simple radius-wise k-means
clustering [15] to obtain k patch clusters for each radius of the patch parameter-
ization independently. The key for the clustering is the choice of the similarity
function d: we apply the normalized correlation (10) for the Spherical Harmonic
domain to measure the rotation invariant similarity of two patches:

d
(
p(xi), p(xj)

)
:= p(xi)#p(xj). (15)

In order to reduce the computational complexity, we do not apply the clustering
on all patches from all database samples. Our experiments showed (see 5), that
it is sufficient to use a small random subset of 10% of the database to generate
a stable set of clusters.

It should be noted, that the class label of the database samples is completely
neglected during the clustering since our goal is to obtain a general, class inde-
pendent representation of local patches in the later codebook. Figure 3c shows
example results of the clustering. The final step towards the generation of the
codebook is based on the previous clustering. We simply use the cluster centers
as representatives in the codebook. Since we perform the clustering for each ra-
dius of the patch parameterization independently, we obtain separate codebooks
for each radius.

4.1 Retrieval by Feature Histograms

After we learned the codebook based on a small subsection of the database, we
can pursuit the BoF approach without further changes. As in the original Bag
of Features concept, all off the database samples are represented as histograms
over the codebook entries. We simply use our fast normalized cross-correlation
(9) to match all patches of an object with the codebook and rise the count of
the histogram bin associated with the best match. Figure 1 illustrates a example
codebook histogram representation of an object.
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Features PSB base level

LFD 65.7%†(61.9%)∗

BoF with SHcorr 62.4%

SHD 55.6%†(52.3%)∗

EXT 54.9%†

BoF with SHabs 54.5%
BoF with Spin Images 33.5%

Fig. 5. Results for the 3D shape retrieval on the PSB. Results taken from the literature

are marked with †, results from our own implementations are marked with ∗. Unfortu-

nately, we were not able to exactly reproduce the results given in the literature. This

could be caused by a different initial rendering, which is not discussed in the given

literature.

Fig. 6. Precision recall graph for our approach on the PSB base test set. The results of

our implementation of LFD and SHD reference methods are plotted as lines. We also

compare the BoF results with our SHcorr features compared to the use of the SHabs

features as patch descriptor.

Retrieval Query: Given an query object, we perform the preprocessing and patch
extraction steps and then compute its codebook histogram representation just
as we do it for the database. We then use a normalized histogram intersection
as similarity measure to find the best matches in the database.



42 J. Fehr, A. Streicher, and H. Burkhardt

5 Experimental Evaluation

We evaluate our proposed approach on the standard PSB experimental setup,
as described in [3]. We use the base scheme, where the 1814 shapes of the PSB
are split into equally large database and query sets.

General Experimental Setup: We use a rendering normalized to the size of 64
voxels on the longest edge of the bounding box (see 4). The codebook is built form
a random selection of 10% of the training set (more samples simply increase the
computation time without notable effect on the later recognition rate). 8 different
radii with ri ∈ {3, 4, 5, 6, 7, 8, 10, 12} are used to compute the codebook, where
bmax of the harmonic expansion is increased according with the radius (from 3
to 7). The codebook size k is set to 150 bins per radius.

Given these fixed parameters, we obtained the following results for our ap-
proach on the PSB base test set: table 5 shows the k = 1 nearest neighbor results
of our method compared to the results known from literature. Figure 6 shows
the precision-recall plots provided by the standardized PSB evaluation. In order
to emphasize the use of our SHcorr feature, we additionally implemented a BoF
approach where we used the SHabs feature as patch descriptor.

6 Conclusions and Outlook

The experiments showed that our approach achieves competitive results on the
difficult PSB. The main drawback of our method is that we cannot be sure
if the given results are actually representing the global optimum of what can
be achieved with our method or if we are stuck in a local maximum of the
parameter space. Due to the large number of parameters, we face the problem
that the maximum search in the parameter space turns out to be quite tedious.
A possible further extension of our histogram approach could be to localize
the patch positions. Similar to the 2D approach in [16], we could increase the
discrimination power by replacing the global histogram with a localized patch
histogram.
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Abstract. In this paper we present a pixel-level object categorization

method suitable to be applied under real-time constraints. Since pixels

are categorized using a bag of features scheme, the major bottleneck of

such an approach would be the feature pooling in local histograms of

visual words. Therefore, we propose to bypass this time-consuming step

and directly obtain the score from a linear Support Vector Machine clas-

sifier. This is achieved by creating an integral image of the components of

the SVM which can readily obtain the classification score for any image

sub-window with only 10 additions and 2 products, regardless of its size.

Besides, we evaluated the performance of two efficient feature quantiza-

tion methods: the Hierarchical K-Means and the Extremely Randomized

Forest. All experiments have been done in the Graz02 database, showing

comparable, or even better results to related work with a lower compu-

tational cost.

1 Introduction

A method for robustly localizing objects is of major importance towards creating
smart image retrieval tools able to search in digital image collections. In the last
years, object recognition in images has seen impressive advances thanks to the
development of robust image descriptors [1] and simple yet powerful representa-
tion method such as the bag of features [2,3,4,5]. Furthermore, the ever-growing
collections of images available on the Internet make computational efficiency an
imperative for methods that aim to be used in such a scenario.

In this work we propose a new method for fast pixel-wise categorization based
on the bag of features object representation. Given that the method will have to
be applied at every pixel of the image, it is essential to optimize it to perform in
the least possible time. Although different bag of features approaches have been
proposed, all of them consist on four basic steps. Namely, feature extraction from
the image, feature quantization into visual words, accumulation of visual word
into histograms and classification of the resulting histogram.

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 44–54, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In order to accelerate the quantization step, Nister and Stewenius [3] proposed
to use a Hierarchical K-Means vocabulary tree (HKM) created by recursively
applying k-means to the clusters from the previous level. With this technique
they were able to improve the recognition results by using larger dictionaries
in a reasonable time. As an alternative to the HKM, Moosmann et al. [6] and
Shotton et al. [7] proposed to use Extremely Randomized Forests (ERF) of K-
D trees to improve the classification accuracy. In the approach proposed by
Moosemann et al. random features are selected at high saliency areas and used
in a bag of features scheme to classify the whole image. Besides, the probability
of each object class for each individual feature is determined and used in an
object probability map that iteratively decides the geometric parameters of new
random features.

The accumulation step is an even more critical bottleneck for an object lo-
calization using bag of features. Since no geometrical information is used, many
sub-windows of the image have to be evaluated. Some authors addressed this
problem by reducing the number of evaluated windows, either by using a pre-
processing step [8] or by searching the best sub-window as in an optimization
problem [9]. This is done by defining an upper bound on the SVM classification,
and using branch and bound to discard uninteresting areas. Although not used
here, the strategy proposed by Lampert et al. is also applicable in our method.

Other authors have focused on accelerating the accumulation step. In the ap-
proach by Fulkerson et al. [4], the authors speed up the accumulation step using
integral images in a sliding windows based analysis of the image. For this speed-
up measure to be effective, it is important to use small dictionaries. However,
various works [10,3] show that large dictionaries typically obtain better classi-
fication results. Therefore, in order to compress the dictionary without losing
classification accuracy, they propose to use Agglomerative Information Bottle-
neck (AIB) to create a coarse-to-fine-to-coarse architecture that is optimized for
discrimination of object versus non-object. This approach shares some simili-
tudes with the one presented here. However, In contrast to Fulkerson et al. , we
propose to bypass the descriptor accumulation step, and make every computed
feature vote directly with its classifier score in an integral image to reduce the
computational cost of classifying an image sub-window to only 10 additions and
2 multiplications, regardless of its size.

The rest of the paper is organized as follows: In Section 2 the proposed
methodology for object classification and localization in images is described.
Then, in Section 3, our proposed method is evaluated with the Graz02 dataset
[11] and results are presented and discussed. Finally, in Section 4 the contri-
butions and conclusions of this work, as well as future research directions, are
summarized.

2 Efficient Pixel-Level Categorization

Our method1 uses an efficient categorization algorithm to assign a category label
to each pixel of an image: First, region descriptors are densely sampled from the
1 Additional information available at http://www.cvc.uab.cat/~aldavert/plor/

http://www.cvc.uab.cat/~aldavert/plor/
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a) b) c)

Fig. 1. Examples of pixel-level categorization results obtained with our method for a)

bikes, b) cars and c) person in the Graz02 database

image and quantized into visual words using a codebook. Then, a sliding window
scheme is used to assign a category label to each pixel of the image. Visual words
within a window are accumulated in a histogram, which is later classified using
a linear support vector machine. In Fig. 1 some pixel-level categorization results
obtained using the proposed method are shown. Categorizing all the pixels from
an image with this brute-force approach in a reasonable time requires each of
the previous steps to be executed in a very efficient way.

2.1 Dense Features

As previously mentioned, we use densely sampled image descriptors as input
data. Dense sampling has several advantages when compared to keypoint-based
approaches, such as extracting more information from the underlying image,
and avoiding the time-consuming keypoint detection step [10]. Furthermore, if
robust descriptors can be computed in an efficient way, it can even become faster
than the keypoint-based alternative despite the larger number of descriptors
computed.

With this in mind, we have decided to use the Integral Histograms of Ori-
ented Gradients (IHOG) descriptor [12]. The IHOG is an approximation to the
Histograms of Oriented Gradients (HOG) descriptor [13], which speeds up the
descriptor extraction using integral images. First, each pixel votes according to
its gradient orientation, weighted by its gradient magnitude, in a histogram of
N orientation bins. Then, an integral image is generated for each one of the N
orientation bins. Using these integral images, to compute an IHOG descriptor
with N orientation bins and P × P position bins (i.e. a N × P × P dimensions
descriptor) we need just N × (P − 1)2 memory accesses and N × P 2 additions,
regardless of the feature region size in pixels.
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Unlike the HOG descriptor, the IHOG descriptor is incompatible with the
Gaussian mask and the tri-linear interpolation to weight the contribution of the
gradient module in the spatial bins of the descriptor used in the HOG. Another
difference is that the IHOG descriptor uses L1 normalization instead the L2
normalization. Nevertheless, despite all these simplifications, the performance of
the IHOG descriptor is only slightly worse than that of the HOG descriptor [12].
Moreover, neither HOG nor IHOG descriptors are rotation invariant. However,
according to Zhang et. al. [14], the use of rotation invariant descriptors has a
negative effect in the performance of bag of features approaches.

2.2 Codebook Generation

Once all descriptors have been computed from the image, it is necessary to
quantize them into visual words using a codebook. The computational cost of
quantizing a D-dimensional descriptor using linear codebook of V visual words
is O(DV ). From the various alternatives that have been proposed to reduce
this computational cost, in this work we have evaluated two: the Hierarchical
K-Means (HKM) and the Extremely Randomized Forest (ERF).

The HKM defines a hierarchical quantization of the feature space. Instead
of k being the final number of visual words of the codebook, it determines the
branch factor (number of children of each node) of a tree. Given a set of training
descriptors, an HKM is generated as follows: First, the k-means algorithm is
used to split the training data into k groups. Then, this clustering process is
recursively applied to the groups from the previous level until a maximum depth
is reached. This recursive method creates a vocabulary tree (i.e. codebook) with
a reduced computational cost both in the training and descriptor quantization
phases. The computational complexity of quantizing a D-dimensional descriptor
using a HKM with V visual words is O(Dk logk V ). In the original implemen-
tation of the HKM, all nodes of the tree are used as visual words to alleviate
misclassification problems in the superior levels of the tree and the contribution
of each node of the histogram is weighted using a TF-IDF scheme [3]. However,
the use of these two refinements have a modest impact in the performance of
the HKM. Therefore, we have removed them from our implementation.

The ERF [6] uses a combination of several random K-D trees in order to quan-
tize the feature space. Given a set of labeled training descriptors (i.e. descriptors
with a category label associated), the K-D trees of the ERF are built recursively
in a top-down manner as follows: Every node of the K-D trees splits the training
descriptors from the previous level in two disjoint sets with a boolean test in
a random descriptor vector position. The boolean test consists in dividing the
descriptors in two groups according to a random threshold θt applied at de-
scriptor vector dimension Dt, also chosen randomly. For each node, the random
boolean test is scored using the Shannon entropy until a minimum value Smin

is attained or a maximum number of trials Tmax has been reached. Then, the
selected random boolean test is the one that has a highest score. Parameter Smin

can be used to select the randomness of the obtained K-D trees. For instance
Smin = 1 creates a highly discriminant tree while Smin = 0 creates a completely
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random tree. The main advantage of the random K-D tree compared to other
quantization methods is its low computational cost. Quantizing a D-dimensional
descriptor vector using a random K-D tree with V visual words is O(log2 V ).
Since a random K-D tree usually has less discriminative power than other clus-
tering methods, like the k-means or the HKM, several K-D trees are combined
together to obtain a more discriminative codebook. Finally, the resulting his-
togram of the ERF is created by concatenating the histograms generated by
each K-D tree of the forest.

2.3 Integral Linear Classifiers

The “integral image” representation has been first introduced by Viola and Jones
to quickly extract Haar-wavelet type features [15]. Since then, integral images
have been applied to many different tasks like invariant feature extraction [16],
local region descriptors [12], to compute histograms over arbitrary rectangular
image regions [17] or to compute bag of feature histograms [4]. Inspired by these
previous works, we propose the use of an integral image to quickly calculate the
output score of the linear classifier which is applied to bag of features histograms.

To categorize a V dimensional histogram of visual words, we use a linear
classifier with weight vector W and bias b. Then, the output score of the linear
classifier is:

1
‖X‖

V∑
i=0

xiwi + b > 0 (1)

where xi is the frequency of the i-th visual word of the codebook, ‖X‖ is the
norm of histogram X and wi is the i-th component of the linear classifier weight
vector W . If all components of W are positive, then, the sum of the previous

a) b)

Fig. 2. Image containing the components of a linear classifier for bikes b) obtained

from extracting dense features every four pixels in the original image a)
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equation can be calculated using an integral image. Therefore, we define the
classifier weight vector W̃ components as:

w̃i = wi −Wm (2)

where Wm is the wi component with the lowest value. Then, replacing W by
W̃ in Eq. 1 the output score of the linear classifier is:

1
‖X‖

V∑
i=0

xiw̃i +
Wm

‖X‖

V∑
i=0

xi + b > 0 (3)

We normalize the histogram X using L1 norm (i.e. the amount of visual words
that casted a vote in the histogram) since it is fast to compute using an integral
image. Then, Eq. 3 becomes:

1
N

V∑
i=0

xiw̃i +Wm + b > 0 (4)

where N is the L1 normalization of histogram ‖X‖. Once all W̃ components
are positive, the integral image can be used to calculate the sum in Eq. 4. For
each linear classifier c, let Lc(x, y) be the sum of components w̃c

i corresponding
to the visual words at pixel (x, y). In Fig. 2 an example of Lc image for the bikes
classifier is shown. Then, each image Lc is transformed into an integral image
Ic, so that, the sum of Eq. 4 of a rectangular image region R can be calculated
using the integral image Ic:

HR = Ic(xu, yu) + Ic(xb, yb)− Ic(xu, yb)− Ic(xb, yu) (5)

where (xu, yu) and (xb, yb) are respectively the upper left and bottom right corner
coordinates of region R. Then, the output score of a linear classifier applied to
any rectangular image region can be calculated as follows:

1
N
HR +Wm + b > 0 (6)

Using integral images, the computational complexity of classifying any rectan-
gular image region is reduced to 8 memory access, 10 additions and 2 products,
independently of the size of rectangular region.

3 Experiments

We have evaluated the performance of our pixel-level categorization method on
the Graz02 database [11]. The Graz02 database is a challenging database consist-
ing on three categories (bikes, cars and people) where objects have an extreme
variability in pose, orientation, lighting and different degrees of occlusion. The
Graz02 annotation only provides a pixel segmentation mask for each image, so
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that, it is impossible to know how many object instances are present in the
image. In consequence, to evaluate the performance of our pixel-level catego-
rization method we use the pixel-based precision-recall curves as in [18]. Active
pixels of the ground truth segmentation mask scorrectly categorized as object
are counted as true positives, and as false negatives otherwise. Also, incorrectly
classified background pixels of the ground truth segmentation mask are counted
as false positives. Finally, we have taken the odd images as train and the even
as test as in [18,4]. However, due to the high variation we observed in the results
depending on the train/test sets, we decided to also use random selection to split
half of the images for train and half for test. The final result of a test when using
the random sampling is the mean of a 1, 000-repetitions experiment to ensure
statistical invariance of the selected train/test sets.

3.1 Parameter Setting

The results were obtained using the same parameters in each experiment. The
IHOG descriptors have been densely sampled each four pixels. Descriptors that
have a low gradient magnitude before normalization are discarded as in [4]. Each
IHOG descriptor is extracted from a 40 × 40 pixels patch and it has 8 orienta-
tion bins and 4 positional bins (i.e. a 32 dimensional descriptor). Therefore, as
Graz02 images have a regular size of 640×480, a maximum of 16,500 descriptors
are extracted per image. Then, bag of features histograms are computed accu-
mulating the visual words that are inside a region of 80× 80 pixels. Later, those
histograms are categorized using a support vector machine. The SVM has been
trained using logistic regression (LR-SVM)[19] with the LIBLINEAR software
package [20]. Finally, the shown times results have been obtained using laptop
with an Intel T7700 Core Duo CPU and 2Gb of RAM.

3.2 Parameters of the ERF

The performance of the ERF depends on the K-D tree randomness parame-
ter and the amount of trees in the forest. Therefore, we wanted to evaluate

Fig. 3. Precision-recall at EER comparison for the ERF using different randomness

factor and number of trees
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which combination of those parameters gives better results for our categoriza-
tion method. In Fig. 3 the mean precision-recall values at Equal Error Rate
(EER) obtained for the different parameter combinations are shown. The re-
sults shows that the performance for the ERF largely depends on the amount
of trees, while the randomness factor has little, if any, effect in the performance.
For the remaining experiments, we have selected a randomness factor of 0.05 (i.e.
a completely random forest) and 5 trees, which are a good compromise between
performance and computational cost.

3.3 Comparison between HKM and ERF

To compare the performance of the HKM and the ERF, dense features have
been computed for all the 450 training images, resulting in about 6,000,000

a) b)

c) d)

Fig. 4. Precision-recall curves obtained by the HKM and ERF codebooks using random

sampling for the a) bikes, b) cars and c) persons categories of the Graz02 database.

For each category, both methods have been evaluated using only the category images

(Single) and using all testing images (Multi). In d) the mean time spent evaluating an

image for the ERF and the HKM is shown.
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Table 1. Comparison of the precision-recall values obtained at equal error rate on the

Graz02 database both using odd/even and random train/test sampling. The catego-

rization methods have been evaluated using only images that contain objects from the

searched category in the “Single” test and using all the images in the “Multi” test.

Sampling Test Method Bikes Cars Persons

Even/Pair

Single
HKM 73.77% ± 0.20% 63.90% ± 0.17% 61.80% ± 0.40%

ERF 73.63% ± 0.32% 65.68% ± 0.60% 62.59% ± 0.30%

Multi
HKM 63.42% ± 0.24% 47.09% ± 0.45% 44.36% ± 0.31%

ERF 63.27% ± 0.32% 47.62% ± 1.45% 46.34% ± 0.43%

Random

Single
HKM 74.33% ± 1.21% 65.70% ± 1.45% 62.13% ± 1.30%

ERF 74.17% ± 1.22% 68.39% ± 1.44% 63.27% ± 1.38%

Multi
HKM 64.55% ± 1.26% 49.60% ± 1.61% 42.78% ± 1.86%

ERF 63.98% ± 1.28% 51.30% ± 2.03% 44.30% ± 2.12%

training features. For the HKM we have selected a branch factor of 10 as in [4]
to generate a codebook with 200,000 visual words in average. For the ERF, using
the parameters selected in the previous section, we have obtained a codebook of
150,000 visual words in average. We have done two different tests: the “Single”
test only uses the images containing objects from the tested category (e.g. using
the bike classifier only for the images where a bicycle can be actually found),
and the “Multi” test uses all test images (e.g. using the bike classifier for all 450
test images). As can be seen in Table 1 the precision-recall values obtained at
EER show that the ERF performs slightly better than the HKM, both in the
“Single” and the “Multi” tests. In the “Multi” test we can see that, when 300
images not containing objects are added to the test set, precision decreases a
reasonable 32%. Finally, Fig. 4 shows the precision-recall curves for the different
categories of the Graz02 database. As can be seen, the ERF has a slightly better
performance than the HKM.

3.4 Time Cost Evaluation

Finally, regarding the computational cost of the categorization approach, the
average time needed to construct the HKM is of 5 minutes, while that of the
ERF depends on the randomness factor and the number of trees used, ranging
from 100 milliseconds for a completely random ERF with a single tree, to 12
minutes for a highly discriminative ERF with 9 trees. The cost of training a
linear classifier using the LR-SVM is of about 2 minutes for the histograms
generated with HKM codebook, and from 2 to 5 minutes for those generated
with the ERF (it depends on the amount of trees of the ERF). In Fig. 4.d) we
can see the average time needed to categorize all image pixels using a HKM and
ERF codebooks. Although being a bit slower in the training phase, the ERF is
faster than the HKM in the categorization phase, where speed is truly essential.
Using a ERF with 5 K-D trees, the whole scheme needs about 72.6 milliseconds
to categorize an image, so that, we can process about 13 images per second.
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4 Conclusions

In this paper we have presented an efficient method to assign a category label
to each pixel of an image. Our main contribution is the introduction of integral
linear classifier, which is used to bypass the accumulation step and directly obtain
the classification score for an arbitrary sub-window of the image. Besides, we have
compared the performance of the Hierarchical K-Means (HKM) and Extremely
Randomized Forest (ERF). The obtained results show that the ERF performs
slightly better than the HKM and with a lower computational cost. We have
shown that the proposed method with the ERF feature quantization approach
is suitable for real-time applications. In future work, we plan to improve this
method and use it in an online learning scheme with a mobile robot.
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Abstract. Real-time cinematic relighting of large, forest ecosystems

remains a challenging problem, in that important global illumination

effects, such as leaf transparency and inter-object light scattering, are

difficult to capture, given tight timing constraints and scenes that typi-

cally contain hundreds of millions of primitives. A solution that is based

on a lattice-Boltzmann method is suggested. Reflectance, transmittance,

and absorptance parameters are taken from measurements of real plants

and integrated into a parameterized, dynamic global illumination model.

When the model is combined with fast shadow rays, traced on a GPU,

near real-time cinematic relighting is achievable for forest scenes contain-

ing hundreds of millions of polygons.

1 Introduction

Rendering large-scale, forest ecosystems is a topic of wide interest, with appli-
cations ranging from feature film production to environmental monitoring and
ecosystem management. Important global illumination effects, such as leaf trans-
parency and inter-object scattering, are difficult to capture, given tight timing
constraints and models that potentially contain hundreds of millions of primitives.

Early approaches to rendering such systems relied on conventional rasteriza-
tion using billboard clouds [1]. More recently, focus has shifted to geometry-based
techniques that rely on ray-tracing. Ray-tracing generally provides superior vi-
sual results, and new acceleration structures combined with low-cost, highly
parallel execution environments can make ray-tracing competitive in execution
time. In this vein, Geist et al. [2] extended the approach of Dietrich et al. [3]
to include diffuse leaf transparency and inter-object scattering while maintain-
ing near real-time rendering for scenes that comprised hundreds of millions of
polygons. They used a lattice-Boltzmann (LB) photon transport model [4] to
solve for global illumination in a pre-processing step and a highly parallel ray
tracer, built on NVIDIA’s Compute Unified Device Architecture (CUDA) [5], to
achieve acceptable execution time.

Nevertheless, as noted in [2], there remain drawbacks to this work. First,
although the LB lighting solution captured the desired global effects, it was
constrained by the use of geometric instancing. The scenes of [2] each show ap-
proximately 1,000 trees, but there are only 5 distinct tree geometries. The LB
transport model was solved only once per geometry. As a result, the common

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 55–66, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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method of achieving desired forest scene variability, random instance rotation,
yields an incorrect lighting solution for any rotated tree. Second, relighting
a scene (for example, in response to the movement of the sun) required re-
computing the full LB lighting solution for each tree model based on the current
sun direction, which, for near real-time frame rates and complex scenes, is not
feasible with today’s hardware. Finally, the LB lighting solution for each tree
model was computed assuming there was no external occlusion of indirect illu-
mination, which is not valid for large forest scenes.

The principal goal of this effort is to extend the approach of [2] to obtain
a compact, parameterized lighting solution that is accurate for any light source
position and intensity. This parameterized solution allows both arbitrary rotation
and translation of geometric instances as well as dynamic global illumination,
i.e., real-time movement of the sun.

2 Background

2.1 Related Work

Dorsy et al. [6] achieved beautiful results in rendering small collections of plant
leaves using carefully constructed bidirectional reflectance and transmittance
functions that were based on measurements of real plants. Their method is com-
putationally intensive, with large memory requirements, and so as yet unsuitable
for real-time rendering of large-scale, high-density ecosystems.

Reeves et al. [7] represented trees as a particle system. A probabilistic shad-
ing model shaded each particle based on the particle’s position and orientation.
Hegeman et al. [8] ignore physical accuracy in a technique that attempts to
achieve visual plausibility and fast computation through approximating ambi-
ent occlusion. Trees are approximated by bounding spheres containing randomly
distributed small occluders. Fragments are shaded based on the average prob-
ability of the fragment being occluded given its position within the bounding
sphere. Though simple to compute, this method, as mentioned by the authors,
only considers local information, and results can differ widely from more physi-
cally accurate approaches. Luft et al. [9] were able to capture ambient occlusion
in rendering foliage through the addition of a preprocessing step in which over-
all tree geometry was simplified to an implicit surface, i.e., a density field, using
Marching Cubes [10]. The ambient coefficient in a standard, local illumination
model was then modified by a transfer function that was exponentially decreas-
ing in the field density. They also realigned leaf normal vectors to match the
implicit surface in order to reduce lighting noise.

The overall technique presented in this study is similar, in spirit, to both pre-
computed radiance transfer of Sloan et al. [11] and photon mapping of Jensen
et al. [12], in that a preprocessing step is used to compute and store lighting
information within the scene itself. Comparatively, the LB lighting preprocess-
ing step is very fast. Hašan et al. [13] introduced the direct-to-indirect transfer
for cinematic relighting, which requires a long preprocessing step and does not
provide full anisotropic scattering.
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2.2 Lattice-Boltzmann Lighting

Our goal, cinematic relighting, requires fast global illumination of forest ecosys-
tems. Geist et al. [4] describe a lighting technique that was adapted in [2] to
provide static forest illumination. The original lighting technique offered a new
solution to the standard volume radiative transfer equation for modeling light
in a participating medium:

(ω · ∇+ σt)L(x,ω) = σs

∫
p(ω,ω′)L(x,ω′)dω′ +Q(x,ω) (1)

where L denotes radiance, ω is spherical direction, p(ω,ω′) is the phase function,
σs is the scattering coefficient of the medium, σa is the absorption coefficient
of the medium, σt = σs + σa, and Q(x,ω) is the emissive field in the volume
[14]. The solution, which is applicable to simulating photon transport through
participating media such as clouds, smoke, or haze, was based on a lattice-
Boltzmann (LB) method. At each iteration, photons scatter from a lattice site
to its neighboring sites. Neighboring sites are defined by a standard approach,
due to d’Humières, Lallemand, and Frisch [15], that uses 24 points, equidistant
from the origin in 4D space, projected onto 3D. The points are:

(±1, 0, 0,±1) (0,±1,±1, 0) (0,±1, 0,±1)
(±1, 0,±1, 0) (0, 0,±1,±1) (±1,±1, 0, 0)

and projection is truncation of the fourth component, which yields 18 directions.
Axial directions then receive double weights, thus ensuring isotropic flow. A final
direction, a rest direction that points from a lattice site to itself, is added to
facilitate the representation of several phenomena, including energy absorption
and energy transmission. This gives 19 directions, cm, m ∈ {0, 1, ..., 18}. Each
lattice site contains a per-node photon density, fm(r, t), which is the density
arriving at lattice site r ∈ �3 at time t in direction cm. Given a lattice spacing
λ and a time step τ , the simulation amounts to a synchronous update:

fm(r + λcm, t + τ) − fm(r, t) = Ωm·f(r, t) (2)

where Ωm denotes row m of a 19 × 19 matrix, Ω, that describes scattering,
absorption, and wavelength shift at each site.

For any LB method, the choice of Ω is not unique. In [4], for the case of
isotropic scattering, Ω was chosen as follows:
For row 0:

Ω0j =
{
−1 j = 0
σa j > 0 (3)

For the axial rows, i = 1, ..., 6:

Ωij =

⎧⎨⎩ 1/12 j = 0
σs/12 j > 0, j 
= i

−σt + σs/12, j = i
(4)
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For the non-axial rows, i = 7, ..., 18:

Ωij =

⎧⎨⎩ 1/24 j = 0
σs/24 j > 0, j 
= i

−σt + σs/24, j = i
(5)

Entry i, j controls scattering from direction cj into direction ci, and directional
density f0 holds the absorption/emission component. Note that the axial rows,
i = 1, ..., 6, are weighted twice as much as the non-axial rows, i = 7, ..., 18. The
entries of Ω were then multiplied by the density of the medium at each lattice
site, so that a zero density yielded a pass-through in (2), and a density of 1
yielded a full scattering.

In terms of total site photon density, ρ =
∑18

i=0 fi(r, t), the synchronous up-
date (2) was shown, in the limit (λ, τ → 0), to yield a diffusion equation

∂ρ

∂t
=
(
λ2

τ

)[
(2/σt)− 1
4(1 + σa)

]
∇2

rρ (6)

Previous approaches ([16,17]) have demonstrated that multiple photon scat-
tering events invariably lead to diffusion processes.

In [2], this model was extended to provide global illumination effects for forests
scenes. Wavelength-dependent, anisotropic scattering was achieved through mod-
ifying Ω. Each σs that appears in entryΩi,j was multiplied by a normalized phase
function:

pni,j(g) =
pi,j(g)(∑6

i=1 2pi,j(g) +
∑18

i=7 pi,j(g)
)
/24

(7)

where pi,j(g) is a discrete version of the Henyey-Greenstein phase function [18],

pi,j(g) =
1− g2

(1− 2gni · nj + g2)3/2 (8)

Here ni is the normalized direction, ci. Parameter g ∈ [−1, 1] controls scattering
direction. Value g > 0 provides forward scattering, g < 0 provides backward
scattering, and g = 0 yields isotropic scattering. For each primary wavelength,
g was computed from leaf characteristics (transmission and reflectance) of real
plants measured by Knapp and Carter [19], to provide accurate scattering.

3 Cinematic Relighting

Our goal is to allow cinematic relighting, that is real-time rendering, of complex
forest scenes with dynamic, user-controllable light sources, while capturing global
illumination effects such as scattering, transmission, and absorption. Our target
scenes consist of one infinite point light (the sun) and ambient light due to
reflection and scattering of the sky, ground, and forest. (Supporting multiple
infinite point lights is a trivial extension.) Due to the large memory requirements
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of plant models, individual plants in a forest are rotated and translated instances
of a small set of shared plant models. Thus, a typical scene may contain hundreds
of individual plants, but less than ten unique plant models.

First, we detail a new technique that utilizes the previously described static
LB lighting model to allow for dynamic, global illumination, based on the cur-
rent, run-time sun position and intensity. Then, we introduce a coarse-grained
illumination model that accounts for global scene effects, such as plant-plant oc-
clusion, that the fine-grained illumination model does not account for by itself.

3.1 Dynamic Lighting

In the technique of [2], plant instances that reference the same plant model, but
have different orientations relative to a given sun direction, require individual
lighting solutions, as a lighting solution is only valid for one orientation. Storing
a solution per plant instance would quickly exhaust the available memory of
today’s hardware. Computing a solution per frame for each plant instance would
exceed the real-time capability of today’s hardware. We now describe a technique
that removes these restrictions, thus enabling dynamic global illumination for
scenes containing many plant models while allowing both translated and rotated
instances. The approach is conceptually simple. A set of base lighting solutions
is precomputed per plant model, not per instance. These base lighting solutions
are combined, at run-time, based on each instance’s orientation relative to the
current sun direction, thus allowing dynamic lighting updates to complex scenes
containing thousands of plants in real-time.

First, for each plant model (not instance) we precompute 19 base lighting
solutions {Bj|j = 0, 1, ..., 18} by using (2) with boundary conditions based on
direction index j. For solution Bj with j > 0, all boundary nodes have fixed
densities fi(r, t) = δij (Kronecker delta), all i. For solution B0, the ambient
solution, all boundary nodes have fi(r, t) = 1, all i.

At run-time, we employ a shader that computes the lighting for each frag-
ment by combining multiple, weighted base solutions based on the sun direc-
tion, transformed into each instance’s local coordinate space. The selection of
the base solutions and weights is geometrically straightforward. Consider a con-
vex polyhedron, consisting of 32 faces (triangles), formed by adjacent triples of
unit length directions, ci/‖ci‖, i = 1, ..., 18. A ray from the origin in the sun di-
rection will intersect one triangle. If the vertices of that triangle have associated
directions ci0 , ci1 , and ci2 , then we use base solutions Bi0 , Bi1 , and Bi2 , with
weights determined by the barycentric coordinates of the intersection point. The
weights sum to one, thus conserving total energy.

At run-time, for each fragment, we sample the three base solutions for that
fragment’s instance and linearly combine them using the weights. Ambient light
is added by sampling from the ambient base solution B0, which has scaling
controllable by the user. As described, dynamic lighting requires at most 32
ray-triangle intersections per plant instance and four 3D texture lookups per
fragment.
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Fig. 1. Final LB lighting solution and three base LB lighting solutions

Figure 1 illustrates the dynamic lighting technique. The left image visualizes
the final LB lighting, which is computed by combining the three base LB lighting
solutions that appear in the remaining three images. (Ambient light is also used,
but not shown.) The base LB lighting solutions are selected and weights are
computed based on the plant instance’s orientation relative to the current sun
position.

3.2 Hierarchical Lighting Model

Our LB lighting method, as described to this point, computes indirect illumi-
nation effects under the assumption that global illumination of the plant is not
occluded by other plants. (Occlusion of direct illumination is handled by shadow
rays, as described in the next section.) This can lead to too much light energy
at the boundary nodes, resulting in too much indirect illumination for occluded
plants. We now describe an extension that accounts for such inter-object (plant-
plant) occlusions.

We combine our fine-grained, local LB lighting solution with a coarse-grained,
global LB lighting solution. A coarse-grained, global LB lighting grid can be
imposed upon an instanced forest system. Each node in the coarse-grained grid
has a density factor estimated from the tree instances that intersect the node.
Solution of this coarse-grained grid over the entire forest, using iterations of (2),
simply provides scale factors that weight the indirect illumination of a fragment
computed from the fine-grained, local LB lighting solution.

As with the fine-grained, local LB solution, a coarse-grained, global LB solu-
tion can be precomputed for a scene. The same technique described in Section
3.1 can be applied to the coarse-grained, global LB lighting solution to allow
dynamic updates in real-time as the sun traverses the sky.

4 Implementation

The preprocessing steps of sections 3.1 and 3.2 are implemented in CUDA. We
precompute the fine-grained LB lighting separately for the three primary wave-
lengths for each lattice direction. We only precompute lighting intensity (lumi-
nance) for the coarse-grained LB lighting.
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Visible fragments are generated through ray-tracing with CUDA, though ras-
terization is a viable alternative. A perspective grid (see Hunt and Mark [20])
is used to accelerate primary ray/instance intersection testing. For the scenes
provided here, we compute local diffuse lighting of the form kd(n·l), where l is
sun direction, n is the surface normal, and kd is the combined sun color and
sampled texture color. Specular lighting is of the form ks(v·r)s, where v is the
viewer position vector, r is the sun reflection vector, s controls highlight dissi-
pation, and ks is the combined sun color and leaf/wood/water specular color.
Our LB lighting, such as that shown in the left image of Figure 1, is modulated
by texture color and added to the local, direct illumination, to produce final
fragment color.

4.1 Shadow Rays

To accelerate shadow rays (the dynamic, global illumination technique does not
provide high frequency shadows), we employ a sun-aligned grid, which is similar
in spirit to the perspective grids of Hunt and Mark [20] and is a two-dimensional
data structure, consisting of multiple tiles arranged as a grid on a plane whose
normal is parallel to the sun direction. Each tile contains a list of those model
instances that intersect that tile in sun-space, which is an orthographic projection
of the scene translated so that the sun is located at infinity on the z-axis and
the direction of sunlight is the negative z-axis. For each plant instance in our
scene, the associated model’s axis-aligned bounding box (AABB) is projected
into world-space, followed by a projection into sun-space. The sun-aligned grid
is recomputed as the sun moves.

Once a shadow ray intersects an instance’s AABB, we transform the shadow
ray to model space and test for occlusion with the model’s geometry by travers-
ing a uniform grid. We found that traversing uniform grids, as described by
Lagae and Dutré [21], offered better performance than multiple kd-tree traver-
sal algorithms when traversing aggregate models such as trees.

4.2 Compression

The LB lighting model produces volumetric lighting data, which quickly con-
sumes large amounts of memory per plant model. Each node value requires 3
floats (1 for each primary wavelength). For each plant model, 19 base solutions
on a 1283 lattice requires (2M×19×3×4) 456MB of LB lighting data. Our imple-
mentation supports compression of this data through the use of Haar wavelets.
Several authors have demonstrated that Haar wavelets can significantly com-
press volumetric data while supporting fast, random access to individual voxels.
As noted by Westermann [22], other wavelet transforms may provide better com-
pression rates, but, the simplicity of Haar wavelets results in faster reconstruction
times, which is vital to our application.

To avoid visible discontinuities that result from nearest-neighbor sampling,
we use linear filtering when sampling from the LB lighting. Thus, we need fast,
random access to each 23 block of texels. We compress sub-blocks of size 33, but
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include the forward neighbors of all nodes in a sub-block. Our final sub-block size
is thus 43, for which 37 of 64 values stored are redundant. Although this reduces
our compression rate, the redundancy significantly improves rendering times by
reducing the amount of work required to access those forward neighbors of a texel
needed when applying linear filtering. We compress by decimating coefficients
below a user supplied threshold. As in the work of Bajaj et al. [23], we do not
store data that will not be accessed.

5 Results

All results are reported for lattices of size 1283. Execution time for the dynamic
LB lighting preprocessing step, described in Section 3.1, (computing 19 base
solutions, three wavelengths each, on a GTX 280) averages 3 minutes 20 seconds
for multiple plants, which includes computation of σs and σa from the model
data. Each wavelength for each base solution averages 2.926 seconds. The number
of iterations required to achieve convergence to steady-state is approximately
twice the longest edge dimension of the grid.

The effect of applying the hierarchical method described in Section 3.2 is
shown in Figure 2. In this scene, the sun is located towards the upper right of
the image. The two smaller tree instances both reference the same tree model and
thus have the same precomputed LB lighting solution, although each accounts

Table 1. Execution times for relighting, Tesla S1070

Catalapa

Number of GPUs 1 ray/pixel 4 rays/pixel

1 0.072 s 0.258 s

2 0.040 s 0.150 s

4 0.023 s 0.096 s

Canopy

Number of GPUs 1 ray/pixel 4 rays/pixel

1 0.259 s 0.858 s

2 0.132 s 0.432 s

4 0.073 s 0.247 s

Local LB only Local and global LB

Fig. 2. Rendering comparison: Local LB vs. local and global LB
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Fig. 3. Relighting scenes. Top: Catalapa. Bottom: Canopy.

Fig. 4. River scene

for instance translation and rotation. The image on the left combines direct
illumination with the fine-grained indirect illumination from LB lighting, while
the image on the right combines direct illumination with the fine-grained indirect
illumination from LB lighting and the coarse-grained indirect illumination. Note
that in the image on the left, the tree on the left receives too much light for the
position of the sun, while in the image on the right, the same tree is appropriately
darkened.
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Figure 3 shows multiple frames captured from two scenes as a user moves the
sun from left to right. The top scene, consisting of a single Catalpa tree, contains
316,727 triangles. The bottom scene, a canopy view of multiple plants, contains
109 million triangles. Execution times for relighting each scene in Figure 3 at
a resolution of 512 × 512 pixels with 1 ray per pixel and 4 rays per pixel are
shown in Table 1, for one, two, and all four GPUs of a Tesla S1070. Relighting
time includes the time required to compute indirect illumination by sampling
and combining four base solutions (including decompressing) and the time to
compute direct shadows with shadow rays. Table 1 shows the average execution
time for 24 sun positions, ranging 90 degrees about the zenith.

Without compression, the precomputed LB lighting solution for the canopy
scene of Figure 3 would require 2.28 GB (456 MB per model, 5 models). With
compression, the total LB lighting for the scene is 366 MB. The root mean square
error between renders of the canopy scene with compression and without com-
pression is 0.00843. Finally, a high fidelity scene rendered with these techniques
is shown in Figure 4.

6 Conclusion

Incorporating global illumination effects, such as leaf transparency and inter-
object reflection, in real-time rendering of large, forest ecosystems is a challeng-
ing problem. One approach to achieving such effects, suggested herein, is through
extending a lattice-Boltzmann lighting model that approximates indirect illumi-
nation to allow for dynamic sampling at run-time.

There are several drawbacks to the original LB lighting technique [2,4] that
have been addressed in this work. First, we use a preprocessing step that allows
dynamic, run-time updates of positions of lights at an infinite distance, such as
the sun. This also allows plant instances that reference the same plant model
to share the same LB lighting solution, regardless of each instance’s orientation.
Second, we employ a two-stage hierarchy to capture occlusion of global, indirect
illumination. Third, we have shown that compressing the volumetric, LB lighting
data using Haar wavelets is viable, in that relatively high compression rates can
be achieved while maintaining final image quality and rendering performance.

Cinematic relighting is achieved by combining local, direct illumination at any
visible fragment point with an indirect value obtained by interpolating values
from a set of preprocessed LB lighting solutions. Shadowing, a vital component
of any direct illumination technique, is computed by shadow rays that traverse
a sun-aligned grid. Near real-time performance is obtained by mapping the ray-
tracing engine, as well as the LB lighting model, to NVIDIA’s Compute Unified
Device Architecture and then distributing across multiple GPUs.

Future work will focus on speeding visibility computations necessary for cin-
ematic relighting. It is worth investigating the techniques of Lacewell et al. [24],
where occlusion is prefiltered, and how it may be extended or incorporated into
our current technique.
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Norrkőping, Sweden, pp. 355–362, 423 (2004)

5. NVIDIA Corp.: Nvidia cuda programming guide, version 2.1 (2008),

http://www.nvidia.com/object/cuda_get.html

6. Wang, L., Wang, W., Dorsey, J., Yang, X., Guo, B., Shum, H.-Y.: Real-time ren-

dering of plant leaves. ACM Trans. Graph. 24(3), 712–719 (2005)

7. Reeves, W.T., Blau, R.: Approximate and probabilistic algorithms for shading and

rendering structured particle systems. In: SIGGRAPH 1985: Proceedings of the

12th annual conference on Computer graphics and interactive techniques, pp. 313–

322. ACM, New York (1985)

8. Hegeman, K., Premože, S., Ashikhmin, M., Drettakis, G.: Approximate ambient

occlusion for trees. In: I3D 2006: Proceedings of the 2006 symposium on Interactive

3D graphics and games, pp. 87–92. ACM, New York (2006)

9. Luft, T., Balzer, M., Deussen, O.: Expressive illumination of foliage based on im-

plicit surfaces. In: Natural Phenomena 2007 (Proc. of the Eurographics Workshop

on Natural Phenomena), Prague, Czech Republic, pp. 71–78 (2007)

10. Lorensen, W., Cline, H.: Marching cubes: A high resolution 3d surface construction

algorithm. In: Proc. SIGGRAPH 1987, pp. 163–169 (1987)

11. Sloan, P.P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time

rendering in dynamic, low-frequency lighting environments. In: SIGGRAPH 2002:

Proceedings of the 29th annual conference on Computer graphics and interactive

techniques, pp. 527–536 (2002)

12. Jensen, H.W.: Realistic Image Synthesis Using Photon Mapping. A.K. Peters, Nat-

ick (2001)
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Cartoon Animation Style Rendering of Water
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Abstract. We present a cartoon animation style rendering method for

water animation. In an effort to capture and represent crucial features of

water observed in traditional cartoon animation, we propose a Cartoon

Water Shader. The proposed rendering method is a modified Phong il-

lumination model augmented by the optical properties that ray tracing

provides. We also devise a metric that automatically changes between

refraction and reflection based on the angle between the normal vector

of the water surface and the camera direction. An essential characteristic

in cartoon water animation is the use of flow lines. We produce water

flow regions with a Water Flow Shader. Assuming that an input to our

system is a result of an existing fluid simulation, the input mesh contains

proper geometric properties. The water flow lines can be recovered by

computing the curvature from the input geometry, through which ridges

and valleys are easily identified.

1 Introduction

With the recent development of computer graphics technology, manually created
traditional animation is increasingly being replaced by computer-based cartoon
style rendering. However, one problem with non-photorealistic rendering (NPR),
in contrast with photorealistic rendering (PR), is excessive sacrifice of the de-
tails of individual materials and objects. For instance, a considerable amount of
recent research on cartoon shading has focused on rather simple opaque objects
[9][10][23]. Transparency, a common characteristic of water, is meanwhile often
ignored. This treatment of water as an opaque object fails to meet the standard
set by the results created by traditional cartoon artists.

In this work we present methods to draw cartoon style images that properly
represent the particular characteristics of water. Cartoon water has abstract
optical features such as transparency, reflection, and refraction. Our approach
incorporates those features via a Cartoon Water Shader. Fig. 1 shows the op-
tical features of water. Unlike previous methods that deal with only ambient
and diffuse components [9] (see Fig. 6(a)), the proposed shader also accounts
for specular components, which can represent the reflection or refraction effect
using ray tracing. Moreover, traditional cartoon animation often shows a timely
change between reflection and transparent refraction depending on the position
of the viewpoint with respect to the surface of the water. We construct a simi-
lar mechanism for automatic selection of appropriate effects based on the angle
between the normal vector of the water surface and the camera direction.

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 67–78, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. An overview of our system. From the 3D input geometry, the bold outline is

extracted. ‘Cartoon Water Shader’ is applied to the water input. The user can select

from concrete reflection, abstract reflection or refraction. The difference of those ef-

fects is shown in the red box. ‘Water Flow Shader’ extracts the flow lines. These 3

components are combined to produce an output.

When depicting an object that moves across water, animators typically draw
explicit flow lines to signify the motion waves generated by the movement of the
object. In our approach, we produce water flow lines with a Water Flow Shader.
The flow regions are geometric features and can be efficiently extracted by the
computation of the curvatures on the water surface. Ridge and valley regions
determined by the curvature computations represent the water flow regions, as
shown in Fig. 1. This water flow region is incorporated into the result of the
cartoon water shader.

2 Related Work

Diverse research in cartoon rendering has been reported to date. Todo et al.
[23] provided user flexibility by adding localized light and shade using a paint-
brush metaphor. Anjyo et al. [1] also proposed an intuitive and direct manip-
ulation method for animating light and shade. In the latter, they mainly focus
on the treatment of highlights. Mitchell et al. [17] applied their real-time shad-
ing method to commercial games. Barla et al. [2] suggested X-Toon, a shader
that expands conventional cartoon shading. Various NPR techniques, includ-
ing cartoon shading, pencil sketch shading, and stylistic inking, have also been
developed [14]. As in cartoon rendering emphasizing abstraction, Gooch et al.
[11] proposed a different style of abstraction that relies on interactive technical
illustration. The abstraction is applied in [5], in which they develop a soft and
abstract style of shadows similar to that seen in fine art.

Cartoon-style rendering of fluids from physical simulation has also attracted
recent attention. McGuire and Fein [16] introduced a cartoon-style rendering



Cartoon Animation Style Rendering of Water 69

method for animated smoke particles. Selle et al. [21] proposed a cartoon style
rendering technique for smoke simulation. Advected marker particles are ren-
dered as texture-mapped 2D stencils. Instead of relying on a physical simula-
tion, Yu et al. [24] present a template-based approach. They classify cartoon
water into different types, and templates of water shapes are designed from the
specified types of water. Running water is drawn in a Chinese painting style
[25]. From the input videos, they generate the painting structure and the brush
stroke.

One of the main characteristics of cartoon animation compared to recent 3D
animation rendered by photorealistic rendering methods is the use of bold lines in
the object boundary. There are several object-based approaches. Finding ridges
and valleys from the geometry can help draw lines that describe the shape. Lee
et al. [15] drew lines along tone boundaries around the thin dark areas in the
shaded image with a GPU-based algorithm. Decarlo [6] developed a new type of
line, a suggestive contour, which is determined by the zero crossings of the radial
curvature. Curvature estimation plays an important role in extracting salient
lines from the geometry. Judd et al. [12] estimated the view-dependent ridges
and valleys from the curvature. Chandra and Sivaswamy [3] analyzed curvature
based ridges and valleys represented in digital images. View-independent ridge
and valley detection has also been proposed [19]. Meanwhile, demarcating curves,
another new class of view-independent curves, are defined on the slopes between
ridges and valleys [13].

Our approach is most similar to the work in [9], which involves a cartoon style
rendering of liquid animation. They utilize a bold outline, constant color, and
oriented texture on the liquid surface. Although their method recovers many of
the important features that water possess, they fail to address the artistic side of
cartoon rendering such as abstract optical features and water flow lines observed
in traditional cartoon animation. The proposed approach therefore tackles this.

3 Methods

The input to our system is a surface from a three-dimensional physically based
fluid simulation. The surface mesh inherently contains the geometry information,
which is useful in extracting water specific features for cartoon-style rendering.
Commercial software, RealFlow is used for the generation of water simulation.
However, any particle-based [4] or 3D grid-based solver [22] should work for our
purpose.

3.1 Line Drawing

In traditional animation, lines are drawn mostly around the boundaries of objects
to distinguish them from the background. Having the same aim as in traditional
animation, we find the silhouette from the input meshes to draw desirable lines.
We use the method suggested by [20]. Here, two identical polygons are combined
into a set with slightly different scales, and each of the two polygons has a
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(a) An image-based line drawing (b) An object-based line drawing

Fig. 2. Visual comparison of (a) and (b). (b) generates suitably distorted refractions

when combined with ray tracing. (a) contains visual artifacts.

different culled face; the first is a front-facing polygon utilized for drawing the
object itself, and the second is a back-facing polygon utilized for drawing the
outlines. The scale difference between the two polygons creates the border lines
around the object, as shown in [18][20]. As our line drawing is based on objects,
our line objects also easily generate distorted refractions when combined with
ray tracing (Fig. 2).

3.2 Cartoon Water Shader

Modified Phong for Cartoon Style. Adjusting the Lambertian illumination
model [14] effectively generates cartoon style shading for scenes with opaque
objects. Their cartoon shading equation consists of two main terms, ambient and
diffuse terms, which return the largest value between L · n and 0. This value
is used for dividing two colors as texture coordinates. Their cartoon shading
equation is:

Ics = IakaOd + Id[kdMax(L · n, 0)] (1)

Here, L is the normalized direction of light source and n is the normalized
direction of surface normal.

For opaque objects, their equation is sufficient to create a cartoon style image.
However, water exhibits three peculiar characteristics: transparency, refraction,
and reflection. Successful incorporation of these features helps convey realism,
even in cartoon-style water animation.

To create transparently refractive effects, we adapt the Phong illumination
model, modify L · n to Od divided by 3 colors and add ray-tracing terms. The
final illumination of the Cartoon Water Shader, Icws, is obtained as follows:

Icws = IakaOd + Id[kdOd + ksOs(R · V )n] + ksIr + ktIt (2)

Here, Ia and Id are the intensity of the ambient and diffuse light. ka, kd, and
ks are the ambient, diffuse, and specular coefficient, respectively. Os is an ob-
ject’s specular color. R is the normalized direction of reflection and V is the
normalized viewpoint direction. ksIr and ktIt are the intensity of the reflected
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and transmitted ray for ray tracing. Fig. 3 (a) shows the refraction of Venus
under water.

To create a cartoon style shader, the object color is simplified into three levels:
bright, medium, and dark. We evaluated different numbers of levels and deter-
mined that three levels produced the most convincing results, as too many levels
approached photorealistic rendering and too few levels resulted in an indistin-
guishable appearance. The level is determined by the angle between the surface
normal direction and the light direction, as follows:

Od =

⎧⎨⎩Bright Color if L · n > Tbc

Medium Color if L · n > Tmc and L · n ≤ Tbc

Dark Color Otherwise
(3)

Here, Tbc and Tmc are the threshold for a bright color and a medium color,
respectively.

We distinguish two types of reflection. The first is concrete reflection, which
shows an ordinary reflection effect commonly observed in the real world. The
second is abstract reflection. The latter is also considered important in the con-
text of cartoon animation. We allow both types of reflection in order to serve
the artist’s intentions depending on the situation. Rendering the two types of
reflection is similar to the line drawing method described in Section 3.1. Con-
crete reflection is generated by setting the front-facing polygons as the reflection
target of an object. In contrast, abstract reflection is produced by setting the
back-facing polygons as the reflection target. Fig. 3 (b) and (c) show both effects
reflected from Venus on a water surface.

Automatic Control of Refraction and Reflection Effect. In traditional
animation, for simplicity artists tend to employ either a reflection or refraction
effect for a given scene, unlike the real world where both effects coexist. Artists
utilize the refraction effect when the distance between the camera and the main
character and the angle created by the two are small. Otherwise, the reflection
effect is employed.

Dynamic camera movements in a 3D scene may result in frequent transitions
between the reflection effect and refraction effect causing unwanted flickering.

(a) Refraction under water (b) Concrete reflection (c) Abstract reflection

Fig. 3. Refraction effect of Venus (a) and reflection effect (b)(c) in the Cartoon Water

Shader
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Moreover, it would be very time consuming to determine a desirable effect ac-
cording to the dynamic camera movements. Therefore, a simple but effective
interpolation function that automatically determines when to apply reflection or
refraction is proposed here. As transparency directly influences the visibility of
refraction, we utilize transparency in the following equations.

kR =

⎧⎨⎩
kRmax if x < cos smax

kRmin if x > cos smin

f(n · V , kRmax, kRmin) Otherwise
(4)

kT =

⎧⎨⎩
kTmin if x < cos smax

kTmax if x > cos smin

f(n · V , kTmax, kTmin) Otherwise
(5)

Here, f(n · V , kRmax, kRmin) and f(n · V , kTmax, kTmin) are cubic polynomial
interpolation functions. n is the normal direction and V is the viewpoint direc-
tion, respectively. kRmax, kRmin, kTmax, and kTmin are the maximum reflection,
the minimum reflection, the maximum transparency, and the minimum trans-
parency coefficient, respectively. In Fig. 4(a), θB is the angle where the critical
change occurs and θS is the angle interval where interpolation happens. A user
can specify kRmax, kRmin, kTmax, kTmin, θB, and θS at the key camera posi-
tions to produce desirable reflection and refraction effects. kR and kT are then
computed automatically along the scene compositions. Fig. 4(b) shows each pa-
rameter of the control function and the shift of the reflection and transparency
coefficients according to n · V .

(a) The parameters used in

control function

(b) The shift of the reflection and trans-

parency coefficients according to n · V

Fig. 4. The parameters and the behavior of the of control function

Although utilizing well-known physics such as the Fresnel reflection and Brew-
ster’s angle can provide a viable solution, the primary goal of our shader is to
render a scene in non-photorealistic style. This cubic polynomial equation works
well for our purpose.
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3.3 Water Flow Shader

In traditional animation, special lines are drawn in the neighborhood of objects
to effectively show the interaction between water and objects. In our simulation
results, those shapes represent the flowing motions of water and traces of the
objects. To emphasize these motions and traces, we introduce a Water Flow
Shader. With the Water Flow Shader, the critical regions from flowing motions
and traces are determined using the geometrical properties from input meshes.
As the shader takes into account important geometric features, our results faith-
fully reproduce physically persuasive motions and appearances.

Estimation of Geometrical Properties. We compute both the Gaussian
curvature and the mean curvature at every vertex of the triangular mesh to
identify the critical regions on the mesh surface, as the curvature on the region
formed by the movement of objects has a higher value than other flat regions.
Using a discretization of the Gauss-Bonet theorem, we approximate the Gaussian
curvature as described in [8]. The equation is as follows:

Ki =
1
A

(
2π −

∑
j

θj

)
(6)

Here, A is the Voronoi area around Xi, and θj is an angle connected with Xi

and Xj .
The mean curvature is approximated using a discretization of the Laplace-

Beltrami operator also known as the mean curvature normal operator. A detailed
explanation can be found in the literature [8][7]. The equation is given as follows:

Hi =
1

4A

∑
j

(cotαij + cotβij)(Xi −Xj) · n̂i (7)

Here, A is the Voronoi area. αij and βij are angles adjacent to the specified
vertices, and Xj is a neighbor vertex connected to Xi. n̂i is a normal vector at
Xi. Both approximations are applied to the one-ring neighborhood of the vertex.

From the recovered Gaussian curvature and mean curvature, we specify a
ridge area connected by the vertices in which the absolute value of the Gaussian
curvature is larger than the threshold and the mean curvature is greater than
zero. Although our approach to calculate the curvatures and a rendering style
are different, our concept of specifying the regions is similar to the principle of
demarcating curves [13].

Enhancement. After determining the ridge and valley region, we apply an en-
hancement algorithm. As the computation of ridges and valleys heavily depends
on the input meshes, bad geometry in the meshes can adversely affect the result.
For example, if the mesh was created by a particle simulation that represents
the details of the fluid well but introduces jiggling surfaces, our method will
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(a) A fountain in a

forest

(b) A boat sailing on

the sea

(c) An image cre-

ated by an artist

(d) An image created

by an artist

Fig. 5. The images rendered by our system and the images used in the experiments.

Total rendering time of (a) is 8.0 sec(C.W.S: 8.0 / W.F.S: n/a / number of vertices:

75406) and that of (b) is 1330.0 sec(C.W.S: 5.0 / W.F.S: 1325.0 / number of vertices:

55091).

draw lines erroneously. Through application of the median filter to the one-ring
neighbor of each vertex, we can effectively suppress these errors.

In traditional animation, special regions to be lined on the surface of water
are opaque and monochromic. To generate these images, we divide curvature
values into three parts. The first is for ridges, the second for valleys, and the
third is the part between ridges and valleys. We paint ridge or valley parts as
shaded and the other parts as transparent. As a result, the water flow region
is separated from the other parts clearly. As the water flow region can be effi-
ciently represented by simple shading, a simple Lambertian illumination model
is sufficient for rendering.

4 Results and Analysis

To demonstrate the effectiveness of our system, the Cartoon Water Shader and
the Water Flow Shader were created as a Maya plug-in (version 2009). The plug-
in system was implemented in C++ with the Maya API. Moreover, to maximize
the efficiency of our plug-in, we provide a user interface.

The images in Fig. 5 show the results rendered by our system. Images (a)
and (b) clearly demonstrate that our system can produce high quality cartoon
animation water rendering. Additional results are available in demo clips(see
http://143.248.249.138/isvc09/paper66/). Rendering times of (a) and (b) are
recorded on an Intel Core 2 Quad Q6600 machine with 4GB memory, using
a single thread implementation. As the computation time of the Water Flow
Shader depends on the number of vertices with the curvature approximations
and the enhancement procedure, much more time is required to render the scene
via the Water Flow Shader than with the Cartoon Water Shader(see Fig. 5).

To verify the visual enhancement of our method over previous approaches,
we compare similar scenes with results rendered by earlier methods. In addition,
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(a) A hippopotamus cov-

ered by water

(b) A ball of liquid (c) Immersed poles near an

embankment

Fig. 6. Visual comparison with two earlier approaches. Insets are the images from the

previous methods.

an evaluation was conducted to verify that our results are visually equivalent to
those created by an artist.

4.1 Visual Comparison with Previous Approaches

Among the studies on cartoon rendering of fluids, two prominent studies [9][24]
were selected, as their main subject is similar to ours.

Eden A. M. et al. successfully recovered many crucial visual cues generated by
the movement of a fluid [9]. However, their method is absent of optical features
(Fig. 6 (a)). In contrast, our method shows a refracted view of a hippopotamus
inside water. As we render the shading of an object after calculating the surface
normal and the light information, our method can flexibly cope with the light
position. With our method, the middle image in Fig. 6 is shaded following the
light direction. In Eden A. M. et al. [9], lighting information is not considered.

As an approach of Yu j. et al.[24] is template-based, their images are similar
to the drawing of an artist. However, the water types that they can represent
are limited. With this method it is difficult to express the relationship of the
shading of water, which is affected by the environment, with reflections of nearby
objects on the water or transparent refractive shapes under the water. On the
other hand, our image showing immersed poles near an embankment (Fig. 6);
accurately reflects all objects near the water. These reflective images are changed
following the variation of the mesh and the light.

4.2 Evaluation

An experiment was conducted to confirm that our results are visually equivalent
to those created by an artist.

Participants: 30 participants took part in the evaluation. Among the par-
ticipants, 15 were experts who work in the field of art and graphics and are
considered to have excellent observation capability of images. The remaining
participants were non-specialists who were nevertheless familiar with cartoon
animation.
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Material: To collect the images for comparison, a 3D artist was asked to create
scenes similar to those in a feature animation. We chose two concepts: a fountain
in a forest and a boat sailing on the sea. These selected concepts were visualized
as a 3D scene by a 3D artist. Based on the images rendered by the Lambertian
illumination model, a cartoon animation artist composed water in the style of
cartoon animation. Our instructions were to represent the artist’s sense inside the
outline of water and to follow the motion of the water mesh. However, we did not
provide instructions concerning artistic flavors such as the properties of shading,
the color to use, or which points the water flow lines should represent. These
restrictions allowed the artist to draw freely, tapping into her own ingenuity. All
of the images for the test were organized into 12 drawings per second, as in the
style of limited animation usually employed in traditional Japanese animation.
Images in the experiments were scaled to 640×480, which is the same scale used
for the demo clip.

Analysis: P-values for the two-sided hypothesis testing problem were computed
using an independent-samples t-test.

Procedure: Each participant was informed that the only variation between each
set of video clips was the shading of water. Participants observed four video clips
two times each in a random order. Two clips depicted ‘a fountain in a forest’; the
first was created by our method, and the second was drawn by the artist. The
other two clips depicted clips of ‘a boat sailing on the sea’; the first was created
by our method, and the second was drawn by the artist. After observation of
four video clips, the participants were asked to rate the images from 1(Bad) to
5(Good). The first question was to evaluate the aesthetic impression of the video
clips according to the participant’s own standards. The second question was to
rank the clips according to whether they offered a rich depiction of the water.

Results and Discussion: For the first question, participants answered that
the aesthetic impression of Fig. 5 (a) and Fig. 5 (c) were similar to each other
as Meanartist = 3.17, Meanours = 3.07. However, in the set of ‘a boat sailing
on the sea’ clips, the video clip generated by our method in Fig. 5 (b) was
rated to lend a higher aesthetic impression than the results by the artist (p <
0.01)(Meanartist = 3.03 vs Meanours = 4.03).

For the second question, most participants answered that Fig. 5 (a) and Fig. 5
(c) have similar values, implying that both clips exhibit a rich depiction of the
water, as Meanartist = 3.20, Meanours = 3.21. In comparison of Fig. 5 (b) and
Fig. 5 (d), Mours = 4.20 is better than Meanartist = 3.80. In conclusion, the
evaluation demonstrates that our results match those created by an artist in
terms of visual equivalence.

5 Conclusion and Discussion

The contribution of our system includes the proposed Cartoon Water Shader
which can convey the essential components of water -transparency, refraction,
and reflection- from an artistic point of view using a modified Phong illumination
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model. Automatic change between refraction and reflection, frequently observed
effects in traditional cartoon animation, is also offered in the shader. Furthermore,
utilizing the information of geometrical properties, Water Flow Shader is specifi-
cally designed for rendering water flow observed in traditional cartoon animation.
To demonstrate the advantages of our method, we evaluated rendering results in
comparison with those yielded by previous approaches and by an artist.

Although the proposed method can represent many characteristics of cartoon
animation style rendering of water, there remain issues that must be addressed
in the future. As we assume that the input meshes do not contain spray or bub-
bles, our current system cannot reproduce them. Another limitation involves the
regions that cannot be described by the geometry properties alone in the Water
Flow Shader. Although our system provides some thresholds for adjusting the
effects to meet the artist’s demands, exaggerated expressions of water flow lines
are difficult to produce. We believe that these problems should be investigated
in the future for a greater audience reception.
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Abstract. We describe a proximity query algorithm for the exact min-

imum distance computation between arbitrarily shaped objects. Special

characteristics of the Gilbert-Johnson-Keerthi (GJK) algorithm are em-

ployed in various stages of the algorithm. In the first stage, they are

used to search for sub-mesh pairs whose convex hulls do not intersect.

In the case of an intersection, they guide a recursive decomposition.

Finally, they are used to derive lower and upper distance bounds in

non-intersecting cases. These bounds are utilized in a spatial subdivision

scheme to achieve a twofold culling of the domain. The algorithm does

not depend on spatial or temporal coherence and is, thus, specifically

suited to be applied to deformable objects. Furthermore, we describe its

embedding into the geometrical part of a mobile manipulation planning

system. Experiments show its usability in dynamic scenarios with de-

formable objects as well as in complex manipulation planning scenarios.

1 Introduction

Proximity queries play an important role in robot motion planning, dynamic
simulation, haptic rendering, computer gaming, molecular modeling and other
applications [1]. A plethora of papers has been published on different aspects of
these queries in computational geometry and other research areas. Furthermore,
many systems and libraries have been developed for performing different prox-
imity queries. However, the attention to deformable proximity queries has been
of moderate extent when compared to the many techniques capitalizing the spe-
cial properties of rigid bodies. Regarding motion planning in robotics, distance
queries have been used to accelerate the verification of execution paths [2]. If a
deformable environment or flexible robots have to be considered in the planning
process, an efficient distance computation algorithm is needed in the geometrical
part of the motion planner that is capable of handling such environments.

Our Contribution: We describe an approach for the computation of the mini-
mum distance between arbitrarily shaped deformable objects. Objects are repre-
sented by triangulated surface meshes. We show how to use GJK for an adaptive
decomposition of the meshes. GJK is employed on the sub-mesh pairs to find
lower and upper bounds for the minimum distance. The bounds are used for
a spatial subdivision scheme that only takes a small part of the domain into
account to determine the exact minimum distance between the sub-meshes. The

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 79–88, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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algorithm does not depend on spatial or temporal coherence. Thus, it is suitable
to be applied to deformable objects. We show the usability of the algorithm in a
planning system for mobile manipulation. The system is able to find execution
plans for complex tasks that require the replacement of objects to reach a specific
goal or to take the deformability of the manipulable objects into account.

Organization: The rest of the paper is organized as follows. Section 2 sur-
veys related work on proximity queries and manipulation planning. The prox-
imity query algorithm is described in section 3. The embedding of the proximity
queries into the manipulation planning framework is discussed in section 4. The
paper concludes by presenting results for the proximity query technique and its
application to manipulation problems in section 5.

2 Related Work

Proximity Queries: Proximity query algorithms find their application in many
research areas such as computer graphics, physically-based simulation, anima-
tion, interactive virtual environments and robotics. They include the query for
collision detection, distance computation or penetration depth. Extensive re-
search has produced a variety of specialized algorithms. They may differ in the
model representations they are able to process, the type of query they can an-
swer or the specific properties of the environment. Excellent surveys can be found
in [3,4,5]. Considering collision detection, many approaches exploit the proper-
ties of convex sets to be able to formulate a linear programming problem. Gilbert
et al. propose an iterative method to compute the minimum distance between
two convex polytopes using Minkowski differences and a support mapping [6].
In contrast, Lin and Canny [7] execute a local search over the Voronoi regions
of convex objects to descend to the closest point pair. In dynamic environments,
geometric and time coherence can be exploited to employ feature-tracking to
improve the efficiency of the algorithms even more [7]. The described techniques
can be applied to non-convex objects, if the non-convex objects are either com-
posed of [6,7] or decomposed into [8] convex subparts. The algorithms then work
on the convex subparts as usual. However, surface decomposition is a nontrivial
and time consuming task and can only be considered as a preprocessing step
when applied to undeformable objects.

Apart from the family of feature-tracking algorithms, there is the class of
bounding volume hierarchies. For each object, a hierarchy of bounding vol-
umes is computed that encloses the primitives of the object at successive lev-
els of detail. Different types of bounding volumes have been investigated, such
as spheres [9,10], axis-aligned bounding boxes [11], k-DOPs [12] or oriented
bounding boxes [13]. Further, various hierarchy-updating methods have been
proposed [14].

Spatial subdivision is the third family of acceleration techniques for proximity
queries. The simplest but also most efficient subdivision would be the use of a
regular grid. Only primitives within the same grid cell are then queried for colli-
sion. This approach is best suited for n-body collision queries, since it only takes
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linear time to query the collisions between the n2 object pairs. Furthermore, it is
well-suited for the detection of collisions and self-collisions between deformable
objects [15]. An approach that combines the benefits of feature-tracking algo-
rithms and spatial subdivision algorithms is described in [16] and [17].

In the recent years, graphics hardware has been used to accelerate various
geometric computations such as collision detection [18,19] or distance field com-
putation [20]. Possible drawbacks of GPU-based approaches are that their ac-
curacy is limited by the frame buffer resolution and the time for reading back
the frame buffers. However, in [19] the amount of read-back is reduced with the
introduction of occlusion queries for collision detection.

Manipulation Planning: Solving the robotic planning problems in high-
dimensional configuration spaces is often addressed using probabilistic roadmap
(PRM) planners [21,22]. Such planners randomly generate samples in the con-
figuration space and attempt to connect each newly generated sample to one of
the existing samples by means of shortest paths in configuration space. This pro-
cedure results in a connectivity graph that spans the configuration space. The
sampled nodes and the path segments stored in the graph have to be tested for
collision. The validation of a collision-free graph takes up most of the computa-
tion time in the construction of the PRM. Schwarzer et al. presented an approach
to integrate distance computation algorithms in the PRM framework for a more
efficient dynamic collision checking [2]. The problem of computing a measure of
distance between two configurations of a rigid articulated model has also been
addressed by Zhang et al. [23]. Furthermore, manipulation planning is addressed
by building a so-called “manipulation graph”. It consists of nodes representing
viable grasps and placements. Nodes are connected by transit or transfer paths
moving either the manipulator alone or together with a grasped object. Those
paths are solved using the above-mentioned PRM planners [24,25]. Integrat-
ing symbolic and manipulation planning has been studied in the past. Cambon
et al. [26,27] use the FF planner which they modified to integrate roadmap
planning into the planner. However, they do not provide a general interface to
the domain-independent planner. Therefore, we base our implementation on the
work of Dornhege et al. [28] that presents a general domain-independent plan-
ner interface to geometric planning. A comprehensive survey on robot planning
algorithms can be found in [29].

3 Proximity Queries

In this section, the proximity query algorithm is described. It returns the min-
imum distance between pairs of arbitrarily shaped objects in three-dimensional
space. The objects may be given as closed non-convex triangulated surface
meshes. The algorithm can be divided into three stages. The first stage employs
a variation of the Gilbert-Johnson-Keerthi algorithm (GJK) [6]. It determines
the separation distance between the convex hulls of a pair of non-convex ob-
jects. Obviously, the points that define the separation distance lie on the convex
hulls of the objects, but not necessarily on their surfaces. Thus, we obtain a
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Fig. 1. Step one and two of the distance computation algorithm. Left: Lower and upper

distance bounds (gray lines) between the two shapes are derived from GJK. The lower

bound is the minimum distance between the two convex hulls (red), the upper bound

is the minimum distance between pairs of support points (black dots). The actual

separation distance (dotted gray line) lies within these bounds. Right: Twofold culling

using spatial hashing: 1. Only the object parts inside the margins (horizontal red lines)

are hashed. 2. Only primitives inside the same cell (red rectangle) are considered in

the pair-wise primitive test.

lower distance bound for the exact separation distance. Furthermore, in GJK
the closest points on the convex hull are expressed by a combination of points
on the actual surfaces, the support points. Thus, the closest pair of support
points gives an upper distance bound (see the left side of figure 1). If the lower
distance bound is greater than zero, i.e. the convex hulls of the two objects do
not overlap, the algorithm proceeds with stage two. It employs spatial hash-
ing [15]. All surface triangles are hashed to the cells in the hash table. The cell
size c = [x, y, z]T of the hash grid is determined using the distance bounds found
in the first stage, with distupper and distlower being the upper and lower bound,
respectively. The grid is aligned to a local coordinate system, which has the z-
axis parallel to the vector that connects the closest points on the convex hulls.
We define the cell size along the different axes to be: cx = cy :=

√
t2x + t2y and

cz = 2 · distupper − distlower. Here, t = (tx, ty, tz)T is the vector that connects
the support points for which ‖t‖ = distupper . Using this scheme, only triangles
within the same cell and its neighbors can still contribute to the exact minimum
distance. The distance for all other triangle pairs is guaranteed to be greater
than the upper distance bound. They are efficiently culled away by the intrinsic
properties of the subdivision scheme (see the right side of figure 1). If the con-
vex hulls of the mesh pair overlap, the algorithm proceeds with stage three. In
this stage, information computed by GJK is utilized to adaptively decompose
the meshes into sub-meshes and pair-wise repeat the process in stage one recur-
sively. In particular, GJK returns extremal points of the objects along a support
vector. Planes orthogonal to this support vector and going through the extremal
points divide the objects into sub-meshes (see figure 2). The overall minimum
distance between the object pair is the minimum of the set of distances com-
puted for all the sub-mesh pairs. In contrast to other approaches, the input data
does not need to be pre-processed, i. e. no full surface decomposition is executed
and no bounding volume hierarchies are constructed. Instead, decomposition of
the surface meshes is only performed if it is required in the separation distance
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Fig. 2. Step three of the algorithm is invoked, if the convex hulls of the two shapes

overlap. Left: The objects are recursively divided into sub-meshes according to support

planes (dashed red lines). Right: The minimum of the set of separation distances (red

lines) of the sub-mesh pairs gives the separation distance.

computation. This makes the approach suitable for the simulation of deformable
objects.

4 System Overview

In this section, we describe our framework for manipulation planning and the
embedding of the proximity query algorithm into this framework. First of all,
the manipulation problem is decomposed into a symbolic and a geometrical
part. The symbolic planner allows for task specifications and domain descrip-
tions to be given in high-level, human-like language, e. g. task specifications look
like on(box, table) and domain descriptions like pick-up(box) or put-down(box,
table), respectively. On the symbolic level, the applicability of actions can be
decided by evaluating the conditions of state variables. On the other hand, the
geometric planner is used for constraint checking and effect calculation, i. e. the
detection of collision free states and execution paths. Therefore, the geometric
planner has access to a full domain description that represents the kinematics
of the manipulator and a three-dimensional scene description. The decomposi-
tion serves to partition the complex manipulation problem into simpler planning
problems. The interaction between the two parts is realized by external modules
called semantic attachments [28]. They compute the valuations of state variables
in the symbolic part by answering question like ”Is there a collision-free way to
move from point a to point b?” using the geometric part at run-time. Using the
semantic attachments, the low-level geometric planner can provide information
to the high-level symbolic planner during the planning process. However, it is
only evoked when it seems relevant to the high-level planner. This is of particular
importance, since the low-level planner performs the most time-consuming tasks,
the proximity queries. The semantic attachments are implemented as probabilis-
tic roadmaps (PRM) [22]. The roadmaps are connectivity graphs that provide
collision-free states and path segments in configuration space. The configuration
space is given by the kinematics of the manipulator and the configurations of
the objects.The verification of collision-free states and paths in workspace is per-
formed using the proximity query algorithm described in section 3. Depending on
the query, the exact distance is returned or a distance threshold is verified. Using
distance queries instead of collision queries may seem to be slower in comparison,
but only distance queries allow for a fast and safe path verification [2].
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Incorporating the possibility to manipulate deformable objects extends the
collision-free configuration space in the case of transfer paths - the paths, where
the manipulator has grasped an object and moves it along. We require the ma-
nipulator to be collision-free. Only the grasped object may collide. If this collision
can be resolved by deformation, the current state is verified to be collision-free.
The deformation energy of an object is computed using a linear relation between
the forces and the displacement of the tetrahedrons in the volume representation.
If an object-specific threshold is passed, the state is not-collision-free. Besides
the ability for deformable manipulable objects, navigation amongst deformable
objects [30,31] could also be realized with the tetrahedral data structure.

5 Experiments

We have staged a series of experiments to evaluate the distance computation
approach as well as its application in the manipulation planning framework. In
all experiments, the object representation is twofold. Surfaces are represented
by triangular meshes to provide the input for the proximity query algorithm,
whereas volumes are represented by tetrahedral meshes to provide the input for
the force-displacement relation. All run-times were computed as average run-
times on an Intel Core2Duo 6400 with 2 GB RAM using a single core.1

Proximity Queries: The set of test scenarios for the evaluation of the distance
computation approach includes (1) a pair of cows, (2) a pair of horses, (3) a stick
and a dragon and (4) a pair of deforming teddies. The objects vary in shape and
complexity. Scene complexity and timings are given in table 1. We compare
the timings with the ones gathered with the software package SWIFT++ [8].
SWIFT decomposes the surface of a non-convex object into convex pieces, which
are stored in a bounding volume hierarchy (BVH). The query is then executed
on the hierarchy of convex pieces. Using this data structures, distance queries
can be answered very quickly. However, if the scene is considered to be unknown
in each time step, surface decomposition and BVH generation has to be included
in the total computation time. In comparison, our approach decomposes the ob-
jects into a tree of sub-meshes whose convex hulls do not overlap. This is more
general when compared to a decomposition into convex pieces. However, it is also
more adaptive with respect to the current scene configuration. Therefore, our al-
gorithm achieves lower average computation times. Please note that SWIFT++
is optimized for the application in rigid body simulations. Therefore, the surface
decomposition and the construction of the BVH can be executed as preprocessing
steps. Thus, they are probably not optimized. Nevertheless, the timings indicate
that the decomposition is less suitable for online computations in the context
of deformable objects or for single-shot algorithms like the approach proposed
here.

1 A video with five exemplary scenarios and plans can be found at:

http://tinyurl.com/p5z82t

http://tinyurl.com/p5z82t
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Table 1. Results for the test scenarios. The timings resemble the average distance

computation time in milliseconds over 1000 consecutive frames.

Scenario # of triangles avg. [ms] our algorithm avg. [ms] SWIFT

(4) 4400 67 1518

(3) 6000 90 1250

(1) 12000 680 1681

(2) 19800 762 2904

Manipulation Planning: We demonstrate our manipulation planning frame-
work on two synthetic test scenarios (see figures 3 and 4). The manipulator used
in both scenarios consists of 2400 triangles and 2500 tetrahedrons. The first sce-
nario consists of an additional three tables, with manipulable items placed on
top. Triangles and tetrahedrons sum up to 2500 and 2600, respectively. In the
second scenario, cubes are arranged to form a small narrow passage. The manipu-
lator platform and a teddy are placed left and right of the passage. Triangles and
tetrahedrons sum up to 3000 and 3500, respectively. The two scenarios demon-
strate two different problems. In the tables scene, problems are formulated that
place objects at the locations of other objects, forcing the planner to detect such
situations and plan for them accordingly. The results shown in table 2 indicate
that even multiple replacing of objects still results in reasonable runtimes.

In the second scene, a problem is formulated that forces the geometric planner
to take the deformability of the manipulable object into account. The execution
path depicted in figure 4 required the deformation computation to be executed
for 600 configurations. This adds an additional planning time of 100 ms per
configuration on average.

Fig. 3. An advanced pick-and-place task. The manipulator is required to pick up the

red box and place it to where the green box is located. Therefore, it first has to pick

up the green box and place it somewhere else (upper row) and then pick up and move

the red box to the final position (lower row).
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Fig. 4. A pick-and-place task applied to a deformable movable object. The teddy is

picked up from behind the wall and moved trough the small narrow passage (left)

to its final position above the table (right). An execution path can only be found, if

deformability of the teddy is considered by the geometric planner.

Table 2. Results for the tables scene. The problem instances are separated in three

classes: Simple pick-and-place tasks (Class I), problems that require the replacing of

object to reach the goal configuration (Class II), and problems that require the replac-

ing of multiple objects (Class III). Various tasks have been posed per class. Runtimes

are given in seconds.

Class I Runtime (s)

01 3.48 ± 1.23

02 6.08 ± 3.49

03 1.47 ± 0.12

04 3.77 ± 0.97

05 4.75 ± 2.36

06 5.27 ± 2.71

07 63.83 ± 7.67

08 5.66 ± 7.50

09 12.48 ± 14.74

Class II Runtime (s)

01 24.32 ± 8.63

02 24.95 ± 9.25

03 91.87 ± 14.01

04 30.26 ± 9.74

Class III Runtime (s)

01 37.33 ± 6.85

02 15.50 ± 2.52

03 78.55 ± 45.61

6 Conclusion

We have presented an algorithm for deformable proximity queries. It employs
GJK to recursively find sub-mesh pairs whose convex hulls do not overlap. For
such pairs, the minimum distance can be efficiently computed using spatial hash-
ing. The overall minimum distance is governed by the minimum distance between
the sub-mesh pairs. We have illustrated the efficiency and suitability of the
algorithm with regard to deformable objects. Furthermore, we have described
and demonstrated the application of the algorithm in a manipulation planning
framework. Currently, we are investigating how to improve the runtimes of the
framework. An optimized recursive decomposition would speed up the proxim-
ity query algorithm. Integration of geometric heuristics in the symbolic planning
process could significantly reduce the amount of calls to the geometric planner.
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Abstract. In this work, synthesis of facial animation is done by mod-

elling the mapping between facial motion and speech using the shared

Gaussian process latent variable model. Both data are processed sepa-

rately and subsequently coupled together to yield a shared latent space.

This method allows coarticulation to be modelled by having a dynamical

model on the latent space. Synthesis of novel animation is done by first

obtaining intermediate latent points from the audio data and then using

a Gaussian Process mapping to predict the corresponding visual data.

Statistical evaluation of generated visual features against ground truth

data compares favourably with known methods of speech animation. The

generated videos are found to show proper synchronisation with audio

and exhibit correct facial dynamics.

1 Introduction

Synthesis of a talking face driven driven by speech audio has many applications
from cinema, games, virtual enviroments, online tutoring and in devising better
Human Computer Interaction (HCI) systems. Humans perceive speech by in-
terpreting both the sounds produced by speech movements and the visual cues
that accompany it. Suppression of one channel at the expense of the other re-
sults in ambiguities in speech perception as shown by McGurk and McDonald
[1]. Moreover, given the high fine tunement in the way humans perceive speech,
slight glitches in an animated character are very conspicuous. Thus, an animated
character needs to exhibit plausible speech movements without jerks and with
proper synchronisation with the audio.

The pioneering work on facial animation was done by Parke [2] where a 3D
model of the face was built using a polygon mesh which was texture-mapped and
animation was achieved by interpolating between prototypes or keyframes. Facial
animation can also be done using anatomical models of the face constrained by
the laws of physics [3], [4]. Whilst 3D models of the face offer a high level of
flexibility to the animator, they are very labour intensive and fail to achieve
very high levels of realism. Data-driven approaches to facial animation seek to
use text or audio data to directly synthesise animation with minimal manual
intervention. They can be grouped into text-to-visual synthesis [5] and audio-
to-visual synthesis [6], [7], [8], [9], [10], [11]. Rendering for data-driven facial

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 89–100, 2009.
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animation can be using 3D graphics-based models of the face [12], [13]; 2D
image-based models [6], [7] or through hybrid appearance-based models [8], [9],
[10], [11].

The basic unit of spoken language is the phoneme and the corresponding visual
unit pertaining to different lip configuations is the viseme. The english language
has a total of 41 phonemes [14] and according to the MPEG-4 standard, these
are grouped into 14 visemes [15]. Thus, the mapping from phonemes to visemes
is many-to-one. Moreover, the visual counterpart of speech is dependent on the
context of the speech signal, which means that the same phoneme may produce
a different visual output, depending on the phonemes preceeding and following
it. This phenomenon is known as coarticualtion.

Our focus is on a data-driven approach to speech animation using machine
learning techniques. Because the audio-visual mapping is many-to-one and mod-
elling coarticulation involves taking context into account, regression techniques
like artificial neural networks or support vector machines fail to produce appro-
priate results. Successful techniques that effectively model coarticulation include
hidden Markov models [7], Gaussian phonetic models [8] and switching linear
dynamical systems [11]. In this work, we make use of the Gaussian Process La-
tent Variable Model [16] (GPLVM) framework to learn a shared latent space
between audio and visual data. The GPLVM is a non-linear dimensionality re-
duction technique and has recently been applied to multimodal data by learning
a shared latent space between human silhouette features and 3D poses [17], [18].
This allows the inferrence of pose from silhouettes. We apply this framework
to learn an audio-visual mapping and compare the results with Brand’s Voice
Puppetry [7].

2 Background and Related Work

We begin by providing some background on the Shared GPLVM (SGPLVM) and
refer readers to [16] and [18] for more information.

2.1 The GPLVM

The GPLVM is a probabilistic dimensionality reduction technique that uses
Gaussian Processes (GPs) to find a non-linear manifold of some data that seeks
to preserve the variance of the data in latent space. The latent space X =
[x1, . . . , xN ] is assumed to be related to the mean centered data set, Y =
[y1, . . . , yN ]T through a mapping f that is corrupted by noise:

yn = f(xn) + ε . (1)

By placing a GP prior of the mapping f and marginalising it, the likelihood func-
tion (2) is obtained, which is a product of D GPs and Φ are the hyperparameters
of the covariance function, which is also referred to as the kernel.

p(Y|X, Φ) =
D∏

i=1

1
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For non-linear mappings, a closed-form solution is not available and the likeli-
hood function is optimised with respect to the latent values X using conjugate-
gradient optimisation. Maximising the marginal likelihood (2) with respect to
the latent points and the hyperparameters Φ results in the latent space repre-
sentation of the GPLVM.

{X̂, Φ̂} = argmax
X,Φ

P (Y|X, Φ) . (3)

Back Constraints. The GPLVM, being a mapping from the latent space to
the data space, ensures that points that are close on the latent space are found
close on the data space. However, it does not ensure the opposite, i.e. points that
are close in the data space to be mapped close on the latent space. The aim of
the back constraints [19] is to enforce this distance preservation. It is done by
using an inverse parametric mapping that maps points from the data space to
the latent space. The mapping takes the following form:

xi = g(yi,W) . (4)

Where W are the parameters of the back-constraint kernel function, which can
be any non-linear kernel such as the Radial Basis Function (RBF) or the Mul-
tilayer Perceptron (MLP). The optimisation in (3) is then done with respect to
the back constraint parameters W:

{Ŵ, Φ̂} = argmax
W,Φ

P (Y|W, Φ) . (5)

Dynamics. Wang et al. [20] proposed an extension of the GPLVM which pro-
duces a latent space that preserves sequential relationships between points on the
data space, on the latent space. This is done by specifying a dynamical function
over the sequence in latent space:

xt = h(xt−1) + εdyn . (6)

Where εdyn ∼ N(0, β−1
dynI). This is a first-order dynamics kernel that assumes

that each latent point xt is only conditioned on the preceeding frame, xt−1. By
placing a Gaussian Process prior over the function h(x) and marginalising this
mapping, a new objective function is obtained. Optimising this objective function
results in latent points that preserve temporal relationships in the data. The new
objective function is given by (7) with Φ̂dyn being the hyperparameters of the
dynamics kernel.

{X̂, Φ̂Y , Φ̂dyn} arg max
X,ΦY ,Φdyn

P (Y|X, ΦY )P (X|Φdyn) . (7)

2.2 The SGPLVM

To construct a shared latent space between two sets of variables, Y and Z and
with a shared latent space X, the likelihood function is taken to the the product
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of each individual likelihood function, conditioned on a common latent space.
This leads to the optimisation of two different sets of hyperparameters for the
two kernel functions. The joint likelihood of the two observation spaces is given
by:

P (Y,Z|X, Φs) = P (Y|X, ΦY )P (Z|X, ΦZ ) . (8)

Where ΦS = {ΦY , ΦZ} is a concatenation of the two different sets of hyperpa-
rameters.

Back-constraints can similarly be integrated, but with respect to only one
data space, because in practice, two separate mappings from two different data
spaces, that produce a common latent space cannot be defined. Moreover, a
dynamics prior can also be placed on the latent space, just like for the GPLVM.

The Shared GPLVM (SGPLVM) used by [17] and [18] has been used to learn
a mapping between pose and silhouette data. However, the mapping from sil-
houette to pose is one-to-many because silhouettes are ambiguous, especially
when the figure is turning around. Ek et al. have addressed ambiguity in [18] by
putting a back constraint with respect to poses, which forces a one-to-one rela-
tionship between the data and latent space. In [21], ambiguity has been catered
for by using a Non-Consolidating Components Analysis (NCCA) whereby a pri-
vate latent space for each of the observation spaces is learnt in addition to the
shared latent space. This allows for the disambiguation of human pose estimation
given silhouettes because the variance in both data spaces is retained. Thus, the
variance from the space pertaining to the test data can used in the inferrence as
a discriminant to resolve ambiguities. The same NCCA model has been used in
[22] for mapping human facial expression data, represented by facial landmarks
to a robotic face. The ambiguity in this case is with respect to robot poses, with
multiple robot poses corresponding to a given facial expression vector.

The SGPLVM can be viewed as a non-linear extension of Canonical Corre-
lation Analysis (CCA). CCA learns a correspondence between two datasets by
maximising their joint correlation. Theobald and Wilkinson [10] use CCA to
learn an audio-visual mapping. Modelling coarticulation is achieved by append-
ing speech features to the right and to the left of each frame. This, however, leads
to a combinatorial explosion and requires large amounts of data to provide ad-
equate generalisation ability. Our approach, based on the SGPLVM framework
allows for coarticulation to be modelled in two ways. Placing a back constraint
with respect to audio features ensures distance preservation of speech features in
the latent space, thus ensuring a smooth transition of latent points for test audio
data. Moreover, placing a dynamical model on the latent space constraints the
optimisation of latent points to respect the data’s dynamics both in the training
and synthesis phases.

3 Building an Audio-Visual Corpus

The Democracy Now! dataset [11] has been used for our experiments. It features
an anchor giving news presentations under roughly the same camera and lighting
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conditions. We use the dissected video sequences mentioned in [11], featuring the
anchor speaking sentences delimited by pauses for breath. However, we perform
our own parameterisation of the visual and speech data. The video sequences
are converted into frames sampled at the rate of 25 frames per second and
cropped around the face region. High quality uncompressed audio has also been
made available separately by the authors of [11], that match the dissected video
sequences. We now detail how a compact parameterisation is obtained for both
visual and audio data. A total of 236 video sequences, corresponding to about 20
minutes of video have been used, together with the corresponding uncompressed
audio.

3.1 Visual Data Pre-processing

Active Appearance Models (AAMs) [23] have been chosen for facial parameter-
isation because they capture the statistical variation in shape and texture and
provide a generative model to extrapolate novel faces as a linear combination of
basis shape and texture vectors. They require a training set of annotated pro-
totype face images where the annotations provide for the shape data and the
texture data is sampled from the convex hull spanned by these shape vectors
(Figure 1a). AAM training first normalises the shape vectors by removing rota-
tions and translations and aligns the the shape with respect to the mean shape
by a piecewise affine warp. This requires a triangulation of the landmarks to be
performed (Figure 1b). In our case, 31 landmarks have been used. PCA is then
applied to the shape and texture data separately and then further on the con-
catenation of the PCA parameters for shape and texture. Ater training, AAM
parameters can be extracted from novel images by projecting the shape and tex-
ture data to the corresponding retained eigenvectors of the PCA and then again
on the combined eigenvectors. In addition, given a set of AAM parameters, novel
frames can be generated by first reconstructing the shape and texture separately
and then warping the texture to the shape (Figure 1d). AAMs can also be used
for tracking landmarks on novel facial images (Figure 1c). By retaining 95% of
the variance in the shape, texture and combined PCA, a 28-dimensional AAM
feature vector is obtained.

3.2 Speech Parameterisation

Speech needs to be parameterised so as to represent the acoustic variability
within and between the different phonemes. This is done by extracting fea-
tures from the speech signal that help distinguish between the phonemes. The
most common speech feature extraction techniques are: Linear Predictive Coding
(LPC), Mel-Frequency Cepstral Coefficients (MFCC), Line Spectral Frequencies
(LSF) and Formants [14]. MFCCs have been chosen for speech feature extraction
of our data because of its robustness to noise and also because we do not need
accurate reconstructions provided by linear prediction methods such as LPC and
LSF. The MFCC features have been computed at 25 Hz in order to match the
sampling rate of the image frames.
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(a) (b) (c) (d)

Fig. 1. (a) Annotations marked on a sample face image. (b) Triangulation of the land-

marks for warping. (c) Results of AAM search on a new image. (d) Reconstruction of

face from a set of AAM parameters.

4 Audio-Visual Mapping

Taking Y to be the MFCC feature vector and Z to be the AAM feature vector,
an SGPLVM is learnt between Y and Z. Whilst in [21] and [22], the data to be
synthesised is ambiguous, in our case, we have a many-to-one mapping between
audio and visual data. This leads to more flexibility in building the model and
the NCCA model of [21] and [22] brings no benefit to our system. However,
placing a back-constraint with respect to the audio favours the modelling of
coarticulation by constraining similar audio features to be mapped close on the
latent space. In addition, it allows the initialisation of latent points from novel
audio using the back-constrained mapping. We place an MLP back-constraint
with respect to the audio data. An autoregressive dynamics GP is also placed
on the latent space. The graphical model of our system is shown in Figure 2. All
the parameters of the model are optimised during training. The resulting latent
space can be viewed as a non-linear embedding of both audio and visual data
that can generate both spaces.

Fig. 2. Graphical model of the shared GPLVM with a back-constraint with respect to

the audio and an autoregressive dynamics model on the latent space
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4.1 Synthesis

Once the SGPLVM model is trained, audio-visual synthesis proceeds by first
extracting MFCC features from test audio. AAM parameters Ẑ can then be
synthesised from the test MFCC features Ŷ by first obtaining the corresponding
latent points, X̂. The optimisation of latent points is done both with respect to
the GP mapping from X to Y as well as with respect to the dynamical model,
by formulating a joint likelihood given in (9). The likelihood is then optimised
using conjugate gradient optimisation to find the most likely latent coordinates
for a sequence of audio features.

X̂ = argmax
X∗

P (Ŷ,X∗|Y,X, ΦY , Φdyn) . (9)

Where X∗ is an initialisation of the latent points. Once X̂ is obtained, Ẑ is
obtained from the mean prediction of the GP from X to Z.

Ẑ = k(X̂,X)T K−1Z . (10)

4.2 Initialisation of Latent Points

Optimisation of (9) is likely to be highly multimodal with multiple local optima.
Thus, a proper initialisation of the latent space, X∗ is required to get good
results. We use two initialisation techniques for X∗. In the first method, the
latent points obtained from the SGPLVM training are taken to be the states
of a hidden Markov Model (HMM) and the training audio features are taken
to be the observations. The transition log likelihood is computed as the GP
point likelihood between each latent point and every other latent point and
the observation log likelihood is obtained by computing the GP point likelihood
between the test audio vector and each of the training latent points (states of the
HMM). The optimal sequence of latent points X∗ is obtained from the Viterbi
algorithm in log space. This is analogous to choosing a set of latent points from
the training set that best match the test audio. To speed computation when the
number of training data points for the SGPLVM is very high, a subset of the
points can be randomly chosen instead, for initialisation.

The second method of initialisation is from the back-constrained mapping
from the audio space Y to the latent space X, which can be obtained as follows:

X∗ = g(Ŷ,W) . (11)

We shall call the method based on the back-constraint initialisation SGPLVM
A and the method based on the HMM initialisation SGPLVM B.

4.3 Experiments

GPLVM training is quite expensive and has a complexity O(N3), where N is
the number of data points. Various sparsification methods have been proposed
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[24] by making use of a subset of data at a time, called the active set. How-
ever, even with sparsification, optimisation of a GPLVM likelihood becomes
intractable when the number of data points exceeds a few thousands. This is in
contrast to other methods to audio-visual mapping such as HMMs, which can
cope with tens of thousands of data points. In our experiments, we have used a
repeated random subsampling method for choosing 50 sequences from the 236
audio-visual sequence pairs for training SGPLVM A and SGPLVM B, giving an
average of 6000 frames. We fix the dimensionality of the latent space to be 8
as further increasing the dimensionality does not improve the reconstructions
of AAM parameters. We then randomly choose 20 sequences for testing, such
that the training and testing sets do not overlap. Only the audio features from
this test set are used for inferring novel AAM parameters using SGPLVM A and
SGPLVM B.

We have used Brand’s Voice Puppetry [7] as a benchmark. We train the cross-
modal HMMs using the same subsets of audio and visual features as used for the
SGPLVM and use the same data for testing. The repeated random subsampling
experiment is done ten times for both the SGPLVM and Brand’s method.

4.4 Results

We present both quantitative and qualitative results from our experiments.
Quantitative results are obtained by finding the Root Mean Square (RMS) error
between test AAM feature vectors and ground truth. Figure 3 shows the results

Fig. 3. RMS errors obtained between ground truth AAM feature vectors and 1) SG-

PLVM A 2) SGPLVM B and 3) Brand’s Voice Puppetry. The plots also include the

standard deviation of the errors.
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obtained accross the ten runs of the experiment. The results show no statis-
tically significant difference between the errors obtained from Brand’s method
and the SGPLVM. In general, the errors for SGPLVM B are slightly higher than
those for SGPLVM A, mostly due to a smoother latent space obtained from the
back-constraint initialisation.

We also compare the trajectories of the first mouth landmark parameter re-
constructed from the AAM parameters, of the three approaches against ground
truth. Figures 5, 6 and 7 shows the results for Brand’s Voice Puppetry, SGPLVM
A and SGPLVM B respectively. The results for Brand’s method show that the
trajectories are smoothed out as compared to the SGPLVM approaches. This is

Fig. 4. Reconstructions from AAM features obtained from: ground truth (top row),

Voice Puppetry (middle row) and SGPLVM A (bottom row). The audio used for syn-

thesis contains the sentence: “House of representatives has approved legislation”. The

frames correspond to ten different visemes from the test audio sentence.

Fig. 5. Shape trajectories obtained from Brand’s Voice Puppetry and the correspond-

ing ground truth trajectories
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Fig. 6. Shape trajectories obtained from SGPLVM A and the corresponding ground

truth trajectories

Fig. 7. Shape trajectories obtained from SGPLVM B and the corresponding ground

truth trajectories

because Brand’s approach involves synthesising AAM parameters from a state
sequence, which represents Gaussian clusters, and is thus very approximative.
The SGPLVM approaches, on the other hand, bypass this approximation and
make use of the full variance of the visual data in synthesis.

Qualitative results are obtained by rendering frames from the AAM parame-
ters in order to visualise the output. The videos show proper lip synchronisation
with the audio with smooth lip movements. The results from SGPLVM A ap-
pears to be the best whilst SGPLVM B gives proper lip synchronisation but
with a few jerks in the animation. The results from Brand’s Voice Puppetry are
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overly smoothed with under articulation. Figure 4 shows ground truth frames
as well as frames generated from AAM features obtained from Voice Puppetry
and SGPLVM A. The audio contains a sentence which has 12 of the 14 visemes
from the MPEG-4 standard [15].

5 Conclusions and Future Work

We have shown how the shared GPLVM can be applied to multimodal data
comprising of audio and visual features, in order to synthesise speech animation.
The results show that our methods are comparable to Brand’s Voice Puppetry
in terms of RMS errors of AAM features generated, but with more articulated
lip movements.

In future work, a perceptual evaluation of the animation will be carried out
where viewers would be asked to asses the realism of the generated videos as well
as the intelligibility of the lip movements. Experiments will also be performed
with different parameterisations of speech, which favour speaker independence.
Moreover we would also investigate delta features in speech to more effectively
capture context in speech animation.
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Extracting Principal Curvature Ridges from
B-Spline Surfaces with Deficient Smoothness

Suraj Musuvathy and Elaine Cohen

School of Computing, University of Utah

Abstract. Principal curvature ridges identify characteristic feature

curves on a surface that can be used for surface registration, quality

control, visualization and various other shape interrogation applications

across disciplines such as medical imaging, computer vision, computer-

aided design and engineering and geology. Current techniques for ac-

curate extraction of ridges from B-Spline surfaces require Cn, n ≥ 3

smoothness. In practice, many fitting techniques and modeling systems

yield surface representations that may be only C2, C1 or C0 on the

knot lines. In this paper, we generalize a robust tracing algorithm to ad-

dress the problem of extracting ridges from surfaces with lower orders of

smoothness to broaden its applicability to a much larger set of surfaces.

1 Introduction

Principal curvature ridges as defined by Porteous [1] are loci of points on a
surface where one of the principal curvatures attain an extremum along its re-
spective principal direction. Identifying feature curves of the intrinsic geometry
of surfaces, ridges have been found to be very useful in diverse application do-
mains such as computer vision [2,3], medical image analysis [4,5,6], computer
aided design and engineering [7], visualization [8], and geology [9].

At any point on a surface S(u, v) ∈ R3, we denote principal curvatures and
principal directions by κi and ti, i = 1, 2 respectively.1 Ridges are defined [2] as
locations where φi(u, v) = < ∇κi, ti > = 0 and the solutions form a set of
1-manifolds in the parametric domain and on the surface. The ridge condition
imposes a third order derivative (C3) smoothness requirement on S(u, v) since
derivatives of the principal curvatures are required to be continuous. Previous
works on extracting accurate continuous ridge curves from smooth surfaces as-
sume that the input surfaces have the necessary C3 smoothness. To the best
of our knowledge, there is no existing technique in the literature that addresses
the case when the input surfaces have deficient smoothness (C2, C1 or C0)
along embedded 1-manifolds. Techniques that extract ridges directly from dis-
crete data (grid data, polygonal meshes) approximate principal curvatures and
their derivatives by fitting smooth surfaces. Since derivatives are evaluated at
discrete locations, it is assumed that the desired smoothness is available at all
required points.
1 See [10] for background material on differential geometry of surfaces.

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 101–110, 2009.
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(a) C2 surface (b) C3 tracing (c) New method (d) Difference

Fig. 1. (a) A bicubic B-Spline surface that is C2 across the isoparametric knot curves,

shown in black, that divide the parametric domain into four charts. (b) Top view of

ridges extracted with the C3 numerical tracing method. (c) Top view of ridges extracted

using the proposed method. κ1-ridges are black and κ2-ridges are grey. Ridges are

discontinuous at chart boundaries, the horizontal and vertical grey lines. (d) Ridge

segments extracted using the new method but missed by the C3 method.

It is difficult to enforce C3 continuity while creating smooth surface represen-
tations during ab initio design as well as from discrete data. Surface derivatives
are typically not available with discrete data, and merging surface patches fit
to regions of discrete data or designed ab initio with C3 smoothness imposes
difficult constraints. The main contribution of this paper is a novel technique
for extracting accurate ridges from rational tensor product parametric B-Spline
(NURBS) surfaces that do not have C3 smoothness.

This paper extends a robust tracing algorithm [11] that addresses C3 surfaces
and is computationally less demanding than other methods. The algorithm pre-
sented in [11] computes the necessary start points for tracing generic ridges on
C3 surfaces. However, when surfaces are C2 or lower on knot lines, non-generic
ridges may occur that appear as disjoint segments across images of the knot
lines on the surface. A new type of start point is required to trace such ridge
segments. We address this problem by subdividing the parametric domain into
charts at knots where pieces of a NURBS surface meet with C2 or lower smooth-
ness in either of the parametric directions. Within each chart, the surface has
smoothness of Cn, n ≥ 3. In this paper, an approach for computing appropri-
ate start points for tracing all ridge segments in all charts is presented, thereby
guaranteeing extraction of all ridge segments. Fig. 1 shows an example of ridges
extracted from a C2 B-Spline surface.

Since B-Splines and NURBS are widely used surface representations for
smoothly approximating discrete data as well as for ab initio design, this tech-
nique enables the use of smooth ridge extraction for a variety of applications on
extended classes of surfaces. Many of the discrete methods do not address ridges
around umbilics, which represent important features, and thus do not provide
a complete solution. In addition, the ridges obtained using discrete methods
are coarse approximations that are not as accurate as those obtained using the
method presented in this paper and therefore can also miss ridges and incorrectly
report the presence of ridges.
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S(u,v)

advance
slide

ridge

Fig. 2. Tracing ridges by advancing and sliding along principal directions

2 Previous Work on Ridge Extraction

Computing accurate ridges on smooth surfaces is computationally challenging
since φi(u, v) is a complex function that is not piecewise rational. Ridges ex-
hibit complex behavior at umbilics and ridge turning points, and these points
along with the ridges around these points represent important surface features.
Methods for extracting accurate ridges must address issues of computational and
topological complexity. This section summarizes previous work on ridge extrac-
tion from smooth parametric surfaces. Previous work on ridge extraction from
discrete representations may be found in [12,13] and references therein.

Lattice methods (conceptually similar to those used for surface intersection
problems [14]) involve computing solutions of the ridge equations ({(u, v) :
φi(u, v) = 0}) on a dense grid of isoparametric curves on the surface and then
computing the topology of the obtained ridge points. This approach has been
adopted by [15,16] to compute ridges on surfaces represented by single polyno-
mial patches (Bézier patches). This technique handles umbilics as well as ridge
turning points but has the drawback of being computationally demanding. Since
only single polynomial surfaces are addressed, surfaces with deficient smoothness
are not considered.

Sampling methods are discrete techniques that detect isolated ridge points
by evaluating φi(u, v) on various types of tessellation of the parametric do-
main [3,4,17,18] or along principal curvature lines [7]. Although these methods
are typically fast, they do not address the topology of ridges at umbilics. Also,
their accuracy is limited since the ridges are computed on a tessellation of the
domain, and can miss ridges as well as compute false positives. Although C2

B-Spline surfaces are used in [4], issues related to deficient smoothness are not
addressed since derivatives are required at discrete locations only.

The approach presented in [11] builds upon numerical tracing ideas to robustly
march along ridge segments using generic properties of ridges. This approach
handles piecewise rational surfaces that join with at least C3 smoothness. On
C3 surfaces, ridges are continuous curves and every ridge passes through at least
one umbilic or curvature extremum, so umbilics and principal curvature extrema
are computed as start points (seeds) for tracing. Therefore, all continuous ridges
are guaranteed to be detected. The algorithm marches along ridge segments by
advancing and sliding along local coordinate systems formed by principal direc-
tions (Fig. 2). For a κ1-ridge, at each marching step, the algorithm first advances
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along the t2 direction and then slides along the t1 direction until a ridge point
is detected. For a κ2-ridge, the algorithm advances along the t1 direction and
then slides along the t2 direction. Principal directions and curvature gradients
are recomputed at every advance and slide step. Step sizes are adaptively varied
to ensure that the trace does not jump to an adjacent ridge segment or get stuck
in local non-zero extrema of φi(u, v). Umbilics and ridge turning points are also
handled by the algorithm. Details of the method are found in [11].

In this paper, we have chosen to adopt the numerical tracing approach since
it is robust and is computationally suitable for accurate ridge extraction on com-
plex smooth surfaces. We add ideas from lattice methods, adapted to B-Splines,
to solve for ridge points at the few specific isoparametric curves of deficient
smoothness. In our experiments, a tracing method using ordinary differential
equations (ODE) required much smaller step sizes for achieving the same accu-
racy as the method of [11]. In addition they required computation of singular
points of φi(u, v) for robust tracing. Therefore, it seemed that the method pre-
sented in [11] is computationally more suitable for tracing than ODE based
methods.

3 Tensor Product B-Spline Representation

A tensor product NURBS surface [19] is given by,

S(u, v) =

m∑
i=0

n∑
j=0

wijRijBi,d(u)(u)Nj,d(v)(v)

m∑
i=0

n∑
j=0

wijBi,d(u)(u)Nj,d(v)(v)

(1)

Rij are the control vertices and wij are the weights of S(u, v). Bi,d(u)(u) and
Nj,d(v)(v) are B-Spline basis functions of degrees d(u) and d(v) respectively. Let

T (u) = {T (u)
p }(m+d(u)+1)

p=0 and T (v) = {T (v)
q }(n+d(v)+1)

q=0 be the knot vectors in
the u and v parametric directions respectively. The support of Bi,d(u)(u) =
[T (u)

i , T
(u)
i+d(u)+1) and the support of Nj,d(v)(v) = [T (v)

j , T
(v)
j+d(v)+1). It should be

noted that the upper end of each interval is open. S(u, v) is defined over the
interval [T (u)

d(u) , T
(u)
m+1)× [T (v)

d(v) , T
(v)
n+1).

B-Spline basis functions are piecewise polynomial i.e., they are polynomial
functions within each knot interval. The smoothness at each knot is determined
by its multiplicity. Let π(u) and π(v) be the set of unique knots (breakpoints) and
µ(u) and µ(v) be the multiplicities of each breakpoint in the u and v parametric
direction respectively. Then, at each breakpoint π(u)

p , S(u, v) ∈ C(d(u)−µ(u)
p ) in

the u direction and at each knot π(v)
q , S(u, v) ∈ C(d(v)−µ(v)

q ) in the v direction.
The derivatives of S(u, v) are right continuous at a knot but S(u, v) fails to be
Cl when the lth derivatives are not left continuous at the knot.
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(a) New method (b) Sampling

Fig. 3. Validation of disjoint ridges. (a) is identical to Fig. 1(c) and is repeated here for

comparison with the sampled ridges shown in (b). κ1-ridges and κ2-ridges are shown

in same color in (b).

4 Characteristics of Ridges on Surfaces with Deficient
Smoothness

Generic ridges of a principal curvature on C3 smooth surfaces either form non-
intersecting closed curves on the surface or end at a boundary. They do not
begin or end within the surface except at umbilics where a κ1-ridge changes
into a κ2 ridge. However, these properties do not hold on surfaces with deficient
smoothness lower than C3 as illustrated in Fig. 1 and Fig. 3. Fig. 1(a) shows
a bicubic B-Spline surface with single knots at u = 0.25 and v = 0.5. The
surface is therefore C2 across both knots and the ridge equations φi(u, v), i =
1, 2 are discontinuous at those knot lines ((0.25, v) and (u, 0.5)) since the third
derivatives of the surface representation are discontinuous. The ridges on the
surface thus are disjoint at the knots as shown in Fig. 1(c) and Fig. 3(a) which
is verified by the results obtained by a sampling approach in Fig. 3(b). The C3

tracing method can therefore end at a knot line and miss ridge segments when
curvature extrema and umbilics are not present in the adjacent chart across
the knot line. Fig. 1(d) shows the ridge segments missed by the C3 tracing
method (Fig. 1(b)), since umbilics and curvature extrema are not present on the
missed segments in the relevant charts, but successfully detected by the method
presented in this paper (Fig. 1(c)). Similar problems are encountered when the
surface is C1 or C0 (See Fig. 6). It is assumed that the surface is at least C0

i.e., we are concerned with only continuous surfaces. It is possible for the surface
to be smooth even in the presence of knots of higher multiplicity. Ridges are
continuous curves across such pseudo knots (Fig. 7).

Our goal is to trace all segments of all ridges on surfaces with deficient smooth-
ness. We do not attempt to resolve the topology of the segments across the dis-
continuities. The next section presents extensions to the algorithm presented in
[11] to resolve issues for tracing ridges on surfaces with deficient smoothness;
viz., 1) ridge segments may be missed if no umbilic or curvature extremum is
found in the corresponding chart, 2) ridge segments may or may not be contin-
uous across knot lines and 3) ridge segments that lie exactly along a knot line
may be missed.
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τ q+1 − ε

(u)τ − εp+1

(u)τ p+1

(v)τ q+1

(v)τ q

(u)τ p

(v)

Fig. 4. A chart of a rational B-Spline surface. Chart boundaries are shown as thick

black lines. Knots within the chart at which the surface has at least C3 smoothness

are shown as thin black lines.

5 Dealing with Deficient Smoothness

Let S(u, v) ∈ R3 be a regular (||Su × Sv|| 
= 0) tensor product NURBS surface.
Within each knot interval a B-Spline basis function is a polynomial and S(u, v) is
rational, so all derivatives exist at any point on a surface that does not lie on the
image of a knot line in either parametric direction. Since ridge computation is a
local problem, the parametric domain is divided into charts between the knots
at which S(u, v) has smoothness lower than C3 determined by d(u) − µ(u)

p < 3
or d(v) − µ(v)

q < 3. Let τ (u) ⊂ T (u) and τ (v) ⊂ T (v) be the set of knots at which
the surface pieces meet with smoothness less than C3 in the u and v direction
respectively. The parametric domain is split into charts [τ (u)

p , τ
(u)
p+1)× [τ (v)

q , τ
(v)
q+1),

p = 0 . . . (|τ (u)| − 2), q = 0 . . . (|τ (v)| − 2) (See Fig. 4) thereby creating (|τ (u)| −
1)(|τ (v)| − 1) charts.

Since ridges start or stop at a chart boundary on surfaces with deficient
smoothness, ridge seeds are computed along the boundary of each chart in ad-
dition to computing curvature extrema and umbilic seeds within every chart.
Boundary seeds are computed as zeros of the univariate versions of the ridge
equation; φi(τ

(u)
p , v), φi(τ

(u)
p+1 − ε, v), φi(u, τ

(v)
q ) and φi(u, τ

(v)
q+1 − ε). Since the

upper end of each knot interval is open (Section 3), the isoparametric knot lines
at τ (u)

p+1 and τ
(v)
q+1 are not considered part of the chart and ridge seeds are com-

puted at τ (u)
p+1 − ε and τ

(v)
q+1 − ε instead. Since φi(u, v) is not piecewise rational,

the equation φi(u, v) = 0 is converted into φ̃i(u, v) = 0 by rearranging terms
and squaring so that φ̃i(u, v) is piecewise rational. The coefficients of each of
the univariate functions are determined using symbolic computation [20] and
the zeros are computed using efficient subdivision based rational B-Spline con-
straint solving techniques [21,22]. Ridges are then traced from all seeds using
the technique presented in [11] within each chart independently.

When a trace reaches a chart boundary, surface derivatives are tested for
continuity by comparing the vector values at that boundary point in the current
chart and the adjacent chart. This is done by comparing the derivatives evaluated
at the knot and the limit values when approaching the knot from the lower end
of the chart interval in the corresponding parametric direction. If the derivative
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values do happen to be equal within a numerical tolerance, they are deemed to be
continuous across the knot and the tracing continues into the relevant adjacent
chart. Otherwise the derivatives are deemed discontinuous and the tracing for
that particular segment ends. Ridge segments may coincide with isoparametric
knot lines. These segments are traced from seed points on knot lines by stepping
along the relevant knot lines in parametric space until |φi(u, v)| is greater than a
user specified threshold value. In addition, curves on the surface along C0 knot
lines where the surface normals are discontinuous at each point across the knot
lines appear as sharp feature lines on the surface. These ridges are extracted by
marching along the length of all C0 knot lines in parameter space and checking
for discontinuities in the surface normals (See Fig. 6).

6 Results and Discussion

In this section, examples of ridge extraction from several tensor product NURBS
surfaces with deficient smoothness are presented. Results are validated against

(a) Surface with C2 knots (b) Sampling method

(c) New method (d) C3 tracing algorithm

Fig. 5. (a) The NURBS surface fit to terrain data is C2 at knot lines rendered as thin

black curves. (b) Implied ridges from the sampling method, with κ1-ridges and κ2-

ridges indicated by the same color. (c) Ridges extracted using our method. (d) Ridges

extracted using the C3 tracing algorithm. Black curves represent κ1-ridges and grey

curves represent κ2-ridges. Arrows in (b), (c) and (d) point to ridges extracted by

our new method, missed by the C3 tracing algorithm and validated with the sampling

method.
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implied ridges computed using a sampling approach on a fine tessellation of
the parametric domain. Lattice methods [15,16] address only single polynomial
surface representations and are therefore not used for validating results in this
paper. The algorithm presented in this paper has been implemented in the IRIT
B-Spline modeling and programming environment [23]. Computation time varied
from a few seconds to a few minutes for all surfaces used in this paper depending
on the surface degree, number of internal knots and the complexity of ridge
structures.

Fig. 5 shows ridges extracted from a bicubic C2 surface that is fit to discrete
data on a regular grid. This data is from the GLOBE [24] terrain elevation data
set. Fig. 6 illustrates ridges extracted from a NURBS surface (degree 2 in u
direction and degree 3 in v direction) with C1 and C0 knots. The results show
several ridge segments missed by the C3 tracing algorithm of [11](Figs. 5(d)
and 6(d)) but successfully extracted using the method presented in this paper
(Figs. 5(c) and 6(c)). Results of the proposed method are validated against a
sampling of |φi(u, v)| in the parametric domain in Figs. 5(b) and 6(b). The
sampling method can miss ridges as well as compute false positives since the
accuracy is limited to the resolution of the tessellation as mentioned in [11].

C
1

0C
C

1

(a) Surface with C1

and C0 knots

(b) Sampling (c) New method (d) C3 tracing

Fig. 6. (a) Surface with C1 and C0 knots rendered as thin black curves. (b) Implied

ridges from the sampling method, with κ1-ridges and κ2-ridges indicated by the same

color. (c) Ridges extracted using our method. (d) Ridges extracted using the C3 tracing

algorithm. Black curves represent κ1-ridges and grey curves represent κ2-ridges. Arrows

in (b), (c) and (d) point to ridges extracted by our new method, missed by the C3

tracing algorithm and validated with the sampling method.

In Fig. 7 we compare ridges extracted from surfaces created with successive
B-Spline knot insertion [19]. The surfaces have identical geometry but the re-
peated knots suggest lower order smoothness (pseudo knots). Only curvature
extrema and umbilics were used as seeds for the tracing algorithm. The results
are identical for all four surfaces as expected. Even though seeds were not found
in all charts, the method traces over a knot boundary since the derivatives are
determined to be continuous. We can conclude that the algorithm presented in
this paper does not fail when the surface geometry is smooth at repeated knots
and computes connected ridge segments.
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(a) C3 surface (b) C2 surface (c) C1 surface (d) C0 surface

Fig. 7. Top view of ridges on biquartic surfaces created with successive knot insertions

at v = 0.25 (horizontal black line)

7 Conclusions, Limitations and Future Work

Generic ridges on C3 surfaces are continuous curves. Since ridges are defined
using third order surface derivatives, they are discontinuous segments on sur-
faces with lower order smoothness. Previous methods for ridge extraction from
parametric surfaces impose a C3 smoothness requirement. This paper presents
a novel technique for extracting all ridge segments on C2, C1 and C0 tensor
product NURBS surfaces by extending a previous robust numerical tracing tech-
nique. The parametric domain is divided into charts between non-C3 knot lines
and seeds for tracing are computed on the boundaries of each chart in addition to
curvature extrema and umbilics within each chart, thereby guaranteeing extrac-
tion of every ridge segment. Since univariate versions of the ridge equations are
solved only at non-C3 knots, the technique retains computational suitability and
robustness properties of the tracing approach. Since C2, C1 or C0 NURBS are
widely used surface representations across several applications, this technique
enables access to ridges on smooth surfaces for various shape analysis tasks.
This paper does not address resolution of ridge topology at knot intersections
and across knot lines. Surface smoothness may also degenerate due to surface ir-
regularities such as the case when multiple control vertices of a B-Spline surface
are coincident. These are areas for future work.
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Abstract. Advances in Computer Graphics have led to the creation of sophisti-
cated scenes with realistic characters and fascinating effects. As a consequence
the amount of geometry per frame is escalating, making the performance of ge-
ometry engine one of the major factors affecting the overall performance of a
graphics application. In this paper we present a mechanism to speed-up geome-
try processing and at the same time reduce the power consumption by reducing
the amount of computation on processing the geometry of a scene. Based on the
observation that large number of triangles are trivially rejected in each frame, we
propose to partition the vertex shader into position-variant and position-invariant
parts and execute the position-invariant part of the shader only on those trian-
gles that pass the trivial reject test. Our main contributions in this work are: (i)
a partitioning algorithm that minimizes the duplication of code between the two
partitions of the shader and (ii) an adaptive mechanism to enable the vertex shader
partitioning so as to minimize the overhead incurred due to thread-setup of the
second stage of the shader. By employing the proposed shader partitioning ap-
proach, we have achieved a saving of up to 50% of vertex shader instructions
on games like Unreal Tournament 2004 and Chronicles of Riddick. Depending
on the architecture implementing the pipeline, we expect that this huge saving
on instructions would translate to significant saving of cycles and power of the
geometry engine. Our experiments on ATTILA, a cycle level simulator for mod-
ern graphics pipelines, show a promising speed-up of up to 15% on geometry
processing for various games.

1 Introduction

Geometry– the measure of number of objects present in the scene and the detail at which
they are modeled, is one of the most important aspects that determines the complexity
and visual reality of a scene. Increasing emphasis on incorporating even the intricate
details in a scene is leading to an increase in the number of primitives/frame, since
modeling at finer levels of granularity requires the objects to be represented with large
number of smaller primitives. In the older generation graphics systems, the geometry
was processed on CPU and hence, the amount of geometry that could be accommodated
in a scene was constrained by the computational capacity of the CPU. Acceleration of
vertex processing in newer generation graphics cards by programmable vertex shading
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in hardware, facilitates advanced geometry processing, thus paving the way towards
the generation of realistic images. In modern workloads used for benchmarking the
performance of graphics cards, it has been observed that:

i) There is a surge in the polygon count per frame - The polygon count in 3DMark05 is
about a few Million polygons/frame in contrast to 10-30K polygons/frame in yesteryear
games like Quake3 or Doom3.
ii) Complexity of vertex shaders is increasing - It is now possible to apply advanced
transformations to vertex position, use complex per-vertex lighting models and also
render the surfaces with realistic material models.

With increasing vertex counts and vertex shader complexities, vertex shading has be-
come one of the factors that significantly impact the overall performance of a graphics
application and the power consumed by it. In this paper, we propose to reduce the
amount of computations on geometry and hence reap the benefits on performance gain
and power saving.

It has been observed from the simulation of games and benchmarks as shown in
Figure 1, that on an average about 50% of primitives are trivially rejected in each
frame. Trivial rejects account for the primitives that fall totally outside the viewing
frustum and also front/back face culled primitives. Since testing for Trivial Rejection
requires only the position information of the vertex, the time spent on processing the
non-transformation part of the vertex shader on these vertices is wasteful. Instead, if we
partition the vertex shader into position variant (transformation) and position invariant
(lighting and texture mapping) parts and defer the position invariant part of the vertex
shader, post trivial reject stage of the pipeline, we can achieve significant savings in cy-
cles and energy expended on processing these rejected vertices. An example illustrating
vertex shader partitioning is shown in Figure 2.

The changes to be incorporated in the conventional graphics pipeline to introduce
partitioned vertex shading are shown in Figure 4. In the modified pipeline, the VS1
stage computes only the position variant part of the vertex shader and rest of the vertex
processing is deferred to VS2 stage. The Clipper stage is divided into Trivial Reject and
Must Clip stages. Triangles passing through the trivial reject test are sent to the VS2

Benchmark/ % Trivial
Game Rejects

3dMark05 50
Chronicles 61
of Riddick
UT2004 54

Prey 47
Quake4 56
Doom3 36

Fig. 1. % TR / frame

dp4 o0.y, c1, i0

dp4 o0.z, c2, i0

dp4 o0.z, c3, i0

dp4 o0.x, c0, i0

dp4 o6.z, c4, i0

dp4 o6.z, c5, i0

dp4 o7.z, c6, i0

dp4 o7.z, c7, i0
mov o1, i3

dp4 o0.y, c1, i0

dp4 o0.z, c2, i0

dp4 o0.z, c3, i0

dp4 o0.x, c0, i0

dp4 o6.z, c4, i0

dp4 o6.z, c5, i0

dp4 o7.z, c6, i0

dp4 o7.z, c7, i0
mov o1, i3

PARTITION 2 (VS2)

PARTITION 1 (VS1)

SHADER PROGRAM

Fig. 2. Ex : VS Partitioning

Shader % Inst
Saved

Hatching [15] 46.3
Cartoon [15] 41
Directional 32.4

Lighting [16]
Crystal [17] 39.4
Water [17] 18.2

Bubble [14] 16.12
Vertex Blending 6.86

Lighting[18]

Fig. 3. % Instructions Saved
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Fig. 4. Pipeline Modified to support Vertex Shader Partitioning

stage after disassembling them into vertices (since the vertex shader can only work on
vertex granularity). These vertices after being processed in VS2 are assembled back
to triangles and sent to Must Clip stage. The geometry engine of the pipeline is thus
modified and the fragment generation and rendering takes place as it was in the original
pipeline.

To illustrate the efficacy of our proposal, we have used our shader partitioning algo-
rithm on a set of commonly used vertex shaders and the saving in instructions achieved
are reported in Figure 3. The savings are calculated assuming about 50% trivial reject
rate and compiling the shaders to instruction set implemented in ATTILA framework
[1]. From the results we see that vertex shader partitioning leads to significant reduc-
tion in instruction count, thus motivating the adoption of vertex shader partitioning into
a graphics pipeline.

From the discussion so far it might appear that it is most appropriate for the API
to support vertex shader partitioning. This would require the application developer to
provide two pieces of vertex shader programs, one for transforming the vertices and one
for lighting and texturing. But we have observed that such hard partitioning of shaders is
not always viable and hence propose the framework for adaptive partitioning of vertex
shaders which includes (i) incorporation of vertex shader partitioning pass in the shader
compiler (ii) enhancements to the driver so as to dynamically decide if vertex shader is
to be partitioned and handle the state for VS2 stage in case the shader is partitioned (iii)
incorporation of a fixed-function unit into the architecture for setting up VS2 threads.

2 Related Work

The initial work on VLSI implementation of a programmable geometry engine was pre-
sented in [2]. The system was designed for high performance by connecting multiple
geometry engines in a pipeline where each of the engine could be configured to per-
form one of the fixed-functions - transformation, clipping or projection. Similarly in
[3], six floating point processors are pipelined to implement a programmable geome-
try subsystem. In [4], the authors propose a vertex shader implementation for mobile
platforms and hence target the power consumption of a vertex shader. They suggest a
Fixed point SIMD implementation of the vertex shader in contrast to the floating point
shader proposed in [5] or the integer data-path suggested in [6]. They point out that
the integer implementation does not provide the required performance and the float-
ing point implementation fails to meet the power budget. In [7], the authors study the
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performance benefits of a unified shader architecture in comparison to using separate
processing units for vertex and pixel shading. This results in performance benefits due
to better utilization of processing units by balancing the workload of vertex and pixel
shader threads. The authors of [8] aim to speed-up geometry processing by proposing a
compressed representation of vertex data that not only reduces the bandwidth require-
ment for transferring data from CPU to graphics subsystem but also results in high
vertex coherence resulting in good hit-rate into the vertex cache. An algorithm to re-
order the sequence in which triangles are rendered so as to increase the hit rate into
post-TnL vertex cache is presented in [9]. In [10], the authors report performance gain
by using a cache to hold vertices pre-TnL and another to hold vertices post-TnL. They
indicate that pre-TnL cache enhances the performance by both pre-fetching the vertices
and also results in reuse of fetched vertices and the post-TnL cache caters to the reuse
of the shaded vertices.

In contrast to the architectural techniques suggested in the literature presented so far,
we propose to achieve power and performance improvements by reducing the number
of computations in the geometry engine. This is achieved by performing lighting and
texturing on only those vertices that fall in the view frustum. In [11], the authors indi-
cate that power savings could be achieved if the API supported lighting and texturing of
the vertices after the trivial reject stage. But we observed that such a hard partitioning of
the vertex shader is not always beneficial. This could be due to one of the two reasons
discussed below.

– Thread setup overhead for the second vertex shader could overshadow the advan-
tage of deferring the position invariant part of the shader code. Hence we propose
an adaptive algorithm for vertex shader partitioning, which would take the decision
based on a trade-off between the setup overhead and cycles saved due to partition-
ing.

– Moreover, we observe that there could be a significant number of instructions com-
mon to position-variant and position-invariant part of the vertex shader. Our algo-
rithm identifies the set of intermediate values to be transferred from VS1 stage to
VS2 so as to minimize the amount of code duplication resulting from partitioning
the shader.

Shader partitioning has been studied in [12,13], in the context of code generation for
multi-pass shaders for execution on GPUs constrained by the availability of resources.
Virtualization of GPU resources is achieved by dividing the shader into multiple smaller
programs; the number of such passes is to be minimized to maximize the performance.
In our case, the number of code partitions is fixed at two and the aim is to minimize the
amount of code duplicated across the two partitions. To the best of our knowledge, ours
is the first work that attempts dynamic partitioning of the vertex shader and employs
compiler automation for partitioning the shader.

3 Shader Compiler

We propose to include the vertex shader partitioning pass in the code generation phase of
shader compilation. The binaries are generated for both partitioned and non-partitioned
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versions of the shader and passed on to the driver. Since shader compilation is only a
one time process, the incorporation of this new pass would result in minimal software
overhead. The algorithm used to partition the vertex shader code is explained below.

3.1 Algorithm for Partitioning with Minimum Duplication (PMD)

A DAG (Directed Acyclic Graph) representing the data-flow in the vertex shader pro-
gram is the input to the partitioning phase. Each node in the graph represents an oper-
ation and a directed edge between two nodes exists if there exists a data dependency
between them. A principal input (PI) has no incoming edge and a principal output has
no outgoing edge. We introduce a source node S which is connected to all the PIs (I0,
I1, I2 and I3 in Figure 5) and a destination node T connecting all the POs (O0, O1 and
O2 in Figure 5) to this DAG and call this new graph G.

Trivial code partitioning can be done by simple BFS (Breadth First Search) traversal
of the graph starting from the destination node and separating all nodes reachable from
the PO representing the position attribute (O0 in Figure 5) of the vertex program into
VS1 and all the nodes that are reachable from rest of the POs into VS2 (O1 and O2
in Figure 5). However, this partitioning results in duplication of the instructions that
are common to both VS1 and VS2 (the shaded nodes in Figure 5). The duplication of
code could be minimized by sending some of the auxiliary intermediate values (AUX)
to VS2 along with the position output attribute, and representing the VS2 program as a
function of the PIs and outputs from VS1 (AUX)

VS2 = f(PI,AUX)

Let i be the number of PIs to the VS2 stage and k be the number of auxiliaries sent from
VS1 to VS2. If a vertex shader program can accept a total of C vertex attributes as inputs,

i+ k = C

Now the problem is to identify the set of k intermediate values to be transferred from
VS1 to VS2 from the set of m of them so that, the number of instructions duplicated in
VS2 is minimized. A heuristic that uses an iterative approach to solve this problem is
presented here.

O0 O1 O2

S

I0 I1 I2 I3

7
9

5

T

3

11

2

3 3

2

1

Fig. 5. DAG representing the data-flow in the code
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We start with the DAG of the vertex shader G and separate the common code shared
by VS1 and VS2 by BFS traversal of graph starting from the leaves (POs) and sepa-
rating all the nodes that are reachable from the PO of VS1 (position output attribute of
the shader program) and the POs of VS2 (rest of the output attributes generated by the
shader program) into a graph M. The leaf nodes of this graph represent all the tempo-
raries that are common to both VS1 and VS2 and hence the instructions generating them
need duplication in VS2, if not transferred from VS1. We assign to each node a weight
equal to one more than the sum of weights of all its parents, starting from the PIs which
are given a weight of one. Thus the weight of a node gives the measure of number of
instructions required to generate the corresponding temporary value. Since at this stage
in compilation, high level instructions are already divided into micro-operations, it is
acceptable to assume that each operation takes equal amount of time for execution. In
a system with variable instruction latencies, the weight of a node is calculated as sum
of weights of its parents and the delay of the instruction represented by the node. We
sort the leaf nodes in order of their weight and divide them into two sets A and B such
that set A contains k nodes of largest weight. Taking set A as an initial solution, we it-
eratively replace nodes in set A with nodes from the rest of the graph M, such that each
replacement reduces the residual computations required to generate all the leaf nodes
from the PIs and the nodes in the solution set. Starting from the leaf nodes, we traverse
up the graph until we reach a node(say node R) which is reachable from at least two of
the leaf nodes. Consider the following three scenarios.

1. The node R is reachable from at least two nodes from set A.
Consider the scenario shown in Figure 6.

Instead of sending P and Q, we can send node R and node D. By sending node
R we can compute P and Q in VS2 with a cost of 2 instructions, but we have saved
a cost of 5 by sending D. If the cost saved by sending D is greater than cost of
computing nodes P and Q from R, we replace P and Q from the solution set with
nodes R and D. This is captured in the equation below.

Let P and Q be the nodes of smallest weight from set A that are reachable from
R, and let D be the node of largest weight from set B.

Condition 1: Wr +Wd > Wp +Wq − 2Wr

Action: Replace P and Q from set A with R and D

In case the above condition fails, as shown in the scenario Figure 7, we check if fan-
out of node R has nodes in set B and compute the decrease in cost of generating
these nodes when R is sent to VS2. If this difference is greater than the cost incurred
in computing node P from R, we replace node P with node R.

1

10

Q

R

11 11

1

P

SET A

5

SET B

D

Fig. 6. Case 1

10Q14
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Fig. 7. Case 2



Adaptive Partitioning of VS for Low Power High Performance Geometry Engine 117

Condition 2: Wr > Wp −Wr

Action: Replace node P with node R

2. The node R is reachable from only one node P from set A. We use the Condition 2
for evaluating a possible replacement of node P with node R.

3. The node R is not reachable from any of the nodes from set A. - No replacement is
possible in this case.

The BFS traversal is done until the root node is reached, and whenever a node is en-
countered that is common to two or more leaf nodes, we use the conditions enumerated
above to find a possible replacement that would improve the solution. The pseudo code
for the algorithm discussed above is presented herein.

The algorithm requires three BFS traversals of the graph. In each BFS traversal, the
nodes and edges of the graph are visited once and a constant amount of work is done at
each node and edge. If e is the number of edges and m is number of nodes in the graph,
time complexity of the algorithm is O(e+m).

3.2 Comparison with the Naive Algorithm

Figure 8 shows the reduction in duplicated instructions and hence increase in instruc-
tions saved by using our partitioning algorithm over the trivial one used in [11]. The
savings are reported assuming a Trivial Reject rate of 50%.
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Fig. 8. Comparison of proposed PMD algorithm with the existing one

Algorithm 1. PASS 1 : Separate the Duplicated Code
Input: DAG of the vertex shader
Output: DAG of the duplicated code
1: Start BFS traversal of the DAG starting from the destination node. and Color the node corre-

sponding to O0 red and all other outputs blue.
2: If a node is reachable only from a red colored node,color it red.
3: If a node is reachable only from a blue colored node,color it blue.
4: If a node is reachable from both red colored nodes and blue colored nodes color it green.
5: The DAG with green colored nodes represents the duplicated code.
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Algorithm 2. PASS 2 : Label the DAG
Input: DAG from PASS1
Output: DAG with nodes labeled with weights
1: BFS traversal of the DAG starting from the source node.
2: Assign all the PIs a weight of 0.
3: On reaching a node,
4: if node is green then
5: Weight of node ← 1 + sum of weights of its parents
6: If a leaf node is reached, insert it into a max heap (sorted by weight)

Algorithm 3. PASS 3 : Partitioning the DAG
Input: DAG from PASS 2 and the heap of sorted leaf nodes. Each node has fields w1,w2,w3 set

to zero and n1,n2 pointing to NULL. w1 and w2 hold the weights and n1,n2 point to the two
highest weight nodes of set A that the node is reachable from. w3 holds the weight of the
heighest weight node of set B, that the node is rechable from.

Output: Set A containing k intermediate nodes to be transferred from VS1 to VS2
1: The first k nodes de-queued from the heap form set A (solution set) and the remaining nodes

set B.Insert all the leaf nodes in a an empty queue Q
2: while Q not empty do
3: N ← dequeue(Q) , w ← weight(N)

4: Reach all the parents of N.
5: if N’ is reachable from N, such that N ∈ A then
6: if w(N) < w1(N ′) then
7: w1(N ′) ← w(N) , n1(N ′) ← N
8: else if w(N) < w2(N ′) then
9: w2(N ′) ← w(N) , n2(N ′) ← N

10: if N’ is reachable from N, such that N ∈ B then
11: w3(N ′) ← w(N)

12: Insert N’ into Q, if not already enqueued.
13: if N is not a leaf node then
14: w′ ← w(Nh), where Nh is the head of the heap H
15: if n2(N) is not NULL then
16: if w(N) + w′ > w1(N) + w2(N) − 2w(N) then
17: replace nodes N1 and N2 from set A, with nodes N and Nh. Delete Nh from the

heap.
18: else if n1(N) is not NULL and w3(N) is not zero then
19: if w(N) > w1(N) − w(N) then
20: replace node N1 from set A with node N.

3.3 Selective Partitioning of Vertex Shader

Spawning a thread on the Programmable Shader Unit incurs some thread setup over-
head, the extent of which is dependent on the micro-architecture of the thread setup unit.
This could include the idle time waiting for the availability of resources, time spent on
loading the inputs, time spent on transmission of outputs, etc. Partitioning of the ver-
tex shader results in VS2 thread setup overhead. Hence it is very important to weigh
the benefit of cycles saved on rejected vertices against the overhead incurred on thread
setup for the vertices that are not rejected.
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The cost incurred to process a batch of vertices (B) without vertex shader partitioning
is given as

Costno−part = B × (VS Thread Setup overhead + Execution time of VS)

If we assume C be the rate at which vertices are trivially rejected, then cost incurred to
process the batch with partitioning is given as

Costpart = B × (VS1 Thread Setup overhead + Execution time of VS1) +
B × (1− C)× (VS2 Thread Setup overhead + Execution time of VS2)

Vertex shader partitioning is profitable only if Costpart is less than Costno−part and
hence we propose to enhance the driver so that it can take the decision of partitioning
dynamically at run time. The driver is provided with the thread setup overhead for VS1
and VS2 stages and the execution time is approximated to the number of instructions in
the program. Since the partitioning decision is to be taken prior to the trivial reject stage
of the pipeline, we use history based prediction for clip rate. Due to spatial coherence
of the frames, we can expect the trivial reject rate of adjacent frames to be comparable.
The same has been observed from simulation of various games and shown in Figure 9.
Thus, the clip rate of the previous frame can be taken as an approximation for the clip
rate of present frame. We have observed that this history based adaptive partitioning
algorithm results in attractive performance benefits in comparison to hard partitioning
of the vertex shader.
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Fig. 9. Variation of Trivial Rejects across Frames - From UT2004

4 Simulation Framework

We have used the ATTILA [1] simulator framework for implementing our vertex shader
partitioning algorithm. ATTILA is an open source simulation framework that models a
modern GPU micro architecture. Though the implementation details of our proposal are
with reference to the ATTILA framework, the ideas are generic enough to be incorpo-
rated into any micro-architecture with minor variations. The shaded portions of Figure
10 show the additional units added to the existing model. In this section the architectural
details pertaining to vertex processing on the Graphics Processor modeled in ATTILA
framework are explained.

Command Processor acts as an interface between the driver and the pipeline. It main-
tains the state of the pipeline and on receiving the commands from the driver, updates
the state of the pipeline and issues appropriate control signals to the other units in the
pipeline. At every context switch, the command processor does the following tasks:
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(i) Loads the control registers : it updates the registers representing the render state.
(ii) Initiates the transfer of data to GPU memory : it sets up the transactions to fill vertex
buffer, index buffer, load shader program, load textures etc. from system memory to
GPU memory through the memory controller.

Streamer is responsible for reading the vertices from the GPU memory and setting up
the vertex shader threads to process them. Vertices and Indices are buffered in FIFOs
and the Shader loader spawns a vertex shader thread whenever a Programmable unit is
free. When Indexed mode is used to address the vertices, a post shading vertex cache
is used for reusing the shaded vertices. The shaded vertices are sent to the primitive
assembly unit.

Unified Shader architecture implemented in ATTILA is based on the ISA described
in ARB vertex and fragment program OpenGL extensions.The ALU is a 4 way SIMD
working on 4 component floating point vectors. The instruction memory is implemented
as a scratchpad memory divided into logical partitions to hold the vertex, triangle setup
and fragment shader programs. The driver is responsible for loading the shader code
into the scratchpad (if not already present) whenever there is a state change. The register
file in the shader has four banks, one each to store input attributes, output attributes,
constants and intermediate results of the program. The constant register bank is shared
by all threads whereas 16 each of input/output and temporary registers are allocated per
thread.

The following modules are added to the existing architecture to support vertex shader
partitioning.

Vertex Buffer: We introduce a small fully associative cache to buffer the vertex input
attributes read at the VS1 stage for reuse at VS2 stage. Since the vertices reach the
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VS2 stage in the same order in which they are processed at VS1 stage, we choose to
use FIFO replacement policy for the buffer. Since the trivially rejected vertices are not
processed at the VS2 stage, a de-allocation signal to the buffer from the trivial reject
stage helps free the lines that carry the trivially rejected vertices, thus increasing the hit
rate into the cache.

Feeder Unit: The micro-architecture of the feeder unit is as shown in Figure 10. The
Triangle buffer holds the triangles accepted after passing through the Trivial Reject
stage of the pipeline. A triangle is a set of three vertices, each associated with an index
to address it and the position attribute computed by VS1. If vertex shading is disabled
for the current shader, the triangles are sent to the 3D clipping unit from the Triangle
Buffer. If partitioning is enabled, the triangle is disassembled into vertices and sent to
the Shader Loader. The Vertex Output Cache aids in the reuse of the shaded vertices.
When the shader loader receives a vertex, it looks up the vertex output cache for the
vertex. If the result is a cache miss, the shader loader reads the input attributes of the
vertex from the Vertex Input Buffer and spawns a VS2 thread for processing the vertex.
The triangle assembly unit receives the position output attribute of the vertices from
the Triangle buffer and rest of the attributes from the programmable shader. After the
triangle assembly, the triangles are sent to the 3D clipping unit.

5 Experiments and Results

To illustrate the advantages of vertex shader partitioning, we have taken a few frames
from the games Unreal Tournament 2004(UT), Chronicles of Riddick(CR) and Quake4
and rendered them on ATTILA modified to support vertex shader partitioning. Some of
the sample frames rendered on the modified architecture are shown in Figure 12. The
frames rendered by the modified architecture are compared with the frames rendered
on the basic architecture for validating the correctness of our implementation.

Figure 11 shows up to 50% saving in vertex shader instructions and about 15 % im-
provement achieved on cycles spent on geometry processing by adopting our algorithm.
The results are compared against those achieved by the naive partitioning algorithm pro-
posed in [11]. We observe that due to hard partitioning of vertex shader, as proposed
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(a) UT:Frame 50 (b) CR:Frame 500 (c) Quake:Frame 100

Fig. 12. Frames rendered on ATTILA simulator enhanced with Vertex Shader Partitioning

by them, there is a degradation of performance on those frames with smaller clip rate
or on those that have so few instructions in VS2 stage that the thread setup overhead
overshadows the advantage of partitioning. This is observed in the case of the frame ren-
dered from game Quake4 where most of the effects are achieved by texturing and vertex
shaders are used only for simple transformation. In this case, hard partitioning, though
resulting in a small saving in instructions, leads to a negative impact on performance.
In contrast, our adaptive algorithm has almost negligible effect on performance in such
frames. Similarly in frames containing shaders that have a lot of common code between
VS1 and VS2 stages, hard partitioning leads to negative impact on performance due to
duplication in instructions. This is observed in the frames rendered from Chronicles of
Riddick. These frames use shaders for vertex blending and lighting. This shader when
partitioned naively would lead to large number of instructions being duplicated as re-
ported in Figure 3. Our approach of reusing the intermediate values generated at VS1
in VS2 leads to better results. In frames having higher trivial rejects and using large
number of instructions in VS2 stage, our algorithm gives better performance improve-
ment and the saving in instructions is comparable to that achieved by hard partitioning
method. This is observed from the scenes rendered from Unreal Tournament. From the
graph we see that number of instructions saved by our algorithm is slightly less than
that achieved by the naive method. But this is intentional since we avoid partitioning
the shaders that would result in greater thread setup overhead and hence achieve better
performance than the naive method.

The technique proposed in this paper works unconditionally on DirectX9 applica-
tions and also with OpenGl application without Geometry Shader Extension. For Di-
rectX10 and DirectX11 applications, this technique could be used when the Geometry
Shader and Tesselator stages are disabled respectively. When these stages are enabled,
we switch back to non-partitioned vertex shader.

6 Conclusion

In contrast to older generation games which were predominantly pixel processing in-
tensive, the newer ones tend to aim towards achieving greater realism by incorporating
more and more geometry, thus increasing the load on vertex processing. This is as a re-
sult of increasing number of primitives/frame and also increasing size of vertex shader
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programs. Based on the observation that about 50% of the primitives are trivially re-
jected in each frame, we proposed a mechanism of partitioning the vertex shader and
deferring the positioning invariant part of the shader to the post trivial reject stage of
the pipeline. We also identified that such partitioning can have a negative impact on
performance in some cases, and proposed an adaptive partitioning scheme that applies
partitioning only to scenarios that benefit from it.

From the experiments on ATTILA framework, we observe upto 50% saving in shader
instructions due to vertex shader partitioning leading to 15% speed-up and can expect
up to 50% power saving on computations in the geometry engine. Since programmable
cores are the major consumers of power, we can expect a significant saving on overall
power consumption by using vertex shader partitioning.
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Abstract. As the amount of available information continues to expand, tradi-
tional text-based searches for digital libraries and similar systems become in-
creasingly cumbersome to the user.  Selection of the best result calls upon the 
user to compare and contrast top results; this can involve investigative reading 
of each, to determine what quality and amount of the desired topic is present in 
each.  This paper presents an alternative search strategy, utilizing visualization 
to relate detailed content information obtained through indexes.  By providing 
such information in a visual manner, the aim is to reduce the burden of investi-
gation placed upon in present systems. 

1   Introduction 

The proliferation of computing technology and the advance of the Internet has greatly 
changed the way in which people obtain information.  In these days, a person can 
access to the information which is more than we can handle without the limitation of 
time and location.  The amount of available data grows ever rapidly, but the ability for 
a user to find their desired information has progressed with less vigor.  This is particu-
larly true of highly concentrated sources of a broad array of information, such as doc-
uments on the Internet and Digital Libraries. 

The current library system provides several attributes associated with books as a 
response to the users’ inquiry.  The search results include book title, author, publica-
tion year, ISBN number, thickness, etc.  However, there is often a large expectation 
left on the user’s ability to read through the results.  Furthermore, the text-based ap-
proach is non-intuitive and inefficient for finding suitable information through com-
parison of many possible search results [1].  While ranked search results may assist 
the user in this endeavor, there is still a reliance on the user investigating the top re-
sults individually [2, 3]. This will only become more problematic as the information 
domain they are applied to continues to grow larger and more complex.   

Information visualization is an effective tool that can present a large amount of 
data compactly, but intuitively for easy comparison.  By exploiting users’ perceptual 
cognition, studies have shown that the graphical illustration of data has contributed in 
improving the users’ understanding and reviewing speeds [2, 4, 5].  Borner and Chen 
explained that there are three common usage requirements for visual interfaces to 
Digital Libraries: First, to support the identification of the composition of retrieval 
result; second, to understand the interrelation of retrieved documents to one another, 
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and last, to refine a search, to gain an overview of the coverage of a Digital Library 
(DL) and to facilitate browsing and to visualize user interaction data in relation to 
available documents in order to evaluate and improve DL usage [6].  

When using physical books, people tend to view multiple at once; to better com-
pare and review information across multiple sources, and to have a better overall 
understanding of the domain.  In their study, Good et al, identify this to be a major 
weakness in current DL displays [1]. To address related issues, researchers have con-
ducted studies applying visualization techniques for book searches and presenting 
various forms of search results [7, 8].   

The Graphical Interface for Digital Libraries (GRIDL) is a system that displays a 
hierarchical cluster of the relevant data to a query on two-dimensional display [9].  
This system uses a two-dimensional coordinate, the axes of which are selectable from 
a variety of different attributes. Results were displayed within each cell as a collection 
of different size icons, color coded by document type.  Marks and his colleagues pre-
sent a similar approach, based on scatter plots, known as ActiveGraph [10].  Because 
this approach results in much more node clustering and overlap, a logarithmic trans-
formation is provided, along with the ability to filter out user specified documents.  
ActiveGraph also provides the ability to specify shape, color, and size of nodes repre-
senting documents.  By allowing users to manipulate the manner in which data is 
displayed, these visualizations provided a strong ability to reveal patterns within the 
data that may not typically be apparent.   

These studies mainly focused on aiding the user in comparing the search results ef-
fectively by presenting book properties through various visual attributes; but they 
don’t express in detail the amount of content related to user interest.  Lin proposed a 
graphical table of contents (GTOC) that showed the dimension of items in the table of 
contents based on Kohonen’s self organizing feature map algorithm [11].  The paper 
introduces how documents can be organized and then visualized to allow the user 
easy access of underlying contents.  The GTOC prototype describes various interac-
tive tools to assist the user exploring document contents and analyzing relationships 
among terms in the table of contents.   

The main goal of the research presented in this paper is the development of visuali-
zation techniques that will make the user’s book search effective by exploiting the 
book index.   

2   Methods 

The Visualized Index-Based Search (VIBS) system utilizes an Overview + Detail 
approach for presenting book search results. This is a visualization technique that uses 
multiple images to display the entire data space, as well as show an up-close, detailed 
view of the data [12]. Similar to traditional library searches, the overview will present 
outline of the book search results through graphical illustration. The user interactively 
selects a subset of visualized icons that will allow them to execute content level ex-
ploration. When a user provides search terms of interests, the Detail view presents a 
rich visualization of the assets of the given query in a book index with other related 
information. The resulting visualization supports the user for intuitive comparing and 
contrasting the selections in greater detail. 
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2.1   Overview Visualization  

The Overview allows the user to perform a general search on the data space, similar 
to traditional library tools. The current prototype utilizes a title based search, although 
a more robust implementation would make use of additional categorization provided 
by the environment. To address the inefficiency of space utilization of text-based 
book search application, VIBS presents the results using a grid based layout. The X 
and Y axis represent individual book attributes, including author, publication year, 
number of pages, and review details. These are freely changed via drop-down selec-
tion boxes; providing greater control over the result display and assisting with user 
understanding [9].  Book nodes are located accordingly. 

 

Fig. 1. Overview display (left). Close-up of Overview with tool-tip (right). 

Total page count defines the radius of the corresponding circular icon. The books 
are classified into N categories depending on the number of pages, where each group is 
mapped to a predefined radius. Within the same category, the radius is linearly interpo-
lated according to the page count of the item. By properly utilizing non-liner and linear 
transformation, the VIBS can display variable sizes of book volume on the limited 
screen space while still delivering its magnitude. Through the visual illustration of 
book dimension, the users can intuitively estimate the amount of content available. 

VIBS uses the RGB color model to deliver other attributes to the user. As part of 
this, the Overview employs collaborative filtering to relate the perceived user value of 
each result. Collaborative filtering is a type of content-based filtering which utilizes 
the opinions of users who have already evaluated the quality of information [13]. This 
is done by collecting user reviews and their fidelity, typically found on most book 
merchant web-sites. The user’s satisfaction with a book corresponds to the green color 
component of the circular node. The average review score a book receives is mapped 

to the green intensity, as shown by equation 1, where G
iC  is the green intensity asso-

ciated with a book i, Ei
G is the average user rating of book i, Imax is the brightest hard-

ware intensity of green, and G
maxE  is the highest available user rating. 

G
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G
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G
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The accuracy of collaborative filtering is highly dependent on the number of evalua-
tors. Because of this, the user rating of a book can be unreliable if the number of indi-
vidual reviews is relatively low [14]. To deliver the fidelity of user ratings of the book, 
the Overview utilizes the blue color component to represent the number of unique 
evaluators who rated the book.  The red color components relates the publication year, 
as more recent works are likely to hold more up to date information. These two colors 
are treated similarly to equation 1. The three color components are blended together to 
form a color Ωi which is the final color of the circular node. The end result is that 
books with high ratings, a large reviewer base, and more recent publication will have a 
prominent color closer to white. To assist the user, mouse-over tooltips are employed 
to relate the color data individually along with the title and author (figure 1). 

2.2   Detailed Visualization 

The Overview interface assists the user to compare attributes associated with books.  
Meanwhile the Detail visualization focuses on showing the amount of searched con-
tents of selected books through a graphical illustration.  The VIBS system utilizes the 
book index to present the amounts of related contents, search terms distribution, and 
associated sub-terms to search terms in the index pages. 

When a user enters a search term of which information they are looking for, the 
Detail view displays the corresponding data using a radial tree structure. In the dis-
play, terms are represented as circles with the center representing the given search 
term and sub-terms are displayed as nodes branched off of the center circle (Figure 2). 
With the similar way used in Overview visualization, the VIBS system makes use of 
multiple attributes in relaying a range of information that will assists the user’s find-
ing a book of their interest.  

 

Fig. 2. Detail view showing (left) diagram with expanded sub-term and an overflow node, and 
(right) context highlighting of text list and bar display 
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The total number of pages associated with a term in the index could be considered 
to have strong correlation to the amount of information provided by the work on that 
subject.  In the Detail view, this important measure is naturally mapped to the radius 
of the term icons.  This is a cumulative page total of the node’s associated term, and 
all of the term’s subordinates within the index.  This graphical illustration allows the 
user to gain a general understanding of how different book results compare, without 
having to compare each level of sub-terms in detail.  

The VIBS system applies color-coding to the terms as a visual abstraction occur-
rences and concentration associated with that item. This is intended to provide the 
user with an understanding of the comparative value of the different entries being 
displayed. The green intensity represents the total number of occurrence of the term 
throughout the index.  A larger number of occurrences could be indicative of the term 
having broader, or perhaps more complex coverage within the book. The system ap-
plies normalization to the occurrence of all terms in the index that results in the node 
with the highest occurrence having the brightest green intensity, and the node with the 
least having the darkest. 

Blue represents the concentration of sub-terms appearance within the book. A term 
which appears in two books with the same number of pages allocated by both indexes 
may not necessarily indicate equal coverage on the topic.  If one index were to have 
the term listed as a single contiguous section of pages while the other had each page 
listed independently, the former would be considered to likely have a more meaning-
ful coverage of that term.  The ratio of page continuity to all pages containing a sub-
term determines the blue intensity of color-code by equation 2, where Ci

b is the blue 

intensity for sub-term i, ∑ =
n

0j P
C

j is the number of individual page ranges for i, Ti is the 

total number of pages for the term i, and Imax is the brightest intensity of blue possible 
on the machine.  This gives terms with more concentrated information a stronger 
representation in the visualization. 

Ci
b = (1- (∑ =

n
0j P

C

j  / Ti)) * Imax (2) 

Displaying the relationship between search term and its sub-terms is valuable infor-
mation for content search. A sub-term which has page allocation close to the search 
term will likely have a stronger correlation than one which is on the opposite end of 
the book.  This relationship is presented by the distance between the parent and sub 
nodes within the visualization.  The magnitude of the distance is average distance 
between the search term and child page occurrences, normalized across all terms 
displayed. This is computed with equation 3 where Dj is a normalized distance be-

tween the root node and sub-node j, Pj
k is the page number contains sub-term j, iRoot  

is the mean page number having the root word i, and NORM and ABS are a normal-
ize and absolute function respectively. 

Dj = ABS(NORM( )in
0k

k
j RootP( −∑ =  / N)) (3) 

Sub-terms with a larger number of associated pages are deemed more important, and 
are subsequently given display priority. These children nodes are arranged around the 
parent top to bottom in decreasing value, ensuring the user can readily identify which 
items are potentially more valuable for the particular work being displayed. In the 
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event that the space around the parent node can’t accommodate any additional terms, 
the remaining un-drawn entities are collected in a single node, indicated via a red 
outline.  As higher priority terms are drawn first, only lower value items will be pre-
sent within this ‘overflow’ node.  A user can still investigate these items by expanding 
the node. 

Space is also preserved by displaying only the first level of sub-terms around the 
root as these are considered higher value than subsequent child nodes. Terms with 
hidden children are indicated by a jagged, dashed outline. When the users want to 
explore deeper into the index hierarchy, they can freely expand these elements by 
clicking on them; clicking the root will expand all such nodes. When a node is ex-
panded, it is drawn further away from the parent in order to avoid overlapping. To 
maintain the information originally relayed by the branch length, a marker is drawn to 
indicate the original length. 

The Detail view interface supports additional tools to assist the user.  This is in the 
form of an information panel that updates based upon the user mouse activity with the 
display. By hovering over a node, an information panel will appear, highlight the term 
in a text list. A histogram reflecting the value of the number of occurrences, and page 
range ratio is also shown.  This will support the user in keeping track of what different 
topics are available in the different books, while also relating more specific informa-
tion for the different attributes. 

3   Experiment 

To investigate the effectiveness of the VIBS system as a search supporting tool, we 
conducted survey-based usability tests that collected users’ opinion to the VIBS over 
traditional text-based search systems.  For the experiments, two testing applications 
were implemented using Java.  A text-based application was constructed simulating 
the conventional library book search system.  The second was implemented as ex-
plained in Section 2. 

Seventeen students majoring in computer science participated in the experimental 
sessions.  Participants had no problems in color perception, were comfortable using a 
mouse-driven GUI application, and had no previous exposure to VIBS. Sessions were 
held in groups of three to five, and started with a brief orientation. This orientation 
presented the functionality provided by both systems along with an explanation of the 
visualization.  Each participant was then given time to investigate the systems until 
they were comfortable using it. 

Next, the testers were asked to search books by using the text and visualization 
based approaches independently.  Both applications show the overall view first either 
text-based or graphically forms respectively. From the overall view each student se-
lected desirable books by comparing their different properties while utilizing the in-
teractive functionality of the system. The selection of books from the overall view 
leads the user to the detail view, where participants are able to perform searches on 
the indexes. From this view, participants can analyze the index-level information 
related to their queries which will assist them to understand better about the underly-
ing contents; eventually the better chance to find books has more useful or related 
information.  
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Participants were then asked to fill out a post experimental survey.  The survey was 
designed to determine user satisfaction about the proposed visualization over a tradi-
tional text-based approach.  Comments and suggestions on how the visualization can 
be practically deployed to fill such a role in the future were also collected. 

3.1   Survey Results 

The questionnaire has 14 questions which utilize a 5 point Likert scale; 5 indicating 
the highest level of satisfaction, and 1 the lowest. Table 1 below shows the survey 
results that summarizes the user’s feedback to VIBS over a text-based library search 
system. 16 out of 17 participants stated that they had previous experiences using text-
based book search system. Overall users were satisfied with both the overall and de-
tailed view of the proposed system. Although it was expressed in their comments 
indicating unfamiliarity of visualization system over the current text-based interface, 
53% of participants stated that they are more satisfied using VIBS than a text-based 
approach, 35% of the participants had a neutral stance, 12% of participants still prefer 
to use text-based book search interface. 82% of participants responded that the over-
view visualization improved their ability to identify desirable book. For questions 
specifically associated with the overall view, determining the overall concentration of 
information for individual books, as well as comparing multiple books to decide 
which is most appropriate, was considered a strong benefit provided by the prototype.  
Participants strongly agreed that presenting a visual abstract of book attributes was 
meaningful for their search activities. They also expressed that the grid-based layout 
assisted them in comparing multiple books and the selectable axes were very helpful 
and assisted them in identifying desirable results.  

Table 1. Post experiment survey results as percentages 

Questions Pos Neut Neg 
VIBS overall was preferable to a text-based search 53 35 12 
The Overview improved identification of desirable books 82 6 12 
The choice of visualized attributes provided a meaningful 
search environment. 

76 18 6 

Use of the selectable axis facilitated a better understanding 
of a set of books. 

71 24 5 

The Overview helped in selecting a subset of books. 65 29 6 
It was easy to discern book attributes based on node color 53 18 29 
The Detailed view was preferable to a text approach 65 24 11 
The radial layout of the Detail view was intuitive 65 18 17 
The Detail view made concentrations of information easy to 
identify 

76 24 0 

It was easy to discern term attributes based on node color 47 24 29 
The detail view made relevant book selection easier 88 12 0 
The relation between a term and it’s child was clear 65 35 0 
The Detail view helped identify terms related to the search 94 6 0 
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The participants also replied positively to utilizing visualization for presenting in-
dex information of books. 65% of participants satisfied using the visual interface for 
presenting book contents, meanwhile 11% of users prefer to explore book indexes in 
text. Users responded optimistically to questions asking the effectiveness of radial 
tree visualization that displays hierarchies of index terms and its magnitude. Espe-
cially participants strongly agreed on two facts that the detailed visualization helped 
them to choose books with more relevant information and to understand other term 
related with the search term to 88% and 94% respectively.  Meanwhile in both views, 
the primary recommendation provided by users was to make the color blending of the 
visualization more intuitive. The post-experiment interview showed that this stems 
primarily from the fact that some users were unfamiliar with the RBG color blending 
scheme, having had little contact with it in their daily lives. 

4   Conclusion and Future Work 

Overall, feedback was positive toward the VIBS system.  The testers found it to be an 
interesting and robust alternative to more traditional search methodologies.  While 
there were users that still held preference toward a traditional text-based approach, 
several brought up the topic of familiarity.  Although these types of searches have the 
weaknesses outlined earlier, they benefit in wide-spread usage and familiarity among 
users.  Even though the testers had limited exposure to the VIBS system prior to the 
experiment; that more than half would prefer it over a traditional text-based search is 
very promising.   

Taking a closer look, the Overview was well liked by most users.  Similar com-
ments were made regarding familiarity about this display; the chart-like layout was 
also readily understood, and was an aspect of the view that users felt improved their 
understanding of the data.  The interaction provided through the selectable axes as-
sisted in this, as users appreciated the ability to tailor the display closer to the charac-
teristics more relevant to his or her interest. 

Although the Detail view lacked the familiarity present in the Overview, partici-
pants still responded favorably.  The ability to compare multiple sources at once in 
detail was an aspect of the system users were very appreciative of.  One important 
point in particular is the high percentage of users that found this view greatly en-
hanced the identification of other important terms related to the original query.  This 
exploratory aspect of the system is important, in that it can lead users to more appro-
priate terminology to refine the search.  Additionally, it could expose users to other 
concepts contained within each work that, while not to original goal, could be some-
thing which would sway the user to placing more value in one result over another. 

The primary issue highlighted by the experiment is user difficulty with interpreting 
the color codes of both views. Although around half in both instances were comfort-
able with this aspect of the system, around 30% had trouble with it. The post-
experiment interviews provided two main causes for the diverging opinions. First, the 
RBG color model was not familiar to some. These users cited heavy exposure to the 
RBY model as being a source of confusion when interpreting the displays. The in-
creased unfamiliarity left those individuals feeling more comfortable using a text-
based search.   
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The other difficulty reported by users was in determining the relative value of one 
result with another.  This could be, in part, a result of the human eye being more sen-
sitive to some colors rather than others.  For example, green-yellow colors have the 
strongest reception, which could mislead a user into considering a result with this 
color to have more overall value than another when that may not be the case [15].  
Researching and examining alternate color models will be one of the challenging task 
for future work on the VIBS system. 

The other area for future work is with regard to content analysis. As books and 
similar works move toward electronic rather than traditional hard-copy formats, the 
use of indexes in the traditional sense may become obsolete.  For VIBS to be viable in 
such a scenario, full content analysis would be an alternative for classifying informa-
tion.  Instead of relying upon pre-existing documentation of content, the system could 
examine the work in full, determining such items as key words and topics, along with 
their frequency.   

In a similar vein, the inclusion of a thesaurus-like aspect would also be a poten-
tially valuable addition.  The current Detail view arranges sub-terms solely by content 
size, a redundant expression to the size of the nodes. Instead, sub-terms could be 
grouped according to similarity, which would serve to strengthen the exploratory 
aspect of the system, and improve the user’s experience. 

By working toward the solutions and ideas presented here, continued work on the 
VIBS system will be better able to address some of the difficulties presented through 
the experiments.  This will also serve to improve upon its strengths, and allow for a 
more comprehensive alternative to more traditional text-based search methodologies. 
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Abstract. Visualized images have always been a preferred method of commu-
nication of information contained in complex data sets. However, information
contained in the image is not always efficiently communicated to others due to
personal differences in the way subjects interpret image content. One of the ap-
proaches to solving this issue is to determine high-saliency or eye-catching re-
gions/objects of the image and to share information about the regions of interest
(ROI) in the image among researchers. In the present paper, we propose a new
method by which an importance map for a visualized image can be constructed.
The image is first divided into segments based on a saliency map model, and eye
movement data is then acquired and mapped into the segments. The importance
score can be calculated by the PageRank algorithm for the network generated by
regarding the segments as nodes, and thus an importance map of the image can
be constructed. The usefulness of the proposed method is investigated through
several experiments.

1 Introduction

As complexity of raw data in computational simulations increases, visualization of the
data has played an important role in its analysis, and such visualized images have al-
ways been a preferred method of communication. On the other hand, interpretation of
these visualized images is becoming more difficult, due to the enormous amount of in-
formation contained in them. Therefore, clear interpretation of the images is required in
order to share useful information. However, information contained in the image is not
always efficiently communicated to others due to personal differences in the way sub-
jects interpret image content. Moreover, the need for collaborative evaluations, second
opinions, and third party evaluations makes the problem of conveying information to
others correctly even more difficult to solve.

Both formative and summative evaluations of the image are often required in order
to solve those issues. In these cases, determining how to estimate high saliency or eye-
catching regions/objects of the image is one of the most important problems.

A number of methods for conveying information to others and for determining high-
saliency regions have been proposed. One such method is to manifest regions of interest
(ROI) [1] and to show the ROI according to level of detail (LOD) [2]. In most cases,
particular objects or regions are extracted from the image based on the meaning of the
content, after which the LOD is designed. Although this is a powerful method, there are
two major problems with this approach.

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 135–146, 2009.
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One is the difficulty involved in separating particular objects or regions from the
image. In order to separate these objects/regions from the image, the problem of figure-
ground separation has been solved [3], and methods to detect the critical points and
particular lines/regions have been developed [4][5]. However, it is not always easy to
detect the boundaries in an image, or to analyze the figure-ground relationship, and
figure-ground separation remains an unsolved problem. Despite this, methods of detect-
ing the critical points and particular lines have been established for images produced by
visualizing fields that have a mathematical structure.

The second problem is that if there is no definitive structure, then the ROI and LOD
depend strongly on personal interpretation, and the definition of an ROI or LOD be-
comes subjective. Therefore, it is difficult to assign a certain quantity of interest to a
particular region. This is related to the first. In general, it has been pointed out that
images have inherently recognizable areas. Considering the visual characteristics of the
human eye, most viewers naturally focus their eyes on regions that contain recognizable
areas. Therefore, such regions may be regarded as ROI candidates.

In order to detect such regions, we focused on the following two approaches. The
first is a model-based approach that consists of computational models that imitate visual
attention based on the human cognitive system. One of the most popular computational
models was introduced by Itti et al. [6]. They modeled high-saliency regions that attract
the human eye in a task-independent manner. Their model is an extension of the visual
attention model proposed by Koch et al. [7]. The model of Itti et al. is referred to herein
as the saliency map model. Using the saliency map model, eye-catching areas can be
extracted from a source image [8][9]. Furthermore, the validity of this model has been
confirmed by eye-tracking experiments [10][11] and in applications [12][13][14].

The second is an eye movement analysis. Although most eye movement data is mean-
ingless, as pointed out by Duchowski et al. [15], the overt response of the subject in vi-
sual attention processes, tacit interest, and personal skill or knowledge can be estimated
based on the fixation and the saccade [16][17][18].

These two approaches for detecting recognizable areas or ROI have been applied
to image processing. Maeder [19] reviewed methods for image quality assessment and
argued the usefulness of a perceptual modeling framework known as an image impor-
tance map. Although he considered the human cognitive system, his goal was to assess
the image quality effectively. Lee et al. [20] proposed methods for detecting manipu-
lated images. Their methods involve segmentation, classification, and common-sense
reasoning. An importance map constructed by mean-shift image segmentation [21] and
the visual attention algorithm of Itti et al. [6] is used in the processes of segmentation
and classification. In these studies, an importance map of an image played an important
role in processing the image.

In the present paper, a method for conveying quantitative information about both
subjective/ personal ROI favored by ordinary or skilled viewers and also an objective
view of ROI in a visualized image is considered. For this method, we use the saliency
map model and eye movement analysis to extract an ROI from an image and then assign
a quantitative index to the ROI. We refer to a distribution of such ROI as an Image
Importance Map (IIM). A method for constructing an IIM from the visualized image is
described below.



Generation of an Importance Map for Visualized Images 137

2 Method

First, a source image and eye movement data for a visualized image are provided as the
input data. Second, the source image is segmented by the following three steps:

Step 1. A saliency map for the image is created according to the model proposed by
Itti et al. [6].

Step 2. Regions of high salience in the map are clustered.
Step 3. The image is segmented based on the clusters produced in Step 2.

Third, two types of Image Importance Map (IIM) are constructed. The IIM is con-
structed by assigning a quantitative index to the segments. The quantitative index for the
first IIM is calculated using the attention shift model of Itti et al. [6]. The index for the
second IIM is calculated by eye movement data using the PageRank algorithm [22]. Fi-
nally, two IIMs are integrated into one map using the Biased PageRank algorithm [23].
The details of this process are presented in the following sections.

2.1 Segmentation of the Source Image

In a task-dependent manner in particular, it may be considered that conveying infor-
mation related to subjective/objective ROI in the image to others is based on important
objects. In order to identify the objects in an image, an image segmentation method
for objects that have discernable or presumed contours has been used [24]. Therefore,
object-based segmentation is used in the importance map of Lee et al. [20].

However, considering the visual characteristics of the human eye, it is assumed that
both ordinary and skilled viewers naturally train their eyes on regions that contain rec-
ognizable areas, even while working to complete a task. Such regions or areas do not
always have clearly identified boundaries.

Accordingly, we propose a new image segmentation method based on the saliency
map model.

Creating saliency map. First, the image is decomposed into three feature channels:
intensity, color (red/green and blue/yellow), and orientation (0◦, 45◦, 90◦, 135◦). The
orientation channel is then calculated using the Gabor filter and nine spatial scales are
created from these three channels using Gaussian pyramids.

Second, differences between the fine and coarse scales in each channel are calculated
based on a center-surround operation that imitates the human visual system.

Third, for each channel, three conspicuity maps that highlight the parts that differ
noticeably from their surroundings are created using across-scale combinations. Finally,
a saliency map is created as a linear combination of the three conspicuity maps. The
saliency map is composed of lmax×mmax cells. Let (l,m) be the coordinates of a cell
in the map. The saliency at (l,m) is denoted by s(l,m). In our implementation, the scale
of the saliency map is 1/16 the size of the source image (one cell on the saliency map
corresponds to a 16 × 16 pixel region in the source image). Figure 1 shows the source
image (left figure) and the saliency map (right figure). White and black areas indicate
high- and low-saliency regions, respectively.
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Fig. 1. Source image (left) and its saliency map (right)

Fig. 2. Saliency Cluster Map. Left and right figures show the core-clusters and all of the other
clusters, respectively.

Clustering of the saliency map. Regions of high salience in the map are clustered.
The proposed procedure consists of the two steps. The pseudocode for the first step is
shown in Table 1, where imax and jmax denote the width and height, respectively, of
the source image. A cluster is identified by index K. The index of the cluster at (l,m)
is stored in c(l,m). Let cK be a set of cells in cluster K. The centroid of cluster K
is (xK ,yK), which is computed as (xK ,yK) = 1

NK
(∑(l,m)∈cK

l,∑(l,m)∈cK
m), where NK is

the number of cells in cluster K. The distance between a cell c(l,m) and cluster K is
calculated as

√
(l− xK)2 +(m− yK)2. NearestCluster(l,m) is the function that returns

the index of the cluster that has the shortest distance between (l,m) and (xk,yk) in eight
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Table 1. Pseudocode for the first step

set 0 to c(l,m)
K ← 0
for l = 0 to [(imax−1)/16] {

for m = 0 to [( jmax−1)/16] {
if s(l,m) ≥ δ and c(l,m) = 0 {

if at least one of the eight neighbors of (l,m)
belongs to any cluster {

K ← K +1
c(l,m) = K
(xK ,yK) = (l,m)

}
else {

k = NearestCluster(l,m)
c(l,m) = k
update (xk,yk)

}
}
if s(l,m)< δ { c(l,m) = 0 }

neighbors of (l,m). The threshold value δ is given by the user. We refer to the cluster
obtained in the first step as the core-cluster.

In the second step, the cells for which s(l,m)< δ are assigned to one of the clusters
which are closed to the cells. All of the cells on the saliency map belong to the clusters
after this clustering.

In this way, all of the cells are eventually assigned to the appropriate cluster. These
clusters are referred to collectively as the Saliency Cluster Map (SCM). The SCM for
Figure 1 is shown in Figure 2. The core-clusters are shown in the left-hand image, and
the right-hand image shows all of the other clusters.

Segmentation using the saliency cluster map. The SCM is applied to the image seg-
mentation in a straightforward manner. A segment consists of the pixel regions that
correspond to cells belonging to the same cluster. Note that the segment is composed
of two types of pixels. One type exists in the core-cluster. We refer to the region of a
segment composed of these pixels as the core-segment. The other type exists outside
the core-cluster. Let the index of a segment be k. The core-segment is then denoted as
Rk, and the region outside the core-segment is denoted as R′k. An example of image
segmentation of a source image is shown in Figure 3.

2.2 First Image Importance Map

Our approach is based on the Focus Of Attention (FOA) and FOA shift proposed by Itti
et al. algorithm [6].

We define a set R as a collection of all segments, where the total number of elements
of R is M. Let the saliency of segment be sk(k = 1, ...,M). The saliency sk is set as the
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Fig. 3. Example of image segmentation Fig. 4. First Image Importance Map

highest saliency in the cells corresponding to the core-segment Rk. Let (xk,yk) be the
centroid of segment k, which is defined as the centroid of the cluster corresponding to
segment k. In addition, the preferential saliency is denoted as s′k.

A set F that consists of a sorted FOA is obtained as follows:

Step 1. Let F be an empty set /0. Also, let s′k = sk(k = 1, ...,M)
Step 2. Find the segment that has the highest preferential saliency in R\F, and set the

index of the segment to i
Step 3. Add i to set F
Step 4. Compute s′k as follows:

if
√

(xi− xk)2 +(yi− yk)2 ≤ β {
s′k = sk + α
}
else {
s′k = sk

}
Step 5. Repeat Step 2 through 4

where α and β are the parameters of the proximate preference. α and β indicates the
strength and range of the proximate preference respectively. We use α = 50 and β = 100
(pixels) in this paper.

We use the set F for the quantitative index assigned to the segment. First, Rk and R′k
are redefined. The value of index k indicates the k-th element of F , i.e., the order of
the FOA. Next, the importance of the segment is defined. Let i1k be the importance of
segment k.

i1k =
1

k ·∑M
k=1

1
k

. (1)

The distribution of the segments that have this importance is referred to as the first
Image Importance Map (first IIM). An example of a first IIM is shown in Figure 4. In



Generation of an Importance Map for Visualized Images 141

Fig. 5. Scheme of encoding the eye movement
dataset

Fig. 6. Second Image Importance Map

this figure, the blue circles are the centroids of the segments, and the numerical values
indicate the importance of the segments. In addition, the green filled circle denote R1,
and the red lines denote the FOA shift.

2.3 Second Image Importance Map

In the first IIM, top-down (task-dependent manner) factors are not considered. Previous
researches have improved this model by adding top-down factors such as eye movement
data [25] and a stochastic factor [26]. As in those studies, in the present study, the top-
down factors are considered in the construction of the IIM. In our method, we use
the same image segmentation of the first IIM and an IIM with a top-down factor is
constructed as follows.

First, we obtain eye movement data from the subjects using a head mounted eye-
tracking system. Let an = (xn,yn,tn) be the n-th eye movement data. The data an is
composed of (xn,yn) (the coordinates in the image) and tn (the recorded time). An eye
movement dataset for person j is denoted by A j = (a1,a2, ...,aN), and N is the total
number of eye movement data.

Second, the eye movement dataset A j is mapped into the segmented source image
and encoded using the identifier of the segment that contains the eye position. The
scheme for encoding the eye movement dataset is shown in Figure 5.

Third, a network for the eye movements is generated by regarding the segments
as nodes. We denote a node as vi. The number of nodes is the same as the number of
segments (M). The node corresponds to the centroid of the segment that contains the eye
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position. For simplicity, in the present paper, we do not discriminate between the core-
segment and the region outside the core-segment. A link (an arc) is generated by the
eye movement. The encoded eye movement dataset A j is transformed into a network.

In this way, one network is generated from one eye movement dataset. This network
is represented by a weighted adjacency matrix A in which the weight is given by the
number of links.

The score of importance is obtained by the PageRank algorithm [22]. First, the matrix
A is converted to a transition probability matrix T. For example, in the case of the eye
movement dataset R2R4R1R1R1R2R4R3, the matrix T is obtained by

T =

⎛⎜⎜⎝
v1 v2 v3 v4

v1 2/3 1/3 0 0
v2 0 0 0 1
v3 0 0 0 0
v4 1/2 0 1/2 0

⎞⎟⎟⎠. (2)

Second, the PageRank of each node is calculated by the following iterative process:

pν+1 = Ttpν , (3)

where p= (i21, ..., i
2
i , ..., i

2
M), i2i represents the PageRank of the vi, and ν is the iterative

number.
The importance of the segment k is i2k . The distribution of the segments that have this

importance is designated as the second Image Importance Map (second IIM). An exam-
ple of a second IIM is shown in Figure 6. In this figure, the blue circles are the centroids
of the segments, and the numerical values indicate the importance of the segments. In
addition, the orange arrows indicate the links of the network.

2.4 Integration of Image Importance Maps

A second IIM is obtained for each eye movement dataset. In order to integrate the sec-
ond IIMs, the weighted adjacency matrix A is composed of the eye movement datasets
that we attempt to integrate.

For the case in which the first IIM and the second IIM are integrated, we use the
biased PageRank algorithm [23]. First, a vector i that denotes the importance of the
segment in the first IIM is calculated. Second, the weighted adjacency matrix A is ob-
tained and converted to the transition probability matrix T.

The first IIM and the second IIM are integrated by the following iterative process:

pν+1 = ωTtpν +(1−ω)i, (4)

where p= (is1, ..., i
s
i , ..., i

s
M), isi represents the integrated importance of segment i, and ω

(0≤ ω ≤ 1) is the user parameter. In the present paper, we use ω = 0.5.

3 Construction of the Image Importance Maps

First, an image produced by the visualization of instantaneous streamlines in a flow past
a spheroid was used for the experiment. The source image and the first IIM are shown
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in the left part of Figure 1 and in Figure 4, respectively. Three subjects participated in
the experiment. One (subject A) was an expert in fluid dynamics, whereas the others
(subjects B and C) were novices. The second Image Importance Maps (IIMs) and the
integrated IIMs are shown in Figure 7 and Figure 8, respectively.

Fig. 7. Three subjests’ second IIMs of the first source image

Fig. 8. Three subjests’ integrated IIMs of the first source image

Fig. 9. A source image for the second experiment (left), the corresponding segments of the image
(center) and the first IIM (right)
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Fig. 10. Three subjests’ second IIMs of the second source image

Fig. 11. Three subjests’ integrated IIMs of the second source image

Second, a visualized image produced by a tuft visualization for a flow around a
trianguler cylinder is used. A source image, the corresponding segments of the image
and the first IIM are demonstrated in Figure 9. Figure 10 and Figure 11 shows the
second IIMs and integrated IIMs, respectively.

As shown in Figures 7 and 10, all the regions where the expert (subject A) gazed
are not always eye-catching for subjects B and C. This means that some important
information is lost despite the fact that raw data is visualized and transformed into a
recognizable form.

The region which has the highest saliency in the right lower part of the first IIM
shown in Figure 9 is remarkable. After the experiment, it was confirmed through inter-
views with the expert that this region is important to prediction of the far wake region.
Actually, the expert (subject A) had focused on the region, and the subject A’s score is
striking in the integrated IIMs presented in Figure 11. It can be said that the region is
inherently recognizable and includes the expert’s preference. On the other hand, sub-
jects B and C did not gaze at the region as shown in Figure 10. This also means that
some important information will be lost.

From the standpoint of visual communication, it may be considered that the experts’
ways of viewing are deliberate and inappropriate since their viewing behaviors are
not always correct and are sometimes unnatural. In order to avoid premature judge-
ment, it is important to know the average and personal preferences of the viewers. The
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integrated IIMs shown in Figures 8 and 11 are considered to give an immediate indi-
cation of the average and personal preferences of the viewers since they are created by
combining the importance values of the first and second IIMs. The region that has a
higher importance value on the integrated IIM is inherently recognizable; it is the focus
of the viewer’s gaze, whereas regions that have lower importance are not eye-catching,
and so are not gazed at by the viewer. The differences in the evaluations of the subjects
can be expressed by the quantitative values. Thus, the integrated IIM provides a more
accurate indication of the important regions of the image.

4 Conclusion

We have presented a new method by which an importance map of a visualized image
can be constructed. We used a saliency map model for image segmentation and quanti-
tative importance values for the importance maps were obtained based on the attention
shift model of the saliency map model and eye movement data. The usefulness of the
proposed method was investigated through eye-tracking experiments.

Our method enables researchers to share information about ROIs with quantitative
values of importance and indications of differences among individuals. Therefore, this
method will help to enhance the interpretability and recognizability of visualized im-
ages subsequent to their generation, and can be used in such applications as visual
communication for education purposes.

Several extensions can be developed to improve the proposed method. For a more
detailed treatment of the eye movement dataset, the regions outside the core-segments
can be subdivided into a number of segments in an appropriate manner. In addition,
although the saliency map model of Itti et al. is effective for use with the proposed
method, other saliency map models that simulate human visual attention may be used
as alternatives. Finally, object-based image segmentation may be combined with the
proposed method in order to consider eye movement in detail and in a task-dependent
manner.
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Abstract. We introduce a novel technique for summarizing a short

video to a single image, by augmenting the last frame of the video with

comic-like lines behind moving objects (speedlines), with the goal of con-

veying their motion. Compared to existing literature, our approach is

novel as we do not attempt to track moving objects nor to attain any

high-level understanding of the scene: our technique is therefore very gen-

eral and able to handle long, complex, or articulated motions. We only

require that a reasonably correct foreground mask can be computed in

each of the input frames, by means of background subtraction. Speed-

lines are then progressively built through low-level manipulation of such

masks. We explore application scenarios in diverse fields and provide

examples and experimental results.

1 Introduction

Representing motions and actions in a single image is a well known problem for
visual artists. Universally accepted solutions are found in comics, where motion
is represented through various abstract graphical devices [1] (Figure 1), and in
photography, where object images are often deliberately motion blurred in order
to convey their speed (Figure 2). In this paper, we propose a simple, low-level
algorithm for representing in a single image the motion occurring in a video, by
augmenting the last frame of the video sequence with lines conveying the motion
occurred in the previous frames (speedlines). In particular, we recover speedlines
as the envelope of the objects’ apparent contours in time.

Drawing speedlines is mainly a matter of visual style in case the motion of
objects in the scene is known in advance; this happens in synthetically modeled
scenes, or when motion is previously recovered by, e.g., object/people tracking

Fig. 1. Speedlines are commonplace in comic books

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 147–156, 2009.
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(a) Synthetic motion blur (b) N = 53, 400x320 (c) N = 53, 400x320

Fig. 2. Motion blur (a) fails to convey whether the car was moving forwards (b) or

backwards (c). Short speedlines in (b,c) can instead represent the motion orientation,

and do not cause loss of detail in the foreground.

algorithms; then, a straightforward, albeit visually rude technique for represent-
ing such motion could be to simply draw the known object trajectories in the
previous frames; several other techniques, more refined and appealing, are pre-
sented in literature (see Section 2). Our approach is fundamentally different as
it operates at a much lower level, and it does not explicitly try to separate or
reconstruct moving objects from the input video; we just require an acceptable
foreground/background segmentation for each frame, and assume that the cam-
era is still. Then, speedlines are computed by means of few simple operations
on the foreground masks of successive frames; in other words, we do not try to
use or infer any information pertaining the scene semantics, and we represent
motion without understanding it.

On one hand, this approach has several important advantages: low compu-
tational complexity; robustness to segmentation errors; and a remarkable gen-
erality, which allows applications in diverse fields without any modification of
the algorithm. On the other hand, since they lack any explicit high level, sym-
bolic information about the scene evolution, our results are worthless for any
subsequent automated processing step: the only actual user of the output of our
algorithm is an human observer.

Such a system can be useful for a number of reasons. A first obvious appli-
cation is summarizing a short video segment in order to convey instantaneous
motion in media where video is not available (printed, low-bandwidth devices),
or where an image is preferable, as its meaning can be grasped immediately, with-
out explicit attention. In these contexts, a similar goal is commonly achieved by
shooting a single image with a longer exposure time, which results in motion
blur; however, motion blur corrupts the foreground and does not convey motion
orientation (see Figure 2).

Another application, which is commonly overlooked in related works, is sum-
marizing a longer video segment in order to represent an extended motion, possi-
bly complex, articulated or inhomogeneous in time. Motion blur is hardly helpful
in this case, as it would make the subject too confused; an applicable technique is
instead multiple exposure photography (or strobing), i.e. a long exposure photo-
graph with stroboscopic lighting. Physical devices frequently used to attain sim-
ilar goals are smoke trails or ribbons (e.g. in rhythmic gymnastics). In Section 4
we describe a prototype video surveillance application which uses speedlines to
summarize long, temporally sparse events, and detail a number of practical ad-
vantages of such approach.
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(a) 38 frames, 180x144 (b) 473 frames, 320x256

Fig. 3. Speedlines describing long motions

Finally, speedlines can be used to augment every frame of a video stream;
when combined with refined, good-looking visualizations (which is not a pri-
mary focus in this paper), this can be applied for video special effects. In other
contexts, speedlines can allow a casual viewer (such as a surveillance operator) to
immediately grasp what’s happening without having to look at the video stream
for a longer time or rewind it, as each single frame visually conveys the scene’s
past temporal history. Another example is using speedlines for immediately un-
derstanding if and how slow objects, such as ships at a distance, are moving;
interestingly, this is intuitively achieved by looking at the ship’s trail, if visible,
which is a real-world counterpart to our speedlines.

The paper is structured as follows: after reviewing existing literature in Sec-
tion 2, we describe our technique in Section 3: we initially introduce our model
and briefly discuss background subtraction, which is given as granted in the
rest of the paper; then we detail the core our approach and its possible exten-
sions. In Section 4 we present application examples and experimental results.
We conclude with Section 5, which also presents future works, extensions, and
additional foreseen application scenarios.

2 Related Works

Few main graphical devices for representing motion in a single image are de-
scribed and used in literature [2,3]: drawing trailing speedlines (or motion lines)
behind the moving object; replicating the moving object’s image (such as in
strobing) or its contours; introducing deformations on the object in order to
convey its acceleration. In this work, we focus on the first (and partially the
second, see Section 3.3) of these techniques, whose perceptual foundations are
investigated by brain researchers in [4].

Several related works aim at rendering motion cues from synthetic anima-
tions; in particular [5] uses the scene’s 3D model and animation keyframes as
input, whereas [6] presents a more specialized system in the context of human
gait representation; in [7] speedlines are synthesized in a framework for nonpho-
torealistic rendering, by selecting vertexes of the 3D moving objects which will
generate speedline trails whenever the object’s speed exceeds a given threshold.
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Our system radically differs from the cited efforts as we use a video as input,
instead of a 3D animated synthetic model.

A semi-automated system with similar goals is introduced in [8], which tracks
moving objects in video and applies several graphically-pleasing effects to repre-
sent their motion, including short rectilinear speedlines. Straight speedlines can
also be generated for translational motion of a tracked object in [9]. A different
approach is adopted in [10], where individual features are tracked in a manu-
ally selected foreground object, and speedlines drawn as their trajectories; high
level scene understanding is also a key characteristic of several other works [11],
which fully exploit their higher abstraction level by introducing interesting addi-
tional effects, such as distortion for representing acceleration. The technique we
are proposing differs as it lets speedlines “build themselves” through low-level
manipulations of the evolving foreground masks, without requiring any user in-
teraction nor explicitly tracking the objects; also, we do not assume anything
on the object’s motion, which is not required to be explicitly modeled or recov-
ered: in fact, our system effortlessly handles complex motion of articulated or
deformable objects, and also scenes with multiple moving objects which can not
be easily separated or tracked. Moreover, our technique directly works on very
low resolution video, where moving objects (possibly affected by motion blur)
often bear no recognizable features. This also allows us to handle new scenarios
and applications, such as surveillance tasks, which, to the best of our knowl-
edge, have never been targeted by previous literature. An interesting relation
also holds with [12], which deals with the opposite problem of inferring object
movement from a single image affected by motion blur.

3 Technique

3.1 Overview

We work on a sequence of N video frames I1..IN , uniformly sampled in time.
We assume that the camera is fixed, and that one or several objects are moving
in the foreground.

We require that for each frame Ii, the foreground can be extracted, so to
obtain a binary foreground mask Mi, whose pixels are 1 where frame Ii de-
picts the foreground, and 0 otherwise; this problem (background subtraction) is
extensively dealt with in literature, and many effective algorithms such as [13]
are available for application in most operating conditions, including unsteady
cameras and difficult backgrounds.

From now on, we will assume that a reasonable segmentation is obtained
using any background subtraction technique; Section 4 shows that spatially or
temporally local segmentation errors only marginally affect the quality of results.

By processing foreground masks, we finally output an image F as the last
frame IN with speedlines superimposed, conveying the motion of objects in the
scene during the considered time frame. From the theoretical point of view,
these lines are an approximation of the envelope of the moving objects’ apparent
contours; we now describe their construction.
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Fig. 4. Our algorithm applied to N = 17 frames of a rototranslating object, with k = 6

3.2 Building Speedlines

First, the foreground mask Mi of each input frame Ii i = 1 . . .N is computed.
The video is then processed by analyzing adjacent foreground masks in small
groups (see Figure 4), whose size is defined by a parameter k, 3 ≤ k ≤ N . k is a
parameter controlling the amount of detail in the speedlines in case of complex
motion, and its effects are better described in Section 4.1.

In particular, we compute N −k+1 binary images Si k ≤ i ≤ N ; each Si rep-
resents the atomic pieces of speedlines originating from the k frames Ii−k . . . Ii.
Si is computed as the set of edge pixels of the union1 of masks Mi−k . . .Mi,
which are not also edge pixels of Mi−k or Mi:

Si = edge

⎛⎝ i⋃
j=i−k

Mj

⎞⎠ \ (edge(Mi−k) ∪ edge(Mi)) (1)

When the trajectories of the objects in frames i − k . . . i are simple and non
intersecting, Si approximates the envelopes of the foreground contours during
such time interval.

The N − k+1 atomic pieces of speedlines Si are then merged through a visu-
alization function f(. . .), in order to determine the final speedlines S and their
appearance. A simplistic f(...) function just computes the union of all Si. Alter-
natively, such function may improve visualization in several ways, some of which
we briefly explored in our implementation, and are introduced in Section 3.3
S is finally composited over IN , which gives the system’s output image F .

The complete algorithm is summarized as follows:

for i = 1 . . .N do
Mi ← foreground(Ii)

end for
for i = k . . .N do
Si ← edge

(⋃i
j=i−k Mj

)
\ (edge(Mi−k) ∪ edge(Mi))

end for
S ← f(Sk, Sk+1 . . . SN)
F ← composite S over IN

1 We consider the union of binary masks as the boolean OR operation on such masks.
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(a) (b) (c) (d) (e)

Fig. 5. Speedlines for complex motions, with foreground replication; speedline color

encodes time (e). In (a) two cars park, and a person comes out from the car below.

(a,b) from PETS dataset [16].

(a) (b) (c) (d) (e)

Fig. 6. (a,b,c): Speedlines computed directly from 640x480 silhouette data [17]. Note

replication of contours in (c) due to fast motion (see Section 4.1). (d,e): the quickly

moving hand draws copies of its contour instead of speedlines in (e), due to a coarse

frame rate.

3.3 Extensions and Implementation Notes

In order to improve the informational content and polish of speedlines, the func-
tion f(. . .), which combines speedline pieces originating from different frames,
can implement several visualization improvements, such as drawing speedline
pieces with varying stroke width, color, or transparency.

Also, when applying the algorithm to longer timeframes, the foreground of
important frames (keyframes) can be semitransparently superimposed over the
output image (see Figure 5); in the simplest implementations, keyframes can be
regularly sampled in time; as a more powerful alternative, a number of sophis-
ticated techniques for automatically finding meaningful keyframes in video are
proposed in the literature on video summarization [14,15].

4 Experimental Results

We implemented the proposed algorithm in a Matlab prototype; we tested sev-
eral different application scenarios, both with video sequences from external



Drawing Motion without Understanding It 153

sources such as [17,16] and produced ad hoc. We experimented with both short
motions (Figures 2, 6, 7 and 6) and long, complex events (Figures 3 and 5); our
videos have a wide range of different image resolutions, video quality and frame
rates; we also applied our technique to time-lapse image sequences of very slow
events (see [18]). We provide source code, original videos and full details in the
supplementary material [18].

In our prototype, background subtraction is implemented by simply thresh-
olding the absolute differences of each video frame with respect to a static back-
ground model, as our test videos were not very demanding from this point of
view. Also, we smooth the recovered foreground by means of a median filter with
square support, which helps in reducing artifacts due to background subtraction,
and also allows the algorithm to create smoother speedlines. In fact, the exact
shape of foreground masks is not fundamental for drawing good-looking, descrip-
tive speedlines, which is also a reason why we tolerate imprecise background
subtraction in the first place. Moreover, even macroscopic errors in background
subtraction, if limited to few frames, only marginally affect our final results; in
fact, such errors would only affect few of the speedline pieces we use to construct
the final speedlines.

Computational costs in our unoptimized prototype are currently rather low,
which allows us to process low-resolution webcam video in real time. Still, we
expect huge improvements from optimized implementation in lower-level lan-
guages, as the algorithm has no computationally-intensive steps, at least unless
more sophisticated background subtraction comes into play.

4.1 Discussion

As we previously mentioned, parameter k allows us to define how detailed the
resulting speedlines appear: in particular, in presence of self-intersecting trajec-
tories, a low k value causes more detailed speedlines to be built; in presence of
unreliable masks or very complex motions which do not have to be represented
in fine detail, setting an higher k parameter helps in improving the system’s
robustness and simplicity of the output.

Our system also requires that the framerate of the input video is sufficiently
fast w.r.t. the object motion: in fact, in order for speedlines to be smooth, fore-
ground masks in adjacent frames must be mostly overlapping. On one hand, this
rules out the use of our system for surveillance video sampled very low frame
rates, which is not an uncommon scenario. On the other hand, when the framer-
ate is too coarse, the system does not abruptly fail, but basically replicates the
subject’s contours instead of drawing its envelopes, which is also a traditionally-
employed technique for motion representation [1] (Figures 6 and 7b). In practice,
an user can often make sense of the resulting image, and in some scenarios may
also consider this a feature rather than a shortcoming, as quickly-moving objects
gain a distinctive appearance.

We investigated a specific application of our technique, which is detailed in
the Supplementary Material [18]: video from a surveillance camera is analyzed
in order to segment simple temporally sparse events; each event, with a typical
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(a) (b) (c) (d)

Fig. 7. Although less graphically pleasant, our results in drawing short speedlines (top)

are comparable in informational content to those recovered by the high-level approach

in [11] (a,b,c). Note speedlines for hands moving down in third image, as we describe

every motion in the scene. In the bottom-right example (d) speedlines are determined

manually [6], and are remarkably similar to our result.

duration between several seconds and one minute, is summarized in a single
image with speedlines and foreground replication. This is useful for a number of
reasons:

– the summary image can be easily and cheaply transmitted for immediate
review to e.g. a mobile device.2

– an operator can quickly review many events by grasping what happened
in each event at a glance; if the summary image for an event is judged
unclear, unusual or suspect, the operator can click on it in order to see the
corresponding video segment. This can potentially dramatically speedup the
review process of surveillance video.

– An additional advantage of our approach in a security-related scenario is the
transparency of the algorithm due to its low level of complexity. Moreover,
speedlines are built in such a way that they encompass any area affected by
motion, which is a nice property in this context.

When applied to a large, simple moving object for creating short speedlines,
a fundamental disadvantage of our approach with respect to others becomes
apparent: our speedlines are in fact only drawn at the extremes of the object’s
motion, which creates a poor visual effect (e.g. compare Figure 1a to Figure 2b);
we are currently investigating other options for dealing with this issue.

2 In several “extreme” scenarios, such as wireless sensor networks with very strict com-

putational and power requirements, storing and/or transmitting a single summary

image for an event may often be the only viable option.
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5 Conclusions and Future Works

In this paper we presented a low-level algorithm for representing in a single
image the motion occurring in a video: the last frame of the video sequence is
augmented with speedlines, which convey the motion occurred in the previous
frames by tracing the envelopes of the contours of moving objects. We propose
an efficient low-level technique for constructing such speedlines, which is robust
to temporally or spatially local segmentation errors, and does not require object
tracking. Experimental results confirm that the approach is valid and can be
applied to many different scenarios.

The main contribution of this paper over the state of the art is twofold.

– Our algorithm is very general: due to its low level of abstraction, it effort-
lessly deals with long and complex trajectories, multiple moving objects,
articulated motion, and low resolution and quality of the input video, which
existing algorithms can not handle.

– We explore the use of speedlines for representing long, complex motions, and
introduce speedlines as an effective tool for video surveillance applications.

We are currently implementing the algorithm on a DSP-equipped smart camera,
and studying a number of possible optimizations for its efficient implementation.
Moreover, we are also experimenting other uses, for surveillance and entertain-
ment applications. Finally, we are experimenting with improved visualization
techniques, in order to better convey motion without the need of scene under-
standing.
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Abstract. The goal of lossy image compression ought to be reducing

entropy while preserving the perceptual quality of the image. Using gaze-

tracked change detection experiments, we discover that human vision

attends to one scale at a time. This evidence suggests that saliency should

be treated on a per-scale basis, rather than aggregated into a single

2D map over all the scales. We develop a compression algorithm which

adaptively reduces the entropy of the image according to its saliency map

within each scale, using the Laplacian pyramid as both the multiscale

decomposition and the saliency measure of the image. We finally return

to psychophysics to evaluate our results. Surprisingly, images compressed

using our method are sometimes judged to be better than the originals.

1 Introduction

Typical lossy compression methods treat an image as a 2D signal, and attempt
to approximate it minimizing the difference (e.g. L2 norm) from the original. By
linearly transforming an image using an orthogonal basis (e.g. Haar wavelets),
solutions of minimal difference can be computed by zero-ing out small coefficients
[1,2]. As there are many different zero-ing schemes corresponding to the same
total difference, various thresholding techniques (e.g. wavelet shrinkage) that
aim to reduce visual artifacts have been developed [3,4,5,6].

However, an image is not just any 2D signal. It is viewed by human observers.
Lossy image compression should reduce entropy while preserving the perceptual
quality of the image. Signal-based methods fall short of both requirements: zero-
ing out small coefficients aims at reducing pure signal differences instead of
entropy, and reducing signal difference does not guarantee visual quality.

Our work concerns the use of visual saliency to guide compression. This topic
has been explored on multiple fronts, such as modifying the JPEG format [7],
compressing salient and non-salient regions with separate algorithms [8], and
applying saliency-based non-uniform compression to video [9]. Most saliency
models yield a location map based on low-level cues [10], or scene context and
visual task [11], treating scale like any other primary feature such as orientation,
color, and motion. Computer vision algorithms often concatenate measurements
at multiple scales into one feature vector without questioning its validity.

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 157–166, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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We first conduct an eye tracking experiment, and discover that human vision
often attends to one scale at a time, while neglecting others (Sec. 2). We then
develop a saliency-based compression scheme in which the entropy is reduced at
each scale separately, using that scale’s saliency map (Sec. 3). We finally vali-
date our approach in another psychophysical experiment where human subjects
render their judgement of visual quality between pairs of briefly presented im-
ages (Sec. 4). Our compression results not only look better than the signal-based
results, but, surprisingly, in some cases even better than the originals! One expla-
nation is that our saliency measure captures features most noticeable in a single
glance, while our entropy reduction aggressively suppresses the often distracting
background, enhancing the subjective experience of important visual details.

2 Scale and Human Visual Attention

Our inspiration comes from studying change blindness [12]: When two images
are presented with an interruption of a blank, the blank wipes out the retinal
stimulation usually available during natural viewing, making the originally trivial
change detection extremely difficult, even with repeated presentations. Using an
eye tracker, we discover 3 scenarios between looking and seeing (Fig. 1):

1) Most detections are made after the gaze has scrutinized the change area.
2) If the gaze has never landed upon the area, seeing is unlikely.
3) Sometimes the gaze repeatedly visits the change area, however, the subject
still does not see the change.

Our gaze data reveals two further scenarios for the last case of no seeing with
active looking. 1) For 80% of visits to the area of change, the gaze did not
stay long enough to witness the full change cycle. As the retina is not receiving
sufficient information regarding the change, blindness naturally results. 2) For
the rest 20% of visits which involve 9 of 12 stimuli and 10 out of 11 subjects,
the gaze stayed in the area more than a full cycle, yet the change still escaped
detection. Those are true instances of looking without seeing [13].

1. looking and seeing 2. no looking, no seeing 3. active looking, no seeing

Fig. 1. Relationship between looking and seeing. A four-image sequence, I , B, J , B,

is repeatedly presented for 250ms each. I and J denote images a major difference (the

presence of a person in the white circle in this case), and B a blank. Shown here are

3 subjects’ gaze density plots as they search for the difference. Red hotspots indicate

the locations that are most looked at. Only Subject 1 detected the change.
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Fig. 2. The scale difference between fixations is more than 1.5 folds (solid lines) in 88%

cases. The horizontal axis is for the size of change. The vertical axis is the size of the

area examined in the fixation before entering (�) or after exiting (×) the change area.

While the size here is determined based on manually outlined focal regions, similar

results are obtained with synthetic stimuli varying only in the size dimension.

We examine the retinal inputs fixation-by-fixation. In most true instances of
looking without seeing, the areas visited by the eye right before or after the
change area tend to have features of a different scale from the change (Fig. 2).
If at time t − 1 the subject is looking at a coarse-scale structure, he is likely to
be oblivious to the change in a fine-scale structure at time t, and he tends to
continue looking at a coarse-scale structure at time t + 1. In other words, when
the visual system attends to one scale, other scales seem to be neglected.

3 Saliency and Compression

Our experiment suggests that human vision attends to one scale at a time, rather
than processing all scales at once. This implies that saliency should be defined on
a per-scale basis, rather than aggregated over all scales into a single 2D saliency
map, as it is typically done [10]. We use the Laplacian pyramid [1] to define a
multi-scale saliency map, and we use range filters [14] to reduce the entropy of
each scale, applying more range compression to less salient features (Fig. 3).

We adopt the Laplacian pyramid as both the multiscale signal decomposition
and the saliency measure of the image, since the Laplacian image is the differ-
ence of images at adjacent scales and corresponds to center-surround filtering
responses which indicate low-level feature saliency [10].

Step 1: Given image I and number of scales n, build Gaussian pyramid G and
Laplacian pyramid L, where ↓ = downsampling, ↑ = upsampling

Gs+1 =↓ (Gs ∗Gaussian), G1 = I, s = 1→ n (1)
Ls = Gs− ↑ Ls+1, Ln+1 = Gn+1, s = n→ 1 (2)
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Fig. 3. Our image compression uses the Laplacian pyramid as both a signal represen-

tation and a saliency measure at multiple scales

To turn the Laplacian responses into meaningful saliency measures for com-
pression, we first normalize it (L→ R) and then rectify it (R→ S) using sigmoid
transform with soft threshold m and scale factor α (Fig. 4). α controls saliency
sharpness and is user-specified. We then use binary search to find the optimal m
that satisfies the total saliency percentile p: If S = 1, p = 1, every pixel has to
be maximally salient, whereas if p = 0.25, about 25% of the pixels are salient.

Step 2: Given percentile p and scaling factor α, compute saliency S from L
using a sigmoid with threshold m:

Ss =
(
1 + e−

Rs−ms
α

)−1
, s = 1 : n (3)

ms = arg

{∑
i

Ss(i;ms) = p ·
∑

i

1

}
, Rs =

|Ls|
max(|Ls|)

(4)

We modify Laplacian L by range filtering with saliency S. Range compression
replaces pixel i’s value with the weighted average of neighbours j’s, larger weights
for pixels of similar values [14]. Formulating the weights W as a Gaussian of
value differences, we factor saliency S into covariance Θ: High saliency leads to
low Θ, hence high sensitivity to value differences, and value distinction better
preserved. The maximal amount of compression is controlled by the range of
Laplacian values at that particular scale (Eqn. 7).
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of W : Θ
1
2 =

√
1 − S · (max(L) − min(L))/β. The first factor

√
1 − S makes the bin

dependent on the value, whereas the second (max(L)−min(L))/β makes it dependent

on the scale, for the range of L naturally decreases over scale.
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Step 3: Given S, neighbourhood radius r and range sensitivity factor β, gen-
erate a new Laplacian pyramid L′ by spatially-variant range filtering of L:

L′
s(i) =

∑
j∈N(i,r) Ls(j) ·Ws(i, j)∑

j∈N(i,r)Ws(i, j)
, L′

n+1 = Ln+1, s = 1 : n (5)

Ws(i, j) = e−
(Ls(i)−Ls(j))2

2Θs(i) , (6)

Θs(i) = (1− Ss(i)) ·
(

max(Ls)−min(Ls)
β

)2

(7)

The nonlinear filtering coerces the Laplacian values towards fewer centers
(Fig. 5). It can be understood as scale- and value-adaptive binning: As the scale
goes up, the bin gets smaller; as the value increases, the saliency increases, and
the bin also gets smaller. As the value distribution becomes peakier, the entropy
is reduced and compression results. The common practice of zero-ing out small
values in Laplacians or wavelets only expands the bin at 0 while preserving
signal fidelity, whereas our saliency regulated local range compression adaptively
expands the bin throughout the levels while preserving perceptual fidelity.

Finally, we synthesize a new image by collapsing the compressed Laplacian
pyramid (Fig. 3 G′, L′). Note that L and L′ look indistinguishable, whereas
nonsalient details in G are suppressed in G′.

Step 4: Construct the compressed image J by collapsing the new Laplacian L′:

G′
s = L′

s+ ↑ G′
s+1, G

′
n+1 = L′

n+1, s = n→ 1; J = G′
1 (8)

4 Evaluation

Lossy image compression sacrifices quality for saving bits. Given infinite time to
scrutinize, one is bound to perceive the loss of details in a compressed image.
However, in natural viewing, instead of scanning the entire image evenly, we only
dash our eyes to a few salient regions. Having developed an image compression
method based on human vision, we now return to it to evaluate our results.

We carry out two-way forced choice visual quality comparison experiments
using 12 standard test images (Fig. 8). Using our method, we generate 16 results
per image with α ∈ {0.01, 0.1}, p ∈ {0.25, 0.5}, r ∈ {3, 6} β ∈ {5, 10}. For each
image, we choose 3 compression levels that correspond to minimal, mean and
maximal JPEG file sizes. For each level, we find a signal-compressed version of
the same JPEG file size but reconstructed from zero-ing out sub-threshold values
in the Laplacian pyramid. The threshold is found by binary search.

We first compare our results with signal-based results (Fig. 6). Each compar-
ison trial starts with the subject fixating the center of a blank screen. Image 1
is presented for 1.2s, followed by a gray random texture for 0.5s, image 2 for
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Fig. 6. Comparison of signal-based compression (row 1) and our perception-based com-

pression (row 2). Row 3 shows a plot of quality ratings of our results for different com-

pression ratios. The quality rating is the fraction of subjects who judged our results

to be better than those produced by the signal-based algorithm. Each dot in the plot

represents a quality rating of the perception-based compression of a particular image

resulting in the compression ratio given by the horizontal axis. Our results are better

in general, especially with more compression.
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wavelet compression:

our compression:

Fig. 7. Our results (row 2) are better than compression by Daubechies 9-tap/7-tap

wavelet with level-dependent thresholding (row 1) for the same JPEG file size

1.2s, and random texture again till a keypress indicating which one looks better.
The occurrence order within each pair is randomized and balanced over 15 naive
subjects, resulting in 30 trials per pair of images. Our quality rating is deter-
mined by the percentage of favorable votes for our method: 0.5 indicates that
the images from two methods have the same visual quality statistically, whereas
a value greater(less) than 0.5 means our results are better(worse). The visual
quality of our results is better overall, especially with heavier compression.

We have also computed wavelet compression results with various settings:
Haar vs Daubechies 9-tap / 7-tap wavelet, global- vs. level-dependent thresh-
olding via Birge-Massart strategy. They have their own characteristic patterns
in quality loss over heavy compression. Our compressed images degrade more
gracefully than those as well (Fig. 7).

Finally, we compare our results at the best quality level to the original images
(Fig. 8). 1) At a short exposure, our results are entirely indistinguishable from
the original; 2) At a medium exposure, ours are better than the original! The
enhancement is particularly strong for face images. 3) At a long exposure, our
results become slightly worse. Such exposure-dependence in fact supports the
validity of our saliency model: Our method captures visual features of the first-
order significance at the cost of losing details of the second-order significance.

At low levels of compression, our method produces an air-brush effect which
emphasizes strong straight edges and evens out weak and curly edges, lending
more clarity to a face image while destroying the natural texture in a pepper
image (Fig. 8 bottom). At higher levels of compression (Fig. 7), our method
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Fig. 8. Comparison between the originals and our compressed results (row 1) on 12

test images (row 2) at the exposure times of 0.4, 0.8, and 1.2 seconds, with p-values

from two-, right-, and left-tailed one-sample t-tests between the means and the equal

quality level 0.5. Our results are equally good at the short exposure (too short for

anyone to notice any differences), better at the medium exposure, and worse at the

long exposure (long enough to notice the distinction in richness). The enhancement at

the medium exposure is most positive in image 2 (row 3), and most negative in image

10 (row 4), where the air-brush effect makes the facial characteristics clearer and the

pepper textures disturbingly fake.
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creates the soft focus style used by photographer David Hamilton, which blurs
the image while retaining sharp edges.

Summary. Our human vision study suggests that a saliency model must treat
each scale separately, and compression must preserve salient features within each
scale. We use the Laplacian pyramid as both signal representation and saliency
measures at individual scales. Range compression modulated by saliency not
only results in entropy reduction, but also preserves perceptual fidelity. This can
be viewed as value- and scale-adaptive binning of the distributions, an elegant
alternative to various thresholding strategies used in wavelet compression. Our
validation with human viewers indicates that our algorithm not only preserves
visual quality better than standard methods, but can even enhance it.

Acknowledgements. This research is funded by NSF CAREER IIS-0644204
and a Clare Boothe Luce Professorship to Stella X. Yu.
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Abstract. While realistic illumination significantly improves the visual quality
and perception of rendered images, it is often very expensive to compute. In this
paper, we propose a new algorithm for embedding a global ambient occlusion
computation within the fast sweeping algorithm while determining isosurfaces.
With this method we can approximate ambient occlusion for rendering volumetric
data with minimal additional cost over fast sweeping. We compare visualizations
rendered with our algorithm to visualizations computed with only local shading,
and with a ambient occlusion calculation using Monte Carlo sampling method.
We also show how this method can be used for approximating low frequency
shadows and subsurface scattering.

Realistic illumination techniques used in digitally synthesized images are known to
greatly enhance the perception of shape. This is as true for renderings of volume data
as it is for geometric models. For example, Qiu et al. [1] used full global illumina-
tion techniques to improve visualizations of volumetric data, and Stewart [2] shows
how computation of local ambient occlusion enhances the perception of grooves in a
brain CT scanned dataset. Tarini et al. [3] observed that perception of depth for large
molecules was significantly improved with the use of ambient occlusion as compared
to standard direct shading methods even when coupled with other techniques such as
depth cueing and shadowing. Recently, a carefully designed experimental study by Wei-
gle and Banks [4] definitively demonstrated that physically-based global illumination
is a powerful adjunct to perspective projection in aiding human subjects to understand
spatial relationships in a complex volume rendered scene. Despite the strong evidence
for its efficacy in conveying spatial information in visualization, the use of global illu-
mination is rare in practical visualization systems. This is most likely due to the high
overhead of existing global illumination rendering algorithms.

In this paper, we provide a new solution for ambient occlusion computation that is
significantly faster than existing techniques. The method integrates well with a volu-
metric ray marching algorithm implemented on the GPU. While not a full global illu-
mination solution, ambient occlusion provides a more realistic illumination model than
does local illumination, and permits the use of realistic light sources, like skylights. For
accelerating our ray marching algorithm, we build a volumetric signed distance field
using the fast sweeping method, and we embed our ambient occlusion approximation
directly into the sweeping algorithm. Thus, our algorithm can produce an ambient oc-
clusion estimate with only a minor computational overhead. We are also able to use

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 167–178, 2009.
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our approach to approximate low-frequency shadows due to direct illumination from
certain angles, and to approximate subsurface scattering effects.

1 Background

Since our method combines an ambient occlusion computation with the fast sweeping
method, in this section, we briefly overview the fast sweeping method, and ambient
occlusion, and review previous work on computing ambient occlusion.

1.1 Fast Sweeping

The aim of fast sweeping is to build a volumetric signed distance field from volume
data, for a specified isolevel. This defines a surface in 3D as the zero distance level set
of the field, with all cells away from this surface containing the minimum distance from
that cell to the surface. This distance field is commonly used as an aid in speeding the
process of isosurface rendering using methods such as ray-marching. The fast sweeping
method was introduced by Zhao [5] as a linear time alternative to the fast marching
method [6] for computing a signed distance field.

The fast sweeping method can be divided into two distinct steps, as indicated in
Fig. 1. First, the distance values of all grid vertices are initialized to positive infinity.
Then, all vertices that participate in grid edges with exact zero-crossings of the isolevel
(grey curve in the figure) are updated to their interpolated distance from the isolevel
(open vertices in the figure).

The second step conceptually consists of multiple diagonal sweeps that update the
distance values from the distance values of neighboring vertices. In Fig. 1, the filled
vertices show the order of vertices visited by one diagonal sweep, starting from bottom-
left towards the top-right (the scanlines are numbered according to sweeping order).

Fig. 1. The fast sweeping method for building a distance field to the zero level set (grey curve)
in 2D. The open vertices indicate voxels initialized by direct distance computation. The closed
vertices show the sweeping order of voxels for one diagonal sweep.
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Table 1. Sweeping Directions and Neighboring Positions

s Sweep Direction Px
s Py

s Pz
s

1 ( 1, 1, 1) P− (h,0,0) P− (0,h,0) P− (0,0,h)
2 (-1, 1, 1) P+(h,0,0) P− (0,h,0) P− (0,0,h)
3 ( 1,-1, 1) P− (h,0,0) P+(0,h,0) P− (0,0,h)
4 (-1,-1, 1) P+(h,0,0) P+(0,h,0) P− (0,0,h)
5 ( 1, 1,-1) P− (h,0,0) P− (0,h,0) P+(0,0,h)
6 (-1, 1,-1) P+(h,0,0) P− (0,h,0) P+(0,0,h)
7 ( 1,-1,-1) P− (h,0,0) P+(0,h,0) P+(0,0,h)
8 (-1,-1,-1) P+(h,0,0) P+(0,h,0) P+(0,0,h)

This would be followed by a sweep back from the upper-right to the lower-left, and then
sweeps in both directions along the other diagonal. 3D fast sweeping uses eight similar
diagonal sweeps. In actual implementation, it is usual to arrange the algorithm so that
iterations are across the columnar directions in the volume, instead of along diagonals.

During a sweeping operation in 3D, we consider the current distance field values
D(P) at three neighboring vertices of each vertex P in the grid. These three neighboring
vertices are the ones that are visited before P depending on the current sweeping direc-
tion. Table 1 shows the sweeping directions and formulations of neighboring vertices
Px

s , Py
s , and Pz

s for each sweep s, through a cubic grid whose spacing is h.
For each vertex, the distance field D(P) is updated as the minimum of its current

value and a new distance estimate d̂, calculated from the existing values D(Px
s), D(Py

s),
and D(Pz

s) of the indicated three neighbors. To calculate the new estimate, these three
distances are sorted into ascending order, and renamed d1, d2, and d3. Then

d̂ =

⎧⎪⎨⎪⎩
s1 = d1 + h if |s1|< d2,

s2 = d1+d2+
√

2h2−(d1−d2)2

2 if |s2|< d3,

s3 = d1+d2+d3+
√

3h2−(d1−d2)2−(d1−d3)2−(d2−d3)2

3 otherwise.

(1)

1.2 Ambient Occlusion

Ambient occlusion was first introduced by Zhukov et al. [7] as a better approximation
to ambient light than the constant ambient term used in many local illumination models.
Ambient occlusion on a point P with surface normal N is defined as

A(P,N) =
∫

Ω
V (P,ω)g(N,ω)dω , (2)

where Ω is the unit sphere, V (P,ω) is the visibility function accounting for occlusion
and scattering along direction ω , and g(N,ω) = max(N ·ω ,0) is the geometry term.
In this formulation, ambient occlusion corresponds to illumination due to an isotropic
skylight including global shadows cast by surrounding objects (i.e. occlusion). It is the
computation of the visibility function for all directions that makes the ambient occlusion
computationally intensive.

The typical way of solving Equation 2 is through Monte Carlo integration using
raycasting for a binary decision of visibility in a chosen direction (if the ray hits any
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object visibility is zero in that direction, otherwise it is one). This approach requires
many samples to reduce noise and it is very slow, especially when the integration is
performed for all pixels of an image. Therefore, for real-time visualizations of static
objects, ambient occlusion is often precomputed.

A popular alternative to Monte Carlo integration for ambient occlusion is precom-
puting shadows from multiple directional light sources (such as in [8,9]). While this
method can be faster, depending on the number of light directions and the complexity
of the scene, it tends to produce undesired aliasing artifacts instead of noise.

For ambient occlusion in dynamic scenes, researchers have proposed different ways
of keeping volumetric ambient occlusion fields around moving objects [10,11,12,13].
However, the initial computation of the ambient occlusion values is handled through a
long precomputation step, similar to previous approaches.

For the purpose of ambient occlusion, Bunnell’s [14] method represents each vertex
in the scene as a planer disk called a surface element. The ambient occlusion com-
putation is performed for every vertex by considering the contributions of all surface
elements. Since the complexity of this algorithm is O(n2), where n is the number of
surface elements, it is not suitable for scenes with high resolution surfaces.

Shanmugam and Arikan [15] used nearby pixels for computing local occlusion infor-
mation. They precompute an expensive spherical representation of the model for distant
occlusion information. Ritschel et al. [16] also used only local occlusion information
derived from the nearby pixels in the image space. Their method does not account for
global occlusion. Salama [17] proposed a multipass algorithm that precomputes a set of
random directions and runs a GPU-based Monte Carlo raycasting.

2 Occlusion Sweeping

We compute an approximate ambient occlusion solution using eight sweeps of the fast
sweeping method. During each diagonal sweep s, we compute the ambient contribu-
tion for each voxel from the corresponding octant of the sphere Ωs. The final ambient
occlusion is the sum of all of these eight octants, given by

As(P,N) =
∫

Ωs

V (P,ω)g(N,ω)dω . (3)

Notice that the only difference between Equation 2 and Equation 3 is the integration
domain.

To simplify the computation of this equation, we introduce three theoretical simpli-
fications. First, we approximate the visibility function within an octant by a constant
value Vs(P). This implies that all of the light rays arriving at point P from the same oc-
tant are occluded the same amount. Using this simplification, we can take the visibility
function outside of the integral and approximate ambient occlusion for the octant as

As(P,N)≈Vs(P)Gs(N) , (4)

where Gs(N) is the integrated geometry term

Gs(N) =
∫

Ωs

g(N,ω)dω . (5)
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In this formulation Gs(N) depends solely on the surface normal and can be easily pre-
computed. Therefore, all we need to compute to find the ambient occlusion is the visi-
bility approximation of the octant for each voxel.

Our second simplification provides a fast estimation to Vs(P) of the voxel at P by
approximating it as a combination of the visibility at three neighboring voxels. These
voxels, Px

s , Py
s , and Pz

s , are the three of the six neighbors of the voxel at P given in Ta-
ble 1. We multiply the visibility values at these neighboring voxels by the transmittance
τ(P) through these voxels to account for the light that is occluded within these voxels.
As a result, our visibility estimation becomes

Vs(P)≈ 1
3

[Vs(Px
s)τ(Px

s)+Vs(Py
s)τ(Py

s)+Vs(Pz
s)τ(Pz

s) ] . (6)

Finally, we approximate the value of the transmittance function using the distance to
the level set surface D(P). We define the transmittance function to be

τ(P) =

⎧⎨⎩
0 if D(P)≤− h

2
D(P)

h + 1
2 if − h

2 < D(P)< h
2

1 if D(P)≥ h
2

. (7)

To summarize, in our occlusion sweeping method, we visit each voxel eight times in
eight diagonal sweeps. Each sweep computes the visibility function for the octant that
is on the opposite side of the sweeping direction, using Equation 6. Table 1 gives the
ordering of sweeping directions and the neighboring voxels used in the calculations. The
order in which the voxels are visited in a particular sweep is chosen to assure that the
visibility functions at the corresponding neighboring voxels of P are computed before
P. This whole computation can be easily implemented as a part of the fast sweeping
method for building a signed distance field. Notice that even though we use the distance
field values in Equation 7, the distance values within the range [− h

2 ,
h
2 ] are set during

the initialization step. Therefore, we can use the distance field to evaluate τ(P) while
building the distance field itself.

3 Implementation and Results

For demonstration purposes, we implemented our method within a single pass, GPU-
based, ray marcher. The volumetric distance field and the ambient occlusion terms are
precomputed offline, and stored as 3D textures on the GPU. A single ray is then marched
for every pixel on the screen. If the ray hits a surface, hit position P is returned along
with the gradient of the distance field, which is used as the surface normal N. Since N
is computed on the GPU per pixel (as opposed to per voxel of the dataset), Equation 4
needs to be evaluated separately for each octant at runtime. Therefore, we store the eight
Vs(P) fields as color channels in two 3D RGBA textures.

Since the eight integrated geometry terms Gs(N) depend only on the surface normal,
they can be precomputed once and stored in the color channels of two 2D textures
(Fig. 2). The x and y coordinates of N then serve to determine the texture coordinate for
lookup. These are shown in Fig. 2.
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Fig. 2. Precomputed geometry term G(N), stored as eight channels in two 2D RGBA textures

Local illumination Occlusion Sweeping OcclusionSweeping Monte Carlo Reference
(gamma corrected)

Fig. 3. A simple 100×100×100 dataset for demonstrating the validity of our algorithm, where
we compare our occlusion sweeping results to local illumination and Monte Carlo reference

Since ambient occlusion does not correctly account for inter-reflected light, as in a
full global illumination calculation, images can be overly dark. To overcome the extra
darkening, we applied gamma correction directly to our ambient occlusion estimation as
a post-processing operation, computed as A← A(P,N)1/γ . We use γ = 2 for all gamma
corrected images in this paper.

To test the validity of our ambient occlusion estimation, we prepared the simple
100×100×100 voxel dataset shown in Fig. 3, and rendered it using local illumination
only, our occlusion sweeping method, and with a Monte Carlo ray tracer. The precom-
putation of ambient sweeping took only a fraction of a second, while the Monte Carlo
reference image was rendered in several minutes. Both the occlusion sweeping and
Monte Carlo images are arguably much more effective than the local illumination im-
age in depicting the depth relationships of the various objects in the scene. It can also
be seen that occlusion sweeping provides a good estimate for ambient occlusion, in that
the dark areas and shadows correspond well to the those in the Monte Carlo reference
image.

While occlusion sweeping greatly improves the illumination as compared to local
illumination, there are two inaccuracies introduced by our simplifications. Ambient
sweeping produces soft diagonal shadows, which are especially visible on the flat walls
of the images in Fig. 3. Secondly, ambient sweeping produces a glow effect along sharp
edges. While this can be interpreted as a useful visualization feature (as argued by Tarini
et al. [18]), it actually originates from our transmittance function τ(P) in Equation 7.
Since τ(P) is directly computed from the distance field D(P) and it does not depend on
the octant, neighboring voxels on a flat surface end up partially occluding each other.
While this effect darkens flat surfaces, sharp features are not affected as much and ap-
pear brighter.
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Local Illumination Occlusion Sweeping (gamma corrected) Monte Carlo Reference

Fig. 4. Comparison of occlusion sweeping to a Monte Carlo reference

Fig. 4, shows a comparison of local illumination to our ambient occlusion solution
for a vorticity isosurface within a lightning cloud simulation dataset. As can be seen
from this figure, ambient occlusion greatly improves depth perception and the global
shape of this complicated surface becomes easier to understand. In Fig. 4, we provide
a comparison of the gamma corrected occlusion sweeping to a Monte Carlo reference
image for the same dataset. Notice that on a complicated surface like this one, the di-
agonal artifacts of ambient sweeping are not visible, while the darkening of flat regions
emphasizes sharp local features.

Fig. 5 shows another dataset that contains capillaries from the mouse brain (cerebel-
lum). Notice that ambient occlusion with our method significantly improves the percep-
tion of the thread-like 3D vascular structure, while using only local illumination makes
the image look flat and visually confusing.

In our experiments, we noticed that local features can be further emphasized by
dropping the geometry term Gs(P) from Equation 4. In this case the visibility fields of

Local Illumination Occlusion Sweeping Occlusion Sweeping
(gamma corrected)

Fig. 5. Vascular data of capillaries from the mouse brain (cerebellum) with different illumination
methods. The dataset is about 0.5mm across and the capillaries occupy less than six percent of
the overall tissue volume. The data is sampled on a 256×256×256 grid.
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all eight octants can be combined to form a scalar ambient occlusion field, significantly
reducing the memory requirements. Fig. 6 shows such an example where it can be seen
that sharp features appear brighter when the geometry term is dropped.

With our occlusion sweeping technique, we can also produce more natural illumina-
tion conditions than those produced by an isotropic skylight. For example, in Fig. 7 the
surface is illuminated through only top four of the eight octants, emulating the lighting
conditions of a cloudy day.

Table 2 provides timing information for our ambient occlusion precomputation, for
five different data sets of varying sizes. The timings are computed on an Intel Core2
(2.66 GHz) machine with 4 GB RAM and NVidia GeForce 8800 GTX graphics card.

Occlusion Sweeping Occlusion Sweeping without Gs

Fig. 6. Ambient sweeping with and without the geometry term. Notice that the images are very
similar. Eliminating the geometry term Gs(N) makes edges and sharp features slightly brighter.

Fig. 7. Occlusion sweeping with lighting from only the top four octants, emulating the lighting
conditions of a cloudy day. The image on the right is gamma corrected.

Table 2. Computational time (in seconds) for sweeping the dataset

NX NY NZ Without Occlusion Combined Occlusion 8 Octant Occlusion
101 101 61 0.72 0.91 1.01
100 100 100 1.06 1.386 1.52
150 150 150 3.86 6.52 7.78
200 200 200 9.56 17.12 23.43
250 250 250 23.26 39.66 46.64
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Our method adds an overhead of from 30% to 100% to a standard fast sweeping calcula-
tion, which we believe to be bounded by memory access time, and not by computation.
This is actually only a minor overhead to the full rendering calculation, as this compu-
tation needs to be done only once per viewing session.

4 Other Illumination Effects

4.1 Low-Frequency Shadows

In our method, the result of ambient occlusion from each octant corresponds to low-
frequency shadows from an area light source. The assumed directions of the light source
is in the opposite direction to the sweeping direction. In this sense, our ambient occlu-
sion solution can be thought of as the combination of low-frequency shadows from
eight area light sources.

Fig. 8 shows a comparison of ray traced hard shadows to low-frequency shadows
using a single octant of occlusion sweeping. While for simple datasets hard shadows
can provide good depth cues, for more complicated datasets they are not as suitable.
A complicated example comparing hard shadows to our low-frequency shadows are
shown in Fig. 9. Notice that hard shadows of this complicated dataset produces addi-
tional high-frequency features, while our low-frequency shadows do not interfere with
the actual data.

While the intensities of each of these eight light sources can be adjusted at run time,
their positions are attached to the grid. For computing low frequency shadows with our
technique from an arbitrary direction, one needs to rotate the grid on which the ambient
occlusion is computed. While the ambient occlusion grid can be easily rotated indepen-
dent of the distance field grid, changing the light direction requires recomputation of
the occlusion values with a new sweep. However, the size of an area light source cannot
be adjusted as it is a function of the grid resolution.

4.2 Subsurface Scattering Effects

Subsurface scattering accounts for the light that enters a translucent surface and scat-
ters within the object. For visualization purposes, subsurface scattering can be used to
provide visual cues to the thickness of an object.

With a slight modification to our fast occlusion sweeping technique, we can achieve
a subsurface scattering effect for materials with strong forward scattering. We perform
this by replacing the transmittance functions τ in Equation 6 with translucent transmit-
tance functions τtrans, such that

τtrans(P) = 1− (1− τ(P)) α , (8)

where α is a user defined opacity parameter between 0 and 1. Decreasing α values
permit more light to penetrate through the surface, effectively softening the shadows of
ambient occlusion and allowing surfaces to be lit from behind via forward scattering.
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Ray traced shadows Low-frequency shadows

Fig. 8. Comparison of hard shadows computed using ray marching on the GPU to low-frequency
shadows generated by our occlusion sweeping method

Ray traced shadows Low-frequency shadows

Fig. 9. Comparison of hard shadows computed using ray marching on the GPU to low-frequency
shadows generated by our occlusion sweeping method for the vascular data in Fig. 5

(a) α = 1 (b) α = 0.6

Fig. 10. With decreasing α values subsurface scattering effects become more prominent



Fast Occlusion Sweeping 177

However, the geometry term g(N,ω) in Equation 2 and the integral of the geometry
term over an octant Gs(N) eliminate the illumination contribution from the opposite di-
rection of the surface normal. Therefore, for backward illumination from forward scat-
tering, we need to modify the geometry term. We can easily achieve this by redefining
it as g(N,ω) = |N ·ω |.

Fig. 10 shows examples of the subsurface scattering effect computed with our method.
Notice that subsurface scattering makes thinner parts of the object brighter giving a vi-
sual cue indicating how deep the object is beyond the visible surface.

5 Conclusion

We have presented a new method, which we call occlusion sweeping, for the fast com-
putation of ambient occlusion in the rendering of volumetric data. Unlike a full global
illumination solution, our method produces approximate ambient occlusion in time that
scales linearly with the size of the data set. Since it uses only volumetric calculations,
its time complexity is not affected by the geometric complexity of the data. Further, it
integrates very easily into the fast sweeping method for determining a signed distance
field in a data volume. Therefore, our method should be particularly useful for visu-
alization applications that use ray-marching through a distance field. In addition, our
method permits other illumination effects like soft shadows and sub-surface scattering,
both of which provide essential visual cues that enhance spatial perception.

As future work, we would like to explore other formulations for the visibility compu-
tation and experiment with more accurate transmittance functions to reduce or eliminate
the illumination artifacts produced with our current algorithm.
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Abstract. This study investigates the use of a biologically inspired meta-
heuristic algorithm to cluster categorical datasets so that the data can be  
presented in a useful visual form. A computer program which implemented the 
algorithm was executed against a benchmark dataset of voting records and pro-
duced better results, in terms of cluster accuracy, than all known published stu-
dies. Compared to alternative clustering and visualization approaches, the  
categorical dataset clustering with a simulated bee colony (CDC-SBC) algo-
rithm has the advantage of allowing arbitrarily large datasets to be analyzed. 
The primary disadvantages of the CDC-SBC algorithm for dataset clustering 
and visualization are that the approach requires a relatively large number of in-
put parameters, and that the approach does not guarantee convergence to an  
optimal solution. The results of this study suggest that using the CDC-SBC ap-
proach for categorical data visualization may be both practical and useful in 
certain scenarios. 

Keywords: Categorical data, category utility, cluster analysis, data visualiza-
tion, simulated bee colony algorithm. 

1   Introduction 

This paper presents a study of the use of a biologically inspired meta-heuristic algo-
rithm for processing large datasets composed of categorical data in order to present 
the data in a useful visual form. The analysis and visualization of datasets which con-
tain categorical data has great practical importance. Examples include examining 
sales data to forecast consumer purchasing behavior, examining telecommunications 
data for possible terror-related activity, and examining medical information for vari-
ous clinical diagnoses. For the sake of concreteness, consider the artificial dataset 
presented below. The nine tuples in the dataset are based on three attributes: color, 
size, and temperature. Each of the three attributes can take on a single categorical 
value: red, blue, green or yellow; small, medium, or large; and hot or cold, respective-
ly. With even this unrealistically small dataset, it is quite difficult for human observ-
ers to categorize or group the raw dataset in a meaningful way so that the categorized 
data can then be presented in some visually descriptive form. 
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001:  Green   Medium  Hot 
002:  Blue    Small   Hot 
003:  Red     Large   Cold 
004:  Red     Medium  Cold 
005:  Yellow  Medium  Hot 
006:  Green   Medium  Hot 
007:  Red     Small   Hot 
008:  Red     Large   Cold 
009:  Blue    Medium  Hot 
 

The primary source of the difficulty of clustering the data presented above is the fact 
that the attribute values are categorical rather than numerical. It is not so obvious how 
to compute a meaningful difference or a representative value for categorical tuples 
such as (red, small, hot) and (blue, large, cold). Data clustering is a widely studied 
problem domain. A search of the IEEE digital library Web site for the keyword “clus-
tering” returned a list of references to over 36,000 documents 

In order to measure the quality of a particular clustering algorithm compared to al-
ternative approaches, some measure of clustering effectiveness must be employed. 
One approach for evaluating the quality of a clustering algorithm which works on 
categorical data is to generate a synthetic dataset which is based on some hidden, 
underlying rule set, run the proposed clustering algorithm against the synthetic data-
set, and then gauge the quality of the resulting clusters using some form of similarity 
or likelihood measure. Examples of similarity measures which can be used to evaluate 
clustering effectiveness include the Simple Matching coefficient, Jaccard's coeffi-
cient, Dice's coefficient, the Cosine coefficient, and the Overlap coefficient [1]. Ex-
amples of likelihood measures which can be used to evaluate clustering effectiveness 
include various forms of entropy functions and the category utility function [2]. The 
category utility (CU) function is generally attributed to a 1985 paper by Gluck and 
Corter [3]. The CU function is defined in terms of the bivariate distributions produced 
by a clustering. Suppose a dataset is composed of t tuples where each tuple is based 
on Ai attributes (i = 1... m) and where each attribute value, Vij, is a categorical value. 
If a dataset under analysis is partitioned into a cluster set C = {Ck} (k = 1... n), then 
the category utility function for the clustering scheme is given by the equation: 

 1   2  2             1  

The left-hand term in the brackets of equation (1) represents conditional probabilities 
that each attribute takes on a particular categorical value, given the distribution of that 
value within a cluster. The right-hand term is similar except that it represents uncon-
ditional probabilities of attribute values for the entire dataset. Therefore, the entire 
term in the square brackets in equation (1) measures the difference of the probabilities 
of finding attribute values in a cluster purely by chance and the probabilities of find-
ing those values given the clustering scheme.  

The fact that quality of categorical data clustering algorithms can be evaluated us-
ing the CU function raises the possibility of using the CU function as the basis of a 
clustering generation mechanism. This is the foundation of the approach used by the 
algorithm introduced in this study. Except in situations with very small datasets, the  
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2   Algorithms Inspired by Bee Behavior 

Algorithms inspired by the behavior of natural systems have been studied for decades. 
Examples include algorithms inspired by ants, biological immune systems, metallur-
gic annealing, and genetic recombination. A review of the literature on algorithms 
inspired by bee behavior suggests that the topic is evolving and that there is no con-
sensus on a single descriptive title for meta-heuristics based on bee behavior. Algo-
rithm names in the literature include Bee System, BeeHive, Virtual Bee Algorithm, 
Bee Swarm Optimization, Bee Colony Optimization, Artificial Bee Colony, Bees 
Algorithm, and Simulated Bee Colony. 

Common honey bees such as Apis mellifera take on different roles within their co-
lony over time [5]. A typical hive may have 5,000 to 20,000 individuals. Young bees 
(2 to 20 days old) nurse larvae, construct and repair the hive, guard the entrance to the 
hive, and so on. Mature bees (20 to 40 days old) typically become foragers. Foraging 
bees typically occupy one of three roles: active forgers, scout foragers, and inactive 
foragers. Active foraging bees travel to a food source, gather food, and return to the 
hive. Roughly 10% of foraging bees in a hive are employed as scouts. 

A 1997 study by Sato and Hagiwara used a model of honey bee behavior named 
Bee System to create a variation of the genetic algorithm meta-heuristic [6]. The algo-
rithm essentially added a model of the behavior of scout bees to introduce new poten-
tial solutions and avoid premature convergence to local minima solutions. A 2002 
study by Lucic and Teodorvic used a variation of the Bee System model to investigate 
solving complex traffic and transportation problems [7]. The study successfully used 
Bee System to solve eight benchmark versions of the traveling salesman problem. A 
2004 paper by Nakrani and Tovey presented a honey bee inspired algorithm for dy-
namic allocation of Internet services [8]. The study concluded that bee inspired algo-
rithms outperformed deterministic greedy algorithms in some situations. A 2005 study 
by Drias et al. used a meta-heuristic named Bee Swarm Optimization to study in-
stances of the Maximum Satisfiability problem [9]. The study concluded that Bee 
Swarm Optimization outperformed other evolutionary algorithms, in particular an ant 
colony algorithm. A 2006 paper by Basturk and Karaboga investigated a bee-inspired 
algorithm named Artificial Bee Colony to solve five multi-dimensional numerical 
problems [10]. The paper concluded that the performance of the bee algorithm was 
roughly comparable to solutions by differential evolution, particle swarm optimiza-
tion, and evolutionary algorithms. A 2009 study by McCaffrey demonstrated that an 
algorithm named Simulated Bee Colony outperformed existing deterministic algo-
rithms for generating pairwise test sets, for six out of seven benchmark problems [11]. 

3   Simulated Bee Colony Algorithm Implementation 

There are many ways to map honey bee foraging behavior to a specific algorithm 
which clusters categorical data in order to create a useful visual presentation. The 
three primary design features which must be addressed are 1.) design of a problem-
specific data structure that simulates a foraging bee's memory and which represents 
the location of a food source, which in turn represents a dataset clustering scheme, 2.) 
formulation of a problem-specific function which measures the goodness, or quality, 
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of a candidate partitioning, and 3.) specification of generic algorithm parameters such 
as the numbers of foraging, scout, and inactive bees in the colony, and the maximum 
number of times a bee will visit a particular food source. Suppose the dataset to be 
analyzed contains the data described in the Introduction section of this paper, with 
attributes of color (red, blue, green, yellow), size (small, medium, large), and tem-
perature (hot, cold), and a cluster size of n = 3 is specified. The screenshots shown in 
Fig. 3 and Fig. 4 show the result of a sample program run and illustrate many of the 
implementation details. 

 

 
 

Fig. 3. Screenshot of initialization phase of the CDC-SBC implementation 

 
The CDC-SBC algorithm implementation used in this study models a bee as an ob-

ject with four data members. The primary data member is a two-dimensional integer 
array named MemoryMatrix which corresponds to a bee's memory of the location of a 
food source, which in turn represents a dataset clustering. A Status field identifies the 
bee's role (1 = an active forager). A CategoryUtility field is a value which is a meas-
ure of the quality of the memory matrix, as described in the Introduction section of 
this paper. A NumberVisits field is a counter that tracks the number of times the bee 
object has visited a particular food source. The honey bee colony as a whole is mod-
eled as an array of bee objects. The CDC-SBC algorithm iterates through each bee in 
the colony and examines the current bee's Status field. If the current bee is an active 
forager, the algorithm simulates the action of the bee leaving the hive to go to the 
current food source in memory. Once there, the bee examines a single neighbor food 
source. A neighbor food source is one which, relative to the current food source, has a 
single tuple assigned to a different cluster. If the quality of the neighbor food source is 
superior to the current food source, the foraging bee's memory is updated with the 
neighbor location and the NumberVisits counter is reset to 0. 

After examining a neighbor food source, an active bee returns to the hive. If the re-
turning bee has reached a threshold for the maximum number of visits to its food 
source in memory, that bee becomes inactive and a randomly selected inactive bee is  
 

C:\CDC-SBC\Run\bin\Debug> Run.exe 
 
Begin cluster analysis of categorical data using SBC 
 
Number clusters = 3 
 
Initializing Hive 
 
Number Active bees = 60 
Number Inactive bees = 20 
Number Scout bees = 20 
Maximum number of cycles = 10,000 
Maximum cycles without improvement = 10,000 
Maximum visits to a food source = 10 
Probability waggle dance will convince = 0.9000 
Probability a bee accepts a worse source = 0.0100 
 
Hive initialized 
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Fig. 4. Screenshot of execution and results of the CDC-SBC implementation 

 
converted to an active forager. Otherwise the returning bee performs a simulated 
waggle dance to all inactive bees in the hive. This dance conveys the goodness of the 
current food source / clustering in the dancing bee's memory. Inactive bees with food 
sources in memory which have lower quality than the returning bee's food source will 
update their memories to the returning bee's memory with probability = 0.90. Scout 
bees are not affected by the waggle dances of returning foragers. Instead, scouts leave 
the hive, examine a randomly selected food source, return to the hive, and perform a 
waggle dance to the audience of currently inactive bees. 

4   Results 

Two common metrics for measuring the effectiveness of clustering algorithms are 
precision and recall [12]. Suppose some dataset contains t tuples and some clustering 
algorithm assigns each tuple to one of n clusters. Let ai represent the number of tuples 
correctly assigned to cluster i. Let bi represent the number of tuples which have been 
incorrectly assigned to cluster i. And let ci represent the number of tuples which have 
been incorrectly rejected from cluster i (and incorrectly assigned to some cluster j 

 
All cycles completed 
 
Best clustering matrix found is 
0 0 1 1 0 0 0 1 0 
1 0 0 0 1 1 0 0 1 
0 1 0 0 0 0 1 0 0 
 
Corresponding category utility is 0.3971 
 
Cluster c0 = 
003 ( Red     Large   Cold    ) 
004 ( Red     Medium  Cold    ) 
008 ( Red     Large   Cold    ) 
------------------------------- 
mode: Red     Large   Cold 
 
Cluster c1 = 
001 ( Green   Medium  Hot     ) 
005 ( Yellow  Medium  Hot     ) 
006 ( Green   Medium  Hot     ) 
009 ( Blue    Medium  Hot     ) 
------------------------------- 
mode: Green   Medium  Hot 
 
Cluster c2 = 
002 ( Blue    Small   Hot     ) 
007 ( Red     Small   Hot     ) 
------------------------------- 
mode: Blue    Small   Hot 
 
End SBC visualization run 
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where j ≠ i). Then the precision for cluster i is given by pi = ai / (ai + bi). The recall for 
cluster i is given by ri = ai / (ai + ci). The precision for a given cluster can be thought 
of as a measure of accuracy, and the recall can be thought of as a measure of com-
pleteness. The micro-precision of a clustering result is computed as a whole, across all 
clusters, using overall numbers of correctly assigned tuples, incorrectly assigned 
tuples, and incorrectly rejected tuples. 

4.1   Experiment #1 – Congressional Voting Data 

In order to evaluate the effectiveness of the CDC-SBC algorithm and resulting data 
visualizations compared to alternative clustering algorithms, the CDC-SBC algorithm 
was executed against the UCI voting dataset. The voting dataset consists of actual 
congressional votes from the U.S. House of Representatives on 16 issues in 1984. 
Results of running the CDC-SBC algorithm against the voting dataset (with party 
affiliation omitted) and the corresponding values for seven other categorical data 
clustering algorithms are shown in Table 1. 

Table 1. Effectiveness of different clustering algorithms on the benchmark UCI voting dataset 

Algorithm Correct Precision CU CU' 
CDC-SBC 383 0.8805 1.4711 2.9422 

COBWEB 378 0.8690 1.4506 2.9011 

Ahmad-K 377 0.8667 1.4465 2.8929 

LIMBO 376 0.8644 1.4424 2.8847 

K-Means 376 0.8644 1.4424 2.8847 

Huang-K 364 0.8368 1.3931 2.7861 

COOLCAT 363 0.8345 1.3890 2.7779 

ROCK 345 0.7931 1.3150 2.6300 

 
The values in the column labeled Correct in Table 1 are the number of tuples in the 

voting dataset which were correctly clustered as Democrat or Republican by each 
algorithm. The Precision column is the micro-precision value as described above, 
which in this situation is just the number of tuples which are correctly clustered, di-
vided by the total number of tuples (t = 435) in the voting dataset. The CU column is 
the category utility of the clustering produced by each algorithm, as defined by equa-
tion (1). The CU' column is a slightly different definition of category utility used by 
some studies, which is not normalized for number of clusters. Because the number of 
clusters in this situation is 2, the values in the CU' column are simply twice the values 
in the CU column, and have been included solely to provide a consistent comparison 
with the reported results of other studies. 

The COBWEB clustering algorithm incrementally builds a probabilistic hierarchy 
tree of clusters from a dataset using category utility to measure clustering effective-
ness [13]. The Ahmad-K clustering algorithm is a variation of the Huang-K algo-
rithm, which in turn is based on the simple k-means algorithm [14]. The LIMBO 
algorithm is based on a concept called the information bottleneck, which is essentially 
a measure of entropy [12]. The COOLCAT clustering algorithm is an iterative tech-
nique that uses a greedy algorithm based combined with an entropy measure [2]. The 
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ROCK algorithm uses a hierarchical approach in conjunction with a distance measure 
modeled on graph theory [15]. 

The data in Table 1 were derived from several sources and should be interpreted 
somewhat cautiously. Most of the studies represented in Table 1 reported result values 
for the UCI voting dataset in terms of category utility. In the situations where the 
number of correct tuples was not reported (COOLCAT, COBWEB, LIMBO), an 
auxiliary program, developed as part of this study, which computes the number of 
correct values for a given category utility was employed to produce the values shown 
in the Correct column of Table 1. The results for the K-Means algorithm were deter-
mined by executing the WEKA data analysis tool [16]. Further, published results 
differ slightly for the ROCK, COOLCAT, and COBWEB algorithms, presumably 
because of differences in input parameters to the algorithms. In situations where the 
differences in reported values for these algorithms could not be resolved, the data in 
Table 1 represent arithmetic means of reported results. 

The results of the CDC-SBC algorithm and the seven other algorithms listed in  
Table 1 represent the best clustering results of the benchmark UCI voting dataset 
discovered by a comprehensive review of the literature. The data indicates that the 
CDC-SBC algorithm produced more accurate results than all previously published 
algorithms for clustering the UCI voting dataset. 

4.2   Experiment #2 – Synthetic Datasets 

In order to evaluate the efficiency of the CDC-SBC algorithm and its resulting data 
visualizations, the algorithm was executed against six synthetic datasets. The results 
are shown in Table 2. 
 

Table 2. Accuracy of the CDC-SBC algorithm on synthetic datasets 
 

Dataset Attributes 
Attribute 
Values Tuples Clusters Partitions Precision 

DS0 3 (4,3,2) 9 2 3.02 * 103 1.00 

DS1 4 (5,5,5,5) 20 3 5.81 * 108 1.00 

DS2 5 (2,3,4,3,2) 36 4 1.97 * 1020 1.00 

DS3 6 (3,3,..,3) 50 5 7.40 * 1032 1.00 

DS4 10 (2,2,…,2) 200 2 8.03 * 1059 0.98 

DS5 16 (2,2,…,2) 435 2 4.44 * 10130 0.95 

 
After the synthetic datasets had been generated, a program which implemented the 

CDC-SBC algorithm was executed using each synthetic dataset (without cluster val-
ues) as input. The micro-precision was computed for each resulting clustering, and is 
listed in Table 2. For all synthetic dataset inputs, the maximum number of iterations 
of the main SBC algorithm loop was limited to a count of 108 or until a partitioning 
result with precision of 1.00 was discovered. The column in Table 2 which is labelled 
Partitions holds the total number of possible partitions for the associated synthetic 
dataset, computed using Stirling numbers of the second kind, and is a measure of 
dataset complexity. 
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The results in Table 2 suggest that the CDC-SBC algorithm is highly effective at 
clustering datasets which contain self-consistent data. The results also suggest that the 
CDC-SBC algorithm is at least reasonably effective at clustering datasets which have 
huge search spaces. The results for dataset D05 are particularly noteworthy; the CDC-
SBC algorithm correctly placed 413 out of 435 tuples from a problem domain with 
over 10130 possible partitions. 

5   Conclusions 

The results of this study demonstrate the feasibility of using a simulated bee colony 
meta-heuristic algorithm in conjunction with the category utility function to cluster 
categorical datasets so that the data can be usefully visualized. Because the scope of 
this study is limited and is for the most part empirical, it is not possible to draw de-
finitive conclusions from the results. However, when taken as a whole the results 
suggest that categorical data visualization using the CDC-SBC technique is a promis-
ing technique which has the potential to outperform existing algorithms in terms of 
clustering accuracy and accuracy of any resulting visualization format, and that the 
technique merits further investigation. One disadvantage of the CDC-SBC algorithm 
compared to alternative approaches is that CDC-SBC requires a relatively large num-
ber of generic algorithm parameters such as the numbers and percentages of each type 
of bee object, and simulation probabilities such as the probability that an active forag-
ing bee will accept a neighbor solution with a lower category utility value than the 
current CU value. Because algorithms based on bee behavior are relatively unex-
plored, there are very few guidelines available for selecting input parameters and trial 
and error is often required to tune the algorithm for better performance. Additionally, 
because the CDC-SBC algorithm is probabilistic, there is no guarantee that the algo-
rithm will produce an optimal solution to any clustering problem. 

In addition to clustering accuracy, an advantage of the CDC-SBC algorithm com-
pared to existing approaches is that CDC-SBC can in principle be applied to arbitrari-
ly large datasets. A promising potential extension of CDC-SBC is to investigate  
datasets with mixed categorical and numerical data. According to a mathematical 
analysis of the category utility function by Mirkin, in spite of a significantly different 
outward appearance compared to traditional numerical clustering measures, the CU 
function is in fact closely related to the square-error criterion used in numerical clus-
tering [17]. This raises the possibility of adapting the CDC-SBC algorithm to deal 
with mixed data using a unified form of CU function. 
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Abstract. In this paper we propose a new system for real-time feature

acquisition and integration based on high-resolution stereo images that

is suitable for mobile robot platforms with limited resources. We com-

bine a fast feature detection stage with a stable scale-invariant feature

description method utilizing optimized spatial matching. Putative image

feature matches are used to determine 3D coordinates of feature points

and to estimate corresponding view transformations. Experimental re-

sults show the advantages of our system in terms of performance and

accuracy compared to the standard methods used in the area.

Keywords: Feature acquisition, feature integration, vision,mobile robot.

1 Introduction

Reliable feature localization and mapping from multiple images is an impor-
tant capability for mobile robots. A major fraction of robotic systems utilizes
laser scanners as the primary input sensor to obtain information about the envi-
ronment, in particular distance values. However, vision-based approaches using
single- or multiple camera configurations are able to provide much more infor-
mation relatively cheap, but also lead to a vast amount of image data that needs
to be processed within the speed and latency constraints of the robot platform.

In vision-based approaches natural visual features are exploited as landmarks.
These landmarks need to be detected and described by a feature vector to enable
tracking and unique view-independent matching. The main computational effort
is spent on feature tracking and description.

We address the problem of real-time acquisition and integration of visual
features in natural indoor environments based on a rotation sequence of high-
resolution stereo images. Our optimized feature detection and matching methods
are suitable for online processing on vision-based robot platforms with limited
computational resources. Despite focusing mainly on system performance, we
achieve excellent accuracy in feature integration even in the presence of outliers
or sparse landmarks. Our contributions include:

– Adaptive feature detection based on the FAST corner detector
– Improved SIFT based feature description for real-time processing

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 189–200, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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– Fast feature matching exploiting spatial and temporal coherence
– Stable and accurate feature integration from a non-stationary stereo camera
– Experimental comparisons to standard methods used in the area

2 Related Work

The acquisition of landmarks is generally carried out in two steps: (1) Detection
of suitable visual features that can be used as landmarks. (2) Description of the
features with a feature vector that uses local image neighborhood information.
A number of methods for both steps have been proposed in the past. We focus
here on the ones primarily used in natural feature acquisition.

KLT developed by Kanade, Lucas and Tomasi [1] extracts image features
that are adequate for tracking. Normalized cross correlation (NCC) tracks these
features in subsequent images. Tracking has the advantage that features can still
be followed even after the feature detector ceases to detect them. Thus, feature
localization is very accurate, but if the search area is not sufficiently limited
NCC exposes a poor performance with increasing image size (see also Section 4).
The most popular feature detection and description approach is SIFT (Scale-
Invariant-Feature-Transform) [2]. Visual features are detected as local extrema
of the Difference of Gaussian (DoG) over scale space. The SIFT descriptor is
rotation and scale invariant. Computationally, SIFT is one of the most expensive
descriptors though achieving an excellent invariant feature description. More
recently SURF (Speeded up Robust Features) [3] has been proposed. In SURF,
feature detection is based on the Hessian matrix while the descriptor uses sums
of 2D Haar wavelet responses. SURF is exposing a similar description quality as
SIFT at a better performance [4].

Acquired landmarks are matched by calculating the Euclidian of their descrip-
tors. To avoid a brute-force comparison of the descriptors, k-d trees, spatial hash-
ing, and epipolar matching can be employed. Once putative matches are found,
3D coordinates of the landmarks can be calculated by triangulation. Features are
spatially integrated estimating the view transformation from corresponding 2D
image points [5,6] or corresponding 3D world points [7,8]. Estimating the view
transformation based on 3D point correspondences is inferior as triangulations
are much more uncertain in the depth direction. Therefore, the estimation based
on 2D image points could give a more precise view transformation.

Our system for the online acquisition and integration of image features avoids
expensive computational feature detection and tracking by using the FAST
corner detector proposed by Rosten et al. [9] combined with a modified re-
duced SIFT descriptor [2]. Registration and matching of features in real-time
is achieved by exploiting optimized spatial hashing [10]. Features are spatially
integrated by estimating the view transformation on corresponding 2D image
points directly, using a rather simple but stable algorithm. Our system provides
very accurate results at comparatively low computational cost that no other
previously proposed method is capable of.
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3 System Overview

Our mobile robot platform as shown in Figure 1(a) uses a Bumblebee 2 stereo
camera from Point Grey Research as the optical imaging sensor that is capa-
ble of capturing stereo image frames with a resolution of 1024 × 768 pixels at
20fps. The camera is attached to a pan-and-tilt device permitting an absolute
rotation of 130◦. Mechanically, the rotation angle can be controlled from −65◦

to +65◦, however, no exact feedback or control is possible for accurate setting
of intermediate angles.

(a)

bayer pattern
decoding

grayscale
distortion
correction

difference
filter

B
um

blebee 2 cam
era bayer pattern

decoding
grayscale

distortion
correction

(b)

Fig. 1. (a) Mobile robotic platform with Bumblebee 2 stereo camera. (b) Pre-processing

pipeline.

Feature points are acquired and integrated in real-time from a continuous
stream of images. Feature acquisition includes detection, description and match-
ing of features while during integration the transformations between the images
are estimated. The consecutive processing steps of our system are outlined in
Figure 2 and will be explained in detail below.

Feature

Detection

Feature Matching & Outlier 

detection

Feature

Description
Feature IntegrationPre-processing

Fig. 2. Consecutive steps of real-time feature acquisition and integration

3.1 Pre-processing

Raw stereo image data acquired with the camera needs to be pre-processed before
actual feature acquisition can take place. Figure 1(b) shows the pre-processing
pipeline.

Captured stereo frames are run initially through a difference filter that lim-
its the number of frames to be processed. For this purpose the filter subtracts
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two consecutive stereo frames and calculates the mean value of the resulting
difference frame. If the mean value is under a certain threshold, the stereo frame
is discarded. Image noise defines the threshold for this filter. Subsequently, the
frame rate varies between 0-20fps depending on the image differences and thus
the robot and camera motion.

Frames that reach the pre-processing stage are decoded from their raw Bayer
pattern format to 8-bit grayscale. This is the image format which is used by prac-
tically all feature detectors. Camera lens distortions are corrected by a lookup-
table and bi-linear interpolation.

The whole pre-processing pipeline is multi-threaded so that both stereo frames
are processed in parallel. Use of SSE (Streaming SIMD Extensions) ensures
that pre-processing consumes a minimal amount of available computational time
before the actual feature detection is executed.

3.2 Feature Detection

Our feature detection is based on the FAST corner detector with non-maximum
suppression for feature detection [9]. FAST is a high quality corner detector that
significantly outperforms other existing algorithms. The principle of FAST is to
examine a small patch around a candidate image point to see if it looks like
a corner. This approach is efficiently implemented by a segment test algorithm
improved through machine learning. We use the 9-point variant of this corner
detector for our feature detection stage, as it provides optimal performance.

Regardless of being optimized for performance, the FAST corner detector is
invariant to substantial view transformations and independent of the feature
type. Its major disadvantage lies in the dependance on a user defined threshold.
Nevertheless, this feature detector exposes such a great performance so that it
can be used for adaptive feature detection. Instead of defining an image-based
threshold we can define a desired feature count. The optimal threshold can then
be found in a few iterations using the algorithm shown in Figure 3.

First we pre-define threshold step sizes that proved to be appropriate for
fast threshold determination (1). We then iterate until a user defined limit (2),
run the feature detector (3), and return the features if they lie within a 10%
threshold of the desired feature count (4, 5). If the feature number differs to a
greater extent the threshold is adjusted by a step value in the direction of the
desired feature count (7, 8). Should we pass the target features we start reducing
the step size and repeat steps (2-9). If no appropriate threshold can be found
after exceeding the iteration limit, the feature search with the closest count is
returned. This way we aim for a constant feature count by adaptive thresholding.

Section 4.1 shows that adaptive feature detection has only a marginal impact
on the overall performance, whereas keeping a constant feature count is an im-
portant component for feature description and integration. Too sparse features
result in an uncertainty in the estimated view transformation, while an excessive
number of features increases significantly the time spent on feature description
and thus breaking the real-time constraint of the robot platform.
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1 threshold step = {10, 5, 2, 1};
2 while iteration limit not reached

3 run feature detector;

4 if feature count within 10% of target features

5 return features;

6 (* adjust feature detection threshold *);

7 determine threshold step sign;

8 threshold ± = threshold step;

9 if passed target features

10 begin reducing threshold step;

Fig. 3. Adaptive feature detection procedure

3.3 Feature Tracking

Detected features could be tracked between image frames by cross correlation
or sum-of-squared differences (SSD) matching. We avoid actual feature tracking
because the involved search in high resolution images would be much more time-
consuming than our fast feature detection, description and matching. Tracking
is eventually achieved by matching features in multiple images as outlined below
in Section 3.5.

3.4 Feature Description

Feature detection is directly followed by feature description. Feature description
is a fundamental part as it is used to associate landmarks from different views.
Wrong associations between landmarks will result in inaccurate feature registra-
tion and integration, thus each detected feature needs to be assigned a unique
invariant descriptor.

As noted in Section 2, SIFT achieves an excellent invariant feature description
at the expense of decreased performance. Though quite fast implementations
exist that employ SSE and OpenMP (Open Multi-Processing) claiming speed
improvements of a factor of 6 over Lowe’s standard approach [11], they are still
not sufficient for real-time usage on high-resolution images.

Referring to SIFT, it is always considered in its most expensive variant with
a 128-element feature vector. A smaller variant of the descriptor exists that
performs only 8% worse in terms of feature association than the full version
[2]. This variant uses a 3× 3 descriptor array with only 4 gradient orientations.
The resulting 36-element feature vector is much faster to compute and suits the
real-time constraints of our system.

In detail, we choose a subregion around the feature that is 15×15 pixels wide.
This subregion is divided into 5 × 5 pixel wide regions. Keeping close to the
original implementation we calculate the gradient orientation and magnitude for
each pixel in the subregion. Weighted by the distance from the region center and
the magnitude, gradient orientations are accumulated into 4 gradient orientation
histograms (Figure 4). The desriptor is normalized to unit length to reduce effects
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15  15 subregion 3  3 descriptor array

Fig. 4. 36-element reduced SIFT descriptor creation

1 (* Initialization *)

2 pre-calculate square-root lookup table [256, 256];

3 pre-calculate arc-tangent lookup table [512, 512];

4

5 (* Descriptor calculation *)

6 calculate image x - gradients;

7 calculate image y - gradients;

8 for each detected feature do

9 lookup gradient magnitudes in square-root table;

10 lookup gradient orientations in arc-tangent table;

11 accumulate weighted orientations to descriptor array;

12 return descriptors;

Fig. 5. Feature description process

of illumination changes. To reduce the influence of large gradient magnitudes,
descriptor values are clamped to 0.2 and re-normalized as proposed in [2].

We implemented thedescriptor calculationwithoutany specificmulti-processing
or SSE extensions. Nevertheless, we achieve real-time performance on high reso-
lution images (see Section 4.1). Figure 5 shows the outline of our real-time SIFT
(RTSIFT) method.

During the initialization of RTSIFT we pre-calculate square root and arc tan-
gent lookup tables (2, 3). Before considering individual descriptors we calculate
the x- and y-image gradients once (6, 7). This can be performed more efficiently
on the entire image than on separate subimages as feature regions tend to over-
lap. To describe an image feature we lookup the gradient magnitudes and ori-
entations for each pixel in the feature’s subregion (9, 10) and accumulate them
after Gaussian weighting into the descriptor array (11). A list of descriptors is
eventually returned (12).

3.5 Feature Matching and Outlier Removal

Feature matching associates landmarks from different views that correspond
to the same feature. The similarity of two features is defined by the Euclid-
ian distance of their feature descriptors. Comparing feature descriptors using
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Fig. 6. (a) Spatial hashing to limit feature search. (b) Epipolar matching.

a brute-force approach leads to a matching time that is linearly dependent on
the number of features. Using spatial and temporal coherence we can avoid the
linear dependency and considerably decrease the time spent on feature matching
and reduce outliers at the same time.

To limit the number of descriptor comparisons we use spatial hashing [10].
Spatial hashing divides the image space into grid cells (Figure 6(a)). Each of
these grid cells is assigned with a unique hash value. The grid cell size influences
the number of landmarks that will reside in a cell. For matching, only landmarks
within the same and neighboring grid cells are considered. The optimal grid
cell size depends on the matching type. In stereo matching the grid size is set
according to the expected depth range and thus the corresponding disparities. To
estimate view transformations we use knowledge about the pixel displacement
given by a certain robot or camera movement. We set the grid cell size to the
expected maximum disparity or pixel displacement.

Our matching method is outlined in Figure 7. After setting the grid size
according to the matching type the hash table is initialized with landmarks. We
use a hash function (4) with the prime numbers p1 = 73856093, p2 = 19349663
and the hash table size n set to the landmark count. For each landmark (3) its
grid position and the corresponding hash value are generated (4). The landmark’s
Euclidian distance is calculated to all landmarks corresponding to the same hash
value (5). If a match is not found (6), neighboring grid cells are searched (7).
These neighbor grid cells depend on the landmark position and the direction of
the pixel displacement. Features are only associated if they are closer than 50%
of the second closest match (9).

Spatial hashing contributes greatly to the reduction of outlier matches as the
spatial coherence constraint generates fewer mismatches.

Feature matching can be improved further by considering temporal coherence.
Robot and camera motion are nearly constant over a short time, thus it is pos-
sible to predict a landmark position based on previous matches. This is done by
epipolar matching. The fundamental matrix F can be determined based on 2D
image point correspondances [6]. Having F , we can estimate the epipolar lines
along which landmarks should move. Matching is hence reduced to features that
are near an epipolar line e′ as illustrated in Figure 6(b). But uncertainty in the
estimation of the fundamental matrix leads to wrong predictions.
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1 set grid size according matching type;

2 initialize hash table;

3 for each described feature do

4 generate hash = (x · p1 ⊕ y · p2) mod n;

5 compare feature descriptors inside grid cell;

6 if feature not found

7 search neighboring grid cells;

8 if match 50% closer than second match

9 associate features;

Fig. 7. Feature matching algorithm

As the camera movement of our robotic platform at a single position is limited
to rotations, landmarks move either horizontal or vertical in image space, and we
can reduce the problem to a simple 1D lookup table. Mismatches between similar
features that remain after feature matching are handled during the following
feature integration stage.

3.6 Feature Integration

Assuming a calibrated camera with known intrinsic parameter matrix (Equa-
tion 1), f being the focal length and Xc, Yc the camera image center, we can
easily triangulate the 3D position of associated landmarks (Equation 2).⎛⎝f 0 Xc

0 f Yc

0 0 1

⎞⎠ (1)

The parameter b represents the camera baseline and d the stereo disparity.

z =
b · f
d

, x =
(xi −Xc) · z

f
, y =

(yi − Yc) · z
f

(2)

As noted in Section 2, estimating the view transformation from 3D points is
unreliable due to depth uncertainties. Hence we estimate the camera movement
based on 2D points from monocular images at continuous time steps.

Standard algorithms for estimating the camera movement based on the fun-
damental matrix F [6] showed to be inappropriate for feature integration on
our robotic system. The angle and axis of rotation recovered from the funda-
mental matrix varied strongly with the standard algorithms and in most cases
misleadingly a translation was found instead of a proper rotation. Furthermore,
the fundamental matrix is very sensitive to slight changes in the landmarks’ 2D
positions and to outliers even when using RANSAC.

The camera on our robotic platform is rotating in angular steps ≤ 1◦, we
therefore need a more robust feature integration approach that is able to reliably
estimate even small angles. For the sake of simplicity we consider in the following
a camera rotation around the y-axis, as a x-axis rotation can easily be derived
from the given equations.
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Fig. 8. Relation of camera rotation angles to disparities

For each pair of associated landmarks we calculate the rotation angle φ using
the cameras intrinsic parameters and trigonometric relations as indicated in
Figure 8.

The rotation angle φ is found based on the projected image positions (pi, p
′
i)

of the landmark (Pi, P
′
i ). According to the projection of pi and p′i relative to the

camera’s image center Xc we determine the intermediate angles α and β as:

α = atan(
p′i −Xc

f
), β = atan(

Xc − pi

f
). (3)

The angle φ is then easily found from

φ = α+ β. (4)

Given a set of individual rotation angles φ we need to find a common angle
that agrees with most landmarks and takes outliers into account which were not
eliminated during the previous feature matching stage.

Our solution to this is the following: First, we find the angle φ that corresponds
to the majority of angles inside the set within a 10% threshold. This is done by
simply testing each angle φ against all others. Second, landmarks that are not
consistent with φ are considered to be outliers and excluded from estimating
the rotation angle. The angle φ is finally used as starting point for iterative,
non-linear least squares Levenberg-Marquardt optimization under the condition
that the error E(φ) becomes minimal.

E(φ) =
N∑

n=0

[p′i − f(pi, φ)]2. (5)

The angle obtained through this optimization is used for 3D feature integration
according to triangulation and the estimation of the cumulative rotation angle
(see Section 4.2).
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4 Experimental Results

We tested our system on a mobile robot platform that uses a Apple Mac Mini
Core 2 Duo (2GHz CPU) for vision processing. The results presented are using
two parallel threads unless stated otherwise.

4.1 Performance

To compare the performance of our RTSIFT implementation with adaptive fea-
ture detection to different standard methods, a real-world indoor sequence of
100 frames was recorded. On this pre-recorded sequence we compared RTSIFT
to KLT [12], Fast SIFT [11], and SURF [13]. Timings are given in Figure 9(a)
for the feature detection and description and for three different image resolu-
tions. RTSIFT clearly outperforms any standard method for the feature detec-
tion and description on high-resolution images. We achieve 33fps at a resolution
of 1024 × 768, while SURF (4.8fps), Fast SIFT (1.2fps) and KLT (0.8fps) are
significantly slower.

1024  768 512  384 256  192

RTSIFT

KLT

SIFT

SURF

2.98 1.57 1.27

125.11 23.43 5.5

84.31 25.65 7.54

20.77 7.34 1.99

(a)

3648  2736 1920  1440 1024  768

FAST

# Features

Description

FAST AFD

# Features

Description

0.21 0.06 0.02

21817 6587 2582

1.40 0.32 0.18

0.63 0.21 0.07

521 460 501

0.49 0.15 0.06

(b)

130° Error 65° Error 10° Error

RTSIFT

KLT

SIFT

SURF

128.88 1.12 63.93 1.07 8.56 1.44

135.36 5.36 66.35 1.35 9.01 0.99

128.92 1.08 63.70 1.3 8.59 1.41

128.59 1.41 62.69 2.31 8.13 1.87

(c)

Fig. 9. (a) Feature detection and description applied to 100 frames. (b) Adaptive fea-

ture detection (single-threaded). (c) Accuracy of estimating the cumulative rotation

angle. All timings are given in seconds.

We additionally evaluated the influence of the adaptive feature detection
(AFD) on the performance of the feature detection, as well as on the number of
detected features and the resulting description time. For the adaptive detection
the number of target features was set to 500 and the iteration limit to 6. The
initial threshold for FAST feature detection was set to 15. Figure 9(b) shows
the comparison between the original FAST corner detector and our implementa-
tion with adaptive feature detection. With increasing image size the number of
detected features increases proportionally when using the original FAST corner
detector. While the excessive number of features is not necessarily beneficial,
this reduces the performance of the subsequent feature description stage. Our
adaptive feature detection keeps the number of features near a given constant
and thus guarantees fast computation for feature description.
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4.2 Accuracy

The accuracy of the system is an important factor for the feature integration. We
tested our method with different pre-defined rotation angles. While rotating the
camera, landmarks are continuously acquired and intermediate rotation angles
are estimated. The resulting accumulated angle should ideally correspond to the
real camera rotation. Figure 9(c) shows the error in estimating the cumulative
rotation angle for the different methods. While all methods achieve a rather low
error for estimating the rotation angle, using our feature integration, RTSIFT is
significantly faster.

In Figure 10 we show an example of the real-world environment with matched
features in the left-right stereo images as well as matched features in subsequent
frames over time.

(a) (b) (c)

Fig. 10. (a) Left-view image with detected landmarks in green. (b) Right-view with

matched stereo correspondences. (c) Right image at t+1 with matched correspondences

over time.

5 Conclusion

In this paper we presented an efficient system for real-time feature acquisition
and integration for vision-based mobile robots. A fast adaptive feature detection
stage is combined with a SIFT-based stable, scale-invariant and real-time feature
description while utilizing spatial hashing and epipolar matching for feature as-
sociation and outlier removal. The proposed feature integration method showed
to be robust in real-world indoor environments with low texture information as
well as fast, and thus can be successfully applied for real-time robot navigation
and 3D reconstruction.
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Abstract. Localizing a vehicle with a vision based system often requires

to match and track landmarks whose position is known. This paper tries

to define a new method to track some features in modeling them as

local planar patches with a monocular camera. First a learning sequence

is recorded to compute the planar features and their orientation around

landmarks tracked on several views. Then in the localization part, camera

pose is predicted and features are transformed to fit with the scene as

seen by the camera. Landmarks can then easily be matched and position

is computed more accurately. With this method many features can be

tracked on longer sequences than with standard methods, even if the

camera is moving away from the learning trajectory. This improves the

localization.

1 Introduction

An important problem in mobile robotics consists in localizing the robot at
any time with a good precision. To have the robot moving from one place to
another, it is very important to keep robot on the expected trajectory and to
correct its movement as soon as necessary. Vision-based systems need only a
standard camera and use directly the different visible elements in the area to be
localized without artificial landmarks.

Such systems consist generally in creating a map of key points which can be
found on the current view of the camera. Analyzing how the position of the
landmarks on the image evolves lead to the movement of the robot. The map
can be generated either in the same process as the localization, with a SLAM
(Simultaneous Localization and Mapping) algorithm or in a learning part while
the robot is being manually driven. In our case, we consider a learning stage.
The vehicle is first driven in the test area to acquire a video sequence. Then the
map is computed off-line. After that, the robot can move automatically and use
the map to find its position in real-time.

In both situations - SLAM or use of pre-learned map - images features have
to be associated with data from the map. Usually to realize this data association
some points are detected and matching is done with points in the map. The
main problem consists in matching points seen from different viewpoints.

To do that, many researches try to encode landmarks in such a way they do
not change with the viewpoint. Classical descriptors such as the SIFT [1] or
the SURF [2] use directly information of one image to generate a set of values
which are robust to viewpoint change. Other works [3], [4] use several images of
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the same point and consider matching in different viewpoint as a classification
problem.

Other researches, instead of searching for a viewpoint independent descriptor,
try to define a 3D model of the landmarks and adapt it to the viewpoint. Main
contributions [5], [6] close to our work consider landmarks as points lying on
locally planar surfaces. The features can then be projected in the current view
to have the same appearance as the searched landmark.

The main difference between these methods is when two different points look
similar but are located in different positions, for example a building with several
identical windows. Viewpoint invariant descriptors will probably be approxi-
mately the same for all points because all feature are altmost identical and so
window from different places could match. On the contrary the planar features
adapted to the current view will have a different projection induced by the posi-
tion change, and even when the features had the same appearance, they do not
match. But a constraint of the feature projection is the need of an approximate
pose to know the current view. As in our case the robot movement is easily
modeled, pose can be predicted, and this constraint is not very annoying. Our
work will so use planar feature to model the landmarks. Contrary to [6] our
approach uses only one camera to evaluate the planar feature, and instead of
using direct computing as in a SLAM context [5], the learning part enables to
use more points and more accurate features on every images.

Section 2 presents the initialization part where the planar features are recorded.
Localizationwith the generatedmap is described in section 3, and results are shown
in section 4.

2 Computing the Planar Features

In our system, the robot is first driven manually through the area to record an
image sequence with the on-board camera. With this sequence, the 3D map is
built with a structure from motion algorithm published in [7]. This algorithm
consists in detecting interest points with the Harris detector [8], and tracking
them along the image sequence. The essential matrices are then computed and
3D coordinates of the points are found with triangulation. Bundle adjustment
described in [9] is finally used to refine the solution.

After this part each pose i is known and Rotation matrix Ri and translation
vector Ti are computed as shown on figure 1.

2.1 Computation of the Features Orientation

As shown on figure 1 we consider that each point lies on a locally planar surface.
In order to model it, we need to compute the normal N to the surface.

As explained in [10], when two cameras observe a plane from different view-
point, we know that an homography H1→2 can be defined to link every point
with homogeneous coordinates P1 on the first image by the corresponding point
with homogeneous coordinate P2 on the second image with the equation

P2 = H1→2P1 (1)
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Fig. 1. Patch viewed by two cameras

H1→2 is the homography induced by the plane and can be expressed by

H1→2 = d1R1→2(I − T1→2N1
t) (2)

R1→2 and T1→2 are the rotation matrix and translation vector to transform the
pose 1 in pose 2, d1 is the algebraical distance from the center of camera 1 to
the plane, N1 is the normal to the plane expressed in the reference associated
to camera 1 and I is the 3× 3 identity matrix

The homography H1→2 is computed by minimizing the cost function C:

C =
∑
(i,j)

[I1(i, j)− I2(H1→2(i, j))]2 + [I1(H−1
1→2(i, j))− I2(i, j)]2 (3)

with (i, j) coordinates in the neighborhood of the analyzed point P - in our case
a 20 pixels-side square centered around P . This minimization is done with a
Levenberg-Marquard method.

Equation 2 shows that the only unknown is the orientation of N . The unit
vector N0 which comes from P to the center of the camera 1 is set as an
initial value and 2 other vectors u1 and u2 are defined to have an orthonormal
basis (N0,u1,u2). Then the scalar parameters α and β define vector N with
expression

N = N0 + αu1 + βu2 (4)

With these 2 parameters, N can have all the possible values in a half sphere in
direction to the camera. As the plane has been seen on the image, the direction
can indeed not be on the opposite.

Better results can be obtained if more images are used and if the viewpoint
changes a lot between the different images. To keep reasonable calculation time,
only 3 images are used, for example the first image, the last one and another
image in the middle of the sequence to have a wide basis. The cost function, in
case of more than 2 images, becomes

C =
∑

n1 �=n2

∑
(i,j)

[In1(i, j)− In2(Hn1→n2(i, j))]
2 (5)
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Here the H−1
n1→n2

is not used because it is the same as Hn2→n1 and the corre-
sponding cost will be added in the sum.

When we look at the result on the image, we can see that most of the normals
calculated with this method seem accurate except in case of bad matching or
when the detected points are not lying on a plane. To detect these problems,
correctness of the patch has to be evaluated, and it will be done in the next
section.

After all these operations, every landmark is associated with its 3D coordi-
nates and the orientation of the local planar surface around it.

2.2 Generation of the Planar Textures

To use the planar features in the localization, the texture of the plane around
the point is necessary, in order to compare it with the current view. The goal of
this part is to compile all the images where the point was matched from different
viewpoints, and use it to find the best texture to apply on the plane. Then it
is necessary to control the correctness of the obtained image, and to determine
from which viewpoint the image can be seen.

Texture generation. We generate a virtual view Πref as the projection of the
patch in a virtual camera. After that every image is transformed to generate
Πref . The virtual camera defines the patch appearance. The first idea could be
to define a fronto-parallel pose but this pose could be very different from the
original image, as seen in the figure 2. To avoid important resampling and define
Πref close to the initial view, the center C of the virtual camera is set as the
average position of the centers Ci of the original camera.

The virtual pose is then oriented so that P is on the optical axis, to put it in
the center of the image. The homographyHvir→i which gives for each pixel (x, y)
in the virtual view, its coordinates in the image i can be computed. A simple
mean of the pixel value in every image gives the value in Πref with equation 6

Πref (x, y) =
1

Nview

Nview∑
i=0

Ii(Hvir→i(x, y)) (6)

With this method, Πref is computed using every image where P was found.
As the value is computed separately for each pixel, dimensions of Πref can be
chosen arbitrary, for example a 20 pixels-large square.

Evaluation of the correctness. Sometimes, particularly in case of wrong
matching, Πref is blurred and can not be reliable. To eliminate this kind of
defaults, it is essential to evaluate the correctness of the patches. A way to
perform this evaluation is to try to match Πref with the original views.

First, we use Hvir→i to generate an image Πi, projection of the image Ii in
the virtual view i. Then a Zero-mean Normal Cross Correlation (ZNCC) is used
to compare Πref and Πi. A threshold (0.8 in our test) is used to determine if
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Fig. 2. Position of the pose relatively

to the plane in top view. For compar-

ison fronto parallel view is drawn to

show how far from the original view it

can be.

Fig. 3. Top view of a point P and

its observability area defined with the

original views

they match together. Then two criterias are used to evaluate the correctness of
the patch:

– the number of original views NMatched which match with the point have to
be greater than 3

– The ratio of NMatched to the number of view Nview to generate Πref have
to be greater than 90%

After that, it is possible to eliminate every unreliable point, in order to avoid
bad matches and to reduce calculating time.

Observability area. This area is based on the positions where the patch has
been observed initially and we can consider it is not visible far from this place.
The observability area is illustrated on figure 3. We consider a camera with
center C, this camera can see the point P if C is in the observability area of P .
Ci denote the center of each camera i initially observing P . The observability
area is more easily defined with spherical coordinates with origin in P and
angle θ considered in the horizontal plane. As the vehicle movement is such
as the distance from the camera to the ground is not changing, then the φ
coordinate is not used for the computation. Every Ci has coordinates (ri, θi, φi).
The observability area Obs(P ) is defined by expression 7

(r, θ, φ) ∈ Obs(P )⇔
{
rmin(1− ρr)− λr ≤ r ≤ rmax(1 + ρr) + λr

θmin(1− ρθ)− λθ ≤ θ ≤ θmax(1 + ρθ) + λθ
(7)

with rmin and rmax minimal and maximal value of ri, θmin and θmax minimal
and maximal value of θi and ρr, λr , ρθ, λθ scalar parameters used to define the
margin area to detect the point close to the original view.
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Finally a test can quickly be computed to know if a point P can be seen
from the position C, considering where the point was seen and a small interval
around.

After all these computations the planar features can be stored. To sum up we
need for the next step only:

– 3D coordinates of the feature
– Normal orientation
– Planar texture and virtual pose associated
– Observability limits

3 Localization Using Planar Features

Figure 4 shows the global view of the localization algorithm for an iteration i.
The current pose i is predicted using the pose i− 1 and a kinematic model of

the robot. This prediction enables to generate patch reprojection in the current
view and their uncertainty area. As the center of the camera is approximatively
known the observability limits can be checked and planar patches which are not
visible can be eliminated.

For every visible patch, the homography Himg→vir to link coordinates in the
image to the coordinates in the virtual view is computed and a new patch Πimg

is generated. After repeating this part on every visible patch, we obtain the
patches as seen by the predicted camera and can use it to try to match it in the
image.

At the same time, a point detector is applied on the current image to find
every interest point IP . The detector is the same as the one used in the structure
from motion algorithm [7] described in section 2 to assure that the same points
are found.

Then, every interest point IP of the image lying in the uncertainty area is
considered as a potential match with the patch. Πimg is translated to put the
IP in its center. Then a ZNCC is computed to have a matching score S. A
threshold is then used to filter every bad match. In our tests, 0.5 was used as
threshold, but other values can either save computation time (higher value) or
increase accuracy (lower value). Viewpoint invariance is not necessary because
the patches are theoretically the same as the image. As only illumination changes
can occur in case of weather or lighting conditions evolutions, ZNCC is used
because of its robustness to affine change in luminosity.

Fig. 4. Chart showing the localization algorithm
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After computing the matching score for every patch with all the interest points
in its uncertainty area, every matching pairs are compared and if a patch or an
IP is used in two different pairs, the pair with the worse score is suppressed.
After that, every interest point can be matched with only one patch, and every
patch matches with only one IP . With these pairs, the 2D coordinates of the
IP can be linked with the 3D coordinates of the planar feature.

Algorithm proposed in [11] is finally used with these coordinates to compute
the new camera pose by minimizing the reprojection error.

4 Results

This algorithm has been tested in an urban area with buildings around.
The learning part is made with an images sequence shot while the vehicle

moves along the right side of the road. The trajectory is 68 meters long. The
whole sequence is made of 509 images. 6145 landmarks were initially tracked, to
generate 4033 accurate patches which are tracked on an average of 58 images.
The figure 5 shows some images from this sequence and a top view (e) of the
trajectory generated by the structure from motion algorithm. In the part (b)
and (d), the generated features are all transformed to show the image in the
same view as in (a) and (c).

The localization part is computed on an other sequence where the vehicle
was moving on a different path in the same area. Figure 6 shows an image from
a sequence where the robot was zigzagging from the left to the right side of
the road. Image (e) shows the top-view generated by the localization algorithm.
The robot never drives further than 3.5 m from the reference trajectory with a

Fig. 5. Images extracted from the learning part: (a) and (c) images viewed by the

camera, (b) and (d) generated features in the same view as the image. (e) top view of

the trajectory with every pose (black square) and landmarks seen around.
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Fig. 6. Images extracted from the localization part: (a) image viewed by the camera.

(b) generated features in the same view as the image with all the landmarks. (c) closest

image taken in the learning part. (d) features matching the view (e) top view of the

trajectory with landmarks.

maximal angular deviation of 30◦. The top images show the difference between
the current image (a) and the reference (c). A viewpoint change can clearly be
evaluated by comparing these images. On the bottom, images (b) and (d) show
the planar features transformed to have the same view as the image. Despite
the viewpoint change, the transformed features look like the image. This is an
improvement of the matching process.

To test the benefit of the system, the number of correct matches on the se-
quence has been compared with another algorithm. Instead of using generated
planar features, the matching is done directly with the reference images. Two
methods have been tested, using the ZNCC for matching and with the SURF
descriptor ([2]) which is known to be almost viewpoint invariant. The surf de-
scriptor used was computed directly with the library provided by its author. As
the SURF descriptor needs the scale factor to be accurate, the detector pro-
vided with the SURF library was used instead of the Harris detector. In order
to compare the methods with the same data, this detector has been used with
all the methods, to have the same detected point and reference point, and the
only change is the descriptor used for the matching. Figure 7 shows the number
of correct matches on every image of the sequence using the different methods
when the vehicle was zigzagging.

The use of planar features increases clearly the number of correct matches
compared with the other methods. Particularly when the vehicle is moving far
from its first trajectory (around image 100, 300, 550, 650 and 800 on the figure
7), the method based only on the original image and ZNCC descriptor can hardly
localize the vehicle because of the lack of correct matching. In this sequence, the
direct matching has even lost the position of the robot around the 800th image.
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Fig. 7. Number of correct matches along the 915 images sequence where the vehicle

is zigzagging on the road. The method with planar features (in thick black line) is

compared with method using simple descriptors computed directly with the closest

reference image.

On the contrary the use of planar feature enables to localize easily the vehicle
with more than 100 correct matches.

At this time the localization algorithm needed around 2 seconds per image
with a core 2 duo 2.5 GHz processor. But this C++ code has not been optimized
yet. We think that after some improvement, this algorithm can be used in real
time with several images per seconds.

However in order to use the planar features we need to predict the camera
position first. As the planar patches are projected as seen in the predicted view,
they are highly dependent on this prediction. This remains the main drawback
and can be a real problem for the initialization with the first image of the
sequence, where position has to be estimated from nothing. A way to initialize
the position could be to use a low cost GPS, or using global localization algorithm
such as Monte Carlo algorithm [12].

The planar features give an other advantage in memory occupation. Instead
of saving lots of previous observations, to compare them from different positions,
only one patch is saved with coordinates of the normal.

5 Conclusion

This matching method explicitly enables to deal with the change of viewpoint.
We have shown that this representation gives many reliable reference lanmarks,
which can be matched from different viewpoints. Results are better than the
descriptors which are known to be robust to viewpoint changes. Instead of using
a lot of different small features this kind of representation allows to keep only
one reference as accurate as possible, and uses less memory. Moreover this rep-
resentation allows to go further from the initial learning trajectory which can be
useful for example to avoid some obstacles on the way.
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A future issue could be to become more robust to the lighting change. Most
of the descriptors are robust to affine illumination change but due to shadows
and varying weather conditions, the change is not always affine. An improve-
ment could be made by changing ZNCC in an other descriptor more robust to
illumination changes.
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Abstract. This paper describes a system for structure-and-motion es-

timation for real-time navigation and obstacle avoidance. We demon-

strate a technique to increase the efficiency of the 5-point solution to

the relative pose problem. This is achieved by a novel sampling scheme,

where we add a distance constraint on the sampled points inside the

RANSAC loop, before calculating the 5-point solution. Our setup uses

the KLT tracker to establish point correspondences across time in live

video. We also demonstrate how an early outlier rejection in the tracker

improves performance in scenes with plenty of occlusions. This outlier

rejection scheme is well suited to implementation on graphics hardware.

We evaluate the proposed algorithms using real camera sequences with

fine-tuned bundle adjusted data as ground truth. To strenghten our re-

sults we also evaluate using sequences generated by a state-of-the-art

rendering software. On average we are able to reduce the number of

RANSAC iterations by half and thereby double the speed.

Structure and motion (SaM) estimation from video sequences is a well explored
subject [1,2,3]. The underlying mathematics is well understood, see e.g. [1], and
commercial systems, such as Boujou by 2d3 [4], are used in the movie industry on
a regular basis. Current research challenges involve making such systems faster,
more accurate, and more robust, see e.g. [2,3]. These issues are far from solved,
as is illustrated by the 2007 DARPA urban challenge [5]. In the end, none of the
finalists chose to use the vision parts of their systems, instead they relied soley
on LIDAR to obtain 3D structure. Clearly there is still work to be done in the
field.

This paper aims to increase the speed and accuracy in structure-and-motion
estimation for an autonomous system with a forward looking camera, see fig-
ure 1. Although on a smaller scale, this platform has the same basic geometry
and motion patterns as the DARPA contenders, and as the vision based colli-
sion warning systems developed for automotive applications. In such systems,
estimated 3D structure can be used to detect obstacles and navigable surfaces.

When dealing with forward motion there are a number of problems that must
be adressed. The effective baseline is on average much smaller than for the side-
ways motion case, resulting in a more noise sensitive structure estimation. A
tracked point feature near the camera often has a short lifespan because it quickly
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Fig. 1. Left: Robotic car platform. Upper right: Frame from a forward motion sequence.

Lower right: Estimated structure using the proposed algorithm.

moves out of the the visual field. Unfortunately, such points also contain most of
the structural information [6]. Forward motion also produces large scale changes
in some parts of the image, and this can be a problem for some trackers.

This paper studies the calibrated SaM formulation, which has several advan-
tages over the uncalibrated formulation. In calibrated SaM, estimated cameras
and structure will be in Euclidean space instead of a projective space, and we
can use more constrained problem formulations [1]. Planar-dominant scenes are
not an issue when doing calibrated five point pose estimation [7], which turns
out to be a very desirable property when doing autonomous navigation, as these
kinds of scenes are quite common. Note also that in autonomous navigation the
camera is often fixed, which makes calibration of the camera straightforward.

We should also note that monocular SaM has an inherent scale ambiguity [1].
Despite this, the estimated structure can still be effectively used for obstacle
avoidance if time-to-collision is used as the metric [8].

The main contributions of this paper are:

1. Introduction of a distance constraint that significantly reduces the number
of RANSAC iterations in the five point algorithm, while retaining the pose
accuracy. Even when all correspondences in a sample are inliers, their dis-
tribution in space makes a big difference. This idea is very easy incorporate.
Somewhat surprisingly it does not appear to be described elsewhere.

2. Experimental evaluation of a recently introduced outlier rejection technique
for the KLT tracker [9], in the SaM setting. This technique adds an outlier
rejection step already in the tracking algorithm. With respect to performance
this is used to move calculations from the CPU to a GPU.

We also demonstrate how sophisticated rendering techniques can be used for
controlled evaluation of the system.
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1 Previous Work

The use of calibrated epipolar geometry in computer vision was pioneered by
Longuet-Higgins in his seminal work [10]. The minimal number of point corre-
spondences in the calibrated case is five, and the current state-of-the-art five-
point method is the one introduced by Nistér [7]. The exact solution involves
cubic constraints, which result in a polynomial with 13 roots. Nistér reduced
the number of roots to 10 and provided very efficient solutions to each step of
the algorithm. His paper also describes how to add a third view, by solving the
perspective-three-point problem [11]. We use this complete three view method
in our paper, and refer to it as the Nistér three view method.

Ever since the original RANSAC algorithm was introduced [11], many modi-
fications to the algorithm have appeared. Some methods assume prior informa-
tion of which points are likely to be inliers, and use this to bias the sampling,
e.g. PROSAC. Others estimate the point inlier likelihoods as they go [12], for
instance using the point residual distributions [13]. Others discard samples (i.e.
groups of points), before scoring them against a model, by comparing the sam-
ple points against the model. R-RANSAC [14] and preemptive RANSAC [15],
are examples of this. In our setup model estimation is relatively expensive, so it
would be better if we could discard a sample even before computing the model.
This is exactly what our constraint does, and in this respect, it is similar to
NAPSAC [16], which selects points that lie close together when estimating hy-
perplanes. But, as we will show, for our problem it is on the contrary better to
select points that are far apart.

Wu et al.[17] have shown how the KLT tracker can be improved by simul-
taneously tracking both forwards and backwards in time. Another approach is
to simply run the tracker again, backwards in time, and reject trajectories that
do not end up at the starting point [9]. We will use the latter approach, and
demonstrate its effect in the experiment section.

Rendered 3D scenes as synthetic ground truth has a long history in the field of
motion estimation, e.g., the famous Yosemite sequence [18]. This was at the time
a very complex scene as it had real 3D structure. Baker et al. argued in [9] that
the Yosemite sequence is outdated and they introduce a new set of ground truth
data. These new datasets use modern rendering software that can accurately
model effects such as shadows, indirect lighting and motion blur. We will use
similar data of our own design, in the experiment section.

2 Method

2.1 Overview

The real-time SaM method that we are using consists of two steps:

1. Point correspondences are maintained over time using the Kanade-Lucas-
Tomasi (KLT) tracking framework [19,20].
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2. The relative pose is estimated for 3 cameras, according to the method de-
scribed in [7]. In this approach, the relative pose is first found between 2
cameras. Then, triangulation and the perspective-3-point algorithm [11] is
used to incorporate the third camera. All of this is done for the minimal
5-point case, inside a RANSAC [11] loop.

We will describe these two steps in detail below, as well as the modifications we
have added to each step.

2.2 Tracking

We use the KLT-tracker [20] to maintain point correspondences across time.
The KLT-tracker is basically a least-squares matching of rectangular patches
that obtains sub-pixel accuracy through gradient search. We use a translation-
only model between neighbouring frames. Tracking between neighbouring frames
instead of across larger temporal windows improves the stability, especially since
it helps us to deal with the scale variations that are present in forward motion.
When tracking frame-by-frame, the changes in viewing angle and scale are suf-
ficiently low for tracking to work well.

A simple way to increase the quality of the point correspondences is to add an
early outlier rejection step. We do this by running the tracker backwards from
the current frame and position and checking if it ends up at its initial position
in the previous frame. We will call this procedure track-retrack from now on.
Adding the track-retrack step doubles the amount of computations. However,
since our tracker is running on the GPU, which has cycles to spare, this does
not affect the overall performance of the rest of our system.

The KLT tracker has successfully been implemented on a GPU by several
authors [21,22,23]. Reference [22] shows a speed increase of more than 20x, and
can track thousands of patches in real time. Such a large amount of tracked points
is not necessary to estimate the camera motion, and we can thus easily afford
to run the tracker a second time. In order to fully utilize the GPU, the number
of threads of an implementation must be high. While a CPU can efficiently
run 2 threads on a 2 core system, the GPU’s core is a simpler version of a
processor with very high memory latencies, little or no cache and with many
SIMD characteristics. To achieve maximum performance from such a design we
need many more threads than processors, and as the current high-end hardware
has 240 processors, one often needs more than 5000 threads [24].

2.3 Five Point Pose Estimation

The minimal case for relative pose estimation in the calibrated case is five cor-
responding points seen in two cameras. Currently, the fastest algorithm for this
problem is given by Nistér in [7]. It runs in real-time, and thus we have chosen
it as our starting point. In this method, the relative pose estimation is extended
to three cameras by doing the following within the RANSAC loop: The essen-
tial matrix is estimated from five point correspondences between two cameras.
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The relative camera position and rotation are then extracted from the essen-
tial matrix. From these, the camera projection matrices are created and used
to triangulate the five 3D points. The perspective-3-point algorithm [11] is then
used to calculate the third camera from three 3D points and their respective
projections onto this camera.

One advantage with using the minimal case is that it imposes all available
constraints on the estimation. This is especially important when handling more
complicated cases like the forward motion case. If one plane is dominant, the
uncalibrated case has several solutions. In the calibrated case, the number of
solutions is reduced to two, where one can be discarded (as it has the cameras
below ground). It is thus not necessary to switch between the homographic and
the full epipolar geometry model. We use the Nistér method here, but note that
in principle any five point solver would benefit from the improvements we suggest
in this paper.

2.4 Distance Constraint

Forward motion in structure from motion is a notoriously difficult case, because
of the much smaller equivalent baseline1 created between two cameras than with
other types of motions. The forward motion also gives rise to large scale differ-
ences in the point correspondence estimation. The point tracking becomes less
accurate under these scale transformations. Most of the time we will also have
a singular point (the epipole) lying in the image (in the motion direction). At
this point the equivalent baseline is zero, and it increases towards the edges of
the frame.

Computation of the relation between two cameras by estimating the essential
matrix is quite sensitive to the actual 3D positions of the used correspondences.
This is demonstrated by a recent discovery by Martinec and Pajdla [3]. In their
paper, they show that bundle adjustment using only four carefully chosen cor-
respondences between each pair of views can be almost as accurate (and much
faster) as using all correspondences. These four points are chosen to be maxi-
mally distant in the 3D space with metric determined by the data covariance.
However, for a direct solution of SaM this is too expensive as it requires triangu-
lated 3D points. Instead, our proposal is to look at the projections in the image
plane. The rationale is that points that are distant in the image plane are likely
to be distant also in 3D space.

The standard approach when solving structure and motion with [7] is to place
the minimal case five point solver inside a RANSAC loop. Our proposal is to
add a simple distance test inside the loop, before the minimal case solver. With
this test we put a minimum distance constraint on the randomly chosen image
points, x. Only sets of five points x1,. . . , x5, that satisfy:

||xi − xj ||2 > T, ∀{(i, j) : i, j ∈ [1..5], j > i} , (1)

1 By equivalent baseline, we informally mean the distance between the camera centers

when projected onto the image plane.
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indoor concrete

gravel grass

reconstruction of concrete sequence reconstruction of grass sequence

Fig. 2. The top four subplots show the used frames from the real world sequences. The

indoor sequence (top left) is chosen as it has plenty of occlusions. The three outdoor

scenes are captured while driving the robotic car forward on different terrains: concrete,

gravel and grass. The two lower images are the three-view reconstructions of two of the

sequences (a navigable planar surface is also estimated and textured for illustration).

will be used for pose estimation. For other sets the sampling is run again. We
use the threshold T = 0.1 on distances in normalized image coordinates. This
corresponds to approximately 150 pixels in our sequences (or about 10% of the
image diagonal). This value gave a reasonable compromise between the number
of resamplings, and the precision obtained. We have not done any extensive tests
on the exact value to use.

The computational load of the point pre-selection procedure is small com-
pared to the 5 point solver. It consists of 5 rand() function calls, 10 conditional
instructions and some simple arithmetical operations. If necessary this can be
further optimized by different gridding methods. The average time to compute
one sample on our platform (in one thread on an Intel 2.83GHz Q9550 CPU)
in standard C++ is 0.1 microseconds. On our datasets this is done on average
2-4 times, for T = 0.1. The three-view five-point method is reported to take
140 microseconds in 2004 [7]. Accounting for CPU speedups gives us about 35
microseconds, or 87-175x more than our sampling step.

3 Evaluation

Evaluation was carried out on four real world sequences captured with a Point-
Grey Flea2 camera (1280 × 960 at 15 Hz) with pure forward motion, see top
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Fig. 3. Statistics of inlier/outlier ratios as a function of number of RANSAC iterations

(12, 25, ...). Each graph shows results for one sequence. Each experiment is repeated 500

times, and the median, and 5% and 95% quantiles are plotted. The four curves (in left-

right order within each group) show results without distance constraint and without

track-retrack (CYAN), with distance constraint and without track-retrack (BLUE)

without distance constraint and with track-retrack (GREEN), with distance constraint

and with track-retrack (RED).

of figure 2. OpenCV’s software library is used to calibrate the camera from
a checkerboard pattern [25]. We have also chosen to use OpenCV’s KLT im-
plementation in the experiments to make it easier for others to reproduce our
results.

Additionally we have generated two synthetic sequences, shown in figure 4.
We have used a rendering software called Mental ray that has a wide variety of
modelling capabilities such as complex geometry, soft shadows, specular high-
lights and motion blur. These are effects that impact the performance of the
SaM, and we would like to further investigate this in the future. For now we
have just used them with settings that give footage similar to the real camera.
Besides being used in many movies, Mental ray was also used in [9] to generate
image sequences and ground truth for optical flow.

We will use the real-world sequences together with the synthetic sequences to
evaluate the efficiency of the distance constraint. We use two measures in the
experiments:

– Inlier Frequency. We count the number of inliers in the best model found
by RANSAC. This is the criterion that RANSAC itself tries to maximise, and
thus it demonstrates how much our modifications have assisted RANSAC.

– Model Precision. We evaluate the scale normalised position of the third
camera. On real sequences, this is done by comparing our estimate against
the output of the bundle-adjustment algorithm described in [26]. On the
synthetic sequences, we know the exact locations of each camera, and use
that as ground truth.

3.1 Inlier Frequency Evaluation

In each sequence, we have used 3 images to compute SaM, and this has been
done for 12, 25, 50, 100 and 200 RANSAC iterations. This procedure is run
500 times, and from this we calculate the median and the 5 and 95 percentiles
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to show where 90% of the estimates lie. This kind of evaluation is used for all
graphs in the paper. To evaluate the performance of the distance constraint the
same setting is run both with, and without the constraint.

In figure 3 we give graphs of the expected inlier frequency in the best model
found by RANSAC, as a function of the number of RANSAC iterations. These
graphs clearly show an inlier increase when the distance constraint is used, and
this holds both with, and without the track-retrack step. Almost everywhere,
the curves without the distance constraint need more than double the amount
of iterations to reach the same inlier frequency. In most of the real sequences we
could reduce the number of RANSAC iterations by half and still have the same
inlier count as when the distance constraint was not used.

The indoors sequence was chosen to demonstrate an important aspect of the
track-retrack scheme: As can clearly be seen in the graphs, the improvement
caused by track-retrack is much bigger in the indoor sequence than in the others.
The reason for this is that track-retrack is very effective at detecting outliers
caused by occlusions.

The same test is run for the synthetic test data, see figure 4. The behaviour
here is nearly identical to the evaluation with real images, and we can also
observe that we can reduce the number of RANSAC steps by approximately
half with maintained inlier/outlier ratio when adding the distance constraint.

synth road synth complex
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Fig. 4. The synthetic sequences and their inlier/outlier ratios, as function of number

of RANSAC iterations. Same legend as figure 3.
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The first scene consists of a forward motion on a planar road and the second is
also forward motion but on a more complex scene. For each synthetic sequence,
we have also generated images of calibration patterns. This allows us to process
the synthetic sequences in exactly the same manner as the real ones.

12 25 50 100 200
0

0.01

0.02

0.03

0.04

0.05

12 25 50 100 200
0

0.005

0.01

0.015

0.02

indoor concrete

12 25 50 100 200
0

0.005

0.01

0.015

0.02

12 25 50 100 200
0

0.005

0.01

0.015

0.02

gravel grass

12 25 50 100 200
0

0.01

0.02

0.03

0.04

12 25 50 100 200
0

0.01

0.02

0.03

0.04

synth road synth complex

Fig. 5. Position errors on real and synthetic sequences as function of number of

RANSAC iterations. The sequences are evaluated against bundle adjustment output

on the same data set. The synthetic sequences are evaluated against their ground truth.

The four methods are coloured as in figure 3.
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3.2 Precision Evaluation

As calibrated monocular reconstructions are only defined up to scale, accuracy
evaluation is rather problematic. We have chosen to evaluate the accuracy of the
obtained SaM solutions using the position error of the third camera. For this to
be possible, we need first to adjust the distance of the second camera to be the
same as in the ground truth (here we set this distance to be 1). Only after this
normalisation are we able to compare positions of the third camera.

In the absence of real ground truth on the real sequences, we have used
the output of the bundle-adjustment (BA) algorithm described in [26]. Bundle-
adjustment is the maximum likelihood estimate of SaM, and has been shown
to greatly improve the results [27]. On the synthetic sequences we simply save
the camera locations used for generating the frames. Note that we get similar
results on both real and synthetic sequences, which supports the use of BA for
evaluation purposes.

Figure 5 shows the absolute position error of the third camera in each triplet.
Here we can see that the position error follows the same trend as the inlier/outlier
ratio. If anything the improvement is even more pronounced here.

We have summarised the results of the precision experiments in table 1 and 2.
Table 1 shows the speed increase (i.e. reduction in number of RANSAC samplings
needed to obtain the same precision) from the distance constraint, when the
track-retrack step is disabled, and table 2 shows the speed increase with track-
retrack enabled.

The percentages are obtained as follows: For each number of iterations, we
look up the precision with the distance constraint enabled. We then estimate how
many iterations it would take to archieve the same precision when the constraint
is not used. The estimate is found through linear interpolation (note although

Table 1. Speed increase from the distance constraint, with track-retrack disabled

(i.e. CYAN curve vs. BLUE)

#iterations synt. r. synt. c. indoor concrete gravel grass

12 180% 190% 230% 198% 216% 193%

25 184% 198% 215% 256% 234% 199%

50 199% 225% 216% 265% 199% 187%

100 185% 194% >200% >200% 162% >200%

Table 2. Speed increase from the distance constraint, with track-retrack enabled

(i.e. GREEN curve vs. RED)

#iterations synt. r. synt. c. indoor concrete gravel grass

12 229% 211% 215% 243% 201% 197%

25 198% 191% 242% 277% 244% 195%

50 264% 209% 235% 258% 232% 183%

100 >200% 191% >200% >200% >200% >200%
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the graphs are in log scale, the interpolation is done on a linear scale). The speed
increase is now the ratio of the two iteration counts. There are some cases where
the intersection point lies after the 200 iteration value, these values could have
been extrapolated, but we have instead chosen to just show them as >200.

Note that a speed increase computed in this way does not take the extra
overhead of the sampling into account. But, as shown in section 2.4 this overhead
is 0.6-1.2% of the total time, and as mentioned, there are ways to reduce this
even further.

4 Conclusions

We have introduced a method that significantly speeds up the current state of
the art SaM algorithm for calibrated cameras. On average we are able to reduce
the number of RANSAC iterations by half and thereby double the speed. The
improvement is achieved by adding a distance constraint to the point selection
inside the RANSAC loop. We have also added an outlier rejection step (which
we call track-retrack) to the KLT tracker. For scenes with high level of occlusion
the track-retrack scheme also gives a similar improvement in performance. For
scenes with little or no occlusion, however, the difference is negligible. Note also
that the two improvements are independent, for scenes where the track-retrack
scheme gives and improvement, we will get further improvement by adding the
distance constraint.
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Abstract. In this paper we compare several optical flow based features in order
to distinguish between humans and robots in a mixed human-robot environment.
In addition, we propose two modifications to the optical flow computation: (i) a
way to standardize the optical flow vectors, which relates the real world motions
to the image motions, and (ii) a way to improve flow robustness to noise by se-
lecting the sampling times as a function of the spatial displacement of the target
in the world.

We add temporal consistency to the flow-based features by using a temporal-
Boost algorithm. We compare combinations of: (i) several temporal supports, (ii)
flow-based features, (iii) flow standardization, and (iv) flow sub-sampling. We
implement the approach with better performance and validate it in a real outdoor
setup, attaining real-time performance.

1 Introduction

Current trends in robotics research envisage the application of robots within public envi-
ronments helping humans in their daily tasks. Furthermore, for security and surveillance
purposes, many buildings and urban areas are being equipped with extended networks
of surveillance cameras. The joint use of fixed camera networks together with robots in
social environments is likely to be widespread in future applications.

The long term goal of this work, integrated in the URUS project[1], adopts this vi-
sion. The URUS project aims to achieve the interaction of robots with people in urban
public areas, to improve mobility in downtown areas. A key element of the project is a
monitoring and surveillance system composed by a network of fixed cameras that pro-
vide information about the human and robot activities. These multi-camera applications
must also consider constraints such as real-time performance and low-resolution images
due to limitations on communication bandwidth. Thus, It is fundamental to be able to
detect and categorize humans and robots using low resolution and fast to compute fea-
tures. We propose the use of optical flow derived features to address this problem.

Detection of humans in images is a very active research area in computer vision
with important applications such as pedestrian detection , people tracking and human
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activity recognition . These approaches aim to model the human limbs by using features
such as the silhouette [2,3], image gradient [4], color distribution of each limb [5],
optic flow [6,7] and combinations of the features just mentioned. Detection of robots
in images have become a very popular field of research in the RoboCup1 framework,
which focus on cooperative robot interaction [8,9,10].We address the unexplored issue
of discrimination between these two classes, people and robots, which is essential to
the development of algorithms that deal with e.g., surveillance, in mixed human-robot
environments. Our approach relies on the motion patterns extracted from optical flow,
which have been used previously by Viola et al. [6] and Dalal et al. [4,7] in order
to detect pedestrian in images and videos. Viola et al. combine the optical flow with
wavelet-based features to model the people appearance, while Dalal et al. compute
histograms of the flow directions. Our work explores on this latter approach, comparing
two types of features:

– Histogram of gradients (HOG), which computes the histogram of the optic flow
orientation weighted by its magnitude.

– Motion boundary histogram (MBH), computed from the gradient of the optical
flow. Similarly to HOG, this feature is obtained by the weighted histogram of the
optical flow’s gradient.

Using optical flow to separate robots’ movement from people’s movement is appeal-
ing for its independence on people and robot visual appearances (i.e., color, size or
shape), allowing it to model individuals with different outlooks, requiring only “differ-
ent enough” patterns of movement. Since most current robots are rigid, while people
tend to not be rigid at all while moving about, this a reasonable assumption to start
with. Also, optical flow is not limited to high resolution images, being able to capture
enough information from only a limited amount of pixels.

In order to improve the classifier’s accuracy we also test the features with standard-
ized flow described in Section 2. Using localized detections on a world reference frame,
we scale the flow to its corresponding real-world metric value, creating invariance to the
target’s distance to the camera. In addition, we don’t use consecutive images to compute
flow which we refer to as spatial sub-sampled flow. We store a frame, wait for the target
to move in the real world, and only after its displacement is larger than a threshold, we
compute the optical flow from the stored frame to the present image.

The histogram-based features provide the data samples for the learning algorithm,
GentleBoost [11]. This algorithm is a very efficient and robust classifier that adds the
response of several base (weak) classifiers. In addition, we consider the temporalGentle-
Boost [12], a recent modification of GentleBoost that exploits the temporally local sim-
ilarities of the features.

In the next section we will describe the features employed to represent the targets.
Section 3 describes the learning algorithm used to learn how to distinguish people
from robots. We then present some results on a real live setting and finish with the
conclusions.

1 http://www.robocup.org/
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2 Target Representation

In this work we assume that detection, tracking and localization (in the ground plane)
of targets in the camera’s field-of-view (FOV) is already done by any of the existing
algorithms available in the literature. For instance we use background subtraction [13]
for detection, nearest-neighbor for tracking and homographies for localization. Our goal
in this paper is to discriminate among different classes of targets using motion cues.

For (dense) optical flow computation, we use the implementation of [14]2, an algo-
rithm that introduces a new metric for intensity matching, based on the unequal match-
ing (i.e. unequal number of pixels in the two images can be correspondent to each
other). We chose this algorithm for its good balance between computational load and
robustness to noise [14].

2.1 Flow Standardization

The optical flow vectors encode the pixel displacement between two images, indepen-
dent of the corresponding real displacement. This means that an object closer to the
camera will have a large pixel displacement, while the same object will have small flow
vectors when moving far away. Thus, it is very difficult to match similar motions by
using the features computed directly from the optical flow. In order to overcome this
limitation we standardize the flow using the world coordinate locations of the moving
objects in the scene.

Given the displacement of each object in the world in metric coordinates, and in the
image in pixels, we derive a linear scale factor to relate the optical flow, in the image,
to the motion in the world. We illustrate this in Figure 1, where the gray arrows display
the optical flow in two different detections, the blue arrows represents the movement in
the world and the red arrows encode the mean displacement of the detected bounding
boxes in the image. The flow magnitude (f pixels), is larger when the object is close,
and smaller when farther away. The average displacement (P pixels) follows the same
behavior, while both world displacements (M meters) keep the same value. Therefore
the optical flows can be scaled to a similar value (f.M/P meters).

The flow standardization just described assumes that the motions of the target’s limbs
are aligned to the mean displacement of the target. If this assumption is violated, the
motions with other directions are projected to the direction aligned with the mean dis-
placement’s vector. Since in general, while a person is moving, their limb motions will
be parallel to the motion of her body, the assumption will hold for most of the sequences.

The flow standardization described above causes the flow magnitude to be indepen-
dent to the target’s distance to the camera, but still dependent on the target’s velocity.
If an individual moves faster in some frames and slower in other frames, its displace-
ment will be different for the respective pairs of frames, so the features extracted will
be dissimilar.

We implement spatial sub-sampling of the optical flow in order to provide velocity
independence to the features. This comprises, for a given target, the selection of the
frames to compute the optical flow based on its displacement. The method includes

2 http://www.cs.umd.edu/˜ogale/download/code.html
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Fig. 1. Smaller grey arrows: Optical flow; Big red arrow: mean pixel displacement in the image;
Big blue arrow: meter displacement in the world

these steps: (i) store a frame; (ii) wait for the target to move more than a threshold
distance; (iii) compute the optical flow using the stored frame and the present frame.
In addition, the spatial sub-sampling provides invariance to changes on the sampling
frequency of the cameras.

2.2 Flow-Based Features

We compare two kinds of features: motion boundary histogram (MBH) [7] and his-
togram of gradients (HOG) [4], considering four kinds of flow data: (i) raw flow, (ii)
spatially sub-sampled, (iii) standardized flow and (iv) spatially sub-sampled and stan-
dardized flow.

MBH captures the local orientations of motion edges. We do it by considering the
two flow components (x and y) as independent images, and taking their gradients. To
extract the spatial information of the gradient image, two types of sampling are con-
sidered: dividing the image in cartesian or polar regions. HOG is computed in a similar
way but directly on the flow vectors, and we also consider the same two sampling types:
cartesian and polar. In total, we compare among sixteen different combinations of fea-
tures, samplings and flow data. In difference to the original MBH and HOG features,
that overlap sampling regions, we don’t consider overlapping.

3 Learning Algorithm

The Boosting algorithm provides a framework to sequentially fit additive models in or-
der to build a final strong classifier, H(xi). This is done minimizing, at each round, the
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weighted squared error, J =
∑N

i=1 wi(yi − hm(xi))2, where wi = e−yihm(xi) are the
weights, N the number of training samples, xi is a feature and yi is the correspondent
class label. At each round, the weak classifier with lowest error is added to the strong
classifier and the data weights adapted, increasing the weight of the misclassified sam-
ples and decreasing correctly classified ones [11]. Then, in the subsequent rounds the
weak classifier focus on the misclassified samples of the previous round.

In the case of GentleBoost it is common to use simple functions such as regression

stumps. They have the form hm(xi) = aδ
[
xf

i > θ
]

+ bδ
[
xf

i ≤ θ
]
, where f is the

number of the feature and δ is an indicator function (i.e. δ[condition] is one if condition
is true and zero otherwise). Regression stumps can be viewed as decision trees with
only one node, where the indicator function sharply chooses branch a or b depending
on threshold θ and feature xf

i . To optimize the stump one must find the set of parameters
{a, b, f, θ} that minimizes J w.r.t. hm. The optimal a and b are obtained by closed form
and the value of pair {f, θ} is found using an exhaustive search [15].

A recent approach considers the temporal evolution of the features in the boosting
algorithm, improving the noise robustness and performance. Ribeiro et al. [12] model
temporal consistency of the features, by parameterizing time in the weak classifiers.
The Temporal Stumps compute the mean classification output of the regression stump,
in a temporal window of size T ,

hm(xi) = a

(
1
T

T−1∑
t=0

δ
[
xf

i−t > θ
])

+ b

(
1
T

T−1∑
t=0

δ
[
xf

i−t ≤ θ
])

. (1)

The temporal weak classifier of Eq. 1 can be viewed as the classic regression stump
with a different “indicator function”. If T = 1 it becomes the original regression stump,
and for T > 1 the indicator function changes. The new indicator functions

∆T
+(f, θ, T ) =

1
T

T−1∑
t

δ
[
xf

i−t > θ
]
, ∆T

−(f, θ, T ) =
1
T

T−1∑
t

δ
[
xf

i−t ≤ θ
]
, (2)

compute the percentage of points above and below the threshold θ, in the temporal win-
dow T and for the feature number f . The indicator functions with temporal consistency
in Eq. 2, can take any value in the interval [0 1], depending on the length of the tem-
poral window used. For example, if T = 2 the functions can take 3 different values,
∆T

+ ∈ {0, 1/2, 1}, if T = 3 can take four values, ∆T
+ ∈ {0, 1/3, 2/3, 1} and so

on. The fuzzy output of the new “indicator function”, ∆, represents the confidence of
threshold choice to use the data with temporal support T . Thus, at each boosting round,
we use a weighted confidence of both branches, instead of choosing only one branch.

Using the weak classifier with temporal consistency of Eq. 1 in the cost function,
Ribeiro et al. [12] obtain closed expressions for the parameters a and b that minimize
the error J . The optimal f , θ and T are obtained by exhaustive search. The learning
algorithm shown in figure 2 is similar to GentleBoost, but optimizing the temporal
stump of Eq. (1).
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1. Given: (x1, y1), . . . , (xN , yN) where xi ∈ X, yi ∈ Y = {−1, +1}, set H(xi) := 0,
initialize the observation weights wi = 1/N , i = 1, 2, . . . , N

2. Repeat for m = 1, . . . , M

(a) Find the optimal weak classifier h∗
m over (xi, yi, wi).

(b) Update strong classifier H(xi) := H(xi) + h∗
m(xi)

(c) Update weights for examples i = 1, 2, . . . , N , wi := wie
−yih∗

m(xi)

Fig. 2. Temporal Gentleboost algorithm

4 Results

We compute the 16 different combinations of flow-based features (Section 2.2) in three
scenarios: people walking, people loitering and robot moving. The motion patterns of
people walking and robot moving will be properly extracted by optical flow-based fea-
tures, so they are the nominal classification scenario. People loitering on the other hand,
is a difficult situation as it provides small optical flow values. Both people walking and
loitering are very common activities, therefore we decide to focus on them in this work.
Figure 3 shows the setup of each scenario, which includes video sequences from 10
cameras.

We grabbed five groups of sequences, where each one includes images from 10 cam-
eras. One group with a person walking, another group with a different person walking,
two groups with the same pioneer robot moving in two different conditions, and the

Fig. 3. Experimental setup for training scenario
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last group with a third person loitering. The people class videos have a total of 9500
samples of the optical flow and the robot class videos have a total of 4100 samples.
The segmentation and tracking of the moving objects in the scene are provided by: -
LOTS background subtraction for detection [13] and nearest neighbor for tracking. The
LOTS algorithm provides the bounding boxes of the regions of interest and its respec-
tive segmented pixels. Nearest neighbor is computed between the center points of the
two bounding boxes.

We follow a cross validation approach to compare the classification result of the
temporal GentleBoost algorithm. We build two different groups of training and testing
sets. The people loitering data is always in the testing set, each person belongs to the
training set for one of the experiments, and each pioneer robot sequence belongs to the
training set once. The Tables 1, 2 and 3 show the average of the recognition rate for each
frame using the two experiments. Each table summarizes the results for a fixed value
of temporal support, T , and we notice the large performance improvement brought
by the temporal support of the flow-based features when compared to the common
GentleBoost (T = 1).

Table 1. Recognition rate of several features, using a maximum temporal support T = 5 frames
of the temporal boost algorithm

Feature sub-sampled+standardized standardized sub-sampled raw flow

polar flow histogram 76.15 92.26 75.96 90.62
cartesian flow histogram 71.90 87.90 71.63 87.20

MBH cartesian 90.60 83.13 91.39 82.73
MBH polar 93.14 90.60 93.67 89.40

Table 2. Recognition rate of several features, without temporal support (T = 1 frames) of the
temporal boost algorithm

Feature sub-sampled+standardized standardized sub-sampled raw flow

polar flow histogram 76.71 87.23 76.82 85.68
cartesian flow histogram 78.71 85.18 78.74 84.13

MBH cartesian 79.79 75.48 79.98 74.65
MBH polar 88.80 83.87 88.94 81.30

Table 3. Recognition rate of several features, using a maximum temporal support T = 10 frames
of the temporal boost algorithm

Feature sub-sampled+standardized standardized sub-sampled raw flow

polar flow histogram 77.23 95.43 77.77 93.02
cartesian flow histogram 73.64 89.32 74.22 88.52

MBH cartesian 91.68 87.59 92.25 85.25
MBH polar 94.58 91.41 94.58 91.01
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Fig. 4. Examples of person and robot training samples (on top) and real-time classification in an
outdoors setting (bottom)

We observe three general patterns from the recognition rate:

– The polar sampling of the images performs better than the cartesian counterpart.
It seems that the polar sampling is better suited for modeling the motion of the
peoples’ limbs, so it is easier to discriminate between people and robots.

– The Motion Boundary Histogram (MBH) feature has better performance than the
optical flow histogram. The MBH has a richer representation based on two images
that extract the first order spatial derivatives of the optical flow, while the flow
histogram is a more efficient representation based on only one image, the optical
flow.

– The spatial sub-sampling of the optic flow computation has a positive effect on the
MBH features, while has a negative impact on the flow-based histogram features.
On one hand, it seems that the MBH feature needs optical flow measurements with
low levels of noise, which is provided by the spatial sub-sampling for computing the
optical flow. On the other hand, the evolution in time of the optical flow histogram is
better captured by the computation of the optical flow between consecutive images.
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– The standardization of the optical flow has a very small improvement of the recog-
nition rate, because all the features compute normalized histograms that provide a
sort of standardization of the features.

From Table 3 we see that the best compromise between accuracy and robustness is
provided by the MBH polar using the spatial sub-sampling. Thus, we implemented this
feature in a C++ program that distinguishes between people and robots in real-time.

5 Conclusions

In this work we compared several optical flow based features to distinguish people
from robots. We propose a way to standardize the optical flow vectors, scaling them to
their corresponding metric value in the real-world, and also a more efficient and robust
way of computing the optical flow that subsamples the images on time using the spa-
tial displacement of the targets in the world. We used Temporal GentleBoost algorithm
for learning, which is able to improve the classification rate by considering previous
features’ values, thus including a temporal support of the features. We test for several
combinations of temporal supports, type of feature and flow standardization in order
to verify the combination with better performance and robustness. The application of
spatial sub-sampling to the optical flow reduces the computational load of the algorithm
while keeping similar results to its counterparts. These computational savings guaran-
tees real-time classification. The Motion Boundary Histogram feature with world spa-
tial sub-sampling of the optical flow and temporal support of 10 frames have a very
good trade-off between accuracy and robustness. We implement the combination just
mentioned, validating it in a outdoors setting that shows the generalization capabilities
of the proper combination of features, classifier and sampling approaches, providing a
very good performance.
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Abstract. Virtual worlds are increasingly being used in research and

development to provide simulation platforms for testing, debugging and

validating proof-of-concepts, as they offer a significant savings in cost,

time and other resources. This paper describes the design of a real-time

open-source 3D simulation platform based on a commercially available

Half Life 2 game engine. It is primarily aimed towards research in mobile

robotics, in-game characters manipulation, surveillance related vision ap-

plication, and high quality synthetic video generation. Along with the

illustrations of the platform and the analysis of algorithms, this paper

also provides a comprehensive tutorial in developing similar tools for

researchers, enthusiasts and commercialists to pursue their interests in

creating and applying such tools to their own objectives.

1 Introduction

Although, virtual worlds are primarily being used in the gaming industry for
entertainment, they are fast becoming one of the major tools in training and
education, and in many areas of research and development. Due to the advan-
tage of having rich visual effects and user-friendly interactive features, it is most
appealing to people, irrespective of their age, race, or their technical expertise.
The rise in virtual world based applications with multi-million active subscribers
provides the proof of virtual worlds’ success and popularity. For example, Sec-
ond Life1 is a rich three-dimensional interactive environment that goes beyond
entertainment and socialization to the arena of learning and creativity, provid-
ing a vast range of services for artists, researchers and enthusiasts. Second Life
supports features such as virtual classrooms, hosting lectures, distance learning,
virtual conferences and webinars. Also several health, medical education and
economics research projects have been carried out in Second Life [1] [2].

Similarly, Whyville2 is another popular example of an educational virtual
world for children. Study of historic civilizations such as the twelth century

1 http://www.secondlife.com/
2 http://www.whyville.net/

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 233–242, 2009.
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Khmer empire and the city of Angkor in Cambodia [3] is being conducted by
generating a model of the city using a virtual world.

Thus, virtual worlds not only provide risk free environments to test and val-
idate proof-of-concepts, but also reduce the cost involved and other resources
significantly. There are many simulation environments and synthetic videos gen-
eration tools [4] [5] based on virtual worlds providing the platforms for testing,
debugging and validating proof-of-concepts before moving on to the real world.
In computer vision, such platforms provide a researcher with exact control over
staging the desired scene. Changing various lighting conditions, such as dark,
bright day-light, foggy and rainy conditions could easily be generated using sim-
ulation video. Repeatability of the same scene for various conditions is one of the
major advantages offered by such synthetic videos. This is particularly useful in
accident research[6], where repeating the same accident conditions and control
over the scene is almost impossible and impractical, and may require a strong
consideration of occupational health/safety issues, risk analysis, legal issues, per-
mission from council/government, costs involved, time and other resources.

Another reason why researchers have found such virtual worlds alluring is in
ground truth generation and annotations. They have been widely used in com-
paring the quality of processed video frames in applications, such as, foreground
segmentation, background subtraction, tracking, surveillance and geo-location.
It normally requires days of manual labor and intensive processing to generate
the ground truth, going through each frame at a time just for a minute long
video. However, ObjectVideo Virtual Video (OVVV) [4] is a tool offered by Ob-
jectVideo Inc. that allows features for generating accurate ground truth and
bounding boxes in a 3D virtual world environment at a click of a button.

This paper describes the design and development of a real-time and open-
source simulation platform primarily aimed towards research in path planning
of a mobile robot, surveillance related computer vision applications, and syn-
thetic video generation and manipulation. It illustrates the development of the
tool based on a virtual world and experiments being conducted in the authors’
research. Along with the illustration, this paper particularly provides a compre-
hensive tutorial on developing such tools. Although the paper mainly discusses
computer vision and robotics applications, plenty of examples and suggestions
are provided for researchers, enthusiasts and commercialists to pursue their in-
terests in creating and applying such tools to their own objectives.

The rest of this paper is organized as follows. Section 2 briefly reviews various
existing simulation tools for robotic and vision applications. Section 3 describes
the methods involved in the development of the simulation platform which in-
cludes designing world maps, scheduling different events in the virtual world, the
modeling of different entities, and programming features and characteristics of
the entities, physics and artificial intelligence (AI). Section 4 demonstrates the
path planning and navigation experiment for a mobile robot in the virtual world
using the simulation platform. Finally discussion of future work, extensions and
conclusions are given in Section 5.
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2 Related Work

There is no doubt that the visual simulation platform has become an invalu-
able tool for analyzing theoretical concepts, complex algorithms and challenging
experiments otherwise difficult and impractical to set up in the real world. Es-
pecially in the early stages of development, algorithms inevitably contains bugs
and unknown defects that could cause immense loss to researchers both in terms
of time and other resources if applied directly to hardware. There are countless
platforms in all sectors of academia and industries. Most of them are specific
to applications or machines and are very limited in their capability. Webots
developed by Cyberbotics Ltd. is one of the well-known and powerful mobile
robotics simulation software package that provides a prototyping environment
for modeling, programming and simulating mobile robots [7]. It has many im-
pressive features, allowing researchers to simulate and program a wide range of
robotic experiments in its virtual environment. However, the graphics of gener-
ated videos are not accurate enough compared to those of the real world, making
it inadequate for vision based experiments and control. Also a researcher or an
enthusiast may find it a bit expensive to get a full version license.

As the design of every robot is different, a single software package cannot
accommodate the demand of a very wide diversity of robots. So open source
is always an attractive solution. Gamebot [5] is a simulation platform based
on a virtual world using the Unreal Tournament game engine modification and
Object Video Virtual Video (OVVV) [4] is a synthetic video generator based
on a virtual world using the Half-Life 2 game engine. OVVV produces high
quality videos compare to Gamebot and supports live streaming directly from the
virtual world. It has impressive features for simulating noisy images, controlling
camera view, ground truth generation and annotations; however, it is limited
to computer vision based research. The proposed platform is inspired by both
OVVV for using virtual world Half-Life 2 game engine and Gamebot extending
its application beyond vision to a more generic platform for artificial intelligence
and robotics.

3 Design

Our design aim is to develop a real-time, general purpose open source simulation
platform independent of robot make/model with realistic graphics for vision and
robotic systems research. The details of the design are described in the following
sub-sections.

3.1 Half Life 2 World

The virtual world used in the design was the Half Life 2 (HL2) game engine devel-
oped by Valve Software. The HL2 world is particularly suitable for our objective
because it provides a very flexible, powerful and open-source software develop-
ment kit (SDK) on purchase of the game. It has visually stunning graphics, real
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world physics (kinematics, inverse kinematics, ropes, etc.) and advanced artifi-
cial intelligence (collision detection, vision, hearing, relationships, path finding,
etc.). The HL2 engine is also renowned for high quality dynamic lighting and
shadows, a scalable high-performance rendering system, environmental effects
like fog and rain and realistic-looking reflective water surfaces with refraction.

3.2 Modding

Half Life 2 SDK supports alteration or creation of files for its game engine,
which allows it to change the game-play style, graphics, environments, models,
etc. The process is known as ‘modding’, and an altered version of the game is
called a ‘mod’. It can be single player, multi-player or total conversion. Our
mod falls into the single player category, which means it allows one client to
connect to the game. Half Life 2 is based on server-client architecture. The server
side communicates directly to the game engine. It holds the map information,
including the number of entities in the map, their positions, states, velocities
and other properties. It also controls artificial intelligence and the physics of the
world. On the other hand, the client side holds the player information connected
to the game. It manages the health, properties and characteristics of the player,
and renders the camera view from the player’s eye angle. Our mod involves
modification of both the server and client sides. Modding consists of mapping,
programming and modeling, and is described in the following subsections.

3.3 Mapping

Mapping, also known as map building, is setting up a scene in the virtual world.
This involves creating scenarios and sequencing events very similar to designing
a conventional game level. Although there is a bit of learning curve, it is not
actually as grueling as it may seem on a first glance. Valve Software provides a
free map building and editing tool called ’Hammer’ editor as part of their SDK
and there are plenty of supports and tutorials available on different discussion
forums to get started on this. Figure 1 shows a typical view of a Hammer editor.
It can be seen that the window is divided into four views: Camera view, top, front
and side views. It is easy to navigate through these views and Valve Software
provides plenty of models, entities and features to help with map building.

The ‘Hammer’ editor was used for map building for our simulation platform.
Creating a scenario involved defining the static world geometry (walls, ceilings,
terrains), specifying artificial and environmental light sources, adding props (fur-
niture, trees, parked cars), populating the world with different moving entities
(random people, animals, police) and defining their states and properties [4].
Sequencing an event could be either scripted or AI controlled. A scripted se-
quence is a pre-defined path or movements for a dynamic entity to follow. This
is usually user defined while mapping with a set of node links. Alternatively, AI
control allows intelligent algorithms to handle the dynamics of an entity. This
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prevents replication of the same movement sequences, combining randomness
and reactivity of a map, making it lively, which could be useful in evaluating
performance of various algorithms such as tracking, object recognition, etc.

Figure 2 shows the snapshots of various indoor and outdoor maps from the
author and other developers that could be used for a range of experimental
analysis.

Fig. 1. Map building in Hammer editor

(a) Outdoor scene (b) Dark street (c) City square (d) Water surface

(e) Rainy condition (f) Indoor scene (g) Train station (h) Stadium

Fig. 2. Scenarios from Half Life 2 mods



238 O.K. Gupta and R.A. Jarvis

3.4 Modeling

The process of creating any visible entity is called modeling. All of the models in
Half Life 2 were created with Softimage—XSI. A free version Softimage—XSI,
called XSI Mod Tool, is available online to download. This is especially tailored
for prop and character creation. However, modeling is not obligatory for the
virtual world because Half Life 2 comes with thousands of inbuilt models and
props, enough for general purpose map building. It is required if one wants
to build a specific model, such as a custom robot or a structure. Also, there
are many tutorials and models available on different community forums for the
HL2 virtual world. The model could be created using other tools like 3DS Max,
Blender, etc.

The entities presented in Figure 2 are models for Half Life 2. Modeling was
not pursued in depth by the authors except for a few minor features tweaking
and using a few models from third-party vendors.

3.5 Programming

Programming in HL2 provides flexible and robust control over entities. Many
advanced features and algorithms can be implemented for the virtual world
through programming, including artificial intelligence, real world physics, player
view control, behavior control, etc. Although there is a very little support avail-
able on the aspect of modding, an experienced programmer may follow through
the source codes, which is reasonably modular and illustrative. Source codes
for Half Life 2 are written in the C/C++ programming language and can be
modified in Microsoft Visual Studio Development Environment on an Windows
operating system. It has over a thousand C/C++ files and requires a bit of
patience investigating, understanding and modifying them.

As we mentioned earlier, the Half Life 2 world is based on server-client ar-
chitecture. On the server side, we created new definition modules for our robot
models and set up their characteristics, such as, size, hull type, move type (walk-
ing, flying, rolling), health, classification, etc. Also we established modules for
our experimental algorithm for path planning of the robot and an invisible logi-
cal entity in the game to link and interface between the algorithm and the robot.
The details of the algorithm are explained in Section 4.

On the client side, we rendered the camera view by capturing the default client
player’s eye angle and placing it at a desired position. The views were saved on a
hard disk for performance evaluation or further analysis. Alternatively, the live
streaming view could be captured by creating a socket over TCP/IP connection
for surveillance and monitoring of live frame from the world. Ground truth frames
of the foreground can be created simply by rendering the desired entities (such
as humans or moving entities) instead of everything in the player’s view.

4 Experimental Results

Various robotics and vision experiments runs were conducted on the virtual
world based platform by the authors. Two of these are described in the following
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subsections. The design of the platform and the simulations were all carried on a
2.99 GHz Pentium IV machine with 2 Gigabyte of RAM and Microsoft Windows
XP operating system.

4.1 Navigation and Path Planning

The navigation of a mobile robot requires online control of the robot motion in
the virtual world. In the real world, one could face a lot of challenges in setting
up a scene for the robot navigation. Quite often, the motion of a moving entity
in such an environment is unpredictable and can not be perfectly modelled.
The dynamics of a human-centric environment adds an extra complexity to it.
Most often, the real world experiments fail to deliver real-time performance in
such scenarios.A cost-evaluation function based algorithm for path planning was
evaluated on the simulation platform [8]. It minimises a path cost made up of
accumulated weighted mixtures of distance and risk of collision on time-space
Distance Transforms (DT), thus providing efficient and low risk trajectories. The
basic approach of the method is to propagate distance in an incremental manner
out from specified goals, flowing around obstacles, until all of the free space has

(a) (b)

(c) (d)

Fig. 3. Path planning in static environment
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(a) (b)

(c) (d)

Fig. 4. Path planning in dynamic environment

a distance from the nearest goal parameter associated with it. Moving down the
steepest descent path from any free-space cell in this distance transformed space
generates the least-cost (in distance/risk terms) path to the nearest goal [9].

A 3D Grid-based map is used to represent the configuration space of a robot
projected into an x-y plane with evenly spaced grid cells, known as an Occupancy
Grid. Occupancy Grids were originally proposed by Elfes [10] and have a value
attached to each grid cell that measures the probabilistic belief that a cell is
occupied based on sensor readings.The occupancy map of the system includes
permanent obstacles and places which are inaccessible to the robot, such as walls,
furniture, holes in a ground, etc.

Tests were conducted in a virtual 3D simulated world with settings for obsta-
cles of different shapes, sizes, locations and velocities. The robot position was
assumed to be a point, of about the size of a cell in the map and obstacles were
dilated by an appropriate amount in order to avoid collision with the robot.

Figures 3 and 4 represent a collection of key snapshots from the simulator
at different time slices for a complex scenario with static and variable speed
moving obstacle fields respectively. When the robot encounters the predicted
moving obstacles, it re-adjusts its path to avoid obstacles and continue towards
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(a) Synthetic image from HL2 (b) Real image from panoramic camera

Fig. 5. Analysis of SIFT algorithm on real and synthetic images

its destination. Also, it was demonstrated that in some circumstances choosing
a longer path or waiting for a obstacle to pass can be the optimal approach.

4.2 Scale-Invariant Feature Transform

The scale-invariant feature transform (SIFT) is an algorithm which describes lo-
cal scale-invariant features in images for correspondence matching and is widely
used in computer vision and robotics application for object recognition, map-
ping, 3D modeling, etc. The algorithm was published by David Lowe [11] and
University of British Columbia holds its patent.

We analyzed the algorithm on both a synthetic image from the virtual world
and from a panoramic camera mounted on the ceiling of a room. K-nearest neigh-
bourhood kdtree and Random Sample Concensus (RANSAC) were employed for
matching and fitting a model of a robot in the images. We tested this algorithm
for recognition of specific objects in our environment. Figure 5 shows the result
of the algorithm for both synthetic and real images. An average of 15 positive
matches were found for both type of images; however, the results were not in
real-time, with a processing delay of 5 seconds between the frames. Also, the
distortion in the panoramic image affected the performance of the algorithm
significantly.

5 Conclusion

A 3D simulation platform based on a Half Life 2 game engine was presented. Be-
cause of the versatility of the open-source virtual world engine, the platform can
easily be extended for many different applications, such as, following or tracking
people, covert path planning for moving sentries, indoor and outdoor navigation,
which are the open areas of future research work. Applications of the tool are
not limited to our research in robotics and computer vision and are beyond our
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imagination. For example, it could be used in creating short animation films and
games, security and defence related research, monitoring and surveillances, acci-
dent researches, modeling and design, architectural engineering, study of crowd
dynamics, etc. There is no argument that the meticulous investigations of real-
world videos and real-world testings are always required for the validation of any
concept or an algorithm. But a simulation platform like this, makes a valuable
contribution to the research and development community by lowering the risks,
cost factor and other resources.
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Abstract. Gabor features are widely used in many computer vision

applications such as image segmentation and pattern recognition. To ex-

tract Gabor features, a set of Gabor filters tuned to several different

frequencies and orientations is utilized. The computational complexity

of these features, due to their non-orthogonality, prevents their use in

many real-time or near real-time tasks. Many research efforts have been

made to address the computational complexity of Gabor filters. Most of

these techniques utilize the separability of Gabor filters by decompos-

ing them into 1-D Gaussian filter. The main issue in these techniques is

the efficient pixel interpolation along the desired direction. Sophisticated

interpolation mechanisms minimize the interpolation error with the in-

creased computational complicity. This paper presents a novel framework

in computation of Gabor features by utilizing a sophisticated interpola-

tion scheme – quadratic spline – without increasing the overall compu-

tational complexity of the process. The main contribution of this work

is the process of performing the interpolation and the convolution in a

single operation. The proposed approach has been used successfully in

real-time extraction of Gabor features from video sequence. The experi-

mental results show that the proposed framework improves the accuracy

of the Gabor features while reduces the computational complexity.

1 Introduction

Recently, computer scientists have become interested in modeling the human
vision systems [1]. It is explained by neuroscientists [2] that receptive fields
of the human vision system can be represented as basis functions similar to
Gabor filters. In NeoCortical Simulators(NCS), the response profile of neurons
in visual cortex area of the human brain is modeled by Gabor features. In the
latest version of the NCS (version 5.0), the robot’s eye (a tracking pan-tilt-zoom
camera) captures the video images from the real world [3]. Then, Gabor features
of these images are extracted and uploaded to the brain simulator running on a
cluster of computers, executing a pre-specified spiking brain architecture. Real-
time extraction of these features from video images (30 frames per second) is
important in order to avoid small delays which slow down the entire system.
Moreover, inaccurate features can trigger inappropriate neuron regions. As a
result, accurate and efficient extraction of Gabor features from video sequences
is a crucial task.

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 243–252, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Gabor features are based on Gabor filter responses to a given input image.
The responses over the image are calculated for a set of filters – a bank – tuned
to various orientations and frequencies. The most straightforward technique to
conduct the filtering operation is by performing the convolution in the spatial
domain. The complexity of convolution depends directly on the size of the con-
volution mask. The mask in this case is the Gabor filter. The complexity of
calculating the filter response for one point is O(M2), where M is the width and
height of the mask. If the filtering is done on the entire image of size N ×N , the
complexity becomes O(M2N2).

One trivial solution to reduce the computational complexity is to perform the
filtering process in the frequency domain [4]. In this approach, the image is first
converted to the frequency domain using the Fast Fourier Transform (FFT).
Afterwards the FFT transformed image is multiplied by a FFT transformed
Gabor filter. Finally, the responses are converted back to the spatial domain
using the inverse FFT. For an image of size N×N , the computational complexity
of this approach becomes O(N2 logN) with a constant multiplier [4]. One of the
issues with this method is the fact that the generic FFT formulation is limited
to signals of length 2n. Moreover, the memory requirement of this approach is
very high.

Many research efforts have been made to significantly improve the computa-
tional complexity of Gabor filtering [5,6,7,8]. Nestares et al. in [6] improved the
standard convolution with Gabor filters by utilizing the separability of Gabor
filters. Ranganathan et al. in [5] used symmetry and anti-symmetry characteris-
tics of Gabor filters to reduce their computational complexity. These convolution
improvements can reduce the computational complexity of the Gabor filter from
O(M2N2) to O(2MN2). Compared to FFT filtering complexity of O(N2 logN)
it is evident that these techniques are beneficial when M < logN . The main
issue is that these methods can be applied only to certain configurations (e.g.
θ = k π

4 , k ∈ Z), making them merely special cases.
Recently Areekul et al. in [8] generalized separable Gabor filters to any orien-

tation. Their method uses three steps. The first step is to define and interpolate
consecutive sequences of pixels to form a new image along selected convolutional
orientations and their perpendicular directions. They employed an interpolation
technique with the least expensive complexity – the linear interpolation of the
two nearest pixels. Secondly, two continuous 1-D Gabor filters with suitable pa-
rameters are generated and re-sampled with uniform space between pixels. This
task resembles the image re-sampling from the first step. Finally, separable con-
volutions can be performed along any selected orientation using these tessellated
and interleaved patterns. In the best cases when θ = k π

4 , k ∈ Z the computa-
tional complexity is O(2MN2) [8]. However, for an arbitrary orientation the
re-sampling process plays a critical role if the required pixel is not on the sam-
pling grid. As a result, in the worst case scenarios the computational complexity
reaches O(6MN2). In this method, the main issue is interpolation error result-
ing in less accurate Gabor features. The accuracy can be improved by employing
more sophisticated interpolation schemes (e.g. quadratic spline). Unfortunately,
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such sophisticated techniques drastically increase the computation cost of the
first step – up to 4 times.

In this paper, a new framework is presented to generalize separable Gabor
filters for any orientation by integrating the interpolation and the convolution
processes in a single step. The proposed approach employs a sophisticated in-
terpolation method – quadratic spline. This, results in a low interpolation error
without any increase in the computational complexity. As it was mentioned,
to extract Gabor features, a filter bank containing Q × S Gabor filters in Q
directions and S scales is utilized. In this study, the computation complexity
of Gabor features is further reduced by applying 1D filters in specific direction
for all scales. This paper is organized as follows: In section 2, a review of the
Gabor filter is presented. In section 3, the details of separable Gabor filters are
described. Section 4 discusses the integration of the interpolation and the con-
volution processes in a single step. Section 5 shows experimental results of the
proposed approach and compares our method with the state-of-the-art. Finally,
Section 6 concludes this work and discusses future directions of this study.

2 Gabor Filters

The Gabor filter is a product of an elliptical Gaussian in any rotation and a com-
plex exponential function representing a sinusoidal plane wave [9]. The sharpness
of the filter is controlled on the major and minor axes by σx and σy, respectively.
The filter response in spatial domain can be expressedby the following equation [9]:

g(x, y, f, θ) = e
− 1

2

(
x2

θ
σ2

x
+

y2
θ

σ2
y

)
× ej2πfxθ (1)

where f is the frequency of the sinusoidal plane wave, θ is the orientation of the
Gabor filter, σx is the sharpness along the major axis, σy is the sharpness along
the minor axis, xθ = x cos θ + y sin θ and yθ = −x sin θ + y cos θ. In most ap-
plications, the real part of the filter’s impulse response (namely even-symmetric
Gabor filter) is considered. As a result, the equation 1 can be rewritten as [9]:

g(x, y, f, θ) = e
− 1

2
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θ
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)
× cos(2πfxθ) (2)

The normalized Gabor filter in the frequency domain can be represented by [9]:

G(u, v, f, θ) =
1

2πσuσv

[
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− 1

2

(
(uθ−u0)2
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u

+ (vθ−v0)2
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v

)
+ e

− 1
2

(
(uθ+u0)2
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σ2
v

)]
(3)

where u0, v0 and σu,v are equal to 2π cos θ
f , 2π sin θ

f and 1
2πσx,y

, respectively. Also
uθ = u cos θ + v sin θ and vθ = −u sin θ + v cos θ. Figure 1 shows an even-
symmetric Gabor filter in the spatial and frequency domains.
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(a) (b)

Fig. 1. An even-symmetric Gabor filter with θ = π
2
, f = 0.01 and σx = σy = 3 in (a)

spatial domain and (b) frequency domain

−150 −100 −50 0 50 100 150
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−150 −100 −50 0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

Fig. 2. Decomposing the Gabor filter in Fig. 1 into (a) a band-pass Gaussian filter,

and (b) a low-pass Gaussian filter

3 Separability of Gabor Filters

A filter g is called separable if it can be expressed as the multiplication of two
vectors – grow × gcol. For separable filters the convolution can be performed
separately with one dimensional filters grow and gcol. Employing one dimen-
sional filters decreases the two dimensional filter’s computational complexity
from O(M2N2) to O(2MN2), where M and N are the width (and height) of
the filter mask and the image, respectively.

According to the definition of separable filters, the Gabor filters are parallel
to the image axes – θ = k π

2 , k = 0, 1, ... – are separable. In separable Gabor
filters, one of the 1-D filters is a sinusoidal function with a Gaussian envelope
and the other one is a Gaussian envelope. For example, if θ = π

2 , equation (1)
gives xθ = x and yθ = y. Therefore, equation (2) can be rewritten as:

g(x, y, f, θ) = gbp(x, f)× glp(y) = e
− x2

2σ2
x cos(2πfx)× e

− y2

2σ2
y (4)

where gbp is a 1D band-pass Gaussian filter, and glp is a 1D low-pass Gaussian
filter as shown in figure 2.

Separable Gabor filters can be extended to work with θ = k π
4 by going through

the image along diagonal directions instead of the image axes [6]. In order to
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implement separable 2D Gabor filters in any direction it should be separated
into 1-D low-pass and band-pass filters along the desired orientation and its per-
pendicular direction, respectively. However, the line formed by pixel sequences
along an arbitrary direction θ 
= k π

4 is not well defined due to square sampling
grid pattern in an image. For example, if we draw a straight line in any chosen di-
rection, it is difficult to pick consecutive pixels in order to form a straight line in
that particular direction. Therefore, making Gabor filters separable in arbitrary
directions needs a re-sampling process. The re-sampling should be performed to
get an exact sequence of missing pixels on the desired orientations.

4 Integrating Interpolation and Convolution

In general, there are several ways to find approximate values for the re-sampled
pixels. Linear interpolation, spline interpolation, or sinc interpolation are among
the most widely used techniques in image re-sampling. In all of these schemes,
there is a trade off between computational complexity and interpolation error.

Areekul et al. in [8] proposed a generalized separable Gabor filter for any
orientation. Their method has two main steps. The first step is to interpolate
consecutive sequences of pixels along an arbitrary direction. The second step
performs a separable convolution along the direction. In order to reduce the
computational complexity of the interpolation process in [8], missing pixels are
linearly interpolated between their two nearest pixels. Although this interpola-
tion scheme has a low complexity O(2MN2), it suffers from increased interpola-
tion error. Employing more sophisticated interpolation schemes in this approach
will increase the computational complexity significantly – e.g. O(9MN2) for
quadratic spline interpolation.

We proposed a novel approach in performing the interpolation and convolu-
tion processes required to achieve a separable Gabor filter along an arbitrary
direction. The main idea behind our framework is the integration of the inter-
polation and the convolution processes. To this end, we propose a technique to
re-sample an image f(x, y) by an interpolation kernel k(x, y) and then convolve
it by a convolution kernel p(x, y). By performing this integration scheme the
overall process saves one step by convolving the image by a kernel q(x, y).

Let’s define fi(x, y) to be the image after interpolation but before convolution:

fi(x, y) =
∑
x1,y1

f(x1, y1)k(x− x1, y − y1) (5)

By convolving it with p(x, y) we get the final result fp(x, y):

fp(x, y) =
∑
x2,y2

fi(x− x2, y − y2)p(x2, y2) (6)

Substituting equation (5) in (6) results in:

fp(x, y) =
∑
x2,y2

[
∑
x1,y1

f(x1, y1)k(x− x2 − x1, y − y2 − y1)]p(x2, y2) (7)
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After regrouping the sums, we get:

fp(x, y) =
∑
x1,y1

f(x1, y1)[
∑
x2,y2

k(x− x2 − x1, y − y2 − y1)p(x2, y2)] (8)

=
∑
x1,y1

f(x1, y1)q(x− x1, y − y1)

Therefore, the final result – fp(x, y) – is the convolution of the image f(x, y) by
q(x, y), where q(x, y) = k(x, y) ∗ p(x, y).

The 1D low-pass Gaussian filter – glp – in the direction θ can be generated
with uniform displacement d. In this case d is related to θ by the following
equation:

d =

⎧⎪⎨⎪⎩
1

cos θ if | cos θ| ≥
√

2
2

1
sin θ if | sin θ| >

√
2

2

(9)

The same relation is true for the 1-D band-pass filter along the perpendicular
direction as well. Therefore, the 1D low-pass and band-pass Gaussian filters
become:

gbp[n] = e
− (nd)2

2σ2
x cos(2πfnd) (10)

glp[n] = e
− (nd)2

2σ2
y

When the orientation is θ = k π
4 all of glp[n] and/or gbp[n] are located on the

sampling Cartesian grid. However, for an arbitrary direction (figure 3(a)) some
of the low- and/or band- pass filtered pixels (i.e. the red circles) may be on the
sampling Cartesian grid while others may not. For the pixels which do not lie
on the sampling gird their pixel values need to be regenerated by a re-sampling
process. We utilize a quadratic B-spline interpolation scheme to estimate these
missing pixel values. Moreover, the proposed framework can be extended to
other interpolation schemes as well. The B-spline re-sampling process is one of
the most commonly used family of spline functions [10]. It can be derived by
several self-convolutions of a basis function. Quadratic B-spline interpolation
kernel, k(r), can be presented by the following formula [11]:

k(r) =

⎧⎪⎪⎨⎪⎪⎩
1
2r

2 if 0 < |r| ≤ 1
2

−r2 + r + 1
2 if 1

2 < |r| ≤ 1
1
2 (1− r2) if 1 < |r| ≤ 3

2
0 otherwise

(11)

where r is the distance of an estimated value from a pixel on the sampling
Cartesian grid – figure 3(b).

Instead of performing interpolation and convolution separately, we can ac-
complish them in a single step by defining a mask q, shown in figure 3(c). This
mask is the convolution of the interpolation kernel k(r) and the 1D low- and/or
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(a) (b)

(c) (d)

Fig. 3. (a) Some pixels in 1D filtering may not on sampling Cartesian grid; (b) Re-

generating missing pixels by Quadratic B-spline interpolation; (c) Building the mask q
which integrate 1D convolution and Quadratic B-spline interpolation; (d) Calculating

the q(i, j) coefficients

band-pass Gaussian filters – glp and/or gbp. The size of q is almost 3 × M in
the worst case scenario – figure 3(c). As a result, the asymptotic computational
complexity of our approach is O(6M2N2).

For the implementation purpose, we find all Cartesian grids whose minimum
distance to gmis[n] (the red crosses in figure 3(d)) is less than 3

2 . Then we cal-
culate their coefficients by the following formula:

q(i, j) =

M
2∑

l=−M
2 ,|rl|≤ 3

2

k(rl)gmis[nl] (12)

Some glp[n′′] and/or gbp[n′′] positions may be located on the sampling Cartesian
grid of the mask q – the q(i′′, j′′) in figure 3(d). In these cases we need to update
the q(i′′, j′′) by adding glp[n′′]/gbp[n′′] to it.

5 Experimental Results

In this section some experiments have been conducted in order to evaluate the
performance and efficiency of the proposed framework. The computational com-
plexity of our approach is compared to the traditional techniques in the liter-
ature. To extract Gabor features from an acquired image, a Gabor filter bank
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containing P × Q Gabor filters in different directions θ ∈ {θ1, θ2, ..., θQ} and
different frequencies f ∈ {f1, f2, ..., fP }, is utilized. From equation (4), in sepa-
rable Gabor filters, the frequency only affects the 1-D band-pass Gaussian filter.
Therefore, in a practical implementation, the 1-D low-pass Gaussian filter is
computed once for all P Gabor filters in a specific direction θi with different
frequencies.

Table 1 shows the computational complexity and the memory requirement of
our proposed approach compared to the traditional method of filtering in fre-
quency domain, and the separable technique proposed in[8]. In this experiment
we use a specific direction and frequency and a Gabor filter bank containing P×Q
filters. Although the traditional method in spatial domain is the least expensive
technique in terms of memory requirement, it is the most computationally com-
plex. As compared to filtering in the frequency domain, O(12N2 logN), the spa-
tial domain convolution with separable filters is beneficial when M < 2 logN .
Moreover, the generic FFT formulation is limited to working with signals of
length 2n. From table 1, however, the proposed method employs a sophisticated
interpolation scheme based on Quadratic B-spline. Compared to the method in
[8], it is evident that our approach does not increase the computational com-
plexity and the memory requirements.

In this experiment, we have employed different methods to extract Gabor
features from a video sequence with dimensionality of 640× 480 and the rate of
30 frames per second. Gabor features were extracted using 12 Gabor filters in 4
different directions θ ∈ {π

8 ,
3π
8 ,

5π
8 ,

7π
8 }, and 3 different scales f ∈ {1, 3, 5}. All

methods have been implemented in C/C++ on a 64-bit machine with 2G byte

Table 1. Comparison of different methods in terms of memory requirement and com-

putational complexity

Techniques Memory Computation cost Computation cost

space for a Gabor filter for a Gabor bank

Traditional method O(N2) O(M2N2) O(PQM2N2)

Filtering in O(3N2) O(12N2 log N) O(12PQN2 log N)

frequency domain

Separable method[8] O(2N2) O(6MN2) −
Proposed method O(2N2) O(6MN2) O(3(P + 1)QMN2)

Table 2. Average number of filtered video frames by a Gabor filter bank (12 filters)

in one second using different Gabor filtering methods

Techniques Speed (fps)

Traditional method 1.1

Filtering in frequency domain 12.8

Separable method[8] 30

Proposed method 30
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Fig. 4. Comparison of Areekul’s method [8] and proposed method in terms of accuracy

for the first 50 frames od video sequence

RAM. In the case of filtering in frequency domain, since the dimensionality of
video frames were not exactly the length of 2n, we used FFTW3 library [12].
This technique provides fast solutions for the signal lengths that the original
FFT is not suitable for. Table 2 shows that the separable Gabor filter has the
best performance among others and, as expected, the traditional method has the
worst one. To evaluate the accuracy of both separable approaches, we calculated
the normalized error E:

E =

∑
x

∑
y |ḟ(x, y)− f̈(x, y)|2∑

x

∑
y ḟ(x, y)2

(13)

where ḟ is the filtered image by traditional method in spatial domain, and f̈
is the filtered image by one of the separable Gabor techniques. Figure 4 shows
the average normalized error for all direction and frequencies for the first 50
frames. As you can see, our proposed method has significantly reduced the in-
terpolation error by employing Quadratic B-spline interpolation technique. As
it was expected, the method in [8] has considerable error due to the use of linear
interpolation of the two nearest pixels.

6 Conclusion

Fast and efficient computation of Gabor features from video frames have become
the focus of recent studies of the functionalities of the human brain and visual
cognitive systems. The issue of efficient calculation of Gabor filters is of particular
interest since the directional properties of these filters makes them inseparable
along arbitrary direction.

In this paper we proposed a novel technique to integrate the interpolation
and the convolution processes of the Gabor filter. This integration of the two
processes makes the 2-D Gabor filter separable along any direction. Moreover,
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the integration performs the two processes as a single step in real-time. There-
fore, our interpolation process employs a sophisticated interpolation technique
in order to increase its accuracy while performing the entire process in real-time.
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Abstract. In quantitative biology studies such as drug and siRNA

screens, robotic systems automatically acquire thousands of images from

cell assays. Because these images are large in quantity and high in con-

tent, detecting specific patterns (phenotypes) in them requires accurate

and fast computational methods. To this end, we have developed a geo-

metric global image feature for pattern retrieval on large bio-image data

sets. This feature is derived by applying spectral graph theory to lo-

cal feature detectors such as the Scale Invariant Feature Transform, and

is effective on patterns with as few as 20 keypoints. We demonstrate

successful pattern detection on synthetic shape data and fluorescence

microscopy images of GFP-Keratin-14-expressing human skin cells.

1 Introduction

Sophisticated microscopy and cell culture systems have enabled high-throughput
and high-content screens that yield thousands of images. Timely biological dis-
covery using these images requires computational methods that rapidly exploit
the voluminous amount of information they contain. In particular, many bi-
ological studies involve identification of cells with specific phenotypes (visual
appearances), either to identify compounds with a specific biological effect [1] or
to perform further data mining on the cell images [2]. The need for computerized
phenotype detection becomes evident when one considers the time required for
visual inspection of each cell.

Because traditional approaches to medical image analysis have proven less
than ideal for this task, the biomedical imaging community has begun to adopt
data mining and machine learning methods [3]. Pioneering work by Boland et
al. [4] demonstrated successful classification of cells into a fixed number of cat-
egories, using a neural network classifier trained on global features extracted
from manually-labeled cells. If automatic cell detection is provided, then their
method becomes applicable to large-scale phenotype detection. Recently, Jones
et. al [5] have combined cell segmentation, gentle boosting [6] on cell features,
and iterative learning into a framework for supervised detection of arbitrary
cell phenotypes. Because the features are cell-specific, their framework is reliant
on accurate cell segmentation, which may be challenging under certain imaging
conditions.

On the other hand, the trend in the computer vision community has been to
represent visual objects as unordered distributions of local descriptors produced

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 253–264, 2009.
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by some detector [7]; examples of detectors include Harris detector specializa-
tions [8], the Scale-Invariant Feature Transform (SIFT) [9] and the derivative
Rotation-Invariant Feature Transform (RIFT) [10], as well as Speeded-Up Ro-
bust Features (SURF) [11]. Such unordered distributions, also known as bag-
of-words representations, have been popular due to their successful application
to natural (real-world) scenes [12]. Because natural scene objects are complex,
containing hundreds or thousands of local descriptors, bag-of-words methods
usually employ clustering to obtain representative descriptors [12]. Conversely,
some bio-image phenotypes are low in complexity and local feature count — for
instance, the biological image set in this paper contains∼25 SIFT descriptors per
exemplar. This reduces the number of meaningful clusters that can be extracted,
which may limit the discriminative capabilities of bag-of-words approaches.

To overcome this problem, we propose a phenotype detection framework
whose key contribution is a global feature for visual objects derived from rela-
tionships between local descriptors, as opposed to the distribution of descriptors
that characterizes bag-of-words approaches. This global feature is a vector in
Rk, hence we describe it as geometric because it naturally admits the Euclidean
norm as one notion of inter-feature distance. Furthermore, it can be made both
scale- and rotation-invariant for local feature detectors with those properties,
such as SIFT. Additionally, our framework does not rely on segmentation; we
employ a general region-sampling technique that performs well for objects that
fit within cell-shaped regions. We demonstrate our framework’s capabilities on
synthetic and biological images, where in both cases the patterns of interest
express few (i.e. tens of) SIFT descriptors.

2 Global Features from Local Feature Detectors

In this section, we develop a geometric global feature for arbitrary closed regions
in an image. This global feature, which we call a region spectrum, is derived
from local feature descriptors such as SIFT [9], SURF [11] and RIFT [10]; these
descriptors characterize visually significant points of the image. The general idea
is to find all descriptors within a region of interest, then construct multiple graphs
whose vertices represent descriptors, and whose edge weights are proportional
to similarities between descriptor feature vectors. Collectively, the eigenvalues of
every graph’s Laplacian matrix make up the region spectrum, a vector describing
the region’s geometric properties.

2.1 Regions and Local Feature Descriptors

Formally, let D be the set of descriptors generated by a local feature detector
(e.g. SIFT) on an image domain Ω. Each descriptor d ∈ D is associated with
a position x = (x, y) on the image. In addition, d also contains features such
as local patch information. Generally, d is a real valued vector. For any closed
regionR ⊆ Ω in the image, let DR ⊆ D be the set of descriptors whose associated
positions fall within R. This is illustrated in Fig. 1(a).
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In our experiments we used SIFT [9] to obtain local feature descriptors. SIFT
detects gradient maxima and minima in an image’s scale-space representation,
generating a descriptor d=(x, σ, θ,h) for each detected extremum. Here, x is the
keypoint location associating the descriptor to a position in the original image
and σ is the extremum’s scale coordinate1. θ is the dominant gradient orientation
of the region surrounding (x, σ) in scale-space, and h is a 128-bin histogram
of gradients in a θ-oriented window centered at (x, σ). We chose SIFT for its
robustness and utility in image registration tasks [9,13], though our method
works with any feature detector for which meaningful inter-descriptor distances
can be taken [11,10].

2.2 Region Graphs and Region Spectra

A region’s descriptor set DR can be used to construct one or more graphs GR,C ,
where C : DR×DR �→ [0, 1] is a “connectivity” function between two descriptors.
The vertex set of GR,C is DR, while its edge weights are wdi,dj = C(di,dj),
di,dj ∈ DR. Refer to Fig. 1(b) for an illustration. For SIFT descriptors, we
define three connectivity functions Cx, Cσ and Cθ:

Cx(di,dj) = exp(−αx‖xi − xj‖2) (1)

Cσ(di,dj) = exp(−ασ|σi − σj |2) (2)

Cθ(di,dj) = exp(−αθ min [|θi − θj |, 2π − |θi − θj |]2) (3)

where xi, σi and θi denote the x, σ and θ components of di respectively. αx, ασ

and αθ are scaling coefficients. These connectivity functions indicate descriptor
similarity in terms of image Euclidean distance x, scale σ and angle θ. We
did not use histogram h similarities in our experiments, as they do not improve
performance on our data sets, yet are relatively expensive to compute. Regarding
the coefficients α, our primary concern was avoiding numerical underflow; we set
ασ = αθ = 1 and αx = 10/(mean training exemplar area).

For each graph GR,C , we can generate its Laplacian matrix

L = I −DAD (4)
Ai,j = wdi,dj

Di,j =

{
(
∑

k wdi,dk
)−1/2

i = j and
∑

k wdi,dk

= 0

0 otherwise

where I is the identity matrix [14]. Applying an eigendecomposition algorithm to
L yields λ, its vector of eigenvalues in ascending order. The number of eigenvalues
is equal to the number of descriptors in DR, which we denote by |DR|. Since each
connectivity function Cx,Cσ and Cθ gives rise to one graph, we may concatenate
the λ’s resulting from each graph, λx, λσ and λθ, to obtain the region spectrum
1 The SIFT computes σ as 2oi+of , where oi and of are the integer “octave” and

fractional “interval” described in [9].
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Fig. 1. Example illustration of the steps involved in generating geometric global fea-

tures. (a) Descriptors of two regions A and B are generated (e.g. using SIFT), (b)

Graphs GA,C and GB,C are formed by connecting descriptors within the regions A

and B. In this example, GA,C has six vertices while GB,C has five vertices. (c) Sample

k=4-vertex subsets from each graph to form subgraphs. (d) Each sample of 4 vertices

contributes one bin to its region’s EMD signature. The distance between regions A and

B is the EMD between their signatures.

sR = (λx,λσ,λθ), which serves as a global feature vector for regions. Some
properties of λ bear mentioning. First, λ is bounded in [0, 2]|DR|, and the smallest
eigenvalue λ1 = 0. Moreover, λ bounds invariants of GR,C such as the graph
diameter, distances between subgraphs, and random walk stationary distribution
convergence times [14]. These properties capture the collective behavior of the
set of local features in an image region R, hence turning local features into a
geometric global feature sR ∈ [0, 2]3|DR|. This feature’s notion of region similarity
is near-cospectrality, or similarity in Laplacian eigenspectra. Region spectra sR

have several notable properties:

1. sR is rotation invariant if the local feature detector is rotation invariant,
and the connectivity function C(di,dj) remains invariant when the same
rotation is applied to di and dj.
This is because C’s satisfying the latter condition generate isomorphic graphs
for any rotation of R, while isomorphic graphs have identical eigenspectra.
The three SIFT connectivity functions Cσ, Cx and Cθ are rotation invariant.

2. sR is scale invariant for C’s and local feature detectors exhibiting scale-
invariance.
The function Cθ is scale invariant, while Cσ becomes scale-invariant if σi

and σj are substituted with oi = log2 σi and oj = log2 σj . Cx can also be
made scale invariant by substituting ‖xi − xj‖2 with ‖xi−xj‖2

σiσj
. In practice

however, the non-scale-invariant versions of Cx and Cσ (Eq. (1),(2)) yielded
better results on our data sets.

3. The equivalence class of graphs with the same (or similar) eigenspectra is
not limited to isomorphisms.
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Region spectra thus enable generalization in ways that are meaningful, yet
not immediately obvious from a visual standpoint.

3 Comparing Region Spectra

Despite their advantages, region spectra require further modifications to make
them a suitable feature for machine learning. The chief difficulty arises when
trying to compare sR’s with differing |DR| and consequently with different vector
lengths. This is an issue because many local feature detectors (SIFT included)
do not produce a fixed number of descriptors per region.

3.1 Region Signatures

The eigenvalues are related to distances between subgraph partitions of GR,C

[14], which are incomparable for graphs with small vertex sets of different sizes
due to discretization effects. Hence the eigenvalues of two regions should not be
compared directly, except when they contain the same number of descriptors.

To compare regionswith different descriptor counts, we makeuse of k-descriptor
combinations from the |DR| descriptors in R. There are

(|DR|
k

)
combinations, and

for each combinationwe generate the induced subgraphSi⊆GR,C , i=1, · · · ,
(|DR|

k

)
,

followed by the three k-dimensional eigenvalue vectors sk,i
R = (λi

x,λ
i
σ,λ

i
θ), i =

1, · · · ,
(|DR|

k

)
corresponding to connectivity functionsCx,Cσ andCθ. Next, we con-

struct an Earth Mover’s Distance (EMD) [15] signature Sk
R : [0, 2]3k �→ R from

the
(|DR|

k

)
spectra sk,i

R . Each spectrum sk,i
R gives rise to one bin in [0, 2]3k, and the

squared Euclidean distance is used as the ground distance between bins. We refer
to the EMD signatures Sk

R as region signatures.
In practice, calculating all

(|DR|
k

)
region spectra will often be computationally

prohibitive. We alleviate this problem by estimating the EMD signatures Sk
R,

i.e. we randomly sample some number of subsets as a function2 of |DR| and k;
random sampling has been shown to be effective in estimating true distributions
[16]. Subset sampling and region signature creation are illustrated in Fig. 1(c,d).

3.2 Restoring Information with Neumann Eigenvalues

The eigenvalues of a k-descriptor subset’s induced subgraph S ⊆ GR,C do not
capture all information encoded in GR,C . However, we can restore some infor-
mation from GR,C by considering the Neumann eigenvalues of S. These eigen-
values arise from boundary conditions analogous to a “Neumann random walk”,
in which agents moving to a vertex v /∈ S immediately move to some neigh-
bor of v in S — in other words, they “reflect” off the subgraph boundary [14].
Neumann eigenvalues therefore incorporate information from descriptors near
to the k-descriptor subset. Since our graphs GR,C are fully connected, using the

2 10|DR|/k subsets for a given R in our experiments.
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Neumann eigenvalues of S restores the information encoded in GR,C to a signif-
icant extent. Intuitively, few subset samples will be needed to approximate the
full signature on all

(|DR|
k

)
subsets. The Neumann eigenvalues are obtained via

eigendecomposition of the modified Laplacian [14]:

LN = Dk×kIk×n(T −A)NDk×k (5)

Ti,j =

{∑n
h=1 wdi,dh

i = j

0 otherwise

Ni,j =

⎧⎪⎨⎪⎩
1 i = j

0 i ≤ k and i 
= j

wdi,dj/
∑k

h=1 wdi,dh
otherwise, i.e. i > k

where vertices have been relabeled so that the k chosen descriptors correspond to
matrix indices {1, . . . , k}. T is an n×n diagonal matrix of vertex degrees,N is an
n× k matrix that redistributes edge weights according to the Neumann random
walk, and A is as defined in (4) (taking into account the relabeling). Dk×k is
D from (4) (relabeled) but truncated to the upper left k × k block, while Ik×n

denotes a k × n matrix with 1’s on the main diagonal and 0’s everywhere else.

4 Pattern Detection Using Region Signatures

We now describe our machine learning framework for pattern detection using
region signatures. Given a set of images I, our framework ranks them according
to its confidence that the pattern of interest is present, and also provides the
approximate center of each detection.

A brief summary of our method follows. We begin by training a ν-SVM clas-
sifier [17] on user-provided training exemplars — image regions with the pattern
of interest — as well as non-exemplars, which can be provided or obtained from
a bootstrapping procedure that will be discussed shortly. For each image Ω ∈ I,
we generate a series of random region masks and subject the mask regions to
the ν-SVM classifier, which outputs 1 for the exemplar class and 0 for the non-
exemplar class. The classification outcomes are averaged for each pixel to gen-
erate a score landscape (Figs. 3,4), whose local maxima are detected and sorted
in descending score order. By ranking the local maxima lists for all images in
lexical descending order, we obtain the required detection confidence ranking for
I. Moreover, the local maxima coordinates locate detected patterns of interest.

4.1 Pattern Detection without Segmentation

In order to detect patterns, we could segment each image Ω ∈ I into regions and
classify them using the SVM. However, this requires a segmentation algorithm
that a priori separates the pattern of interest from other image regions. Finding
such an algorithm can be a difficult task onto itself.
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Instead of segmentation, we employ a general technique we term masking
that is similar to sliding-window techniques. Given an image Ω ∈ I, we start by
generating a set of masks M, where each mask M ∈ M is a set of randomly-
generated regions R ⊆ Ω. For each mask M , we compute region signatures sR

for every R ∈ M . The sR are then classified in {0, 1} via the trained SVM,
where 1 indicates the class of exemplars and 0 otherwise. In our experiments, we
generated enough masks to cover each pixel ≥50 times. Finally, we generate Ω’s
score landscape ΦΩ(x) (Figs. 3,4), the average classification of all random mask
regions R covering pixel x. Local maxima xm of ΦΩ then correspond to detected
patterns of interest, where ΦΩ(xm) is the detection confidence, a value in [0, 1]
with 1 representing perfect confidence and 0 representing no confidence.

Since the score landscape may have numerous local maxima, we employ a
DBSCAN-like [18] algorithm to group local maxima into significant clusters.
Each cluster is assigned a score equal to the greatest maxima inside it, and
clusters are sorted in descending score order to get a maxima list for Ω. By
sorting all image maxima lists in descending lexical order, we obtain a ranking
for all images in I. Comparing this ranking with the ground truth then gives a
Receiver Operating Characteristic (ROC) curve.

Ideally, the randomly-generated regions should have shapes that fully contain
the pattern of interest, yet contain little in the way of other regions. In our
experiments, the patterns of interest are either cell-shaped or fit reasonably well
into cell-shaped regions. Thus, we employed the following procedure to generate
masks with cell-shaped regions:

1. Initialize a blank image with larger dimensions than Ω.
2. Place random seeds on the image, and convolve with a Gaussian filter.

Fig. 2. Example images and masks from the MPEG-7 and skin cell image sets. LEFT:

Skin cell image (resolution 696x520) with example mask region overlaid (parame-

ters (mσ, mp, mt) = (16.0, 10−3, 0.9)). Two exemplars of the phenotype of interest

(Keratin-14 aggregates) are indicated by arrows. RIGHT: MPEG-7 montage image (res-

olution 1000x1000), with example mask region overlaid (parameters (mσ, mp, mt) =

(40.0, 2.5−4, 0.9)). The upper right insert shows the 4 classes to be detected, with 3

exemplars each.
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3. Threshold at some (high) percentile, which generates connected components.
4. Place an Ω-sized window at the image center, and extract all connected

components in the window. By overlaying these connected components onto
Ω, we obtain a mask M .

Three parameters are involved: Gaussian filter standard deviation in pixels mσ,
seed distribution defined as the independent probability mp that a given pixel
will become a seed, and threshold percentile mt. In our experiments, we adjust
them so that the mean region size approximately matches training exemplar
region sizes; refer to Fig. 2 for example masks used in each experiment.

Some regions may have too few descriptors to take k-descriptor samples. These
regions do not contribute to the score landscape ΦΩ, except for regions with
exactly zero descriptors (such as blank or low-detail regions of the image) —
these are assumed to have classification 0. If the proportion of non-contributing
regions for some location x exceeds 0.8, we set ΦΩ(x) to 0. Such locations are
not being sampled adequately, hence they are ambiguous and should not be
considered during maxima detection.

4.2 Classifying Regions Using Support Vector Machines

We employ a ν-SVM classifier [17] on EMD signatures with K(SR1 ,SR2) =
exp(−γE(SR1 ,SR2)) as the kernel function, where SR1 and SR2 are region sig-
natures, γ > 0 is a scale parameter, and E is the EMD function with the squared
Euclidean distance ‖b1 − b2‖2 as the ground distance3 between signature bins
b1 and b2. Although we cannot prove that K(SR1 ,SR2) is positive semidefinite,
we did compute the spectra for a large sample of kernel matrices from our exper-
iments, and did not find any negative eigenvalues. We also note that a similar
kernel was used in [7], but with the unmodified Euclidean distance (rather than
its square) as the ground distance.

The SVM is trained with exemplar regions containing the pattern of interest
labeled as class 1, and non-exemplar regions labeled as class 0. If the user does
not provide non-exemplar regions, they may be generated by bootstrapping, in
which images known to lack the pattern of interest are masked (Section 4.1).

5 Experiments

We demonstrate our framework’s performance on two image sets: the 216-image
MPEG-7 CE Shape-1 Part-B database subset used by Sebastian et al. in [19],
and a 304-image subset of the GFP-Keratin-14-expressing human skin cell flu-
orescence microscopy images used by Law et al. in [20]. Both image sets are
single-channel. These choices reflect two distinct applications, namely shape re-
trieval and bio-image phenotype detection.
3 To be specific, we use the squared normalized Euclidean distance, in which every

bin dimension is rescaled to have standard deviation 1.0 (over all training data).

This allows us to use γ = 1.0 as a reasonable starting point for parameter tuning.

Another possibility would be to use the squared Mahalanobis distance.
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Note that we did not use the MPEG-7 image subset as-is; instead we generated
29 montage images with 5-10 randomly placed shape images in each (Fig. 2).
None of the 216 images were used more than once. Furthermore, some of the
shapes overlap in the montage images. Using montages rather than invididual
shapes demonstrates the functionality of our masking technique.

The common experimental setup was as follows:

1. Annotate exemplar regions with the pattern of interest, in the form of closed
polygons. Skin cell image exemplars required the consensus of 5 individuals.

2. Divide the images for k-fold cross-validation — 2 folds for MPEG-7 mon-
tages, 5 for skin cell images.

3. Train the ν-SVM classifier using the exemplar regions as class 1, while boot-
strapping (Section 4.2) to obtain non-exemplar regions as class 0.

4. Apply masking (Section 4.1) to score and rank images. We adjusted masking
parameters independently for both experiments (Fig. 2).

5. Use the rankings to compute ROC curves and Area Under Curves (AUCs).

5.1 MPEG-7 Results

The MPEG-7 subset contains 18 classes of 12 shapes each, which we randomly
placed into 29 1000x1000 montage images. We chose 4 shape classes for retrieval:
fountains, forks, elephants and bones (Fig. 2). For each class 11-12 training
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Fig. 3. LEFT: MPEG-7 database subset — average ROC curves and AUCs for detect-

ing fountains, forks, elephants and bones. The curves may be non-monotonic due to

binning effects on the small image set. RIGHT: Fork detection example score landscape

(top) and original image (bottom). In the score landscape, black represents score 0,

white represents score 1.



262 Q. Ho, W. Yu, and H.K. Lee

0 0.2 0.4 0.6 0.8 1
False Positive Rate

0

0.2

0.4

0.6

0.8

1
Tr

ue
 P

os
iti

ve
 R

at
e

(0.03,1,0.5), 0.798
(0.03,1,1.0), 0.824
(0.03,1,1.5), 0.829
(0.03,2,0.5), 0.808
(0.03,2,1.0), 0.837
(0.03,2,1.5), 0.836
(0.03,3,0.5), 0.819
(0.03,3,1.0), 0.841
(0.03,3,1.5), 0.841
(0.03,4,0.5), 0.825
(0.03,4,1.0), 0.837
(0.03,4,1.5), 0.837
(0.03,5,0.5), 0.832
(0.03,5,1.0), 0.845
(0.03,5,1.5), 0.836
SWAP, 0.821
Law et al, 0.939

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

(0.03,1,1.0), 0.824
(0.10,1,1.0), 0.817
(0.30,1,1.0), 0.812
(1.00,1,1.0), 0.804

��

�
��

��

�
��

Fig. 4. LEFT: Skin Cell image set — average ROC curves and AUCs for detecting

Keratin-14 aggregates. Legends for each ROC curve are given as “(γ, r, α), AUC”.

GRAPH INSET: Tuning over γ = {1.00, 0.30, 0.10, 0.03}, r =1 and ν =0.5. MAIN
GRAPH: Tuning over γ =0.03, r={1, 2, 3, 4, 5} and ν =α/(1 + r), α∈{0.5, 1.0, 1.5}.
Also shown are “SWAP”, a training/validation-set-exchanged 5-fold cross-validation

averaged over 5 trials with γ = 0.03, r = 5, and ν = 1/6, and “Law et al.”, the results

of Law et al.’s deterministic aggregate-specific detector [20]. RIGHT: Example score

landscape (top) and original image (bottom) with annotated exemplar. In the score

landscape, black represents score 0, white represents score 1.

exemplars were annotated4, and the montages divided into 2 folds with 5-6
exemplars each. As all exemplars contained 20 to ∼50 descriptors each, we set
the number of descriptors per subset k= 20. The SVM was trained with a 1 : 5
ratio of exemplars to non-exemplars (i.e. we bootstrapped 5 non-exemplars for
every training exemplar), ν= 1/6 and γ=0.03.5 Masking was carried out with
(mσ,mp,mt) = (40.0, 2.5× 10−4, 0.9) (Fig. 2).

Fig. 3 shows the ROC curves and AUC for each class, averaged over 10 trials
of 2-fold cross validation. We took timings using one core of a 3.0GHz Intel Core
2 system running x86-64 Linux; training and bootstrapping took ∼10 seconds
per fold, while each image’s score landscape took 4-5 minutes to generate. The
time spent on maxima finding was negligible in comparison to score landscape
generation.

5.2 Skin Cell Results

The phenotype (pattern) of interest was Keratin-14 aggregates, which manifest
as fields of bright dots (Fig. 2). The image set contained 304 single-channel

4 We omitted occluded shapes from the exemplar set.
5 These parameters were selected based on Section 5.2’s tuning.
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images of 696x520 resolution, of which 152 had at least one exemplar. There
were 193 exemplar regions in total, containing 25.3±17.4 descriptors on aver-
age with significant right skew in the distribution. Based on this, we set the
number of descriptors per subset k = 10, which required us to discard 19
exemplar regions containing ≤ 10 descriptors. The masking parameters were
(mσ,mp,mt) = (16.0, 10−3, 0.9) (Fig. 2). ROC curves and AUCs are averaged
over 10 trials of 5-fold cross-validation, unless otherwise indicated.

We tuned the SVM kernel width γ for values {1.00, 0.30, 0.10, 0.03}, using
ν = 0.5 and a 1 : 1 ratio of exemplars to bootstrapped non-exemplars. Having
identified γ = 0.03 as yielding the optimal AUC, we proceeded to tune the boot-
strap ratio and ν. First, we selected ratios of the form 1 : r, r ∈ {1, 2, 3, 4, 5}.
Then, since ν upper-bounds the fraction of training set outliers [17], for each
r we selected ν = α/(1 + r) for α ∈ {0.5, 1.0, 1.5}. Choosing ν in this man-
ner protects the smaller exemplar set from over-penalization by the ν-SVM’s
regularization.

All AUCs and some ROC curves from our tuning are shown in Fig. 4. To
demonstrate the effect of a small training set, we include a 5-fold cross-validation
with training and validation sets exchanged. We also include results for Law et
al.’s spot detector [20]. We emphasize that their detector is application-specific,
whereas our method can be trained to recognize arbitrary patterns. Our worst
runtimes are from the 1 : 5 exemplar-to-non-exemplar ratio: training and boot-
strapping took ∼4 min/fold, while score landscapes took ∼4.5 minutes each.
Again, maxima finding takes negligible time compared to score landscape gen-
eration. In comparison, the method of Jones et al. requires ∼ 2.5 minutes to
preprocess each 3-channel 512x512 image, on a 2.4GHz Intel CPU [5].

6 Conclusion

We have described a global geometric image feature for pattern retrieval called
a region signature. This feature derives the collective behavior of local image
descriptors from graphs of their differences. By utilizing the EMD as a distance
measure between region signatures, the latter can be used with ν-SVM clas-
sifiers and image masking to perform pattern detection without segmentation.
Our framework demonstrates good performance on synthetic shapes and real
biological images — in particular, it retrieves patterns with only tens of local
descriptors, a quantity far smaller than typically used [12,7]. We also note that
the EMD distance allows region signatures to be employed in image clustering.
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Abstract. This paper proposes a robust Harris-Laplace detector by scale multi-
plication. The specific Harris corner measure functions at adjacent scales are 
multiplied as a product function to magnify the corner like structures, while 
suppress the image noise and weak features simultaneously. Unlike the contour-
based multi-scale curvature product for image corner detection, we detect the 
corner like features directly in intensity image. Experiments on natural images 
demonstrate that the proposed method has good consistency of corner detection 
under different noise levels.  

1   Introduction 

Corner feature detection is an essential process in image analysis, matching and rec-
ognition. Note that, the term corner here has a specific meaning: points in the 2D 
image with high curvature. So far, many techniques have been proposed on corner 
detection, see [1] for a survey on the state of the art. Currently, there are mainly two 
kinds of corner detection methods: contour curvature based methods and intensity 
based methods.  

Contour curvature based method was mainly focused on the accuracy of point lo-
calization [1]. Early work of detecting dominant points on a digital closed curve is 
proposed in [2]. They indicate that the detection of dominant points relies primarily 
on the precise determination of the region of support rather than on the estimation of 
discrete curvature. Ji and Haralick [3] estimates the parameters of two lines fitted to 
the two segments neighboring to the corner point. A corner is declared if the parame-
ters are statistically significantly different. To explore the corner detection in multi-
scale, the curvature scale space analysis was performed to find the local scale of 
curves [4][5]. More recently, Zhang et al. [6] proposed multi-scale curvature product 
for image corner detection in curvature scale space. Awrangjeb and Lu [7] proposed a 
complete corner detection technique based on the chord-to-point distance accumula-
tion (CPDA) for the discrete curvature estimation. The CPDA discrete curvature es-
timation technique is less sensitive to the local variation and noise on the curve. 
Moreover, it does not have the undesirable effect of the Gaussian smoothing.  

Although theoretically well founded for continuous curves, contour curvature 
based methods, which are less robust in case of discrete curves [2], are mainly applied 
to line drawings, piecewise constant regions, and CAD/CAM images rather than more 
challenging natural scenes. Nowadays, in most practical applications of interest points 
or corners, the focus is on robust, stable, and distinctive points. There has been less 
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activity in this area recently (over the past ten years), due to complexity and robust-
ness problems, while methods based directly on image intensity attracted more atten-
tion [1]. Methods based on image intensity have only weak assumptions and are  
typically applicable to a wide range of images. Harris detector [8], proposed by Harris 
and Stephens, is based on a second moment matrix. A function based on the determi-
nant and trace of that matrix was introduced which took into account both eigenvalues 
of the matrix. This detector is widely known today as the Harris detector or Plessey 
detector. Steerable filters can also be used for corner detection [9], however, one need 
to steer the filters to detect multiple orientations first. It is indirect and iterative. To 
fully explore the feature detection in multi-scale intensity image, Lindeberg [10] pro-
posed a successful scale selection mechanism for Gaussian filters with a theoretical 
formulation. More recently, Mikolajczyk and Schmid [11] introduced a scale invari-
ant corner detector, referred to as Harris-Laplace, and a scale-invariant blob detector, 
referred to as Hessian-Affine. Benchmark tests show that Harris-Laplace has the best 
repeatability over large-scale changes among the existing detectors, a very important 
attribute in the applications of accurate localization. 

However, the location of each Harris-Laplace corner is derived from only a single 
scale, and multi-scale information is used only for scale selection. Therefore, it fails 
to detect true corners when the image noise is relative big. If a complex image is de-
tected, the conflict between missing true corners versus detecting false corners be-
come more severe.   

Meanwhile, in edge detection, edge structures can present observable magnitudes 
along the scales while the noise decreases rapidly. With this observation, several 
researchers proposed the idea of scale multiplication for edge detection [6], and it was 
shown that the scale product could enhance the edge signal and improve detection and 
localization of the edge. In addition, Zhang et al. [6] successfully adopted scale multi-
plication for corner detection in edge image. 

Inspired by the work of scale multiplication in edge detection and multi-scale cur-
vature product for corner detection, in this paper, we proposed multi-scale product of 
Harris corner measure and a simple and robust Harris-Laplace detector based on scale 
multiplication. 

2   Harris-Laplace and Harris Corner Measure 

In this section, we briefly review the original Harris-Laplace detector and the related 
Harris corner measure function. 

Define a scale-adapted second moment matrix as following: 
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         (1) 

where Iσ is the integration scale, Dσ is the differentiation scale and aI is the deriva-

tive computed in the a direction. M is the so-called auto-correlation matrix. 
Harris-Laplace starts with a multi-scale Harris corner detector as initialization to 

determine the location of the local features. The commonly used Harris corner meas-
ure combines the trace and the determinant of a second moment matrix: 
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2det( ) ( )cornernessF M trace Mλ= − ⋅                                (2) 

where M is the second moment matrix defined in (1) and λ  is a constant coefficient. 

A typical value for λ  is 0.04. Local maxima of cornerness determine the location of 
interest points. 

In this paper, we will adopt another cornerness measure function, that is Alison 
Noble measure [12]: 

det( )

( )cornerness

M
F

trace M
=                                             (3) 

where the denominator should add a tiny positive number in order to keep it a non-
zero value. 

After a multi-scale Harris corner detection, the characteristic scale is then deter-
mined based on scale selection as proposed by Lindeberg [10]. The idea is to select 
the characteristic scale of a local structure, for which a given function attains an ex-
tremum over scales. The selected scale is characteristic in the quantitative sense, since 
it measures the scale at which there is maximum similarity between the feature detec-
tion operator and the local image structures. The size of the region is therefore  
selected independently of the image resolution for each point. As the name Harris-
Laplace suggests, the Laplacian operator is used for scale selection.  

Although Harris-Laplace has a better detection performance, the location of each 
detected corner is derived from only a single scale, and multi-scale is used only for 
scale selection. In this paper, we extend the Harris-Laplace by scale multiplication, 
which can not only magnify the corner like structures, but also suppress the noise and 
weak features simultaneously. 

3   Analysis of Multi-scale Product of Cornerness Measure 

In this section, we will define the concept of multi-scale product of cornerness  
measure.  

Let ( )iF σ denotes the Harris cornerness measure at scale iσ (i=1,2,…). Accord-

ing to (2) or (3), we can have the multi-scale product of cornerness measure as: 

1

( )
N

i
N

i

P F σ
=

= ∏                                                     (4) 

More generally the multi-scale product of cornerness measure on an arbitrary set of 
different scales denoted by  

( )P F
σ

σ
∈Ω

= ∏                                                       (5) 

where Ω  is the set of different scales. 
 
 



268 F. Shi, X. Huang, and Y. Duan 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Example of scale multiplication of Alison Noble corner measure. The house image is a 
256 gray-level image and added by Gaussian noise with mean zero and variance 20. (a) original 
image. (b) noise image. (c)-(e) are first three scales of cornerness measure at image row 128. 
(f)-(h) shows the cornerness measure product of image row 128 at scales 1,2; at scales 2,3; and 
at scales 1,2,3 respectively. 

An example of the scales product of Alison Noble corner measure is given in Fig 1. 
We select the 256 gray-level house image that is corrupted by Goussian noise with 
mean zero and variance 20. For illustration purposes, we only show the cornerness 
measure of one single image row in the figure. Without loss of generality, the corner-
ness measure of image row 128 at scales 1, 2, 3 are shown in Fig. 1(c)-(e) respec-
tively. Apparently, the cornerness measure present observable magnitudes along the 
scales, while the magnitudes of the noise and weak features decrease. As shown is 
Fig. 1(f)-(h), the weak corner features and the noise are suppressed after the scale 
multiplication, and the responses of the corners become more salient. Thus we can say 
that the multi-scale product of cornerness measure enhances the corner peaks while 
suppressing the noise and weak features.  

Further more, as shown in Fig. 1, the product of only two adjacent scales seems to 
be enough to suppress the noise and weak features. Thus in the proposed scale multi-
plication Harris-Laplace, when carrying out the multi-scale Harris corner detection, 

a  b 

c d e 

f  g h 
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we adopt the product of Alison Noble corner measure of current scale and previous 
scale as the current cornerness measure. 

3.1   Performance Evaluation of the Proposed Approach 

In order to evaluate the performance of the proposed approach under different noise 
levels, similar to the criteria in [6], we also use the consistency of corner num-
bers(CCN) and accuracy (ACU) for measuring the robustness of the corner detectors. 
For convenience, we refer Harris, Harris-Laplace, the proposed method as Harris, 
HarLap and SMHL. 

Let N0 be the number of corners in original image, Nt be the number of corners in 
each of the noise images. Consistency of corner numbers is given as follows: 

0| |CCN 100 1.01 tN N− −= ×                                            (6) 

where CCN stands for consistency of corner numbers and the base of the exponential 
function is a little different with that in [6]. 

Remark 1. Since the motivation of scale multiplication of cornerness measure is to 
suppress the noise, CCN should be insensitive to the image noise.  A stable corner 
detector does not change the corner numbers from original image to noise images, in 
terms of consistency, the value of CCN for stable corner detector should be close to 
100%. This criterion for corner detectors with more false corners is closer to zero. 

An example of the consistency of corner numbers with respect to different image 
noise is given in Fig 2. As can be seen that, the CCN of Harris and Harris-Laplace 
detector decrease rapidly with the increase of image noise. Instead, the proposed ap-
proach presents a good performance. 

More importantly, corner locations should keep constant when different noise is 
added to the image. Therefore, we also need to evaluate the accuracy of the corner 
detector. Let No be the number of the corners in the original image (note that No ≠ 0), 
Na the number of the matched corners in the noise image when compared to the origi-
nal corners. The criterion of accuracy is: 

ACU 100 a

o

N

N
= ×                                                 (6) 

where ACU stands for “accuracy“. 

Remark 2. We use ACU to describe the accuracy of corner detectors. The value of 
ACU for accurate corner detectors should be close to 100% as the same as CCN. The 
matched corners are defined as those corners that both have the same scale and 
within a specific spatial distance. 

An illustration of the accuracy of corner detection with respect to different image 
noise is given in Fig 3. As can be seen that, the ACU of Harris presents lower  
performance than that of Harris-Laplace and the proposed approach. Whereas, the 
ACU of Harris-Laplace and the proposed approach have nearly equal performance, 
which means that scale multiplication of Harris corner measure has little effect on the 
performance of ACU. 
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Fig. 2. The consistency of corner numbers for house image with respect to different noise 

 

Fig. 3. The accuracy of corner detection for house image with respect to different noise 

Table 1. Efficiency evaluation results of Harris-Laplace and scale multiplication Harris-
Laplace 

Detectors Harris-Laplace Scale multiplication Harris-Laplace 
Average time per 
image (seconds) 

5.8165 12.6577 

 
In order to compare the running time of Harris-Laplace and scale multiplication 

Harris-Laplace, we recorded the time spent in detecting the house image. To get more 
reasonable results, this experiment was carried out with different image noise and 
then we calculate their average time per image. The experiments run on a notebook  
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PC with Intel® Core™2 Duo CPU T7250 2.00 GHz, and all the function implementa-
tion are in MATLAB R14. The image size is 256×256 and the scale number for scale 
selection is 7. The comparison of running efficiency is listed in Table 1. From the 
results we can see that, the time cost for scale multiplication approach is about the 
double of the original one. 

4   Experiment Results and Discussion 

In this section, we give the corner detector results based on the method described in 
Section 3. Also some comparative experiments with Harris-Laplace or Harris are 
performed. All the tests are carried out under different noise levels on different im-
ages. In order to compare the detection result under image noise to the results without 
noise, we mark all the matched corners (defined in section 3.1) by red color. We will 
briefly discuss the results in the following. 

(a) 256 gray-level image with noise variance 10 

(b) 256 gray-level image with noise variance 20  

Fig. 4. The corner detection for house image with respect to different noise levels. Left: Harris. 
Center: Harris-Laplace. Right: scale multiplication Harris-Laplace. 

First, the output of scale multiplication Harris-Laplace given the popular house im-
age are shown in the right column in Fig. 4. Compare them with the left column and 
center column, output from Harris and Harris-Laplace respectively. Each detector  
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gives results under two kinds of different image noise. The consistency of corner  
 

detection of scale multiplication Harris-Laplace is apparent. While the other two de-
tectors produce more weak corner features or noise corners with the increase of image 
noise. 

(a) 256 gray-level image with noise variance 10. 

(b) 256 gray-level image with noise variance 20.  

Fig. 5. The corner detection for graph image with respect to different noise levels. Left: Harris-
Laplace. Right: scale multiplication Harris-Laplace. 

Next, we give the detection results using the graph and boat image sequences, 
which are provided by Mikolajczyk1. The image size of graph sequence is 800×640 
and boat sequence 850×680. Due to the page limit, we only give the results of Harris-
Laplace and the proposed approach under two kinds of image noise. Fig. 5. and Fig. 6 
demonstrate the corner detection results on graph and boat image respectively. It is 
obvious in the results that, similar to the corner detection on house image, much more 
weak features or noise corners were produced by Harris-Laplace. 

                                                           
1 http://www.robots.ox.ac.uk/~vgg/research/affine/  
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(a) 256 gray-level image with noise variance 10. 

   
(b) 256 gray-level image with noise variance 20. 

Fig. 6. The corner detection for boat image with respect to different noise levels. Left: Harris-
Laplace. Right: scale multiplication Harris-Laplace. 

5   Conclusion 

In this paper, the technique of scale multiplication is analyzed in the framework of 
Harris corner measure. We define the scale multiplication function as the product of 
the Harris corner measure of adjacent scales, and propose a robust Harris-Laplace 
detector. The proposed product function of cornerness measure will magnify the corner 
like structures, while suppresses the image noise and weak features simultaneously. 
Unlike the contour-based multi-scale curvature product for image corner detection, we 
detect the corner like features directly in intensity image. Experiments on natural im-
ages also demonstrate that the proposed method has the results of good consistency of 
corner detection to variable noise. 
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Abstract. This article describes a novel junction descriptor that en-

codes junctions’ semantic information in terms incoming lines’ orienta-

tions, both in 2D and 3D. A Kalman filter process is used to reduce the

effect of local noise on the descriptor’s error and to track the features. The

improvement gained by our algorithm is demonstrated quantitatively on

synthetic scenes and qualitatively on real scenes.

1 Introduction

Different kinds of image structures co–exist in natural images. It is common
to classify them into edges, texture, junction or homogeneous image structures
(see, e.g., [1]). Junctions are rare yet important image features, useful for various
higher level vision tasks such as matching of stereo images, object recognition
and scene analysis.

A significant amount of work studied the process of junction detection and
the extraction of junction descriptors encoding local semantic information as
oriented lines intersecting at the junction’s center (see, e.g., [2,3,4,5,6]). In [2],
both edges and junctions become detected and classified in the first step, and
the semantic interpretation needs to be performed a posteriori. In [4], junctions
are detected based on Hough lines and the semantic interpretation of junctions
is computed in 2D and 3D. In [3], the number of lines is assumed to be known
and a junction model is fitted to the data by minimizing an energy function.
In [5], a simple method for extracting the semantic representation of junctions
is proposed by analyzing orientation histograms. In [6], a biologically motivated
approach to junction detection is presented, where junctions are characterized
by a high activity for multiple orientations within a single cortical hyper–column
– equivalently defined as points in the image where two or more edges join or
intersect.

It is known that junctions are stable features for matching [7], and that their
semantic interpretation is important for the reconstruction of visual scenes [8]
(for example by interfering depth discontinuities from T-junctions). However, the

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 275–286, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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a) b)

c) d)

Fig. 1. A figure with 2D and 3D semantic interpretation. a) 2D junction interpretation

in the left stereo image. b) 3D junction interpretation corresponding to a). c) Semantic

2D junction interpretation. d) Semantic 3D interpretation.

detection and semantic interpretation of junctions (in particular in 3D) faces the
problem that high–level information is inferred from a (noisy) local image patch
(or two corresponding images patches in the 3D case).

A suitable semantic representation for junctions in 2D can be formulated in
terms of: (i) a center point x; (ii) an integer n indicating the number of rays
intersecting in x; and (iii) a vector of n angles (θ1, . . . , θn) indicating the incoming
lines’ directions (see figure 1c). An equivalent 3D interpretation (see, e.g., [4])
can be formulated in terms of: (i) a 3D center point X; (ii) an integer n; and
(iii) a vector of n pairs of angles ((Θ1, Φ1), . . . , (Θ1, Φ1))) indicating the 3D lines’
direction in polar coordinates (see figure 1d). However, for T-junctions (two of
the edges are parallel), an actual intersection in the 3D point X is not likely due
to a high probability of a depth discontinuity being existent at that position and
hence this case needs to be detected on the 2D level beforehand.

The central novelty of this article is that it describes a system in which junc-
tion detection and the interpretation in 2D and 3D in terms of point as well
as orientation information becomes improved by a Kalman filter based spatial–
temporal filtering. Hence junctions become understood as spatial-temporal en-
tities with considerable semantic information associated. As a result, junctions
are detected more reliably than in individual frames, and their localization and
semantic interpretation is more stable and correct. This is quantified on artificial
data and results are shown on rather controlled indoor scenes in a robot vision
set–up, as well as outdoor scenes with considerable noise level. Moreover, we
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have introduced some improvements in the actual junction extraction process in
2D and 3D from individual frames.

2 Junction Interpretation as Part of an Early Cognitive
Vision System

The junction detection and interpretation described here is part of the Early
Cognitive Vision framework described in [9,10]. In this framework, the interpre-
tation of local information both in 2D and 3D, is performed by different experts
for all four image structures described above (i.e., textures, junctions, edges and
homogeneous image patches, see figure 2).

These interpretations are then disambiguated; both spatial and temporal con-
texts are used to eliminate outliers and come to a more precise estimation of the
semantic parameters. Previous stages focused on the computation, interpreta-
tion and disambiguation of edge structures (see, e.g., [11,12]); this paper extends
this framework to junctions.

Before extracting a junction semantic descriptor from a local image area,
it is required to assess this patch’s likelihood to contain a junction. The in-
trinsic dimension (iD) – see, e.g., [13] – is a suitable classifier in this context.
The iD characterizes image patches according to the dimension of the subspace
occupied by the local spectral energy. The spectral energy of an intrinsically
zero–dimensional signal is concentrated in the origin, whilst the energy of an in-
trinsically one–dimensional signal spans a line, and the energy of an intrinsically
two–dimensional signal varies in more than one dimension. Ideal homogeneous
image patches have an intrinsic dimension of zero (i0D), ideal edges are intrinsi-
cally one–dimensional (i1D), and junctions and most textures have an intrinsic
dimension of two (i2D). Going beyond such a discrete classification [13,14], we
use a continuous formulation [15] that, based in a compact triangular represen-
tation, provides three confidences that express the likelihood of an image patch
being either i0D, i1D or i2D.

In this paper, we understand junctions as image patches in which lines in-
tersect. The intrinsic dimensionality is well suited to distinguish junctions from
edges and homogeneous image patches; however, textures and junctions are both
intrinsically 2D structures, and can not be reliably distinguished by local iD con-
fidences. As shown in [5], junctions can be distinguished from textured areas by
looking at the intrinsic dimensionality within a certain neighborhood (which size
depends on the scale): junctions have high i1D and i0D values in their immediate
neighborhood, whereas most textures have only i2D values (for details, see [16]).

3 2D and 3D Junction Extraction and Interpretation

In this section, we briefly describe the process of extracting a semantic 2D and
3D interpretation of junctions from stereo images. The algorithm used in this
work is an improved version of [5]. The process is exemplified by showing 2D
junctions and their 3D reconstructions on artificial image sequences. Results on
real images are shown in section 5.2.



278 K.B. Simonsen et al.

a)

b)

c) d)

Fig. 2. 3D reconstructed icons according to the classified image patches. Red icons

represent texture, green points junctions and the remaining icons edge–like structures;

a) left and right input image; b) 3D reconstruction of the entire scene from the camera

position; c) zoom-in on the top gripper with reconstructed junction and edges; d)

display of the 3D reconstruction showing the correct reconstructed textured plane from

an alternative perspective.
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a) b) c)

d) e) f)

Fig. 3. 2D junction interpretation: a,b) shows the left and right view, c) shows the

intersection consistency. d) and e) shows the junctions in the left and the right view and

f) shows the 3D reconstruction from one stereo pair with the semantic interpretation.

3.1 2D Interpretation

This section briefly describes the 2D semantic interpretation of junction as pro-
posed by [5], where the interested reader will find a detailed discussion.

A junction is represented by a set of rays ri, each defining one of the inter-
secting half–lines, expanding from the junction’s center in a direction θi [8,5].

Junctions are localized using a continuous formulation of the intrinsic di-
mensionality (iD), where intrinsically two dimensional image structures (i2d)
indicate the presence of junctions. This positioning of potential junctions is im-
proved by a local search for the pixel with the highest intersection consistency
(iC) [5] (see figure 4b). Intersection consistency defines a more accurate junction
position, where each line around the center votes for an intersection position. A
pixel’s intersection consistency is defined as:

ic(pc) = (1− i1D(pc))
∑

px∈Np

(
k(px)(cmag(px))2

(
1− dist(lpx , pc)

dist(px, pc)

))
(1)

Np are all pixels in the local neighborhood with a certain distance to pc (see
figure 4c). i1D(px) denotes the i1D confidence for a given pixel [15], cmag(px) is
the magnitude for a given pixel, lpx is the line going through px oriented as the
local pixel orientation, dist(lpx , pc) is the distance between lpx and the center
pixel pc, and dist(px, pc) is the distance between the two pixels px and pc. The
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a) b) c) d)

Fig. 4. 2D interpretation on part of star image (as discussed) a) artificial input image b)

intersection consistency c) potential junctions with their local neighborhood for which

the orientation histogram is computed. d) the orientation histogram of the top-left

junction.

expression k(px) is 1 if dist(lpx , pc) < maxDist, zero otherwise. The basic idea
behind this formula is that edge pixels in the surrounding vote for an optimal
position of the junction. The intersection consistency is displayed in figure 3c and
figure 4b. The junction’s position (x, y) is set as the maximum of the intersection
consistency computed with sub–pixel accuracy. The algorithm by [5] produced
large iC in some edge structures; therefore, we introduced the term (1− i1D(pc)
that enforces low iC value at edge structures. For a detailed discussion of these
differences we refer to [17].

The orientation θi is extracted for each potential ray ri of a junction by
finding the dominant orientations in its neighborhood (figure 4c); this is coded
as an orientation histogram H(θc) (see figure 4d). The number of rays and their
orientations is then determined by the clusters in that histogram H(θc). Having
the information on the number of rays the semantic interpretation of a junction
in 2D is defined as:

πj = {(x, y),n, (θ1, ..., θn)} (2)

where x and y is the 2D position, n the number of edges and (θ1, ..., θn) the
angle associated to each edge.

3.2 3D Interpretation

Junctions are matched in the left and right view according to the epipolar geom-
etry using cross correlation. Additionally, we match the junction rays allowing
for a 3D reconstruction in terms of the two angles (Θ,Φ) for each matched pair
of rays, indicating the 3D lines’ direction in polar co-ordinates (see figure 1d).
The algorithm is discussed in more detail in [4]. The matching algorithm is based
on the angular distance between 2D rays’ orientations in the left and right im-
age. First, the distance between all rays in the left and right view is computed
(see figure 5a). The distance is measured by the number of bins, where the total
number of bins is determined by the resolution of the orientation histogram (in
our case 64 bins, being equal to 360◦). If the distance between two edges in the
left and right view is small, they are likely to be part of the same 3D edge (see
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a) b)

c) d)

Fig. 5. a) left and right junction with table of orientation distances between their

edges. b) The smallest distance is found to be between edge B and E and all cells

related to edge B and E are cleared. c) Remaining cells with the smallest gaps are

found (edge A and F ) and cells for found pairs are cleared d). Remaining angle gaps

above a threshold value are are discarded.

figure 5b,c); if the distance is above a threshold the edge is discarded (see figure
5d). For details, we refer again to [4,17].

Besides the 3D reconstruction also the 3D uncertainty is computed needed for
the spatial–temporal filtering process using Kalman filters. The 3D reconstruc-
tion uncertainty is propagated from the 2D uncertainty as follows [18]:

Λ3D = Df(x)Λ2DDf(x)T (3)

where Λ3D is the propagated 3D covariance, Λ2D = diag(Λ1, ..., Λn) the uncer-
tainty in 2D and f(x) the reconstruction function. For more details of the noise
modeling we refer to [17].

Because edges are part of the semantic interpretation, they are also recon-
structed as 3D edges. Their position uncertainty is propagated to 3D in the
same way as it is done for the 3D position of junctions. An example of recon-
structed junctions from a stereo image pair is shown in figure 3f.

4 Spatial–Temporal Filtering

The spatial-temporal filtering process is the combination of three processes.
First, a temporal matching of junctions in images; Second a re–evaluation of
junctions’ confidence depending on how consistently they have been observed in
a succession of frames; Third, multiple Kalman filters that correct the junction’s
position and incoming lines’ orientations.

4.1 Temporal Matching

To find the best match for each prediction, it is compared with all the newly de-
tected junctions in the neighborhood. The comparison is done by back
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projecting the 3D junction to the image planes and matching them with the
newly detected 2D junctions.

4.2 Confidence

The junctions’ confidence is re–evaluated using a Bayesian scheme wherein 3D
junction’s likelihood is estimated based on predictions and verifications of their
change of 2D position over frames due to the underlying object or ego motion.
This process is governed by the equation:

C =
βm(1 − β)n−m

α

βm(1− β)n−mα+ γm(1− γ)n−m(1− α)
, (4)

where n is the total number of frames since the junction was first detected, m is
the number of times it was successfully matched since this time, α is the prior
probability that an observed junction is true, β is the probability that a true
junction is matched successfully, and γ is the probability that a false junction is
matched. For further details see [12].

4.3 Filtering

The junction descriptor’s parameters are corrected over time using a collection
of independent Kalman filters [19], one for the junction’s center and one for each
of the intersecting lines. The prediction step is provided by the object motion,
that is either known (object manipulation scenario) or computed from feature
correspondences (road scenario). An estimation of this prediction uncertainty is
gathered either from the process that provides the motion, and will not be dis-
cussed here. We use the temporal matching process to pair predicted junctions
with the observed ones, and the observation uncertainty is provided by the junc-
tion 3D reconstruction process (and therefore is different for each observation).
Because both observations and predictions lie in the same space, the Kalman
equations simplify to the following:

K = Σ · (Σ +Σ∗)−1 (5)
x′ = x+K · (x∗ − x) (6)
Σ′ = (I −K) ·Σ (7)

where K is the Kalman gain, (x,Σ) are the predicted state vector’s mean and
covariance, (x∗, Σ∗) the observed vector’s, and (x′, Σ′) the corrected vector’s.

Note that the filtering process is an extension of a process defined for edge
elements in [12].

5 Results

We have tested our algorithm on artificial (section 5) as well as indoor and
outdoor stereo sequences (section 5.2).
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5.1 Quantification on an Artificial Image Sequences

First, we tested our algorithm in a stereo sequence showing a star rotating around
the y axis. The images are created in OpenGL and hence the ground truth of
the motion is known, and used for the Kalman filter’s prediction step. Also

a) b) c) d)
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Fig. 6. Accumulation of junctions: a) shows the non accumulated 3D representation

of a tip of the star, b) shows the accumulated tip, c) and d) shows the 3D position

error (in mm) of junctions and their adjacent edges, respectively, over accumulation

iterations

a) b)

c) d)

Fig. 7. Reconstruction of the spatula. a,b) left and right input image c) the 3D recon-

struction of the spatula c) accumulated junctions after 72 frames. Edges are displayed

for better scene understanding.
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the junctions’ exact 3D positions and angles between incoming rays. Figure 6
exemplifies the convergence process. In a), the reconstruction based on one stereo
pair is drawn; in b), the reconstruction after 15 iterations is drawn, showing an
improvement in the 3D orientation estimate. This is also quantified in figure
6c, d. In figure 6c the position error mean and variance over all junctions is
displayed. In figure 6d, the deviation from the true angles between two rays is
shown. The accumulation scheme lead to improvements for both quantities.

5.2 Indoor and Outdoor Scenes

Figure 7 shows results on a scene where the motion is generated by a robot
(and hence is known). The junctions are displayed by circles and the orienta-
tions of the associated 3D rays are shown as the big rectangular icons. In addi-
tion, accumulated edges are shown according to the algorithm described in [12].
Figure 7 a, b) shows the left and right images; figure 7c shows the stereo rep-
resentation at the first frame; figure 7d shows the accumulated representation.
It is clearly visible that the representation improves both in terms of edges and
junctions.

Figure 8 shows results on a scene recorded in a driver assistance scenario where
the motion is estimated using the algorithm described in [20]. An improvement
in positioning for this scene is not as eminent as for the indoor sequence, due
to an increased scene depth. However by utilizing spatial temporal filtering,
wrong re-constructed junctions have been discarded providing a more robust
scene representation.

a) b)

Fig. 8. Results for outdoor scene recorded in a driver assistance scenario. a) left in-

put image b) accumulated junctions after 20 frames. (For a better display, edges are

displayed and the display size for both junctions and edges has been increased.
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6 Conclusion

We introduced a junction extraction process that encodes not only junctions’
positions, but also semantic information in terms of intersecting lines’ orienta-
tions; this is also extended to in the 3D domain using stereopsis. It is known that
the extraction of such high level information can be severely affected by noise.
To counteract the effect of noise, we applied a Kalman filter scheme on both
the junction’s position, and intersecting lines’ orientations. The algorithm was
evaluated on artificial and real data, and lead to significant improvements in po-
sition and orientation estimates. Results were shown quantitatively on artificial
data, and qualitatively on real scenes.

The spatial–temporal junction extraction algorithm is part of an Early Cogni-
tive Vision system in which different local symbolic descriptors become computed
for different image structures. This system, so far dealing with line segments only,
has been used is a large number of applications in computer vision and vision
based robotic tasks (e.g., [11,21]). The integration of junctions into the Early
Cognitive Vision system is an important step to enhance the system’s generality
and performance for tasks such as motion estimation, object recognition and
pose estimation.
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Abstract. In this paper, we present a method for the fast and accurate

computation of the local cross-correlation of 3D vectorial data. Given

spherical patches of 3D vector fields, our method computes the full cross-

correlation over all possible rotations and allows an accurate estimation

of the rotation offset between two patches. Our approach is based on a

novel harmonic representation for 3D vector fields located on spherical

surfaces which allows us to apply the convolution theorem and perform

a fast correlation in the frequency domain. The theoretical advances

presented in this paper can be applied to various computer vision and

pattern recognition problems, such as finding corresponding points on

vector fields for registration problems, key point detection on vector fields

or designing local vector field features.

1 Introduction

3D vector fields play an important role in a wide range of computer vision
and pattern recognition problems. From methods like 3D motion estimation,
which have a natural representation in vector fields, to the extraction of 3D
gradient fields from volume images, 3D vector fields are a suitable standard
data representation for many complex vision problems. Given such 3D vector
fields, a common task is to compare and measure similarities between two or
more data sets. In this paper, we approach the problem of locally comparing
3D vectorial data. Our method operates on local spherical vector field patches
(1) and uses a full correlation over all possible rotations between two patches to
compute a rotation invariant similarity measure as well as an accurate rotation
offset estimation. Our proposed method could be used to directly transfer some
well established methods from the 2D and 3D scalar domain to 3D vector fields:
like finding corresponding points on vector fields for registration problems, key
point and object detection in vectorial data or for the design of local vector field
features.

Parameterization of Local Patches. Given a 3D vector field X : R3 → R3, we
parameterize a local spherical patch at position x ∈ R3 as a set of n concentric
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spherical surfaces Si[ri] (x) with radii ri and i ∈ {1, . . . ,n} which are centered
in x:

Si[ri] (x) := {x′ ∈ R3|‖x− x′‖2 = ri}. (1)

Related Work. The fast correlation of scalar data over all possible cyclic transla-
tions in an nD Euclidean space by use of the Convolution Theorem is a standard
procedure in computer vision and pattern recognition applications. An exten-
sion to nD Euclidean vector spaces is also quite common, e.g. a general method
for the correlation of vector fields can be found in [10]. Fast correlations over
all possible rotations tend to be more difficult. Our approach is motivated by
[3], which solves this problem for scalar signals by extending and improving the
accuracy of the fast correlation methods originally introduced by [7] and [8]. All
of these methods use a harmonic expansion of the scalar signals in Spherical
Harmonics to compute the correlation in the frequency domain. We introduce
a novel harmonic representation of vectorial signals on a sphere that is largely
derived form a more general harmonic tensor representation introduced by [9].
The fast correlation and the rotation estimation are both a direct extension of
the scalar methods we presented in [3]. The remainder of this paper is structured
as follows: first, we briefly review some mathematical foundations and introduce
a common notation in section 1.1 before we derive the harmonic representa-
tion of 3D vector fields on spheres in section 2. Then, in sections 3 and 3.1,
we present the cross-correlation and rotation estimation algorithms. Finally, we
experimentally evaluate the performance of our methods in section 4.

1.1 Mathematical Foundations

Our parameterization of the local vector field patches in form of vectorial signals
on concentric spherical surfaces (see section 1) makes it necessary to find a
suitable mathematical formulation of such signals. For this purpose, we derive
an orthonormal base for vectorial signals on the 2-sphere (see section 2) that
provides a sound mathematical representation of the parameterized patches in
the harmonic domain. The entire approach is based on widely known methods
from angular momentum theory [2] such as Spherical Harmonic base functions for
scalar valued functions on spheres, Wigner-D rotation matrices and the Clebsch-
Gordan Coefficients. Hence, we start with a brief review of these methods.

Spherical Harmonics. Spherical Harmonics (SH) [5] form an orthonormal base
on the 2-sphere. Analogical to the Fourier Transform, any given real valued
signal f on a sphere with its parameterization over the angles Θ,Φ (latitude
and longitude of the sphere) can be represented by an expansion in its harmonic
coefficients:

f(Φ,Θ) =
∞∑
l=0

m=l∑
m=−l

f̂ l
mY

l
m(Φ,Θ), (2)

where l denotes the band of expansion, m the order for the l-th band and f̂ l
m

the harmonic coefficients. The harmonic base functions Y l
m(Φ,Θ) are computed

as follows:
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Y l
m(Φ,Θ) =

√
2l+ 1

4π
(l −m)!
(l +m)!

· P l
m(cosΘ)eimΦ, (3)

where P l
m is the associated Legendre polynomial [2].

Rotations in SH. Throughout the rest of the paper we will use the Euler notation
in zyz′-convention denoted by the angles ϕ, θ, ψ with ϕ, ψ ∈ [0, 2π[ and θ ∈ [0, π[
to parameterize the rotations R ∈ SO(3) (abbreviation for R(ϕ, θ, ψ) ∈ SO(3)).
Rotations R in the Euclidean space find their equivalent representation in the
Spherical Harmonic domain in terms of the so called Wigner D-Matrices, which
form an irreducible representation of the rotation group SO(3) [2]. For each
band l, Dl(ϕ, θ, ψ) (abbreviated as Dl(R)) defines a band-wise rotation in the
SH coefficients. Hence, a rotation in the Euclidean space can be computed in
the harmonic domain by:

Rf =
∞∑
l=0

l∑
m=−l

l∑
n=−l

Dl
mn(R)f̂ l

nY
l
m. (4)

Clebsch-Gordan Coefficients. Clebsch-Gordan Coefficients (CG) of the form
〈lm|l1m1, l2m2〉 are commonly used for the representation of direct sum de-
compositions of SO(3) tensor couplings [2]. The CG define the selection criteria
for such couplings, are only unequal to zero if the constraints m = m1 +m2 and
|l1− l2| ≤ l ≤ l1 + l2 hold and fulfill several useful orthogonality constraints (see
[2] for more details).

2 Vectorial Harmonics

Based on the rich and well established methods for scalar signals on spheres,
we extend the Spherical Harmonics to vectorial data. The so-called Vectorial
Harmonics (VH) inherit most of the favorable properties from their scalar coun-
terparts, while solving the non trivial problem that rotations of vectorial data
not only affect the position of a vector, but also its direction. It should be
noted that there have been several different previous approaches towards Vec-
torial Harmonics, like [6] or [1]. All of these methods basically provide the same
functionality, but use different parameterizations and notations which are not
directly suitable for our purposes. We derive our methods from a very general
theory of Tensorial Harmonics [9], which provides expansions for arbitrary real
valued tensor functions f of order d on the 2-sphere:

f [r, d](Θ,Φ) :=
∞∑

l=0

k=d∑
k=−d

m=(l+k)∑
m=−(l+k)

f̂ l
km(r)Zl

km(Θ,Φ), (5)

where f̂ l
km(r) is the expansion coefficient of the l-th band of tensor order d

and harmonic order m at radius r. The orthonormal Tensorial Harmonic base
functions Zl

km are given as:

Zl
km(Θ,Φ) := e(l+k)

m ◦l Y l
m(r)(Θ,Φ), (6)
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where el
m are elements of the standard Euclidean base of C2d+1. ◦l denotes a

bilinear form connecting tensors of different ranks:

◦d : Vl1 × Vl2 → C2d+1. (7)

l1, l2 ∈ N have to hold |l1 − l2| ≤ l ≤ l1 + l2 and ◦l is computed as follows:

(el
m)T (v ◦l u) :=

∑
m=m1+m2

〈lm|l1m1, l2m2〉vm1um2 . (8)

See [9] for details and proofs. If we limit the general form to tensors of order one
(d := 1), then we obtain our Vectorial Harmonic expansions

f [r, d = 1](Θ,Φ) :=
∞∑
l=0

k=1∑
k=−1

m=(l+k)∑
m=−(l+k)

f̂ l
km(r)Zl

km(Θ,Φ) (9)

with the orthonormal base functions:

Zl
km =

⎛⎝ 〈1 1 |l + k m, l 1−m〉 Y l
1−m

〈1 0 |l + k m, l −m〉 Y l−m

〈1 −1 |l + k m, l −1−m〉 Y l
−1−m

⎞⎠T

. (10)

Refer to figure 1 for an overview of the first two bands of the VH basis.

u ∈ C3 : u :=

⎛⎜⎝
x−iy√

2
z
−x−iy√

2

⎞⎟⎠ . (11)

Rotations in VH. The analogy of our Vectorial Harmonics to Spherical Harmon-
ics continues also in the case of rotations in the harmonic domain. Complex 3D
vector valued signals f with Vectorial Harmonic coefficients f̂ are rotated [9] by:

Rf =
∞∑

l=0

k=1∑
k=−1

l+k∑
m=−(l+k)

l+k∑
n=−(l+k)

Dl+k
mn (R)f̂ l

kmZl
kn, (12)

which is a straight forward extension of (4). One notable aspect is, that we need
to combine Wigner-D matrices of the upper l+1 and lower l−1 bands in order to
compute the still band-wise rotation of f̂ l

km. Hence, we rotate f̂ l
km by R(φ, θ, ψ)

via band-wise multiplications:

f ′ = R(φ, θ, ψ)f ⇒ f̂ ′
l

km =
l+k∑

n=−(l+k)

Dl+k
mn (φ, θ, ψ)f̂ l

km. (13)

Due to the use of the zyz′-convention, we have to handle inverse rotations with
some care:

f ′ = R−1(φ, θ, ψ)f ⇒ f̂ ′
l

km

=
l+k∑

n=−(l+k)

Dl+k
mn (−ψ,−θ,−φ)f̂ l

km. (14)
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l m = −2 m = −1 m = 0 m = 1 m = 2 k

0 1

1

−1

0

1

Fig. 1. Real part of the first 2 bands of the Vectorial Harmonic base functions, note

that the base functions for l = 0 and k = −1, 0 do not exist

Band Limitation. A practically very relevant property of the harmonic rep-
resentation (2) is that due to the band-wise nature of the representation, all
properties, including the rotation (3.1), are independent of the actual extent of
the expansion. Hence, we can limit the expansion to an arbitrary maximum band
bmax without changing any of the characteristics. Naturally, a band limitation
acts like a low-pass filter, cutting off the information in higher frequencies.

3 Fast and Accurate Correlation in VH
Given our harmonic representation of vectorial signals on spheres (9) and the
methods to rotate theses signals (13), we are able to present an algorithm for
the fast correlation over all possible rotations. Analogous to the duality given
by the Convolution Theorem, we derive a correlation method which operates
in the Vectorial Harmonic (frequency) domain. This approach is based on a
similar method which we have derived for scalar signals expanded in the Spherical
Harmonic domain [3].

Correlation of Vectorial Signals on Spheres. We use local dot-products of vectors
to define the correlation under a given rotation R in Euler Angles φ, θ, ψ as:

C#(R) :=
∫

Φ,Θ

〈f(Φ,Θ),Rg(Φ,Θ)〉 sinΘdΦdΘ, (15)

where C# is the 3D correlation matrix which holds the correlation results for all
possible rotations R in a (ϕ, θ, ψ)-space.
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Applying the Convolution Theorem. Using the Convolution Theorem and sub-
stituting f and g with their VH expansions (3.1, 9) leads to

C#(R) =
l=∞∑
l=0

k=1∑
k=−1

mn=(l+k)∑
mn=−(l+k)

Dl+k
mn (R)f̂ l

kmĝl
kn. (16)

We factorize the original rotationR(ϕ, θ, ψ) intoR = R1R2, choosingR1(ξ, π/2,
0) and R2(η, π/2, ω) with ξ = ϕ− π/2, η = π − θ, ω = ψ − π/2.
Using the fact that

Dl
mn(ϕ, θ, ψ) = e−imϕdl

mn(θ)e−inψ , (17)

where dl is a real valued and so called ”Wigner (small) d-matrix” [2], and

Dl
mn(R1R2) =

l∑
h=−l

Dl
nh(R1)Dl

hm(R2), (18)

we can rewrite Dl
mn(R) as

Dl
mn(R) =

l∑
h=−l

dl
nh(π/2)dl

hm(π/2)e−i(nξ+hη+mω). (19)

Substituting (19) into (16) provides the final formulation for the correlation
function regarding the new angles ξ, η and ω:

C#(ξ, η, ω) =
l=∞∑
l=0

k=1∑
k=−1

m,h,m′=(l+k)∑
m,h,m′=−(l+k)

dl+k
mh (π/2)

dl+k
hm′(π/2)f̂ l

kmĝl
km′e−i(mξ+hη+m′ω). (20)

Obtaining the Fourier Transform of the Correlation Matrix. The direct evalua-
tion of this correlation function is not possible - but it is rather straight forward
to obtain the Fourier transform Ĉ# := F

(
C#
)

of (20), hence eliminating the
missing angle parameters:

Ĉ#(m,h,m′) =
l=∞∑
l=0

k=1∑
k=−1

dl+k
mh (π/2)dl+k

hm′(π/2)f̂ l
kmĝl

km′ . (21)

Finally, the correlation C#(ξ, η, ω) can be retrieved via inverse FFT of Ĉ#

C#(ξ, η, ω) = F−1(Ĉ#(m,h,m′)), (22)

revealing the correlation values on a sparse grid in a three dimensional (ξ, η, ω)-
space. Figure (2) shows a resulting correlation grid for a sample rotation of
random input data. Hence, if we are interested in the maximum correlation
value, we simply have to search the (ξ, η, ω)-space.
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3.1 Rotation Estimation

Fig. 2. Ortho-view of a resulting 3D correlation grid in

the (ξ, η, ω)-space with a maximum spherical harmonic

expansion to the 16th band, φ = π/4, θ = π/8, ψ =

π/2. From left to right: xy-plane, zy-plane, xz-plane.

Clearly, our fast correlation function obtains an isolated

and stable maximum in a single point on the grid.

The second objective of
our method is to not
only compute the max-
imum correlation value,
but also to obtain the ro-
tation offset between two
vectorial signals. The re-
sulting correlation matrix
C# from (22) directly al-
lows us to compute the ro-
tation parameters (ϕ, θ, ψ)
from the (ξ, η, ω)-angles
associated with the posi-
tion of the maximum correlation peak. However, this direct rotation estimation
approach has a major drawback: the angular resolution of such an estimate di-
rectly depends on the maximum expansion band bmax, because the parameters
m,m′, h in (21) are running from l = 0, . . . , l = bmax. Hence, an example expan-
sion to the 16th band would result in a C# size of 33× 33× 33. Given rotations
up to 360◦, this leaves us in the worst case with an overall estimation accuracy
of less than 15◦.

In general, even if our fast correlation function (22) perfectly estimated the
maximum position in all cases, we would have to expect a worst case accuracy
of

Errcorr = 2 · 180◦

2l
+

90◦

2l
. (23)

Hence, if intended to achieve an accuracy of 1◦, we would have to take the har-
monic expansion roughly beyond the 180th band. This would be computationally
too expensive for most applications. Even worse, since we are usually considering
discrete data, the signals on the sphere are band-limited. So for smaller radii,
higher bands of the expansion are actually not carrying any valuable informa-
tion. To solve this resolution problem we follow an estimation method introduced
by [3], which uses a Sinc Interpolation in the frequency domain to obtain high
angular accuracies even if limited to low maximum expansion bands.

Sinc Interpolation. It is easy to see that the (m,h,m′)-space in (21) actually
represents a discrete 3D Fourier spectrum. Hence, one can directly perform a
Sinc interpolation by adding a zero padding into the (m,h,m′)-space [3]. This
way, the resolution of our correlation function can be increased drastically at very
low additional cost. It has to be noted, that even though the Sinc interpolation
implies some smoothing characteristics to the correlation matrix, the maxima
remain fixed to singular positions in the grid.

Using a pad size of p, we are able to reduce the worst case accuracy even for
low expansion bands:

Errpad
corr = 2 · 180◦

2l+ p
+

90◦

2l+ p
. (24)
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Of course, the padding approach has practical limitations - inverse FFTs are be-
coming computationally expensive at some point. But as our experiments show,
resolutions below one degree are possible even for very low expansions. Finally,
we are able to retrieve the original rotation parameters. For a given correlation
peak at the grid position C#(x, y, z), with maximum harmonic expansion b and
padding p, the rotation angles are given by:

φ =
{
π + (2π − x∆) for x∆ > π

π − x∆ otherwise (25)

θ =
{

(2π − y∆) for y∆ > π
y∆ otherwise (26)

ψ =
{
π + (2π − z∆) for z∆ > π

π − z∆ otherwise (27)

with ∆ = 2π/(b+ p).

4 Experiments

We conduct a series of experiments on artificial 3D vector field data to evaluate
the accuracy and complexity performance of our proposed methods.

Rotation Estimation Accuracy. First, we investigate the performance of the ro-
tation estimation algorithm. We use a sample 3D vector field, which is rotated
around the center of one spherical patch parameterized by a single radius of
r = 10. For each experiment, we evaluate the error statistics of 100 random
rotations of this vector field. We generate the rotations over all possible angles
ϕ, ψ ∈ [0, 2π[ and θ ∈ [0, π[ with a resolution of 0.001 ≈ 0.1◦. Note that an
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Fig. 3. (a) Accumulated rotation estimation error for increasing bmax and without us-

ing the Sinc interpolation method (p = 0). (b) Accumulated rotation estimation error

for increasing pad size p of the Sinc interpolation with bmax = 5. (c) Computational

complexity for increasing pad size p of the Sinc interpolation with bmax = 5. The exper-

iments were performed on a standard 2GHz PC, using the FFTW [4] implementation

of the inverse FFT.
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error of 1◦ ≈ 0.017. All given error rates are the accumulated errors of all three
angles. Figure 3 shows the direct effect of the maximum expansion band bmax

on the rotation estimate. But even for expensive “higher band” expansions, we
encounter strong outliers and a rather poor average accuracy. This can be com-
pensated by our Sinc interpolation approach: Figure 3 shows how we can reduce
the rotation estimation error well below 1◦, just by increasing the pad size p.
The additional computational costs caused by the padding are also given in
figure 3. Summarizing these first experiments, are we able to show that our pro-
posed method is able to provide a fast and accurate rotation estimation even for
rather low band expansions, i.e. if we choose p = 64 and bmax = 5, we can expect
an average estimation error below 1◦ at a computation time of less than 25ms.

Fig. 4. Sample target structures for the de-

tection problem: 3D vector fields of X- and

Y -like shaped bifurcations

Key Point Detection. In a second se-
ries of experiments, we evaluate the
performance of our methods in a key
point (or object) detection problem on
artificial data. Figure 4 shows the 3D
vector fields of two of our target struc-
tures. Our goal is to detect the cen-
ter of such X- and Y -like shaped bi-
furcations under arbitrary rotations in
larger vector fields. For each target
structure, we extract a single patch, parameterized in four different radii with
bmax = 3, at the center of the bifurcations. We extract patches with the same pa-
rameterization at each point of the test samples and apply our cross-correlation
to detect the target structures in the test vector fields. Figure 5 shows some
example test data together with the correlation results.

It should be noted that the test bifurcations are only similar in terms of an X
or Y shape, but not identical to the given target structures. We also rotate the
test data in a randomized procedure over all angles. Applying a threshold of 0.9

(a) (b) (c) (d)

Fig. 5. (a) Test data for the X-sample. (b) xy-slice of a sample correlation result

for the X-bifurcation target. The red cross indicates the position of the maximum

correlation value and the green arrows the estimated rotation offset. (c) Test data for

the Y -sample. (d) xy-slice of the correlation result for the Y -bifurcation target. The

red cross indicates the position of the maximum correlation value and the green arrows

the estimated rotation offset.
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to the correlation results, we were able to detect the correct target structures in
all of our test samples without false positives.

Conclusions and Outlook. We presented a novel, fast and accurate method for
the computation of the cross-correlation and the estimation of the rotation offset
of local spherical patches extracted from 3D vector fields. We were able to show
that on artificial “toy problems”, our method achieves very good results for
both tasks. For the future, our next step will be to investigate the performance
of our method on “real world” data. Given the low-pass property of our Vectorial
Harmonics, we expect our method to be even able to cope with noisy data.
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Abstract. In this paper, we propose a novel scene categorization method

based on contextual visual words. In this method, we extend the tradi-

tional ‘bags of visual words’ model by introducing contextual informa-

tion from the coarser scale level and neighbor regions to the local region

of interest. The proposed method is evaluated over two scene classifica-

tion datasets of 6,447 images altogether, with 8 and 13 scene categories

respectively using 10-fold cross-validation. The experimental results show

that the proposed method achieves 90.30% and 87.63% recognition success

for Dataset 1 and 2 respectively, which significantly outperforms previous

methods based on the visual words that represent the local information in

a statistical manner. Furthermore, the proposed method also outperforms

the spatial pyramid matching based scene categorization method, one of

the scene categorization methods which achieved the best performance on

these two datasets reported in previous literatures.

1 Introduction

Automatic labeling or classification of an image to a specific scene category (e.g.
indoor, outdoor, forest, coast) has been widely applied to multi-disciplines such
as image retrieval [1,2] and intelligent vehicle/robot navigation [3,4]. Comparing
with object recognition, due to the ambiguity and variability in the content of
scene images, the problem of scene categorization becomes more challenging.

In previously published literatures, a popular approach for scene classification
is to employ global features to represent the scene. The basic idea of this approach
is to take the whole image as an entity then relies on low-level features (e.g. color
[2], edges intensity [2], texture, gradient, etc.) to represent the characteristics of
the scene. Using global features to represent the scene may be sufficient for sep-
arating scenes with significant differences in the global properties. However, if
scenes with similar global characteristics (e.g. bedroom vs. sitting room) are to
be differentiated, then global features may not be discriminative enough. Thus,
features extracted from local regions in a scene have been proposed for classifi-
cation [5,6]. In the methods proposed by Luo et al [5] and Vogel et al [6], the
types of the local regions are man labeled or automatically labeled by a seman-
tic concept classifier based on low-level image features. However, accurate object

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 297–306, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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recognition remains an unattainable goal at the moment. Recently, representing
an image by a collection of local image patches of certain size using unsupervised
learning methods [7,8,9] has become very popular and achieved a certain suc-
cess in visual recognition, image retrieval, scene modeling/categorization, etc.,
because of its robustness to occlusions, geometric deformations, and illumina-
tion variations. In scene categorization, the scene image is represented by the
co-occurrence of a large number of visual components or the co-occurrence of a
certain number of visual topics (intermediate representation) [10,11]. A compar-
ative study conducted by Bosch et a [12] has pointed out that using visual-word
representations jointly with different techniques, such as the probabilistic latent
semantic analysis (pLSA) [10,11,12] or latent Dirichlet allocation [10], is the one
which obtains the best classification results for scene classification.

The visual words proposed previously, however, only represent local image
feature within the region of interest (local visual words). We believe the image
features surrounding this region (ROI) also can provide useful information or
cue about the ROI. Many recent researches in computer vision have employed
contextual information for object recognition [13,14] that achieved better object
recognition performance than the methods based solely on local features. Thus,
we believe that integrating the contextual information with local features will
give a better representative of the ROI. This can help differentiate regions which
are only similar locally but have significant difference in its surrounding regions.
In previous works, Lazebnik et.al. [15] proposed a spatial pyramid matching
based scene categorization method which also can incorporate some contextual
information. (This method is one of the methods reporting the best result on
the two datasets used in this paper [16]). The method calculates the distribution
of the visual words at multi-spatial resolutions then measures the similarity
of the images using pyramid matching. The distribution of the visual words
in some spatial resolutions is able to introduce some information about the
distribution of the visual words surrounding the ROI. However, this surrounding
information is just introduced after the stage of visual words creation which
forms the visual words based on the local feature. In this manner, if the local
regions in a specific spatial resolution are wrongly represented by the local visual
words, this may also result in an error surrounding visual words distribution, i.e.,
we may get an error context representation. Therefore, we suggest introducing
the context information in the stage of visual words creation. We believe this
can achieve better representation of ROI. The experimental result also confirms
the superiority of the proposed context visual words.

Fig. 1 illustrates a sample of the sources of the contextual information in our
proposal, i.e. the patches surrounding the ROI at the same scale and the patch at
a coarser scale level with respect to the ROI. After incorporating contextual in-
formation in the representation of the ROI, we employed our previously proposed
category-specific visual words generation strategy [17] to generate the contextual
visual words to represent the scene. The proposed method is rigorously evalu-
ated over two scene classification with 8 and 13 scene categories respectively
using 10-fold cross-validation. The experimental results show that the proposed
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Fig. 1. A sample of the sources of the contextual information in our proposal, i.e. the

patches surrounding the ROI at the same scale and the patch at a coarser scale level

with respect to the ROI

method achieves 90.30% and 87.63% recognition success for Dataset 1 and 2 re-
spectively, which significantly outperforms previous methods based on the visual
words that represent the local information in a statistical manner, which reveals
that the contextual information is rather useful for enhancing the representative
ability of the local visual words. Additionally, we explored how the weighting of
the contextual information would affect the final performance of classification.
The results reveal that, generally, an optimal accuracy is achieved when the
weighting value is around 0.7 (The range of the weighting value is between 0 to
1), which indicates that the contextual information can be fully utilized if we
put appropriate weight on it.

The paper is organized as follows. In Section 2, we first formulate the scene
classification problem. This is followed by an overview of the proposed method.
It then describes the method and various steps involved in generating the con-
textual words using the category-specific creation strategy as well as the feature
extraction process and the classifier training. Section 3 presents the experimental
results. This paper is concluded in Section 4.

2 Proposed Method

2.1 Problem Formulation

The scene classification problem based on visual words representation can be
formulated in the following manner: given an image I ∈m×n and a set of scene
categories c = {c1, c2, · · · , cm}, we first represent the image I by a codebook V
consisting of a set of contextual visual words V = {v1, v2, · · · , vk}. We denote
this representation by R(I) , which is a vector r = R(I), r ∈ Rk that indicates
the distribution or the presence of the visual words. The problem then becomes
the issue of finding a projection:



300 J. Qin and N.H.C. Yung

f : R(I)→ c, (1)

which projects the visual words representation of the image to the scene category
ci, i = 1, · · · ,m where it belongs.

2.2 Overview

Fig. 2 depicts the overall framework of the proposed method. In the training
stage, each training image is divided into regular patches at different scales.
Then, their Scale-Invariant Feature Transform (SIFT) features [18] are extracted.
Given the SIFT features of a ROI, the SIFT features from the coarser scale level
and neighbor regions are combined to describe the ROI. After integrating the
contextual information, clustering is performed according to different scales and
scene categories to create representative visual words, which are denoted by the
centroids of the clusters. The visual words are then entered into a codebook.
Then, based on this visual word codebook, for each training image, a feature
vector representing the existence of the visual words is extracted, which is used
for training the classifier. In the classification of testing images, the unknown
image is partitioned into patches at different scales and its SIFT features ex-
tracted. As in training, based on the SIFT feature of the ROI, the SIFT feature
from coarser scale level and the SIFT features from neighbor regions, a feature
in which the contextual information is integrated is formed to describe the ROI,
then a list of contextual visual words that best represent the features of the
image is selected then a feature vector is compiled according to this list. Finally,
the feature vector is classified by the SVM to obtain the scene type.

Fig. 2. Framework of the proposed method
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2.3 Contextual Visual Words

In this subsection, we introduce the concept of using contextual visual words to
represent a scene image. Visual words represent a set of image regions having
similar characteristic. This characteristic is usually described using the SIFT
feature [10] or the color SIFT feature [16] which can be extracted from the
local image region. The previous visual word representation only considers the
feature coming from the ROI without taking into consideration the features of
the neighboring image regions at the same scale level or the features of the ROI
at the coarser scale level. We believe these additional features can provide useful
information to identify the ROI and reduce ambiguity. We call these features
coming from outside of ROI ‘context’. We call the visual word represented in
this manner ‘contextual visual word’.

Let PL ∈ �mL×nL denote the ROI, PC ∈ �mC×nC denote the region having
the same center as the ROI but at a coarser scale level and PN ∈ �mN×nN

denotes the neighbor regions of the ROI at the same scale level. For the local
visual word, the ROI is represented as f = f(PL) where f denotes the feature
extraction function. For the contextual visual word, we represent the ROI as
f = f(PL,PC ,PN ), that is, we do not only extract the feature from the ROI
but also extract the features from the ‘context’ of the ROI, then combine the
features. There are many possible ways to combine the features. In this paper,
we linearly combine these features for simplicity. The feature of the ROI is then
represented as

f = [f(PL), wC · f(PC), wN · f(PN )], (2)

where wC and wN are the weighting parameters which control the significance
of the features from the coarser scale level and the neighbor regions. The range
of wN (wC) is between 0 and 1. If wN (wC) takes 0, the contextual information
from neighbor regions (coarser scale level) does not provide any contribution and
if wN (wC) takes 1, it means that the contribution provided by the neighbors
(coarser scale level) is the same as that provided by the ROI.

2.4 Category-Specific Contextual Visual Word

In this subsection, we introduce the category-specific visual word creation strat-
egy to generate the contextual visual word. In this strategy, we firstly generate
feature pools from C-category scene images separately. Then, quantize the fea-
tures to create visual words independently from each feature pool. Finally, the
visual words are collated to form the final visual word codebook. The steps for
the contextual visual word generation using the category-specific visual word
creation strategy are as follows:

Step 1: Divide a subset of the scene images from the training set into patches
at different scales.

Step 2: Form the feature including contextual information using equation (2),
where the feature extraction function f is the SIFT feature extractor.
Then, use principle component analysis (PCA) to reduce the dimension
of the feature.
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Step 3: Generate C (the number of categories) feature pools at scale s, i.e., Ps
1 =

{y1
1,y

1
2,y

1
3, · · ·},Ps

2 = {y2
1,y

2
2,y

2
3, · · ·}, · · · ,Ps

C = {yC
1 ,y

C
2 ,y

C
3 , · · ·}. The

features in each pool are patch features belonging to the same category
at scale s.

step 4: Quantize the features in each pool separately using k-means clustering
to create the visual words belonging to category c at scale s, vc

1(s),v
c
2(s),

vc
3(s), · · · ,vc

n(s), c = 1, · · · ,C.
step 5: Group the visual words together to form the final codebook.

2.5 Feature Extraction and Classifier Training

This section presents the steps involved in extracting features from the scene
image based on the contextual visual words, and in training the classifier.

Given the contextual visual words, a codebook is used to represent the scene
image by calculating the presence of the visual words in the image. Assuming
that the codebook has n visual words, and a scene image is represented by a
n dimensional vector x. The ith element in the vector corresponds to the ith

visual word. If the ith visual word exists in the current image, the corresponding
ith element of the feature vector is set to 1, otherwise 0. The feature extraction
steps are as follows:

Step 1: Given an image I, divide it into ns patches at scale s for every scale
level.

Step 2: Form ns features for every scale level including the contextual informa-
tion using equation (2) then reduce the dimension of the features.

Step 3: Set k = 1.
Step 4: For the kth feature yk at scale s, we calculate its distance, dkj =

‖yk − vj‖2 , j = s1, · · · , sn, where s1, · · · , sn is the index of visual
words in the codebook at Scale s, to each visual word in the code-
book from the same scale s. The kth patch can be represented by the
lth visual word with the minimum distance to the feature of patch, i.e.
� = min

j
‖yi − vj‖2.

Step 5: Set the lth element of x to 1.

Step 6: If k equals N (N =
S∑

s=1
ms, the number of patches), terminate the

process, otherwise k = k + 1 go back to Step 4.

In the training process, images in the training set can be represented as a set
of n dimensional features, {x1,x2,x3, · · · ,xL}, where L denotes the number of
training images. Based on the features of the labeled training images, a SVM
classifier with linear kernel is trained for classification.

3 Experimental Results

This section reports the experimental results of the proposed method including
how to set the optimal weighting values of the context information and the
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comparison of the proposed method with local visual words and spatial pyramid
matching based method (The implementation of the spatial pyramid matching
based method is based on the LIBPMK toolkit [19]. The parameters setting is
the same as the settings in [15].)

Performance of the proposed scene classification method is tested based on
two datasets which has been widely used in the previous research [10,20,16,21].
For simplicity sake, we focus our analysis and discussion on Dataset 1, which
consists of 2688 color images from 8 categories, whereas we only report the
overall results for Dataset 2, which contains 3759 images from 13 categories
(Gray version of the images is used for our experiments for these 2 datasets).
In our experiments, we perform a 10-fold cross-validation in order to achieve
a more accurate performance estimation (The comparision results reported in
[20,16] is only based on a training and test set split). Moreover, in order to have
a reliable comparison between different methods, we also performed the paired
Student t-test on the accuracy rates from 10-fold cross-validation.

We select the best parameters, i.e. wc and wn in equation (2) using 10-fold
cross-validation and curve fitting. Note that, in the parameter setting stage, the
10-fold cross validation only conduct on the training set. No samples from the
test set has been included. Fig. 3(a) and 3(b) depict the accuracy rates versus
different weighting values at interval 0.1 for the context from coarser scale level
at scale 2 and the context from neighborhood at scale 5 respectively. A quadratic
function is fitted to these values to represent the general trend of the data. From
Fig. 3 (a) and (b), we can observe that in these two cases, for weights from 0 to
1, the accuracy rate generally increases at the beginning, and it reaches the max-
imum at around 0.7, then falls back when the value approaches 1, of which the
performance is still better than without introducing the contextual information
(i.e. weight value equals 0). This indicates that the introduction of contextual in-
formation improves the performance of classification. The optimal performance
is achieved when we appropriately weights the contextual information. The same
situation is also observed at scale 3, 4 and 5 when the context is from coarser

Fig. 3. (a) Accuracy rates versus the weight of the contextual information from coarser

scale level at scale 2; (b) Accuracy rates versus the weight of the contextual information

from neighbor regions at scale 5
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Table 1. Average (standard deviation) classification accuracy rates (%) after combin-

ing the 5-scale visual words (Multi-scale local visual words vs. spatial pyramid matching

and Contextual visual words)

Local visual words [17] spatial pyramid matching Contextual visual words

Dataset 1 88.81±3.74 88.19±3.46 90.30±2.54

Dataset 2 85.05±2.16 84.40±1.90 87.63±2.30

Fig. 4. A sample of a local patch represented by the local visual word and contextual

visual word respectively

scale level and at scale 2, 3, 4 when the context is from neighbor regions except
for scale 5, where the maximum is when the weight reaches 1. Table 1 shows
that in terms of average classification accuracy rate, compared with local visual
words, the performance obtained by using contextual visual words is improved
by 1.49% (The context is from coarser scale level plus neighbor regions) and
2.58% (The context is from coarser scale level plus neighbor regions) for dataset
1 and 2 respectively. The paired Student t-test shows that this improvement
is statistically significant with the p value equals 0.0062. Table 1 also reveals
that the proposed method is superior than the spatial pyramid matching based
method. Fig. 4 depicts a sample of a local patch represented by the local visual
word and contextual visual word respectively. This figure demonstrates a patch
which depicts a part of the a building is incorrectly represented by the local
visual word which denotes a part of glass land or trees due to the similarity in
the texture property. This patch, however, is correctly represented by the con-
textual visual word which denotes a part of buildings due to the introduction
of the context from coarser scale level. In the coarser context, the sky behind
the building and the building structure under the ROI provide further informa-
tion to differentiate regions from part of glass land or trees. The image in this
sample was incorrectly classified by using the local visual words but is correctly
classified by employing the contextual visual words.
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4 Conclusion

In this paper, we have presented a scene categorization approach based on con-
textual visual words. The contextual visual words represent the local property
of the region of interest and the contextual property (from the coarser scale
level, neighbor regions or both) simultaneously. By considering the contextual
information of the ROI, the contextual visual word gives us a richer represen-
tation of the scene image which reduces the ambiguity and error. The reduc-
tion in the representation ambiguity improves the visual words representation
of the scene image. This improvement further enhances the classification per-
formance. Unlike the spatial pyramid matching, the proposed method utilizes
the contextual information in the visual word creation stage. This manner gives
a better representation of the contextual information. The experimental result
shows the superiority of the proposed method. Additionally, we also explored
how the weighting of the contextual information may influence the classification
performance. Our experimental results reveal that, generally, an optimal accu-
racy is around 0.7, which indicates that we cannot fully utilize the contextual
information if we put too light or too heavy weight on it. As it is, in our proposed
method, the contextual information is linearly combined with the local informa-
tion. It would be appropriate to consider nonlinear combination or combination
that is determined by the feature of the patch in our future research.
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Edge-Preserving Laplacian Pyramid
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Abstract. The Laplacian pyramid recursively splits an image into lo-

cal averages and local differences using a fixed Gaussian interpolation

function. We propose a spatially variant interpolation function that is

adaptive to curvilinear edges in the image. Unlike the signal-based mul-

tiscale analysis where a step edge is multiply represented at all scales,

our perception-based multiscale analysis preserves the edge at a single

scale as much as possible. We demonstrate that our average pyramid

retains boundaries and shading at lower spatial and tonal resolutions,

whereas our difference pyramid refines edge locations and intensity de-

tails with a remarkably sparse code, delivering an image synopsis that is

uncompromising between faithfulness and effectiveness.

1 Introduction

An image of a natural scene is not a collection of random numbers. Pixels nearby
often have similar values, yet it is their differences that give away shapes and
textures. We propose an edge-preserving Laplacian pyramid that provides an im-
age synopsis which removes spatial redundancy, retains perceptually important
structures such as boundaries and textures, and refines the representation over
scale (Fig. 1). As the synopsis adopts a larger size, boundaries become more pre-
cisely localized, textures more elaborated. These synopses can be related using
the smallest synopsis and a series of sparse differences to refine it (Fig. 2).

image synopsis towards a smaller size

Fig. 1. Image synopsis should be effective, faithful and progressive. The original image

(285 × 288) is represented at 1
2
, 1

4
and 1

8
of its size respectively, all shown at the full

size (with obvious pixelization in the rightmost 36×36 image). Perceptually important

features, such as shape boundaries, material texture, highlights and cast shadows,

remain visible throughout the synopsis reduction process.

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 307–316, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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+ + +

285 × 288 143 × 144 72 × 72 36 × 36

+ + +

differences average

a: signal

b: perceptual

Fig. 2. Multiscale analysis of an image. a: The signal-based Laplacian pyramid parses

an image into an average image of lower frequency and a series of difference images

of higher frequencies. In the average, boundaries are fuzzy and textures are smoothed

out. In the differences, a step edge is represented as multiple smooth transitions with

artificial halos (Gibbs phenomenon). b: Our edge-preserving Laplacian pyramid has

an average image that retains boundaries and overall textural variations and a set of

differences that successively refine edge locations and intensity details.

Multiscale analysis of an image is a well traversed area in signal process-
ing, e.g. the Gaussian-Laplacian pyramid [1] and wavelets [2]. The basic idea is
that every pixel value can be decomposed into a neighbourhood average com-
ponent and a local difference component. This process can be recursively ap-
plied to the average, producing a frequency subband decomposition of the image
(Fig. 2a). Signal-based multiscale analysis methods vary in their choices of filters
to compute the neighbourhood average, yet they share one commonality: the fil-
ter is the same everywhere in the image, whether the pixel is on a boundary
or inside a region. Signal frequencies matter; perceptual structures do not mat-
ter. Consequently, signal-based multiscale analysis is great for blending images
across frequencies [3], but as image synopsis it is neither effective nor faithful.

We develop a Laplacian pyramid that adapts the neighbourhood average com-
putation according to edges. Since the average maximally preserves edges within
a single scale, edges are no longer repeatedly represented at multiple levels of
the pyramid. In fact, there is little perceptual structure left in the difference
images, other than sparse correction near edges due to inevitable loss of spatial
resolution at a coarser scale (Fig. 2b). We demonstrate that our new Laplacian
pyramid is effective at both coding and representing the image.

2 Edge-Preserving Multiscale Analysis

The Laplacian pyramid is developed from the idea that the intensity of pixel p
in a real image I can be largely predicted by its local context Ī:
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I(p) ≈ Ī(p) =
∑

q=p′s local neighbour

W (p, q)I(q) (1)

where weight W (p, q) describes how neighbour q contributes to predicting p’s
intensity. In the original formulation [1],W is pre-chosen and fixed over the entire
image, which has nothing to do with the image I itself. There is no guarantee
that the prediction Ī is a good synopsis of I, or the residue I(p)− Ī(p) is small.
In our formulation,W adapts to I and varies across the image, with Ī maximally
preserving the edges in I while making I − Ī as small as possible.

Our multiscale analysis follows the same procedure as in [1]:

Step 1: An image is decomposed into an average and a difference.
Step 2: The average is smoother and thus reduced in size.
Step 3: Repeat Steps 1 and 2 to the average.

This process recursively splits an image into an average and a difference, resulting
in a difference pyramid that can be used to synthesize the image.

Multiscale Analysis:
Given image I and number of scales n, construct average pyramid A and dif-
ference pyramid D, where ↓(·,W�) is downsampling with analysis weights W�,
↑(·,W�) is upsampling with synthesis weights W�. The sampling factor is 2.

A1 = I, As+1 = ↓(As,W�), s = 1→ n (2)
Dn+1 = An+1, Ds = As − ↑(As+1,W�), s = n→ 1 (3)

Multiscale Synthesis:
Given difference pyramid D, reconstruct average pyramid A and image I.

An+1 = Dn+1, As = Ds + ↑(As+1,W�), s = n→ 1; I = A1 (4)

Two functions, ↓(·,W�) and ↑(·,W�) need to be defined. In the Laplacian
pyramid, the analysis weights W� and the synthesis weights W� are not only
identical but also spatially invariant. They are entirely determined by the dis-
tance between pixels, regardless of what and where these pixels are in the image:

W�(p, q) = W�(p, q) = G(‖−→p −−→q ‖;σ) (5)

G(d;σ) = exp
(
− d2

2σ2

)
(6)

where −→p is p’s 2D image coordinates, ‖ · ‖ a vector’s L2 norm, and G(d;σ) the
un-normalized 1D Gaussian function with mean 0 and standard deviation σ.

However, a quick examination of Eqns. 2–4 reveals that W� and W� can be
independently defined and in fact arbitrary without jeopardizing a perfect
reconstruction. In our multiscale analysis, not only W� 
= W�, but both of them
also vary according to perceptual structures at each pixel.
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We characterize the perceptual structure in terms of pixel proximity and edge
geometry. Our new weight W for Eqn. 1 is a product of these two factors. Pixel
p itself always contributes with the maximal weight 1, while pixel q contributes
with the minimal weight 0 if it is separated (by boundaries) or far from p.

Edge-Preserving Averaging:
Given image I and neighbourhood radius r, compute the local average Ī using
spatial proximity kernel Ks and edge geometry kernel Kg.

Ī(p) =

∑r
k=1
∑

q∈N(p,k) W (p, q; I)I(q)∑r
k=1
∑

q∈N(p,k) W (p, q; I)
, N(p, k) = p’s neighbours at radius k (7)

W (p, q; I) = Ks(p, q; r) ·Kg(p, q; I, r) (8)

Ks(p, q; r) = G(‖−→p −−→q ‖; r
3
) (9)

The geometry kernel Kg describes curvilinear edges with pairwise pixel grouping
relationships, with edges first localized at zero-crossings of 2nd-order derivatives.

The edge magnitude E and phase P of image I are the size of the 1st-order
derivative and the sign of the 2nd-order derivative along the gradient direction
respectively. The magnitude measures the maximal contrast, whereas the binary
phase indicates on which side the pixel lies with respect to zero-crossings [4].

Zero-crossings alone are not sufficient to characterize boundaries [5,6]. We for-
mulate Kg based on the idea of intervening contour (IC) affinity in segmentation
[7,8] and the idea of bilateral extension in contour completion [6].

The IC affinity C(p, q) between pixels p and q is inversely proportional to the
maximal edge magnitude encountered along the line connecting them. For adja-
cent pixels, it is 0 if they are on the opposite sides of an edge, and 1 otherwise
(Fig. 3a, Eqn. 10, Eqn. 11 line 1). Kg is the gap-completed version of C from bi-
lateral extension: Either two pixels are separated by an edge, or their neighbours
at both ends are separated by an edge (Fig. 3b). This curvilinearity operation of
Kg can be modeled as minimax filtering of C along angular directions (Eqn. 12).
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p q
� �

�� �� ��

��

�� �� ��

p q
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p q
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p m q

a: C(p, q) ≈ 0 b: Kg(p, q) ≈ 0 via q+ and q− c: C(p, q) via m

Fig. 3. Boundaries are characterized by curvilinear edges. a: IC affinity C at radius

1 checks if there is an edge (black line) between adjacent pixels. b: Kg checks if there

is a curved boundary (thick gray curve) between two pixels: Either they (left) or their

neighbours at both ends (right) are separated by edges. c: IC affinity C at radius 2

checks if there is a curved boundary between successive pairs of adjacent pixels.
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To extend the boundary characterization from radius 1 to radius 2, we first
establish affinity C for pixels at distance 2 from that between successive pairs of
adjacent pixels (Fig. 3c, Eqn. 11 line 2). Kg is subsequently obtained as bilateral
extension of C to complete boundary gaps.

Formally, we first define Kg for N(p, 1) and then propagate it to N(p, 2). This
process (Eqn. 11-Eqn. 12) is recursively applied at an increasing radius to fill
in Kg values within a log-polar neighbourhood: 0 if two pixels are separated by
boundaries, and 1 otherwise. Kg is sparse. The space and time complexity is
linear to the number of pixels and to the number of neighbours per pixel.

Edge Geometry Kernel:
Given edge magnitude E and phase P , edge parameter σg, N(p, r) denoting the
set of pixels at radius r from p and along 8 directions, compute geometry Kg

which describes boundaries enclosing a pixel at an increasing radius (Fig. 3).

L(p, q) =
{

min(E(p), E(q)), P (p) 
= P (q)
0, P (p) = P (q) (10)

C(p, q) =
{
G(L(p, q); σg), q ∈ N(p, 1)
min(Kg(p,m),Kg(m, q)), −→m =

−→p +−→q
2 , q ∈ N(p, 2)

(11)

Kg(p, q) = min(C(p, q), max
o∈{q+,q−}

C(p, o)), |�q±pq| = 45◦, q, q± ∈ N(p, r) (12)

Downsampling is trivial since we only need to perform decimation on the aver-
age Ī. Upsampling requires boundary estimation at subpixel locations. To relate
subpixels to original pixels, we first interpolate edge magnitudes and phases at
subpixel locations using the Gaussian function with standard deviation 1

3 . We
then compute the affinity C and hence Kg between subpixels and their 8 imme-
diate original pixels (Fig. 4a). Using Kg between original pixels, we propagate
weights from subpixel locations to original pixels at a farther radius (Fig. 4b).
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a: C(p′, q), q ∈ N(p, 1) b: C(p′, q), q ∈ N(p, 2)

Fig. 4. Geometry kernel relating subpixel locations to original pixels. a: It starts with

establishing IC affinity C between p′ and its 8 immediate original pixels (left). There

are two scenarios. If p′ is closer to q than p, then C checks the edge between p′ and

q directly (middle). Otherwise, both edges intersecting p′ and p, p and q are checked

(right). Minimax filtering on C with neighbouring directions gives rise to geometry

kernel K(p′, q). For example, the left thick gray curve in b) illustrates K(p′, m). b: IC

affinity at radius 2 checks if there are boundaries (thick gray curves) intersecting the

line connecting p′ and q via mid-point m.
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Edge Geometry Kernel at Subpixel Locations:
Given edge L, parameter σg, subpixel displacement

−→
d where ‖d‖ < 1, compute

geometry kernel Kg between location −→p ′ = −→p +
−→
d and original pixel q.

C(p′, q) =

⎧⎨⎩
G(L(p′, q);σg), ‖−→p ′ −−→q ‖ ≤ ‖−→p −−→q ‖, q ∈ N(p, 1)
G(max(L(p′, p), L(p, q));σg), ‖−→p ′ −−→q ‖ > ‖−→p −−→q ‖, q ∈ N(p, 1)
min(Kg(p′,m),Kg(m, q)), −→m =

−→p +−→q
2 , q ∈ N(p, 2)

(13)

Kg(p′, q) = min(C(p′, q), max
o∈{q+,q−}

C(p′, o)), |�q±pq| = 45◦, q, q± ∈ N(p, r) (14)

Our analysis and synthesis weights realize weight W in Eqn. 8 on a downsam-
pled grid and an upsampled grid respectively.

Edge-Preserving Analysis and Synthesis Weights:
We apply Eqn. 8 to downsample and upsample image I with:

W�(p, q) = Ks(p, q; 2) ·Kg(p, q) (15)

W�(p′, q) = Ks(p′, q; 1) ·Kg(p′, q), −→p ′=−→p +
−→
d ,
−→
d ∈ {0, 0.5} × {0, 0.5} (16)

Our weight formula appears similar to bilateral filtering [9] based on spatial
proximity and intensity similarity. We replace the intensity similarity with our
geometry kernel which characterizes boundaries.

Our approach also shares the same anisotropic diffusion principle as many
partial differentiation equation formulations [10,5]. We adapt weights according
to local image structures, yet they are neither low-level signal quantifiers such as
gradients [10], nor high-level hidden causes such as perceptual boundaries with
smoothness priors imposed [5], but mid-level characterization of boundaries in
terms of curvilinear zero-crossing edges.

Consequently, our method does not create flat zones and artificial boundaries
inside smooth regions (so-called staircasing effect) as local [9,10] or non-local [11]
neighbourhood filtering approaches. The local average operator does not need to
be upgraded to linear regression in order to dissolve the staircasing artifacts[12].

We decompose an image into scales just like the Laplacian pyramid [1] and its
elaborated wavelet version [2]. However, instead of expanding the wavelet basis
to accommodate edges, e.g., ridgelets, wedgelets, curvelets [13,14,15], we create
a local structure adaptive basis at each pixel to acknowledge the discontinuity,
avoiding artificial oscillations that are inevitable in harmonic analysis methods.

Our synthesis weight formula expands boundaries to a higher resolution with
local pairwise pixel grouping relationships. It can be used for single image super-
resolution without relying on massive image patch comparisons [16,17,18].

3 Experimental Results

We evaluate our perceptual multiscale analysis over the following signal-based
multiscale analysis methods: the traditional Laplacian pyramid, i.e., Gaussian
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interpolation, nearest neighbour, bilinear, and bicubic interpolation methods.
For the Gaussian, we use σ = 2. For the nearest, bilinear, and bicubic, we use
MATLAB built-in function imresize.m with a image size factor of 2 and the
default anti-aliasing setting. For our method, we set σg = 0.05, r = 2,n = 5.

We first compare the average image as an image representation. Fig. 5 shows
that our interpolation preserves corners and contrast as well as the nearest neigh-
bour interpolation, and refines curves and gradation as well as the bicubic in-
terpolation. Fig. 6 further demonstrates that our results have neither excessive
blur and halos around edges as the Gaussian, bilinear, bicubic methods, nor
magnified pixelation artifacts in textures as the nearest neighbour method. Our
method thus provides a faithful image synopsis at a much reduced size.

We then compare the difference images as an image code on a set of stan-
dard test images (Fig. 7a). In the signal-based multiscale analysis, a single sharp

original: 31 × 31 15 × 15 62 × 62

Gaussian nearest bilinear bicubic our results

by circle formula

by image interpolation

Fig. 5. Comparison of interpolation methods. The scene consists of a circle on a shaded

background. Row 1 shows three images generated by the same formula at scales 1,

0.5, and 2 respectively. Row 2 shows downsampling results, Row 3 upsampling re-

sults, all interpolated from the original image using 5 interpolation methods. Gaussian:

boundaries dissolving over blur. Nearest: spikes at downsampling, jagged boundaries

and streaked shading at upsampling. Bilinear and bicubic: finer shading at upsampling,

smoother boundaries at the cost of blur and halos. Our results: boundaries smoothed

and shading refined without damaging sharp corners and contrast, approximating the

images generated by formula but without spikes at scale 0.5 and rounding at scale 2,

both unforeseeable from the original image.
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Gaussian nearest bilinear bicubic our results

down to 1
4
×size

up to 4×size

Fig. 6. Comparison of the average image as a synopsis representation. For the 285×288

image in Fig. 2, we downsample it twice to 72 × 72 (shown at the full size), then

unsample twice to bring the size back to 285 × 288. Our results have neither excessive

blur as the Gaussian, bilinear, and bicubic, nor pixelation artifacts as the nearest.

discontinuity in the intensity is decomposed into smooth transitions at multiple
frequencies. As the spatial frequency goes up, the intensity oscillation grows rel-
atively large near the edge. Our perception-based multiscale analysis encodes an
edge within a single scale as much as possible. There is no intensity overshoot-
ing, and the difference needed to refine the edge location is at most 2 pixels
wide, creating a sparser representation. Since most information is concentrated
in the average image of the smallest size (Fig. 7b), the reduction of entropy in
the difference images of larger sizes leads to significant savings in the number of
bits (Fig. 7c,d). While parsing an image into frequency bands can save 0.25 bits
per pixel over the original, parsing it into perceptual multiscale can save 1.45
bits per pixel. That is a 5-time increase in the lossless compression performance.

Among signal-based approaches, as an image code, multiscale with the sim-
plest nearest neighbour interpolation is far more efficient than the widely known
Laplacian pyramid; as an image representation, multiscale with bicubic interpo-
lation has a better trade-off between clarity and smoothness. Our edge-preserving
Laplacian pyramid can yet outperform these signal-based multiscale approaches
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a: standard test images ranging from 510 × 510 to 769 × 565 pixels
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c: average number of bits

d: t-test on the perceptual over: Gaussian nearest bilinear bicubic

mean difference in bits per pixel −1.20 −0.16 −0.37 −0.38
confidence at 5% significance ±0.14 ±0.14 ±0.05 ±0.05
p-value from two-tailed t-tests 1.5 × 10−7 3.3 × 10−2 4.1 × 10−7 3.0 × 10−7

Fig. 7. Lossless compression performance comparison. a) Test images. b) Entropy at

each scale for the Gaussian (x-axis) and our method (y-axis). The circle size reflects the

image size. While our average images have higher entropy than the Gaussian averages

(shown as the smallest circles above the diagonal line), most difference images, have

lower entropy than the Laplacian differences (shown as the rest circles). c) Average

number of bits per pixel for the original Laplacian pyramid on the x-axis, and the

original + and our edge-preserving Laplacian pyramid � on the y-axis. Linear relations

that fit through +’s and �’s respectively are shown as dashed lines. On average, 0.25
bits are saved with the Laplacian pyramid, while 1.45 bits are saved with our pyramid.

d) t-test results on the average numbers of bits per pixel between our method and the

other four methods. Our method saves more bits than any other method.
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on either account: The average images retain boundaries and shading at lower
spatial and tonal resolutions, whereas the difference images refine edge locations
and intensity details with a remarkably sparse code. It delivers an image synopsis
that is uncompromising between faithfulness and effectiveness.
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Abstract. In this paper, we present a novel automated method for detecting tu-
mor location in brain magnetic resonance (MR) images, and identifying the tu-
mor boundary. This method employs an unsupervised learning algorithm called 
Force for coarse detection of the tumor region. Once tumor area is identified, 
further processing is done in the local neighborhood of the tumor to determine 
its boundary. The Force method, which is based on the rules of electrostatics, is 
used for finding spatial clusters of high intensity in the 2D space of MR image. 
Further analysis of the identified clusters is performed to select the cluster that 
contains the tumor. This method outperforms many existing methods due to its 
accuracy and speed. The performance of the proposed method has been verified 
by examining MR images of different patients.  

Keywords: Tumor detection, segmentation, data clustering, brain MRI. 

1   Introduction 

Automated detection of the abnormalities in medical images is an important and 
sometimes necessary procedure in medical diagnostics, planning, and treatment. 
While detection of abnormalities such as tumors is possible by experts, manual seg-
mentation is usually tedious and time consuming [ 5][ 9], and subject to error [ 6]. 
There are many methods that find a tumor in MR images (MRI) semi-automatically. 
In such methods, human intervention is required, which again makes the process time 
consuming and expensive. The critical problem is finding the tumor location auto-
matically and later finding its boundary precisely. The objective of this work is to 
present an automated unsupervised method for finding tumor (high-grade gliomas) in 
slices of T2 FLAIR MRI of Brain (no enhancements by contrast agent). In such im-
ages the tumor needs to be identified amongst brain soft tissues, white matter (WM), 
gray matter (GM) and cerebrospinal fluid.  

An important factor in detecting tumor from healthy tissues is the difference in in-
tensity level. However, relying only on the intensity level is usually not enough. The 
spatial information available in clusters of pixels that form a tumor should also be 
used in the detection process. In this work we propose a new method that is com-
prised of three tasks of preprocessing, coarse detection of tumor area, and fine detec-
tion of tumor boundary. The coarse detection is done using an enhanced version of the 
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Force clustering algorithm [ 11]. ‘Force’ is applied to a data set that is created from a 
preprocessed slice of brain MRI. In ‘Force’, the rules of electrostatics are used to 
determine clusters of pixels with higher intensity. Once these clusters are found, the 
algorithm identifies the cluster/region of the brain that contains the tumor. In the last 
step, the tumor cluster is further analyzed and the tumor boundaries are determined. 
The proposed algorithm is designed to be robust to variations in MR images and is 
able to efficiently and accurately identify tumor boundaries in different brain MRIs; 
this is shown through comparing this method by ground truth manually produced by 
experts.  

1.1   Related Work 

There have been significant efforts to develop automated computer algorithms for 
locating tumors in brain MRI. A review of pattern recognition methods for MRI seg-
mentation is presented in [ 1], and methods and applications of MRI segmentation can 
be found in [ 3]. We describe few notable algorithms in this section.  

Among supervised methods, the work in [ 6] combines information from a regis-
tered atlas template and user input to train a supervised classifier. The method in [ 7] 
detects tumors based on outlier detection and uses affine transformation for the regis-
tration. However, this method fails in case of large tumors. The method described in 
[ 8] is based on training on healthy brain images instead of training on pathology. To 
recognize deviations from normalcy, a multi-layer Markov random field is used 
which is computationally expensive. In the work reported in [ 4], the authors employ 
an atlas based pathological segmentation using affine transformation. They assume 
tumor growth has a radial expansion from its starting point. All of the above methods 
are time consuming, and also need expert input for large set of data. Supervised pat-
tern recognition methods have exhibited problems with reproducibility [ 2], due to 
significant intra and inter-observer variance introduced over multiple training trials. 

The unsupervised method reported in [ 9] divides the T2 weighted images into few 
blocks, and calculates the number of edges, the intensity and the contrast parameter in 
each block. It assumes the abnormalities occupy less that 10% of all pixels, and that 
the blocks containing tumor pixels exhibit fewer edge pixels. However, tumor may 
fall in different blocks, making parts of the tumor undetectable. In another method, 
presented in [ 10], color-based clustering is used. The MR image is translated to RGB, 
and RGB to L*a*b* planes. K-means clustering [ 12] is used on a* and b* planes to 
find thresholds and mark the tumor. The issue with such methods is that they rely on 
intensity level classification, which is susceptible to misclassification. 

In our paper, a new approach toward tumor detection and segmentation is intro-
duced. Our method is based on the use of a new unsupervised data clustering algo-
rithm called ‘Force’ [ 11] for initial tumor detection. The unsupervised nature of this 
method avoids the problems of observer variability found in supervised methods; 
therefore, the results of our method are reproducible. The proposed method can also 
be combined with prior methods to enhance them in initial tumor location detection. 
Section 2 provides a brief background on “Force”. Section 3 describes the proposed 
method. The evaluation of the proposed method is presented in section 4. 
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2   Background: Force Algorithm 

In [ 11] we presented a numerical unsupervised clustering algorithm, Force, which is 
inspired by the laws of electrostatics. Clustering itself means grouping data points of a 
set into different classes according to some similarities between points. The Force 
algorithm allows efficient and robust clustering of multi dimensional (MD) data sets 
and always converges to the same solution under different conditions (initial guesses 
and noise). In the Force algorithm, data points are assumed to be negative electrical 
charges (with charge -1) scattered and fixed in a MD space. To cluster these charges, 
a number of positive charges (with variable magnitude) are randomly released in the 
space; these charges are allowed to move. The positive charges are the centroids. 
Their movement direction is determined by the electrostatic field that affects them in 
the space. We adjust the positive charge of centroids in each iteration to ensure they 
end up in the center of the clusters of negative charges. In each iteration, the charge of 
each centroid is set equal to the total charge of its current cluster, with opposite sign. 
When the balance is achieved, positive charges will be at true centers of the found 
clusters. Under the balance condition the centroids do not move anymore. The total 
force affecting centroid j is calculated for each step as:   
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where cj and pi are vectors describing the positions of centers and data points, Rij is 
the distance between charges i and j. Qi is the charge of each data point or centroid. D 
and C denote the set of data points and centroids, respectively.  Here, the direction of 
the force is the only parameter that is used for determining the centroid’s new posi-
tion. Therefore the new position of each centroid, in each step, is calculated as:  
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where cj 
τ+1 is the new position of the centroid, cj 

τ is the previous position, and Fj /||Fj||  
is a unit vector of force providing the movement direction. Knowing the direction, a 
fixed step size η is utilized for moving the centroid. Other variants of Force, including 
one with adaptive step size, are presented in [ 11]. One of the benefits of Force is that 
the found centers, after different runs of the algorithm with different initial parame-
ters, are at most different by 2η. Also, the algorithm performs a globalized search, 
contrary to local searches done by methods such as k-means. A 2-D example of how 
Force moves the centroids to cluster centers is shown in Fig. 1.  

2.1   Using Force for Tumor Detection  

In existing methods, data clustering is used for finding different clusters of intensity 
level for tumor and brain tissues. This is done by clustering image histograms to find 
the right thresholds. However, this method is prone to misclassification of intensity 
levels. Besides, valuable spatial information is usually ignored in the clustering stage.  

In our approach, instead of classification based on the image histogram, both inten-
sity level and spatial information are used for clustering. Also, our use of cluster-
ing/classification is not to directly determine intensity thresholds for segmentation; 
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rather, we use Force to find the region of interest (ROI), or coarsely find the tumor 
location.  Here, the idea is to use the fact that tumors are spatial clusters of pixels with 
higher intensity levels than soft tissues. In our approach, an extended version of Force 
is used. In particular, each pixel of the image is assumed a negative charge with mag-
nitude set to the intensity of the pixel raised to the power of k (instead of charge -1 as 
in original Force). Exponentiation is used to exaggerate the intensity difference be-
tween tumor and soft tissue, helping faster and more accurate convergence of Force. 

  

Fig. 1. Force centroid path for different initial centriod positions; diamonds are final positions 

3   Brain Tumor Detection 

Since tumors are more condensed, they produce brighter reflections. Therefore, tumor 
detection mainly relies on finding clusters of pixels with different color intensity than 
their surroundings. In our approach, we first try to find the region containing the tu-
mor, and then more precisely find the tumor borders. Thus, our approach consists of 
two main parts: coarse detection and fine detection. Coarse detection is done using 
Force. Utilizing ‘Force’ helps avoiding the common intensity analysis and threshold-
ing problems. Fine detection uses histogram analysis, thresholding, and region grow-
ing. The following explains the 3 steps of the algorithm:  

Step 1: Preprocessing for Clustering:  
o Skull removal and coarse removal of un-necessary information (GM, WM) 

Step 2: Coarse Detection: Finding the region of Interest (ROI) 
o Use ‘Force’ data clustering to find N clusters 
o Determine which cluster is ROI 

Step 3: Fine Detection: Finding the boundary of the tumor in the ROI 
o histogram analysis 
o region growing to identify tumor pixels  

3.1   Preprocessing 

Before coarse detection step, preprocessing is done which consists of removing the 
skull and removing some part of non tumor pixels as shown in Fig. 2 and explained in 
this section. Since, skull consists of very high intensity values in T2 images, such that 
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it suppresses other intensity levels, it has to be removed to enhance the next steps of 
tumor detection. Fortunately, skull is geometrically identifiable and can be efficiently 
removed. In our method, first the edges of the skull are found using Canny method 
[ 13]. Later, the area belonging to the skull which is contained within two strong edges 
are removed as in Fig. 3.  

To be able to detect the ROI more precisely by ‘Force’, our experiments have 
shown that it is better to remove some parts of the image which are easily identified 
as non tumor pixels. These points are found with histogram analysis and are removed 
by thresholding. In this step, pixels below the histogram peak will be removed, since 
tumor is always brighter than GM and WM in T2 images. Similar gross separation of 
tumor and non-tumor pixels is also reported in other works [ 5]. After removing the 
obvious non-tumor pixels, an exponential transformation is applied to the remainder 
of the image (right most plot in Fig. 3). Here we raise the intensity value of each pixel 
to the power k, where k can be in the range of 2-5 (we use 4 here). The processed 
image of this step is passed to the Force algorithm for spatial-intensity clustering. To 
ensure robustness to imperfections of preprocessing, the remaining steps of the algo-
rithm, after clustering, use the original image and not to the preprocessed image.  

Preprocessing

Skull Stripping

Non-tumor 
intensity removal

Intensity 
enhancement

Coarse Tumor Detection

Cluster image I’
Using

“Force” ( N>3 )

Optional: Run Force
(N=1) in each cluster

Image I Image I’ Image I”

Find ROI

Fine Detection of Tumor

Region Growing

ROI & Image
Histogram analysisROI

 

Fig. 2. Proposed tumor detection procedure 

   

Fig. 3. Left to right: original image, after skull stripping, enhanced intensity levels after remov-
ing some non-tumor pixels 

3.2   Coarse Detection of Tumor 

Clustering the Image using “Force”. The resulting image from the preprocessing 
step is used to find clusters of high intensity pixels using Force. For this purpose, we 
release N (> 3) centroids randomly in the image, some will move to clusters of 
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brighter pixels. The extra centroids that can not be associated with clusters are re-
pelled and may stop in locations where there are no visible clusters. If enough cen-
troids are used, the result of running Force is that each cluster attracts one centroid. If 
there are large scattered masses of data (which do not look like clusters), some cen-
troids will associate with them; the remaining centroids will be placed almost outside 
the areas where data points are (Fig. 4). After reaching equilibrium, each centroid will 
have a charge equal to the total charge of its cluster. This information is used to re-
move centroids that are outside the data area and are not associated with many data 
points. Such centroids will have small final charges. 

An example of running Force on the preprocessed image is shown in Fig. 4. Here 4 
centroids were released. At the beginning, the centroids were in random positions; 
they were gradually attracted toward data masses of either high number of data points 
or high charge or both. In Fig. 4, two initial centroids were attracted toward the tumor 
which was high in number and charge. Later the centroid that moved faster toward the 
tumor position repelled the other one. Since there was not a big data mass nearby the 
repelled centroid stopped outside the brain area. Two other centroids were attracted 
toward other data masses. As shown in Fig. 4 one of the centroids stops inside the 
tumor; this centroid gives an idea about the area where the tumor is located. Neverthe-
less, the algorithm does not require the centroid to be exactly inside the tumor and a 
rough indication of the area is enough. 

Finding Region of Interest. After clustering, the next step is to identify which of the 
N centroids or clusters includes the tumor. We have tested few methods for this 
purpose. A simple method is to pick the center that is located at a position with the 
highest intensity. The assumption is that tumor area has the highest intensity in the 
preprocessed image. The problem of this method is that sometimes the tumor is not 
convex shaped, or some other mass nearby causes the center to be slightly outside the 
tumor; also it is possible that some small but very high intensity pixels remain after 
preprocessing and attract one of the centroids.  

The second method is to pick the centroid with the highest charge. The centroid’s 
charge value is proportional to the total intensity of its cluster. It is expected that the 
region containing tumor have the highest charge due to its brightness and size. How-
ever, sometimes scattered big clusters of low intensity pixels (soft tissues) form a clus-
ter with total charge higher than the tumor. The final and best method that we use is to 
pick the centroid with highest total intensity in a limited spatial neighborhood, 5-10% 
image dimensions. This ensures that only a real limited size cluster is considered. 

 
 
 
 

Fig. 4. Left to right: clustering result on preprocessed image, centroids on original image;  
tumor boundary after region growing 
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An optional operation to enhance the ROI detection task is to run the Force algo-
rithm for each region again, but with one centroid, to ensure that each center will be 
located in the middle of the data mass (the tumor for the ROI) of its region, free from 
the effect of other pixels or centers. 

       
Normalized intensity Histogram, bin size=0.05              Normalized intensity Histogram, bin size=0.05 

Fig. 5. Left to right: rough histogram of the tumor, histogram of the brain tissues 

3.3   Fine Tumor Detection 

Tumor pixels are usually geometrically connected, but tumor edges are of lower in-
tensity than its center. To identify the boundary of the tumor in the ROI, we use re-
gion growing to detect tumor pixels. For this purpose, we need to find the threshold 
between the tumor and its surrounding. In this step, histogram analysis is used. Since 
we already roughly know the tumor area, the histogram analysis is significantly less 
prone to misclassification of intensities than the histogram analysis of the original 
image. First, we find a rough histogram of the tumor by observing histogram of a 
neighborhood (5% image dimension) of the centroid in the ROI. We find a rough 
histogram of the soft tissues by looking at image histogram (most pixels are GM or 
WM pixels). Fig. 5 shows the histograms found in this step. We then find the differ-
ence between the peaks of the two histograms and choose the mid point as the thresh-
old. Following identifying the threshold, region growing is performed from the  
centroid location. The resulting area is declared as the tumor, and tumor boundary is 
consequently identified; this is shown in the right most plot of Fig. 4. 

4   Evaluation 

The performance of our method has been evaluated on different MRI slices of 13 
different patients (~ 100 slices). We depict some of the results in Fig. 6. Despite the 
difficult cases, our algorithm is able to successfully identify the tumor pixels. Com-
paring our result with ground truth, we can see the ability of the proposed algorithm 
in finding the tumor and then identifying its area, even for small parts of the tumor in 
areas where the difference of tumor and the surroundings intensity is low. The results 
show the robustness of our algorithm in handling different image intensity levels and 
dynamic ranges and different tumor shapes and sizes (Fig. 6). 
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Fig. 6. For each set, the original image is on the left; Top mask is the ground truth, bottom 
mask is the result of the our method 

 
Fig. 7. Left to right: original image, Force result, centroids on noisy image, tumor pixels 

4.1   Robustness with Regard to Noise 

To further evaluate the performance of our method, we have considered noisy images. 
Gaussian white noise with mean zero and variance 0.02 has been added to the images. 
One example is shown in Fig. 7. The tumor is in a cluttered area and it is hard to see 
its boundary. Force is able to detect the tumor area, as one of the centroids moves 
inside the tumor. Next steps of the algorithm determine the tumor area more precisely. 

4.2   Comparison of Force with Ground Truth 

To see the accuracy of our tumor detection method, we have compared our result with 
ground truth (manually marked tumors by experts) for different slices of different 
patients. We selected slices with different shapes and sizes of tumors and from differ-
ent patients. The results presented in Table 1 are selected from 100 slices to be  
representation of different conditions, and show that in all cases our method correctly 
finds the tumor (the coarse detection); the identified tumor boundaries are also rela-
tively accurate. In this table, three quantities are shown: true positive, false positive 
and false negative. The fact that a high percentage of true positive is reported verifies 
the success of the algorithm in correctly finding the tumor. The presence of some 
false negative or positive pixels (e.g., Slice24p9 or Slice24p13) shows that the fine 
detection step can be enhanced with more complex methods. Nevertheless, the ro-
bustness of the proposed method in identifying tumor is a significant advantage of the 
algorithm. 
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Table 1. Results of our proposed method compared to ground truth (ratios, out of 1) 

Image T. pos F. pos. F. neg. Image T. pos. F. pos. F. neg. 
Slice28p1 0.920 0.056    0.079     Slice33p7 0.873 0.117 0.127     
Slice35p1 0.900 0.065     0.099 Slice24p8 0.947 0.135 0.052     
Slice25p2 0.876 0.007    0.124     Slice24p9 0.778 0.055 0.221     
Slice35p3 0.901 0.144    0.098     Slice31p10 0.938 0.051 0.061 
Slice24p4 0.939 0.110   0.098     Slice27p11 0.920 0.006 0.079     
Slice18p5 0.959 0.041     0.040   Slice31p12 0.815 0.028 0.184     
Slice26p6 0.967 0.072    0.032     Slice35p13 0.827 0.027     0.172     
Slice38p6 0.933 0.024     0.066     Slice24p13 0.964 1.539   0.035     

5   Concluding Remarks 

In this paper, a fully automated tumor detection method based on Force algorithm is 
proposed. “Force” is an unsupervised data clustering method which has been modi-
fied here to be used as a method to find the region that contains tumor in brain MRI. 
The proposed method has three steps of preprocessing, coarse tumor detection using 
Force, and fine tumor detection. The performance of this method has been evaluated; 
and it is shown that it is robust and able to find the tumor boundaries in MR images 
with different intensity, dynamic range, noise, tumor size and shape. The proposed 
clustering algorithm can be employed in 3D space with no change. Therefore, the 
entire tumor detection approach is extendable to 3D. The clustering method can also 
be applied to other medical images, e.g., breast or liver MRI.  
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Abstract. This paper presents a straightforward top-down segmenta-
tion method based on a contour approach on histological images. Our
approach relies on a digital deformable model whose internal energy is
based on the minimum length polygon and that uses a greedy algorithm
to minimise its energy. Experiments on real histological images of breast
cancer yields results as good as that of classical active contours.

1 Introduction

Breast cancer may be one of the oldest known forms of cancerous tumors in
humans. Worldwide, breast cancer is the second most common type of cancer
after lung cancer and the fifth most common cause of cancer death. Prognostic
and diagnosis largely depend on the examination of stained tissue images by
expert pathologists, which is time consuming and may lead to large variations.
Therefore, it is essential to develop Image Decision Guided Systems to assist
prognostic, diagnostic and early detection of cancer by automatically analyz-
ing images of pathological tissue samples. One important prognostic factor for
pathologist is the assessment of cellular proliferation by calculation of a mitotic
grade [1]. To that aim, histological slides are stained by Immunohistochemistry
that stains cells in proliferation in brown and other cells in blue. To establish
an accurate mitotic grade, one has, in addition to mitosis detection, to properly
detect cancer cells clusters (clusters of tumoral cells) to evaluate the mitotic
grade only in tumor areas of the tissue. Fig 1 presents cancer cell clusters with
mitotic and non mitotic cells.

In this paper, we focus on the segmentation of cancer cell clusters in breast
histological images. In literature, such a task is performed with machine learning
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Fig. 1. Cancer cell clusters with cells in proliferation stained in brown

methods [2,3]. Alternatively, we propose a top-down contour based approach us-
ing a digital deformable model [4]. On digital curves, using a direct analog of the
classic energies of [5] is difficult for the expression of the geometrical quantities,
mainly length and curvature estimation, suffer many drawbacks, see discussion
in [6] about the curvature estimation. As a result, the internal energy term which
usually monitors the smoothness of the curve does not behave as expected. Even
when considering digital estimators that are asymptotically convergent on digi-
tal curves (see [7]), they often lead the evolution process to non-significant local
minimum. As a result we here consider a digital deformable model that benefits
of an internal energy based on the minimum length polygon (see [8,9]) yielding a
convex functional. As a result, a descent on the internal energy ensures a global
minimum. On an open 4-connected simple path this global minimum is very
close to the simplest digital straight segment linking the endpoints of the path.

The paper is written as follow, we first recall the definition of the digital de-
formable model (Section 2). Later-on we elaborate on our Top-Down approach on
histological images (Section 3). Experiments illustrate the use of our digital de-
formable model on real histology images, in particular we compare our model with
another internal energy and a with one of the classical active contour formulation
using a greedy algorithm for the energy minimisation(Section 4). Eventually, we
conclude on the benefits of the proposed approach and possible future works.

2 Digital Deformable Model

We here recall briefly the definition and main properties of a digital analog of
active contours, (see [4]). The geometry of our model is that of an simple oriented
digital 4-connected open path Γ with its endpoints being fixed, says A and B.
The endpoints of the path are not allowed to be moved, while the remaining
points of the curve can be deformed using elementary local transformations.
Those separates into three types : flips, bumps and flats. All of these can only
be applied on points with the proper corresponding geometry such as inside
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or outside corners, flat parts or inside or outside bumps. Those features can be
easily listed when the contour is read as a succession of straight moves, left moves
and right moves. See Fig. 2 for an illustration of possible deformations on some
specific contours. The admissible deformations of Γ are chosen such that they
preserve its topology when applied and such that they are always reversible.

As an analog of active contour, the evolution of the model is monitored and
highly dependant of the energy associated to Γ . This energy divides into two
terms, one for the geometrical constrain over the curve (internal energy term
Eint) and one for the fit to the underlying datas (image energy term Eimage).

ED
DM (Γ ) = ED

int(Γ ) + ED
image(Γ ).

In the case of parametrized curves on the Euclidean plane constrain energies
are usually based of the length and the integration of the normal and curvature
along the curve, that is

∫ 1
0 Eint(v(s), v′(s), v′′(s))ds. In digital space, it is diffi-

cult to find good curvature estimators on open contour, although there exists
approaches which accurately estimate the curvature on closed digital contour
such as the GMC in [10] (which is based on an optimisation scheme), or the
Brunet-Malgouyres estimator in [11] (which uses binomial convolutions), these
approaches are not suited to make a reliable estimation on the border of open
curves. Moreover, as noticed by many authors (see for instance the geometric
active contours of [12]), the internal energy is in fact the length of the curve.
Our digital analog to Eint is therefore defined as the estimation of the length of
Γ . This estimation is based on the euclidean length of the constrained minimum
length polygon (CMLP for short) of Γ , that is the minimum length polygon in

− 0

+

0 0

0 +

−+

− 0

−

+

−

Fig. 2. Example of some local deformations used by the digital deformable model,
solid line for Γ and dashed line for Γ after the local deformation, the points where the
deformation is applied are circled. The + symbol stands for a left turn, the − symbol
stands for a right turn and the 0 symbol stands for a straight ahead move. From left
to right and top to bottom : flip of an outside corner, flip of an inside corner, inside
bump of a flat part, outside bump of a flat part, flat of an inside bump and flat of an
outside bump.
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Fig. 3. A digital open path Γ whose Freeman code word is EEEENNESESEENENE. In
dashed lines we represent the one pixel band along Γ . The thick line is the constrained
minimum length polygon of Γ .

a one pixel wide band along Γ passing through its constrain points. The first
and last vertices of the CMLP are respectively the first and last point of Γ . See
Fig. 3 for an illustration of the CMLP.

Thus our internal energy becomes:

ED
int(Γ ) = αL2(CMLP (Γ ))

One important property of this energy is that it is convex (see proof in [4]), that
is, a descent on this energy always leads to a global minimum. This minimum is
such that the CMLP of Γ is exactly the euclidean straight segment between the
endpoints of Γ . The image energy term favors strong gradients and is defined
as:

ED
image(Γ ) =

∑
p∈Γ

(
max

c∈Image
(||∇I(c)||) − ||∇I(p)||

)
,

This energy term being positive everywhere, the tuning of the α parameter is
eased with respect to length term.

3 Top-Down Segmentation for Histology Images

The minimisation of the digital deformable model relies on a greedy approach
(see Alg. 1) being costly because of it requires to compute many times the CMLP
of Γ . As a consequence, a top-down approach seems particularly suited. We here
consider three levels of resolution, the size of the image being multiplied by four
at the next level. At each level there are two phases: an initialisation and a
minimisation based on energy criteria.

At the first level, the initialisation is done via a binary mask image, from which
we extract the initialisation paths. In fact we have several digital deformable
modelsn to minimize at each level. Although we do not strictly preserve the
topology of the initialisation, we prevent the paths to collide with one another.
The initialisation at the other levels is obtained by scaling the paths resulting
from the minimisation phase at the previous level, see Fig. 4 for an illustration.

The minimisation phase is straightforward: for a given path, we try all the
deformations and apply the one that brings the smallest energy, we repeat this
scheme as long as smaller energies can be found.
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InitialisationBinary Mask Image Minimisation

Level 1

Level 2

Level 0

Initialisation From Scaling Minimisation

...

Fig. 4. The three levels used in our Top-Down approach

Algorithm 1: Greedy1 algorithm: extracts the deformation that brings
the lowest energy among all possibles ones

Function Greedy1( In Γ , Out ) : boolean ;1
Input: Ω: an Interpixel Partition Deformable Model
Output: Ω′: when returning true, elementary deformation of Ω with

ED
DP (Ω′) < ED

DP (Ω), otherwise Ω′ = Ω and it is a local minimum.
Data: Q : Queue of (Deformation, double) ;
E0 ← ED

DM(Γ );2
foreach valid Deformation d on Γ do3

Γ .applyDeformation(d);4

Q.push_back(d,ED
DM (Γ ) );5

Γ .revertLastDeformation();6

end7
(d, E1) = SelectDeformationWithLowestEnergy (Q);8
Γ ′ ← Γ ;9
if E1 < E0 then Γ ′.applyDeformation(d);10
return E1 < E0;11

4 Experiments

The binary masks at low resolution are obtained with a coarse segmentation
algorithm. The latter performs an automatic binary thresholding by entropy on
a simplified version of the image with a morphological opening by reconstruction,
see [13] for a similar method.

Our first examples use the constrained minimum length polygon as internal
energy. As the model explicitly uses a weighting coefficient, we have run our
experiments with various values, as shown on Fig. 5,6 and 7. This coefficient
is such that the smaller, the less the internal energy monitors the deformation,
consequently for α equal to 400 the length penalisation overcome the data term.



332 F. De Vieilleville et al.

Fig. 5. Results of the top-down segmentation process using the value 400 as balance
term, the internal energy term is based on the CMLP. From left to right and top to
bottom: image at level 0,1 and 2 with initialisation, image at level 0,1 and 2 after
minimisation. The high value of α penalise the length of the contours, smoothing the
contours too much, only top-left contour seems to be correctly delineated.

Fig. 6. Result of the segmentation using the value 150 as balance term, the internal
energy term is based on the CMLP. From left to right and top to bottom: image at
level 0,1 and 2 with initialisation, image at level 0,1 and 2 after minimisation. Top-left
and bottom-left contours are correctly delineated.
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Fig. 7. Results of the top-down segmentation process using the value 100 as balance
term, the internal energy term is based on the CMLP. From left to right and top to
bottom: image at level 0,1 and 2 with initialisation, image at level 0,1 and 2 after
minimisation. Global delineation of contours is correct.

Fig. 8. Results of the top-down segmentation process using the value 100 as balance
term, the internal energy term is based on the length of the freeman code of the path,
other positive values for the balance term bring very similar contours. From left to
right and top to bottom: image at level 0,1 and 2 with initialisation, image at level 0,1
and 2 after minimisation. Although the global delineation seems correct, the obtained
contours are not smoothed at all.
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Fig. 9. Results of the top-down segmentation process using the deformable model de-
scribed in [6]. Parameters are such that (α, β) equal (0.1, 0.45), the neighborhood is
chosen as a 3×3 square, and minimisation is done until no smaller energy can be found.
From left to right and top to bottom: image at level 0,1 and 2 with initialisation, image
at level 0,1 and 2 after minimisation. Top-right contour and middle contours are well
delineated, top left and bottom left are partially correctly delineated.

In order to compare our results we have also run the same experiments using
another internal energy. We have used a simpler internal energy which also leads
to a global minimum. This internal energy is simply defined as the sum of the
length of the freeman chain code constituting the path, that is the number of
points of the path minus one. Using various positive coefficients as α, results
are very similar and the paths are much less smoothed than with the CMLP, as
illustrated on Fig. 8.

Finally we have run the experiments using one of the classic active contour
method in the literature, [6]. In this the curve is approached by a polygon whose
vertices have integer coordinates. The minimisation process uses a greedy algo-
rithm, which is closer to our optimisation scheme than a variational method.
The quantity being minimized by this approach is:

E =
∫

(αEcont + βEcurv + γEimage)ds.

At each iteration, and for each vertex a fixed-sized neighborhood around the
point is considered and the point giving the smallest value becomes the new
vertex. The energy terms are such that small values of Econt causes the polygon
points to be more equidistant and Ecurv is the estimation of the curvature using
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finite differences. The γ coefficient is chosen equal to one and Eimage(p) is chosen
as max(||∇I||) − ||∇I(p)|| to ease the comparison with our approach. Between
each level we also double the number of points of the model, obtained results
are good considering that this method allows the end points of the polygon to
move according to the minimisation process, as illustrated on Fig. 9.

5 Conclusion

In this paper we have used a top-down straightforward approach using a digi-
tal deformable model to segment cancer cluster cells in histological images. The
behaviour of our digital deformable model was shown to behave as the classic
continuous active contours and shown to give similar results. Future work will
focus on integrating our digital deformable model with topological map (follow-
ing [14] ) so as to ensures that no topological changes may occur during the
deformation of the contours. Once this step is achieved, top-down approaches on
irregular pyramids such as [15] would be able to mix region and contour based
segmentation process.
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Abstract. In this paper, we describe a nuclei segmentation algorithm

for Pap smears that uses anisotropic dilation for curve closing. Edge

detection methods often return broken edges that need to be closed to

achieve a proper segmentation. Our method performs dilation using Rie-

mannian distance maps that are derived from the local structure tensor

field in the image. We show that our curve closing improve the segmenta-

tion along weak edges and significantly increases the overall performance

of segmentation. This is validated in a thorough study on realistic syn-

thetic cell images from our Pap smear simulator. The algorithm is also

demonstrated on bright-field microscope images of real Pap smears from

cervical cancer screening.

1 Introduction

Cervical cancer is the second most common type of cancer among women. During
2005 it caused a quarter of a million deaths worldwide, of which 80% occurred
in developing countries [1]. Current screening programmes mainly use the stain-
ing and visual inspection method developed by Papanicolaou during the 1940s.
Images from the Papanicolaou (Pap) test, commonly know as the Pap smear,
are mostly analyzed manually by experts, which is a costly procedure [2]. In this
paper we describe an automatic segmentation algorithm for cell nuclei in such
images. In particular we introduce and study the use of anisotropic dilation for
curve closing to achieve better segmentations.

When using edge detection algorithms, e.g., the Canny edge detector [3], it is
common that the resulting edge map has gaps in the object borders. To achieve a
segmentation based on the edge detection result, such flaws need to be corrected.
The method described in this paper generates a non-Euclidean distance trans-
form of the edge map, derived from local gradients in the image. The distance
map is then used to perform anisotropic dilation, which we call Riemannian di-
lation since the distances are derived from geodesic distances in a Riemannian
manifold [4]. Locally, the metric we use is related, but not identical, to the local
structure tensor field [5,6,7] in the image. In this metric, the geodesic disc has
an elongated appearance that follows edges and lines in the image. When it is
used as structuring element in dilation, it repairs the gaps in the edge map. In

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 337–346, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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this paper, we show that by modeling the image as a Riemannian manifold in
this manner, we achieve better performance for weak edges compared to using
ordinary isotropic dilation.

1.1 Related Work

A thorough discussion regarding the concepts of spatially variant morphology
can be found in [8]. In [9] a similar approach is described, where the structure
tensor field is also used to perform spatially varying morphology in images.

2 Segmentation

The segmentation process can be thought of as consisting of two related pro-
cesses, recognition and delineation. Recognition is the task of roughly deciding
where in an image an object is, whereas delineation is the process of determining
the precise spatial extent and point-by-point composition of the object [10].

The segmentation method described in this paper is mainly aimed at recog-
nizing the location of nuclei in images. This is achieved by using the Canny edge
detector followed by a series of morphological processes aimed at refining and
closing detected edges and thereby producing recognizable objects (see Fig. 1).

The basic way to perform a closing operation (•) is to do a binary morpho-
logical dilation (⊕) followed by an erosion (�),

A •B = (A⊕B)� B, (1)

where A represents the set and B the structuring element used [11]. If the struc-
turing element B is disk shaped the same dilation can also be achieved by thresh-
olding a distance transform generated using the binary object as a seed. However,

Fig. 1. The individual steps of the segmentation method when used to segment a

nucleus (big roundish object in the center of the image): a) initial image, b) median

filtering, c) Canny edge result, d) resulting distance map using the weighted measure,

e) thresholded distance map, f) skeleton of threshold, g) final segmentation result

achieved through filling of closed areas and opening, h) final segmentation overlayed

on the original image
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both methods are limited in that they dilate a binary object equally in all direc-
tions and everywhere in the image, without regard to the local image structure.

An alternative approach to curve closing is to perform an edge linking proce-
dure in which matching pairs of endpoints are found and connected [12]. How-
ever, image content is still not taken into account. The two matching endpoints
are connected using a straight line, making it possible to create boundaries that
exclude part of the object or include background in the object segmentation.

Our method uses an image adaptive dilation, meaning that, from a given
seed point, it propagates edges with regards to certain features in the image.
This makes it possible to close edges in a way that better corresponds to the
underlying image data.

2.1 Method Overview

Figure 1 shows the individual steps of the described method. The initial image
(a) is first median filtered to remove noise (b). Canny edge detection is then
applied (c) and the result is used as a seed image for a tensor weighted distance
transform, implemented1 from [5], that will be further described in the following
section (d). The distance map is thresholded (e) and the subsequent binary
image cleaned up via skeletonization (f), filling of closed areas and finally an
isotropic opening (binary erosion followed by dilation) in order to get the final
segmentation result (g, h).

2.2 Tensor Weighted Distances

We model the image as a chart of a 2D Riemannian manifold. The distance
transforms we compute are based on estimates of geodesic distance in this curved
Riemannian manifold. Since we only approximate geodesic distances, there is a
possibility that the triangle inequality is not fulfilled and that the corresponding
space we create is not a metric. For the task at hand, however, this possibility
is of less practical importance.

The concept of looking at an image as a landscape, where the gray-level values
correspond to height, is well known. How distances can be calculated in such a
landscape is also a previously studied concept [13,14]. A 2D image f(x, y) is in
this case represented by the embedding of a surface in �3:

χ = (x, y, αf(x, y)), (2)

where α is positive. From Eq. 2 we derive the pullback metric from χ in the
image plane (x, y) ∈ �2:

B = I + α2∇f∇fT =
[
1 0
0 1

]
+ α2

[
fxfx fxfy

fyfx fyfy

]
. (3)

1 Toolbox Fast Marching by Gabriel Peyré

http://www.mathworks.com/matlabcentral/fileexchange/6110
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The scalar product of two vectors u,v ∈ �2, in a particular point in the image, is
then 〈u,v〉B = uTBv. With this metric, the distance between two neighboring
pixels, separated by a vector u (Fig. 2(a)), is approximately

‖u‖ =
√
〈u,u〉B =

√
uu + α2(∇f · u)2. (4)

The effect of the α parameter on the resulting distance transform is illustrated
in Fig. 2(b). When α = 0 the distance is reduced to the Euclidean distance
in the image plane, while for larger values of α, steps taken in the direction of
the gradient are penalized. Equation 3 is known as the Beltrami framework [15]
and for cell images it means that distances increase faster perpendicular to the
nucleus border. As pointed out in [16], Eq. 3 may be generalized by replacing
the outer product of the gradient with the structure tensor [17,18,19]

S = I + α2∇f∇fT ∗Gσ =
[

1 0
0 1

]
+ α2

[
fxfx fxfy

fyfx fyfy

]
∗Gσ, (5)

where ∗Gσ is the convolution by a Gaussian with σ standard deviation. The use
of the structure tensor extends the Beltrami framework to penalize both image
gradients (edges) and ridges (lines). It is a generalization because when σ → 0
then S → B. It is also different from the pure structure tensor because of the
inclusion of the unit metric and the α parameter.

(a) (b)

Fig. 2. a) Illustration showing distance vector from a pixel with gradient ∇f . b) Effect

of the α parameter on the distance transform.

3 Data

Our algorithms were applied on two types of data: realistic synthetic cell images
and minimum intensity projections of focus stacks taken of cervical smears with
a bright-field microscope.

3.1 Realistic Synthetic Cell Images

For validation and parameter tuning purposes we have created a program that
generates synthetic cell images. This program is a part of ongoing research. Here
we briefly describe the image formation in the Pap smear simulator.
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The images used for this paper have dimensions 1000 × 1000 pixels. The
dynamic range is set to [0,255] in order to match the real data which is being
mimicked. An overview over the different steps of the image generation can be
seen in Fig. 3.

The process starts with an empty image to which two levels of Perlin noise
[20] is added to simulate general lighting inconsistencies and noise due to glass
imperfections (Fig. 3a). The image area is then populated with cells.

Each generated cell is unique. The cytoplasm shape is created by selecting a
field from a Voronoi diagram and then distorting the shape using Perlin noise.
Texture generated from normally distributed noise and shadow created by adding
a blurred layer are used to increase realism when drawing the finished shape in
the image (Fig. 3b, c).

The nucleus shape, a randomly distorted circle, is created using a truncated
Fourier series. Texturing of the nucleus includes two types of noise, a normally
distributed noise to simulate chromatin texture and a Perlin noise to simulate
staining imperfections (Fig. 3d, e).

Debris, e.g., blood cells, is generated as clusters containing three to ten small
roundish objects. These are then added to the image as two layers with different
levels of blurring (Fig. 3f, g).

The final step of creating the synthetic image is the addition of a small Gaus-
sian blur (σ = 0.8) throughout the entire image. This ensures that all compo-
nents are blended together in a way that simulates the point spread function of
the microscope (Fig. 3h). The resulting images are hard to visually distinguish
from real microscope images (Fig. 4).

3.2 Bright-Field Microscopy Images

The biological samples used in this study were prepared using the standard
Papanicolaou protocol. We obtained focus stacks of the Pap smear samples using

Fig. 3. The key steps in the synthetic image creation: a) initial plane with noise, b)

finished cytoplasm mask, c) cytoplasm subtracted from image, d) nucleus mask, e)

nucleus subtracted from image, f) debris mask, g) debris subtracted from image, h)

final image after blurring
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Fig. 4. Synthetic image (left) with corresponding ground truth segmentation of nuclei

(middle) compared to the minimum intensity projection of a focal stack taken of a Pap

smear sample (right)

a MIRAX MIDI system (3DHISTECH Ltd., Budapest, Hungary) equipped with
a 20× / 0.8 Plan-Apochromat objective. The images used have 1376×1032 pixels
and a dynamic range in [0, 255]. For the application described in this paper,
the focus stacks were reduced to a single image using minimum intensity value
projection.

4 Evaluation

The focus of the evaluations performed in this paper is to obtain a high rate
of nuclei recognition, rather than perfect delineation of every individual cell
nuclei. For this reason we evaluate the segmentation result in terms of true
positives (found nuclei) and false negatives (missed nuclei). An efficacy metric
which compares the segmentation results with the ground truth for the synthetic
images was implemented. The metric is based on theory described in [10], which
compares two segmentation results of an object i, τi1 and τi2 , using the equation

ri =
|τi1 ∩ τi2 |
|τi1 ∪ τi2 |

, rI =
∑
i∈I

ri. (6)

Here ri represents the common part of the two segmentation results as a fraction
of their combined area. If a ground truth is used as one of the segmentations in
Eq. 6 then ri represent the precision of the segmentation for each nucleus i. The
global score rI can be used to rate the performance over the entire image I.

We consider an object correctly segmented when ri exceeds a threshold ρ.
With the segmentation result given as a series of binary outcomes we are able
to perform a statistical analysis on the results to compare two segmentation
methods. We use a single sided McNemar test [21] that uses the values pTF , the
number of objects found by method 1 but not by method 2, and pFT , the number
of objects found by method 2 but not by method 1, to compare methods.

In the case of the synthetic data, the ground truth was known for all nuclei,
making it possible to apply the efficacy metric described in Eq. 6 to evaluate
segmentation results. The ratio threshold, ρ, was set to 0.7 for all evaluations.
The results could then be statistically analyzed using McNemar’s test.
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Lacking a ground truth, the segmentation results for the Pap smear images
were analyzed based on an expert’s visual inspection. The McNemar test was
then performed using the exact binomial distribution, instead of the χ2 approx-
imation, because of the small sample sizes in the real datasets.

5 Experiments

The experiments in this paper were focused at comparing the curve closing ability
of the anisotropic dilation scheme to a standard isotropic one. The isotropic
dilation method based on the distance transform, described in Section 2, was
chosen for the comparison. It was implemented using the same framework as
the anisotropic dilation only with the σ and α parameters set to 0. This means
that dilation becomes fully dependent on the threshold, λ. The Canny edge
parameters were heuristically selected prior to the evaluation process and then
kept fixed throughout.

Algorithm development was done in the MATLABTM programming environ-
ment (The MathWorks Inc., Natick, MA) using the DIPimage toolbox version
2.0.1 [22].

5.1 Synthetic Data

A quantitative evaluation was performed using synthetic data sets generated
as described in Section 3.1. A total of 160 images were used, each containing
approximately 60 nuclei (not counting those touching the image border). The
total number of fully segmentable nuclei was 9750.

Prior to evaluation the parameters of the dilation schemes were optimized
based on the criterion described in Section 4 using a brute force approach. The
parameter tuning was performed by running the segmentation algorithm on three
synthetic images with a range of parameters. The dilation schemes were rated
based the image score of Eq. 6. The optimal parameters were then chosen to
be α = 8, σ = 6 and λ = 210 for the anisotropic dilation and λ = 6.5 for
isotropic dilation. In Fig. 5 maximum value projections illustrating the relation-
ships between the three parameters σ, α and λ for the anisotropic parameter
optimization are shown.

Using the optimized parameters all 160 images were then analyzed. The results
are illustrated in Table 1(a) in the form of a contingency matrix. The results
were analyzed using a single sided McNemar test, mentioned in Section 4: H0 :
pTF = pFT and the alternative hypothesis H1 : pTF > pFT . The test showed
that the anisotropic method was significantly better, p 10−6.

5.2 Bright-Field Microscope Images

Because of the limited number of Pap smears available, the experiments using
real data were focused towards a qualitative analysis. We used two Pap smear
images, one where the cells were less densely packed and with a smaller amount
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Fig. 5. A illustration of the evaluated parameter space for the anisotropic dilation

scheme. The figure shows the maximum value projections along the λ (left), α (middle)

and σ axis (right). The ’X’ marks the global optimum.

Table 1. Tables showing the resulting contingency matrices for the experiments per-

formed on the synthetic (a) and the real (b, c) datasets. The results corresponding to

the two real images have been divided with respect to the type of cellular distribution.

The matrices show the distribution of correct (cor.) and incorrect (in.) segmentations.

(a)

Synthetic data

Aniso.

cor. in.

Iso.
cor. 6444 419

in. 1487 1400

(b)

Real data (dense)

Aniso.

cor. in.

Iso.
cor. 26 0

in. 2 6

(c)

Real data (sparse)

Aniso.

cor. in.

Iso.
cor. 37 0

in. 0 5

Fig. 6. The difference in curve closing ability between an anisotropic dilation and a

standard isotropic dilation

of debris and one we consider to have a more normal composition. In total the
two images contained 76 nuclei. No ground truth existed for the segmentation so
parameter tuning was performed manually, starting from optimal values found
for synthetic images (described in Section 5.1). We used the previously found
optimal values for α and σ, but changed λ slightly.
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We experienced that both dilation schemes found the same nuclei in the less
cluttered image but that the anisotropic approach was able to segment two
more nuclei in the cluttered image. This behavior is demonstrated in Fig. 6.
The contingency matrices for the experiments are shown in Table 1(b) and 1(c).
The results are encouraging but not significant due to the small sample size:
The single side McNemar test did not reject the zero hypothesis, p ≤ 0.25, for
the results in the cluttered image.

6 Conclusions

We can conclude that Riemannian dilation performs better than isotropic di-
lation in a realistic biomedical setting where it is used for curve closing. Even
though there is a need for a more complete validation on real data our extensive
study on realistic simulated data shows the benefits of the anisotropic framework.

Through the use of our Pap smear simulator we were able to tune the param-
eters optimally by an exhaustive search in the relevant part of the parameter
space. In the future, we expect to reduce the number of parameters in the seg-
mentation by exploiting the almost linear dependency shown in Fig. 5 (right).
When more Pap smear images become available in our project, we will have the
option to auto-tune the algorithm by including a cell classification step, com-
bined with a performance criteria, in a closed loop. We also expect the Pap
smear simulator to be helpful in the future, to test image processing methods,
and we plan to develop it further.
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Abstract. The success of lung nodule detection depends on the quality of no-
dule models. This paper presents a novel approach for nodule modeling which 
is data-driven. Low dose CT (LDCT) scans of clinical chest data are used to 
create the required statistics for the models based on modern computer vision 
techniques. The new models characterize the tissue characteristics of typical 
lung nodules as specified by human experts. These models suit various machine 
learning approaches for nodule detection including simulated annealing, genetic 
algorithms, SVM, AdaBoost, and Bayesian methods. The quality of the new 
nodule models are studied with respect to parametric models, and are tested on 
clinical data showing significant improvements in sensitivity and specificity. 

1   Introduction 

Lung cancer screening studies date back to the 1950s and 1960s when a variety of 
screening protocols that combined sputum analysis and chest radiography where  
undertaken for several studies. Studies were designed as either uncontrolled or con-
trolled but not randomized, and employed various screening time intervals. The Phil-
adelphia Pulmonary Neoplasm Research Project was the most widely publicized 
study, which was a prospective study of 6,027 older men. The Philadelphia Pulmo-
nary Neoplasm Research Project started in 1951 and continued to follow-up on each 
patient for ten years. The study performed semi-annual screening with 70-mm chest 
photofluorograms and questionnaires concerning their symptoms, to study the natural 
history of bronchogenic carcinoma. In this study 6 of 94 patients with lung cancer 
detected at screening survived more than 5 years [1][2][3]. As technology techniques 
developed into more refined developments in the 1960s for chest radiography and 
sputum analysis, the limitations of methods used in the earlier studies led to the per-
ception that a more thorough lung cancer screening study design could be beneficial. 
Thus in the 1970s three randomized controlled studies were initiated among male 
smokers: Mayo Clinic [4], Memorial Sloan-Kettering cancer Center and the John 
Hopkins Medical Institutions. Due to the failure of these studies and others conducted 
to demonstrate a mortality advantage for lung cancer screening with either sputum 
cytology or chest radiography led most organizations to not recommend routine 
screening. Reassessments and re-examinations of the studies have been proposed by 
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some investigators since these studies were not specifically designed to assess the 
effectiveness of chest radiographic screening, but achieved greater survival rates. 
Renewed interest in lung cancer would come in the 1990s with the development of 
sophisticated new imaging and non-imaging techniques in combination with lingering 
questions from the lung screening studies in the 1970s and 1980s. Some of the tech-
nologies developed in recent years include low-dose spiral CT (LDCT), digital radio-
graphy, advanced sputum analysis and autofluorescence and virtual bronchoscopy. 
LDCT has played an important technological role in the assessment of patients with 
clinically proven and suspected bronchogenic carcinoma. 

Lung Cancer in the United States account for 30% of all cancer-related deaths, re-
sulting in over 160,000 deaths per year [5], which is more than the annual deaths for 
colon, breast, prostate, ovarian and pancreatic cancers combined. In 2008, there were 
1,437,180 new cases of cancer reported in the United States: (does not include non-
melanoma skin cancers), and 565,650 cancer related deaths. The survival of lung 
cancer is strongly dependent of diagnosis [6][7]. Early detection of lung cancer is the 
hope for improved survival rate, thus research studies to reach an optimal detection 
rate is important. Should the use of LDCT scans become a standard clinical practice 
an automatic way to analyze the scans will lend great benefit for the entire healthcare 
system; e.g., [8]-[11] and extensive surveys in [12][13]. 

The generalized framework of Computer-Assisted Diagnosis (CAD) system we use 
consists of four main steps: 1. Filtering and normalization of the LDCT scans. 2. 
Segmentation of the lung regions (parenchyma) from the surrounding tissue. 3. Detec-
tion of the lung nodules and 4. Classification of the nodules as benign or malignant. 
The authors of this paper are involved in developing a comprehensive database of 
nodules that would allow for rigorous analysis of features versus pathology, thus the 
classification into certain pathology will be possible. This paper will focus on the 
novel approach for generating non-parametric templates used for nodule detection. 
The ELCAP dataset [14] is used for nodule design and testing and the sensitivity and 
specificity of the template matching approach in terms of detection is studied in com-
parison to our parametric template approach which consists of using circular and 
semi-circular template for various radii and orientation (in the semi-circular case) in 
the detection of candidate nodules.Categorization for the various approaches used for 
automated pulmonary nodule detection since the early 90’s are as follows: density-
based and model-based approaches. Template matching is one technique for model-
based approaches which exploit a priori information of the size, intensity and shape of 
the nodules. Density-based approaches use the fact that the lung parenchyma has 
relatively lower CT attenuation (density) than those of the lung nodules, thus they 
utilize image processing algorithms that rely on multiple thresholding [9], region 
growing and clustering. The techniques employed for filtering scan artifacts and seg-
mentation of the lung tissue will be briefly mentioned, since the components of the 
CAD system in Fig. 1 are serial.  

This paper is organized as follows: section 2 briefly discussess filtering of the  
scanning artifacts and segmentation of the lung region from the surrounding tissues; 
section 3 discusses the novel approach for template modeling and generation of the 
intelligent nodule templates; section 4 discusses performance evaluation; and section 5 
concludes the paper. 
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2   LDCT Processing 

Filtering: Various filtering techniques can be used but three main requirements must 
be fulfilled before choosing which filtering approach to use: 1. Removal of noise, 
artifacts, etc. with minimal information loss by preserving object boundaries and 
detailed structures 2. Sharpening discontinuities for enhancement of morphological 
definition, and 3. efficiently remove noise in regions of homogeneous physical prop-
erties. In our work we used both the Weiner and anisotropic diffusion filters [15][23].  
 
Image Segmentation: This step is important in image analysis and as the name con-
notes, this consists of separating or dividing the information content in an image (or 
volume of images) into recognizable classes. It would be a futile effort to survey the 
approaches developed in the past 50 years, which runs into tens of thousands of pa-
pers in the technical literature, [12][13] are just a couple technical surveys the reader 
can be referred to. The method used in this paper on the ELCAP database is a simpli-
fied image segmentation approach that exploits the intensity characteristics of lung 
CT scans (e.g., [22][23]).  
 

To decrease the sensitivity of the segmentation result to the structuring element di-
ameter, we apply it to the inner and outer lung region contour. After segmentation 
was completed small nodules attached to the pleural surface were found to no longer 
exist since these nodules were segmented as not belonging to the lung parenchyma. 
This operation resulted in 6.5% of the ground truth nodules to be excluded from fur-
ther experimentations. 

3    Novel Nodule Modeling and Simulation 

3.1   Pulmonary Nodule Definitions  

CT images are analyzed by radiologist during the screening process to locate pulmo-
nary nodules on patient CT images. Small nodules can be over-looked due to several 
main reasons: nodule characteristics (density, size and location), scanning technique 
(radiation dosage and slice thickness) and human error. The enhancement of CT im-
aging with respect to resolution, dose and scanning approaches are behind the in-
creased interest in large scale screening studies, and produce enormous data that has 
motivated researchers to design fully automated computer-aided diagnosis (CAD) 
systems for optimum nodule detection  (sample work can be found in [9]-[13]).  A 
pulmonary nodule usually has a spherical shape; however, it can be perplexed by 
surrounding anatomical structures such as vessels and the pleural surface.  Nodules, 
as observed in a CT slice, may appear at various locations in the lung tissues, and may 
take various size and shape.  There is no standard nodule definition in the literature, 
and no agreement among radiologists about the main features of nodules. Kostis et al. 
[16] classify nodules into four classes: 1) well-circumscribed where the nodule is 
located centrally in the lung without being connected to vasculature; 2) vascularized 
where the nodule has significant connection(s) to the neighboring vessels while lo-
cated centrally in the lung; 3) pleural tail where the nodule is near the pleural surface, 
connected by a thin structure; and 4) juxta-pleural where a significant portion of the  
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Fig. 1. Nodule types per the classification of Kostis et al [16][17] 

nodule is connected to the pleural surface. Fig. 1 illustrates these types of nodules. 
These definitions will be adopted in this paper and the image analysis methods are 
developed and tested based on these nodule types.  

3.2   Nodule Simulation 

In a CT scan the nodules can take various shapes and topologies, but the common 
characteristic amongst the nodules is the density distribution that tends to be concen-
trated around a region with an exponential decay. To illustrate this behavior, Fig. 2 
shows the image intensity or Hounsfield Units (HU) vs. radial distance for the juxta-
pleural nodule type in the ELCAP study. This distance was calculated by summing up 
the intensity values on concentric circles of various radii centered at the nodules cen-
troid. Fig. 3 shows the average distribution of HU for the juxta-pleural nodule. All 
nodule types in the ELCAP dataset used in this paper possess the same characteristics 
of the radial distance which was observed in earlier studies, using different datasets, 
by Hu et al. (2001) [10] and Farag et al. (2006) [18]. That is, the HU or density de-
cays exponentially with respect to the radial distance from the nodule’s centroid.  

 

 
 
Fig. 2. Plot of the gray level density vs. radial distance from the centroid of the Juxta-Pleural 
nodules. The bars are one standard deviation off the mean values. This exponential pattern has 
also been confirmed for the other nodule types. 
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Furthermore, the decay of the HU is quite significant past a radial distance of 5 pixels. 
Hence, in designing a nodule template, we may use a bounding box of size 10 pixels 
(corresponding to physical dimensions of 5mm, which is the range of interest for 
radiologists). In our experimentations we used templates of size 21x21 pixels. 

For parametric templates (Fig. 4), e.g., circular, given the range of nodule density 
distribution qmin  and qmax, the HU, at a distance r from the centroid,  can be estimated 
by the following equations (e.g., Farag et al. (2005) [19]).                                  / , 0                                 1                                      ln ln /                                        2  

Where  and  are obtained from the density distribution of each nodule type, 
and R is the radius of the template.   

 

Fig. 3. Probability density of the Radial distance of the Juxta-Pleural nodule; Arrows show qmin 

and qmax of the range of densities 

 

Fig. 4. An ensemble of generated circular and semi-circular templates with various orientations 

3.3   Statistical Nodule Modeling  

The major disadvantage of parametric nodule models is the low sensitivity and unreli-
able specificity of the detected lung nodules. The detection approach (e.g., template 
matching) is usually carried out using various template sizes (e.g., diameters of circu-
lar templates) and orientations (in case of non-isotropic templates). Optimization 
approaches, such as genetic algorithms, have been used to carryout the matching 
process (e.g., Lee et al. (2001) [11]) and Farag et al. (2004) [20]), which reduced the 
computational time, yet the results are very hard to decipher with respect to the 
ground truth. Hence, we would like to decouple the nodule model from the detection 
approach. This will help interpret the performance of the overall nodule detection 
algorithm in terms of the physics of the problem; i.e., the appearance of typical no-
dules in LDCT scans. 

In the remainder of this section, we describe the nodule design approach from gen-
eral statistical prospective. First, we created ensembles for each nodule type using the 
definitions in Kostis et al. [16]. Based on our analysis in the previous section, we 
chose the bounding box around the location of the nodule to be of size 21x21 pixels  
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(a) Well-Circumsceibed Nodule  

(b) Juxta-Pleural Nodule Model 
 

   

(c) Pleural Tail Nodule Model 
 

 
(d) Vascular Nodule Model 

Fig. 5. The data-driven nodule models for the well-circumscribed, juxta-pleural, pleural tail and 
vascular nodule types. These models bear a great similarity to the true nodules. 

(this corresponds to spatial resolution of 1.5cm x 1.5 cm; thus covering the basic 
nodule sizes expected in LDCT scans). The ensemble of nodules contains variations 
in intensity distribution, shape/structural information and directional variability. The 
cropped regions inside the bounding boxes will maintain such variations. Second, we 
co-register these regions and obtain an average nodule, which conveys the statistics of 
the ensemble. This average nodule is the “intelligent template” which is used in the 
template matching process. We generate one such template per nodule type. Various 
statistical methods may be employed in building the template process, including Prin-
ciple Component Analysis (PCA), mutual information (MI) approach shape-based 
registration (e.g., Abdelmunim and Farag (2007) [21]) or similar methods.   

Fig. 5 shows the resultant nodule model for each nodule type in the ELCAP study. 
Note that these models possess the major characteristics of the real nodules in terms 
of shape and texture. This provides the clue for the enhanced performance in the de-
tection process over using parametric nodule models. 

In the implementation of the detection process, e.g., using template matching, we 
could use various orientations of the templates in Fig. 5.  

4    Performance Evaluation 

To test the effectiveness of the data-driven nodule models (Fig. 5) with respect to the 
parametric models (Fig. 4), we implemented a basic nodule detection approach using 
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the template matching, in which the nodule model (template) is swept across the scan 
(2D slices or the 3D volume) in a raster fashion and a similarity measure is calculated 
between the intensity (or HU) of the template and the region of the CT data under-
neath.  Among the widely used similarity measures is the normalized cross correlation 
(NCC), which has a maximum value of unity that occurs if and only if the image 
function under the template exactly matches the template. The normalized cross-
correlation of a template, t(x,y) with a sub-image f(x,y) is: 

                                                                           (3) 

where n is the number of pixels in template t(x,y) and sub-image f(x,y) which are 
normalized by subtracting their means and dividing by their standard deviations.     

The probability density functions (pdf) of nodule and non-nodule pixels are com-
puted using the normalized cross correlation coefficients resulted from templates with 
varying parameters (shape, size and orientation if applicable). Based on the Bayesian 
classification theory, the intersection between the pdf’s of the two classes is chosen as 
the threshold separating the correlation coefficients resulted from nodule and non-
nodule pixels.  

Fig. 6 shows the pdf of the NCC for parametric nodule models (left) and the data-
driven nodule models (right). Obviously the NCC is more robust with data-driven 
nodule models, which results in better sensitivity and specificity than the parametric 
nodule models.  

 

 
 

Fig. 6. Distribution of the NCC (i.e., histogram of the NCC values as the templates are swept 
across the image in a raster fashion) for parametric (left) and data-driven (right) nodule models 

Tables 1-7 provide the results of extensive evaluation of nodule detection using the 
parametric and data-driven nodule models. For parametric models, both size and 
orientation were examined. For the data-driven models, various orientations were 
considered. For both nodule model types, nodules were detected using a hard decision 
rule by setting NCC = 0.5 or above to denote nodules. 
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Table 1. Performance of data-driven nodule models during template matching 

 All no-
dule types 

Juxta-
Pleural 

Well-
Circumscribed 

Plural 
Tail 

Vascular 

Sensitivity 85.22% 94.78% 69.66% 95.65% 80.49% 
Specificity 86.28% 86.54% 87.10% 83.33% 87.08% 

Table 2. Performance of parametric nodule models during template matching for radius size 10 
and single orientation angle (0 o) for semi-circular models 

 All no-
dule types 

Juxta-
Pleural 

Well-
Circumscribed 

Plural 
Tail 

Vascular 

Sensitivity 72.16% 83.48% 49.44% 89.13% 70.73% 
Specificity  80.95% 79.59% 81.72% 79.33% 84.17% 

Table 3. Performance of data-driven nodule models during template matching with changes in 
nodule models  orientation  0 o -360 o with step size 90 o

 

 All no-
dule types 

Juxta-
Pleural 

Well-
Circumscribed 

Plural 
Tail 

Vascular 

Sensitivity 80.07% 93.04% 62.92% 93.48% 65.85% 
Specificity  74.89% 73.16% 76.20% 75.53% 75.53% 

Table 4. Performance of parametric nodule models during template matching for radius size of 
10 and  orientation angle for semi-circular models 0 o -360 o with step size 90 o for semi-circular 
models 

 All no-
dule types 

Juxta-
Pleural 

Well-
Circumscribed 

Plural 
Tail 

Vascular 

Sensitivity 78.01% 92.17% 51.69% 95.65% 75.61% 
Specificity  54.48% 47.61% 61.16% 57.14% 56.19% 

Table 5. Performance of parametric templates for templates with radius size from 1-20 circular 
and radius size 1-20 with orientations 0 o -360 o w/step size 45 o for semi-circular 

 All no-
dule types 

Juxta-
Pleural 

Well-
Circumscribed 

Plural 
Tail 

Vascular 

Sensitivity 96.22% 95.65% 94.38% 100% 97.56% 
Specificity  61.61% 60.53% 63.23% 60.05% 62.33% 

Table 6. Performance of parametric templates for template matching with template radius size 
10 circular and radius size 10 with orientations 0 o -360o w/step size 45o for semi-circular 

 All no-
dule types 

Juxta-
Pleural 

Well-
Circumscribed 

Plural 
Tail 

Vascular 

Sensitivity 80.41% 93.04% 58.43% 97.83% 73.17% 
Specificity  73.18% 71.80% 75.55% 72.81% 72.36% 
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Table 7. Performance of data-driven nodule models for template matching with orientation  
0 o -360 o with step size 45o 

 All no-
dule types 

Juxta-
Pleural 

Well-
Circumscribed 

Plural 
Tail 

Vascular 

Sensitivity 87.63% 95.65% 73.03% 97.83% 85.37% 
Specificity  63.94% 62.23% 66.34% 61.98% 64.41% 

5    Conclusions 

In this paper, a data-driven approach was devised to model and simulate typical lung 
nodules. We studied the effect of template shape on detection of different nodules 
types. From our extensive experimentation we can concluded that the new data-driven 
models for template matching yielded an overall higher sensitivity and specificity rate 
then our previously used parametric templates. In the parametric case where we tested 
on all radii sizes between 1 and 20 pixels the sensitivity was higher but the specificity 
in comparison to the data driven nodule templates were still lower.  

The overall performance depends on template shape and nodule type.  The pleural-
tail nodule for both the parametric and non-parametric template matching cases was 
the most sensitive nodule type, while the well-circumscribed nodule was the least 
sensitive. The well-circumscribed nodule emphasizes the greatest improvement when 
our data-driven models were used since the sensitivity rate nearly doubled without 
increasing the specificity, which in-turn can mean more false positives. Overall, the 
new data-driven models yielded promising results as shown in tables 1-7 yielding 
overall high sensitivity and specificity rates for all nodule types using the ELCAP 
database.  Current efforts are directed to constructing and testing the new data-driven 
modeling approach on a large clinical data and extend this work into the 3D space.  
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Abstract. GPU clusters nowadays combine enormous computational re-
sources of GPUs and multi-core CPUs. This paper describes a distributed
program architecture that leverages all resources of such a cluster to in-
crementally reconstruct, segment and render 3D cone beam computer to-
mography (CT) data with the objective to provide the user with results as
quickly as possible at an early stage of the overall computation. As the re-
construction of high-resolution data sets requires a significant amount of
time, our system first creates a low-resolution preview volume on the head
node of the cluster, which is then incrementally supplemented by high-
resolution blocks from the other cluster nodes using our multi-resolution
renderer. It is further used for graphically choosing reconstruction priority
and render modes of sub-volume blocks. The cluster nodes use their GPUs
to reconstruct and render sub-volume blocks, while their multi-core CPUs
are used to segment already available blocks.

1 Introduction

CT scanners using modern flat-panel X-ray detectors are popular in industrial
applications. They are capable of acquiring a set of high-resolution 2D X-ray
images from a huge number of different angles at rapid pace. However, the re-
construction of a volumetric data set on a Cartesian grid from these images is
very time consuming as the commonly used reconstruction method by Feldkamp
et al. [1] has a runtime complexity of O(N4). Subsequently, oftentimes a com-
putationally also expensive segmentation algorithm is run to support analysis
which in total results in a long delay until the examination can be started.

In this work, we focus on industrial applications, where engineers require a
high-resolution reconstruction and segmentation, while it is often critical to have
the results of e. g. a non-destructive quality test at hand as early as possible. We
therefore propose to distribute the reconstruction and segmentation processes on
a cluster equipped with CUDA-enabled GPUs and multi-core CPUs. Employing
our hybrid mult-resolution renderer, finished full-resolution parts are successively
displayed in the context of a low-resolution preview volume. The low-resolution
data set can be created quickly by a single GPU within several seconds on
the front-end node. It is also used for prioritising blocks for reconstruction and
render-mode selection. The full-resolution volume is progressively created by
back-end nodes, which also segment and render their respective blocks.

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 357–366, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Related Work

In this work, we use the reconstruction algorithm for 3D cone beam computer to-
mography that was developed by Feldkamp et al. [1]. Turbell [2] gives
extensive and detailed overview over varitions of this method, as well as funda-
mentally different approaches for CT reconstruction. The use of graphics hard-
ware for computer tomography was first investigated by Cabral et al. [3] on
non-programmable, fixed function SGI workstations. Xu et al. [4] introduced
a framework that implements the Feldkamp algorithm using shaders. Scherl et
al. [5] presented a comparison between their Cell and a CUDA implementation.

Distributed volume rendering has been investigated for a long period of time
and a magnitude of publications can be found on this issue. Most of the existing
systems fit either into the sort-first or sort-last category according to Molnar
et al.’s classification [6]. Recent systems use GPU-based raycasting [7] with a
single rendering pass [8] since GPUs support dynamic flow control in fragment
programs. Dynamic load balancing issues in such systems have been addressed
by Wang et al. [9] using a hierarchical space-filling curve as well as by Marchesin
et al. [10] and Müller et al. [11], who both use a kd-tree in order to dynamically
reorganise the data distribution in a cluster.

Multiresolution rendering is an LOD approach enabling the interactive visu-
alisation of large data sets on a GPU. Different data representations are used
depending on various parameters (e. g. the view point or estimated screen-space
error) resulting in a quality/performance trade-off. Most frequently, tree data
structures are used in combination with raycasting [12]. Ljung et al. [13] ad-
dress the interpolation between blocks with different LOD in detail, while Guthe
et al. [14] employ texture-based volume rendering using a compressed hierarchi-
cal wavelet representation, which is decompressed on-the-fly during rendering.

The analysis of industrial workpieces using the segmentation of CT data was
discussed by Heinzl [15], and the integration of segmentation information in a
raycaster was discussed by Bullitt and Aylward [16] in a medical context.

3 Architecture Overview

Our reconstruction and visualisation system consists of two classes of nodes:
a single front-end node and one or more back-end nodes. The front-end node
exposes the user interface and displays the volume rendering of the data set
that is being reconstructed. Furthermore, it allows the user to influence the
order of reconstruction and the rendering mode of high-resolution sub-volume
blocks on the back-end nodes. The back-end nodes in turn perform the actual
reconstruction and segmentation of the high-resolution sub-volume blocks and
additionally render images of these blocks, which are used by the front-end node
to generate the final rendering.

Figure 1 illustrates how the distributed program is controlled by the user.
The first step is to provide the input, most importantly the X-ray images. Our
approach is not limited to reading the projection images from disk, but could also
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Fig. 1. Control (dashed) and data flow between the threads and processes of the system
and the user. The back-end process may run simultaneously on multiple nodes.

handle images being streamed directly from the scanner while performing the
incremental reconstruction. We do not elaborate further on that in the following
as the time for image acquisition is in the order of minutes while high-resolution
reconstruction can take hours hours in our field of application. Besides, industrial
CT scanners often perform modifications (e. g. center displacement correction)
after the actual acquisition.

While distributing the parameter set is completed quickly using a single
synchronous broadcast operation, scattering the projection images can take a
long time due to disk I/O and network bandwidth limitations. We address this
problem firstly by distributing the images asynchronously while the front-end
node completes a low-resolution preview reconstruction, and secondly by daisy-
chaining the back-end nodes for the distribution process. This approach avoids
unnecessary disk load on the front-end and the back-end nodes, which is the
bottleneck in case of a high-speed interconnect like InfiniBand. Additionally,
projection images are kept in main memory on the back-end nodes as long as
possible to avoid I/O slowing down the reconstruction process. They are only
swapped to disk if the system comes under memory pressure.

As the reconstruction of the coarse preview volume usually completes by far
earlier than the distribution of the projection images, the user can start inves-
tigating the data set at an early state of the overall procedure. The preview
rendering can be superimposed by a grid showing the sub-volume blocks that
are reconstructed on the back-end nodes, which allows the user to specify the or-
der of reconstruction that is then communicated from the front-end node to the
back-end nodes. The visualisation of the reconstructed data set is compiled and
presented on the front-end node. At the beginning, the low-resolution preview
reconstruction volume data is exclusively used for local rendering. As a detailed
sub-volume block has been reconstructed on a back-end node, it is rendered on
the same node and included in the final rendering on the front-end node as a
kind of pre-integrated sub-volume block using our hybrid raycasting and com-
positing approach. Additionally, the sub-volume is queued for segmentation on
the multicore CPU of the respective node.
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4 Implementation Details

Our system consists of three basic modules: the CT reconstruction module
(Section 4.1) uses a CUDA implementation of the Feldkamp algorithm. The seg-
mentation module (Section 4.2) is a fully automatic 3D flood-fill variant designed
for distributed operation. The volume rendering module (Section 4.3) is used for
image generation on the front-end and back-end nodes. Additionally, there is a
sub-volume selection and picking rendering mode. It displays the coarse volume
and allows the precise selection of sub-volume blocks by mouse click for moving
these in the reconstruction priority queue or for choosing the visualisation mode.

4.1 Reconstruction of Sub-volume Blocks

The Feldkamp cone beam reconstruction algorithm works for industrial CT scan-
ners which move the X-ray source on a circular trajectory shooting rays on a
detector, which diverge as a cone through the object of interest. The algorithm
can be subdivided into two phases: the preparation of the projection images and
their subsequent depth-weighted backprojection into the volume. The prepara-
tion consists of weighting and filtering each image with a filter kernel derived
from a ramp filter. The computationally most expensive part of the reconstruc-
tion is the backprojection, on which we will concentrate in the following. It is
commonly implemented by determining for each volume element which projec-
tion image value it corresponds to by projecting it along the X-ray from the
source to the detector. The depth-weighted sum of the respective pixels from all
projection images yields the reconstructed voxel value.

This can be accomplished – even for large data sets as we focus on – by only
considering one sub-volume block for reconstruction at a time such that just
subsets of the projection images are needed. The dimensions of the sub-volumes
are determined in a preprocessing step to cover the volume with a minimal
amount of blocks considering the graphics memory available.

All projection images are cropped and stored in a single container texture,
similar to the storage of renderings for the front-end raycaster (Section 4.3). The
coordinates to access this texture for each voxel and every projection image are
computed by projecting the eight corners of each sub-volume along the X-rays on
the detector plane. These coordinates are subsequently linearly interpolated on
the CPU to get the coordinate values pxyw for a considered slice. Afterwards, the
window position wxy of the sub-image with respect to the whole image and its
coordinates ixy in the container texture need to be applied to the projection co-
ordinates pxy. Further, pxy needs to be weighted with the projective component
pw to yield qxyw that is uploaded to a texture: qxy = pxy +pw(i−w); qw = pw.
Weighting with pw is required to counter the effect of the projective division
c = ( px

pw
,

py

pw
)T that takes place after the bilinear interpolation on the GPU.

This finally yields the coordinates c for accessing the value of one projection
image in the container texture that is backprojected on the considered voxel.
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4.2 Volume Segmentation

For segmentation, we use a fully automatic 3D flood fill variant that leverages a
multi-core CPU. While the GPUs are reconstructing sub-volume blocks, multiple
CPU threads grow regions around a user-defined number of randomly distributed
seed points in the already completed blocks. The decision on whether to add a
voxel to a region is based on a user-defined threshold (e. g. the maximum range
of values allowed in a region) and a gradient-based criterion.

Volume segmentation also requires some communication – between different
threads and nodes – due to the fact that the algorithm must merge segments
that have been created on different CPU cores or cluster machines. For merging
two sub-volumes’ regions that belong to different cluster nodes, the region IDs
at the face they meet always has to be transmitted. Additional data needs to be
transferred depending on the region criteria chosen, e. g., for a gradient-based
method using central differences, it suffices to transmit a sub-volume face while
value-based methods require extra region information to combine the regions.

4.3 Hybrid Multiresolution Volume Rendering Incorporating
Sub-volume Blocks

Each back-end node renders images of the high-resolution sub-volume blocks it
has reconstructed and segmented on behalf of the front-end node. The renderer
only raycasts the pixels that lie within the image-space footprint of the current
sub-volume with respect to the camera parameters transmitted by the head node.
As the reconstruction of a sub-volume can be interrupted by rendering requests,
the renderer must be able to handle sub-volumes for which high-resolution im-
ages are only available up to a certain part. It therefore substitutes the missing
high-resolution slices with coarse volume data that has been reconstructed by
the front-end node during the initialisation phase. In order to avoid dynamic
branching on the GPU and to achieve more efficient texture fetching, the coarse
volume data of resolution l is appended to the texture of high resolution h.
Thus, the sampling coordinates s on the ray must be scaled to yield the texture
coordinates c for the coarse volume past the boundary b in z-direction to low-
resolution data: c = (sx · τ x, sy · τ y, (sz − b) · τ z + b)T with τ = ( lx

hx
,

ly

hy
, lz

hz
)T

for sz > b and τ = (1, 1, 1)T otherwise (note that b = hz for a completed block).
The renderer on the front-end node combines high-resolution imagery from

the back-end nodes with the coarse volume data that are available on this node
into a volume rendering by integrating compositing in the raycasting loop of the
front-end node. High-resolution images are raycasted by the front-end node as a
kind of pre-integrated voxels. All pre-rendered images are stored in one colour
texture on the graphics card, similar to the container texture of the reconstruc-
tion algorithm. Images are placed next to each other until the end of the texture
is reached and then a new row of images is started at the base level of the tallest
image of the previous row (Figure 2).

The information on whether a high-resolution rendering for a sub-volume
exists respectively the coordinates to access it are uploaded to the graphics
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Fig. 2. Left: When rendering the final image, it is determined for each sampling point
whether there is pre-rendered high-resolution data available (sampling point 1) or not
(sampling point 2). As the case may be, different coordinates are used to access the
colour map. Right: Renderings of the IC datset resulting from this technique.

card’s shared memory for efficient access. Two 16 bit integers per sub-volume
are utilised to determine the texture coordinates of a pre-rendered pixel for the
sample point of a ray. These coordinates have already been pre-modified such
that the pixel position of a ray only has to be added to fetch a pre-rendered pixel.
Due to the use of shared memory and the overloading of the colour map access,
no actual branching is required and the amount of texture memory accesses in
the sampling loop is the same as of a standard single pass raycaster: one volume
texture fetch requesting a scalar density value and one colour transfer texture
lookup retrieving a 4D vector. Yet, the colour texture lookup is here also used
for accessing a rendered high-resolution image, depending on the sub-volume the
respective sample is in.

4.4 Communication and Data Exchange

The communication patterns of our application differ in two different phases:
At the beginning, the input parameters and projection images are distributed
synchronously, the latter in a daisy-chain from one back-end node to the other.
This alleviates disk I/O load on the front-end node, which initially stores the
input data, and introduces only a small latency in the distribution pipeline.

After initialisation, both node classes enter a message loop for asynchronous
communication. For the front-end node, this is equivalent to the message loop of
the window system, which starts as soon as the preview volume has been recon-
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structed. The back-end nodes have a second message loop for the communication
of the segmentation subsystem in order to decouple this process completely from
the reconstruction and rendering tasks. The message handling of communication
with the front-end can interrupt the reconstruction process, which is running
whenever no more important requests must be served, e. g. requests for high-
resoluting renderings. It may therefore take a significant amount of time from
issuing a rendering request until all sub-images are available. Hence, images are
received asynchronously and replace parts of the local preview rendering as they
come in.

The assignment of reconstruction tasks to back-end nodes is carried out by
the front-end node as it must be possible to re-prioritise blocks on user request.
Load-balancing is implicitly achieved by the back-end nodes polling for new tasks
once they have completed a sub-volume block.

5 Results

We tested our system on an eight node GPU cluster with an InfiniBand intercon-
nect. Each node was equipped with an Intel Core2 Quad CPU, 4 GB of RAM, an
NVIDIA GeForce 8800GTX and a commodity SATA hard-disk. One node acted
as front-end creating a 2563 voxel preview volume, while the remaining ones
reconstructed a 10243 volume from 720 32-bit X-ray images with a resolution of
10242 pixels (Figure 4 shows the volumes). The calculated sub-volume size was
3523 resulting in a total of 27 sub-volumes.

The time from program start until the preview volume is reconstructed on the
frontend-node and rendered is around 29 s, of which the most part is required
for I/O caused by projection image downsampling that runs in parallel with the
data distribution, while the actual reconstruction on the GPU takes only 1.3 s.
The determination of the sub-volume dimension that takes a few seconds runs
concurrently. Figure 3 (left) shows the data distribution and reconstruction times
measured on the front-end and the back-end nodes. The times for the front-end
node also include communication overhead and show the span between program
start and the availability of the complete high-resolution volume. In contrast, the
numbers for the back-end nodes comprise only the longest computation. So al-
though the average reconstruction time on the back-end nodes quickly decreases
with an increasing number of nodes, the observed time on the front-end node
declines more slowly, because this timing includes the input distribution and
other communication. Input distribution takes slightly longer the more nodes
are involved, because the measurement on the front-end node includes the time
from reading the file from disk until the last node received the data. Thus the
last node in the daisy chain must wait longer for its data.

The rendering times depicted in Figure 3 (left) indicate the time span be-
tween the moment the front-end node requests new sub-volume images and the
moment the first respectively the last remotely generated image is used in the
visualisation. Images from the back-end nodes can either be sent in batches
or as separate messages. In our measurements, we let the batch requests – in
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Fig. 3. Left: Timing results for several cluster configurations. The bar chart shows
initialisation and reconstruction times on the front-end and back-end nodes (units on
the left), while the lines show the average time from a remote rendering request until the
reception of the first/last sub-volume image on the front-end node (units on the right).
Right: Mutual influence of reconstruction, segmentation and user interaction during
the segmentation.The results for only one back-end node are clamped for clarity.

contrast to the separate requests – interrupt the reconstruction not only after
a sub-volume block but already after a sub-volume slice has been completed.
For the reconstruction, this means that after rendering projection images have
to be re-uploaded to the graphics card, resulting in a slightly worse rendering
performance than when interrupts are prohibited. For the separate transfer of
sub-images there is only little latency between the request and display of an im-
age on the front-end node which gives the impression of a more fluid interaction,
while in our test setup the time until the last image is received on the head node
is much longer. This is partly due to the decrease in network throughput and
the potential interruption of the image transfer by higher priority messages. But
more significantly, a node potentially has to wait the reconstruction time of up to
14 s for a sub-volume block to be completed by the reconstruction until rendering
can be started. This happens more often the more nodes are involved and hin-
ders scaling with the cluster size of the average latency until the last image has
been received. Please note, however, that the system always remains responsive
as it can use the coarse volume data that is available from the beginning.

Figure 3 (right) points out the mutual influence of the reconstruction, the
segmentation and user interaction during the reconstruction phase. Frequently
interrupting the reconstruction by manipulating the scene increases overall re-
construction time and subsequently also segmentation time. The latter is caused
by the fact that all sub-volumes have to be read for rendering from disk resulting
in reduced I/O performance of the segmentation threads. The same holds true
for reconstruction performance, but in this case both computations additionally
conflict in the usage of the GPU.

When reconstructing a 20483 volume from 1440× 20482 projection images on
eight nodes, data distribution takes ∼13.5 min due to the considerable need for
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Fig. 4. From left to right: The coarse 2563 volume, a partially reconstructed volume,
the fully reconstructed high-resolution 10243 volume and an intermediate state when
the left part of the volume has already been segmented

disk swapping already in this first phase. The reconstruction needs ∼ 103 min,
which is about 84 times longer than reconstructing the 10243 volume. The scal-
ing behaviour is severly hindered by I/O performance in this case due to the
excessive need for data swapping, which affects primarily the storage/access of
the input data (23 GB versus 4 GB of RAM). Sub-volume sizes are further lim-
ited to 2563 due to GPU memory restrictions, which requires a total of 512
sub-volumes to cover the complete volume – resulting in 19 times more accesses
to projection images and sub-volumes. This significantly adds to the permanent
memory pressure as the ratio of projection images and sub-volumes that can be
stored in memory is already eight times worse in comparison to the 10243 case.

6 Conclusion and Future Work

We introduced a distributed software architecture for the 3D reconstruction of
computer tomography data sets while continuously visualising and segmenting.
Exploiting the computational power of GPUs, our system provides a fast prelim-
inary reconstruction and visualisation, which allows for prioritising interesting
sub-volume blocks. While the reconstruction is in progress, the visualisation is
continuously kept up-to-date by integrating all available high-resolution blocks
immediately into the rendering. For that, we use a hybrid CUDA-based volume
raycaster that can replace low resolution blocks with pre-rendered images. We
also leverage multi-core CPUs for parallel volume segmentation, which is often
utilized for advanced processing steps as well as the support of visual analysis.
As this is executed in parallel with the reconstruction on the GPU, the user can
switch the render mode to segmentation on a per block base display shortly after
the sub-volume has been reconstructed. In our tests, we could see a 2563 pre-
view of a 10243 data set after 30 seconds and the full resolution volume after less
than three minutes. A large 20483 volume could be reconstructed in 103 minutes,
but the process was hampered by the limited I/O performance and GPU and
main memory. Testing our system with a bigger cluster and a faster distributed
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filesystem therefore remains for future work. Our architecture could be further
extended by (semi-) automatically assisting the user during the sub-volume se-
lection by pointing out regions that could be of high interest, e. g. by identifying
areas with large gradients in the coarse volume.
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Abstract. Modern pathology broadly searches for biomarkers which are predic-
tive for the survival of patients or the progression of cancer. Due to the lack of
robust analysis algorithms this work is still performed manually by estimating
staining on whole slides or tissue microarrays (TMA). Therefore, the design of
decision support systems which can automate cancer diagnosis as well as objec-
tify it pose a highly challenging problem for the medical imaging community.

In this paper we propose Relational Detection Forests (RDF) as a novel object
detection algorithm, which can be applied in an off-the-shelf manner to a large
variety of tasks. The contributions of this work are twofold: (i) we describe a
feature set which is able to capture shape information as well as local context.
Furthermore, the feature set is guaranteed to be generally applicable due to its
high flexibility. (ii) we present an ensemble learning algorithm based on random-
ized trees, which can cope with exceptionally high dimensional feature spaces
in an efficient manner. Contrary to classical approaches, subspaces are not split
based on thresholds but by learning relations between features.

The algorithm is validated on tissue from 133 human clear cell renal cell car-
cinoma patients (ccRCC) and on murine liver samples of eight mice. On both
species RDFs compared favorably to state of the art methods and approaches the
detection accuracy of trained pathologists.

1 Introduction

Clear Cell Renal Cell Carcinoma: Renal cell carcinoma (RCC) is one of the ten
most frequent malignancies in Western societies and can be diagnosed by histological
tissue analysis. Current diagnostic rules rely on exact counts of cancerous cell nuclei
which are manually counted by pathologists. The prognosis of renal cancer is poor
since many patients suffer already from metastases at first diagnosis. The identification
of biomarkers for prediction of prognosis (prognostic marker) or response to therapy
(predictive marker) is therefore of utmost importance to improve patient prognosis.
Various prognostic markers have been suggested in the past, but conventional estimation
of morphological parameters is still most useful for therapeutical decisions. Clear cell
RCC (ccRCC) is the most common subtype of renal cancer and it is composed of cells

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 367–378, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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with clear cytoplasm and typical vessel architecture. ccRCC shows an architecturally
diverse histological structure, with solid, alveolar and acinar patterns. The carcinomas
typically contain a regular network of small thin-walled blood vessels, a diagnostically
helpful characteristic of this tumor.

Murine Tissue Specimen Analysis: Inflammatory disorders of the liver can be clas-
sified by histological analysis where exact counts of proliferating organ specific cells
is important for various studies. We propose a completely automated image analysis
pipeline to count cell nuclei that are indicated by a proliferation marker (MIB-1) based
on the analysis of immunohistochemical staining of mouse tissues. Most laboratories
that are dealing with evaluation of immunohistochemically stained tissue specimens are
confronted with very tedious, time consuming and thereby prone to error analysis. Cur-
rent image analysis software requires extensive user interaction to properly identify cell
populations, to select regions of interest for scoring, to optimize analysis parameters,
and to organize the resulting raw data. Due to these facts in current software, typically
pathologists manually assign a composite staining score for each spot during many
microscopy sessions over a period of several days. Manual scoring also introduces a
possible bias when investigations are not performed on the same day or for too many
hours in one session.

Motivation: The absence of an objective ground truth requires to generate a gold stan-
dard by combining the knowledge of expert pathologists and computerized systems
enabling scientists to count cells in a high throughput fashion. These counts are indis-
pensable for the training of classifiers, for their validation and it is highly non-trivial to
acquire them from a technical as well as statistical viewpoint. To facilitate the labelling
procedure for trained pathologists, we developed dedicated labelling tools for tissue
specimens. The software enables the user to view single tissue areas and it provides
zooming and scrolling capabilities. It is possible to annotate the image with vectorial
data in SVG (support vector graphics) format and to mark cell nuclei of different cell
types which are recognized by their shape, vessels and other biological structures. An
additional requirement to the software is the usability on a tablet PC so that a scien-
tist/pathologist can perform all operations with a pen alone in a simple an efficient
manner. In the domain of cytology, especially blood analysis and smears, automated
analysis is already established [1]. The big difference to histological tissues is the ho-
mogeneous background on which the cells are clearly distinguishable and the absence
of vessels and connection tissue. The isolation of cells simplifies the detection and seg-
mentation process of the cells significantly. A similar simplification can be seen in the
field of immunofluorescence imaging [2]. Only the advent of high resolution scanning
technologies in recent years made it possible to consider an automated analysis of histo-
logical slices. Cutting-edge scanners are now able to scan slices with resolution, compa-
rable to a 40× lens on a light microscope. In addition the automated scanning of staples
of slices enables an analysis in a high throughput manner.
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2 Methods

2.1 Tissue Preparation and Scanning

Murine Tissue: The tissue blocks were generated in a trial at the Department of Pathol-
ogy from the University Hospital Zürich. Murine hepatic tissue from independent ex-
periments were formalin fixed and paraffin embedded. Sections were cut at a thickness
of 2µm, stained with the MIB-1 (Ki-67) antigen and stored at 4o Celsius till use. Slices
from the murine tissue block and the RCC TMA were scanned on a Nanozoomer C9600
virtual slide light microscope scanner from HAMAMATSU. The magnification of 40×
resulted in a per pixel resolution of 0.23µm. Finally 11 patches of size 2000 × 2000
pixel were randomly sampled from whole tissue slides of each of the 8 mice.

Human Renal Cell Carcinoma: The tissue microarray block was generated in a trial
from the University Hospital Zürich. The TMA slides were immunohistochemically
stained with the MIB-1 (Ki-67) antigen. Scanning was performed as above and the
tissue microarry was tiled into 133 single spots of size 3000× 3000 pixel, representing
one patient each.

2.2 Voronoi Sampling

It is common in object detection frameworks [3,4,5] to randomly choose negative back-
ground samples. Therefore first, points are uniformly sampled from an interval for each
coordinate and second, points which are closer to a positive sample than a predefined
threshold are discarded. On images with dense packing of multiple object, as it is the
case in most cell detection tasks, this procedure leads to two main problems: (i) Uniform
sampling with rejection results on one hand in a higher percentage of negative samples
in areas with sparse object distribution and on the other hand in very few samples in
dense packed areas. Hence negative samples are lacking especially there, where differ-
entiation between object and background is difficult. (ii) Without specific presorting or
local sampling algorithms, uniform sampling can be cumbersome and slow in domains
with dens packed objects.

To overcome these drawbacks we propose a simple sampling algorithm which we
term Voronoi Sampling. A Voronoi diagram or Dirichlet tessellation is a decomposition
of a metric space determined by distances to a specified discrete set of objects in this
space. In a multiple object detection scenario these mathematical objects are the centers
of the queried objects.

To create a Voronoi diagram first a Delaunay triangulation is constructed, second the
circumcircle centers of the triangles is determined, and third these points are connected
according to the neighborhood relations between the triangles. In the experiments in
Section 3 the Voronoi tessellation is created based on the joint set of nuclei from both
pathologists to prevent the use of good and ambiguous nuclei as negative instances
for learning. In contrast to uniform sampling, using a tessellation has the additional
advantage that the negative samples are concentrated on the area of tissue and few
samples are spent on the homogeneous background. Figure 1 shows a comparison of
Voronoi and uniform rejection sampling.
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(a) (b) (c)

Fig. 1. Voronoi Sampling. (a) Voronoi tessellation of the input space based on labeled nuclei. (b)
Sampling negative instances from nodes of the Voronoi tessellation (red dots). Cell nuclei are
marked with blue crosses. (c) Uniform rejection sampling in the whole input space. The marginal
histograms show the frequency of negative samples. In contrast to uniform sampling, using a
tessellation has the additional advantage that negative samples are concentrated on the area of
tissue and few samples are spent on the homogeneous background.

2.3 Feature Space

In this framework we consider the following simple feature base. The discrete coordi-
nates of two rectangles R1 and R2 are sampled uniformly within a predefined window
size w:

Ri = {cx1, cy1, cx2, cy2}, ci ∼ U(x|0, w)

For each rectangle the intensities of the underlying gray scale image are summed up and
normalized by the area of the rectangle. The feature fR1,R2(s) evaluates to a boolean
value by comparing these quantities:

fR1,R2(s) = I

(∑
i|xi∈R1

xi∑
i|xi∈R1

1
<

∑
i|xi∈R2

xi∑
i|xi∈R2

1

)
,

where xi is the gray value intensity of pixel i of sample s = {x1, x2, . . . , xn}. From a
general point of view this definition is similar to generalized Haar features except the
fact that not the difference between rectangles is calculated but the relation between
them. For example, in the validation experiments a window size of 65 × 65 pixels
was chosen. Taking into account that rectangles are flipping invariant this results in(
(644)/4

)2 ≈ 2 · 1013 possible features.
Putting this into perspective, the restriction of the detector to windows of size 24×24

leads to ∼ 6.9 ·109 features which are significantly more than the 45, 396 Haar features
from classical object detection approaches [3].

For such huge feature spaces it is currently not possible to exhaustively evaluate
all features while training a classifier. Approaches like AdaBoost [6] which yield very
good results for up to hundreds of thousands of features are not applicable any more. In
Section 2.4 we propose a randomized approach to overcome these problems.
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Considering relations between rectangles instead of cut-offs on differences leads to
a number of benefits:

Illumination Invariance: A major problem in multiple object detection in general and
on microscopic images of human tissue in special are vast differences of illumina-
tion within a single image. In natural images this can be due to shadows or fog
and in histopathology it is mainly due to varying thickness of the slide or imperfect
staining. Taking into account only the relation between rectangles lead to illumi-
nation invariant features which give the same response for high and low contrast
patches as long as the shape of the object is preserved. It has to be noted, that due
to the directionality of the relation they fail if the image is inverted. In general, il-
lumination invariance speeds up the whole analysis process because neither image
normalization nor histogram equalization are required.

Fast Evaluation: The most time intensive step in the induction of tree classifiers is
the repeated evaluation of features. In the classical textbook approach as followed
by [7,6,3] at each node all possible cut-offs on feature values are evaluated for
every feature exhaustively. and testing each intermediate split. In the worst case
the number of feature evaluations is as high as the number of samples at a given
node. Recently [8] proposed extremely randomized trees to overcome this problem.
In their approach only a small number of cut-offs is randomly sampled to reduce
the number of tests. Instead of ordering all feature values only the maximum and
minimum have to be calculated and the cut-offs are drawn uniformly. The only
assumption necessary for this approach is, that the feature values for all samples
increase linearly. Given an exponential or logarithmic behavior a low number of
sampled cut-offs are not able to capture the power of the feature.

In contrast to that the proposed features require only one single evaluation. In
practice this allows for testing hundreds or thousands of features per split with the
same number of CPU cycles classical approaches needed to test all thresholds of a
single feature. Analyzing single features, the use of relations instead of cut-offs on
differences seems to lead to lower variance and higher bias.

Ensemble Diversity: One of the main concerns in ensemble learning is to induce suffi-
ciently diverse base classifiers. Increased diversity leads to increased performance.
Randomized algorithms as described in Section 2.4 can benefit from the enormous
size of the described feature space. Leaning trees by randomly selecting features
from this large set guarantees small similarity between base classifiers. Even if
thousands of features are evaluated at each split, the chances that two trees are built
of the same features are negligible.

2.4 Tree Induction

The base learners for the ensemble are binary decision trees, designed to take advan-
tage of large feature spaces as described in Section 2.3. Tree learning follows loosely
the original approach for random forests described in [7]. A recursive formulation of the
learning algorithm is given in procedure LearnTree. The sub procedure
SampleFeature returns a feature consisting of two rectangles uniformly sampled
within a predefined window as described in Section 2.3. In accordance with [7] the
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Procedure LearnTree
Input: set of samples S = {s1, s2, . . . , sn}
Input: depth d; max depth dmax; features to sample mTry

Init: l̂abel = null; g = − inf; Nleft = null; Nright = null1

if (d = dmax) OR (isPure(S)) then2

l̂abel =

{
T if |{sj = T}| > |{sj = F}|; j = 1, . . . , |S|
F else3

else4

for i = 0, i < mTry, i + +) do5

fi = SampleFeature()6

SL = {sj |fi(sj) = T}; SR = {sj |fi(sj) = F}; j = 1, . . . , |S|7

gi = ∆̂G(SL, SR)8

if gi > g then9

f∗ = fi; g = gi10

end11

end12

NL = LearnTree({sj |f∗(sj) = T})13

NR = LearnTree({sj |f∗(sj) = F})14

end15

Gini Index is used as splitting criterion, i.e. the Gini gain is maximized. At a given
node, the set S = s1, . . . , sn holds the samples for feature fj . For a binary response Y
and a feature fj the Gini Index of S is defined as:

Ĝ(S) = 2
Nfalse

|S|

(
1− Nfalse

|S|

)
, Nfalse =

∑
si

I (fj(si) = false) ,

where |S| is the number of all samples at the current node and Nfalse denotes the
number of samples for which fj evaluates to false. The Gini indices Ĝ(SL) and Ĝ(SR)
for the left and right subset are defined similarly. The Gini gain resulting from splitting
S into SL and SR with feature fj is then defined as:

∆̂G(SL, SR) = Ĝ(S)−
(
|SL|
|S| Ĝ(SL) +

|SR|
|S| Ĝ(SR)

)
,

where S = SL ∪ SR. From that follows, that the larger the Gini gain, the larger the
impurity reduction. Recently [9] showed that the use of Gini gain can lead to selection
bias because categorical predictor variables with many categories are preferred over
those with few categories. In the proposed framework this is not an obstacle due to the
fact that the features are relations between sampled rectangles and therefore evaluate
always to binary predictor variables.

2.5 Multiple Object Detection

For multiple object detection in a gray scale image every location on a grid with step
size δ is considered as an independent sample s which is classified by the ensemble.
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Therefore each tree casts a binary vote for s being and object or background. The whole
ensemble predicts probability of being class 1: RDF (s) =

∑
i|ti(s)=1 1/

∑
i 1, where

ti is the ith tree. This procedure results in an accumulator or probability map for the
whole image.

The final centroids of detected objects are retrieved by applying weighted mean shift
clustering with a circular box kernel of radius r. During shifting, the coordinates are
weighted by the probabilities of the accumulator map. While this leads to good results
in most cases, homogeneous ridges in the accumulator can yield multiple centers with a
pairwise distance smaller than r. To this end we run binary mean shift on the detection
from the first run until convergence. The radius is predefined by the average object size.
If the objects vary largely in size the whole procedure can be employed for different
scales. To this end, in accordance with [3], not the image but the features respectively
the rectangles are scaled.

2.6 Staining Classification

To differentiate a stained cell nucleus from a non-stained nucleus a simple color model
was learned. Based on the labeled nuclei color histograms were generated for both
classes based on the pixels within the average cell nuclei radius. To classify a nucleus
on a test image the distance to the mean histograms of the both classes is calculated.

2.7 Survival Analysis

The main goal of tissue microarray analysis for the proliferation marker MIB-1 is the
search for subgroups of patients which show different survival outcomes. Therefore,
the patients are split in two (1/2 : 1/2) groups based on the estimated percentage of
cancerous nuclei which express MIB-1. Then the Kaplan-Meier estimator is calculated
for each subgroup. This involves first ordering the survival times from the smallest to
the largest such that t1 ≤ t2 ≤ t3 ≤ . . . ≤ tn, where tj is the jth largest unique survival
time. The Kaplan-Meier estimate of the survival function is then obtained as

Ŝ(t) =
∏

j:t(j)≤t

(
1− dj

rj

)
where rj is the number of individuals at risk just before tj , and dj is the number of
individuals who die at time tj .

To measure the goodness of separation between two or more groups, the log-rank test
(Mantel-Haenszel test) is employed which assesses the null hypothesis that there is no
difference in the survival experience of the individuals in the different groups. The test
statistic of the log-rank test (LRT) is χ2 distributed: χ̂2=[

∑m
i=1 (d1i − ê1i)]

2
/
∑m

i=1 v̂1i

where d1i is the number of deaths in the first group at ti and e1i = n1j
di

ni
where di is

the total number of deaths at time t(i), nj is the total number of individuals at risk at
this time, and n1i the number of individuals at risk in the first group.

2.8 Performance Measure

One way to evaluate the quality of the nuclei detection is to consider true positive (TP ),
false positive (FP ) and false negative (FN ) rates. The calculation of these quantities
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is based on a matching matrix where each boolean entry indicates if a machine ex-
tracted nucleus matches a hand labeled one or not within the average nucleus radius. To
quantify the number of correctly segmented nuclei, a strategy is required to uniquely
match a machine detected nucleus to one identified by a pathologist. To this end we
model this problem as bipartite matching problem, where the bijection between ex-
tracted and gold-standard nuclei is sought inducing the smallest detection error [10].
This prevents overestimating the detection accuracy of the algorithms. To compare the
performance of the algorithms we calculated precision (P = TP/(TP + FP )) and
recall (R = TP/(TP + FN)).

2.9 Implementation Details

The ensemble learning framework was implemented in C# and the statistical analysis
was conducted in R [11]. Employing a multi threaded architecture tree ensembles are
learned in real time on a standard dual core processor with 2.13 GHz. Inducing a tree
for 1000 samples with a maximum depth of 10 and sampling 500 features at each split
takes on average less than 500ms. Classifying an image of 3000×3000 pixels on a grid
with δ = 4 takes approximately ten seconds using the non optimized C# code.

3 Experiments and Results

3.1 Generating a Gold Standard

The absence of an objective ground truth requires generating a gold standard by com-
bining the knowledge of expert pathologists. These labels are indispensable for the
training of classifiers, for their validation and it is highly non-trivial to acquire these
labels from a technical as well as statistical point. Although studies were conducted on
a global estimation of staining on TMA spots [12,13], to our knowledge this is the first
in depth study for tissue microarrays which incorporates expert labeling information
down to the detail and precision of single cell nuclei.

To facilitate the labeling process for trained pathologists, we developed a special
labeling tool, dedicated for TMA spots. The software allows the user to view single
TMA spots and it provides zooming and scrolling capabilities. It is possible to annotate
the image with vectorial data in SVG (support vector graphics) format and to mark cell
nuclei, vessels and other biological structures. An additional demand to the software
was the usability on a tablet PC so that a pathologist can perform all operations with a
pen alone in a simple an efficient manner.

Two trained pathologists and experts in renal cell carcinoma from the University
Hospital Zürich used the software to annotate TMA spots of 9 different patients. They
marked the location of each cell nucleus and its approximates size. In total each pathol-
ogist has detected more than 2000 cell nuclei on these images. This tedious process
demanded several days of work and was performed independently of each other. There-
fore, the detection results of the two pathologists differ for approximately 15% of the
nuclie, which also depicted in Figure 2.
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Fig. 2. Precision/Recall plot of cross validation results on the renal clear cell cancer (RCC)
dataset. For Relational Detection Forests (RDF) curves for the nine single patients and their av-
erage (bold) are depicted. RDF with the proposed feature base outperforms previous approaches
based on SVM clustering [14], mathematical morphology and combined methods [15]. The inter
pathologist performance is depicted in the top right corner.

3.2 Clear Cell Renal Cell Carcinoma (ccRCC)

Detection Accuracy: Three fold cross validation was employed to analyze the detec-
tion accuracy of RDFs. The nine completely labeled patients were randomly split up
into three sets. For each fold the ensemble classifier was learned on six patients and
tested on the the other three. During tree induction, at each split 500 features were sam-
pled from the feature generator. Trees were learned to a maximum depth of 10 and the
minimum leave size was set to 1. The forest converges after 150 to an out of bag (OOB)
error of approximately 2%. Finally, on the test images each pixel was classified and
mean shift was run on a grid with δ = 5.

Figure 2 shows precision/recall plot for single patients and the average result of the
RDF object detector. The algorithm is compared to point estimates of several state of
the art methods: SVM clustering was successfully employed to detect nuclei in H&E
stained images of brain tissue by [14]. SVMmorph [15] is an unsupervised morpholog-
ical [16] approach for detection combined with an supervised support vector machine
for filtering. The marker for the pathologists shows the mean detection accuracy if al-
ternately one expert is used as gold standard. On average the pathologists disagree on
15% of the nuclei.

Although only grayscale features were used for RDF it outperforms all previous ap-
proaches which also utilize texture and color. This observation can be a cue for further
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research that the shape information captured in this framework is crucial for good de-
tection results.

Survival Estimation: The only objective and undisputed target in the medical domain
relates to the survival of the patient. The experiments described in Section 1 show the
large disagreement between pathologists for the estimation of staining. Therefore, the
adaption of an algorithm to the estimates of one pathologist or to a consensus voting
of a cohort of pathologist is not desirable. Hence we validate the proposed algorithm
against the right censored clinical survival data of 133 patients. In addition these results
were compared to the estimations of an expert pathologist specialized on renal cell
carcinoma. He analyzed all spots in an exceptional thorough manner which required
him more than two hours. This time consuming annotation exceeds the standard clinical
practice significantly by a factor of 10-20 and, therefore the results can be viewed as an
excellent human estimate for this dataset.

Figure 3 shows Kaplan-Meier plots of the estimated cumulative survival for the
pathologist and RDF. The father the survival estimated of the two groups are sepa-
rated the better the estimation. Quantifying this difference with log-rank test shows that
the proposed algorithm is significantly (p = 0.0113) better than the trained pathologist
(p = 0.0423).

Fig. 3. Kaplan-Meier estimators showing significantly different survival times for renal cell car-
cinoma patients with high and low proliferating tumors. Compared to the manual estimation from
the pathologist (a) (p = 0.04), the fully automatic estimation from the algorithm (b) performs
better (p = 0.01) in terms of survival prediction on the partitioning of patients into two groups
of equal size.

3.3 Proliferation in Murine Liver Tissue

To validate the performance of the proposed algorithm on diverse tissue samples and
different species we conducted an experiment with liver tissue from eight mice. In ad-
dition this experiment was designed to learn the difference between non parenchymal
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cells and parenchymal, organ specific cell types in order to distinguish between organ
prone proliferation and inflammatory cell derived positivity for MIB-1. Figure 4 shows
a comparison of MIB-1 staining in 88 images of murine liver tissue between case and
control groups. Although the algorithm is as well capable as the pathologist in differ-
entiating between case and control (p < 0.001) the absolute estimates of stained nuclei
are much higher. This is mostly due to wrong hits in area of high lymphocyte density
as shown in the tissue image in Figure 4.

Fig. 4. Left: Murine liver tissue with parenchymal nuclei of interest in the bottom right part of the
image. The goal is to estimate the number of stained nuclei of this specific type. Detections are
shown as pink dots. Most of the inflammatory cells in the top left part are correctly not detected.
Right: Comparison of MIB-1 staining in 88 images of mouse liver tissue between case and
control groups. Although the algorithm is as well capable as the pathologist in differentiating
between case and control (p < 0.001) the absolute estimates of stained nuclei are much higher.

4 Conclusion

We presented a framework for learning Relational Detection Forests (RDF) for object
detection. A comprehensive study was conducted on two different species to investigate
the performance of the algorithm in terms of detection accuracy and survival estimation.

The proposed framework is characterized by the following properties: (i) Simplicity:
It can be used off-the-shelf to train object detectors in near real time for large variety
of tasks. (ii) Novel Feature Basis: The introduced relational features are able to cap-
ture shape information, they are illumination invariant and extremely fast to evaluate.
(iii) Randomization: The randomized tree induction algorithm is able to handle the
intractable large feature space and to take advantage of it by increasing diversity of the
ensemble. (iv) Real World Applicability: We successfully applied the proposed RDF
algorithm to real world problems in computational pathology. We are convinced that
the availability of an off-the-shelf object detection framework is of immense benefit for
medical research where fast and accurate adaption to a large number of cancer types is
indispensable.
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Abstract. The purpose of this paper is to present new texture descriptors ded-
icated to segmentation of solid textures. The proposed texture attributes are in-
spired by the human description of texture and allows a general description of
texture. Moreover it is more convenient for a user to understand features signifi-
cation particularly in a man-aided application. In comparison with psychological
measurements for human subjects, our characteristics gave good correspondences
in rank correlation of 12 different solid textures. Using these texture features, seg-
mentation results obtained with the classical K-means method on solid textures
and real three-dimensional ultrasound images of the skin are presented and dis-
cussed.

Keywords: Texture features, Segmentation, Solid textures, 3D Ultrasound
Images.

1 Introduction

Texture analysis is an important topic of image analysis and computer vision. It is used
to identify a given texture or to divide an image in several regions with similar char-
acteristics. A great number of methods have been proposed to analyze textures. They
can be classified in four categories [1], that is to say statistical [2,3], geometrical [4],
frequential [5] and model based methods [6].

The disadvantage of the major part of theses methods is that they do not have a gen-
eral applicability and can not identify some classes of texture. For example some of
these approaches are not able to describe the granularity properties. In comparison, the
human visual system is efficient for almost all types of texture and allows outstanding
performance even without a good context. For instance, the difficulty to give a gen-
eral definition of texture is well-known. Indeed, a texture is an abstract thing, hard to
define literally. Nevertheless, a texture can be described using human understandable
adjectives. Usually, humans use and are able to quantify textural properties like direc-
tionality, coarseness, contrast, granularity, shape etc. In order to have general texture
measures, some authors [7,8] made some research in this direction proposing a descrip-
tion of texture using textural properties understandable by humans.

With some classical texture analysis methods, it is not always obvious to describe
what a given feature allows to measure. For a man-aided application, it is better to have
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a set of features which corresponds to the one used by human for the description of
texture. Then it is more convenient for a user to select which features are interesting to
use in a given application.

Texture analysis methods have been mainly developed and experimented on 2D tex-
ture images. Recently, some of these methods have been investigated to analyze solid
texture [9]. In the medical domain, there is an increasing use of three-dimensional ac-
quisition technology that needs three-dimensional segmentation or analysis methods.
Medical images like volumetric ultrasound images are complex and texture analysis is
very efficient for tissue classification and segmentation [10].

This paper presents 3D texture features, inspired by human description of texture,
in order to have general texture measures. Section 2 presents a detailed description of
the features and the assigned computation method. Section 3 shows the correspondance
between the proposed features and the human vision. To validate our proposition, our
texture descriptors are used to segment synthetic solid textures and 3D ultrasound im-
ages. Section 4 describes the segmentation process and section 5 presents a comparison
of texture segmentation between our method and the grey co-occurrence matrix of Har-
alick. Section 6 shows segmentation results on 3D ultrasound images. To conclude, we
provide a discussion about our work and introduce different prospects.

2 Understandable Features for Segmentation of Solid Textures

In this section, a set of 3D texture features, inspired by the human way to describe a
texture, is proposed. The set of characteristics has been chosen using analysis results
from previous works [7,8]. The chosen characteristics are the following: Granularity,
which can be represented by the number of three-dimensional patterns constituting the
texture, shape information about these patterns, regularity of these patterns, contrast
and roughness of the image, which are also important information.

2.1 A Multiresolution Schema for Texture Segmentation

The proposed approach allows us to give a description of an image using texture features
for several resolutions (Figure 1). To do so, we use a 3D discrete wavelet transform.
In [5], Mallat proposes a decomposition scheme using filters: a highpass filter, which
allows to obtain detail coefficients and a lowpass filter which gives approximation co-
efficients. Roughness is computed using detail coefficients whereas the other proposed
features are computed using approximation coefficients.

During the segmentation process, the proposed features are computed for each voxel
and for several resolutions. In order to obtain a segmentation of the start image, a step of
feature upsampling is necessary for each resolution. Then, a voxel of the initial image is
described by a vector containing 6n different features with n the number of resolutions
and 6 the number of proposed features. At last, the K-means algorithm [11] allows to
generate a segmentation using the set of computed vectors.

2.2 Geometric Study of 3D Textures

We have chosen to describe the geometric structure of the textures with the help of the
three-dimensional connected components which can be viewed as the patch patterns in
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Fig. 1. Multiresolution segmentation

the texture. To compute connected components, we propose a similar method to the one
presented by Shoshany [12], that is to say a gray-level textured image is decomposed
into a progressive sequence of binary textures in order to study patterns and their evo-
lution. In our approach, a clustering algorithm applied on the voxels of the initial 3D
image allows us to identify a set of thresholds used to compute the sequence of binary
versions of the image. Then, connected components are computed for each binary tex-
tures of the produced sequence. Figure 2 presents a binarized image with examples of
connected components. If we consider two pointsA andB included in a sub-set S of an
image I , these two points are connected in S if and only if there exists a connecting path
in S which links A and B. The connected components of an image are obtained by as-
sociating to each connected voxel the same label. To do so there are several algorithms
for two-dimensional images and the main ones are presented by Chassery and Mon-
tanvertin in [13]. Among these methods, we have chosen to adapt to three dimensions
an algorithm which only needs two scans to process an image. With this algorithm, the
complexity depends on the size of the image whereas with a sequential algorithm, the
number of iterations depends on the complexity of the objects. Connected components
represent the basic objects inside binary textures. Their analysis can provide important
geometrical and volume information and it allows computation of features like gran-
ularity which corresponds to the number of patterns per volume unit, the volume and
compacity of each connected components providing information about the shape of tex-
ture patches. The regularity can also be estimated using the variance of these patterns.
In our case, the number of patterns corresponds to the number of connected components
(nbCC) per volume unit. For a given texture, if the number of connected component
is important for the resolution β then there is an important number of patterns and the
granularity (fgranβ

) of the texture is significant.
Besides the number of connected components, we compute shape characteristics

with the average volume and the average compacity of connected components. Like
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(a) (b) (c) (d)

Fig. 2. a) An ultrasound image, b) The same ultrasound image after a binarization, [c-d] Con-
nected components extracted from different binary images

the number of connected components, the volume is an additional information to iden-
tify the fineness of a texture. The average volume of connected components is computed
as follows:

fvolβ (x, y, z) = (
nbCCβ∑

i=1

Vi,β)/nbCCβ (1)

where Vi,β is the volume of the connected component i for the resolution β. The consid-
ered connected components are located in a cube of size N3 centered at the coordinates
(x, y, z).

Compacity of connected components gives information about pattern shape. A tex-
ture with an important compacity is a texture with compact patterns. Otherwise this is a
texture with elongate shapes. This characteristic is invariant by translation, rotation but
also to scale changes [14]. It has been used to texture characterization by Goyal et al in
[15]. The compacity of a connected component can be computed as follows:

Ci,β =
S2

i,β

Vi,β
(2)

where Si,β is the surface and Vi,β is the volume of connected component i for the
resolution β. It is then possible to compute the average compacity fcompβ

:

fcompβ
(x, y, z) =

1
nbCCβ

nbCCβ∑
i=1

Ci,β (3)

We can also obtain information about the regularity of a texture from the study of the
connected components. Therefore, we decided to use the compacity variance. We have
seen that this characteristic is invariant by any transformation [14]. The shape of pat-
terns is the only element that affects the variance feature. A low variance of the compac-
ity indicates an important regularity of the connected components whatever their spatial
organization is.

fregβ
(x, y, z) = E(C2

β)− (E(Cβ))2 (4)

where E is the expected value.
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2.3 Roughness Measure Using the Discrete Wavelet Transform

The surface of a rough texture presents a high number of asperities. In an image, rough-
ness can be described as a set of quick spatial transitions with varying amplitude. From
a frequential point of view, the image asperities in the spatial domain correspond to the
presence of high frequencies. Detail coefficients give a description of high frequencies
in an image and this in several directions. It is then possible to have an estimation of the
texture roughness for a specific resolution.

After the decomposition process, we have a set of subband which can be used to
compute the features. Generally researchers [16,17] use first order statistics like aver-
age, energy, variance etc. Energy is one of the most used statistics:

E(x, y, z) =
N∑

i=1

N∑
j=1

N∑
k=1

|c(i, j, k)| (5)

where c(i, j, k) is the set of wavelet coefficients in a cube of size N3 corresponding
to voxels in a subband at coordinates (x, y, z). To estimate the roughness of three-
dimensional textures, we use the detail coefficients of the wavelet decomposition.
Indeed these coefficients allow the identification of high frequencies. For a given reso-
lution, we propose to compute this texture attribute:

frghβ
(x, y, z) =

M∑
α=1

(
N∑

i=1

N∑
j=1

N∑
k=1

|wα,β(i, j, k)|)/M (6)

where frghβ
is the roughness at the resolution β, wα,β(i, j, k) corresponding to the

set of detail coefficients in a cube of size N3 centered at a voxel of a subband α at
the coordinates (x, y, z) and M being the number of detail coefficient subbands for a
resolution.

2.4 Statistical Measure for Contrast

In [2,3], Haralick proposes a measure to estimate contrast using second order statis-
tics. To do so, the moment of inertia is computed from the main diagonal of the co-
occurrence matrix. Nevertheless, the construction of a co-occurrence matrix, only to
obtain an estimation of the contrast, can be expensive in computing time. In [7], Tamura
et al claim that four factors are supposed to influence the contrast difference between
two textures. They are the dynamic range of gray-levels, the polarization of the distribu-
tion of black and white on the gray-level histogram or ratio of black and white areas, the
sharpness of edges, and the period of repeating patterns. They propose to approximate
the contrast with a measure incorporating the two first factors. We use this approxima-
tion in our work. To obtain a measure of polarization they use the kurtosis α4. It allows
a measurement of the disposition of probability mass around their center.

α4,β =
µ4,β

σ4
β

(7)
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where µ4 is the fourth moment about the mean and σ2 the variance of gray-levels for
the resolution β. In order to take into account the dynamic range of gray-levels, they
combine the kurtosis with the standard deviation as follows:

fcontβ
(x, y, z) =

σβ

αn
4,β

(8)

where n is a positive value. In their paper, Tamura et al make comparisons between
psychological experiments and their operators before concluding that the value n = 1/4
gives the best approximation. At last, the values of σβ and αn

4,β are computed in a cube
of size N3 centered at the coordinates (x, y, z).

3 Psychological Experiments

The purpose of these experiments is to show that there is a strong correspondance be-
tween the proposed features and the human vision. Thus, we propose to construct psy-
chometric prototypes and to compare them to our texture measures.

The set of textures presented in Figure 3 has been used in our experiments. These
textures have been constructed using methods presented in [18,19] except for textures
(j) and (l) that are subsets of ultrasound images. Each of them is a volumetric texture

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 3. Set of Solid textures used for psychological experiments
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(texture in the 3D domain) of size 1283 with 256 gray-levels. They have been printed
using a printer HP Color LaserJet 3700 and presented to human subjects.

Our group of human subjects comprises 15 men and 11 women and the major-
ity of them has no knowledge in image and texture analysis. We distributed to each
one of them a questionnaire containing the set of textures (Figure 3) and an explana-
tion of the texture features used in our model. For each feature, textures are classified
in descending order that is to say from the most rough to the most smooth, from the
most regular to the most irregular, etc. Using these questionnaires, we construct a rank-
ing of these textures for each texture attributes. For a given characteristic, a score is
assigned to a texture according to its ranking. For exemple, The most rough takes the
value +12 (for the roughness feature), the second one +11, the last one +1, and this for
all the questionnaires. The addition of the questionnaire scores for each texture allows
to obtain a final ranking for a given texture feature.

Using the proposed texture attributes, we also generate a feature ranking. A vector
of 6 features is computed for each texture in the questionnaire. Here only the first res-
olution is considered (β = 1) because this is the one which corresponds the best to the
observation of textures by human subjects through questionnaires.

3.1 Comparison between Human and Computational Ranking

To compare human and feature ranking, the degree of correspondances between them
has been determined. In this respect, we choose to use the well-known Spearman’s
coefficient of rank correlation which is given as:

rs = 1− 6
n3 − n

n∑
i=1

d2
i (9)

where n is the number of individuals, and di is the difference between the ranks as-
signed to the ith object in the two measurements. The value of this coefficient is be-
tween −1 and 1. Value 1 corresponds to the complete agreement of the two rankings
whereas value −1 indicates complete disagreement. Table 1 presents coefficients of
rank correlations between human and feature ranking.

These results show a huge correlation between human and feature ranking. For the
volume, the Spearman’s coefficient indicates that there is a link between the two mea-
surements with a confidence rate included between 95 and 98 percent. The compacity
feature gives the best result with a confidence rate which tends toward 100 percent. The
volume feature has the smallest correlation results. It can be supposed that it is some-
times difficult for our human subjects to visualise the volume of patterns because of the
3D.

Table 1. Coefficients of rank correlations between human and feature ranking

fgran fcomp fvol freg frgh fcont

0.83 0.9 0.61 0.82 0.75 0.65
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4 Process of Segmentation Using 3D Texture Features

Features presented previously are computed for each voxel of the image being pro-
cessed. A voxel is then described by a vector containing several texture attributes. A
vector is composed of a maximum of 6n different features with n the number of chosen
resolution and 6 the number of proposed feature: Granularity(fgran), shape informa-
tion of patterns(fvol and fcomp), regularity of these patterns(freg), contrast(fcon) and
roughness(frgh). In our approach, texture features have a correspondence with the hu-
man description of texture. It is then easier for a user to make a selection of attributes
to process an image. To produce a clustering of the voxels, we used the K-means al-
gorithm [11]. It allows to classify voxels in subsets according to their texture features.
The main advantages for this approach are its fastness and its low memory cost. Indeed,
the size of the processed images is 3003 which represents a huge number of individuals
(voxels). In terms of performance, K-means algorithm does not guarantee the return of
a global optimum but it allows an efficient clustering of voxels in a low execution time.
Likewise, this method requires the user to choose the number of classes needed for a
segmentation. To provide a solution to this problem, our software gives the possibility
to merge the different classes generated by the K-means algorithm. After the visuali-
sation, the user chooses a large number of classes to obtain a first segmentation. Then,
using a user friendly interface and by merging different classes, he can choose the best
segmentation according to his goals. The merging of classes is achieved by using an as-
cendant hierarchical classification and the two most similar regions are merged at each
step (Figure4). The distance between regions is computed using the texture features of
the centroid of each class. This information is also stored in a xml file and can be given
to the user if needed.

(a) Original image (b) K=10 (c) K=5 (d) K=2

Fig. 4. Examples of segmentation from K = 10 to K = 2

5 Evaluation of Our Method of Texture Segmentation

To evaluate our human understandable features (HUF) method, we made a comparison
with the classical grey level co-occurrence matrix (GLCM) method of Haralick [2,3].

Segmentation results have been produced using 15 different volumetric texture im-
ages (Figure 5): 5 images with 2 classes of textures, 5 images with 3 classes of textures
and 5 images with 4 classes of textures. For the GLCM method we computed the fol-
lowing features: the angular second moment, the variance, the contrast, the correlation,
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 5. Solid texture images: [a-e] 2 classes of textures, [f-j] 3 classes of textures, [k-o] 4 classes
of textures

the entropy, the homogeneity, and the uniformity. To obtain these characteristics, we
computed a co-occurence matrix according to 13 directions in 3D space, and with a dis-
tance d = 1 between a pair of voxels. With our method, we used all the proposed texture
features for one level of decomposition. For these two methods, the considered neigh-
borhood around each voxel is a cube of size 73. To give an evaluation of the produced
segmentation, a metric based on the comparison of regions (voxel classification) has
been used: the normalized partition distance [20]. In [21], Gusfield defines the partition
distance as follows :

Definition 1: Given two partitions P and Q of S, the partition distance is the minimum
number of elements that must be deleted from S, so that the two induced partitions (P
and Q restricted to the remaining elements) are identical.

Table 2, shows the normalized partition distance for each solid texture segmentation.
An ideal segmentation will have a partition distance of 0 whereas an inverse segmen-
tation will generate the value 1. Except for image (e) of 2 classes, our method gives
better segmentation results than Haralick’s gray level co-occurrence matrix. Moreover,
our approach rarely exceeds the value 1, 5 for the partition distance. At last, some im-
ages like (m) and (o) of 4 classes are segmented with difficulty with Haralick features
whereas the proposed features allow to obtain a good segmentation.
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Table 2. Comparison of texture segmentation methods using the normalized partition distance

Number of
classes

Texture
methods

Image (a) to (o)

2 classes
GLCM
HUF

0.0131

0.0100

0.0276

0.0065

0.0462

0.0206

0.0185

0.0107

0.2698

0.3000

3 classes
GLCM
HUF

0.1317

0.0447

0.0917

0.0387

0.2518

0.1305

0.3536

0.1373

0.2534

0.1710

4 classes
GLCM
HUF

0.0984

0.0561

0.1744

0.1050

0.3546

0.1200

0.4767

0.3883

0.3221

0.1298

6 Segmentation Results of Volumetric Ultrasound Images

Sonography of the skin allows the visualization of tumor (cyst, nevus, melanoma, basal
cell carcinoma (BCC) etc.), inflammatory pathologies, scars. The discrimination be-
tween the different lesions is not always obvious but cutaneous sonography is an im-
portant help for detection and diagnosis. The possibility to segment and characterize a
lesion in three dimensions would be very useful in the establishment of therapeutic
strategies. The three-dimensional sonography of the skin is rarely used because of
the lack of three-dimensional image analysis tools but the recent evolution of three-
dimensional probes should allow the emergence of new technics. With a three-
dimensional acquisition, it is possible to obtain features that are inaccessible using two
dimensions. Moreover three-dimensional sonography is well adapted to the supervision
of the evolution of a structure or a lesion notably using volume measures. To evaluate
our system on realistic images and applications, we have provided some dermatologists
with our software in order to help them to collect 3D information about pathologies.
Figure 6 presents segmentation results for different skin ultrasound images. Using a
segmentation, it is possible to extract different things like lesion, tendon, layers of the
skin etc. Figure 6[a-b] shows two nevi, Figure 6[c-d] shows two Histiocytofibroma,
Figures 6[a-d] contains at the left the original three-dimensional ultrasound image, at
the center an image of classified voxels and on the right a mesh of the lesion built using
the segmented image. With these results, it is then possible to perform measures like
volume and depth, in order to help specialists in their diagnostic, to track pathologies
evolution or a more precise excision etc. With a clustering, all the voxels of an image
are classified and it is possible to make a visualization of the different layers of the skin
(figure 6e). For a specialist, this visualization can be interesting. Indeed, layers of the
skin evolve according to the age and it can be interesting to supervise the healing of a
burned skin. This visualization can also be interesting for the evaluation of the effects of
cosmetic products. To evaluate our results, the classified images and their corresponding
meshes have been presented to specialists in ultrasound images. The evaluation is only
a qualitative one at the moment. Producing a ground truth for a two-dimensional ultra-
sound image is not very restrictive. It is possible to obtain different ground truths for the
same image produced by different specialists. But, for a three-dimensional ultrasound
image, it is very difficult and costs a lot of time to create a ground truth. Indeed, it is
necessary to produce an expert segmentation for each two-dimensional cut (for example
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in z-axis direction) of a three-dimensional ultrasound image. With this two-dimensional
ground truth it could be possible to construct a three-dimensional one but the gathering
of the two-dimensional images could generate holes and then problems of precision. It
is then difficult or even impossible to obtain a fine resolution for the evaluation.

(a) Nevus, K=2 (b) Nevus, K=2

(c) Histiocytofibroma, K=3 (d) Histiocytofibroma, K=4

(e) Layers of the skin

Fig. 6. Segmentation of three-dimensional echographic images of the skin

7 Conclusion

This paper presents a set of understandable features for solid texture analysis. These
characteristics are comprehensible by human and allow a better use for a man-aided
application. The following texture attributes have been proposed: the granularity, shape
information with the volume and the compacity of patterns, the regularity with the com-
pacity variance of patterns, roughness and contrast. To prove the strong correspondance
between the proposed features and human vision, psychological experiments have been
presented. To validate, in a quantitative manner, our proposition, our texture descriptors
have been used to segment synthetic solid textures and 3D ultrasound images. Syn-
thetic solid textures allow us to make a comparison of texture segmentation between
our method and Haralick’s gray level co-occurrence matrix. The evaluation of segmen-
tation results obtained using the normalized partition distance shows a better perfor-
mance with our approach. Eventually, we have seen that it is difficult to construct a
ground truth to evaluate three-dimensional ultrasound images. It could be interesting
to discuss with specialists in order to identify and propose metrics for an unsupervised
evaluation to obtain a quantitative and objective evaluation of our proposition. So far,
our results have been validated, in a qualitative way, by dermatologists.



390 L. Paulhac et al.

References

1. Tuceryan, M., Jain, A.K.: 2.1. In: Texture Analysis. The Handbook of Pattern Recognition
and Computer Vision, pp. 207–248 (1998)

2. Haralick, R.M.: Statistical and structural approaches to textures. Proceedings of the
IEEE 67(5), 786–804 (1979)

3. Haralick, R.M., Shanmugam, K., Dinstein, I.: Texture features for image classification. IEEE
Transactions on Systems, Man and Cybernetics 3(6), 610–621 (1973)

4. Tuceryan, M., Jain, A.K.: Texture segmentation using voronoi polygons. IEEE Transactions
On Pattern Analysis And Machine Intelligence 12, 211–216 (1990)

5. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation.
IEEE transaction on Pattern Analysis and Machine Intelligence 11, 674–693 (1989)

6. Chellappa, R., Jain, A.K.: Markov Random Fields Theory and Application. Academic Press,
London (1993)

7. Tamura, H., Mori, S., Yamawaki, T.: Texture features corresponding to visual perception.
IEEE transaction on Systems, Man, Cybernetics 8(6), 460–473 (1978)

8. Amadasun, M., King, R.: Texture features corresponding to textural properties. IEEE trans-
actions on Systems, Man and Cybernetics 19(5), 1264–1274 (1989)

9. Suzuki, M.T., Yoshitomo, Y., Osawa, N., Sugimoto, Y.: Classification of solid textures using
3d mask patterns. In: ICSMC 2004: International Conference on Systems, Man and Cyber-
netics (2004)

10. Noble, J.A., Boukerroui, D.: Ultrasound image segmentation: A survey. IEEE Transactions
on Medical Imaging 25(8), 987–1010 (2006)

11. Coleman, G., Andrews, H.: Image segmentation by clustering. Proceedings of the IEEE,
773–785 (1979)

12. Shoshany, M.: An evolutionary patch pattern approach for texture discrimination. Pattern
Recognition 41, 2327–2336 (2008)

13. Chassery, J.M., Montanvert, A.: Géométrie discrète en analyse d’images (1991)
14. Zhang, J., Tan, T.: Brief review of invariant texture analysis methods. Pattern Recognition 35,

735–747 (2002)
15. Goyal, R., Goh, W., Mital, D., Chan, K.: Scale and rotation invariant texture analysis based

on structural property. In: IECON 1995: Proceedings on the International Conference on
Industrial Electronics, Control, and Instrumentation (1995)

16. Unser, M.: Texture classification and segmentation using wavelet frames. IEEE Transactions
on Image Processing 4, 1549–1560 (1995)

17. Muneeswaran, K., Ganesan, L., Arumugam, S., Soundar, K.R.: Texture classification with
combined rotation and scale invariant wavelet features. Pattern Recognition 38, 1495–1506
(2005)

18. Kopf, J., Fu, C.-W., Cohen-Or, D., Deussen, O., Lischinski, D., Wong, T.-T.: Solid texture
synthesis from 2d exemplars. In: SIGGRAPH 2007: Proceedings of the 34th International
Conference and Exhibition on Computer Graphics and Interactive Techniques (2007)

19. Paulhac, L., Makris, P., Ramel, J.Y.: A solid texture database for segmentation and classifi-
cation experiments. In: VISSAPP 2009: Proceedings of the Fourth International Conference
on Computer Vision Theory and Applications (2009)

20. Cardoso, J.S., Corte-Real, L.: Toward a generic evaluation of image segmentation. IEEE
Transaction on Image Processing 14(11), 1773–1782 (2005)

21. Gusfield, D.: Partition-distance: A problem and class of perfect graphs arising in clustering.
Information Processing Letters 82(9), 159–164 (2002)



Exploiting Mutual Camera Visibility in Multi-camera
Motion Estimation

Christian Kurz1, Thorsten Thormählen1, Bodo Rosenhahn2, and Hans-Peter Seidel1

1 Max Planck Institute for Computer Science (MPII), Saarbrücken, Germany
2 Leibniz University Hannover, Institut für Informationsverarbeitung

Abstract. This paper addresses the estimation of camera motion and 3D recon-
struction from image sequences for multiple independently moving cameras. If
multiple moving cameras record the same scene, a camera is often visible in
another camera’s field of view. This poses a constraint on the position of the ob-
served camera, which can be included into the conjoined optimization process.
The paper contains the following contributions: Firstly, a fully automatic detec-
tion and tracking algorithm for the position of a moving camera in the image
sequence of another moving camera is presented. Secondly, a sparse bundle ad-
justment algorithm is introduced, which includes this additional constraint on the
position of the tracked camera. Since the additional constraints minimize the geo-
metric error at the boundary of the reconstructed volume, the total reconstruction
accuracy can be improved significantly. Experiments with synthetic and chal-
lenging real world scenes show the improved performance of our fully automatic
method.

1 Introduction

Simultaneous estimation of camera motion and 3D reconstruction from image sequences
is a well-established technique in computer vision [1–3]. Often this problem is referred
to as Structure-from-Motion (SfM), Structure-and-Motion (SaM), or Visual Simultane-
ous Location and Mapping (Visual SLAM). This paper investigates the special scenario
of multiple independently moving cameras that capture the same scene. In such a sce-
nario it is often the case that a camera can be observed by another camera. This puts an
additional constraint on the position of the observed camera. The additional constraint
can be exploited in the estimation process in order to achieve more accurate results.

Multi-camera systems, e.g., stereo cameras, light field capturing systems [4], and
markerless motion capturing setups [5] employing multiple cameras, are very common
in computer vision. Until now, almost all of these camera setups have been static.

For static cameras, Sato [6] analyzed the epipolar geometry for cases where multiple
cameras are projected into each other’s images. In these cases, the epipoles are directly
given by the projection of the camera centers. Therefore, the epipolar geometry can be
calculated from less feature correspondences between the images.

Sometimes static setups are mounted on a moving platform [7], e.g., Stewénius and
Åström investigated the structure-and-motion problem for multiple rigidly moving cam-
eras in an autonomous vehicle [8], and Frahm et al. [9] mounted several rigidly coupled
cameras on a moving pole.

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 391–402, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Recently, Thormählen et al. [10] presented a solution for multiple independently
moving cameras that capture the same scene. This scenario frequently occurs in prac-
tice, e.g., multi-camera recordings of TV shows or multi-camera shots in movie produc-
tions. Camera motion estimation and 3D reconstruction is performed independently for
each sequence with a feature-based single camera structure-and-motion approach. The
independent reconstructions are then merged into a common global coordinate system,
followed by a conjoined bundle adjustment [2, 11] over the merged sequences.

This paper adapts a similar approach and extends it for the case where a moving
camera is located in the field of view of another moving camera. The following two
contributions are made:

– A detection and tracking algorithm is used to determine the projection of a camera
center in the image of another camera. Thereby, the user has the choice between a
fully automatic and a semi-automatic approach. For the fully automatic approach,
the cameras have to be retrofitted with a color pattern. For the semi-automatic ap-
proach the user manually defines the position of the camera center projection in the
first image where the camera is visible. For both approaches the camera center is
automatically tracked in the subsequent images, whereby the tracking algorithm is
guided by the available initial camera center estimates.

– A sparse bundle adjustment algorithm is presented that allows incorporating the
additional constraints given by the tracked camera centers. These constraints min-
imize the geometric error at the boundary of the reconstructed volume, which is
usually the most sensitive part for reconstruction. Consequently, the total recon-
struction accuracy can be improved significantly.

2 Scene Model

Consider a total number of N moving cameras, which capture the image sequences Sn,
with n = 1, . . . , N , consisting of K images Ik, n, with k = 1, . . . ,K , each. The cam-
eras are synchronized, so that images Ik, n for all n are recorded at the same point in
time k. Let Ak, n be the 3 × 4 camera matrix corresponding to image Ik, n. A set of J
3D object points Pj = (Px, Py, Pz, 1)�, with j = 1, . . . , J , represents the static scene
geometry, where the individual 3D object points are visible in at least a subset of all the
images. In addition, the 2D feature points corresponding to Pj , as seen in image Ik, n,
are given by pj, k, n = (px, py, 1)�. This notation is clarified by Fig. 1.

Let Ck, n = (Cx,Cy ,Cz, 1)� be the center of camera n at time k. The 2D image
position of Ck, n, as seen from camera ñ, with n 
= ñ, is now defined as ck, n, ñ =
(cx, cy, 1)�. Likewise, the position of the projection of Ck, n in Ik, ñ is defined as
ĉk, n, ñ = Ak, ñCk, n. Note that, in an ideal noise-free case ĉk, n, ñ = ck, n, ñ; however,
in real situations, it can usually be observed that ĉk, n, ñ 
= ck, n, ñ.

3 Unconstrained Reconstruction

In a first step, synchronization of the N individual image sequences Sn is achieved
using a method similar to the one presented by Hasler et al. [12]. This method analyzes
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Fig. 1. Multiple cameras observe the same ob-
ject. The camera center Ck, 2 of camera 2 is vis-
ible in image Ik, 1 of camera 1, and vice versa.
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Fig. 2. Compensation of the systematically
erroneous path of camera 2 by applying a
similarity transformation H2, 1

the audio data, which is recorded simultaneously with the video data. A synchronization
offset of at most half a frame is usually achieved. This approach allows the application
of standard consumer cameras; a hard-wired studio environment is not required and the
recordings can take place at arbitrary sets, including outdoor locations.

In a second step, each camera sequence is processed independently with a stan-
dard structure-from-motion algorithm. This establishes initial estimates for every single
camera matrix Ak, n and every 3D object point Pj of the rigid scene. The 2D feature
points pj, k, n are detected and tracked through the image sequences. For each tracked
2D feature point pj, k, n a corresponding 3D object point Pj is estimated. The applied
algorithms are robust against outlier feature tracks introduced by moving objects, repet-
itive structures, or illumination changes. Intrinsic camera parameters are determined by
self-calibration [3]. The estimation is finalized by a bundle adjustment.

In a third step, a similar approach as in [10] is employed to register the independent
reconstructions into a common global coordinate system. The required similarity trans-
formation for each individual reconstruction is estimated from corresponding feature
tracks found via wide baseline matching between the image sequences. A conjoined
bundle adjustment over allN reconstructions is performed to achieve equal distribution
of the residual error over the whole scene. This minimization problem requires finding

arg min
A,P

N∑
n=1

J∑
j=1

K∑
k=1

d(pj, k, n , Ak, n Pj)2, (1)

where d(. . . ) denotes the Euclidean distance. It is solved using the sparse Levenberg-
Marquardt (LM) algorithm, as described in [2].

After these processing steps, an initial reconstruction of the scene has been estab-
lished, which will be referred to as unconstrained reconstruction henceforth. Though
the residual error is usually small, the inhomogeneous distribution of the correspond-
ing feature tracks found by wide baseline matching may lead to estimation results not
accurately reflecting the true structure of the scene. These inhomogeneities can arise
because reliable merging candidates can usually be found more easily at the center of
the reconstructed volume where the individual camera’s fields of view overlap.
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4 Detection and Tracking of Camera Centers

The unconstrained reconstruction can be improved by exploiting the visibility of the
camera center in the field of view of another camera. To incorporate this additional
constraint into the bundle adjustment, the determination of the 2D image positions of
the visible camera centers ck, n, ñ is necessary. The user has the choice to either use a
fully automatic or a semi-automatic approach. The fully automatic approach comprises
the detection and tracking of the camera centers, whereas the semi-automatic approach
requires the user to provide the positions of the projection of the camera centers for the
first image they appear in.

4.1 Detection

The automatic detection of the camera centers requires the image of the cameras to be
descriptive. One possibility would be to use a learning-based approach trained on the
appearance of the camera. However, as small consumer cameras are used, reliable de-
tection is challenging. As a consequence, the cameras were retrofitted with descriptive
color patterns to facilitate the automatic detection.

a) b) c) d)

Fig. 3. Steps of the detection algorithm: a) input image detail, b) image after the conversion to
HSV color space and color assignment, c) pixels that pass the geometric structure evaluation,
d) detected camera center

Fig. 3 summarizes the automatic detection process and also shows the used color
pattern, which consists of three patches with different colors. The pattern colors red,
green, and blue were chosen, as they can easily be separated in color space. Since the
front of the cameras is usually visible, the camera lens serves as additional black patch.

At first, the image is converted from RGB to HSV color space. All the pixels are
then either assigned to one of the three pattern colors, black, or the background based
on their proximity to the respective colors in HSV color space. Thereby, the value pa-
rameter (V) of the HSV color space model is ignored to achieve illumination invariance.
For each black pixel the geometric structure of the pixels in a window around the pixel
is examined. To be more specific, for each red pixel in the neighborhood of the black
pixel, a green pixel is required to lie in the exact same distance in the opposite direction.
Furthermore, a blue pixel must be located in the direction perpendicular to the connec-
tion line between the red and the green pixel. Again, the distance of the blue pixel from
the black pixel must be exactly the same as the distance from the red to the black pixel.
In addition, it must lie on the correct side of the connection line (see Fig. 3). Since there
are usually multiple detections per camera, the centers of the clusters yield the desired
positions of the camera centers.
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4.2 Tracking

If fully automatic detection is not used, e.g., because color patterns for the camera are
not available, the user is required to input the initial positions of the camera centers
for the first image the camera appears. To simplify the notation, it is assumed for a
moment that all other cameras are visible in the first image of every camera. Thus, the
positions c1, n, ñ are now determined, either through user input or automatic detection.

For the tracking of the camera positions through the image sequences, a tracking al-
gorithm based on Normalized Cross Correlation (NCC) matching is employed. A spe-
cial feature of the algorithm is the guided matching process, which relies on the known
initial estimates for the camera positions given by the unconstrained reconstruction to
improve the robustness of the tracking.

Starting from ck, n, ñ in image Ik, ñ, the algorithm searches for ck+1, n, ñ. This is
done by calculating NCC matching scores for a window around ck, n, ñ in image Ik+1, ñ.
The results of this operation are stored in a sorted list with positions producing the
highest matching scores at the front.

Starting with the best match, it is checked whether the NCC score is above a user-
defined threshold t0 or not. If no matches with sufficiently high score are present, the
algorithm aborts. In case of a valid match, the solution is cross-checked by calculating
a second NCC score, between the current best match and the initial camera position
c1, n, ñ (assuming the initial position to originate from I1, ñ).

If the score for the second NCC matching is below another user-defined threshold t1,
instead of terminating, the algorithm simply processes the match with the next-lower
score in the list. The cross-check reduces the effects of slow deviation of the feature
point’s description over time, since it assures that the original position can be found by
reverse tracking.

Albeit performing very well and producing results of high tracking accuracy, this
unguided tracking fails under certain conditions. Mismatches can occur due to similar
image regions in the search window. Moreover, camera centers can leave and reenter
the camera’s field of view, or might get occluded by foreground objects, which causes
traditional unguided tracking algorithms to lose the target.

Therefore, an additional constraint is introduced. As stated before, a set of good
initial estimates for the camera projection matrices Ak, n is available from the uncon-
strained reconstruction. These estimates contain estimates for the camera centers Ck, n,
since Ak, nCk, n = 0.

Due to registration errors, the tracked positions of the camera centers ck, n, ñ and
the positions resulting from reprojection of the camera centers ĉk, n, ñ = Ak, ñCk, n

systematically deviate from each other (see Fig. 2).
These registration errors are compensated by estimating a common similarity trans-

formation for the camera centers Ci, n, with i = 1, . . . , k, represented by a 4×4 matrix
Hn, ñ. More formally, it is required to find

argmin
Hn, ñ

k∑
i=1

d(ci, n, ñ , Ai, ñ Hn, ñ Ci, n)2. (2)

The similarity transformation Hn, ñ allows for 7 degrees of freedom (3 for translation,
3 for rotation, and 1 for scale), and therefore a minimum of 4 measurements ci, n, ñ
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is needed to prevent ambiguities. For that reason it is clear that this approach cannot
be applied to the first 3 images after the initial one, but starting from the fourth one it
provides a sophisticated means of determining whether the match is a false positive or
not, as described in the following.

The projection (Ak, ñ Hn, ñ Ck, n) gives a quite accurate estimate of the true ĉk, n, ñ

that can be used to determine if ck, n, ñ lies within a certain distance t2 from the esti-
mated projection of the camera center (see Fig. 2). The expectation of the residual error
of Eq. (2) is given by εres = σ(1−(d/M))1/2, where d = 7 is the number of parameters
of Hn, ñ and M = 2k is the number of measured ci, n, ñ (see Hartley and Zisserman [2]
for details on the expectation of residual errors). Using the relation t2 = εres + b, with
user-defined values for standard deviation σ and bias b, t2 can be changed adaptively.
The bias value accounts for systematic errors, which cannot be compensated by the
similarity transformation.

If the currently best match from the sorted list does not fulfill the requirements, the
next match in the list is processed. Once a match is accepted, the transformation Hn, ñ

is refined and the algorithm moves on to the next image.
If a tracked camera center leaves the camera’s field of view or gets occluded by fore-

ground objects, the remainder of the image sequence is checked for possible reappear-
ance of the camera. The reappearance point can be predicted with (Ak, ñ Hn, ñ Ck, n)
using the last transformation Hn, ñ that was estimated before the track was lost. This
prediction is then used to reinitialize the NCC matching process.

5 Sparse Bundle Adjustment with Additional Camera Center
Constraints

Given tracked positions of camera centers ck, n, ñ, Eq. (1) is expanded to accommodate
for the additional constraints:

argmin
A,P

N∑
n=1

J∑
j=1

K∑
k=1

d(pj, k, n , Ak, n Pj)2 + w
N∑

n=1

K∑
k=1

N∑
ñ=1

d(ck, n, ñ , Ak, ñ Ck, n)2

(3)
for n 
= ñ, with w being a user-defined weight factor.

As in the unconstrained case, this minimization problem can be solved by the sparse
LM algorithm, as derived in the following. A similar notation as in the book by Hartley
and Zisserman [2] is used.

The measurement vector p̃ =
(
p̄�, c̄�

)�
is assembled from the vector p̄ of all

2D feature points pj, k, n placed one after another in a single column, and the vector c̄
constructed alike from all tracked camera centers ck, n, ñ.

In a similar fashion, the parameter vector q =
(
a�, b�)� can be obtained by as-

sembling a parameter vector a denoting the corresponding set of parameters describing
the cameras, and parameter vector b denoting the corresponding set of parameters de-
scribing the points.

In each step of the LM algorithm the following linear equation system needs to be
solved:

Jδ = ε (4)
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with the Jacobian matrix J = ∂p̃/∂q, the residual vector ε, and the update vector δ of
the LM algorithm, which is the solution to the least squares problem. The residual vec-

tor ε =
(
εp

�, εc
�)� is assembled from the residual vector of the 2D feature points εp

and the residual vector of the camera centers εc.
The Jacobian matrix J has a block structure

J =
[
Ā B̄
C̄ 0

]
, where Ā =

[
∂p̄
∂a

]
, B̄ =

[
∂p̄
∂b

]
and C̄ =

[
∂c̄
∂a

]
. (5)

The linear equation system of Eq. (4) evaluates to

[~A|~B]
(

δa

δb

)
= ε , with ~A =

[
Ā
C̄

]
and ~B =

[
B̄
0

]
. (6)

The normal equations corresponding to Eq. (4) are given as

J�Σ−1Jδ = J�Σ−1ε , with Σ =
[
Σp 0
0 Σc

]
, (7)

where Σp is the covariance matrix of the 2D feature points, and Σc the covariance
matrix of the tracked camera centers. In absence of other knowledge, the matrix Σc is
chosen to be the identity matrix. The normal equations evaluate to[

~A�Σ−1~A ~A�Σ−1~B
~B�Σ−1~A ~B�Σ−1~B

](
δa

δb

)
=
(
~A�Σ−1ε
~B�Σ−1ε

)
, (8)

which can be simplified by back-substitution:[
Ā�Σ−1

p Ā + C̄�Σ−1
c C̄ Ā�Σ−1

p B̄
B̄�Σ−1

p Ā B̄�Σ−1
p B̄

](
δa

δb

)
=
(
Ā�Σ−1

p εp + C̄�Σ−1
c εc

B̄�Σ−1
p εp

)
. (9)

The corresponding block structure is[
U∗ W
W� V∗

](
δa

δb

)
=
(

εA
εB

)
, (10)

where U∗ denotes U augmented by multiplying its diagonal entries by a factor of 1 + λ,

and V∗ likewise. Left multiplication with

[
I −WV∗−1

0 I

]
, where I is the identity matrix,

yields [
U∗ − WV∗−1W� 0

W� V∗

](
δa

δb

)
=
(

εA − WV∗−1εB
εB

)
. (11)

The equation (
U∗ − WV∗−1W�

)
δa = εA − WV∗−1εB (12)

can be used to find δa, which may be back-substituted to get δb from

V∗δb = εB − W�δa. (13)
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These derivations are closely related to those of standard sparse bundle adjustment. It
is thus very easy to incorporate the modifications into existing implementations without
introducing significant additional computational overhead.

This constrained bundle adjustment can improve the unconstrained reconstruction of
Sec. 3. At first, a projective constrained bundle adjustment is performed (12 parameters
per 3× 4 camera matrix A). Afterwards, a new self-calibration and a metric constrained
bundle adjustment with 7 parameters per camera view (3 for translation, 3 for rotation,
and 1 for focal length) is executed.

6 Results

In this section, experiments with synthetic and real scenes are shown. The experiments
on real scenes are also presented in the video provided with this paper, which can be
found at http://www.mpi-inf.mpg.de/users/ckurz/

6.1 Experiments with Synthetic Data

To evaluate if the constrained sparse bundle adjustment of Sec. 5 achieves higher accu-
racy than the standard bundle adjustment used for the generation of the unconstrained
reconstruction of Sec. 3, a comparison with synthetic data is performed.

1
2 3 4 5

object points

circular path of camera 1

12345. . .

camera images

. . .

circular path of camera 2

Fig. 4. Setup of the scene to generate synthetic
measurement values with known ground truth
camera parameters
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constrained
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avg. rotation error [deg]

avg. position error [mm]

standard deviation σsyn [pixel]

constrained

Fig. 5. Average absolute position error and av-
erage absolute rotation error of the estimated
camera motion over standard deviation σsyn

Fig. 4 shows the setup of the scene to generate synthetic measurement values for the
2D feature points pj, k, n and the tracked camera centers ck, n, ñ. Two virtual cameras
with known ground truth camera parameter are observing the same 296 object points
Pj , which are placed in a regular grid on the surface of a cube with an edge length of
100 mm. The two virtual cameras have an opening angle of 30 degrees and rotate on
a circular path with a radius of 300 mm around the object points. Each virtual camera
generates 20 images, and the camera centers are mutually visible in every image. Using
the ground truth camera parameters and ground truth positions of object points, ground
truth measurements are generated for the 2D feature points pj, k, n and the tracked cam-
era centers ck, n, ñ. These measurements are then disturbed with Gaussian noise with a
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standard deviation σsyn. Furthermore, 20 percent of the 2D feature points are disturbed
with a very large offset to simulate outliers. The structure-from-motion algorithm is
then applied with constrained and standard bundle adjustment for 50 times, each time
with different randomly disturbed measurements.

Each resulting reconstruction is registered to the ground truth reconstruction by
aligning both with an estimated similarity transformation.

In Fig. 5 the average absolute position error and average absolute rotation error for
the estimated camera motion for different standard deviations are shown. It can be ob-
served that the constrained always outperforms the standard bundle adjustment; e.g., for
a standard deviation of σsyn = 1.0 pixel, the average absolute position error is reduced
by 30.0 percent and the average absolute rotation error by 38.7 percent.

6.2 Experiments with Real Scenes

The presented approach is applied to several real image sequences. These image se-
quences are first processed by a standard bundle adjustment, resulting in an uncon-
strained reconstruction as described in Sec. 3. Afterwards, the camera positions are
obtained with the described detection and tracking algorithm of Sec. 4, and the con-
strained sparse bundle adjustment including an updated self-calibration is applied to
the sequences.

In accordance with Eq. (3), two different error measures are introduced: The root-
mean-squared residual error of the tracked camera centers

r1 =

(
1
C

N∑
n=1

K∑
k=1

N∑
ñ=1

d(ck, n, ñ , Ak, ñ Ck, n)2
) 1

2

(14)

with C the total number of all tracked camera centers, and the root-mean-squared resid-
ual error of the 2D feature points

r2 =

⎛⎝ 1
P

N∑
n=1

J∑
j=1

K∑
k=1

d(pj, k, n , Ak, n Pj)2

⎞⎠ 1
2

, (15)

where P is the total number of all 2D feature points.
Obviously, the introduction of additional constraints restrains the bundle adjustment,

so that a value for r2, as obtained in the unconstrained case, can usually not be achieved
in the constrained case. Therefore, if r1 is significantly reduced and the value of r2
increases only slightly, it can be assumed that a plausible solution was found.

Both r1 and r2 are first evaluated for the unconstrained reconstruction. Then the
constrained bundle adjustment is applied and r1 and r2 are measured again.

In the following paragraphs results for three scenes are presented. The image se-
quences of these scenes have a resolution of 1440× 1080 pixel and were recorded by
4 moving HDV consumer cameras. The lengths of the sequences in the first scene are
80 images per camera (320 images total), 400 images per camera for the second scene
(1600 images total), and 400 images per camera for the third scene. The parameters
σ = 3 pixel, b = 2 pixel, t0 = 0.8, and t1 = 0.6 are used for the tracking algorithm.
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For the first scene, depicting a runner jumping over a bar, the weight factor w =
0.1 · P/C is used for the constrained bundle adjustment. The error measures for this
scene can be found in Table 1 and the result is shown in Fig. 6.

The second scene depicts a skateboard ramp. The wide baseline matching used for
the generation of the unconstrained reconstruction finds mainly corresponding feature
tracks at the center of the reconstruction volume. As can be verified in Fig. 7, this
leads to acceptable results in the center of the reconstruction volume but results in large
deviations at the borders of the reconstruction volume. This becomes evident because
the overlay geometry in the center (green rectangle) does fit but the projections of the
camera centers show large errors. In contrast, the constrained bundle adjustment with
w = 0.001 ·P/C is able to guide the estimate parameters to a solution, which generates
plausible results for the whole reconstruction volume. In particular, the self-calibration
benefits from improved estimates, as can be verified by the overlay geometry in Fig. 8,
where the perpendicular structure is slightly off in the unconstrained reconstruction and
fits well after the constrained bundle adjustment. Table 1 shows the results.

Table 1. Results for r1 and r2 of the three scenes

Scene “Running” “Ramp” “Statue”

Method r1 [ pixel] r2 [ pixel] r1 [ pixel] r2 [ pixel] r1 [ pixel] r2 [ pixel]

unconstrained 16.85 1.67 99.37 0.77 123.78 0.88

constrained 6.26 1.75 5.92 0.98 4.43 0.93

The third scene shows an art statue in a park. For this scene the automatic cam-
era detection algorithm is employed, whereas for the two previous examples only the
automatic tracking with manual initialization is used. The automatic detection works
reliably and similar results as for the previous examples are achieved. Results for a
weight factor w = 0.001 · P/C are shown in Figs. 8 and 9, and Table 1).

To evaluate the automatic detection algorithms, it is applied to all images of the
sequence and the result is checked manually. In spite of severe illumination changes
due to the grazing incidence of the sunlight, the detection algorithm reliably determines
all camera center positions without producing any false positives.

7 Conclusion

An algorithm for multi-camera motion estimation is presented, which takes advan-
tage of mutual visibility of cameras. An automatic detection and tracking algorithm
using color patterns, NCC matching, and homography estimation is proposed that is
capable of tracking the camera positions through the image sequences. Furthermore,
a constrained bundle adjustment is introduced, which allows to include the additional
constraints for the tracked camera centers. It is an extended version of the widely used
sparse Levenberg-Marquardt algorithm for bundle adjustment. Despite the introduction
of additional constraints, the sparse matrix structure of the equation systems is pre-
served, so that the computational effort does not increase.
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Fig. 6. Image sequence “Running” recorded with 4 moving cameras: Example images of camera 2
(the 4 leftmost images) and camera 4 (the 4 rightmost images) are presented. The two left images
of camera 2 depict the path of camera 3 and 4 (in blue), prior to (left) and after constrained
optimization (right), and the two left images of camera 4 depict the path of camera 2 in a similar
fashion. The two right images show detail magnifications in each case. The detected camera
positions are indicated by a red circle. Deviations of the estimated camera positions from the
actual positions are depicted by red lines and are clearly visible in the magnifications.

Fig. 7. Image sequence “Ramp” recorded with 4 moving cameras: Example images of camera 1
and camera 3 are presented, showing the path of camera 3 and camera 1, respectively

Fig. 8. Top views of the reconstructions for scenes “Ramp” (leftmost images) and “Statue” (right-
most images): Comparison between the unconstrained reconstruction (left) and the result of the
constrained bundle adjustment (right). The estimated camera positions and orientations are de-
picted by small coordinate systems (optical axis, horizontal image direction, and vertical image
direction, in blue, red, and green, respectively). The 3D object points are displayed as white dots.

Fig. 9. Image sequence “Statue” recorded with 4 moving cameras: Example images of camera 2
and camera 3 are presented, showing the path of camera 3 and camera 2, respectively
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Evaluations have been conducted on both, synthetic and real-world image sequences.
On the synthetic sequences the average absolute error could be reduced by approxi-
mately 30 percent. For the real world image sequences, a very significant improvement
of the estimated camera parameters could be observed. It turns out that the additional
constraints minimize the geometric error at the boundary of the reconstructed volume
and thereby can also ameliorate the self-calibration process.

An obvious drawback is the necessity of the cameras to be at least visible in a subse-
quence of frames, to allow our algorithm to generate estimation results with improved
accuracy. However, during recording image sequences, it turned out to be quite hard
to avoid situations where other cameras are visible. Therefore, the presented algorithm
can find numerous applications in multi-camera computer vision. A current limitation
is that the tracking algorithm does determine only the position of the camera lens and
not the true mathematical camera center point. However, as the projection of the camera
is small in the images, this is a good approximation.

Future work will address the automatic determination of the weighting factor w of
the camera center constraints as well as the inclusion of other constraints to further
improve the accuracy and robustness of camera motion estimation.
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Abstract. We develop a method for the optical flow computation from

a zooming image sequence. The synchronisation of image resolution for a

pair of successive images in an image sequence is a fundamental require-

ment for optical flow computation. In a real application, we are, how-

ever, required to deal with a zooming and dezooming image sequences,

that is, we are required to compute optical flow from a multiresolution

image sequence whose resolution dynamically increases and decreases.

As an extension of the multiresolution optical flow computation which

computes the optical flow vectors using coarse-to-fine propagation of the

computation results across the layers, we develop an algorithm for the

computation of optical flow from a zooming image sequence.

1 Introduction

In this paper, we develop an optical flow computation method for zooming image
sequences. In the traditional optical flow computation methods [5,7,9,10,12], the
resolution of a pair of successive images in a sequence is synchronised, that is,
all images in an image sequence are assumed to be observed in the same resolu-
tion. However, if we observe an image sequence using a zooming and dezooming
camera, the resolution of images in an image sequence, respectively, increase
and decrease, that is, the resolution in a pair of successive images in an image
sequence is asynchronised.

Optical flow is an established method for motion analysis in computer vision
[5,7,9,10,12] and introduced to many application areas such as cardiac motion
analysis [1], robotics [3]. In a real application, we are required to deal with an im-
age sequence whose image resolution is time dependent, that is, we are required
to compute optical flow from a multiresolution image sequence whose resolu-
tions increases and decreases temporally. For instance, for the robust tracking
of moving object using a camera mounted on the robot, the robot is required
to have the geometric depth to the object to observe clear images for the accu-
rate computation of geometrical features. Without geometric depth to the object
from the camera, the camera mounted on the robot captures a defocused im-
age sequence. Therefore, while tracking of the object, the robot would observe a
zooming image sequence.

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 403–414, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



404 Y. Kameda et al.

Therefore, for the computation of the optical flow vectors from a zooming
image sequence, we develop a method to synchronise the resolution of a pair
of successive images in this zooming image sequence. To synchronise the reso-
lution of a pair of images, we construct an estimation method of the zooming
operation from images in the observed image sequence. Furthermore, we clarify
a convergence property of a numerical scheme for optical flow computation from
asynchronised image sequence using the unimodality of the variational function-
als for optical flow computation.

Zooming of the lower resolution image and dezooming of the higher resolu-
tion image are a methods to yield a pair of images of synchronised resolution
from zooming images. We use the second method. For the achievement of this
dezooming operation, we are required to estimate the zooming operation from
images in the image sequence. In this paper, assuming that the zooming and de-
zooming operations are the reverse operations, we develop a method to identify
this zooming operation.

The proposing method to compute optical flow from this zooming image se-
quence is an extension of the multiresolution optical flow computation,
[15,16,17,14,4] since our method locally utilises tow different resolution images.
The common assumption on refs. [14,4] is that the motion in coarse resolution
image can be accepted as an initial estimator to the motion in finer resolution
images. This assumption comes from the heuristics that the global motion in a
region is an average of local motion. We also accept the same assumption on the
motion in the image sequence.

2 Multiresolution Optical Flow Computation

2.1 Optical Flow Computation

We assume that our images are elements of the Sobolev space H2(R2). For a
spatiotemporal image f(x, t), x = (x, y)�, the optical flow vector u = (u, v)� of
each point x = (x, y)� is the solution of the singular equation

fxu+ fyv + ft = ∇f�u + ∂tf = 0. (1)

To solve this equation, the regularisation method [5,6,10,12] which minimises
the criterion

J(u) =
∫
R2

{
(∇f�u + ∂tf)2 + κP (u)

}
dx (2)

is employed, where P (u) is a convex prior of u such that

λP (u) + (1 − λ)P (v) ≥ P (λu + (1 − λ)v), 0 ≤ λ ≤ 1. (3)

The minimisation of eq. (2) is achieved by solving a dynamic system

∂u

∂τ
= −∇uJ(u), (4)
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where ∇u is the gradient with respect to u. If

P (u) = tr∇u∇u� = |∇u|2 + |∇v|2, (5)
P (u) = trHH� = |uxx|2 + 2|uxy|2 + |uyy|2 + |vxx|2 + 2|vxy|2 + |vyy|2, (6)
P (u) = |∇u|+ |∇v|, (7)

where H is the Hessian of u, we have the Horn-Schunck method [5,9,10], de-
formable model method [7,8], and total variational method [11,12], respectively
for optical flow computation.

2.2 Multiresolution Expression

For a function w(x, y) which is nonnegative in a finite closed region Ω in R2 and∫ ∞

−∞

∫ ∞

−∞
w(x, y)dxdy = 1, (8)

we deal with a linear transformation

g(x, y, t) = Rf(x, y, t) =
∫ ∞

−∞

∫ ∞

−∞
w(u, v)f(x − u, y − v, t)dudv = w ∗2 f, (9)

where ∗2 stands for the two-dimensional convolution. Equation (9) defines a
smoothing operation on R2, since∫ ∞

−∞

∫ ∞

−∞
|g(x, y, t)|2dxdy ≤

∫ ∞

−∞

∫ ∞

−∞
|f(x, y, t)|2dxdy. (10)

Equation (9) generates a pair of hierarchical multiresolution images

fn(x, y, k) = Rnf(x, y, k), fn(x, y, k + 1) = Rnf(x, y, k + 1) (11)

and the sequence of hierarchical multiresolution image sets

F (k) = {fn(x, y, k)}Nn=0 = {fn
k }Nn=0, k = 0, 1, 2, · · · ,K. (12)

From a successive pair of hierarchical multiresolution image sets F (k) and F (k+
1), Algorithm 1 computes u := u0

k.

Algorithm 1. The Multiresolution Algorithm
Data: fN

k · · · f0
k

Data: fN
k+1 · · · f0

k+1
Result: optical flow u0

k

n := N ;
while n 
= 0 do

un
k := I(u(fn

k , f
n
k+1)u

n+1
k )) ;

n := n− 1
end
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The operation I(u(f i
k, f

i
k+1),u

i+1
k ) in Algorithm 1 expresses computation of

optical flow from a pair of images fn
k = fn(x, k) and fn

k (x − un+1
k , k). We call

this algorithm the Gaussian Multiresolution Algorithm [14,15,18] This is general
expression of the multiresolution optical flow computation, which is an extension
of the Lucas-Kanade with pyramid transform [13,14].

Let uk be the optical flow computed from Rnf(x, y, t) and Rn(x, y, t + 1).
If optical flow field is locally stationary, un lies in an neighbourhood of un−1.
Therefore, by replacing fn

k to fn(x − un+1
k , k), the solutions uk converges to

bmu.

3 Zooming and Optical Flow

The operator R satisfies the relations gx = Rfx and gy = Rfy for gt = Rft. The
solution of eq. (1) is

u = − ∂tf

|∇f |2∇f + c∇f⊥ (13)

where ∇f⊥ = (−fy, fx)� for a real constant c, since ∇f�∇f⊥ = 0. In the same
way, for g = Rf the solution of ∇g�v + ∂tg = 0 is

v = − ∂tg

|∇g|2∇Rf + c′∇g⊥ (14)

where ∇g⊥ = (−gy, gx)� = ∇Rf⊥ for a real constant c′. Therefore,

Ru = R

(
− ∂tf

|∇f |2∇f
)

+ c∇f⊥ 
= − ∂tg

|∇g|2∇g + c′∇f⊥ = v. (15)

Equation (15) implies the next lemma.

Lemma 1. Since Ru 
= v, setting where O to be the operation to compute optical
flow from an image sequence, the relation RO 
= OR is satisfied.

The relations
Setting R† to be the Moor-Penrose inverse operation of R, Lemma 1 implies

the relation R†ROR† 
= R†ORR†. Here R† symbolically express zooming oper-
ation. Therefore, we have the next lemma.

Lemma 2. The operation R† satisfies the relation R†O 
= OR†.

From lemmas 1 and 2, we have the next theorem.

Theorem 1. The operator O which computes optical flow is noncommutative
with both R, dezooming, and R†, zooming.
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4 Optical Flow Computation of Zooming Sequence

4.1 Zooming Flow

A zooming multiresolution image sequences is modelled as

f(x, y, t) =
{
RN−tf0(x, y, t), 0 ≤ t ≤ N
f0(x, y, t), t ≥ N + 1 (16)

assuming that f0(x, y, t) is the clear zoomed image sequence. We develop the
algorithm to compute u(x, y, t) from this zooming sequence.

Theorem 1 implies that synchronisation of the resolution between f(x, y, t)
and f(x, y, t + 1) is required for the optical flow computation from a zooming
sequence. Therefore, we accept the solution u(x, y, t) of the equation

∇f(x, y, t)�u + (Rf(x, y, t + 1)− f(x, y, t)) = 0 (17)

as the optical flow field at time t for t < n, since the resolution of Rg(x, y, t + 1)
and f(x, y, t) is equivalent. Equation (17) derives the following procedure for the
computation of optical flow u(x, y, t) for t < n.

1. Compute ∇f(x, y, t) = (fxfy)�
2. Set ft = Rf(x, y, t + 1)− f(x, y, t)
3. Compute the solution of eq. (2).

This procedure derives Algorithm 2.

Algorithm 2. The Dynamic Multiresolution Algorithm

Data: fN
k fN−1

k+1 · · · f0
k+N 0 ≤ k ≤ N

Result: optical flow u0
N

i := n ;
k := 0 ;
while n 
= 0 do

un−1
k := I(u(fn−1

k , fn−1
k+1 ),un(∞)

k−1 ) ;
n := n− 1 ;
k := k + 1

end

Figure 1 shows the charts on the relation between the resolution of images
and the frame numbers of image sequences both for Algorithms 1 and 2. The
Multiresolution Dynamic Algorithm propagates the flow vectors to the next
successive frame pairs. The classical algorithm computes optical flow from all
resolution images of fixed successive times as shown in Fig. 1 (b).

4.2 Mathematical Property of Algorithm
For the energy

E(un
t ) =

∫
R2

{
((∇fn)�un + ∂tf

n)2 + κnP (un))
}
dx, (18)

we set un
t = argument (minE(un

t )).
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Fig. 1. Layer-Time Charts of Algorithms. (a) The dynamic algorithm propagates the

flow vectors to the next successive frame pairs. (b) The traditional algorithm computes

optical flow from all resolution images of fixed times.

Since E(un
t ) is a convex functional, this functional satisfies the inequality

E(un
t ) < E(u(t)), for un

t 
= u(t). Therefore, we have the relation

E(un−1
t ) ≤ E(un

t ). (19)

This relation implies that it is possible to generate a sequence which reaches to
E(u0

t+N ) from E(uN
t ), since

E(uN
t ) ≥ E(uN−1

t+1 ),

E(uN−1
t+1 ) ≥ E(uN−2

t+2 ),
... (20)

E(u2
t+(N−2) ≥ E(u1

t+(N−1)),

E(u1
t+(N−1) ≥ E(u0

t+N ),

setting un−1
t+1 = un

t + dn
k for |dn−1|  |un|.

5 Numerical Examples

For performance evaluation of the Algorithm 2, we adopt P (u) = tr∇u∇u�.
Furthmore, we assume our zooming sequence is

fn−k(x, y, k) = G(x, y, σn−k) ∗2 f(x, y, k), (21)

where

G(x, y;σ) =
1

2πσ
exp
(
−x

2 + y2

2σ2

)
, σk = s× k (22)

for anappropriatepositive constant s,and the initial imageG(x, y, σn)∗2f0(x, y, 0).
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5.1 Optical Flow Computation

Figures 2 and 3 show numerical results of optical flow computation from zoom-
ing image sequences generated from Marbled Block 1 sequence and Yosemite
sequences. In these examples, the number of layers N is selected as 6, so that
he scale parameters are 9, 7, 5, 3, 1, 0. The regularisation parameter κ is 1000
for each layer, and the iteration is 300 for each layer. These results show that
our algorithm for the optical flow computation from zooming image sequence
accurately computes the optical flow vectors.

Let ln = |ûn − un|, an = � [ûn,un], and rn = |ûn−un|
|un| be the displacement,

the angles, and residual of between two optical flow vectors {un}Ni=1 and {ûn}Ni=1
which are computed using Algorithm 1 and Algorithm 2, respectively. We eval-
uated the maximum, the mean, and the variance of ln, an, and rn In the table
we denote them L, A, and R, respectively.

In Tables 1 and 2, the maximums of differences of angles are almost 180deg.
This geometrical property of the resolution means that the flow vectors com-
puted by the two methods are numerically in the opposite directions. This
geometrical configuration happens on in the background of image sequences
at the points where the gradient of images is zero and the structure tensor
is zero tensor. However, the length of these anti-directional vectors are short.
Therefore, these anti-directional configuration of vectors do not effect to the
mean and variance of the lengths. If we add an operation to remove these anti-
directional vectors by evaluating the structure tensor of each point, the results
would be refined. However, considering this configuration of flow vectors in the
computed results, the statistical analysis shows that Algorithm 2 which com-
putes optical flow from a zooming image sequence numerically derives acceptable
results.

Table 1. L, A, and R for the Gaussian Multiresolution Dynamic Algorithm and the

Gaussian Multiresolution Algorithm

L A R

sequence max mean variance max mean variance max mean variance

block1 0.162 0.027 0.001 172.0 0.108 0.174 5.943 0.068 0.0333

yosemite 0.2112 0.018 0.001 131.0 4.409 5.960 1.558 0.099 0.045

Table 2. L, A, and R for the Gaussian Multiresolution Dynamic Algorithm and the

Horn and Schunck Method

L A R

sequence max mean variance max mean variance max mean variance

block1 0.761 0.116 0.020 172.0 1.614 2.313 481.520 1.454 83.0218

yosemite 0.812 0.091 0.0204 172.0 8.0353 10.331 5900.0 67.282 157000.0
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Image sequences: Form left to right for σ = 9, 5, 3, 1

(a) (b) (c)

(d) (e) (f)

Fig. 3. Results: From left to right: The Gaussian Multiresolution Algorithm, The Gaus-

sian Multiresolution Dynamic Algorithm and Differences of the results computed these

two algorithms. Differences of the results of two methods show that our method com-

putes optical flow field which is compatible to the classical method from a zooming

image sequence.



Asynchronised Optical Flow 411

5.2 Estimation of Zooming Operation

Let the Fourier transforms of fσ(x, y, t) and Gσ(x, y) be Fσ(m,n, t) and Ḡσ =
e−2π2σ2(m2+n2), respectively, for

F (m,n) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−2πi(xm+yn)dxdy. (23)

For f0(x, y, t) and fσ(x, y, t), we have

− 2π2σ2(m2 + n2) = log
|F 0(m,n, t)|
|F σ(m,n, t)| , (24)

since |F σ(m,n, t)| = Ḡσ|F 0(m,n, t)|. Therefore, we can compute σ as

σ2 =
1

−2π2(m2 + n2)
log
|F 0(m,n, t)|
|F σ(m,n, t)| . (25)

We can describe this relation as

σ = E(F 0(m,n, t), F σ(m,n, t)) =

√
1

−2π2(m2 + n2)
log
|F 0(m,n, t)|
|F σ(m,n, t)| . (26)

If we observe fσ(x, y, t) and fσ+1(x, y, t), we can have have the estimation in
the form as

σ = S(F σ(m,n, t), F σ+1(m,n, t)) =
1
2
(E2(F σ(m,n, t), F σ+1(m,n, t))−1) (27)

We derive a method to estimate σ from a pair of observatins fσ+k(x, y, t − k)
and fσ(x, y, t). It is possible to express

f0(x, y, t + 1) = f0(x, y, t) + h(x, y, t + 1). (28)

Furthermore, for f , we can assume the property

|h(x, y, t + 1)|2  |fσ(x, y, t + 1)|2, |fσ(x, y, t)|2, (29)

Therefore, similar to eq.(27) we have the relations

σ = S(F σ(m,n, t), F σ+1(m,n, t)) ! 1
2
(E2(F σ(m,n, t), F σ+1(m,n, t− 1))− 1).

(30)
We show the results for the image sequences Marbled Block 1 sequence and
Yosemite sequence in Fig. 4. The σ is estimated from image sequences of Fig.
5. Results in Fig. 4 lead to the conclusion that this method can estimate the
Gaussian blurring parameter from a zooming image sequence.
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Fig. 4. Estimation of σ using S(F k(t), F k+1(t − 1)) for Marbled Block 1 (a) and

Yosemite sequences (b), respectively

(a) f15(x, y, t −
15)

(b) f10(x, y, t −
10)

(c) f5(x, y, t−5) (d) f0(x, y, t)

(e) f9(x, y, t−9) (f) f6(x, y, t− 6) (g) f3(x, y, t−3) (h) f0(x, y, t)

Fig. 5. Zooming image sequences. Top: Marbled Block 1. Bottom Yosemite.

6 Conclusions

In this paper, we developed an optical flow computation algorithm for zooming
image sequence, assuming that the image blurring operation is approximated by
the Gaussian kernel convolution. We adopted the Horn and Schunck method for
the optical flow computation in each pair of successive images.

In early ’90, ”Active Vision Paradigm” has been proposed in computer vision.
The main methodology of the paradigm is to unify visual information observed
actively controlled sensors. An example is a reconstruction of 3D object from
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images captured by the various directions, various depths, various resolutions,
various magnitudes, and various colour spectra. This idea have mainly come
from the state of arts of the imaging systems at that time, that is, it had been
believed that by integrating various visual information, it is possible to improve
the quality of information, which is defined qualitatively, for 3D understanding
from an image/ image sequence. Today, this is a basic methodology in robot
vision, since autonomous robot observes the environment using mount-on vision
system. From the viewpoint of active vision, the method introduced in this paper
achieves the optical flow computed from an actively measured blurred image
sequence, that is, the method derives a mathematical framework for the optical
flow computation in active vision methodology.

Since the system of inequalities of eq. 20 is satisfied for any convex functionals,
for the optical flow computation in each step of Algorithm 2, we can accept

u = argmin
[∫

R2

{
(∇f�u + ∂tf)p +

{
1
2
(Hu +∇ft)

}q

+ κP (u)
}
dx

]
,

(31)
for ft(x, y, t) = Rf(x, y, t + 1)− f(x, y, t), where p, q ≥ 1 and H is the Hessian
of the image f [11]. Furthermore, equation (29) implies that

w(x, y) !
∫ ∞

−∞

∫ ∞

−∞
W (m,n)e2πi(xu+yv)dudv. (32)

setting W = Fk+1
Fk

where Fk is the Fourier transform of fk.
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Abstract. Various computer vision applications involve recovery and es-

timation of multiple motions from images of dynamic scenes. The exact na-

ture of objects’ motions and the camera parameters are often not known a

priori and therefore, the most general motion model (the fundamental ma-

trix) is applied. Although the estimation of a fundamental matrix and its

use for motion segmentation are well understood, the conditions governing

the feasibility of segmentation for different types of motions are yet to be

discovered. In this paper, we study the feasibility of separating a motion

(of a rigid 3D object) with affine fundamental matrix in a dynamic scene

from another similar motion (unwanted motion). We show that successful

segmentation of the target motion depends on the difference between rota-

tion angles and translational directions, the location of points belonging to

the unwanted motion, the magnitude of the unwanted translation viewed

by a particular camera and the level of noise. Extensive set of controlled

experiments using synthetic images were conducted to show the validity

of the proposed constraints. The similarity between the experimental re-

sults and the theoretical analysis verifies the conditions for segmentation

of motion with affine fundamental matrix. These results are important for

practitioners designing solutions for computer vision problems.

1 Introduction

Recovering structure-and-motion (SaM) from images of dynamic scenes is an in-
dispensable part of many computer vision applications ranging from local nav-
igation of a mobile robot to image rendering in multimedia applications. The
main problem in SaM recovery is that the exact nature of objects’ motions
and the camera parameters are often not known a priori. Thus, any motion
of 3D object needs to be modelled in the form of a fundamental matrix [1]
(if all moving points are in the same plane, the motion can be modelled as a
homography). Motion estimation and segmentation based on the fundamental
matrix are well understood and solved in the established work summarised in
(Chapters.9–12,[2]). Soon after that work, researchers resumed to the more chal-
lenging multibody structure-and-motion (termed MSaM by Schindler and Suter
in [3]) where multiple objects in motions need to be concurrently estimated and

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 415–424, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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segmented. However, the conditions governing the feasibility of segmentation in-
volving MSaM for different types of motions are yet to be established. These
conditions are important as they provide information on the limits of current
MSaM methods and would provide useful guidelines for practitioners designing
solutions for computer vision problems.

Well known examples of previous works in motion segmentation using the
fundamental matrix are by Torr [4], Vidal et.al [5] and Schindler and Suter [3].
Torr uses the fundamental matrix to estimate an object in motion and cluster it
in a probabilistic framework using the Expectation Maximisation algorithm [4].
Vidal.et.al propose to estimate the number of moving objects in motion and clus-
ter those motions using the multibody fundamental matrix; the generalization
of the epipolar constraint and the fundamental matrix of multiple motions [5].
Schindler and Suter have implemented the geometric model selection to replace
degenerate motion in a dynamic scene using multibody fundamental matrix [3].

The focus of this paper is to study the feasibility of the detection and segmenta-
tion of an unknown motion (of a rigid 3D object) with affine fundamental matrix
in a dynamic scene (using images taken by an uncalibrated camera). Motion with
affine fundamental matrix consists of rotation around Z axis of the image plane
and translation parallel to the image plane (no translation in Z direction) [1]. This
work is an extension to the study of conditions for motion-background segmenta-
tion and segmentation of translational motions in [6,7]. In Section 2, we derive the
conditions for the detection and segmentation of motion with affine fundamental
matrix and provide quantitative measures for detection using theoretical analysis.
Section 3 details the Monte Carlo experiments using synthetic images conducted to
verify the theoretical analysis and the proposed conditions for successful segmen-
tation of motion with affine fundamental matrix. Section 4 concludes the paper.

2 Segmentation of Motion with Affine Fundamental
Matrix

Consider n = ni + no feature points [Xi, Yi, Zi]� belonging to two 3D objects
undergoing motion-a and motion-b (i = 0, 1 . . .ni denote the points belonging to
motion-a and i = ni + 1,ni + 2 . . .n denote points belonging to motion-b). Each
motion consists of rotations around Z axis followed by a non-zero translation in
the X − Y plane denoted by θa and Ta for motion-a and θb and Tb for motion-b
where Ta = [Txa, Tya, Tza]� and Tb = [Txb, Tyb, Tzb]� with Tza = Tzb = 0. The
location [Xi, Yi, Zi]� before and after the translations are visible in the image
plane and are denoted bym1i = [x1i, y1i]� andm2i = [x2i, y2i]�. All points in the
image plane are perturbed by measurement noise e assumed to be independent
and identically distributed (i.i.d) with Gaussian distribution:

x1i = x1i + e1ix, y1i = y
1i

+ e1iy, x2i = x2i + e2ix, and y2i = y
2i

+ e2iy, (1)

where e1ix, e1iy, e2ix and e2iy ∼ N(0, σ2
n) and σn is the unknown scale of noise. The

underlined variables denote the true or noise-free locations of points in image



Conditions for Segmentation of Motion with Affine Fundamental Matrix 417

plane. The relationship between all noise-free matching points in the image plane
and world coordinate points as viewed by a camera (with focal length f and
principle points [Px,Py]) are:

x1i =
fXi

Zi
+ Px, x2i = x1i cos θ − y

1i
sin θ +

fTx

Zi
+ P̃x,

y
1i

=
fYi

Zi
+ Py , y

2i
= x1i sin θ + y

1i
cos θ +

fTy

Zi
+ P̃y,

(2)

where P̃x = Px(1−cos θ)+Py sin θ and P̃y = Py(1−cos θ)−Px sin θ. The symbols
θ, Tx and Ty in (2) denote the motion parameters where θ = θa, Tx = Txa

and Ty = Tya for motion-a and θ = θb, Tx = Txb and Ty = Tyb for motion-
b respectively. We aim to segment the matching points belonging to motion-a
from the mixture of matching points belonging to motion-a and motion-b in two
images, thus the points undergoing motion-a are considered the inliers and the
points undergoing motion-b would be the outliers or the unwanted motion.

The fundamental matrix of motion-a is computed using:

F = A−T
[T ]xRA−1, (3)

where R is the rotation matrix of the motion and [T ]x is the skew symmetric
matrix of translation T [8,2,9]. For motion-a (θ = θa, Tx = Txa and Ty = Tya),
equation (3) yields:

Fa =
1
f

⎛⎝ 0 0 Tya

0 0 −Txa

Txa sin θa − Tya cos θa Tya sin θa + Txa cos θa Q

⎞⎠ , (4)

where Q = (Tya cos θa − Txa sin θa − Tya)Px + (Txa − Tya sin θa − Txa cos θa)Py .
We assume that, a perfect estimator provides the true fundamental matrix given
in (4). If Fa is known, the Sampson distances can be computed using [10,1,11]:

di =
m�

2iFm1i√[
(∂/∂x1i)

2 + (∂/∂y1i)
2 + (∂/∂x2i)

2 + (∂/∂y2i)
2
]
m�

2iFm1i

. (5)

Substitution of real plus noise forms in (1) and Fa in (4) into equation (5) yields:

di =(2(T 2
ya + T 2

xa))
− 1

2 [(x1i + e1ix)(Txa sin θa − Tya cos θa) + (y
1i

+ e1iy) · · ·
(Tya sin θa + Txa cos θa) + (x2i + e2ix)Tya − (y

2i
+ e2iy)Txa +Q].

(6)

For points undergoing motion-a (i = 0, 1 . . .ni), the above expression without
noise terms equals zero because the true Fa is used to compute di’s. Thus,
equation (6) can be simplified to:

di =(2(T 2
ya + T 2

xa))
− 1

2 [e1ix(Txa sin θa − Tya cos θa) + e1iy(Tya sin θa + · · ·
Txa cos θa) + e2ixTya − e2iyTxa].

(7)

Distances di’s of the points belonging to motion-a in (7) turn out to be a linear
combination of the i.i.d. noises therefore, they are also normally distributed with
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zero mean. The variance of di’s (i = 0, 1 . . .ni) also equals σ2
n as the numerator

and denominator cancel each other. Therefore, the distribution of di’s of motion-
a are the same as the noise e which are N(0, σ2

n).
The points belonging to motion-a are to be separated from the points belong-

ing to motion-b. The distances of points belonging to motion-b (i = ni + 1,ni +
2 . . .n) with respect to Fa are calculated using (6) in which [x2i,y2i

] are replaced
with the terms in (1) for motion-b, yields:

di =(2(T 2
ya + T 2

xa))−
1
2 [x1i(Txa sin θa − Tya cos θa) + y

1i
(Tya sin θa + · · ·

Txa cos θa) + x2iTya − y2i
Txa +Q] + e,

(8)

where e ∼ N(0, σ2
n) based on the distribution of di’s in (7). By combining equa-

tion (8) with the image-world points relationship for motion-b in (2), and express-
ing it in term of directions of translation (φa for Ta and φb for Tb) and magnitude
of Tb, we obtain (after manipulations using several trigonometric identities):

di =
√

2 sin
∆θ

2
(x́1i cosΘ + ý

1i
sinΘ) +

K

Zi
sin∆φ+ e, (9)

where x́1i = x1i−Px, ý
1i

= y
1i
−Py, ∆θ = θa−θb, ∆φ = φa−φb, Θ = φa− θa+θb

2

and K = f‖Tb‖√
2

. By using the harmonic addition theorem [12], equation (9) is
simplified to:

di = Gi sin
∆θ

2
cos Θ̆i +

K

Zi
sin∆φ+ e, (10)

where Gi =
√

2(x́2
1i + ý2

1i
) and Θ̆i = Θ + tan−1(−x́1i/ý1i

) + β (the value of
β = 0 if x́1i ≥ 0 or β = π if x́1i < 0). Since the distribution of di’s of motion-a is
always N(0, σ2

n) (according to equation (7)), the feasibility of identification and
segmentation of points belonging to motion-a using a robust estimator depends
on the distribution of di’s of motion-b. If the population of di’s from points
belonging to motion-b overlap with population of di’s from points belonging
to motion-a, they would not be separable. However if both populations (di’s
from motion-a and b) do not overlap, the population of di’s of each motion
will be separable. Thus, a robust estimator should be able to correctly identify
and segment the points belonging to motion-a. In order to ensure that both
populations do not overlap, the following conditions must be satisfied1:

di ≥ 5σn or di ≤ −5σn when i = ni + 1,ni + 2 . . .n, (11)

where di’s are the noise-free di’s given by all terms in equation (8) except for
the noise term e. If the conditions in (11) is satisfied 99.4% of points belonging

1 Since the di’s of motion-a is distributed according to N(0, σ2
n) and di’s of motion-b

are also perturbed by measurement noise of N(0, σ2
n), from probability theory if the

maximum or minimum value of di’s of motion-b are at least 5σn away from the mean

of di’s of motion-a, then only about 0.6% of di’s of each population would overlap.
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to motion-a will be correctly segmented. Since the term Gi’s in (10) are always
positive, the range of the term Gi cos Θ̆i in (10) are:

−Ĝ ≤ Gi cos Θ̆i ≤ Ĝ for all i’s, (12)

where Ĝ is the maximum values of Gi’s depending on the locations of the objects
undergoing motion-b. Thus, the range of di’s from equations (10) and (12) are:

−Ĝ sin
∆θ

2
+
K

Zi
sin∆φ ≤ di ≤ Ĝ sin

∆θ

2
+
K

Zi
sin∆φ. (13)

Combining the inequalities in (11) and (13), the conditions for successful seg-
mentation of points belonging to motion-a are expressed as:

Ĝ sin
∆θ

2
+
K

Zi
sin∆φ ≤ −5σn or − Ĝ sin

∆θ

2
+
K

Zi
sin∆φ ≥ 5σn. (14)

Solving for ∆θ, the inequalities in (14) are expressed as:

∆θ

2
≤ sin−1 −5σn ± K

Zi
sin∆φ

Ĝ
for ∆θ ≥ 0,

∆θ

2
≥ − sin−1 −5σn ± K

Zi
sin∆φ

Ĝ
for ∆θ < 0.

(15)

In most computer vision problems, the distance between the camera and the
object in motion is roughly known. Therefore, the term Zi in equation (15)
can be expressed in term of average distance Z̄ between camera and objects in
motions or Zi ≈ Z̄.

We assume that an accurate estimate for Fa is obtained by minimising the cost
function of a robust estimator. Having Fa, the distances (di’s) of all matching
points can be computed. Then d2

i ’s for all points are used as residuals for seg-
mentation to identify and segment points belonging to motion-a using a robust
estimator. Here, we use the Modified Selective Statistical Estimator (MSSE) [13]
as it has been shown to outperform other robust estimation techniques in term
of its consistency [14]. In MSSE, the residuals are sorted in an ascending order
and the scale estimate given by the smallest kth distances is calculated using
[13] for a particular value of k:

σ2
k =

∑k
i=1 d

2
i

k − 1
. (16)

While incrementing k, the MSSE algorithm is terminated when dk+1 is larger
than 2.5 times the scale estimate given by the smallest k distances:

d2
k+1 > 2.52σ2

k. (17)

With the above threshold, at least 99.4% of the inliers will be segmented if there
are normally distributed [13].

From our analysis, the separability of motion with affine fundamental matrix
depends on the difference between rotation angles and translational directions
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(∆θ and ∆φ), the location of points belonging to motion-b (Ĝ), the magnitude
of Tb viewed by a particular camera (K

Z̄
) and the level of noise (σn) presented in

equation (15). We verified these conditions using Monte Carlo experiments and
the results are presented in the next section. The correctness of these conditions
are verified by studying the variance of the result of the Monte Carlo exper-
iments. The conditions for segmentation for more general motions (including
Tz 
= 0 and rotation around other axes) are too complex to be derived theo-
retically. However, the derived condition for segmentation of motion with affine
fundamental matrix is served as the basis of approximation for more general
motions when Tz and rotation around other axes are very small or close to zero.

3 Monte Carlo Experiments

The Monte Carlo experiments with synthetic images have two parts. The first
part was conducted to verify the conditions for segmentation in (15) for separat-
ing motion-a from motion-b. The second part of the experiments was designed
to examine how the conditions change when the inlier ratio ε was varied.

In each iteration in the Monte Carlo experiments, 2000 pairs of points in the
world coordinate according to motion-a were mixed with the pairs of match-
ing points according to motion-b (the number of matching points belonging to
motion-b depends on the inlier ratio ε). All X and Y coordinates of the matching
points were randomly generated while Z coordinates were uniformly distributed
according to U(Z̄−σZ , Z̄+σZ) where Z̄ = 10m and σZ

Z̄
= 10%. Then, all match-

ing points were projected to two images using a synthetic camera (with f = 703
pixels, [Px, Py]=[320,240] and image size of 640×480 pixels). Random noise with
the distribution of N(0, σ2

n) was added to all points. We assumed that the image
points (x́1i’s and ý

1i
’s) belonging to each motion (motion-a and b) were clustered

together, since in many computer vision applications the objects in motions are
rigid. The points belonging to motion-b were assumed to be within 20%×20%
width and length of the image size and according to Ĝ, while the points belong-
ing to motion-a could be anywhere in the image plane (since its di’s will always
be N(0, σ2

n) according to (7)). The segmentation was performed using MSSE
with d2

i ’s (calculated based on the true Fa) as the segmentation residuals. The
ratio of the number of segmented inliers over the actual inliers ζ was calculated
and recorded. Each experiment consists of 1000 experimental iterations and the
mean and standard deviation of 1000 ζ’s were recorded (denoted by ζ̄ and σζ).
These experiments were then repeated for various ε.

In the first part of the experiments, we consider two scenarios; Scenario-I
with parameters K

Z̄
=50 (corresponding to ‖Tb‖ = 1m), σn = 0.5 and Ĝ =

0.75Gmax while Scenario-II with parameters K
Z̄

=40 (corresponding to ‖Tb‖ =
0.8m), σn = 1 and Ĝ = 0.75Gmax

2. The conditions for segmentation for Scenario-
2 The term Gmax is the value of Gi when [x́1i,ý1i

] are maximum and in this case

[320,240] according to a camera with image size 640 × 480 with [Px, Py ]=[320,240].

Generally smaller Ĝ means that the points moved by motion-b were closer to [Px, Py]

of the image.
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I and II were generated from (15) and shown in Fig.2(c)-(d) and Fig.2(e)-(f)
respectively, where the shaded area denote the area where motion-a will be
successfully segmented from motion-b (in this area, both population of di’s will
not overlap). This analysis were also performed in five different cases with ε =
30%. The motion parameters were selected from the magnitudes of ∆θ’s and
∆φ’s from the shaded region (Case-1 and 2) and unshaded region (Case-3, 4 and
5) in Fig.2(c)-(d). In all cases, the histogram of di’s of all image points were
plotted and ζ’s were recorded. For five instances of the data samples generated
in Case 1 to 5 for Scenario-I (in Fig.2(c)-(d)), the histogram of di’s for all points
are plotted in Fig.1. These figures show that in Case-1 (∆θ = 1◦ and ∆φ = 10◦)
and Case-2 (∆θ = 5◦ and ∆φ = 30◦), the points belonging to motion-a were
correctly segmented, denoted by ζ = 0.98 for both cases (ζ = 1 indicates perfect
segmentation). Successful segmentation was expected as the population of di’s
of points belonging to motion-a and motion-b were not overlapping, thus there
were separable as shown in Fig.1(a) and 1(b). As the magnitudes of ∆θ and ∆φ
were selected to be outside the shaded region in Fig.2(c)-(d) in Case-3 (∆θ = 2◦

and ∆φ = 1◦) and Case-4 (∆θ = 10◦ and ∆φ = 4◦), the points belonging to
motion-a were incorrectly segmented denoted by ζ = 1.92 and 1.77. The failure is
due to the overlap of the population of di’s of both motions and thus there were
very little distinction between them as shown in Fig.1(c) and 1(d). However, in
Case-5 (∆θ = 10◦ and ∆φ = 4◦) it was observed that the points belonging to
motion-a was correctly segmented (ζ = 0.99 and non overlapping di’s in Fig.1(d))
even though the magnitudes of ∆θ and ∆φ were the same as in Case-4. These
experiment results were consistent with the conditions for segmentation derived
in equation (15), where population of di’s of both motions are not overlap in
the shaded region of Fig.2(c)-(d). Thus the points belonging to motion-a will
be correctly segmented when the magnitudes of ∆θ and ∆φ are in this region.
However, when the magnitudes of ∆θ and ∆φ are outside the shaded region
in Fig.2(c)-(d), the are no guarantee that points belonging to motion-a will be
correctly segmented since there is a chance that the population of di’s of both
motions would overlap.

In the second part of the experiments, the effect of varying ε from 30% to 80%
to the conditions for segmentation of Scenario-I and II (the shaded regions) in
Fig.2(c) to (e) were examined. The mean and sigma of 1000 ζ’s (denoted as ζ̄
and σζ) were recorded for each pair of ∆θ’s and ∆φ’s in the experiments. Both
∆θ and ∆φ in the experiments were varied from 0◦ to 90◦ with the increment
of 2.5◦. Fig.2(a) and 2(b) show ζ̄ and σζ versus ∆θ and ∆φ for Scenario-I. It
was observed that for small ∆θ and ∆φ (both < 5◦), points from motion-a were
mixed with points from motion-b and segmented (ζ > 1). In such cases, an in-
accurate inlier-outlier dichotomy would result in an incorrect motion estimation
and segmentation. As both ∆φ and ∆θ increased to 90◦, the magnitudes of ζ̄’s
approaching 0.99 and σζ’s reduced to around 0.02. From Fig.2(a) and 2(b), there
are areas when ζ̄ = 0.99 and σζ < 0.01 (when ∆θ between 0◦ to 12◦ and ∆φ from
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Fig. 1. Histogram for di’s for all points for Case-1 to 5 in Scenario-I

6◦ to 90◦) indicating correct and consistent segmentation of motion-a. Then the
magnitudes of ∆θ’s and ∆φ’s when ζ̄ ≤ 0.994 and σζ ≤ 0.01 were extracted from
Fig.2(a) and 2(b) and compared to the analytical conditions for segmentation
as shown in Fig.2(c). The magnitudes of ζ̄ ≤ 0.994 and σζ ≤ 0.01 were selected
to make sure that the segmentation of motion-a was correct and consistent for
all iterations (1000 iterations for each ∆θ and ∆φ) in the experiments3. The
extracted ∆θ’s and ∆φ’s when ζ̄ ≤ 0.994 and σζ ≤ 0.01 for different inlier ratio
ε and Scenario-II are shown in Fig.2(c) to 2(f). When the value of ε is increased
from 30% to 80%, the region where the magnitudes of ζ̄ ≤ 0.994 and σζ ≤ 0.01
are slightly expanded as shown in Fig.2(d) and 2(f). In addition, we observed
that when ∆θ > 20◦ for Scenario-I and ∆θ > 45◦ for Scenario-II, the points be-
longing to motion-a were also correctly and consistently segmented (ζ̄ ≤ 0.994
and σζ ≤ 0.01). This is because, when ε was higher (more points of motion-a
than motion-b) and high values on ∆θ, the density of di’s for points belonging
to motion-b were not widely spread. Thus, the likelihood of both populations of
di’s to overlap decreased. Hence, expanding the region for correct and consistent
segmentation of points belonging to motion-a. The similarity between the ex-
perimental and analytical results for the magnitude of ∆θ’s and ∆φ’s to achieve
correct and consistent segmentation (ζ̄ ≤ 0.994, σζ ≤ 0.01 and both population
of di’s do not overlap) in Fig.2(c) to 2(f) verifies the segmentation analysis in
Section.2.

3 From probability theory, the standard deviation of a uniformly distributed variables

B’s is according to
Bmax−Bmin√

12
, where Bmax and Bmin are the maximum and mini-

mum values of B’s [15]. Thus, if ζ’s was uniformly distributed with σζ = 0.01, the

values of ζ’s were between ζ̄ ± 0.017.
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(f) Scenario-II, ε = 80%

Fig. 2. ζ̄ and σζ versus ∆θ and ∆φ for Scenario-I when ε = 30% in (a) and (b).

The analytical and the extracted magnitudes of ∆θ’s and ∆φ’s when motion-a will be

correctly and consistently segmented in (c)-(d) for Scenario-I and (e)-(f) for Scenario-

II (the boundary of the region where ζ̄ ≤ 0.994 and σζ ≤ 0.01 from Monte Carlo

experiments were plotted instead of the shaded region for illustration purposes).

4 Conclusions

The conditions for segmentation of motions with affine fundamental matrix were
proposed in terms of the difference between rotation angles (∆θ) and transla-
tional directions (∆φ), the location of points belonging to the unwanted motion
(Ĝ), the magnitude of the unwanted translation viewed by a particular camera
(K

Z̄
) and the level of noise (σn). If this conditions are satisfied, it is guaran-

teed that the population of distances belonging to multiple affine motions do
not overlap, and therefore the target motion can be successfully segmented. The
proposed conditions were both studied by theoretical analysis and verified by
Monte Carlo experiments with synthetic images. The performance of these con-
ditions for various inlier ratio was also examined. The magnitudes of ∆θ’s and
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∆φ’s (for particular values of K
Z̄

, Ĝ and σn) for correct and consistent segmen-
tation did not changed significantly when the inlier ratio was varied. However
when the inlier ratio was high (ε = 80%), the segmentation was also successful
when the magnitude of ∆θ was large (∆θ > 20◦ for Scenario-I and ∆θ > 45◦

for Scenario-II). This is explained by the fact that, less contamination of the
unwanted motion and high magnitude of ∆θ reduced the likelihood for both
populations of distances to overlap resulting in the successful segmentation of
the target object.
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Abstract. We present an approach for articulated motion detection and pose es-
timation that uses only motion information. To estimate the pose and viewpoint
we introduce a novel motion descriptor that computes the spatial relationships of
motion vectors representing various parts of the person using the trajectories of
a number of sparse points. A nearest neighbor search for the closest motion de-
scriptor from the labeled training data of human walking poses in multiple views
is performed. This observational probability is fed to a Hidden Markov Model
defined over multiple poses and viewpoints to obtain temporally consistent pose
estimates. Experimental results on various sequences of walking subjects with
multiple viewpoints demonstrate the effectiveness of the approach. In particular,
our purely motion-based approach is able to track people even when other visible
cues are not available, such as in low-light situations.

1 Motivation for Articulated Human Motion Analysis

The detection of articulated human motion finds applications in a large number of areas
such as pedestrian detection for surveillance, or traffic safety, gait/pose recognition for
human computer interaction, videoconferencing, computer graphics, or for medical pur-
poses. Johansson’s pioneering work on moving light displays (MLDs) [1] has enabled
researchers to study the mechanism and development of human visual system with a
different perspective by decoupling the motion information from all other modalities of
vision such as color and texture. One compelling conclusion that can be drawn from
these studies is that motion alone captures a wealth of information about the scene.
Others have made a similar observation [2,3].

Figure 1 shows some examples of humans walking as seen from multiple angles
along with their motion trajectories. Even though the appearance features (shape, color,
texture) can be discriminative for detection of humans in the sequence, the motion vec-
tors corresponding to the point features themselves can be used to detect them. The
motion of these points becomes even more compelling when viewed in a video, as the
human visual system fuses the information temporally to segment human motion from
the rest of the scene. It is common knowledge that in spite of having a separate motion,
each body part moves in a particular pattern. Our goal is to exploit the motion proper-
ties of the sparse points attached to a human body in a top-down approach for human
motion analysis. More specifically, our attempt is to answer the question: If provided

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 425–434, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Two examples of human walking motion at different viewing angles, and the motion vec-
tors of the tracked feature points

only with the motion tracks (sparse point trajectories) and no appearance information,
how well can an algorithm detect, track, and estimate the pose of a walking human in a
video?

Previous work related to human motion detection and analysis can be loosely clas-
sified into three categories: pedestrian detection for surveillance, pose estimation, and
action recognition. The nature of the algorithms dealing with the different categories
varies significantly due to the differences in the input image sequences. Approaches
for pedestrian detection are either appearance-based [4,5,6], use both appearance and
stereo [7], or are based on modeling the periodic motion [8]. In contrast to pedestrian
detection, human pose estimation [9,10,11,12,13,14,15,16,3,17,18,19] requires greater
detail of the human motion to be captured, with a model that accounts for the disparate
motions of the individual body parts. A related area of research is human action recog-
nition [20,21], in which the objective is to classify the detected human motion into one
of several predefined categories using off-line training data for learning these action
categories.

Even while considering only a single action category such as walking, human mo-
tion analysis remains a challenging problem due to various factors such as pose, scale,
viewpoint, and scene illumination variations. Most approaches use appearance cues to
perform human motion analysis, but these will not work when appearance information
is lacking (e.g., at night in poorly lit areas). The few approaches that are predomi-
nantly motion based [3,18] are limited in terms of viewpoint and lighting variations.
In this paper, using only the sparse motion trajectories and a single gait cycle of 3D
motion capture data points of a walking person for training, we demonstrate detec-
tion and pose estimation of articulated motion on various sequences that involve view-
point, scale, and illumination variations, as well as camera motion. Our focus is on
a top-down approach, where instead of learning the motion of individual joints and
limbs as in [3], we learn the short-term motion pattern of the entire body in multiple
pose and viewpoint configurations. Pose estimation can then be performed by a direct
comparison of the learned motion patterns to those extracted from the candidate lo-
cations. The advantage of using such a top-down approach is that it greatly simplifies
the learning step, facilitating one-shot learning. At the same time, the learned motion
patterns can be reliably used to estimate the pose and the viewpoint in the presence of
noise.
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2 Learning Models for Multiple Poses and Viewpoints

An overview of the proposed approach is shown in Figure 2. Given an image sequence
our goal is to segment, track, and determine the configuration of the walking human
subject (2D pose and viewpoint) using only the sparse motion vectors corresponding
to the feature points in the sequence. The primary reason for using sparse optical flow
obtained from the tracked point features instead of a dense flow field for motion repre-
sentation is efficiency of computation. The point features are detected and tracked using
the Lucas-Kanade algorithm. Since there is a significant amount of self-occlusion, many
point features representing the target are lost. Therefore, we use only short term feature

trajectories between two consecutive frames. Let Vt =
(

v(t)
1 , . . . , v(t)

k

)
be the tuple that

describes the velocities of the k feature points at frame t, t = 0, . . . , T , where T + 2
is the total number of frames in the sequence. The configuration of the subject in the
current frame is denoted by ct = (mt, nt), where mt and nt are the 2D pose and view
at time t, respectively. We assume that the viewpoint stays the same throughout the
sequence. The configuration in the current frame is dependent not only on the motion
vectors in the current frame but also on the configuration in the previous time instants.
For determining ct, the Bayesian formulation of the problem is given by

p(ct|Vt, c0:t−1) ∝ p(Vt|c0:t)p(ct|c0:t−1), (1)

where p(Vt|c0:t) is the likelihood of observing the particular set of motion vectors given
the configurations up to time t, and p(ct|c0:t−1) is the prior for time instant t that de-
pends on previosu configurations. Assuming a Markov process, we can write the above
equation as

p(ct|Vt, c0:t−1) ∝ p(Vt|ct)p(ct|ct−1). (2)

The estimate of the configuration at time t is ĉt, and our goal is to estimate config-
urations over the entire sequence, C = (ĉ0, . . . , ĉT ). Learning the motion patterns of
the multiple poses and viewpoints involves obtaining a set of motion descriptors that

Fig. 2. Overview of the proposed approach to extract human motion models
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describe each pose in each viewpoint first in the training data. The test data is then
processed in a similar manner to obtain motion descriptors that are compared with the
training data to obtain the likelihood of observing a particular pose and viewpoint con-
figuration.

2.1 Training Data

For training, we used a single sequence from the CMU Motion Capture (mocap) data1

in which the human subject is walking. A single gate cycle was extracted from the
sequence. The obtained marker locations associated with the joints and limbs were pro-
jected onto simulated image planes oriented at various angles with respect to the subject
for each pose (i.e., gait phase), and the corresponding motion vectors were obtained. A
similar multi-view training approach was also adopted in [18]. The advantage of using
the 3D data is that a single sequence provides a large amount of training data. Note that
even though the motion capture data were obtained by calibrated cameras, our tech-
nique does not require any calibration since standard cameras have near unity aspect
ratio, zero skew, and minimal lens distortion.
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Fig. 3. Top: 3D Motion capture data and its projection onto various planes to provide multiple
views in 2D. Bottom: Stick figure models for a sequence of poses (gait phases) for the profile
view.

All possible views and poses are quantized to a finite number of configurations. Let
M be the number of poses and N the number of views. Let q(i)

m = (q(i)x , q
(i)
y , q

(i)
z )T ,

be the 3D coordinates of the ith point obtained from the mocap data for the mth pose,
i = 1, . . . , l. Then the projection of this point onto the plane corresponding to the nth
view angle is given by p(i)

mn = Tnq(i)
m . Here Tn is the transformation matrix for the nth

view angle which is the product of the 2 × 3 projection matrix and the 3 × 3 rotation

matrix about the vertical axis. Let Pmn =
(

p(1)
mn, . . . ,p

(l)
mn

)
be the tuple of 2D points

representing the human figure in phase m and view n and Vmn =
(

v(1)
mn, . . . , v

(l)
mn

)
be

their corresponding 2D motion vectors. Note that V denotes motion vectors obtained

1 http://mocap.cs.cmu.edu
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from the training data while V represents the motion vectors obtained from the test
sequences. Figure 3 shows the multiple views and poses obtained from the 3D marker
data. In this work we use 8 views and 8 poses.

2.2 Motion Descriptor

It is not possible to compare the sets of sparse motion vectors directly using a technique
like PCA [18] because there is no ordering of the features. Instead, we aggregate the
motion information in spatially local areas. Given the training data of positions Pmn

and velocities Vmn, we define the motion descriptor ψmn for pose m and view n as an
18-element vector containing the magnitude and phase of the weighted average motion
vector in nine different spatial areas, where the weight is determined by an oriented
Gaussian centered in the area. More precisely, the jth bin of the motion descriptor is
given by

ψmn(j) =
l∑

i=1

v(i)
mnGj(p(i)

mn), (3)

where Gj is a 2D oriented Gaussian given by

Gj(x) =
1

2π|Σj|1/2 exp
(
−1

2
(x− µj)

T
Σ−1

j (x− µj)
)
, (4)

with µj andΣj being the mean and covariance matrix of the jth Gaussian, precomputed
with reference to the body center.

Figure 4 shows the nine spatial ellipses used in computing the motion descrip-
tor, along with their Gaussian weight maps. The discriminative ability of the motion
descriptor is illustrated in the rest of the figure. The confusion matrix shows the pseu-
docolored Euclidean distance between the motion descriptors of all pairs of 64 config-
urations, with zero values along the diagonal. It is clear from this matrix that motion
alone carries sufficient information to discriminate between the various poses and views
in nearly all situations. The bottom row of the figure shows the descriptor bin values for
two cases: three different views of the same pose, and the same view of three different
poses. Because they capture the motion of the upper body, the first several bins have
similar values, while the last several bins representing the lower body show a larger
degree of variation. It is this larger variation in the lower part of the body that gives the
descriptor its discriminatory power.

3 Pose and Viewpoint Estimation

Hidden Markov Models (HMMs) are well suited for the estimation of human gait over
time. HMMs are statistical models consisting of a finite number of states which are
not directly observable (hidden) and which follow a Markov chain, i.e., the likelihood
of occurrence of a state at the next instant of time conditionally depends only on the
current state. Each discrete pose for each viewpoint can be considered as a hidden state
of the model. Assuming that the pose of a human walking is a Markov process, the
observation probabilities can be computed from the image data using the motion of the
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Fig. 4. TOP: The proposed motion descriptor (left), weight maps (middle) of all but the central
Gaussian used for computing the motion descriptor, and the 64× 64 confusion matrix (right) for
8 poses and 8 views. BOTTOM: The motion descriptor bin values for different views of the same
pose (left), and for the same view of different poses (right).

limbs, and the state transition probabilities and priors can be determined beforehand.
The goal is then to determine the hidden state sequence (pose estimates and viewpoint)
based on a series of observations obtained from the image data.

Let λ = (A,B, π) be the HMM, where A is the state transition probability matrix,
B is the observational probability matrix, and π is the prior. Let the configuration ct
represent the hidden state of the model at time t, and let Ot be the observation at that
time. There is a finite set of states S = {(1, 1) , . . . , (M,N)} corresponding to each
pose and view angle. The state transition probability isA(i, j) = P (ct+1 = sj |ct = si),
si, sj ∈ S, i.e., the probability of being in state sj at time t + 1 given that the current
state is si. The observation probability is given by B(j, t) = P (Ot|ct = sj), i.e., the
probability of observing Ot at time t given that the current state is sj . Given the HMM
λ = (A,B, π), and series of observations O = {O0, . . . , OT }, our goal is to find the
sequence of states C = {c0, . . . , cT } such that the joint probability of the observation
sequence and the state sequence given the model P (O, C|λ) is maximized.

The state transition probability between two states si = (mi, ni) and sj = (mj , nj)
is predefined to be

p(sj |si) =

{
φnext if ni = nj and mj = mi + 1
φremain if ni = nj and mj = mi

0 otherwise
. (5)

where φnext = 0.51 is the probability of transitioning to the next pose, and φremain =
0.43 is the probability of remaining in the same pose. Note that, as mentioned earlier,
the transition probability from one view to another view is zero, creating effectively a
disconnected HMM. The observation probability is given by a normalized exponential
of the Euclidean distance between the test and training motion descriptors. The opti-
mum state sequence C for the HMM is then computed using the Viterbi algorithm.
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4 Experimental Results

Our approach was tested on a variety of sequences of walking humans from different
viewpoints, scales, and illumination conditions. The detection of articulated bodies is
performed by computing the motion descriptor to each pixel of the image at three dif-
ferent scales and projecting the descriptor onto a line to determine the similarity with
respect to a model of human motion. A strength map is generated indicating the proba-
bility of a person being at that location and scale, and the maximum of the strength map

Fig. 5. Articulated motion detection for various viewpoints: right profile, left profile, at an angle,
and frontal. In the bottom row, the camera is moving.

Fig. 6. Top to bottom: Pose estimation for four frames from several sequences: right profile view,
left profile view, angular view, frontal view, and profile view at night with reflectors
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is used as the location and scale of the target. Figure 5 shows human detection based
on this procedure. The unique characteristics of human motion when compared to other
motions present in natural scenes is clear from the ability of such a simple procedure
to detect the people. Using only motion information, the person is correctly detected
in each sequence, even when the camera is moving, because only differences between
motion vectors are used. Once the person has been detected, Lucas-Kanade point fea-
tures are tracked through the image sequence, and the location and scale of the person
is updated using the tracked points attached to the detected target. The entire process is
fully automatic.

Figure 6 shows the pose estimation results for sequences captured from various view-
points. Each sequence covers an entire gait cycle. The stick figure models correspond to
the nearest configuration found in the training data by the HMM. It is important to keep
in mind that point feature tracks are not very accurate in sequences such as these involv-
ing non-rigid motion and large amounts of occlusion, and a large number of point fea-
tures belonging to the background cause noise in the data, especially when the camera
is moving. Moreover, when the person walks toward or away from the camera (frontal
view), the pose estimation is difficult due to the ambiguity in motion. Nevertheless, the
estimated poses are qualitatively correct.

The last row of the figures shows a sequence captured at night by an infrared camera.
The person is wearing a special body suit fitted with reflectors that reflect the light emit-
ted by the headlights of an oncoming vehicle. This suit has been used in psychological
studies of the effectiveness of reflectors for pedestrian safety by exploiting the biomo-
tion capabilities of the human visual system of automobile drivers [22]. The utility of
a purely motion based approach can be especially seen in this sequence, in which no
appearance information is available. Even without such information, the motion vectors
are highly effective within the current framework for estimating the pose. To provide
quantitative evaluation, Figure 7 shows the estimated knee angles at every frame of the
right profile view and the frontal view sequences, along with the ground truth.

As can be seen from these results, our approach offers several advantages over previ-
ous motion-based approaches [3,18,17,21]. First, it is invariant to scale and viewpoint,
and it is able to deal with noisy video sequences captured from a moving camera. In
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Fig. 7. Estimated and ground truth knee angles for two sequences. The top row shows the right
knee, while the bottom row shows the left knee.
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contrast, many of the previous algorithms rely on a static camera, tightly controlled
imaging conditions, and/or a particular walking direction (e.g., profile view). Another
advantage of our approach is that it is easy to train, requiring only a small amount of
training data since there is no need to account for all the variations in appearance that
occur in real imagery. Since the estimated poses of our approach are necessarily tied
to the training data, it is not possible to recover arbitrary body poses not seen in the
training data. Nevertheless, it may possible to train a similar detector to handle various
other actions such as running or hand waving with appropriate data.

5 Conclusion

Motion is a powerful cue that can be effectively utilized for biological motion analysis.
We have presented a motion-based approach for detection, tracking, and pose estima-
tion of articulated human motion that is invariant of scale, viewpoint, illumination, and
camera motion. In this spirit of one-shot learning, the approach utilizes only a small
amount of training data. The spatial properties of human motion are modeled using a
novel descriptor, while temporal dependency is modeled using an HMM. A clear ad-
vantage of using a purely motion based approach is demonstrated in pose estimation
in nighttime sequences where no appearance information is available. In demonstrat-
ing the effectiveness of motion information alone, our intention is not to discount the
importance of appearance information but rather to highlight the effectiveness of this
particular cue. Future work involves exploring ways of articulated motion detection in
the presence of noise, allowing the subjects to change viewpoints as they are tracked,
combining the bottom-up and top-down approach for more accurate pose estimation,
and incorporating appearance information for increased robustness.
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Abstract. The estimation of camera motion is one of the most impor-

tant aspects for video processing, analysis, indexing, and retrieval. Most

of existing techniques to estimate camera motion are based on optical

flow methods in the uncompressed domain. However, to decode and to

analyze a video sequence is extremely time-consuming. Since video data

are usually available in MPEG-compressed form, it is desirable to directly

process video material without decoding. In this paper, we present a

novel approach for estimating camera motion in MPEG video sequences.

Our technique relies on linear combinations of optical flow models. The

proposed method first creates prototypes of optical flow, and then per-

forms a linear decomposition on the MPEG motion vectors, which is

used to estimate the camera parameters. Experiments on synthesized

and real-world video clips show that our technique is more effective than

the state-of-the-art approaches for estimating camera motion in MPEG

video sequences.

1 Introduction

Advances in data compression, data storage, and data transmission have facil-
itated the way videos are created, stored, and distributed. The increase in the
amount of video data has enabled the creation of large digital video libraries.
This has spurred great interest for systems that are able to efficiently manage
video material [1, 2, 3].

Making efficient use of video information requires that the data be stored in
an organized way. For this, it must be associated with appropriate features in or-
der to allow any future retrieval. An important feature in video sequences is the
temporal intensity change between successive video frames: apparent motion.
The apparent motion is generally attributed to the motion caused by object
movement or introduced by camera operation. The estimation of camera mo-
tion is one of the most important aspects to characterize the content of video
sequences [4].

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 435–446, 2009.
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Most of existing techniques to estimate camera motion are based on analysis
of the optical flow between consecutive video frames [5,6,7,8,9,10,11]. However,
the estimation of the optical flow, which is usually based on gradient or block
matching methods, is computationally expensive [12].

Since video data are usually available in MPEG-compressed form, it is desir-
able to directly process the compressed video without decoding. A few methods
that directly manipulate MPEG compressed video to extract camera motion
have been proposed [13,12,4,14]. These approaches use MPEG motion vectors1

as an alternative to optical flow which allows to save high computational load
from two perspectives: full decoding the video stream and optical flow compu-
tation [4].

The most popular models in estimating camera motion from MPEG motion
vectors are the four parameter [14] and the six parameter [4] affine model. How-
ever, the affine parameters are not directly related to the physically meaningful
camera operations.

In this paper, we propose a novel approach for the estimation of camera motion
in MPEG video sequences based on optical flow models. The proposed method
generates the camera model using linear combinations of prototypes of optical
flow produced by each camera operation.

In order to validate our approach, we use a synthetic test set and real-world
video sequences including all kinds of camera motion and many of their possible
combinations. Further, we have conducted several experiments to show that our
technique is more effective than the affine model-based approaches for estimating
camera motion in MPEG video sequences.

The remainder of the paper is organized as follows. In Section 2, we review
three existing approaches used as reference in our experiments. Section 3 presents
our approach for the estimation of camera motion. The experimental settings
and results are discussed in Section 4. Finally, Section 5 presents conclusions
and directions for future work.

2 Related Work

In this section, we review three approaches used as reference in our experiments.
These methods were implemented and their effectiveness are compared in Sec-
tion 4.

Kim et al. [4] have used a two-dimensional affine model to detect six types
of motion: panning, tilting, zooming, rolling, object motion, and stationary. Be-
forehand, motion vector outliers are filtered out by a simple smoothing filter.
The camera parameters for the model are estimated by using a least squares fit
to the remaining data.

Smolic et al. [14] have used a simplified two-dimensional affine model to distin-
guish between panning, tilting, zooming, and rolling. They use the M-estimator
1 In video compression, a motion vector is a two-dimensional vector used for inter

prediction that provides an offset from the coordinates in the decoded picture to the

coordinates in a reference picture.
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approach [15] to deal with data corrupted by outliers. It is basically a weighted
least square technique, which reduces the effect of outliers by using an influence
function.

Gillespie et al. [12] have extended such approach in order to improve its ef-
fectiveness by using a robust Least Median-of-Squares (LMedS) [15] to estimate
the camera parameters and minimize the influence of outliers.

3 Our Approach

The previous approaches simply find the best-fit affine model to estimate camera
motion by using the least squares method. However, the affine parameters are
not directly related to the physically meaningful camera operations.

In this sense, we propose a novel approach for the estimation of camera motion
based on optical flow models. The proposed method generates the camera model
using linear combinations of prototypes of optical flow produced by each camera
operation. It consists of three main steps: (1) feature extraction; (2) motion
model fitting; and (3) robust estimation of the camera parameters.

3.1 Feature Extraction

MPEG videos are composed by three main types of pictures: intra-coded (I-
frames), predicted (P-frames), and bidirectionally predicted (B-frames). These
pictures are organized into sequences of groups of pictures (GOPs) in MPEG
video streams.

A GOP must start with an I-frame and can be followed by any number of I
and P-frames, which are usually known as anchor frames. Between each pair of
consecutive anchor frames can appear several B-frames. Figure 1 shows a typical
GOP structure.

An I-frame does not refer to any other video frame. On the other hand, the
encoding of a P-frame is based on a previous anchor frame, while the encoding of
a B-frame can be based on two anchor frames, a previous as well as a subsequent
anchor frame.

Each video frame is divided into a sequence of non-overlapping macroblocks.
For each macroblock, a motion vector which points to a similar block in an
anchor frame is estimated. Motion estimation algorithms try to find the best
block match in terms of compression efficiency. This can lead to motion vectors
that do not represent the camera motion at all [17].

The motion vectors are extracted directly from the compressed MPEG stream.
Only the motion vectors from P-frames are processed in our approach. They were
chosen due to the following reasons. First, usually each third until fifth frame
in a MPEG video is a P-frame, and thus, the temporal resolution is suficient
for most applications. Further, both the prediction direction and the temporal
distance of motion vectors are not unique in B-frames, resulting in additional
computational complexity.
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Fig. 1. A typical group of pictures (GOP) in MPEG video sequences [16]

3.2 Motion Model Fitting

A camera projects a 3D world point into a 2D image point. The motion of the
camera may be limited to a single motion such as rotation, translation, or zoom,
or some combination of these three motions. Such camera motion can be well
categorized by few parameters.

If we consider that the visual field of the camera is small, we can establish
ideal optical flow models, which are noise-free, by using a numerical expression
for the relationship of the MPEG motion vectors, and creating prototypes of
optical flow models.

Hence, we can approximate the optical flow by a weighted combination of
optical flow models:

f = P · p+ T · t+ Z · z +R · r, (1)

where p, t, z, and r are the prototypes generated by panning, tilting, zooming,
and rolling, respectively.

The parameter-estimation problem is now to obtain an estimate for the pa-
rameters P , T , Z, and R, based on a set of measured motion vectors {f̂i}. Since
the measurements are not exact, we can not assume that they will all fit per-
fectly to the model. Hence, the best solution is to compute a least-squares fit
to the data. For this, we define the model error as the sum of squared norm of
the discrepancy vectors between the measured motion vectors f̂i and the motion
vectors obtained from the model:

E =
∑

i

‖(P · pi + T · ti + Z · zi +R · ri)− f̂i‖2, (2)
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where P , T , Z, and R represent the motion induced by the camera operations of
panning (or tracking), tilting (or booming), zooming (or dollying), and rolling,
respectively.

To minimize the model error E, we can take its derivatives with respect to
the motion parameters

∂E

∂P
=
∑

i

2 pT
i (P · pi + T · ti + Z · zi +R · ri − f̂i),

∂E

∂T
=
∑

i

2 tTi (P · pi + T · ti + Z · zi +R · ri − f̂i),

∂E

∂Z
=
∑

i

2 zT
i (P · pi + T · ti + Z · zi +R · ri − f̂i),

∂E

∂R
=
∑

i

2 rT
i (P · pi + T · ti + Z · zi + R · ri − f̂i),

and set them to zero, giving∑
i

(P pT
i pi + T pT

i ti + Z pT
i zi +R pT

i ri − pT
i f̂i) = 0,∑

i

(P tTi pi + T tTi ti + Z tTi zi +R tTi ri − tTi f̂i) = 0,∑
i

(P zT
i pi + T zT

i ti + Z zT
i zi +R zT

i ri − zT
i f̂i) = 0,∑

i

(P rT
i pi + T rT

i ti + Z rT
i zi +R rT

i ri − rT
i f̂i) = 0,

which can be written in matrix form as⎡⎢⎢⎣
∑

i〈pi, pi〉
∑

i〈pi, ti〉
∑

i〈pi, zi〉
∑

i〈pi, ri〉∑
i〈ti, pi〉

∑
i〈ti, ti〉

∑
i〈ti, zi〉

∑
i〈ti, ri〉∑

i〈zi, pi〉
∑

i〈zi, ti〉
∑

i〈zi, zi〉
∑

i〈zi, ri〉∑
i〈ri, pi〉

∑
i〈ri, ti〉

∑
i〈ri, zi〉

∑
i〈ri, ri〉

⎤⎥⎥⎦
⎛⎜⎜⎝
P
T
Z
R

⎞⎟⎟⎠ =

⎛⎜⎜⎝
∑

i〈pi, f̂i〉∑
i〈ti, f̂i〉∑
i〈zi, f̂i〉∑
i〈ri, f̂i〉

⎞⎟⎟⎠ , (3)

where 〈u, v〉 = uT v is the inner product between the vectors u and v.
Here, we define the optical flow model for panning (p), tilting (t), zooming

(z), and rolling (r), respectively, as:

p(x, y) =
(
−1
0

)
, t(x, y) =

(
0
−1

)
, z(x, y) =

(
−x
−y

)
, r(x, y) =

(
y
−x

)
,

where (x, y) is the sample point whose coordinate system has origin at the center
of the image.

Figure 2 represents the prototypes which consist of optical flow models gen-
erated by panning, tilting, zooming, and rolling, respectively. These optical flow
models express the amount and direction of the camera motion parameters,
respectively.
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Fig. 2. The optical flow (top) and the prototype (bottom) generated by panning, tilt-

ing, zooming, and rolling, respectively (left to right)

3.3 Robust Estimation of the Camera Parameters

The direct least-squares approach for parameter estimation works well for a
small number of outliers that do not deviate too much from the correct motion.
However, the result is significantly distorted when the number of outliers is
larger, or the motion is very different from the correct camera motion. Especially
if the video sequence shows independent object motions, a least-squares fit to
the complete data would try to include all visible object motions into a single
motion model.

To reduce the influence of outliers, we apply a well-known robust estimation
technique called RANSAC (RANdom SAmple Consensus) [18]. The idea is to
repeatedly guess a set of model parameters using small subsets of data that are
drawn randomly from the input. The hope is to draw a subset with samples
that are part of the same motion model. After each subset draw, the motion
parameters for this subset are determined and the amount of input data that is
consistent with these parameters is counted. The set of model parameters with
the largest support of input data is considered the most dominant motion model
visible in the image.

4 Experiments and Results

In order to evaluate the performance of the proposed method for estimating
camera motion in MPEG video sequences, experiments were carried out on both
synthetic and real-world video clips.

4.1 Results with Noise-Free Synthetic Data

First, we evaluate our approach on synthetic video sequences with known ground-
truth data. For this, we create a synthetic test set with four MPEG-4 video clips2

2 All video clips and ground-truth data of our synthetic test set are available at

http://www.liv.ic.unicamp.br/~minetto/videos/

http://www.liv.ic.unicamp.br/~minetto/videos/
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(a) (b) (c)

Fig. 3. The POV-Ray scenes of a realistic office model used in our synthetic test set

(640 × 480 pixels of resolution) based on well textured POV-Ray scenes of a re-
alistic office model (Figure 3), including all kinds of camera motion and many of
their possible combinations. The main advantage is that the camera motion pa-
rameters can be fully controlled which allows us to verify the estimation quality
in a reliable way.

The first step for creating the synthetic videos is to define the camera’s posi-
tion and orientation in relation to the scene. The world-to-camera mapping is a
rigid transformation which takes scene coordinates pw = (xw, yw, zw) of a point
to its camera coordinates pc = (xc, yc, zc). This mapping is given by [19]

pc = Rpw + T, (4)

where R is a 3× 3 rotation matrix that defines the camera’s orientation, and T
defines the camera’s position.

The rotation matrix R is formed by a composition of three special orthogonal
matrices (known as rotation matrices)

Rx =

[
cos(α) 0 − sin(α)

0 1 0

sin(α) 0 cos(α)

]
, Ry =

[
1 0 0

0 cos(β) sin(β)

0 − sin(β) cos(β)

]
, Rz =

[
cos(γ) sin(γ) 0

− sin(γ) cos(γ) 0

0 0 1

]
,

where α, β, γ are the angles of the rotations.
We consider the motion of a continuously moving camera as a trajectory

where the matrices R and T change according to the time t, in homogeneous
representation, [

pc
1

]
=
[
R(t) T (t)

0 1

] [
pw
1

]
. (5)

Thus, to perform camera motions such as tilting (gradual changes in Rx), pan-
ning (gradual changes in Ry), rolling (gradual changes in Rz), and zooming
(gradual changes in focal distance f), we define a function F (t) which returns
the parameters (α, β, γ, and f) used to move the camera at the time t. We use
a smooth and cyclical function

F (t) =M∗ 1− cos(2πt/T )(0.5− t/T )
0.263

, (6)
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Fig. 4. The main characteristics of each video sequence (Mi) in our synthetic test set

whereM is the maximum motion factor and T is the duration of camera motion
in units of time. We create all video clips using the maximum motion factorM
equals to 3o for tilting (α), 8o for panning (β), 90o for rolling (γ), and 1.5 for
zooming (f).

Figure 4 shows the main characteristics of each resulting video sequence (Mi).
The terms P, T, R, and Z stand for the motion induced by the camera operations
of panning, tilting, zooming, and rolling, respectively. The videos M3 and M4
have combinations of two or three types of camera motions. In order to represent
a more realistic scenario, we modify the videos M2 and M4 to have occlusions
due to object motion.

Furthermore, we change the artificial illumination of lamps and the reflection
of the sunrays in some parts of the scene according to the camera motion. In
addition, all the objects present in the scene have complex textures, which are
very similar to the real ones.

Moreover, we are very severe in the intensity of the camera movements. Fast
camera motions and combinations of several types of motion at the same time
are rare to occur. Our goal in these cases is to measure the response of our
algorithm in adverse conditions, and not only with simple camera operations.

We assess the effectiveness of the proposed method using the well-known Zero-
mean Normalized Cross Correlation (ZNCC) metric [20], defined by

ZNCC(F ,G) =
∑

t((F(t) − F̄)× (G(t) − Ḡ))√∑
t(F(t) − F̄)2 ×

∑
t(F(t) − Ḡ)2

(7)

where F(t) and G(t) are the estimate and the real camera parameters, respec-
tively, at the time t. It returns a real value between −1 and +1. A value equals
to +1 indicates a perfect estimation; and −1, an inverse estimation.

Tables 1, 2, 3, and 4 compare our approach with the techniques presented in
Section 2. Clearly, the use of optical flow models for estimating camera motion in
MPEG video sequences is more effective than the affine model-based approaches.

Despite MPEG motion vectors improve the runtime performance, they often
do not model real motion adequately [17]. Note that the effectiveness achieved
by all methods is reasonably reduced for tilting operations in presence of several
types of camera motions at the same time.
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Table 1. Effectiveness achieved by all approaches in video clip M1

Method Tilting Panning Rolling Zooming

Our Approach 0.981419 0.996312 0.999905 0.964372

Gillespie et al. 0.970621 0.987444 0.999830 0.958607

Smolic et al. 0.950911 0.994171 0.999199 0.949852

Kim et al. 0.649087 0.912365 0.994067 0.858090

Table 2. Effectiveness achieved by all approaches in video clip M2

Method Tilting Panning Rolling Zooming

Our Approach 0.981029 0.995961 0.999913 0.965994

Gillespie et al. 0.972189 0.988062 0.999853 0.959516

Smolic et al. 0.936479 0.991438 0.999038 0.949367

Kim et al. 0.633559 0.821266 0.986408 0.865052

Table 3. Effectiveness achieved by all approaches in video clip M3

Method Tilting Panning Rolling Zooming

Our Approach 0.587136 0.950760 0.999624 0.956845

Gillespie et al. 0.575178 0.931957 0.999521 0.954215

Smolic et al. 0.559669 0.940782 0.999037 0.951701

Kim et al. 0.501764 0.942563 0.997240 0.942588

Table 4. Effectiveness achieved by all approaches in video clip M4

Method Tilting Panning Rolling Zooming

Our Approach 0.592071 0.949922 0.999659 0.956440

Gillespie et al. 0.577467 0.932568 0.999545 0.954286

Smolic et al. 0.557849 0.940886 0.998920 0.951640

Kim et al. 0.498081 0.941956 0.997334 0.944102

4.2 Results with Real-World Video Sequences

We also evaluate our technique over four real-world video sequences3. These
video clips were shot with a hand-held consumer-grade DVR (Canon Optura
40) with variable zoom. They were recorded in MPEG format at 320 × 240
resolution, 14.98 frames per second.

Table 5 summarizes the main characteristics of each resulting real-world video
sequence (Ri). All videos clips were affected by natural noise. The videos R3 and
R4 have occlusions due to object motion.
3 All real-world video sequences are available at http://www.liv.ic.unicamp.br/

~minetto/videos/

http://www.liv.ic.unicamp.br/~minetto/videos/
http://www.liv.ic.unicamp.br/~minetto/videos/
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Table 5. The main characteristics of each real-world video sequence (Ri)

Video Frames Camera Operations

R1 338 P,T,R,Z

R2 270 P,T,R,Z

R3 301 P,T,R,Z

R4 244 P,T,R,Z

In these experiments, we analyze the effectiveness of motion vector-based
techniques in relation to the well-known optical flow-based estimator presented
in [9]. Each video clip (Ri) takes less than 1 second to process the whole sequence
using a motion vector-based approach on a Intel Core 2 Quad Q6600 (four cores
running at 2.4 GHz), 2GB memory DDR3. It is important to realize that the
optical flow-based method requires a magnitude of almost one second per frame.

Tables 6, 7, 8, and 9 compare our approach with the techniques presented in
Section 2. In fact, the use of optical flow models for estimating camera motion
in MPEG video sequences outperforms the affine model-based approaches.

Note that the optical flow models identify the camera operations better than
the affine parameters. For instance, considering zooming operations in the video

Table 6. Effectiveness achieved by all approaches in video clip R1

Method Tilting Panning Rolling Zooming

Our Approach 0.986287 0.986294 0.987545 0.982227

Gillespie et al. 0.982345 0.978892 0.980464 0.964398

Smolic et al. 0.984085 0.976381 0.977135 0.966526

Kim et al. 0.982998 0.884470 0.795713 0.944286

Table 7. Effectiveness achieved by all approaches in video clip R2

Method Tilting Panning Rolling Zooming

Our Approach 0.914379 0.954113 0.929268 0.684219

Gillespie et al. 0.863166 0.931218 0.899512 0.357249

Smolic et al. 0.874244 0.952316 0.919447 0.611227

Kim et al. 0.899520 0.901673 0.846316 0.670006

Table 8. Effectiveness achieved by all approaches in video clip R3

Method Tilting Panning Rolling Zooming

Our Approach 0.964425 0.960878 0.957735 0.454204

Gillespie et al. 0.949270 0.931442 0.927145 0.379836

Smolic et al. 0.957662 0.953751 0.956303 0.444741

Kim et al. 0.954097 0.912121 0.924798 0.368722
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Table 9. Effectiveness achieved by all approaches in video clip R4

Method Tilting Panning Rolling Zooming

Our Approach 0.976519 0.958020 0.927920 0.577974

Gillespie et al. 0.948314 0.902511 0.851247 0.308588

Smolic et al. 0.969314 0.956417 0.903442 0.523507

Kim et al. 0.969613 0.938639 0.839906 0.474439

R4, our method is more than 10% (≈ 5 percentual points) better than the best
affine model-based one.

5 Conclusions

In this paper, we have presented a novel approach for the estimation of camera
motion in MPEG video sequences. Our technique relies on linear combinations
of optical flow models. Such models identify the camera operations better than
the affine parameters.

We have validated our technique using synthesized and real-world video clips
including all kinds of camera motion and many of their possible combinations.
Our experiments have showed that the use of optical flow models for estimating
camera motion in MPEG video sequences is more effective than the affine model-
based approaches.

Future work includes an extension of the proposed method to distinguish
between translational (tracking, booming, and dollying) and rotational (panning,
tilting, and rolling) camera operations. In addition, we want to investigate the
effects of integrating the proposed method into a complete MPEG system for
camera motion-based search-and-retrieval of video sequences.
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Abstract. This paper presents an extension of the maximum likelihood estima-
tion sample consensus (MLESAC) by introducing an online validation of indi-
vidual correspondences, which is based on the Law of Large Numbers (LLN). 
The outcomes of the samples, each considered a random event, are analyzed for 
useful information regarding the validities of individual correspondences. The 
information from the individual samples that have been processed is accumu-
lated and then used to guide subsequent sampling and to score the estimate. To 
evaluate the performance of the proposed algorithm, the proposed method was 
applied to the problem of estimating the fundamental matrix. Experimental  
results with the Oxford image sequence, Corridor, showed that for a similar 
consensus the proposed algorithm reduced, on average, the Sampson error by 
about 13% and 12% in comparison to the RANSAC and the MLESAC estima-
tor, while the associated number of samples decreased by about 14% and 15%, 
respectively. 

1   Introduction 

The fundamental matrix describes a very important image relation between two im-
ages. It is required for many applications such as image rectification and augmented 
reality. One common problem in image or video processing is to estimate the funda-
mental matrix from a set of correspondences that are acquired from two images. To 
reduce the negative effect of mismatched correspondences (outliers), robust estima-
tion techniques are required to overcome problems with noise, which can originate 
from image capture, and also from errors associated with feature matching. Amongst 
the methods presented so far in the literature, random sampling consensus (RANSAC) 
algorithms provide the best solution [9]. RANSAC is essentially a hypothesis and 
verification algorithm, where solutions are repeatedly generated (hypothesis) from the 
minimal sets of correspondences randomly selected from the data. The algorithm 
proceeds by testing each solution for support (consensus) from the complete set of 
correspondences to determine the consensus for the model hypothesis to be estimated. 

RANSAC-like algorithms usually employ a hypothesis scoring technique to  
evaluate the support of a generated model hypothesis from the complete set of corre-
spondences. The standard RANSAC algorithm [2] counts the number of inliers (as a 
measure of consensus) for each generated model hypothesis by binarizing the errors 
with a given threshold. The MSAC (M-estimator sample consensus) estimator [10] 
measures the quality of a hypothesis in such a way that outliers are given a fixed  
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penalty while inliers are scored on how well they fit the data. The MLESAC (maxi-
mum likelihood estimation sample consensus) algorithm [11] evaluates the likelihood 
of the model hypothesis instead of using heuristic measures. It requires the estimation 
of a parameter, which represents the proportion of valid correspondences and is solved 
by an EM (expectation maximization) algorithm. All the methods mentioned so far 
takes into account equal constant validities of correspondences. The G-MLESAC 
(guided maximum likelihood estimation sample consensus) algorithm [8] extends the 
MLESAC algorithm by adding prior validity information for individual correspon-
dences. The prior validities of correspondences are however calculated only from the 
information gathered from the feature matcher and are kept constant while estimating 
the parameters of the motion model. In the absence of meaningful matching scores this 
algorithm is reduced to the same performance as the MLESAC. Recently, a model-
driven method was proposed to validate individual correspondences [6]. It makes use 
of the sample that is considered the best one in the previous samples and, thus, the 
validation could be unstable because it is highly dependent on a single outcome. Sev-
eral techniques have also been proposed to speed up the verification phase of the stan-
dard RANSAC algorithm. For instance, Chum and Matas [1] made use of randomized 
sequential sampling to enable the early termination of the hypothesis evaluation. Nister 
presented a preemptive RANSAC method [5] to efficiently select, with a predefined 
confidence, the best hypothesis from a fixed number of generated hypotheses.  

One key attribute of the conventional RANSAC-like algorithms described above is 
that each sample is processed independently. No information from the previous  
samples is exploited to provide guidance in the subsequent samples. An individual 
sample of the RANSAC-like algorithm can be viewed as a random event and, accord-
ing to probability theory, the outcomes of the random events will exhibit certain  
statistical patterns that can be predicted. This motivated us to study the possibility of 
exploiting the statistical patterns provided by previous samples for analyzing subse-
quent samples. 

This paper is organized as follows. After the Introduction, Section 2 reviews the 
formulation of the maximum likelihood (ML) estimation of the fundamental matrix. 
Section 3 describes the online validation of correspondences according to the Law of 
Large Numbers (LLN). Section 4 describes the proposed algorithm. Experimental 
results with the Oxford test sequence, Corridor, are presented in Section 5. The last 
section concludes the paper. 

2   ML Formulation 

The fundamental matrix represents the epipolar geometrical constraint between two 
images and is applicable for general motion and structure attributes with uncalibrated 

cameras. Let { j
ix~ , i=1, …, n and j=1,2} be the sets of contaminated homogenous 

image points, which are the image projections from an object, as viewed in the first 
and second image. F is the fundamental matrix. εi(F) is an error generated by the ith 

correspondence { 1~
ix , 2~

ix } by a given F. Then, we have 

                                                )(~~ 12 FF ii
T

i xx ε= .                                                    (1) 
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To determine the fundamental matrix using maximum likelihood estimation is to find 

an estimate F
)

 so that 
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where )|( Fip ε  is a likelihood function that describes how well the ith correspon-

dence { 1~
ix , 2~

ix } matches, when a fundamental matrix F is given. Torr and Zisserman 

[10] model the errors of correct matches with a Gaussian distribution and the errors of 
mismatched correspondences with a uniform distribution. In practice, it is unknown 

whether the ith correspondence { 1~
ix , 2~

ix } is a mismatch or not. To quantify the 

match, let us define an indicator variable vi, which asserts that the ith correspondence 

{ 1~
ix , 2~

ix } is a correct match, and )( ivP  be the probability of it being a correct match 

(inlier). Taking into consideration both matched and mismatched cases [8], the ML 
estimation is formulated as follows  
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To implement the ML estimate as shown in Eq. (3), the probability P(vi) has to be 
determined. MLESAC algorithm assumes that P(vi) is constant within the set of all 
correspondences, e.g. P(vi)=P(v), and P(v) is calculated using the expectation-
maximization (EM) algorithm. In contrast, G-MLESAC algorithm considers that each 
correspondence has a different P(vi) and determines P(vi) based on similarity meas-
ures of a feature matcher. In addition, P(vi) is fixed during hypothesis generation 
(samples). 

3   Validation of Point Correspondences 

An individual sample is a random and independent event. The probability theory 
indicates that if an event is repeated many times the sequences of the random events 
will exhibit certain statistical patterns, which can be studied and predicted. This sug-
gests that P(vi) could be estimated from the outcomes of the previously completed 
samples. 

Recall that for each sample the error εi(F) of the ith correspondence for each gen-
erated hypothesis F is calculated. Against a pre-defined error threshold Tthr the com-
plete set of correspondences are classified into two subsets, namely one for inliers and 
the other for outliers, i.e,  

                 
⎪⎩

⎪
⎨
⎧

≥
<

thri

thrith

Tifoutlieran

Tifinlieran
isencecorrespondithe

)(,

)(,

F

F

ε
ε

                         (4) 



450 L. Zhang et al. 

In the current experiment, the value of Tthr was chosen to be 1.96σ with σ=1 as sug-
gested in [9] for the case of the fundamental matrix, where σ stands for the standard 
deviation of the error. This inlier-outlier classification is one of the outcomes of the 
event and provides the information related to the validity of the correspondence. From 
the viewpoint of probability theory, the value of P(vi) can be determined from this 
inlier-outlier classification performed in the previously completed samples.  

We accumulate the inlier-outlier classification obtained from successful random 
samples as an estimate of P(vi) for the ith correspondence. The successful random 

sample is defined as the one that reaches a score better than any one before. Let i
mC  

be the inlier-outlier classification result of the ith correspondence at the mth independ-
ent successful random sample, i.e. 

                                          ⎩
⎨
⎧

=
outlier

inlier
C i

m ,0

,1

              
                                         (5) 

Suppose that there are a total of m independent successful random samples after the 

kth independent sample. iC1 , iC2 ,…, i
mC  are the outcomes of the ith correspondence 

from those m independent successful random samples, with an expected finite value 

of µi=E(Ci) and a finite variance of 2
iσ =V(Ci). Let  

                                             
i
mS = iC1 + iC2 +…+ i

mC .                                           (6) 

From the theorem of the Law of Large Numbers (LLN) [3], for any δ>0, we have 
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as m→∞. Equivalently, 
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as m→∞. 
As an estimate of the validity of a correspondence, we propose that 
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constitute the validity of the ith correspondence and be exploited for subsequent sam-
ples. Based on the law of large numbers, this estimate approaches the ground-truth 
validity value of the ith correspondence as the number of successful random samples 
increases. This estimation is also in accordance with a common assumption that the 
consensus corresponding to the best score so far is more likely an inlier set at the 
instance. As the number of successful samples increases, the consensus approaches to 
real one. It is important to note that the estimates of P(vi) are not exploited for the 
subsequent samples until at least a certain percent of the total number of samples has 
been completed because successful but unreliable samples are likely to occur at the 
beginning of the process.  
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4   Algorithm  

The proposed MLESAC algorithm with validation of individual correspondences as 
described in Section 3 is named the LLN-MLESAC algorithm. The entire LLN-
MLESAC algorithm is shown in Fig. 1 and explained as follows. At the beginning of 
the estimation, all values of P(vi) are assumed to be equal and chosen to be 0.5. For 
each sample, a minimal subset Sf of l correspondences is randomly selected by the 
Monte-Carlo method according to P(vi) [8]. This minimal subset Sf gives an estimate 
of the fundamental matrix F. After that, the Sampson error εi(F) of each correspon-
dence is calculated and the score of this hypothesis is determined according to (3). 
Whenever a new best hypothesis F is determined, the whole data set is classified into 
inlier and outlier subsets according to (4). The classification results of each corre-
spondence are summed up according to (5) and (6). Meantime, the expected fraction r 
of inliers is determined by 

                                                      
∑
=

=
n

i

i
mC

n
r

1

1
.                                                     (10)  

and the upper limit on the number of samples Imax is adjusted based on  
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LLN-MLESAC algorithm 
 
1: Initiate each value of P(vi) to 0.5. 
2: for j=1 to Imax samples do 
3:     Select minimal set Sf of l correspondences using P(vi). 
4:     Derive motion hypothesis F. 
5:     for all correspondences i do 
6:         Find residual Sampson error εi.  
7:      end for 
8:      Find the score using (3). 
9:      if the current score is largest so far then 
10:          Retain F, 
11:          for all correspondences i do 
12:               Classify the correspondence using (4) and keep the consensus, 
13:               Accumulate the outcomes using (5) and (6). 
14                Set Ir be equal to 0.15×Imax 
15:               if j is larger than the sampled number Ir then 
16:                    Update the P(vi) using (9);  
17:               end if 
18:          end for 
19:          Find expected inlier fraction r using (10); adjust Imax using (11). 
20:     end if 
21: end for 
22: Re-derive motion hypothesis F from the consensus using normalized  
      eight-point algorithm. 

 
Fig. 1. The LLN-MLESAC algorithm 
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where p is the confidence level that at least one of the random samples of l correspon-
dences is free from outliers. As usual, p is chosen to be 0.99. According to (9), the 
new values of P(vi) replace the old ones only if the current number of samples is lar-
ger than the pre-defined number Ir. In the experiment, Ir is chosen to be 0.15×Imax. The 
updated values of P(vi) are exploited for the subsequent samples. This process will 
continue until the upper limit on the number of samples is reached. The consensus 
with the highest score is kept for deriving the final estimate of the fundamental matrix 
using the normalized eight-point algorithm [4]. 

Note that the error defined in eq.(1) was the algebraic error. However, we replaced 
the algebraic error in eq.(3) with the Sampson error in our implementation because it 
is better [8].  

5   Experiments 

The proposed LLN-MLESAC algorithm was applied to the problem of estimating the 
fundamental matrix F that specifies the relation between corresponding features in 
epipolar geometry. We tested the algorithm's performance with pure synthetic data 
sets and a real image sequence Corridor (Oxford vision image database, retrieved 
from http://www.robots.ox.ac.uk/~vgg/data/data-mview.html). Given that the results 
from both the synthetic and real data show similar improvements over comparative 
methods, in order to save space, we only show the experiment results from the real 
test sequence Corridor. 

The real image sequence Corridor consists of 10 pairs of images, each with a spa-
tial resolution of 512×512 pixels, for testing the estimation of two-view geometry. 
The number of ground-truth correspondences for each image pair is shown in Table 1.  

The proposed algorithm was compared to the conventional RANSAC and MLE-
SAC estimators. To evaluate the accuracy of the estimated fundamental matrix F̂ after 
optimal fitting to the inliers, the Sampson error was calculated as follows: 
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Table 1. Number of ground-truth correspondences for 10 image pairs 

Image Pair 1,2 2,3 3,4 4,5 5,6 6,7 7,8 8,9 9,10 10,11 

Number of 
correspondences 

409 409 350 350 388 388 292 292 260 260 

 
where n is the total noise-free correspondent pairs (see Table 1 for the exact number 

for each test image pair), ( 1
ix
r

, 2
ix
r

) are the coordinates of the i-th noise-free point 

correspondent pair in the first and second image, respectively, and ( )2ˆ
kix

r
F  is the square  
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Fig. 2. The first two images of the test sequence Corridor, superimposed with black lines indi-
cating 89 correspondences that were detected by SUSAN [7] feature detectors 

of the k-th entry of the vector ix
r

F̂ . Note that, instead of the corrupted data ( 1~
ix , 2~

ix ), 

we used the noise-free correspondent pairs ( 1
ix
r

, 2
ix
r

) to calculate the Sampson errors 

for the evaluation of the accuracy of the estimated fundamental matrix.  
In the first test, the noise-free correspondences, provided by Oxford University, 

were corrupted by noise in order to test the performance of the proposed robust esti-
mator. All correspondences were first corrupted by a zero-mean Gaussian noise with a 
predetermined noise variance. The Gaussian noise was simply added to the image 
coordinates of the corresponding points. Then, a randomly selected subset of corre-
spondences, to be considered as outliers in the test, was further corrupted by a uni-
form noise. The parameters of this distribution were based on the minimum and 
maximum displacements amongst all noise-free correspondences. Keep in mind that 
the uniform noise was added to the coordinates of the corresponding points in only 
one image. In contrast, Gaussian noise was added to the coordinates in both images.  

To perform a reliable comparison, in each test we generate noise addition as de-
scribed previously and randomly select correspondences as the outliers. Such a test 
was repeated 200 times for every given ratio of outlier ranging from 5% to 65%. The 
noise variances are chosen and are set at 1 and 2 pixels. We calculated the Sampson 
error, the associated number of samples actually required for the algorithm to reach 
that Sampson error with a 99% confidence level, the consensus represented by the 
estimates of the inlier ratios, and the ratios of the correctly classified inliers over total 
number of the actual estimated inliers. 

The experiment results confirm that the proposed LLN-MLESAC algorithm in-
creases the estimate accuracy meanwhile it reduces the actually required number of 
samples in comparison to the RANSAC and MLESAC algorithms. Figure 3 shows the 
results averaged out from 10 image pairs. It can be seen that the LLN-MLESAC algo-
rithm outperforms the conventional RANSAC and MLESAC estimators for various 
outlier ratios. When the noise variance is 1, the LLN-MLESAC on average reduced 
not only the Sampson error by 13.77%  and 13.06% in comparison to RANSAC and  
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Fig. 3. Experimental results with the sequence Corridor. The left column depicts the results 
obtained with a noise variance of 1 pixel and the right column depicts the results obtained with 
a variance of 2 pixels. From the top row to the bottom, the graphs show the results with respect 
to the Sampson error, the actual number of samples, the consensus, and the ratio of correctly 
classified inliers. 

MLESAC, but also the associated number of samples by 14.59% and 15.68%, respec-
tively. This reduction on Sampson errors is the result of the increased consensus and 
also the result of the improved quality of the classified inliers. The LLN-MLESAC 
increases the consensus by 1.21% and 1.52% compared to the RANSAC and MLE-
SAC, while the percentage of the ground truth inliers that were correctly identified is 
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also slightly increased by 0.63% and 0.55%, respectively. The comparison results are 
the same, when the noise variance is 2. The LLN-MLESAC reduced Sampson error 
by 12.13% and 11.14%, cut the number of samples by 13.49% and 15.01%, increased 
the consensus by 1.01% and 1.52%, and improved the percentage of the ground truth 
inliers by 0.78% and 0.75%, respectively, when compared to the RANSAC and 
MLESAC.  

Note that for the LLN-MLESAC algorithm the Sampson error does not monoto-
nously go up when the outlier ratio increases. The reason for that can be explained as 
follows. A small number of samples generate an immature validity measure, which 
makes the LLN-MLESAC perform similar to other algorithms. After a certain number 
of samples are reached, the gain from the improved validity measure overcompen-
sates the loss from the increased outlier ratio. This makes the Sampson error of the 
LLN-MLESAC algorithm decrease. When the validity measure becomes mature, the 
error increases again as the outlier ratio goes up. 

In the second test, we use the SUSAN detector [7] to find the features of Corridor 
sequence and determine the correspondences using the cross-correlation as the crite-
rion. Fig. 2 shows 89 correspondences obtained from the first two images. The esti-
mated fundamental matrix F̂ after optimal fitting to the inliers will be evaluated using 
the noise-free data, provided by Oxford University. Table 2 shows the results aver-
aged over 200 tests, where error variances are calculated to measure the variation of 
Sampson error over the tests. It can be seen that at comparable consensus the pro-
posed LLN-MLESAC algorithm is superior to the RANSAC and MLESAC algo-
rithms in terms of Sampson error and trail number. 

Table 2. Experimental results with the first image pair of the test sequence Corridor 

 RANSAC MLESAC LLN-MLESAC 

Sampson Error 0.29137 0.2891 0.27798 

Error Variance 0.00274 0.00175 0.00169 

Trial Number 28.505 29.06 28.2 

Consensus 0.77028 0.76983 0.77028 

6   Conclusion 

This paper proposed a novel method for validating individual correspondences to 
improve the RANSAC-like robust estimator. The novelty resides in the idea that an 
analysis of the outcomes of previous random samples can benefit subsequent samples 
of RANSAC-like robust estimators. This idea is founded on the Law of Large Num-
bers (LLN) that states if an event is repeated many times the outcome of the random 
events will exhibit a certain statistical pattern that can be studied and predicted. In 
addition, this proposed algorithm differs from the G-MLESAC in two aspects. First, 
G-MLESAC determines P(vi) based on similarity measures, whereas the proposed 
algorithm determines P(vi) from the inlier-outlier classification according to the LLN. 
Second, for G-MLESAC P(vi) is known before the sampling procedure starts and is 
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fixed during all the samples. In contrast, in the proposed algorithm P(vi) is estimated 
online during each sampling.  

Based on the experimental results and analysis, the conclusion of this paper is that 
information accumulated from the individual samples that have been processed is 
useful in guiding subsequent sampling.  It can improve the performance of robust 
estimators. The experimental results obtained with the Oxford image sequence, Cor-
ridor, showed that for a similar consensus the proposed LLN-MLESAC algorithm on 
average reduced the Sampson error by about 13% and 12% in comparison to the 
RANSAC and MLESAC algorithms, respectively. In conjunction, the associated 
number of samples decreased by about 14% and 15%, respectively.  
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Abstract. This paper aims to match two sets of nonrigid feature points using
random sampling methods. By exploiting the principle eigenvector of corres
pondence-model-linkage, an adaptive sampling method is devised to efficiently
deal with non-rigid matching problems.

1 Introduction

The goal of this work is to simultaneously recover unknown correspondence and motion
models between two sets of feature points. The problem is of interest to many computer
vision applications, e.g. structure from motion [1,2,3], image registration [4,5,6,7] and
object recognition [8, 9].

The problem can be broadly categorized as two sub-problems, i.e. rigid and non-rigid
matching. Under the assumption of rigid world, random sampling methods [10, 2, 11,
12] have been used to seek the optimal motion model that minimizes the reprojection
error between two sets of feature points. For nonrigid matching with unknown corre-
spondence, however, the sheer number of required random samples becomes intractable.
Instead, graph matching and softassign methods [13, 14, 6, 8, 9, 15, 16] have been used
to approximate the optimal solution, by relaxing binary correspondence constraint and
adding pairwise compatibility into cost functions. However, the exact definition of such
cost terms varies from methods to methods, and is often tailored to specific motion mod-
els in an ad-hoc manner. Methods [5,17,18] are proposed to learn the optimal forms of
complex cost functions.

This paper presents a novel approach that casts non-rigid matching as optimization
via random sampling. The method is novel in two aspects. First, we reveal an intriguing
linkage between feature correspondences and random models, i.e. a candidate corre-
spondence is linked with a number of random models and vice versa (Section 3). Sec-
ond, the principle eigenvector of correspondence-model linkage is used to adapt random
model sampling, so that high likelihood models are visited more frequently. In this way,
the proposed adaptive sampling method is order of magnitudes more efficient than stan-
dard sampling methods, and thus effectively solves non-rigid matching problem within
hundreds of iterations (Section 4).

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 457–467, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Previous Work

Our work shares the random optimization nature with random sampling methods [10,
2, 11] and is most similar to the adaptive sampling method [12], in which data points
were weighted based on previously evaluated models. As compared with these methods,
our key contribution is the fast computation of eigenlinks and using it for adaptive
sampling. In terms of application, traditional random sampling methods often assume
known feature correspondence and rigid world. We extend the random optimization
framework to matching problems with unknown correspondence and thin-plate spline
warping (having > 40 control points). To our best knowledge, no similar results have
been reported before.

Shape context [19] and feature descriptors such as SIFT and SURF [20,21] are com-
monly used to match feature points for different vision tasks. Approximations of the
optimal solution are obtained by using these feature descriptors as unitary correspon-
dence confidence score and solving correspondence problem with linear assignment i.e.
Hungarian algorithm [22]. However, matching results obtained this way can be further
improved by imposing geometrical compatibilities between different correspondences.

Graph matching has long been used to solve correspondence problem. Various graph
matching approaches approximate the optimal solution by imposing quadratic terms on
cost functions [13, 8, 9, 15, 16], and learning methods [5, 17, 18] are used to determine
the optimal forms of such terms. Our approach complements graph matching methods
in different ways. First, we propose a novel correspondence compatibility measure that
is rooted in the linkage between correspondence and random models. Second, we pro-
pose an incremental power method to solve the principle eigenvector for large matrices.
Third, the proposed adaptive sampling is essentially an online “learning” process taking
advantages of previously evaluated models.

Our method constantly updates the confidence score in correspondences and mod-
els, which is akin to soft assignment approaches [14,6]. Compared with these softassign
methods, the proposed method is more robust to high noisy data and outliers (see Sec-
tion 5). An integer optimization method [7] is used to solve both correspondences and
outlier rejection in a single step. EM algorithm [1] formulates the problem as iterative
correspondence-motion estimation.

In the context of webpage structure analysis, linkage matrices are constructed from
hyperlinks between webpages, hub and authoritative pages are then identified by using
power method to recover the principle eigenvector of linkage matrices [23, 24].

3 Problem Formulation

We formally define feature correspondence and random model as follows. A candidate
correspondence between two sets of image points is a quadruplemab = (x1

a, y
1
a, x

2
b , y

2
b ),

where (x1
a, y

1
a), a ∈ {1, ...K1} and (x2

b , y
2
b ), b ∈ {1, ...K2} are coordinates of matched

feature points in images 1 and 2 respectively. In total, there areM(= K1∗K2) candidate
correspondences in the correspondence set, denoted asM = {mab, a = 1...K1, b =
1...K2}. Two arbitrary correspondences mab,ma′b′ satisfy the uniqueness constraint
iff a 
= a′ and b 
= b′. In the rest of the paper, we abuse the notation by saying mi and
mj inM = {mi, i = 1...M} satisfy the uniqueness constraint.
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A general motion relation is an implicit function G(m, θ) = 0, where m ∈ M and
θ is a parametric motion model that agrees with m. For a subset of s correspondence,
there exists a unique motion model θ for which all s correspondences fit perfectly1.
We refer to such a set as a minimal set and s is the model dimensionality. For instance,
s = 3 for affine image transformation and s = 8 for eight-point fundamental matrix
estimation. A permissible model is the one defined by a minimal set, and all permissible
models form a finite discrete model set Θ. Note that the combinatorial search space Θ
defined this way is data dependent, and for realistic data, permissible models are often
unevenly distributed.

Optimization via Random Sampling: Given a model fitting threshold ε, the optimal
model θ̂ ∈ Θ is the one that has the maximum number of inlier correspondences that
satisfy the uniqueness constraint:

[θ̂] = arg max
θ

|IU (θ)| (1)

where |.| is the cardinality of a set, and the set of inlier correspondences IU (θ) = {m ∈
M||G(m, θ̂)| ≤ ε and ∀i, j, mi,mj satisfy the uniqueness constraint}.

Random sampling methods search for the optimal model by repeatedly drawing mod-
els θ fromΘ and evaluating |IU (θ)| for each model. In order to reduce the search effort,
one should sample more frequently those models with large number of inliers |IU (θ)|.
We illustrate such an efficient adaptive sampling method in the rest of the paper.

3.1 Linkage between Feature Correspondences and Models

Given a correspondencem ∈M, let A(m) = {θ ∈ Θ||G(m, θ)| ≤ ε} denote the set of
association models that fit m within the threshold ε. A likelihood function �1 is defined
over Θ:

1(θ|m) =

{
1 if θ ∈ A(m),

0 otherwise.
(2)

The compatibility between two known correspondences m1,m2 is then measured by
the inner product of two likelihood functions:

c(m1, m2) =
∑
θ∈Θ

1(θ|m1)1(θ|m2) = |A(m1) ∩ A(m2)|, (3)

where |.| is the cardinality of a set. c(m1,m2) measures the likelihood that bothm1,m2
agree with a single model, regardless of the model being selected. This definition of
compatibility is independent of any specific motion relation G. Specially, the auto-
compatibility is c(m1,m1) = |A(m1)|.

Now, let I(θ) = {m ∈ M||G(m, θ)| ≤ ε} denote the set of inlier correspondences
that fit a given θ. In contrast to IU (θ), there is no uniqueness constraint imposed on
I(θ). A likelihood function �2 is defined over all candidate correspondencesM:

2(m|θ) =

{
1 if m ∈ I(θ),

0 otherwise.
(4)

1 Without loss of generality, we assume s correspondences are non-degenerated.
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And similarly,

c(θ1, θ2) =
∑

m∈M
2(m|θ1)2(m|θ2) = |I(θ1) ∩ I(θ2)|. (5)

Specially, c(θ1, θ1) = |I(θ1)| is the Hough Transform [25, 26] of model θ1.

3.2 Eigenlink

Direct computing of (3) is challenging, due to the sheer number of random models inΘ.
Section 4 will show how to approximate (3) by adaptive model sampling. For now, let
us assume the availability of a set of models, denoted by θ = {θj, j = 1...K}, that are
evaluated over all correspondences. The “linkage” between correspondences mi and
random models θj can be represented by an M by K linkage matrix L:

L =

⎡⎢⎣ 2(m1|θ1) . . . 2(m1|θK)

...
. . .

...
2(mM |θ1) . . . 2(mM |θK)

⎤⎥⎦ , (6)

where columns of L represent the likelihood given by (4). Note that �2(mi|θj) =
�1(θj |mi), so equivalently, rows of L represent the likelihood given by (2).

Now assign a soft assignment xi to each correspondence, and denote them as a col-
umn vector x = (x1, x2, ...xM )T . Similarly, denote confidence scores of models as a
column vector t = (t1, t2, ...tK)T . ThroughL, x and t mutually enhance each other by
applying operators:

x =
1

Zx
Lt, t =

1

Zt
LT x, (7)

where Zx and Zt are normalization constants so that 1M · x = 1 and 1K · t = 1. Note
that this normalization is different from the soft assignment used in [14, 6].

By simple substitution, and multiplication with ZxZt:

ZxZtx = LLT x, ZxZtt = LT Lt. (8)

The equilibrium solution x∗ and t∗ to (7) are eigenvectors of symmetric matrices LLT

andLTL respectively, having the same eigenvalueZxZt. Therefore, x∗ and t∗ obtained
this way are called eigenlinks of correspondence and random models.

One can interpret LLT from a graph matching point of view. Following (6) we have

LLT
=

⎡⎢⎣ c̃(m1, m1) . . . c̃(m1, mM )

...
. . .

...
c̃(mM , m1) . . . c̃(mM , mM )

⎤⎥⎦ , (9)

where off-diagonal elements c̃(ma,mb) =
K∑

j=1
�1(θj |ma)�1(θj |mb) are pairwise corre-

spondence compatibilities defined in (3), and diagonal elements c̃(ma,ma) = |A(ma)|
are the fitness of individual correspondences.
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x∗ maximizes the total inter-cluster score xTLLTx [9]:

x∗
= arg max

x
xT LLT x = arg max

x

( M∑
i=1

xi
2c̃(mi, mi) +

M∑
i=1

M∑
j=1,j �=i

xixj c̃(mi, mj)

)
.

(10)
Notice that we are not attempting to maximize (10) as an objective function. Rather,
eigenlink x∗ obtained this way is used to adapt random sampling (see Section 4).

3.3 Incremental Power Method

Solving all eigenvectors for large matrices is memory and time extensive. In this work,
we adopt a modification of iterative power method [27] to compute x∗ in an incremental
manner.

Denote each column of (6) as column vectors δj , j = 1...k, and the (k+1)th step
matrix Lk+1 = [Lkδk+1]. Following (7), the incremental updating equation is then
given by:

tk+1 = 1
Zk+1

t

(
Zk

t tk

δT
k+1xk

)
, xk+1 = 1

Zk+1
x

(
(Zk

t Zk
x )

Zk+1
t

xk + (δT
k+1xk)

Zk+1
t

δk+1

)
, (11)

whereZk
t andZk

x are the kth step normalization constants. Using this incremental power
method brings about two advantages. First, there is no need to store and compute L,
LLT and LTL explicitly. Only δk+1 is needed, thus the memory cost is small. Sec-
ond, operation (11) iterates just once, whenever the linkage matrix L is appended with
one column vector δk+1. This way, eigenlinks are continuously updated, yet without
repeatedly solving the eigenvalue problem for many iterations.

4 Adaptive Random Sampling

In order to improve sampling efficiency, we take an adaptive sampling approach that ex-
ploits eigenlink x∗ obtained from previously sampled models. The proposed AdaLink
algorithm demonstrates superior robustness and efficiency, in dealing with a variety of
motion models (see next page for algorithm outline).

Figure 1 illustrates typical non-rigid matching results and how eigenlinks are up-
dated during the course of optimization. AdaLink algorithm as such shows a tendency
to explore the entire solution space in early iterations and gradually lock on a stabi-
lized matching in later iterations. The stabilized solution corresponds to highly peaked
eigenlink x∗, which in turn leads to more random models being sampled around the
stabilized solution.

Model dimensionality s : For nonrigid matching, s is the number of thin plate spline
control points, which is set to be half of the number of points in template sets. For
different test datasets in our experiments, s ranges from 25 to 52. For fundamental
matrix estimation, s = 8.
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Algorithm 1. AdaLink
– Input: All candidate correspondences M, threshold ε, model dimensionality s and γ ∈

(0, 1).
– Output: the best model θ̂.

1. Initialize x = 1/M and o(θ̂) = 0;
2. (a) With probability γ, randomly draw s correspondences using x (see text).

(b) With probability 1 − γ, draw s correspondence using priori knowledge (see text).
3. Evaluate new model θj according to (1) and denote model likelihood as o(θj).

4. With probability �o(θj)

�o(θ̂)
, accept model θj and keep fitting outcomes as δj .

5. If θj accepted, update t and x using (11).
6. If o(θj) > o(θ̂), set o(θ̂) = o(θj),
7. Repeat steps 2-6 until stopping criterion has been reached (see text).

Threshold ε is related to the scale of additive inlier noise, which is known a priori
in our experiments. Alternatively, it can be automatically estimated. We refer readers
to [12] for detailed treatment of robust scale estimation.

Step 2 (a): In order to select high confidence correspondences and impose one-one
uniqueness constraint on selected correspondences, we first rearrange column vector x
as a K1 ×K2 matrix, where K1 and K2 are numbers of feature points in two images.
Maximal elements along both matrix rows and columns are then selected as pivotal
correspondences, from which s minimal set correspondences are randomly selected to
define the motion model2.

Step 2 (b): If features matching methods such as shape-context [19], SIFT [20] and
SURF [21] are used, pairwise feature similarities can be stored in K1 × K2 matrix.
Maximal elements along both matrix rows and columns are selected as pivotal corre-
spondences, from which s minimal set correspondences are randomly selected. If no
prior knowledge is available, we select s minimal set correspondences uniformly dis-
tributed from all candidate correspondences, subject to the uniqueness constraint.

Mixing probability γ is related to the adaptivity of sampling. In this work, we set
γ = 0.5 to draw balanced samples.

Stopping criterion adopted by AdaLink is as follows: whenever a model with higher
likelihood is found and let ibest denote the number of current iterations, then the maximal
number of iterations is updated as imax = max(α×ibest, iburn in). In our experiments, we
set α = 2.0 and iburn in = 100. With this setting, many matching experiments terminate
in hundreds of iterations (see Section 5).

Computational complexity of the algorithm depends on (a) the number of required
iterations and (b) the computation cost for each iteration. For different matching prob-
lems, AdaLink terminates in hundreds to thousands of iterations. Table 1 summarizes
matlab profile report of running AdaLink for a non-rigid point matching problem. Time

2 If the number of pivotal correspondence is smaller than s, additional correspondences are
randomly drew from all candidate correspondences.
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Fig. 1. Up Left: Non-rigid matching of 98 template points (red dots) with 122 noisy points
(blue circles), in which 24 points (≈ 0.2) are outliers. s = 49 control points are used for thin
plate spline transformation. Up right: Eigenlink x rearranged as 98 × 122 matrix. White pixels
represent high confidence correspondences. Red circles are ground truth correspondences, green
dots are correspondences selected by AdaLink. Middle left: pairwise shape-context similari-
ties used in Step 2(b). The rest: Eigenlinks correspond to iterations 100, 505, 598, 625 and 807

respectively.
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Fig. 2. Nonrigid point matching using different methods (see Section 5.1). Left: x-axis represents
noise levels increasing from (0.05−0.25). y-axis represents the reprojection error of all matched
points. Error bars indicate standard deviation. Outlier ratio is fixed as 0.4. Right: outlier ratio
increases from 0 to 0.8, and noise level σ = 0.05.
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Fig. 3. Random datasets for nonrigid point matching. Left column: four template points - wave,
heart, fish and blessing-Chinese. The rest are example noisy point sets to be matched.
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Fig. 4. Image matching using epipolar geometry. Left: average reprojection error w.r.t. different
baseline groups. Right: average percentage of matched true inliers.

cost of model evaluation step (3) depends on model dimensionality s and the number
of candidate correspondences M . This step spends more than twice as much time as
of adaptive sampling step (2). Incremental eigenlinks updating step (5) is fast, which
amounts to merely 3% of total computational cost. Overall time cost for 1000 iterations
is 6.53s.
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Table 1. Computational cost per iteration, for non rigid matching with 30 control points. Matlab
profile report on a Pentium 4 Duo core 1.6GHz laptop.

Steps: 2 3 6 Others Total
Time (ms) 1.65 3.89 0.2 0.78 6.53
(percent.) 25% 60% 3% 12%

5 Experiments

5.1 Non-rigid Point Matching

In this experiment, we compare the proposed AdaLink algorithm with two existing
nonrigid matching methods. The first method, denoted as LA-SA, uses shape-context
[19] to measure pairwise point distances and uses linear assignment i.e. Hungarian
algorithm [22] to solve correspondence. No motion model is defined for this method.
The second method, TPS-RPM [6], is essentially a graph matching method that utilizes
the softassign [14] and deterministic annealing for the correspondence and the thin
plate spline for the non-rigid mapping. Two AdaLink variants, respectively, use random
sampling (AdaLink) and pairwise shape-context similarities (AdaLink-SC) in step 2 (b).

Four point sets i.e. wave, heart, fish and blessing-Chinese, adopted from [6], are
subject to non-rigid warping (see Figure 3). On top of that, we add random transfor-
mations, outliers and Gaussian noise to already warped data points. We test different
methods with 100 random transformation of each data set, which gives us a total of 400
data sets. Due to their random nature, AdaLink and AdaLink-SC run 10 times for each
data set.

For all three methods, we measure average reprojection errors of matched points.
Figure 2 summarizes matching results using different methods. When noise (σ = 0.05)
and outlier ratio (≤ 0.2) are low, TPS-RPM outperforms LA-SC, which, on the other
hand, is more robust to high noise and outlier ratio. AdaLink is compared in favor of LA-
SC, with the only exception when σ = 0.05 and outlier ratio = 0.6. This performance
degradation is mitigated by integrating shape-context into adaptive sampling step 2(b).
Overall, the average errors of AdaLink-SC is about 0.22, which amounts to 61% and
26% of average errors of LA-SC and TPS-RPM, respectively.

5.2 Two View Image Matching

In this experiment, we test AdaLink method with image matching problem assuming
rigid motion models. We use Dinosaur dataset consisting of 36 views, for which ground
truth correspondence of 4838 points are available3. A subset of 557 reliable points
that are viewed by at least 5 views are selected for our experiment. Total number of
228 image pairs, which have at least 10% overlapped points, are used for performance
comparison. According to the baseline between image pairs, we categorize them into
9 groups with increasingly wider baseline. Group 1 has 35 subsequent frame pairs i.e.

3 http://www.robots.ox.ac.uk/ vgg/data/data-mview.html from Visual Geometry Group, Oxford
University.
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1-2, ... 35-36, which are easy to match. Group 9 has 4 difficult pairs 16-25, 17-26, 18-27
and 19-28, in which object rotates more than 90 degrees.

We first extract SURF feature descriptor [21] at each feature points to compute pair-
wise feature similarity matrix, which is used by all three methods below. The first
method, denoted as LA, uses linear assignment i.e. Hungarian algorithm [22] to solve
correspondence based on SURF feature similarity matrix. No motion model is de-
fined for this method and correspondence are selected based on photometric similar-
ity only. The second method, denoted as LA-RANSAC+, refines the outcome of LA
method by imposing geometrical constraints on correspondences. In the experiment,
LA-RANSAC+ is set to run for a fixed 5000 iteration. Our method, AdaLink, uses SURF
feature similarity in adaptive sampling step 2(b). Both LA-RANSAC+ and AdaLink run
10 times for each image pair.

Figure 4 summarizes performance comparison of different methods, using epipo-
lar geometry to relate two views. A standard eight-point algorithm [3] is used to esti-
mate fundamental matrix. For group 1, Adalink has reprojection error < 3 pixels and
> 0.99 inliers matched, which is comparable to the state-of-the-art. For groups 2-9, it
is observed that AdaLink consistently outperforms other two methods. Average repro-
jection errors of AdaLink method are 7 (70%) to 20 (30%) pixels lower than that of
LA-RANSAC+ for different groups. Average percentage of matched true inliers are in
general 10% higher. Nevertheless, groups 2-9 are included to compare different match-
ing methods only, one should always use group 1 for 3D reconstruction.

6 Conclusion

Simultaneous recovering of correspondence and unknown motion is a long standing
problem. In this work, we recast it within an random optimization framework, in which
a linkage between feature correspondence and random model is revealed. Consequently,
a correspondence compatibility measure that is independent of underlying motion mod-
els is proposed. Using the principle eigenvector of correspondence-model-linkage leads
to an efficient sampling method, so that one can extend random sampling to deal with
unknown correspondence nonrigid matching problem. To our best knowledge, AdaLink
is the first random sampling method that solves such a problem. Robustness and efficacy
of AdaLink are demonstrated with both nonrigid point matching and two view image
matching.
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RiverLand: An Efficient Procedural Modeling
System for Creating Realistic-Looking Terrains
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Department of Computer Science, San Jose State University

Abstract. Generating realistic-looking but interesting terrains quickly

is a great challenge. We present RiverLand, an efficient system for terrain

synthesis. RiverLand creates a realistic-looking terrain by first generating

river networks over the land. Then, the terrain is created to be consistent

with the river networks. In this way, the terrains created have a proper

drainage basin, an important feature lacking in many existing procedural

terrain methods. The terrains generated by RiverLand are also widely

varied, with rolling hills, river valleys, alpine mountains, and rocky cliffs,

all seamlessly connected in the same terrain. Since RiverLand does not

use complex fluid simulations, it is fast, and yet is able to produce many

of the erosion features generated by the simulation methods.

1 Introduction

Computer-generated terrains are in high demand due to the popularity of 3D
games, online 3D fantasy worlds, and CGI movies. These virtual 3D terrains are
desirable because they can be aesthetically pleasing and visually dramatic. How-
ever, efficiently generating realistic-looking terrains remains a huge challenge.
The attractiveness of virtual terrains is that they can be creatively designed, so
that they are not identical to real-world terrains. Yet they have to bear similar-
ities to real-world terrains because users desire realism in virtual landscapes.

Creating realistic terrains is challenging because terrains on earth are sculpted
by various complex forces. The two most influential physical processes are tec-
tonics and water erosion. Plate tectonic movements create large features such
as volcanoes, fold mountains and block mountains. River or glacial erosion then
modify the land to create canyons, plains and river valleys. Other forces such
as wind, rain and freeze-thaw action also alter the physical landscape. The sim-
plest and fastest procedural terrain modeling algorithms make use of fractals.
Although these algorithms can produce terrains with mountains and valleys with
interesting shapes, they are not realistic, because there is no river network in
the resulting terrain. In fact, creating a river network on a fractal terrain is
difficult because rivers must flow from higher ground to lower ground, while a
fractal terrain often does not have a natural path for a river to flow. Therefore,
complex river simulation methods have been proposed. However, these methods
tend to be significantly slower.

We have developed a new system, RiverLand, that generates a procedural
terrain by first generating the river network. The method used by RiverLand

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 468–479, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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generates rivers with tributaries, and then creates mountains and other physical
features on the land. In this way, a realistic-looking terrain is created. RiverLand
is versatile; it allows users the option of controlling the terrain by specifying
ridges and mountains, and it can produce many interesting features including
alpine mountains, rolling hills, cliffs, plains and valleys. Furthermore, these dif-
ferent features compose a single terrain in a seamless manner.

In this paper, we examine the existing procedural terrain methods, and de-
scribe the advantage of RiverLand compared to these methods. We also describe
how RiverLand accomplishes the challenges of terrain modeling mentioned in
these papers. RiverLand is also a fast system, generating a 256 × 256 height-
map in 0.2 seconds.

2 Related Works

Early works [1,2,3,4] in procedural terrain synthesis were based on fractals and
fractional Brownian motion. These foundational algorithms can efficiently create
landscapes with mountains and valleys. However, as pointed out by later works,
a major weakness of these fractal terrains is that they have no global erosion
features, and are therefore limited in their realism.

Noticing this defect in fractal approaches, Kelley et al. [5] presented a method
for simulating stream networks. Musgrave et. al [6] then added local control to
fractal terrains, and then simulated various erosion processes on these terrains.
Other simulation-based methods [7] [8] [9] are also able to produce realistic-
looking terrain. Improving on speed, Neidhold et al. [10] are able to run fluid
dynamics simulations on an initial terrain, and generate eroded terrain in near
real-time (a 256x256 terrain in 0.25 seconds on a 2.4 GHz machine). Recent
works [11] [12] implemented fluid dynamics computations on the GPU, also im-
proving on speed. They are able to simulate a 1K × 1K terrain with 50 iterations
in 11.2 seconds (compared to 67 seconds using the CPU). These simulation-based
methods are limited because they require an initial starting terrain, and they
also tend to generate uniform-looking terrains because the same erosion processes
and parameters are used throughout the entire terrain.

Prusinkiewicz and Hammel [13] proposed a fractal algorithm to generate a
river, and corresponding mountains. A weakness of this method is that it pro-
duces rivers with assymetric valleys and no tributaries.

Belhadj and Audiber [14] proposed first generating ridge lines using Ridge
Particles and then growing river networks by dropping River Particles on top
of the ridges. A midpoint displacement method is then used to fill in the rest of
the terrain. This method is relatively fast, producing a 512 × 512 terrain in 0.45
seconds on a 3.0 GHz machine. In comparison, our system starts with only the
river network, and is able to generate more varied terrains. We also allow users
to optionally influence the terrain by specifying desired ridges and mountains.

More recently, Schneider et al. [15] presented a system for real-time editing,
synthesis, and rendering of infinite landscapes using the GPU. However, like
earlier methods, this system produces no river network and is limited in realism.
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Recently, several works [16] [17] [18] have taken a new approach. Observing
that it is difficult for most existing systems to generate terrain with a desired
style, these methods use actual real-world Digital Elevation Maps (DEM) as
examples, to synthesize new terrain. Brosz et al. [17] extracts high-resolution
details from existing terrain to add details to a low-resolution terrain. Zhou
et al. [18] allows the user to sketch a path on an empty canvas, and provide a
sample terrain style DEM dataset, for example the DEM of the Grand Canyon.
They then produce a terrain with a canyon traced around the sketch provided
by the user. The images produced look realistic, compared to previous meth-
ods. However, these example-based methods have several important limitations.
First, they have difficulty in producing realistic heterogeneous terrain, merging
different terrain styles seamlessly. Second, they are unable to generate novel ter-
rain styles that are not identical to any existing style in their database. Third,
the resulting terrain may not be physically realistic, since the river networks
they produce are arbitrary, and not based on physical simulation.

There are also several excellent commercial and freely available procedural ter-
rain systems. Mojoworld (www.pandromeda.com), for example, allows the user
to create entire planets, including terrain, vegetation and atmosphere. Terra-
gen (www.planetside.co.uk) also provides photorealistic scenery rendering, with
tools available to create terrains. It allows the user to “paint” the shape of a
landscape to position mountains and valleys; and automatically shapes the rest
of the terrain with random fractal methods and physical-based methods such
as simulation of glaciation. Bryce (www.Daz3D.com) allows the user to create
virtual worlds, including both natural and urban landscapes.

Gain et al. [19] presented a novel system that allows the user to sketch the sil-
houette of a mountain on a 3D view of the terrain, and optionally modify shadow
and boundary lines. The program then automatically generates a landscape that
fits the user sketch.

3 RiverLand Overview

RiverLand begins with an empty 2D canvas which represents the top view of
the land. The user is allowed to paint regions on the canvas. Within each region,
the user is allowed to specify ridge lines, and the heights and widths of various
points on the ridge lines.

The procedural terrain synthesis method begins by creating random river seed
points on the region boundary. From these seed points, meandering rivers are
grown into the region. Tributaries are also spawned from these rivers. Rivers are
not allowed to cross user-specified ridges. Once inside the influence of a user-
defined ridge, a river grows up in the direction towards the ridge line. Once the
river network is established, mountains are grown on the rest of the terrain.
Fractal methods are used to introduce interesting variations into the terrain.
Figure 1 shows an overview of this process.

Compared to previous methods, RiverLand has the following advantages: (1)
It produces more heterogenous landscapes, with steep ravines, alpine mountains,
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Fig. 1. RiverLand Terrain Synthesis Process. Left: User optionally paints region and

ridges. Middle: Algorithm generates fractal ridges and rivers. Right: Terrain topography

is fitted onto map.

rolling hills, flat river valleys and cliffs within the same terrain; (2) it produces
a globally physically consistent river network, a feature only present in a few of
the existing algorithms; (3) it is near real-time, faster than most of the existing
algorithms; and (4) it allows users to influence the terrain, a feature found only
in some existing methods.

4 Creating the River Network

For each region painted by the user, RiverLand assumes that its boundary is flat
land. Terrain synthesis begins by setting n random boundary cells to be river
mouths, each mouth being at least d cells apart. By adjusting the parameters n
and d, the user can influence the eventual appearance of the terrain.

From each river mouth, a river network is grown. The initial direction vector
of the river is the vector perpendicular to the boundary. Going forwards on this
vector for distance SegmentLength + r (where r is a random number), set a
SegmentPoint. From this new SegmentPoint, repeatedly rotate the vector by a
slight random angle, go forwards by a distance, and set a new SegmentPoint,
until one of the following conditions is reached: (1) It goes with a distance d
from the river or region boundary, or (2) The target t number of SegmentPoints
has been set, where d and t are set by the user. By adjusting the limits of
angle rotation of the river vector, and parameters such as SegmentLength, each
river can have different characteristics. For example, large straight rivers can be
made by increasing SegmentLength and decreasing the rotation angle, and also
increasing the target number of SegmentPoints. By generating random rivers
with different parameters, rivers of different characteristics can be created in the
same region.

Next, a meandering river is fit through the SegmentPoints. In nature, most
rivers do not travel in a straight path; instead they alternately curve left and
right, forming the familiar meanders. This is done by fitting a curve between
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Fig. 2. Different values of parameters SegmentLength and MeanderCurvature create

rivers with different characteristics, producing a more varied terrain

each SegmentPoint. A random curvature is set for each segment. Each river
has a MeanderCurvature parameter that controls the mean meander curvature
of the river. Figure 2 shows how different parameters for SegmentLength and
MeanderCurvature influence the characteristics of a river. RiverLand generates
rivers with different parameters to create a more varied terrain.

Once the meandering river has been fit, new seed points are placed randomly
on the concave banks of the river. Tributaries can be grown outwards from these
new seed points. These new seed points are inserted into the list of all seed points.
At each iteration, a seed point is randomly selected, and a river or tributary is
grown from it, until a target number of rivers or tributaries have been created,
or until there are no seed points left. This completes the creation of the river
networks in the region.

After the river network is created, a height is assigned to each river cell. At
all river mouths, the height is assumed to be zero. For each river, a parameter
AverageSlope is set. Going from one river cell to the next, the height is increased
by AverageSlope, plus some random offset. When the algorithm reaches a river
cell that is a distance d (set by the user) from the source, the river is allowed to
be steeper. This is because real-world rivers tend to be steeper near the source.
Due to the deposit of eroded sediments, rivers tend to form large, flat river plains
downstream. RiverLand can also simulate water-flow so that rivers get wider as
they flow downstream, and as more tributaries join them.
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If the user has defined some ridges, the river network algorithm has to take
them into consideration. When a river SegmentPoint is set within the influence
of a user-defined ridge, the river vector is constrained to go straight up the
user-defined ridge, within a narrow angle. Also, the river is not allowed to grow
past the user-defined ridge line. This ensures that the generated river network
is consistent with the user-defined ridges.

5 Generating Terrain Height

Once the height of each river cell is set, the next step is to generate the heights
of all the cells in the terrain. First, the medial axis (skeleton) of the river and
boundary cells is found. This medial axis consists of all the cells that are of
maximal distance from a river or boundary cell. These medial axis cells are
called “Maximal Cells”. To find the Maximal Cells, first add all the river and
boundary cells into a list, and set their distance d to 0. For each cell C1 in the
list, consider all its adjacent cells to the list. Let C2 be an adjacent cell to C1.
Then, the candidate distance of C2 from C1 is dC2 = dC1 + slope× dist, where
dist is the horizontal distance between C1 and C2, and slope is a parameter set
by the user. For each river or region boundary cell, a slope parameter is set to
control the slope of the terrain from this cell. To create gentle slopes, set the
value to less than 1, say 0.75 or 0.5. Allowing the slope variable allows the system
to generate assymetric ridges, where one side is steeper than the other. If this
candidate distance dC2 is less than the existing distance dC2existing from C2 to
the river, set dC2existing to dC2, and set the PathToRiver pointer of C2 to point
to C1. Then, remove C1 from the list.

When the list becomes empty, all the cells that have no incoming PathToRiver
pointers are the Maximal Cells. Each Maximal Cell has an associated River Cell
or Boundary Cell from which it came. Next, a �MinimumHeight and IdealHeight
of each Maximal Cell is assigned. The MinimumHeight of a Maximal Cell is
the height of its associated River Cell, since the path from the Maximal Cell
to the River Cell is considered the drainage basin of the River Cell, and so
cannot be lower than the River Cell. The IdealHeight of the Maximal Cell is
set to MinimumHeight+ slope× distancetoriver. Next, the IdealHeights of all
Maximal Cells are smoothed by taking the average IdealHeights of all neighboring
Maximal Cells. The actual height of each Maximal Cell is set to its IdealHeight
unless it is less than the MinimumHeight, which happens only rarely. Finally, the
heights of all the cells along the path from the Maximal Cell to the River Cell
are linearly interpolated. Other adjustments are later made to vary the heights,
as well as to add the influence of user-defined ridges.

The algorithm described can produce many cliffs along maximal cells. This is
because maximal cells mark the boundary between the drainage basins of differ-
ent rivers. Since the rivers have different heights, the maximal cells associated
with each river would also have different heights. The solution is to use a cliff-
removal step to produce a more natural-looking terrain. First, a cliff threshold c
is defined. Any cell that has a height difference greater than c with any adjacent
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cell is considered a cliff. The cliff-removal algorithm adds all the lower cliff cells
into a list L, and raises each lower cliff cell to within c of its tallest adjacent cell,
to remove the cliff. Because raising this cell may create new cliffs, the iterative
step examines every neighbor N of every cell C in list L, and if that neighbor
N’s height hN < hC − c (where hC is C’s height), N is added to list L, and hN

is raised to hC − c. This is repeated until list L is empty. After this step, all the
cliffs created on the river drainage basin boundaries are removed.

So far, all the heights increase linearly from the river/coast to the top of the
hills. To generate a more interesting terrain, the slope profile can be changed.
Using the default linear function, the height h of a cell is set to h = sd, where
s is the slope, and d is the distance of the cell to the river or coast. To make
the terrain more interesting, different functions can be used, so that h = f(d).
Currently, a few hard-coded functions are available in RiverLand. Figure 3
shows an example of creating cliffs by using a non-linear function for the slope
profile.

6 User-Defined Ridges

The user is allowed to define and edit ridge lines to influence the terrain, be-
fore the algorithm computes the river network. The user clicks with the left
mouse button to place control points for ridges, and has the option of select-
ing and moving control points with the right mouse button. For each control
point, the user can enter the desired height and width. RiverLand scan-converts
the ridge lines to find all the cells along the lines. For each cell between the
control points, RiverLand uses the random midpoint offset method to assign
its width and height. According to the random midpoint offset method, the
height h of a point midway between two other points Pleft and Pright is given
by h = avg(hLeft, hRight) + srd, where s is a user-defined roughness factor, r is
a Gaussian random variable, and d is the horizontal distance between Pleft and
Pright. The same formula to used to calculate the width. Starting with a pair of
control points, the midpoint height and width are calculated, and then the rest
of the points are recursively calculated.

Once the height of each cell on the ridge line is calculated, the height of all
the cells within the influence of the ridge is set by linearly interpolating between
the ridge cells and the boundary cells, whose height is set to 0. This is done by
finding the path from each ridge line cell to the ridge boundary, using a method
similar to the method described in Section 5 used to set terrain heights from
river cells.

After that, a random fractal method is used to roughen the terrain. Then, the
user-defined terrain is merged with the rest of the terrain height-map, which is
created by setting the heights of cells from the algorithm-generated river network
(see Section 5). For each cell, take the maximum of the height from the river
network and the user-defined ridge. The result is shown in Figure 4.



RiverLand: An Efficient Procedural Modeling System 475

Fig. 3. Changing the slope profile to form river cliffs and coast cliffs

Fig. 4. Top: 3D view of user-defined ridge. Middle: Heights adjusted by random offsets

to roughen terrain. Bottom: User-defined ridge shown with the rest of the terrain.
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7 Randomized Fractal Overlay

The random midpoint offset algorithm was introduced by Miller [4] to produce
fractal terrains. Although this is an efficient method to quickly produce large
terrains which look realistic in small patches, the resulting terrains are uniform
and do not have realistic erosion features found in real-world terrains. However,
this method is useful for adding roughness to the terrain.

In RiverLand, we use the random midpoint displacement algorithm in several
ways already mentioned. First, it is used to vary the height along the user-defined
ridge lines. It is also used to vary the width along the user-defined ridges.

Next, it is also used to vary the height on all the cells covered by the user-
defined ridges. It is also used to vary the height of all the cells created from
the river network. This is done by first creating a fractal terrain “overlay”. For
example, if the terrain is n × n cells, we create another fractal terrain that is
at least n× n cells. The fractal terrain is created this way. First a coarse k × k
grid of random height values is created. Each cell of the coarse grid is then
subdivided using the random midpoint displacement mehtod into m × m fine
grid points, where m is a power of 2. Finally, there would be (k − 1)m + 1 ×
(k− 1)m+ 1 cells. The roughness of this fractal terrain can be controlled by the
user by controlling the range of height values of the initial coarse grid, and also
by controlling the roughness parameter in the random midpoint displacement
algorithm.

To prevent the fractal terrain from altering the correctness of the river net-
work, river cells’ heights are not adjusted by the fractal terrain overlay. This is
to preserve the rule that rivers’ heights are non-increasing as they flow towards
the mouth. The height change of a cell is therefore dh = f × dr where f is a
constant set in the program, and dr is the distance of a cell from a river or
region boundary cell.

In addition, on the 2D map, RiverLand also allows the user to paint over an
area called a “Modifier Patch”, to modify the terrain to add rocky outcrops.
Many examples of famous scenery in the real world, such as Guilin (China), the
Three Gorges (China), Yosemite Valley (USA) and Rio De Janeiro (Brazil), are
rocky outcrops, because they make the landscape interesting. Rocky outcrops
can take different shapes, and this is allowed in RiverLand by setting different
parameters for a Modifier Patch: r, the average radius of a rock, h the average
height, d the average distance between outcrops, and s the steepness. Rocky
outcrops are then generated within the Modifier Patch and added to the fractal
overlay. Since the rocky outcrop modifies the fractal terrain overlay, it does not
modify the final terrain directly. In that way, it will not change the course and
height of a river, so that the river networks remain correctly downward flowing.

8 Performance

RiverLand is a fast system; it is able to generate a 256 × 256 terrain height-map
in 0.2 seconds, a 512 × 512 terrain in 0.9 seconds, and a 1024 × 1024 terrain
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in 4 seconds on a 2 GHz machine with 2 GB RAM. This compares well with
other recent methods. This does not include the time for generating the fractal
overlay, which is done only once during set-up, and can be re-generated by user
request.

9 Conclusions

We have presented RiverLand, a system for the fast procedural modeling of ter-
rains. Existing terrain synthesis methods can be generalized into two main types:
(1) fractal-based, and (2) simulation-based. In general, fractal-based terrains are
faster to generate, but are limited in realism, whereas simulation-based methods
are much slower, and their results vary: some terrains look more realistic than
others. RiverLand is fundamentally a fractal-based procedural modeling method,
but the process is designed to produce terrains consistent with river networks,
an important feature lacking in most existing faster fractal-based methods.

One attractive feature of RiverLand is that it allows the user to influence the
terrain if the user has preferences. First, by choosing different parameters, the
user can influence the style of the terrain. For example, increasing the number
and length of rivers makes the river network cover more of the terrain. Decreasing
the minimum distance between rivers results in higher river density. Users can
also control the roughness and slope of the terrain. The user can also draw ridge
lines, and for each control point on the ridge line, the user specifies the desired
height and width. RiverLand produces a river network and terrain height-map
consistent with the ridge lines defined with the user. The user can paint Modifier
Patches to create rocky outcrops, to make the terrain more interesting. Most
of the existing terrain synthesis methods do not allow the user such extensive
control of the terrain, and yet generate a terrain that is consistent over different
areas. RiverLand can create a terrain without any user input at all, but can also
create a terrain with a significant amount of user input.

Another advantage of RiverLand is that the terrains produced contain a wide
variety of interesting physical features found in real-world terrains, such as cliffs,
gentle river valleys, deeper ravines, alpine mountains, rocky outcrops, and rolling
hills. All these features can be found in the various example images shown in
this paper. Figures 5 shows more examples. This figure also shows an example
of automatic adjustment of river width according to water flow simulation by
RiverLand.

One important desirable physical feature mentioned in other papers is ridges,
which are not generated by the basic fractal methods, but occur in real-world
terrains. The terrains produced by RiverLand produce ridges, even if no ridge
lines are specified by the user. The terrains generated by RiverLand contain a
diversity of features fitting naturally in the same terrain. Also, since RiverLand is
not an example-based terrain synthesis program, it can create terrains which are
not replicas of real-world examples, and so is less limited in range. By adjusting
different parameters, users can also create a terrains in a variety of different
styles, and so RiverLand is less rigid, compared to example-based methods.
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Fig. 5. 3D view of terrains enhanced by color, showing terrain in green, river cells

in blue, steep cliffs in grey, and high elevation in white. RiverLand allows automatic

adjustment of river width according to water flow simulation, shown in the bottom

terrain.
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Abstract. In this paper, we present a system for performing real-time

occlusion-aware interactions in a mixed reality environment. Our system

consists of 16 ceiling-mounted cameras observing an interaction space of

size 3.70 m x 3.20 m x 2.20 m. We reconstruct the shape of all objects

inside the interaction space using a visual hull method at a frame rate of

30 Hz. Due to the interactive speed of the system, the users can act natu-

rally in the interaction space. In addition, since we reconstruct the shape

of every object, the users can use their entire body to interact with the

virtual objects. This is a significant advantage over marker-based track-

ing systems, which require a prior setup and tedious calibration steps

for every user who wants to use the system. With our system anybody

can just enter the interaction space and start interacting naturally. We

illustrate the usefulness of our system through two sample applications.

The first application is a real-life version of the well known game Pong.

With our system, the player can use his whole body as the pad. The

second application is concerned with video compositing. It allows a user

to integrate himself as well as virtual objects into a prerecorded sequence

while correctly handling occlusions.

1 Introduction

The integration of virtual objects into a real scene and their interaction with real
objects is one of the key aspects in mixed reality. However, this is a non-trivial
problem. To create the illusion of actually belonging to the scene, a virtual ob-
ject has to behave properly in the face of occlusion. Many existing systems are
not capable of handling this case, leading to unconvincing augmentations, where
the virtual object appears in front of the occluder. Another important aspect
for a convincing presentation is the ability to interact with virtual objects. For
instance, this would allow the user to pick up a virtual object and place it at
another position. In this paper we present a system which is capable of address-
ing both the occlusion and the interaction issue to create a convincing mixed
reality environment. The user can interact with virtual objects without requiring
any additional tools or external tracking while at the same time occlusions are
seamlessly handled. Our system is based on the reconstruction of the 3D shape
of objects inside an interaction space. To this end we equipped our laboratory
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with 16 cameras which are mounted on the ceiling. Each camera creates a fore-
ground/background segmentation which is used to construct the visual hull [1]
of all the objects in the scene. This gives us a 3D representation for every object,
which in turn allows us to convincingly add virtual objects into the scene and
to handle occlusions automatically. One of the key advantages of such a system
over more traditional tracking-based systems is that we do not require any a
priori information about the objects in the scene. We also do not need any prior
setup or calibration for someone to use our system. There can even be multiple
people in the interaction space at the same time. This makes our system a good
candidate for use in real environments where people can just enter the inter-
action space, start to interact naturally with the virtual scene and then leave,
without having to put on any special equipment. This significantly lowers the
barrier to try the system and makes it attractive for presenting it to a wider
audience, for instance in museums. We implemented two exemplary applications
which highlight the aspects of interaction and occlusion handling respectively.
The first application is loosely based on the game Pong. The goal of the game
is to prevent a virtual ball which is bouncing between the user and a wall from
leaving the interaction space, by placing oneself in its path (see figure 1). This
application shows the interaction between real and virtual objects. The second
application is more focused on providing correct occlusion handling. This is done
in the context of video compositing. We record several sequences in the interac-
tion space at different points in time and use the depth map computed from the
3D reconstruction to join the sequences while correctly handling occlusions.

2 Related Work

In recent years, several real-time 3D reconstruction systems which explicitly
recover the visual hull have been proposed [2,3,4,5,6,7]. However, only [6,5,7]
actually run at frame-rates which allow interactivity. Other researchers have fo-
cused on implicitly computing the visual hull [8,9,10,11,12]. The main difference
to the explicit systems is that they only generate an image of the visual hull from
a novel viewpoint without recovering an explicit 3D reconstruction. This is ac-
ceptable in some cases, but does not allow any form of interaction which requires
the full 3D shape (e.g. taking the volume of the object into account). However,
it is still possible to use it for collision detection [12,11]. As is to be expected
these systems run faster than comparable systems performing an explicit 3D
reconstruction. However, today the explicit reconstruction systems reach real-
time performance, so that there is no drawback to making use of the additional
information.

Some early work on real-time 3D content capture for mixed reality, was pre-
sented in [10]. In this paper a novel view generation system was used to insert
3D avatars of real objects into a virtual environment. The system runs at ap-
proximately 25 fps using 15 cameras. However, the aspect of interaction between
real and virtual objects was not considered. In [11] the authors present a col-
lision detection scheme which extends the work in [12] allowing the interaction
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Fig. 1. Our system allows the user to interact with virtual objects using natural move-

ments due to a real-time 3D reconstruction. The images placed around the center show

some of the input views while the center and the left side show a orthographic and a

perspective view of the scene respectively.

between real and virtual objects. However, they are also not using an explicit
3D reconstruction. In addition their system is running at only 10 fps using 7
cameras which is rather low for real interactivity.

Our system recovers the explicit 3D reconstruction of all objects in the scene
at a real-time frame rate of 30 Hz using 16 cameras. This allows us to also
perform interactions with objects which are occluded by other objects and would
therefore not be visible in a system based on an implicit reconstruction.

3 Real-Time 3D Reconstruction System

3.1 System Architecture

Hardware. Our system consists of 4 PCs used for the reconstruction, 1 PC
used for visualization and 16 cameras mounted on movable aluminum profiles
on the ceiling (see figure 2). The cameras have an IEEE 1394b interface and
provide color images at a resolution of 1024x768 and a frame rate of 30 Hz. To
cover a big working volume we use wide angle lenses with a focal length of 5
mm. The cameras are externally triggered to achieve synchronous image acqui-
sition. Groups of four cameras are connected to one PC using two IEEE 1394b
adapter cards. There are four PCs (slaves) dedicated to capturing the images
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Fig. 2. Lab setup for our real-time 3D reconstruction system. The cameras are mounted

on movable profiles to allow an easy reconfiguration of the camera setup.

and computing the visual hull and one PC (master) dedicated to visualizing the
result and controlling the acquisition parameters. The four PCs used for image
acquisition and reconstruction are equipped with an Intel 2.6 GHz Quad-Core
CPU (Q6700), 2 GB of main memory and a NVIDIA 8800 GTX graphics board
with 768 MB of memory. The master PC uses an Intel 3.0 GHz Dual-Core CPU
(E6850), 2 GB of main memory and a NVIDIA 8800 GTS graphics board with
640 MB of memory. The PCs are connected through a Gigabit Ethernet network.

Software. To achieve real-time performance the reconstruction process (run-
ning on the slave PCs) is implemented as a four stage pipeline consisting of image
acquisition, silhouette extraction, visual hull computation and volume encoding
and transmission. Each pipeline step is realized as a thread and will be described
in detail in the following sections. On the master PC the processing is also dis-
tributed into several steps. There is a separate thread for handling network
communication, compositing the partial reconstructions, visualizing the result
and performing the application-specific logic, such as the interactions. Figure 3
gives an overview of the processing steps in the system.

3.2 Calibration

In order to perform the reconstruction the cameras have to be calibrated. The
calibration is performed using the multi-camera calibration method proposed in
[13]. The method relies on point correspondences between the cameras created
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Fig. 3. Reconstruction pipeline on the slave PCs. Each row represents the processing

steps taken for each group of simultaneously acquired input images. The processing

times are 8 ms, 15 ms, 15 ms and 10 ms respectively. This leads to a very low latency

on the slave PCs, which is pushed to about 100 ms when considering image exposure

time and computations on the master PC. Due to the pipelining the whole system can

run at a frame rate of 30 Hz or higher.

by means of a point light source such as an LED. First, the lighting in the room
is dimmed, so that it becomes easier to extract the point created by the LED in
the camera images. We run the cameras with a short exposure time and a low
frame rate (1 fps) to obtain well-defined light points. By moving the light source
through the reconstruction volume a large number of correspondences is created
which is then used in a factorization-based algorithm to determine the camera
intrinsic and extrinsic parameters. This requires synchronized cameras to make
certain that the point seen in each image is created by the same physical point.
The method is robust to occlusions of the points in some cameras. The computed
camera coordinate system is registered to the room coordinate system by using
a calibration target at a known position in the room.

3.3 Reconstruction

Silhouette Extraction. The silhouettes are computed using a robust back-
ground subtraction algorithm [14] working on color images. Before the system is
used background images are acquired. During runtime the images are first cor-
rected for illumination changes using a color mapping table which is built using
the color distributions of corresponding non-foreground regions in the current
image and the background image. After applying this mapping to the back-
ground image, a thresholding is applied to extract the foreground pixels in the
current image. Small holes in the segmentation are filled using morphological
operations.

Handling Static Occluders. While our system seamlessly handles multiple
persons in the scene which can occlude each other, one problem which has to be
addressed during silhouette extraction is the presence of static occluders. Static
occluders are objects inside the working volume which cannot be removed, such
as tables mounted to the floor. Hence static occluders are also present in the
background images. The assumption during background subtraction, however,
is that all foreground objects are located in front of the background. This is not
the case in the presence of an occluder because a foreground object could move
behind the occluder and effectively disappear from the silhouette image. This will
result in the partial or complete removal of the object from the reconstruction.
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To overcome this problem we use a method which is similar to the one proposed
in [15]. The areas in the silhouette images corresponding to the static occluder
have to be disregarded during the visual hull computation. We achieve this goal
by building a 3D representation of the object and projecting it into the cameras
or by manually segmenting the object in the reference images. This gives us a
mask for every camera in which the static occluder is marked as foreground.
This mask is then added (logical OR) to the silhouette images computed during
runtime.

Visual Hull Computation. Using the silhouette images the object shape is
reconstructed using the GPU-based visual hull algorithm described in [7]. In
order to increase the working volume we also reconstruct regions which are only
seen by at least four cameras instead of only using the overlapping region of
all 16 cameras. This allows us to avoid the use of extreme wide angle lenses
for covering a big area, which also results in a higher spatial resolution of the
camera images. To reconstruct the non-overlapping regions, one has to consider
the handling of voxels which project outside of the image in other cameras.
The traditional approach is to just mark these voxels as empty. Instead, we do
not consider the contribution of the images in which the voxels are not visible,
thereby also reconstructing regions only seen by a few cameras. To avoid the
introduction of artifacts due to a small number of cameras, we only use regions
which are seen by at least four cameras. This is implicitly accomplished in our
system by performing an unconstrained reconstruction on the slave PCs which
also reconstructs the regions seen by only one camera. On the master PC the
local reconstructions are combined using a logical AND operator, which will
remove any regions which have not been observed by at least one camera at
each of the four slave PCs.

3.4 Visualization

For visualization the voxel representation is converted to a mesh representation
using a CUDA-based marching cubes implementation. A CPU-based implemen-
tation was not able to generate meshes at the desired frame rate. The meshes
are visualized on the master PC on a grid showing the origin and the extent of
the reconstruction volume. At this time we do not texture the resulting meshes
online. However, it is possible to use an offline texturing step to perform this task
when required. This is also not a major concern for our system, since we only
need the geometrical and depth information to achieve convincing interaction
and occlusion handling results.

4 Applications

4.1 Pong

The idea of using mixed reality to create a game in which users interact with
virtual objects has already been introduced with the ARHockey system [16]. The
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ARHockey system used a lot of tracking devices and HMDs to enable the illusion
of having a virtual puck which is controlled by the hands of the users. Picking
up on this idea we used our system to implement a game which is loosely based
on the game Pong. In the original game two players each control a pad and pass
a ball between each other. If a player fails to catch the ball his opponent gains
a point. We modified the game so that one player is playing against a wall. The
goal is to keep the ball from exiting the scene. The player has a certain amount
of life points and has to try to keep the ball in the game for as long as possible.

We use a video projector to display the reconstruction of the interaction space
on a wall. The user can see himself moving in 3D and he has to position himself,
such that the ball is reflected off of him (see figure 4). The collision test is
performed between the virtual object and the visual hull. There are two modes.
In the first mode we only use the bounding box of the visual hull to perform
the collision test. This has the advantage that it is easier for the user to hit
the ball, because there is a bigger interaction area. Using the bounding box also
allows children to easily capture the ball, because they can extend their arms to
compensate for their lesser body size. The second mode performs the collision
test directly between the visual hull and the virtual object. This leads to a more

Fig. 4. Our system allows the user to play a game by interacting with a virtual ball.

The images placed around the center show some of the input views while the center

and the left side show a orthographic and a perspective view of the scene respectively.

In the upper left corner the player’s remaining life points are shown.
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natural interaction, because it is very intuitive. However, the problem here is
that it is hard for the user to estimate the height of the ball, so that it might
happen that he extends his arm, but the ball passes below it. This problem can be
reduced by showing several views of the reconstruction. Optimally a stereoscopic
HMD would allow the most natural interaction.

It is also possible for multiple people to play the game at the same time. Due
to the use of our reconstruction system the player can use his whole body to
catch the ball. The interaction is very natural and people intuitively know how
to move to catch the ball. Their movement is not hindered by any additional
equipment as would be the case in a tracking-based solution. Even when using
a tracking-based solution it would be quite complex to correctly compute the
extents of the body. Due to its easy usability and the fact that no setup or
training phase is necessary for the user, our system is well suited for use in a
real environment, for instance in a museum.

4.2 Video Compositing

As a second application we implemented a video composition system which prop-
erly handles occlusions. This is an important topic in mixed/augmented reality

Fig. 5. Video compositing. We created a new sequence by composing the same video

six times in 1 second intervals. Note the correct occlusion handling with respect to the

virtual ball and the different time steps of the original sequence.
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[17,18]. Using our system we took a sequence of a person walking inside the inter-
action volume. We subsequently used the reconstruction to compute the depth
map for one of the cameras. By using both the information from the depth map
and the segmentation we created a sequence which shows the same scene at six
time steps with an interval of one second in between at the same time (see fig-
ure 5). The effect is that instead of one person you can see a queue of 6 copies
of the same person walk inside the room. Due to the use of the depth map we
correctly handle the occlusion effects. In addition, we added a virtual bouncing
ball to the scene which also correctly obeys the occlusion constraints. For creat-
ing the composited scene we currently do not apply any image-based refinement
on the silhouette borders, but this could be easily added into the system.

These compositing results would be very hard to achieve using purely image-
based techniques which do not consider any information about the 3D structure
of the scene. It would require a (manual) segmentation of the objects of interest
in the entire sequence which is extremely time consuming especially for long
sequences. With our solution the segmentation and the depth information is
automatically recovered without any additional intervention from the user.

5 Conclusion

We presented a real-time 3D reconstruction system for occlusion-aware inter-
actions in mixed reality environments. Our system consists of 16 cameras and
reconstructs the contents of the interaction volume at a frame rate of 30 Hz.
The reconstruction is used to allow users to interact naturally with virtual ob-
jects inside the scene while correctly handling the problem of occlusions in the
augmentation. This is an important aspect in mixed and augmented reality. We
demonstrated the results of our system in two application scenarios. The first
application is an interactive game which focuses on the interaction aspect, while
the second application is a video compositing task which focuses on occlusion
handling. In the future we plan to also integrate a tracked HMD into the system,
to create an even more immersive experience for the user.
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Abstract. Adhering to an exercise program is a challenge for everybody

who wants to build a healthier body and lifestyle through physical ex-

ercise. We have developed an Virtual Exercise Environment (VEE) that

augments stationary exercise equipment with virtual reality techniques

to make exercising more enjoyable. Our VEE system consists of a record-

ing system to capture video, distance and incline data about real trails,

and a playback system which “displays” both video and terrain data in

the form of video speed and resistance. Trails are played back according

to the speed the user generates on the stationary exercise equipment. The

system uses commodity capture and display devices and supports stan-

dard interfaces for existing exercise equipment. User studies have shown

that users enjoy the ability to guage their progress and performance via

their progress through trail playback in the VEE.

1 Introduction

Sticking to exercise programs can be challenging for most of us, especially us-
ing stationary exercise machines at home or at the gym . Studies show that
an external focus of attention helps improve enjoyment and intensity of work-
outs [1], but typically the only distraction available is a TV or mp3 player. To
address this deficiency we have developed an add-on virtual reality system to
augment standard exercise equipment, such as treadmills, stationary bikes or
arm ergometers. Our augmentation takes the form of a Virtual Exercise Envi-
ronment (VEE) that simulates real, vivid, outdoor exercise trails for exercising
in an indoor environment.

The VEE system consists of a target exercise machine, immersive video dis-
plays and a workstation to drive the displayed percepts. What distinguishes
our system from others that integrate displayed games and graphics for exercise
equipment (e.g., [2]), is that we have developed a capture phase which records
both appearance and terrain of outdoor real trails using a panoramic camera
head and special purpose boards and electronic sensors. We have also focused
on low cost solutions to make the system affordable to most of people.
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2 Related Work

To the best of our knowledge, there is no previous work that addresses all the
features of our VEE system. However, there is separate work in various related
research communities, including computer vision, image processing, computer
graphics and virtual reality community, that gives us hints on how to build our
system.

The Virtual Environments group at the University of Utah has produced a
number of interesting results on locomotion interfaces [3,4]. These are interfaces
which cause the user to expend energy as they simulate unconstrained activities
such as walking or running in virtual reality (VR) in limited space. The particular
system they use combines a special purpose treadmill with immersive visual
displays to study perception action couplings. Their locomotion display includes
a large Sarcos treadmill with an active mechanical tether. The tether applies
inertial forces and emulates slope changes. The standard exercise equipment
which forms the locomotion display in our VEE system can not match the devices
used in these studies, but concepts such as the importance of matching the visual
percept to walking speed [3], are highly relevant.

Some navigation-based VR systems such as the early Aspen Movie Map [5] and
the more recent Google Street View [6] have also some similarity to our VEE
system in the aspect that they also visually record and play back panoramic
frames of real outdoor trails. However, these systems do not have a locomotiion
display part comparing to our VEE system — there is no monitoring and associ-
ation of the user’s walking speed to the playback of recorded panoramic frames.
And the terrain changes of the trails are not recorded and thus there is no way
to play them back via a locomotion display in these systems.

A number of multi-camera systems have been proposed for capturing surround
video. Point Grey Research packages a six camera proprietary spherical camera
head [7]. Foote and Kimber [8] and Nanda and Cutler [9] describe 8 and 5
camera systems respectively, applied to recording office meetings. These multi-
camera systems are carefully designed, manufactured and calibrated, but are
usually inaccessible or unaffordable to our target community. We instead built
our system upon low-cost commodity board cameras that are affordable to most
of people. In order to achieve the overlap required to produce cylindrical video
frames while using as few cameras as possible, we also used extremely wide
angle lenses (1.7mm focal length) that have significant radial distortions (see
Figure 4(a)). We will describe how we solve these practical problems in detail in
the following sections.

3 The VEE System

Our VEE system is composed of a trail recording phase, a data processing and
integration phase, and a trail playback phase. The trail recording sub-system can
record both appearance and terrain of a real outdoor trail. The records are then
processed and integrated by the data processing and integration sub-system, and
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(a) (b) (c)

Fig. 2. (a) Low cost cylindrical capture head. (b) Camera head mounted on trail cap-

ture vehicle. (c) Terrain recording hardware mounted on capture trike.

the processed data are uploaded into a trail data distribution website from which
the public can download the data for free. With downloaded trail data, a user
can play the trail back using an immersive display device and standard exercise
equipment. Figure 1 gives an overview of the VEE system.

3.1 Trail Recording

The trail recording sub-system includes a panoramic camera head consisting
of five Unibrain firewire board cameras mounted evenly on a cylinder (Fig-
ure 2(a)), an altered adult trike used to carry the camera head to move around
(Figure 2(b)), plus special purpose boards and electronic sensors (Figure 2(c))
integrated with the trike which measure tilt and odometry (distance travelled).
All measurements are recorded simultaneously by a control program running on
a laptop computer as the trike is ridden along scenic bike trails.

Distance measurements are provided by a Hall effect transistor which detects
the presence or absence of three strong magnets spaced evenly around one of
the rear wheels of the trike as the wheel rotates. As the magnets come into
proximity to the Hall sensor it turns on, and as the magnets move away it
turns off, which generates a tick. The distance traveled Dcurr is computed as
Dcurr = (Ntick − 1) ∗ Udist, where Ntick is the count of ticks and Udist is the
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unit distance traveled between two successive ticks. With three sensors on the
24” wheel of the trike, Udist is approximately two feet.

The incline measurement utilizes a Schaevitz Accustar clinometer [10] at-
tached to the base of of the trike. This is an electronic device that puts out
analog voltages based on tilt — when tilted in up-hill direction the voltage is
positive and when tilted in down-hill direction the voltage is negative. Since
the analog data acquisition system we use to collect the clinometer signals only
measures positive voltages, an inverting amplifier is used to convert negative
voltages into positive voltage. Another thresholding amplifier is used to collect
the positive signals only (by converting all of the negative voltages into zero).
By comparing these two serials of positive signals, the original serial of signals
that contains both positive and negative values can be restored:

T (t) =

{
(T (t)

1 + T
(t)
2 )/2 if T

(t)
2 > 0

−T (t)
1 if T

(t)
2 = 0

where T (t) is the original signal of tilt at a time tick t, T (t)
1 and T

(t)
2 are cor-

responding signals collected vis the inverting amplifier and via the thresholding
amplifier respectively.

Procedure of the trail recording process is shown in Figure 3.

3.2 Panoramic Video Stitching

The individual videos captured by the five cameras need to be stitched into a
360◦ panoramic video for immersive playback in future. This includes several
operations considering the special capturing device we use. First, the cameras
used in our system are equipped with low-grade wide angle lenses (with ≈ 75◦

horizontal FoV) which suffer from substantial radial distortions. We use the
Brown-Conrady model [11,12] to model the radial distortions by a low-order
polynomial: xd = xu(1 + κ1r

2 + κ2r
4) and yd = yu(1 + κ1r

2 + κ2r
4), where
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r2 = x2 + y2 and κ1 and κ2 are called the radial distortion parameters [13],
(xd, yd) is distorted (image) coordinate and (xu, yu) is corresponding undistorted
coordinate. Here we omit the tangential (decentering) distortions [11], since they
are usually negligible for consumer-level stitching [14,13]. Our calibration using a
checkerboard(Figure 4(a)) estimates that κ1 ≈ 1.6× 10−5 and κ2 ≈ 2.0× 10−11.
This estimate is applicable for all of the five cameras.

Next, we register the calibrated images and stitch them into a panorama. We
assume the five cameras consisting our panoramic camera head approximately
follow a rotational geometrical model, i.e. they are co-centered and their poses
are only different to each other by a 3D rotation. Under this model, the stitch-
ing is simply warping the images into cylindrical coordinates and then using a
pure translational model to align them [15]. The formula for converting a rect-
angular coordinate (x, y) into the corresponding cylindrical coordinate (xc, yc)
is as follows: xc = sθ = s arctan x

f and yc = sρ = s y√
x2+f2

, where s is an arbi-

trary scaling factor that determines the size of the resulting image. Then, the
parameters of the translational model between the i’th pair of adjacent views,
(∆x,∆y), are estimated from robust SIFT feature matches (where RANSAC is
used to remove the outlier matches). Also, because what we are stitching is a
360◦ panorama, we need to make sure the left and right ends of the panorama
matches with each other. This is achieved by minimizing the global registration
error EG:

EG =
5∑

i=1

erri(∆xi, ∆yi) =
5∑

i=1

ni∑
j=1

(x̂ij − xij −∆xi)2 + (ŷij − yij −∆yi)2

where erri(·) is the re-projection error and ni is the number of feature matches
between the i’th pair of adjacent views. (x̂ij , ŷij) and (xij , yij) are a pair of
matched points. After the views are registered in cylindrical surface, a linear
image blending technique [16] is used to remove appearance difference and seams
in the overlap areas of adjacent views.

Figure 4 illustrates the image calibration and projection operations through
an example. And figure 5 shows an example panorama as the final output of the
whole processing. In practice, we use direct mapping based on look-up tables
to speed up the processing. We learn the geometric transformation and image
blending parameters from the stitching of several carefully selected frames. We
then compute the direct mapping from pixels on the original images to pixels on
the final composite panorama and save the mapping into a static look-up table
which is used to stitch all the remaining frames. Direct mapping avoids both
step-wise image warping and backward interpolation [17] and saves the time
and space for storing/loading intermediate results. Details about the design and
implementation of the look-up table can be found in [18].
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(a) (b) (c) (d)

Fig. 4. Image calibration and projection process. (a) Original image frame captured

by one of the five cameras. (b) Frame after removal of radial distortions. (c) Calibrated

frame projected onto the cylindrical surface. (d) Cropped cylindrical frame.

Fig. 5. An example panorama

3.3 Data Integration

In order to provide a virtual sensation of strolling down a path, the video image
needs to play back at a speed that is consistent with the pace of the person walk-
ing down the path [3]. At the same time the amount of effort that is expended
needs to be consistent with the grade (incline) of the path. This means ideally
image and terrain data acquisition would occur simultaneously, where one image
set is collected for each distance and incline data measurement. However, in re-
ality images are acquired more often than tics from the hall sensor, so after data
collection distances are interpolated over the number of images between tics to
produce a file with one distinct distance and incline mark associated with each
frame. The timestamps of the data records were used to guide the association.

4 Trail Playback

The result of trail recording and data processing and integration is a dense se-
quence of panoramic video frames labeled with recorded incline and distance
traveled along the trail. The last phase of the VEE system is to play back this
sequence using an immersive video display (either a tracked HMD or a surround-
ing monitor cluster) and a locomotion display consisting of a standard piece of
stationary exercise equipment such as a treadmill or bike. We have developed a
multi-threaded control program to coordinate the playback on these two kinds
of displays. The program is based on three threads running concurrently. One
thread pre-fetches images and stores them in a queue, another thread continually
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requests speed and data from the exercise equipment and updates the distance
traveled measure, and a third thread monitors this distance metric and based
on this data retrieves images from the queue to be displayed on the immersive
video display. This multi-threaded processing could smoothly play back a trail
at a higher speed than single-process progressive processing and it never got any
lag problems in its practice with the several testing trails that we have under
proper parameter settings (e.g., the image queue size). Figure 6 is a sketch map
of the playback process.

4.1 Immersive Video Display

The immersive video display device used in our experiments is a single integrated
HMD, the eMagin z800(Figure 7(a)). Cylindrical panoramic images computed
from the captured multi-image sequences are displayed in the HMD accord-
ing to head position computed by the head tracker. In this way the user can
“look around” the trail surroundings as he moves through the virtual trail world
(Figure 7(b)). To avoid lags due to loading image files into memory, panoramic
images are pre-fetched and stored in a queue in local memory for display as
needed. Figure 7(c) shows an early non-immersive playback system using a sin-
gle forward-facing monitor, but including the locomotion display playback on
the treadmill.

4.2 Locomotion Display

The locomotion display devices used in our system include various kinds of exer-
cise equipment, such as treadmills, stationary exercise bikes and arm ergometers.
The exercise equipment itself acts as a physical display, by “playing back” an
approximation of the recorded terrain using the speed and slope or resistance
settings of the equipment. The thread that plays back the trail on the exercise
equipment calculates the distance traveled by the user that is exercising and uses
this information to determine which frame of the panorama sequence should be
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(a) (b) (c)

Fig. 7. (a) Head Mounted Display (HMD) (b) Recorded surround video and terrain

features are played back on synchronized HMD and exercise bike. (c) Playback using

synchronized computer monitor and treadmill.

rendered on the immersive video display. The playback effectively runs “on a
rail” since currently no navigation interface is provided and only fixed recorded
traversal of the trail is available. Some of the exercise equipment does not have
a fine enough distance resolution for retrieving continuous image frames for ren-
dering. For example, the distance resolution of the treadmill used by our system
(Table 1) is 0.01miles (52.8 feet) which causes jumping artifacts in the rendered
video. So, instead our system uses the instantaneous speed reported by the ex-
ercise equipment to calculate the accumulated distance and uses this distance to
retrieve the appropriate panorama frame for rendering:

curState.dist = curState.dist+ rd ∗mph2fps ∗ curState.speed

where curState is a global structural variable that records the run-time status of
the machine. rd = dispT ime.runningDuration() records the running duration
from last computation of curState.dist to now, and dispT ime is a global timer
whose count resets after each update of curState.dist. mph2fps = 1.4667 is a
scaling factor that converts the unit from mph (mile per hour) to fps (frame
per second). In our current implementation only the speed information reported
by the exercise equipment is used to calculate the distance traveled, but in
future versions reported distance might also be used to dynamically calibrate
the calculation.

The incline information is physically played back on the locomotion display.
Different exercise equipment has different usage of this information. In our sys-
tem, we use the incline information to control the slope of the deck of treadmills,
and the resistance level of arm ergometers or stationary exercise bikes. For ma-
chines without controllable incline or resistance, we emulate a low gear on a
bicycle, where the user must pedal faster (proportional to the measured trail
incline) to travel the same distance. Table 1 shows a list of exercise equipment
onto which we can successfully display the incline information. We use either the
Communications Specification for Fitness Equipment (CSAFE) protocol [19] or
machine associated SDK to control these equipments. The CSAFE protocol is a
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Table 1. The exercise equipment experimented in our system, their properties used to

play back the incline information, and their communication interfaces

Name Category Manufacturer Property Interface

FlexDeck Shock Abso. Sys. treadmill Life Fitness slope CSAFE

LifeCycle 9500 HR exercise bike Life Fitness resistance CSAFE

SciFit Pro I arm ergometer Sci-Fit resistance CSAFE

PCGamerBike arm ergometer 3D Innovations resistance FitXF SDK

public standard on exercise equipment manufacturing that is supported by most
of today’s exercise equipment manufactures. Our playback control program has
fully implemented it and thus can communicates with any exercise machines
that supports this protocol.

5 Pilot Study and Results

The VEE system we developed was evaluated by researchers at Assistive Tech-
nology Partners in Denver, CO, USA. A male participant was recruited for a pilot
study of the technology using a treadmill. This individual completed a week long
baseline phase in which he logged his daily step count as usual, followed by an
intervention phase during which he exercised on our VEE-outfitted treadmill a
total of 11 times over a period of four weeks. At the end of the study, the par-
ticipant was asked to provide feedback on his VEE experience. He described the
technology as compelling, stating that he had found it interesting and enjoyable
to use. The participant’s average daily number of steps during the baseline phase
of the study 2065. His average daily step count during the intervention phase
was 6151. This included a low of 4433 per day (third week of intervention) to a
high of 7926 (fourth week of intervention). Throughout the intervention phase,
the participant completed an average of 4563 steps per intervention session. A
final pleasant outcome was the patient’s body weight, which decreased 5 lbs from
the baseline phase to the end of the intervention phase.

6 Concluding Remarks

In this paper we have described a complete system for recording of real outdoor
trail environments and playing these recordings back in an immersive Virtual Ex-
ercise Environment (VEE). We have developed a low-cost capture device which
records both appearance and terrain of outdoor real trails using a panoramic
camera head and special purpose boards and electronic sensors. We have also
developed a collection of computer programs for controlling the trail recording
and playback phases, for rapidly stitching panoramic videos, and for driving
and monitoring various kinds of immersive video display and locomotion display
devices. Efficacy of the VEE system has been verified by human pilot study.
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Abstract. Foregrounds extracted from the background, which are intended to 
be used as photorealistic avatars for simulators in a variety of virtual worlds, 
should satisfy the following four requirements: 1) real-time implementation, 2) 
memory minimization, 3) reduced noise, and 4) clean boundaries. Accordingly, 
the present paper proposes a codebook-based Markov Random Field (MRF) 
model for background subtraction that satisfies these requirements. In the pro-
posed method, a codebook-based approach is used for real-time implementation 
and memory minimization, and an edge-preserving MRF model is used to elim-
inate noise and clarify boundaries. The MRF model requires probabilistic mea-
surements to estimate the likelihood term, but the codebook-based approach 
does not use any probabilities to subtract the backgrounds. Therefore, the pro-
posed method estimates the probabilities of each codeword in the codebook  
using an online mixture of Gaussians (MoG), and then MAP-MRF (MAP: Max-
imum A-Posteriori) approaches using a graph-cuts method are used to subtract 
the background. In experiments, the proposed method showed better perfor-
mance than MoG-based and codebook-based methods on the Microsoft DataSet 
and was found to be suitable for generating photorealistic avatars. 

1   Introduction 

Before constructing buildings, details such as the suitability of the floor layout and 
navigation signs and whether users will feel comfortable in the buildings should be 
considered. Virtual reality techniques are used to investigate virtual structures in  
detail. However, since information is generally displayed through monitors and a 
keyboard or mouse is used to navigate the structure, it is difficult to evaluate the rela-
tionship between the details of the structure and the sense of absolute direction of the 
user. Therefore, we are developing simulation environment, referred as to Walk-
through Simulator (WTS), in order to enable subjects to navigate virtual constructions 
from the perspective of the customer. The hexahedral-shaped device shown in the 
center of Fig. 1 is the WTS. The virtual building is displayed inside the device using 
multi-projectors, as shown on the right-hand side of Fig. 1.  

In some buildings, such as public institutions, guides provide instructions to cus-
tomers or visitors to help them reach their destination. In the virtual building, guides 
are displayed as avatars. In the present study, we use a Photorealistic Avatar, in 
which the appearance of an actual person is used as CG texture, as a guide. The 
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present paper focuses on displaying the photorealistic avatar in virtual buildings. The 
image of the person that is used to create the photorealistic avatar is extracted by the 
camera in front of a remote computer connected via a network with the WTS, as 
shown in Fig. 1(A), and the photorealistic avatar is displayed in a fixed location in the 
virtual world inside the simulator, as shown in Fig. 1(B). 

 

Fig. 1. Schematic diagram of the WTS: (A) photorealistic avatar extracted from the modeled 
background, (B) photorealistic avatar integrated into the virtual building, and (C) multi-
projectors 

 
In the present paper, it is assumed that the moving foreground in front of the fixed 

camera of the remote computer is an individual whose image will be used to generate 
the photorealistic avatar, and the actual person who will take a role of the guide can 
stand on any places, for example, a room with complex backgrounds. The present 
paper uses background subtraction to extract the appearance of the guide from images 
captured by a camera. There are four requirements for the background subtraction: 1) 
extraction must be performed in real time, 2) memory consumption must be limited, 
3) the image must be extracted with little noise, and 4) the boundaries of the avatar 
must be clear. 

The proposed method integrates a codebook-based approach, which helps to per-
form extraction in real time and reduces the required memory, and an edge-preserving 
MRF model, which can eliminate noise and generate clear boundaries. Although the 
codebook-based algorithm [10] can model an adaptive and compact background over 
a long period of time with limited memory, it cannot be used as the likelihood term in 
the edge-preserving MRF, because the similarity (rather than the probability) is used 
to compare input pixels with the modeled background. Therefore, online mixture  
of Gaussians (MoG) is used to estimate the probabilities for all codewords in the 
codebook. In addition, the proposed method models the prior term using the code-
book-based method in order to substantially reduce extraction errors caused by high-
contrast edges in cluttered backgrounds, thereby reducing errors on the boundaries of 
extracted foregrounds. 
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2   MRF Modeling for Background Subtraction 

2.1   Related Research 

The simplest background model assumes that pixel values can be modeled by a single 
Gaussian distribution [1]. However, this basic model cannot handle multiple back-
grounds, such as trees moving in the wind. The MoG has been used to model  
non-static backgrounds [2]. However, it is difficult to detect sudden changes in the 
background when the learning rate is low, and slowly moving foreground pixels will 
be absorbed into the background model when the learning rate is high [7]. Sheikh and 
Shah [4] proposed a MAP-MRF framework, which results in clear boundaries without 
noise by enforcing spatial context in the process, but this technique [4] cannot be used 
when long periods of time are needed to sufficiently model the background, primarily 
due to memory constraints, because they used a kernel density estimation technique 
[7]. In order to address the memory constraint problem, Kim et al. [7] proposed a 
codebook background subtraction algorithm intended to model pixel values over long 
periods of time, without making parametric assumptions. However, since this algo-
rithm did not evaluate probabilities, but only calculated the distance from the cluster 
means, it is hard to extend this algorithm to the MAP-MRF framework. 

2.2   Energy Function 

In the present paper, background subtraction is considered as an MRF framework. 
The MRF is specified in terms of a set of sites  and a set of labels . Consider a 
random field consisting of a set of discrete random variables , … ,  defined on 
the set , such that each variable  takes a value  in , where s is index of the set of 
sites. For a discrete label set , the probability that random variable  takes the value 

 is denoted as , and the joint probability is denoted as , … , , abbreviated as , where , … , . Here, f is a configura-
tion of F. 

If each configuration, f is assigned a probability , then the random field is said 
to be an MRF [11] with respect to a neighborhood | , where  is the set  
of sites neighboring s, if and only if it satisfies the following two conditions: the posi-
tivity property 0,  and the Markovian property | | , 
where |  denotes the set of labels at the sites neighboring s. 

Since F is generally not accessible, its configuration f can only be estimated 
through an observation obs. The conditional probability |  is the link between 
the configuration and the observation. A classical method of estimating the configura-
tion f is to use MAP estimation. This method aims at maximizing the posterior proba-
bility | , which is related to the Bayes rule as follows: | |

. 

Since the problem lies in maximizing the previous equation with respect to f, 
which  does not act on, the MAP problem is equivalent to 

                      | argmax ∑ ∑ , ,, ,                           (1) 

in an energy function, where  is the Gibbs distribution, and pairwise cliques are 
considered. For more information on the MAP-MRF, please refer to the paper by 
Geman and Geman [5]. 
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In the present paper,  in Eq. 1 is referred to as the likelihood term derived 
from the modeled background, which reflects how each pixel fits into the modeled 
data given for each label, and V , ,  is referred to as the a prior term that encou-
rages spatial coherence by penalizing discontinuities between neighboring pixels  
and . In addition,  , ,  is replaced by , · , , where ,  denotes the 
delta function defined by 1 if , and otherwise denotes the delta function de-
fined by 0. Thus, this is a penalty term when two pixels are assigned different labels. 

2.3   Graph Cuts 

To minimize the energy function (Eq. 1), we use a graph-cuts method [8], because 
this method showed the best performance among the conventional energy minimiza-
tion algorithms [9]. The procedure for energy minimization using the graph-cuts me-
thod includes building a graph, wherein each cut defines a single configuration, and 
the cost of a cut is equal to the energy of its corresponding configuration [9]. 

For the graph-cuts method, a graph ,  is first constructed with vertices cor-
responding to the sites. Two vertices, namely, source (Src) and sink (Sin), also re-
ferred to as terminals, are needed in order to represent two labels, and each vertex has 
two additional edges, ,  and , . Therefore, the sets of vertices  and edges  
are  ,  and , , , , where N are referred to as n-
links (neighboring links) and ,  and ,  are referred to as t-links (terminal 
links). The weights of the graph are set for both n-links and t-links, where the t-links 
connecting each terminal and each vertex correspond to the likelihood term and the n-
links connecting neighboring vertices correspond to the prior term. 

Note that the background subtraction problem can be solved by finding the least 
energy consuming configuration of the MRF among the possible assignments of the 
random variables F. Minimizing the energy function defined in Eq. 1 is equivalent to 
finding the cut with the lowest cost, because the costs of two terms are assigned to the 
weights of the graph. Specific labels are then assigned to two disjointed sets con-
nected by Src and Sin by finding the cut with the lowest cost in the graph. The mini-
mum-cost cut of the graph can be computed through a faster version of max-flow 
algorithm, proposed in [9]. The obtained configuration corresponds to the optimal 
estimate of | . 

3   Proposed Energy Function 

3.1   Likelihood Term 

The likelihood term is derived from the modeled background data to measure the cost 
of assigning the label  to the  pixel p, and  is defined as follows: foreground 1, background 0, if ,foreground 0, background 1, if ,foreground , background , otherwise,  
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where  and  are thresholds for hard constraints [10] in constructing graphs,  is a  
threshold to extract moving objects from the background, and  is the probability 
that a pixel p is included in the background. In the present paper, the codebook-based 
algorithm and MoGs are used to estimate the probabilities for the background. 

The codebook algorithm is used to construct a background model from long input 
sequences and adopts a quantization technique to minimize the required memory. For 
each pixel, the codebook algorithm builds a codebook consisting of one or more  
codewords. Samples at each pixel are quantized into a set of codewords based on 
color and brightness information. The background is then encoded on a pixel-by-pixel 
basis. 

Fig. 2 shows algorithm to construct codebook. Let X be a training sequence for a 
single pixel consisting of nx RGB-vectors: , … , , and let  be the codebook 
for a pixel consisting of nc codewords. Each pixel has a different codebook size based 
on its sample variation. Each codebook c , i 1, … ,  consists of an RGB vector , ,  and a 7-tuple , , , , , , , where  and  denote the 
minimum brightness and maximum brightness, respectively, of the ith codeword,  
and  denote the thresholds for the RGB vector ,  denotes the maximum negative 
run-length (MNRL), which is defined as the longest interval during the training period 
in which the codeword did not recur,  denotes the last access time at which the co-
deword occurred, and  is the frequency with which the codeword occurs. 

 
Fig. 2. Algorithm for codebook construction 

After construction, the codebook may be sizeable because it contains all of the co-
dewords that may include moving foreground objects and noise. Therefore, the code-
book is refined by eliminating the codewords that contain moving foreground objects. 
The MNRL in the codebook is used to eliminate the codewords that include moving 
objects, based on the assumption that pixels of moving foreground objects appear less 
frequently than moving backgrounds. Thus, codewords having a large  are eliminat-
ed by the following equation: | , , where  denotes the back-
ground model, which is a refined codebook, and  denotes the threshold value. In the 
experiments,  was set to be equal to half the number of training frames.  

1  (empty set) 
2 For t = 1 to nx do 

2.1 , √
2.2 Find the codeword cm in  that matches xt based on two conditions 

2.3 If , or, if there is no match, then . Create a new codeword by setting 

2.4 Otherwise, update the matched codeword cm, consisting of  and 
, by setting 

end for
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In the case of using codebook-based algorithms, it is difficult to use an MRF be-
cause the MRF does not evaluate probabilities, but rather calculates the distance from 
the RGB vectors and the brightness of the codewords. 

To evaluate the probabilities from the codebooks, a mixture of K Gaussian distri-
butions proposed by Stauffer and Grimson [2] is chosen to model the recent history of 
each pixel, which is included in the same codewords. The probability of observing the 
current pixel value  is ∑ , , , , , ,, where K is the number of 
distributions, ,  is an estimate of the weight of the ith Gaussian in the mixture at 
time t, ,  and ,  are the mean value and covariance matrix, respectively, of the ith 
Gaussian in the mixture at time t, and  is a Gaussian probability density function. In 
the experiments, K is determined by the number of frames used for background mod-
eling, and the covariance matrix is assumed to be of the following form: , σ . 

3.2   Prior Term 

Since a common constraint is that the labels should vary smoothly almost everywhere 
while preserving sharp discontinuities that may exist, e.g., at boundaries [8], the  
costs of the smoothness are assigned for discontinuity-preservation between two 
neighboring pixels, and we use a generalized Potts model [8]. As such, , ′ is defined 
as follows:                                              , , · ,                                                        2  

where the contrast term ′  denotes the dissimilarity between two pixels  and 
′, and ·  is the Euclidean distance between neighboring pixels in the image do-

main. When 0, the smoothness term is simply the Ising model, which promotes 
smoothness everywhere. However, it has been shown that it is more effective to set 0, because this relaxes the tendency to smooth regions of high contrast. The con-
stant  is chosen to be ′ , where ·  denotes the expectation over an 
image. This choice of  ensures that the exponential term in Eq. 2 switches appro-
priately between high and low constants. 

However, when the scene contains a cluttered background, notable segmentation 
errors often occur around the boundary, which generates flickering artifacts in the 
final results displayed in the virtual world [6]. These errors occur because the MRF 
model contains two terms for color and two terms for contrast. A straightforward idea 
is to subtract the contrast of the background image from the current image [6]. How-
ever, since only one background image is used for this approach, the nonstationary 
background motion that is ubiquitous in the real world cannot be modeled. 

To overcome this problem, the contrast of the background is modeled using the co-
debook-based algorithm described in Section 3.1. The difference is that the codebook 
for the smoothness terms uses , ′ instead of I as input and does not use . This 
means modeling contrasts between adjacent pixels. After modeling the contrasts, if 
the contrasts of the input frame are within the ranges  and  of any codeword m, 
then the contrast is considered to be background contrast, and , ′ is set 0. Otherwise, , ′ is set as the value of an input frame. This approach helps not only to eliminate the 
flickering artifacts but also facilitates the use of the generalized Potts model. 
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4   Experimental Resu
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Table 2. Processing times for each step of the proposed method (msec) 
 

Resolution 
Codebook  
construction 

MoG 
Graph  
construction 

Graph cuts 

160 120 8 5 7 25 
320 240 20 10 20 60 

5   Conclusions 

In the present paper, we proposed a codebook-based MRF model for background 
subtraction to generate a photorealistic avatar displayed in the virtual world. Although 
an edge-preserving MRF can eliminate the noise and generate suitable object bounda-
ries, the MRF depends on how the likelihood terms in the energy function are  
estimated. The proposed method uses a codebook-based method to estimate the like-
lihood term, which not only reduces the required memory and enables real-time  
implementation. Moreover, the proposed method used online MoG to estimate the 
probability for each codeword, which resulted in minimization of the required memo-
ry, reduced noise, and clean boundaries. In addition, the proposed method enabled the 
photorealistic avatar to be displayed clearly in the virtual world, as compared with 
previously proposed methods, such as codebook and MoG. 

However, the proposed method was not able to extract the foreground in dark re-
gions because brightness values were used to handle shadows. Therefore, in future 
studies, we intend to investigate how to extract the foreground in the dark regions 
more effectively. Moreover, we intend to extend the proposed method to extract the 
foreground inside a WTS that contains non-static backgrounds due to virtual world 
displayed inside the WTS. 
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Abstract. Critical limitations exist in the currently available commercial

tracking technologies for fully-enclosed virtual reality (VR) systems.While

several 6DOF solutions can be adapted for fully-enclosed spaces, they still

include elements of hardware that can interfere with the users visual ex-

perience. JanusVF introduced a tracking solution for fully-enclosed VR

displays that achieves comparable performance to available commercial so-

lutions but without artifacts that obscure the users view. In this paper we

extend JanusVF by exploring two new methods for selecting the fiducials

to be displayed. The first method creates an additional offset grid of fidu-

cials for each original resolution. The algorithm selects fiducials from the

grid that yields more visible markers. The second method selects multiple

resolutions of markers per wall by intersecting the cameras view frustum

with the display surface. The resulting area is populated with fiducials by

a quadtree subdivision. Comparison results show that the positional error

has been reduced.

1 Introduction

A tracking system for a fully-enclosed space, such as a six-sided CAVE [1,2],
should have as minor of an impact on the user’s experience as possible: Sensor
hardware inside the VR space can obscure the user’s view of the display surface,
which could lead to a break in presence. In a head-mounted display, this require-
ment is totally non-existent as no tracking device will ever obscure the user’s
view of his display because it is fixed to his head. In a fish tank or wall display,
there are multiple options for placement of the tracking hardware so that they
are totally out of the user’s view such as behind or above the user. Often, the
fixed component of the tracking device can simply be placed above or to the
side of the display surface. These assumptions regarding where a user cannot or
will not look are not possible in a spatially immersive display. By definition, the
device allows the user to look in any direction.

1.1 Previous Work

Unfortunately, most common commercial tracking solutions do not conform to
these stricter requirements, requiring a portion of the hardware to remain visi-
ble. Acoustic solutions such as the InterSense IS-900 require that the ultrasonic

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 511–520, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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emitters be placed inside the display surfaces because they cannot permeate the
screen surfaces. While options exist for low-profile surface mounted emitters in-
stead of the traditional sensor bars, these devices can still be identified by their
shadow on a display surface.

Magnetic tracking solutions such as the Polyhemus FastTrack or Ascension
MotionStar are often chosen for fully enclosed VR spaces because the world-fixed
magnetic transmitter can be mounted outside the display walls. If the entire
virtual environment is made of non-metallic materials, magnetic trackers can be
reasonably accurate up to a moderate distance. With extensive calibration, the
tracker can compensate for static noise and distortions in the magnetic fields,
but transient changes from devices like CRT monitors or the movement of dense
objects near the tracker can have erratic effects.

In order to implement standard optical feature tracking [3] or IR tracking
[4,5], the camera hardware must be placed within the VR space so as to fully
observe the user’s motions. These hardware artifacts make these types of systems
far less attractive options for use in fully-enclosed VR spaces.

Another recent optical tracking system is the HiBall [6]. It is an inside-looking-
out design with multiple cameras that track LED arrays mounted on the ceiling.
This design is obviously not conducive to use inside a fully-enclosed space where
the LED arrays would obscure the view of the ceiling.

The Hedgehog [7] project presents a novel tracking system expressly designed
for fully enclosed virtual reality spaces. A head mounted device projects cal-
ibrated laser beams in a specific pattern onto the interior of the projection
screens. Cameras mounted outside the projection space view the resulting dots
on the display walls. The algorithm can filter and triangulate the user’s position
and orientation. However, it is possible for the user to see the laser dots on the
display surface. This could lead to a break in presence by highlighting the true
display surface.

2 JanusVF

JanusVF [8] has successfully been demonstrated as a tracking system for fully
enclosed, active stereo spaces that satisfies the original goals of Hedgehog but
while showing no visible artifacts within the view of the user. The system deter-
mines the head position and orientation by optically tracking fiducial markers.
Images captured by a head-worn camera are processed by ARToolkitPlus [9]
and filtered by a SCAAT [10] filter. Our system exploits the fact that the vir-
tual reality space, if considered by the camera to be the world space, can be
directly manipulated. Thus, the virtual fiducial markers can be made to only
appear directly behind the user’s field of view as part of the rendered scene
(see Figure 1). Unlike most tracking systems, JanusVF is a low-cost tracking
solution involving the cooperation of the display system with the tracking hard-
ware.



JanusVF: Adaptive Fiducial Selection 513

Fig. 1. Example of how fiducials are displayed in the VR space by the original JanusVF.

Worn on the user’s head, the camera faces exactly opposite the the user’s point of view

to track fiducials that are displayed on the wall behind the user.

3 Fiducial Selection

3.1 Previous Work

In order that there be no synchronization required between the fiducial drawing
and fiducial recognition components of the JanusVF solution, it was necessary
that the fiducials be statically positioned in space. If markers were not stati-
cally assigned their translations in world space, it would be necessary for the
drawing application to constantly inform the recognition application about each
assignment as they changed, placing unnecessary requirements on our commod-
ity system.

In the original implementation of JanusVF, each display surface was automat-
ically pre-allocated several grids of markers. Each static grid had a resolution
of between 3 to 10 fiducials per edge. During the run-time of the application
before drawing each frame, the optimum resolution and fiducial size was chosen
based on the camera’s normal distance to the display surface. The algorithm
attempted to maximize the size of the marker within the camera’s view without
clipping any corners. The selection thresholds defining the optimum grid size
for distance were determined empirically by testing the stability of the tracking
algorithm for each grid size at several distances. For these tests, the camera was
oriented perpendicularly to the display surface.

Several limitations of this marker allocation and selection method were dis-
covered during use of the JanusVF system. To overcome these limitations, we
have developed two alternative marker selection routines. Both new implemen-
tations maintain our requirement that the fiducial layout remain static and pre-
allocated. Thus, there is no need for the display software to communicate with
the tracker about the changing locations of fiducials, nor does there need to be
any synchronization as there would be if fiducials were not unique.
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Fig. 2. Example diagram of a 4 x 4 grid (thin stroke), overlaid with its corresponding

offset grid (bold stroke). The offset grid has one less marker per edge, but each marker

remains the same size.

3.2 Offset Grids

The range of sizes of markers created during the pre-allocation phase of the orig-
inal implementation was chosen such that the largest marker fills the camera’s
view when the camera is positioned at a maximum practical distance from the
display surface, and similarly that the smallest marker fills the camera’s view
when it is at the shortest practical distance from the display surface. However,
each grid is laid out from the origin, such that it fully populates a square display
surface. Thus, for any distance and associated optimum marker size, it may be
a common occurrence that the camera is positioned such that even though the
chosen size of marker is reasonable, the camera is posed such that it views only
an intersection between four markers and therefore registers none of them. In
the original implementation, we compensated for this limitation by displaying
fiducials that were smaller than optimal to improve our probability of registering
full markers in every observation.

Our improved offset grid algorithm generates two set of grids. The first set
is inherited from the original generation algorithm: A grid of markers that fully
populates the square display surface from edge to edge is created for each reso-
lution from 3 x 3 to 10 x 10. In a second pass, the offset algorithm adds a pair to
each member of the first set where the size of each marker is held constant but
the count of markers per edge is reduced by one. The grid is positioned in the
center of the display surface, such that the new offset grid has a marker placed
upon each four-way intersection of the larger grid that it is paired with. Figure 2
shows a conceptual example of how a 4 x 4 grid and its offset would look if they
were overlaid.

To take advantage of the offset grid, the JanusVF Graphics Hooks that run
alongside the user’s VR application were extended to make two fiducial selection
passes. After determining the optimum marker size based on the camera’s dis-
tance to the display surface, the algorithm first checks each fiducial within the
standard grid of the chosen grid size. Then, it checks each fiducial in the stan-
dard grid’s complementing offset grid. Because the two grids potentially conflict
with each other by overlapping, results can only be accepted from one grid per
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frame. The algorithm determines which grid has the most area of visible fiducials
by comparing the count of visible markers in each grid. It accepts the grid with
the highest number of visible markers.

In situations where the user pauses upon a border between where an offset
or the original grid may become optimal, some flickering between states may
occur. Filtering of the choice of grids by averaging previous choices reduces this
behavior, but it does not appear to be necessary.

3.3 Quadtree Subdivision

While the original algorithm chooses logical sizes of markers when the camera
is oriented perpendicularly to the display surface, the selections become increas-
ingly more inappropriate as the angle of inclination decreases. When perpendic-
ular to the surface, the camera’s distance to each fiducial is relatively similar,
so it is reasonable to select markers that are all of the same size. However, at
lower angles of inclination, the camera’s depth of field upon the screen becomes
larger. For these cases, recognition could be improved if the system could select
multiple resolutions of markers and display them simultaneously. In the near
field, markers would be smaller than in the far field.

Grundhofer et al. [11] explored the use of fiducials for surface tracking. Their
primary interests focused on the imperceptibility of markers that are within
view and required interleaving frames containing fiducials between the normally
visible frames. Synchronized cameras were required to separate the visible and
fiducial frames. Unfortunately, the active stereo in a CAVE display already de-
mands the full frame rate of standard projectors, and the existing keying of the
stereo frames is tightly coupled with the active stereo glasses. We have however
adapted their use of quadtrees for populating markers within the camera’s view.

The fiducial pre-allocation phase is modified to generate marker resolutions
of 2 x 2, 4 x 4, 8 x 8, 16 x 16, and 32 x 32. A quadtree map is built, linking each
marker to the four smaller markers that occupy its space in the next resolution.

During the selection phase, a view frustum of the camera is calculated based
on current prediction of the camera’s pose and parameters of the camera’s lens.
Effectively, an intersection is computed between this view frustum and the dis-
play surface, and the area is subdivided by a quadtree.

In our implementation, the algorithm first tests if all four corners in world
space of each of the four large markers in the 2 x 2 grid are within volume that
defines the camera’s view frustum. If a marker has all four corners visible, it is
selected. If only a subset of corners are visible, the algorithm recursively tests
the children of the current marker. If a marker has some corners visible but has
no children, or if no corners are visible, the recursion stops.

This selection routine yields a set of fiducials that are adaptively fit to the
camera’s perspective. Figure 3 shows two examples of how the quadtree selected
markers appear when rendered. This method allows JanusVF to select multiple
resolutions of markers per wall from a statically allocated set of markers while
guaranteeing that the selected markers will not overlap each other. When the
camera views the surface at low angles of inclination, the viewable surface area
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(a) High Angle (b) Low Angle

Fig. 3. Two example photographs from a third person perspective of how a set of mark-

ers appear on the display surface after the camera’s view frustum has been populated

with fiducials by quadtree subdivision. In the first, the camera is nearly orthogonal to

the surface but rotated along the Z axis. In the second, the camera is posed such that

it has a low angle of inclination to the display surface.

is populated such that each marker appears at an optimum size on the camera’s
image plane: Nearer markers are drawn smaller and farther markers drawn larger
on the display surface.

4 Testing

Testing was performed in a 6-sided CAVE that measures 3 meters on each edge
and is driven by a six node cluster running VRJuggler on Linux. Each node
is equipped a dual-core 2.0 GHz AMD Opteron, 2 gigabytes of RAM, and an
NVIDIA Quadro 4500. It is outfitted with an InterSense IS-900 hybrid acoustic-
inertial tracker. Four transmitters per edge are embedded in the edges of the
space where the ceiling meets the side walls.

It was hypothesized that original selection algorithm would perform best when
the camera views the display surface from an orthogonal angle because it was
at this angle that the original selection algorithm was optimized. As the angle
of inclination to the surface is reduced, we expected that the stability of the
original algorithm would decline and that the improved selection algorithms
would remain more stable.

4.1 Comparison Tests

During these comparison tests, our JanusVF tracker was rigidly attached to an
Intersense IS-900 head tracker. A single transform was added to the JanusVF
output so that its eye pose aligned with that of the IS-900. The IS-900 was
used in tethered mode to remove possible latencies incurred in its native wireless
communication. A logging application was written on an independent machine to
poll and record the outputs of the VRPN servers of both trackers simultaneously.
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Fig. 4. Tracker placement for the four rotational accuracy tests varying the angle of

inclination while maintaining distance to the focus point

4.2 Viewing Angle Tests

The accuracy of the JanusVF tracker as compared to the Intersense IS-900
tracker was measured by statically orienting the tracker pair by using the IS-
900 as a reference. At each position chosen, we measured the difference between
the reported orientation of JanusVF with the precisely placed IS-900. The first
orientation test was taken from the true center of the space, facing the front
wall with no pitch, roll, or yaw. This pose resembles the poses used during the
optimization of the original JanusVF fiducial selection routine.

At three more positions, we varied the camera’s angle of incidence to the
display surface. As noted from experience, the fiducial analysis is often weak
at discerning rotations around a point on the surface from a strafe along the
surface. As the angle upon a fiducial grows smaller, camera pixel error increases
as each pixel accounts for greater distances along the fiducial’s edges.

Each position maintained the distance from the camera to its center of focus
on the screen at 1.5 meters, varying only in the angle of inclination. The test was
conducted at the angles of 90, 45, 30, and 15 degrees. The state acquisition was
reset between each position. The trackers were placed into position before being
enabled so that knowledge of a previous state would not affect their ability to
resolve the new state. Figure 4 shows a plot of the locations chosen.

The entire test was conducted once each for the original fiducial selection
algorithm, the offset grid algorithm, and the quadtree subdivision algorithm.
Figure 5 shows how the camera’s view appeared at a low angle of inclination for
each of the selection methods.

Table 1 shows the results of the viewing angle experiments. As anticipated,
the accuracy of the original algorithm degrades quickly as the angle of inclination
becomes lower. The offset selection algorithm provided no significant improve-
ment over the original selection algorithm. While in some poses the offset grid
was preferred over the basic grid, it provided no means to compensate for the
stretched depth of field upon the markers. In contrast, the quadtree selection
showed a pronounced strength through the low angles. Where in these poses the
previous two algorithms struggled to fuse noisy data from suboptimal markers,
the camera’s view in the quadtree selection test was populated such that more
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Table 1. The RMS delta between the IS-900 tracker the JanusVF tracker in their re-

ported position for each of the marker selection methods at each of the angles described

in Figure 4

Delta (mm RMS)

Angle (deg) Original Offset Quadtree

90 0.488 0.465 0.477

45 4.932 5.180 0.882

30 8.148 8.051 2.452

15 20.327 19.258 5.233

markers were optimally sized. Performance did decrease as the angle became
lower, but the magnitude of the error was much smaller.

4.3 Free Motion Tests

To gauge the average accuracy of the JanusVF tracker with each of the proposed
selection algorithms, a subject navigated through a model of an interior space
while wearing both trackers. Over the 5 minute trial, we recorded the outputs of
both tracking systems. We then calculated the error in the positions reported by
the InterSense and all three versions of JanusVF. To accomplish this, the test
was run three separate times by the same user, intentionally trying to reproduce
the same motions each time. This is obviously no longer an exact comparison,
but over the length of the trial, we expect that individual differences will be
smoothed by average the results over the course of the entire run. Note that the
InterSense in this case is not necessarily ground truth, as its setup with only four
transmitters in the ceiling edges is not optimal. While the IS-900’s output is con-
sistently precise, its output is often inaccurate when measured manually. These
slight variations, possibly due to echos or suboptimal transmitter placement, are
not overtly noticeable during normal use, but they do account for some of the
statistical error during our comparison tests.

(a) Original (b) Offset (c) Quadtree

Fig. 5. The JanusVF camera’s view of the display surface when placed at a low angle

of inclination for each of the selection and display methods. In each view, the near field

markers are within an optimum range for the recognition algorithm. In the original

5(a) and offset 5(b) selection methods, the distant markers are too small.
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Table 2. The RMS delta between the IS-900 tracker the JanusVF tracker in their

reported position for each of the marker selection methods during a free motion test

Delta (cm RMS)

Original 2.446

Offset 2.163

Quadtree 1.108

Results for this test are meant to be representative of a typical use, but they
cannot be considered as an absolute performance metric. Table 2 shows the
results of the free motions tests as the RMS delta between the IS-900 tracker’s
positions and the JanusVF tracker’s position for each of the selection methods.

The results of testing the original JanusVF algorithms were consistent with
those reported in the first JanusVF publication. During the free motion tests,
we observed an RMS delta between the original JanusVF tracker and the IS-900
of 2.446 cm.

When the offset selection algorithm was employed, we noticed a negligible
improvement in the positional resolution. The result suggests that the condition
where the original algorithm would select a probable resolution under which the
camera could not view a single complete fiducial occurs infrequently or is only
a small contributor to the error in the system.

The quadtree selection algorithm showed a significant improvement over the
original selection algorithm, reducing the dispersion by over half. While the
offset algorithm only offers improvements in special cases, the quadtree selection
algorithm allows JanusVF to select multiple resolutions of fiducials per surface,
potentially improving every camera view.

5 Conclusion

The advantages provided by the offset grid fiducial selection algorithm were lim-
ited in scope. This very simple two-pass addition does resolve a known problem
where the original algorithm can select properly sized fiducials that may happen
to be arranged such that the camera is oriented towards an intersection of four
corners and thus cannot resolve any complete fiducial. As evidenced by the static
tests, it does have some positive effect, but its benefits are seen only in a small
percentage of cases.

The quadtree algorithm differs significantly from the original and offset grid
selection methods because it is capable of selecting multiple sizes of markers per
wall, quickly and efficiently. By populating the camera’s view with markers that
have been selected by a quadtree subdivision of the viewable surface area, we
place markers that are optimally large, especially in the case of low angles. In
these cases where the depth of field is very long, the algorithm, by nature of
the quadtree subdivision, places larger markers in the distant field and smaller
markers in the near field. Whereas the previous two selection algorithms only
consider the camera’s normal distance to the surface, the quadtree selection
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algorithm considers and adapts to the camera’s perspective upon the surface.
This adds a great deal of robustness to the fiducial recognition as shown in the
static rotation tests. This ability also translated to a reduction in the magnitude
of the error during the free motion tests, suggesting that this algorithm provides
a benefit in a significant percentage of situations.
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Abstract. Human animation from motion capture data is typically limited to 
whatever movement was performed by the actor. A method to create a wider 
range of motion in the animation utilizes the motion capture database to synthe-
size new poses. This paper proposes a method to generate original natural poses 
based on the characteristics of natural poses based on motion capture data. Prin-
cipal Component Analysis is used to transform the data into a reduced dimen-
sional space. An unconstrained pose data set is created by calculating the  
position of the human skeleton based on the reduced dimensional space. Con-
strained pose data can be created using interpolation and iteration on the uncon-
strained pose data. We show some example results of the generated poses and 
compare these poses to poses created with iterative inverse kinematics methods. 
Results show that our method is more accurate and more natural than iterative 
inverse kinematics methods. 

1   Introduction 

Graphical objects representing humans should appear life-like in both physical and 
dynamic appearance. In particular, they should move in ways that appear natural.  
Animation using kinematic methods finds a possible solution to a motion by calculat-
ing the correct angles for each bone that achieves desired constraints. Motion capture 
data is based on motion captured from real human movement [1]. 

Using motion capture data, a new animation is created by merging and blending 
existing frames that create smooth motion ([2], [3], and [4]). Motion capture can de-
termine joint angles from real humans both statically and dynamically, but is only 
useful if data exists for exactly the pose desired or the application can wait for appro-
priate data to be acquired. Capturing all movement with all the exact poses needed for 
every possible animation is impossible. New natural poses that are vastly different 
from original poses can be used as a basis for animation through keyframing or opti-
mization such as utilized by Abe et al. [5]. 

In many animation applications, especially interactive ones such as games, the 
problem is to determine joint angles that place a particular body part at a specified 
location. Inverse kinematics (IK)  is the numerical solution that determines joint an-
gles that achieve the proper positioning of an end effector in space [6]. IK with a very 
small number of degrees of freedom can be solved algebraically. But, in most cases, a 
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numerical method is needed to solve an inverse kinematics problem. These numerical 
methods tend to use iterative approaches that converge to the target but are not sensi-
tive to a naturalistic appearance.  

We propose a method that uses statistical characteristics of the captured data to 
generate new poses which appear natural. Both unconstrained and constrained poses 
are generated. The first step is to create a set of unconstrained poses which are natural 
and novel for use in an animation. Principal Component Analysis (PCA) is used to 
create a reduced dimensionality space capturing the characteristics of natural data. 
This new pose space is used to generate new pose data. Our method to create con-
strained poses uses interpolation of existing novel unconstrained poses. Iterative in-
verse kinematics is then used to refine the pose to meet the constraint. 

2   Related Work 

Often used for creating key frame poses, Inverse Kinematics (See [6] for details) is a 
technique for computing joint angles in order to place a particular body part at a par-
ticular position. IK requires the use of iterative methods such as the popular iterative 
Jacobian method or Cyclic Coordinate Descent. A variety of methods are discussed in 
Fedor [7]. 

Meredith and Maddock [8] show how to weigh the effect of inverse kinematics on 
different joints at every step of the animation. Their method is mainly used for retar-
geting motions to other characters. Komura [9] computes weights from motion cap-
ture data based on the position and direction of movements in the database.  

Capturing human data and using that data directly is a good solution to finding 
natural poses for animation, particularly when animation requirements are known well 
in advance. However, it is impossible to capture the entire range of human motion. 
Thus animation of general human motion must be synthesized based on data. A sim-
ple method to do this is by joining frames together from different captured sequence 
([2], [3], and [4]).  

The creation of new poses from motion data has been proposed by various authors. 
Abe et al. creates a limited number of poses which have the same physical require-
ments using transformation (by rotation or translation) of motion capture data [5]. 
Grochow et al [10] compute poses via inverse kinematic methods based on data 
learned from captured motion. They calculate the likelihood of a particular pose using 
a probabilistic model. New poses are synthesized using an optimization algorithm in 
which the objective function depends on the learned poses. Similarly, in Yamane [11], 
inverse kinematics calculation of joint angles is performed using a constrained  
optimization algorithm. Captured data is stored and used as soft constraints. Motion  
is created by the smoothing of various results of IK computations over multiple  
positions.  

PCA has been used in conjunction with motion capture databases in order to re-
duce dimensionality and capture relations between features. Arikan uses PCA to cre-
ate an algorithm that compresses motions in the databases [12]. Safonova’s [13] work 
creates simulated movement based on an optimization on an objective function that 
uses the torques, joint angle trajectories, and the reduced space. Our work focuses on 
creating a generalized space consisting of natural poses and utilizing this space to 
speed up the process for finding new natural poses.  
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3   A Reduced Space Based on Natural Pose Characteristics 

In a system with j degrees of freedom, a j-dimensional space can represent all possible 
values for each joint angle. Due to joint limitations, not all points in that space are 
correct poses. Of the possible poses, some are physically implausible and some are 
simply unnatural.  These poses should be removed from the set of available poses. 
Unfortunately, it is very difficult to automatically differentiate which poses are natu-
ral and which are not. 

Our method attempts to characterize and describe natural poses by reducing the j-
dimensional space to a lower dimensionality space that reasonably describes natural 
poses. We attempt to find an m-dimensional space, where m < j, and any point in a 
certain range in this m-space can be transformed back to a natural pose.  

Motion data were selected from the CMU MOCAP database [14]. We used 10000 
frames for training. Data were taken from different subjects and were chosen based 
solely on the description to reduce any bias. We assume that poses are interchange-
able between different subjects, The motion data that were selected had primarily 
walking motions with some additional motions (jump, reach, etc.). 

Each frame is represented as a vector x with each dimension corresponding to a 
degree of freedom in 18 dimensions. The Karhunen-Loeve transform method (PCA) 
is used to calculate the reduced dimension data. Human natural motion is highly cor-
related; the movement of the forearms for example, will imply movement of the upper 
arm in natural ways. PCA allows us to find these correlations among the data and 
reduce the dimensionality and, thus, the system complexity.  

Each pose from a motion frame correspond to a point in the reduced dimensional 
pose space (referred to as pose space in this paper) created by our analysis. Based on 
this new space, a set of poses can be created. Any point in the space represents a sin-
gle pose which will be shown to be close to natural poses. These other points are 
synthesized poses that are significantly different from existing poses.   

4   Unconstrained Poses 

Unconstrained poses are simply poses created by selecting points in the pose space. 
This point is then transformed to an actual pose by using the inverse of the original 
transformation matrix. The original transformation matrix T is orthonormal, and 
therefore the inverse of this matrix is simply the transpose. The dimension of the pose 
space is less than the original dimension. Therefore, only the first n columns of the 
inverse of the transformation matrix are used. 

Multiple points in the original space may map to the same point in the reduced 
space. Inverting the point in the reduced space returns a point with the least mean 
squared-error to all possible points that map to that point. It is not uncommon that 
some degrees of freedom may exhibit values that slightly exceed the specified DOF 
limits.  If any of the angles of X is outside the bounds of the joint (AMini...AMaxi) the 
angle is adjusted so as to be bounded by the limit on the joint angles.  

The motion capture data utilizes skeletons consisting of 29 joints and 59 degrees of 
freedom. In this work we limit the method to finding poses for the right hand. Addi-
tional work not described herein is examining the problem of multiple simultaneous 
constraints such as multiple targeted hand locations. As we are only concerned with 
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arm pose location, we only utilize the angles from bones that connect the root bone to 
the right hand bone. The right hand bone acts as the end effector. There are 9 bones 
and 18 degrees of freedom between the right hand bone and the root bone. 

For this data, 98% of the arm data variability can be described by only 7 dimen-
sions. A transform matrix T is created from the eigenvectors that transforms the 18 
angle vector to a 7 dimensional space. There is a many-to-one correspondence be-
tween points in the 18 dimension space and those in the 7 dimensional reduced space. 
A sample point x consists of 7 values (x1...x7), each corresponding to one vector ele-
ment. The range for x is between the minimum and maximum value for the ith dimen-
sion based on the training data. 

90th Percentile Mean Angle Difference

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

wrist radius humerus clavicle thorax upperback lowerback

Bone

A
ng

le
 (

R
ad

ia
ns

)

Natural Motion (leave 1 out)

Pose Space

Random (Natural Distribution)

Random

 
Fig. 1. Comparison of the 90th Percentile calculation of naturalness from various methods 

To evaluate the naturalness of poses in this space, sample points were randomly se-
lected and compared to a significant portion of the MOCAP database. Comparison 
was done on a bone by bone basis. Given two poses, one a randomly selected sample 
point, and a pose from the MOCAP database, the quaternion dot product between 
each bone angles was computed. The dot product can be used to measure the angle 
needed to rotate from one angle to another. As the angle becomes more similar, the 
rotation needed decreases, and the dot product approaches a value of 1. Equation 1 
shows the similarity measure between two poses, each having k bones, 

∑ ⋅−=
k

kk ))(1( 21 ααδ  (1) 

We compare this method with two random methods of generating poses. The first 
random method simply selects a set of random angles (within the DOF limits) to gen-
erate a pose. The second random method creates random numbers using the distribu-
tion of the angles in the training data. The method is also compared to actual natural 
pose taken from the MOCAP database. A random pose is taken from the MOCAP 
database, the similarity distance is calculated over all poses not in the same motion. 
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The reason for this is that poses in the same motion tend to be close together (espe-
cially a pose which comes before or after the reference pose in a motion).  

500 poses were generated for each method. The 90th percentile of the distance is 
calculated. Resampling is used to find a 95% confidence interval of this percentile. 
The data was resampled 1000 times. The mean angle in radians of the 90th percentile 
for each degree of freedom is shown in figure 1. The method proposed creates poses 
that are quite natural compared to the random algorithm.  

Aside from naturalness, the generated poses must also be significantly different 
than existing poses. By having poses that are different, a wider range of motion can be 
created. Figure 2 shows the Cartesian coordinates of the end effector from the original 
poses and 8000 generated poses. The graphs are cutaway views of a combination of 
two axes. The grey points are the end effector coordinates of the created sample 
points, while the black points represent the end effector coordinates of the original 
data points. This graph shows that this method creates new poses that are not in the 
original motion captured data.  

 

Fig. 2. The coordinates of the right hand from both the original data (black) and the natural 
pose samples (grey). The top-left picture is the cutaway x-y coordinate view, the top-right, x-z 
and the bottom z-y. 

5   Constrained Poses 

Constrained poses require the pose to meet some predefined conditions. In our ex-
periments, the goal is to place the end effector (hand) at a particular, specified, posi-
tion.  The starting pose of the virtual human is all the same. Bones from the hand to 
the root bone (lower back) are considered; other bones are ignored. The algorithm 
proposed is called the Constrained Pose Generator (CPG) algorithm. 
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Table 1. Accuracy comparison of various pose generation algorithms 

Method Accuracy Accuracy for Reachable 
Constraints 

CPG (CCD) 0.7280 ± 0.0276 0.8125 ± 0.0256 

CPG (Jacobian) 0.8090 ± 0.0244 0.9029 ± 0.0194 

CCD 0.6380 ± 0.0298 0.7121 ± 0.0296 

Jacobian 0.6030 ± 0.0303 0.6730 ± 0.0307 
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Fig. 3. The mean angle difference for each degree of freedom based on different generation 
algorithms 

Sample points were predetermined by choosing points on a grid superimposed on 
the space. For each of the seven dimensions, points are sampled on the grid, starting 
from the minimal value to the maximum value. The lower dimension of PCA captures 
more variability than the higher ones. Therefore the lower dimensions were sampled 
at a higher rate. The total number of points used as a seed for this method is 53000. 
These points are stored in database, indexed by the end effector position to facilitate 
fast searching. 

Given a starting pose P0, our method seeks to determine a set of DOFs that place 
the end effector (the right hand) at a desired target position T(x, y, and z). We find a 
sample point Ri having the end effector position S in the pose space which is the best 
match for that pose. The criteria to find Ri is based on the distance of the end effector 
as well as a function of the naturalness score δ (equation 2).  
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Fig. 4. Each frame shows the result of running our algorithm for each of 6 poses. The pictures 
on the left side are the front view of the pose; the pictures of the right side are is from an angled 
view from the right side of the animated humans. The leftmost pose in each frame was created 
using the NSPA algorithm followed by the CCD algorithm, the middle pose was calculated 
using CCD, and the rightmost pose was calculated using the iterative Jacobian method. 
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)(minarg δfST iii +−  (2) 

Once the algorithm determines a candidate pose that is nearest to achieving the de-
sired constraint, either Coordinate Cyclical Descent (CCD) [7] or the iterative Jaco-
bian is used to refine the pose so as to accurately achieve the constraint.  

We performed a search on 1000 random single constraint problems (the constraint 
was on the position of the right hand) to determine accuracy of algorithm as well as 
naturalness of results. The algorithms tested are the CPG using CCD, CPG using the 
Jacobian, CCD algorithm, and Iterative Jacobian algorithm.  

Table 1 shows how accurate the various algorithms were at finding a solution. Out 
of the 1000 constraints given, 104 constraints were never found by any of the algo-
rithm. This could mean that the constraints were out of reach range of the virtual 
human. The two scores in table 1 show the accuracy for all constraints, and accuracy 
for only the reachable constraints (with a confidence interval of 95%). Based on this 
table it is clear that in terms of accuracy in finding the correct pose for a given con-
straint, using the pose space  is an improvement to using CCD or Iterative Jacobian. 

In some of the poses, both the Jacobian and CCD algorithm results in a pose where 
the body is twisted and awkward. There are of course exceptions. One of the main 
problems with the Jacobian and the CCD methods is that all joint angles are changed, 
even though in natural human motion not all joint angles change to achieve a pose.  

The naturalness measurement described in equation 1 is used again to determine 
the naturalness of poses created by the various algorithms. Figure 3 shows the natu-
ralness comparison of the CPG algorithms (using CCD and Jacobian) versus pure 
Jacobian. The figure shows that the CPG algorithm with Jacobian creates significantly 
more natural poses than Jacobian alone.  

Figure 4 illustrates the ending poses according to three algorithms. The algorithm 
was tested in a side by side testing, simultaneously calculating poses by running the 
CPG algorithm (using CCD) and comparing it to a CCD and an iterative Jacobian 
solution. Objects are placed at either a comfortable reaching distance, extended reach-
ing distance (where the human must extend hands fully), or twist position where the 
location is usually behind the virtual human.  

6   Conclusion and Future Work 

We describe a method that statistically summarizes motion capture and creates a natu-
ral space for motions involving the right hand. The new reduced dimension space is 
used to create sample poses. We show that the sample poses are in fact quite natural 
compared to other methods of generating new poses. These sample poses can be used 
in an animation sequence created using motion capture data or simple keyframes. It is 
perhaps possible to create an animation by traversing points in the pose space.  

We propose the CPG method to find a pose with a constraint, is where the end ef-
fector position must be at certain coordinates. Our method uses unconstrained gener-
ated poses to finds a starting pose having the closest effector position to the target. 
The CPG method is more accurate than iterative methods, it is also more natural.  
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In the future the use of multiple constraints as well as multiple pose spaces corre-
sponding to different body parts will be addressed. One possible method would be to 
use PCA on the whole body to create a reduced space. Another method is to divide 
the whole body into hierarchically organized parts, each with its own natural space, 
and then join these natural spaces together to create a composite natural space.   

Currently the bounds of the reduced dimension space used to create new poses are 
based on the minimum and maximum value for each dimension. Other methods such 
as SVM and mixture of Gaussians are being explored in order to create a better boun-
dary on the reduced space. 

The reduced space can also be used in other ways. We plan to animate characters 
based on multiple poses in the reduced space. These poses can be smoothed out and 
interpolated to create an animation.  
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Abstract. Neural stem cells derived from both embryonic and adult

brain can be cultured as neurospheres; a free floating 3-D aggregate of

cells. Neurospheres represent a heterogenous mix of cells including neural

stem and progenitor cells. In order to investigate the self-renewal, growth

and differentiation of cells within neurospheres, it is crucial that indi-

vidual nuclei are accurately identified using image segmentation. Hence

effective segmentation algorithm is indispensible for microscopy based

neural stem cell studies. In this paper, we present a seed finding ap-

proach in scale space to identify the center of nuclei in 3-D. Then we

present a novel segmentation approach, called “Evolving Generalized

Voronoi Diagram”, which uses the identified centers to segment nuclei

in neurospheres. Comparison of our computational results to mannually

annotated ground truth demonstrates that the proposed approach is an

efficient and accurate segmentation approach for 3-D neurospheres.

1 Introduction and Background

The dogmatic concept, “adult brains are unable to make new neurons”, has
dominated neuroscience thinking for centuries[1] until the first challenge from
Altman J. and Das G.[2], who saw cells that appeared to be newly born neurons
in 1960’s. Later in 1980s, Goldman S. and Nottebohm F.[3] found solid evidence
that canaries give birth to waves of new brain neurons seasonally in a particular
area of their brains. The discovery of adult neural stem cells (NSCs) opens the
door to potential treatments for neurological diseases, such as Parkinsons and
Alzheimers, by endogenous repair. To be able to utilize NSCs for therapy and
investigations of neurodevelopment we need to have a better understanding of
their cell biology. There are no definitive markers for NSCs and they are normally
followed by functional critiera[5] including; (a) self-renewal ability to passage for
many generations, (b) multipotency ability to generate neurons, astrocytes and
oligodendrocytes and (c) to regenerate brain tissue. Our understanding of NSCs
and their therapeutic potential relies on propagating these cells in vitro. One
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of the most popular functional assays for NSCs is the Neurosphere Formation
Assays (NFAs). It provides a relatively simple and robust means to investigate
the propagation of NSCs. Although the exact relationship between NSCs and
NFAs is unclear yet[4], NFAs remain a good evidence of the presence of NSCs[5].

Fluorescence microscopy is a common, probably preeminent, tool to under-
stand the cell biology of NSCs. Automated analysis of the acquired 3-D images
is critical to identify the stem cells within neurospheres based on their activi-
ties and behaviors. In order to do so, we need to accurately identify and seg-
ment each nucleus from the neurosphere, however, it is challenging since the
nuclei are morphologically diverse and usually clumpy with each other. Using
simple approaches, such as thresholding or watershed, will cause severe under-
segmentation or over-segmentation. One way to solve this segmentation problem
is to first find the centers of the nuclei, which we call seed finding in this pa-
per, and then perform some kind of flooding or region-growing from the seeds
to segment the nuclei. Traditionally, the centers of the nuclei are identified as
local maxima in the distance transform of binary or gray level images. This ap-
proach works well only when the shapes of nuclei are ellipsoidal or spherical and
their sizes are homogeneous. However, these two conditions are satisfied in few
biological experiments. More sophisticated approaches are needed, for example,
fast radial symmetry transform[6] and phase symmetry approach[7,8]. More re-
cently, an iterative voting approach of radial symmetries based on the gradient
direction is presented in [9] for inferring the center of objects. This approach is
applied to identify the center of closely packed cells in 2-D images in [10] and
then it is extended to identify the center of nuclei in 3-D mammosphere images
in [11]. Another seed detection approach based on Laplacian of Gaussian filter
is applied on 2-D gray level images in [12].

Seed finding is only the first step of nuclei segmentation. Many segmenta-
tion approaches have been reported. The distance transform and a modified
watershed approach are applied in [14] to segment the nuclei in 3-D microscopy
images of C.elegans. Most of the nuclei can be correctly segmented by the pro-
posed approach, however post-processing may be needed to further split or merge
objects[14]. A gradient flow and local adaptive thresholding approach for 3-D
nuclei segmentation is presented[15] and tested on both synthetic images and
real images. The combination of level set and watershed approach is also pop-
ular, for example [16]∼[17]. In order to overcome over-segmentation and under-
segmentation, different topological constraints are exploited, such as topological
dependence[18,19], simple point concept[20] and topology-preserving model[21].
An important concept is proposed in [18]: image intensity and geometrical shape
of the objects are both important cues for an accurate segmentation. It is diffi-
cult to include all important work in this short paper. Other related work can
be found, such as the flexible contour model[22] and ellipse detector[23].

For the rest of the paper, we describe the preparation of biological samples
and the microscope configurations in Section 2. In Section 3, we first present
the pre-processing of 3-D images. Then a seed finding approach is presented
to identify the center of nuclei by searching the local maxima in scale space
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representations of the distance transform of binary images. Section 4 proposes a
novel algorithm,called “Evolving Generalized Voronoi Diagram”, to segment the
clumpy nuclei with irregular shapes. The experimental results and validation are
presented in Section 5 followed by discussions and conclusions in Section 6.

2 Image Acquisition

The cells in our study are Neural Stem/Progenitor Cells derived from mouse em-
bryo stage (E 14.5). Cells were cultured in growth media containing Epidermal
Growth Factor and N2 (a growth supplement). Cells were nucleofected with plas-
mid Plasma Membrane Targeted-YFP (PMT-YFP) and allowed to grow in an in-
cubator at 37◦Cand5%CO2 for 4-5 days to formneurospheres.At the endof 5days,
Hoechstwas added to stain the nuclei and incubated for 10-15mins before imaging.
We used the Olympus confocal FV1000 for imaging. 488nm laser set at 5% power
(0.86mw)was used to image PMT-YFPand 405nm laser set at 2% power (0.12mw)
was used to image Hoechst. Images were acquired with a z step of 0.2µm. The res-
olution of x and y axis is 0.25µm. The photomultiplier tube voltage in the confocal
was set based on the signal from the sample. A 60× water immersion lens with a
numerical aperture of 1.2 was used. The 3-D images contain two channels: green
for PMT-YFP and blue for Hoechst. A representative neurosphere image from two
different viewing angles is shown in Fig. 1.

Fig. 1. Original 3-D Neurosphere Image and Seed Finding in Scale Space. Two different

views of the original 3-D image are illustrated. The identified seeds are annotated by

the arrows. The seeds are dilated by a ball structuring element of 7 voxel radius for

the purpose of visualization. The apparent size of dot indicates its relative depth to

the observer.

3 Image Pre-processing and Seed Finding

3.1 Image Pre-processing

The images in this paper are defined on a finite subset of three-dimensional
Euclidean space, Θ ⊂ R3. A point �r in Θ is represented by Cartesian coordinate,
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e.g. �r = (x, y, z) ∈ Θ. fn(�r) : Θ �→ R and f c(�r) : Θ �→ R represent the intensities
of Hoechst (blue) and PMT-YFP (green) at �r, respectively. The superscripts “n”
and“c” indicate “nucleus” and “cell”. The image intensities are normalized such
that fn(�r) ∈ [0, 1] and f c(�r) ∈ [0, 1].

Both fn(�r) and f c(�r) contain important information for the 3-D nuclei seg-
mentation. In order to avoid photobleaching and phototoxicity for the live cells,
fast scanning speed is applied, i.e. 2ms/voxel, which limits the achievable signal-
to-noise ratio. Image enhancements such as histogram equalization and contrast
improvement are applied to fn(�r) and f c(�r) and produce f̃n(�r) and f̃ c(�r), re-
spectively. As shown in Fig. 1, the value of f c(�r) is relatively high (bright) at
the cell boundary. Thus, we combine these two images into one image:

f(�r) = f̃n(�r)− f̃ c(�r) (1)

The combination will make f(�r) darker near the cell boundaries. This facilitates
the subsequent processing. Then f(�r) is converted to a binary image according
to Otus threshold[24]. The binary image contains two regions, the background
Ωb and the foreground Ωf with Ωb∪Ωf = Θ and Ωb∩Ωf = ∅. Then the distance
transform is applied:

D(�r) = min
�r′∈Ωb

|�r − �r′| (2)

where the distance between the two point �r and �r′ is the Euclidean distance:
|�r− �r′| =

√
(x− x′)2 + (y − y′)2 + (z − z′)2. It is obvious that if �r ∈ Ωb, D(�r) =

0, otherwise, D(�r) > 0.

3.2 Seed Finding in Scale Space

Segmentation of the nuclei in neurospheres is very challenging, because they are
closely packed and touch each other. Hence, finding the centers of the nuclei,
known as seed finding, is a critical step to assist our subsequent processing.
The distance transform given in Eq.(2) can identify the seeds nicely, provided
the sizes of the nuclei are similar and their shapes are spherical or ellipsoidal.
Unfortunately, these two conditions can not be satisfied in our study. The results
of using the distance function directly are very sensitive to the thresholding value,
which is used to identify the local maxima. If smaller nuclei are detected, then
the seeds of bigger nuclei may merge due to irregular shapes; on the other hand,
if bigger nuclei are successfully separated, it is very likely that some smaller
nuclei are undetected.

In order to overcome these challenges, we present a robust method based on
scale space theory[25], which can be used to identify centers of objects with
different sizes. It is also applied to identify the stable key points in [13]. It has
been shown by [25] and [26] that under a variety of reasonable assumptions,
Gaussian kernel is the only scale-space kernel. The 3-D Gaussian kernel of width
σ is given by:
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G(�r, σ2) =
1√

(2πσ)3
exp
(
− |�r|

2

2σ2

)
(3)

where |�r| =
√
x2 + y2 + z2.

For a given scale σ, the scale-space representation of distance function D(�r)
is given as:

L(�r, σ2) = D(�r) ∗G(�r, σ2) (4)

where “∗” means convolution. A straightforward way to obtain a multi-scale de-
tector with automatic scale selection is to consider the normalized scale Lapla-
cian operator. Lindeberg T. showed that the normalization of the Laplacian
with the factor σ2 is required for true scale invariance[25]. In detailed exper-
imental comparisons[27] , it is found that the maxima and minima of scale-
normalized Laplacian of Gaussian produce the most stable image features. In
practice, the difference-of-Gaussian (DoG) provides a good approximation of the
scale-normalized Laplacian of Gaussian. The DoG can be efficiently calculated
according to:

DoG(�r, σ2) =
1

2∆σ2 (G(�r, σ2 +∆σ2)−G(�r, σ2 −∆σ2)) ∗D(�r)

=
1

2∆σ2 (L(�r, σ2 +∆σ2)− L(�r, σ2 −∆σ2))
(5)

where 2∆σ2 is a positive normalization factor, which is essential to achieve the
scale invariant representation of the DoG. In order to identify the seeds, we find
the local maxima of DoG(�r, σ2):

(�̃r, σ̃2) = arg local-max(�r,σ2)
[
DoG(�r, σ2)

]
(6)

The identified local maximum voxel �̃r is the center of the nuclei, i.e. the seeds.
We denote them by si (i = 1, 2, ..N), where N is the number of seeds. The convo-
lution of D(�r) at different scales will also partially solve the problem associated
with irregular nuclei shape. Two different views of an original image are illus-
trated in Fig. 1. As shown in Fig. 1, the dots annotated by the arrows illustrate
the detected seeds using our approach. Note that the size of dot indicates its
relative depth to the observer. The detected seeds can successfully represent the
center of nuclei of different sizes and irregular shapes.

4 Nuclei Segmentation Based on Evolving Generalized
Voronoi Diagram

The nuclei segmentation is not only to simply separate the nuclei from the back-
ground, but also separate them from each other. Inspired by the concept of
topological dependence[18,19], we present our algorithm of “Evolving General-
ized Voronoi Diagram” (EGVD) to segment the 3-D nuclei. In this algorithm, we
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evolve the level set function using Chan-Vese method introduced in [18]. At each
iteration of level set evolution, we prevent splitting and merging of the objects
using Generalized Voronoi Diagram. We followed the idea introduced in [18,19]
and modified the distance transform D(�r) based on the identified seeds:

D̄(�r) =

{
1 if �r ∈

⋃N
i=1 si

D(�r)
max(D(�r)) otherwise

(7)

Then initialization of the level set is given by [18,19]:

φt=0(�r) = D̄(�r)− 1 (8)

such that active contours are initialized at the found seeds in Section 3.2. We
evolve the level set function based on the formulation given in [18,19]:

φt+∆t = φt +∆t · δε(φt)[−λ1(D(�r)− c1)2 + λ2(D(�r)− c2)2] (9)

where the constants c1 and c2 are the mean values of the background and fore-
ground.

For numerical stability reasons, the level set function is usually reinitialized
to be the distance function after a few iterations. This is particularly important
when the level set curvature term div( ∇φ

|∇φ| ) is present in the level set updating.
In this paper, we did not do so, but still achieved numerical stabilities for the
following two reasons. Firstly, the length parameter ν is zero in Eq. (9) by [18,19]
so that the level set curvature term is absent. Secondly, using a regularized delta
function δε(φt) with a large ε, (ε = 1.0) contributed to maintaining the numerical
stability.

Evolving the level set using Eq.(9) is insufficient to segment the nuclei correctly.
We develop the EGVD algorithm to prevent objects from splitting and merging.
Before we present our algorithm, two important definitions are needed: General-
ized Voronoi Diagram(GVD) and Choice Function. Let ωn,t

i (i = 1, 2, ...N) denote
nuclei segments at artificial time step t. They are defined as follows:

Generalized Voronoi Diagram: Given a set of disjoint connected
regions ωn,t

i for i = 1, 2, ...N with ωn,t
i ∩ω

n,t
j = ∅ ∀i 
= j, define the Gen-

eralized Voronoi Diagram (GVD) as Vi(ω
n,t
1 , ωn,t

2 , ...ωn,t
N ) corresponding

to each ωn,t
i :

Vi(ω
n,t
1 , ωn,t

2 , ...ωn,t
N ) =

{
�r ∈ Θ| min

�s∈ωn,t
i

|�r − �s| < min
�s′∈∪N

j �=iω
n,t
j

|�r − �s′|
}

(10)

Choice Function: Given a connected region si as seeds, and a set of
points Γ. Γ may consist of several connected regions. Define the choice
function, also known as selector, C(Γ|si) that chooses the connected re-
gion from Γ which contains si . C(Γ|si) returns empty set ∅, if si 
⊂ Γ
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Based on the above definitions, our Evolving Generalized Voronoi Diagram
algorithm is given as follows:

1. Find the seeds to obtain si, (i = 1, 2, ...N) according to Eq. 6.
2. Initialize the level set function for the nuclei segmentation according Eq. (8).
3. Update the level set function φt → φt+∆t using Eq. (9). Then update the

GVD regions iteratively at each time step t+∆t to obtain ωn,t+∆t
i as follows:

(a) Let Ωn,t+∆t = {�r ∈ Θ|φt+∆t ≥ 0}.
(b) Define ω̄n,t+∆t

i,k=0 = ωn,t
i , for i = 1, 2, ...N . k is used to index successive

estimates of nuclei segments at t+∆t.
(c) For each i = 1, 2, ...N , calculate GVD: Vi(ω̄

n,t+∆t
1,k , ω̄n,t+∆t

2,k , ...ω̄n,t+∆t
N,k )

and update the nuclei segment using the choice function:

ω̄n,t+∆t
i,k+1 = C(Ωn,t+∆t ∩ Vi(ω̄

n,t+∆t
1,k , ω̄n,t+∆t

2,k , ...ω̄n,t+∆t
N,k )|si) (11)

and then set k → k + 1.
(d) Iterate step 3(c) until convergence, i.e. ω̄n,t+∆t

i,k+1 = ω̄n,t+∆t
i,k

(e) Set ωn,t+∆t
i ← ω̄n,t+∆t

i,k+1 . This completes the update of GVD and nuclei
segments at t+∆t.

4. Repeat step 3 until convergence of the level set function.

In Fig. 2, we present an illustration in 2-D for better understanding. Our al-
gorithm consists of an outer loop for level set evolution and an inner loop for
EGVD. GVDs define the boundary of nucleus segments where two level set
segments might merge. Essentially, EGVD algorithm involves a series of fine ad-
justment of the intermediate GVDs. Suppose at time t, ωn,t

i are obtained and
Vi is calculated based on Eq.(10). At the next time step t + ∆t, the level set
function is updated and a new Vi is needed to give correct ωn,t+∆t

i . We first use
the Vi calculated at the previous time step, illustrated by shaded area in Fig.
2(a), as initial GVD for the inner loop iteration. Given GVD and si, we use the
choice function to calculate a connected region for each nucleus, as shown by
the dotted regions in Fig. 2(b). Then a new GVD is calculated based on these
dotted regions, as shown by the shaded area in Fig. 2(c). The process of evolving
GVD is performed iteratively until GVD does not change anymore, which will
be the final GVD in this time step. As we can see from Fig. 2(d), the nucleus
in Vj has converged in this iteration. It can be proven that the EGVD algo-
rithm converges, while we shall leave its rigorous mathematical proof for further
publication due to the limitation of space.

Comparing with existing approaches, EGVD algorithm has a few advantages.
First of all, EGVD is conceptually very simple. Comparing with the maximum
common boundary criterion in [18,19], it does not require the considerations of
many different cases in which the level set function split and merge. EGVD is
also fast and efficient. It is not necessary to determine whether a given point is
a simple point[20]. EGVD is more flexible than the formulation introduced in
[21], in which any topological change is forbidden. EGVD only disallows splitting
and merging, while it tolerates other topological changes, such as adding a hole.
Lastly, it is trivial to extend EGVD to other dimensions.
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Fig. 2. Evolving the Generalized Voronoi Diagram. Central regions annotated by si

are the identified seeds. The shaded regions in (a) and (c) are corresponding Vi for

ω̄n,t+∆t
i,k=0 and ω̄n,t+∆t

i,k=1 . The dotted regions represent the different ω̄n,t+∆t
i,k at different

iterations before convergence.

5 Experimental Results

Two of our segmentation results are shown in Fig. 3. We use random colors to
represent different nuclei. Although the nuclei are clumpy and touch each other
in the neurosphere, our EGVD algorithm is able to segment them satisfactorily.

Quantitative validation is an important and necessary step to evaluate the
accuracy of algorithms. We select eight 3-D Neurosphere images and manu-
ally create the ground truth using a touch screen laptop and “Segmentation
Editor” in Fiji 1. The boundary of each nucleus is labelled manually from
the top to bottom. Segmentation Editor has the function of 3-D interpola-
tion and we don’t need to draw the boundary at each image slice. The in-
terval of the boundary drawing is 3∼7 slices depending on the shape of the
nuclei. A few slices of a ground-truth image are shown in Fig. 4. The masks are
the created nucleus segments. The boundaries of a nucleus, annotated by the
arrows in Fig. 4 (b)∼(h), are drawn manually according to best human
perception.

Based on the ground truth, there are 246 nuclei in eight 3-D images. For a
given image, let ωg

i , i = 1, 2, ...N denote the objects of the ground truth and
ωs

i , i = 1, 2, ...M denote the computational objects given by EGVD approach.
We define a score αi to describe accuracy of the computational results, which is

1 Fiji package with Segmentation Editor is available at: http://pacific.mpi-cbg.de
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Fig. 3. Segmented Nuclei in 3-D. (a) and (b) display two different views of the seg-

mented nuclei in Image01. (c) and (d) illustrate the segmentation results of Image02.

Random color is selected to represent each nucleus.

Fig. 4. The Procedure of Ground Truth Labeling. The nuclei segments are the manually

created. The contours annotated by the arrows represent boundaries of a nucleus. They

are drawn manually according to the best human perception. The boundaries in the

slices between them will be interpolated by the Segmentation Editor.
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αi = max
j

(
|ωs

i ∩ ω
g
j |

|ωs
i ∪ ω

g
j |

) (12)

where | · | means the volume of the given connected component. It is obvious that
αi ∈ (0, 1). If a computational object perfectly matches a ground truth object,
αi is 1.0; while αi = 0 when ωs

i does not overlap any ωg
j . On the other hand, it

is also possible that some ωg
j does not overlap any ωs

i , which we called Missing
Segments.

In order to test the performance of EGVD when seeds are correctly provided,
we use the geometrical center of the ground truth objects as seeds and then apply
EGVD approach to segment nuclei. We also use the proposed approach in scale
space with different σ to detect the seeds and then compare our computational
results with ground truth. The probability distribution of score p(α) and P (α) =∫ 1

α
p(α′)dα′ are shown in Fig. 5. From this figure, we can see that the Missing

Segments caused a small peaks near α = 0 in p(α), while the falsely detected
seeds caused under-segmentation or over-segmentation and thus produced the
small peaks near α = 0.5 in p(α). From the curves of p(α) given different σ, we
know there is a optimal value of σ for nuclei segmentation. The numbers of seeds
identified by different σ are indicated in legend. It is clear that the number of
detected seeds does not necessarily imply better performance, because some of
them might be positioned inaccurately. The strong peaks near α = 0.9 in the
curves of p(α) indicate that majority of the nuclei are satisfactorily segmented.
The mean segmentation accuracy of EGVD given real seeds is about 75% and
it is about 70% given σ = 2.1 for seed finding.

Fig. 5. Performances of EGVD Algorithm. The probability distribution function p(α)

and corresponding P (α) are illustrated. If seeds are correctly provided, EGVD can

segment majority of nuclei nicely indicated by the peak near α = 0.9. The average

segmentation accuracy is 75%. Using our seed finding approach, the falsely detected

seeds caused the small peaks near α = 0.5 in p(α).
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6 Discussions and Conclusions

A seed finding approach in scale space and a novel segmentation algorithm,
Evolving Generalized Voronoi Diagram (EGVD), are proposed to segment the
nuclei in neurosphere. Our study combines careful image acquisition with dual
dyes for nuclear and membrane labelling, and robust image analysis to use the
data optimally. In order to quantitatively evaluate our proposed approaches, we
create the ground truth of eight 3-D images containing 246 nuclei.

The computational results demonstrate that the EGVD algorithm can sat-
isfactoryly segment the nuclei in neurospheres if the seeds are provided accu-
rately. Our seed finding approach is validated by comparing the computational
results with the ground truth. The results demonstrate our seed finding ap-
proach can identify most of the seeds correctly, though there are still some er-
rors, which might cause under-segmentation and over-segmentation, as indicated
by the weak peaks near α = 0.5 in p(α) in Fig. 5. A more complete study on
the parameter tuning of σ in the seed finding algorithm is needed to optimize
the segmentation performance. Another possible improvement is that instead
of simply using the PMT-YFP signal as in Eq. (1), we should utilize this im-
portant information more sufficiently. However, more sophisticated techniques
are needed to extract the cell boundaries, since the PMT-YFP signal is not
uniformly distributed near the cell boundaries and sometimes is really weak.

We expect our methods to be generally applicable to other stem cell assem-
blies, such as mamospheres, and more generally in the area of embryology. In
the future, we plan to use the tools described to investigate in detail neurosphere
development, including long range cell motion, apoptosis, and cavity formation,
using 4D microscopy.

References

1. Barinaga, M.: Newborn Neurons Search for Meaning. Science 299, 32–34 (2003)

2. Altman, J., Das, G.D.: Post-natal origin of microneurones in the rat brain. Na-

ture 207, 953–956 (1965)

3. Goldman, S.A., Nottebohm, F.: Neuronal Production, Migration, and Differenti-

ation in a Vocal Control Nucleus of the Adult Female Canary Brain. PNAS 80,

2390–2394 (1983)

4. Reynolds, B.A., Rietze, R.L.: Neural Stem Cells and Neurospheres – Re-evaluating

the Relationship. Natural Methods 2, 333–336 (2005)

5. Louis, S.A., Rietze, R.L., Deleyrolle, L., Wagey, R.E., Thomas, R.E., Eaves, R.E.,

Reynolds, B.A.: Enumeration of Neural Stem and Progenitor Cells in the Neural

Colony-forming Cell Assay. Stem Cell 26, 988–996 (2008)

6. Loy, G., Zelinsky, A.: Fast Radial Symmetry for Detecting Points of Interest. IEEE

Trans. on PAMI 25, 959–973 (2003)

7. Kovesi, P.: Image Features From Phase Congruency. Videre: A Journal of Computer

Vision Research 1, 2–26 (1999)

8. Kovesi, P.: Phase Congruency: A Low-level Image Invariant. Psychological Re-

search Psychologische Forschung 64, 136–148 (2000)



542 W. Yu et al.

9. Yang, Q., Parvin, B.: Perceptual Organization of Radial Symmetries. In: Proceed-

ings of CVPR, vol. 1, pp. 320–325 (2004)

10. Raman, S., Parvin, B., Maxwell, C., Barcellos-Hoff, M.H.: Geometric Approach

to Segmentation and Protein Localization in Cell Cultured Assays. In: Bebis, G.,

Boyle, R., Koracin, D., Parvin, B. (eds.) ISVC 2005. LNCS, vol. 3804, pp. 427–436.

Springer, Heidelberg (2005)

11. Han, J., Chang, H., Yang, Q., Barcellos-Hoff, M.H., Parvin, B.: 3D Segmentation of

Mammospheres for Localization Studies. In: Bebis, G., Boyle, R., Parvin, B., Ko-

racin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara,

J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4291,

pp. 518–527. Springer, Heidelberg (2006)

12. Althoff, K., Degerman, J., Gustavsson, T.: Combined Segmentation and Tracking

of Neural Stem-Cells. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA

2005. LNCS, vol. 3540, pp. 282–291. Springer, Heidelberg (2005)

13. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Interna-

tional Journal of Computer Vision 60, 91–110 (2004)

14. Long, F., Peng, H., Myers, E.: Automatic Segmentation of Nuclei in 3D Microscopy

Images of C. elegans. In: Proceedings of ISBI 2007, pp. 536–539 (2007)

15. Li, G., Liu, T., Tarokh, A., Nie, J., Guo, L., Mara, A., Holley, S., Wong, S.T.C.: 3D

Cell Nuclei Segmentation Based on Gradient Flow Tracking. BMC Cell Biology 8

(2007), http://www.biomedcentral.com/1471-2121/8/40

16. Tai, X., Hodneland, E., Weickert, J., Bukoreshtliev, N.V., Lundervold, A., Gerdes,

H.: Level Set Methods for Watershed Image Segmentation. In: Sgallari, F., Murli,

A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 178–190. Springer, Hei-

delberg (2007)

17. Yan, P., Zhou, X., Shah, M., Wang, S.T.C.: Automatic Segmentation of High-

throughput RNAi Fluorescent Cellular Images. IEEE Transaction on Information

Technology in Biomedicinel 12, 109–117 (2008)

18. Yu, W.M., Lee, H.K., Hariharan, S., Bu, W.Y., Ahmed, S.: Level Set Segmenta-

tion of Cellular Images Based on Topological Dependence. In: Bebis, G., Boyle,

R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J.,

Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS,

vol. 5358, pp. 540–551. Springer, Heidelberg (2008)

19. Yu, W.M., Lee, H.K., Hariharan, S., Bu, W.Y., Ahmed, S.: Quantitative Neurite

Outgrowth Measurement Based on Image Segmentation with Topological Depen-

dence. Cytometry Part A 75A, 289–297 (2009)

20. Xiao, H., Chenyang, X., Jerry, L.P.: A Topology Preserving Deformable Model

Using Level Sets. In: Proceeding of CVPR, vol. 2, pp. 765–770 (2001)

21. Le Guyader, C., Vese, L.A.: Self-Repelling Snakes for Topology-Preserving Seg-

mentation Models. IEEE Transactions on Image Processing 17(5), 767–779 (2008)

22. Clocksin, W.F.: Automatic Segmentation of Overlapping Nuclei with High Back-

ground Variation Using Robust Estimation and Flexible Contour Model. In: Pro-

ceedings of ICIAP, vol. 17, pp. 682–687 (2003)

23. Yap, C.K., Lee, H.K.: Identification of Cell Nucleus Using a Mumford-Shah Ellipse

Detector. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli,

F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.)

ISVC 2008, Part I. LNCS, vol. 5358, pp. 582–593. Springer, Heidelberg (2008)

24. Otsu, N.: A Threshold Selection Method from Gray-level Histograms. IEEE Trans-

actions on Systems, Man & Cybernetics 9, 62–66 (1979)

http://www.biomedcentral.com/1471-2121/8/40


Segmentation of Neural Stem/Progenitor Cells Nuclei 543

25. Lindeberg, T.: Scale-space Theory: A Basic Tool for Analysing Structures at Dif-

ferent Scales. Journal of Applied Statistics 21(2), 224–270 (1994)

26. Koenderink, J.J.: The Structure of Images. Biological Cybernetics 50, 363–396

(1984)

27. Mikolajczyk, K., Schmid, C.: An Affine Invariant Interest Point Detector. In: Hey-

den, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350,

pp. 128–142. Springer, Heidelberg (2002)



Deconvolving Active Contours for Fluorescence
Microscopy Images

Jo A. Helmuth and Ivo F. Sbalzarini


Institute of Theoretical Computer Science and Swiss Institute of Bioinformatics,

ETH Zurich, Switzerland

Abstract. We extend active contours to constrained iterative decon-

volution by replacing the external energy function with a model-based

likelihood. This enables sub-pixel estimation of the outlines of diffraction-

limited objects, such as intracellular structures, from fluorescence mi-

crographs. We present an efficient algorithm for solving the resulting

optimization problem and robustly estimate object outlines. We bench-

mark the algorithm on artificial images and assess its practical utility on

fluorescence micrographs of the Golgi and endosomes in live cells.

1 Introduction

Active contours are among the most important frameworks for image segmen-
tation. In the original formulation by Kass et al. [1], a contour is defined as
a (closed or open) parametric curve in the image domain that minimizes an
energy functional. Closed active contours can also be represented implicitly as
level sets [2]. This is particularly beneficial when the number of objects to be
segmented is not known a priori since it allows for topology changes during en-
ergy minimization. In both representations, the energy functional consists of two
terms: (1) an external energy that depends on image data, and (2) an internal
energy that solely depends on the geometry of the contour. While the former
defines an unconstrained image segmentation problem, the latter provides regu-
larization, helps overcoming local minima, and allows bridging regions with little
information in the image. Many extensions of active contours have been proposed
over the last two decades, including active masks [3,4], active surfaces [5], and
stochastic active contours (STACS) [6,7]. For implicit active contours, very ef-
ficient algorithms have been developed based on narrow-band level sets [8] or
graph cuts to minimize the energy functional [9].

Active contours are widely used in biological light-microscopy imaging. Their
application has, however, so far been restricted to images of objects well above
the resolution limit of the imaging equipment. If the size of the object becomes
comparable to the width of the point spread function (PSF) of the microscope,
the objects are under-resolved and active contour segmentations can no longer
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be considered unbiased estimates of the object’s geometry [10]. The only ex-
ception are objects of dimension 0 or 1, imaged with a symmetric PSF. This
includes particles modeled as points [11] and filaments modeled as lines [12]. For
extended objects of co-dimension zero, deconvolution can be used to estimate
their geometry from an image blurred by the PSF. Deconvolution is, however, an
inverse problem that is known to be ill posed [13,14]. Moreover, direct linear de-
convolution is not feasible for sub-cellular structures [15]. Therefore, constrained
iterative methods have to be used.

In this paper, we extend the active contour framework to constrained iterative
deconvolution by including models of the objects and the imaging process. This
involves replacing the external energy functional with a negative log-likelihood
function and optimizing it under the constraint of the internal energy. This
optimization involves simulating the forward imaging process. We propose an
efficient minimization algorithm that uses a domain decomposition approach
and exploits the linearity of the convolution operator. The resulting method is
an iterative deconvolving active contour that is constrained by the object model
and the imaging model. We demonstrate the accuracy and precision of decon-
volving active contours on synthetic benchmark images of sub-resolution objects.
We show that the present framework allows unbiasing the estimation of object
geometries from fluorescence micrographs. We further demonstrate the applica-
bility of the proposed algorithm to images of the Golgi complex and endosomes
in live cells. The resulting estimated outlines allow biological observations that
were not possible before.

2 Energy Functional

We seek a parametric description of a set S of outlines of objects, supported
by an error-corrupted digital image Im = I + ε. Given an imaging model I(S),
parameters Θ of the set of N objects S = {Θk}Nk=1 have to be found that best
explain the measured image Im. The imaging model I(S) predicts the image
I of the set S of objects in the absence of noise. This parameter estimation
problem can be rephrased in the explicit active contour framework. Hereby,
the outline of an object k is represented by a piece-wise linear spline Θk =
[xk

1 , y
k
1 , . . . , x

k
nk
, yk

nk
]T . As described at the end of Sec. 3, the computational cost

of the algorithm is not significantly influenced by the number of control points
nk used. We minimize the sum of internal and external energy

E(Im, S) =
∑
Θ∈S

(Eb(Θ) + Es(Θ)) + Eext(Im, I(S)) , (1)

where the external energy is given by the similarity between the model image
I(S) and the real image Im, quantifying the likelihood that the objects S have
indeed created the observed image Im. The internal energy comprises regular-
izations for bending and stretching of the contour as:

Eb(Θ) = β
∑n

i=1 ‖xi+1 − 2xi + xi−1‖2 and

Es(Θ) = α
∑n

i=1 ‖xi − xi−1‖2
(2)



546 J.A. Helmuth and I.F. Sbalzarini

with xi = (xi, yi) of the spline Θ. While the “bending stiffness” β limits undu-
lations of the outlines, the “stretching stiffness” α constrains the shrinking of
outlines to significant image energy gradients. We define I(S) based on a func-
tion O(i, j) over the image pixels {xi} × {yj}. This object intensity function O
represents the pre-imaging objects up to a multiplicative constant. In fluores-
cence microscopy, O is proportional to the concentration of fluorophores at each
point in the focal plane. Formation of the model image (Fig. 2B) is done by
convolving the object intensity function O with the (measured) PSF P of the
microscope:

I = O ∗ P , (3)

where ∗ denotes the discrete convolution operator. In practice, we sample O(i, j)
at higher spatial resolution (two, three, or four-fold) than the measured image in
order to include sub-pixel information. This requires down-sampling of I before
comparison to Im. The object intensity function O(i, j) is defined from the set S
of outlines by setting to non-zero values only the pixels (i, j) close to or enclosed
by one of the outlines Θk:

O (i, j) =

⎧⎨⎩
ck if (xi, yj) enclosed by Θk

(1− d) ck if d = D ((xi, yj) , S) < 1
0 else ,

(4)

where D is the distance to the closest spline Θk and ck the constant intensity
of object k. Similar to the simplified Mumford-Shah functional [2], this object
intensity function is piecewise constant, but with linearly decaying intensities
at the boundaries. We favor this piecewise linear functional over more complex
models as it increases the robustness of the estimator on noisy data. The external
energy Eext is given by:

Eext =
∑

i

∑
j

R(i, j) (Im(i, j)− I(i, j))2 . (5)

The weight matrix R allows including a model for the distribution of the imaging
noise ε. In the absence of knowledge about ε, or for Gaussian white noise, R is
the identity matrix.

Minimizing E over the Θk yields an estimate of O(i, j). Direct estimation of
O based on Im amounts to direct linear deconvolution, a problem known to be ill
posed. The present framework can thus be interpreted as a constrained, iterative
deconvolution [13,14] with the constraints defined in Eqs. 2 and 4.

3 Minimization of the Energy Functional

We assume that initial estimates of the outlines are provided by a suitable pixel-
based segmentation procedure and that they represent the correct topology of
the objects. Further, the 2D PSF of the imaging device is assumed to be known.
Minimizing Eq. 1 could then be done using any general purpose optimizer. A
specialized procedure exploiting the structure of this high-dimensional problem
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Fig. 1. (A) Radial intensity profile of a small (top image, dotted line) and a large

(bottom image, dashed line) object. The intensity profile of the small object and the

PSF (solid line) have a similar shape. (B) The width w of the PSF defines the influence

regions (dashed lines) of the objects Θk (solid lines). (C) Objects with overlapping

influence regions (dark gray areas) are grouped together.

is, however, favorable. Our algorithm consists of three steps: (1) estimating the
object intensities ck, (2) decomposing the image into smaller parts, and (3)
estimating the precise outlines Θk of all objects.

The object intensities ck are separately estimated in order to use them in
Eq. 4 and as a biologically relevant readout. For objects that are far larger than
the width of the PSF, the object intensity is approximately equal to the intensity
φ in the center of the image of the object (bottom image in Fig. 1A). Smaller
objects have a central intensity that is reduced by a factor κ. In order to estimate
κk for a given outline Θk, we analyze the radial intensity profile J(r) of the object
(Fig. 1A), found by averaging interpolated intensities along concentric circles
around the intensity centroid. The same procedure is also used to measure the
radially symmetric 2D PSF of the microscope from images of point-like sources
such as fluorescent beads. The half width at half maximum (HWHM) r0.5 of
J(r) serves as a size parameter (Fig. 1A). Since the dependence κ = f(r0.5) is
not explicitly known, we empirically calibrate it on synthetic images, generated
by convolving circular objects of different sizes and known intensities ci with
the PSF. For each synthetic image Ii we measure ri

0.5 and the central intensity
φi, and then compute the calibration function as κ̄i(ri

0.5) = ci/φi. Based on
this function, the object intensity ck of an experimentally observed object k can
later be estimated as ck = φkκ(rk

0.5) using (linear) interpolation. For point-like
objects, r0.5 converges to the HWHM of the PSF and does no longer vary with
object size. The analysis of sizes and shapes is, therefore, restricted to objects
with r0.5 above an empirically determined threshold of 1.1–1.5 HWHM. Smaller
objects are treated as circles with centers at the observed intensity centroid and
object intensities c found by least squares regression on Eqs. 3 and 5.

In order to accelerate the computations and estimate the outlines of different
objects on different computer processor cores in parallel, we decompose the
image into smaller, independent parts. This is possible since the PSF P is
of limited spatial extent and the influence of objects on distant pixels in the
image can be neglected. We define the radius of the region of influence around
each outline Θk as the width w where the PSF has decayed below 1% of its
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peak (Fig. 1B). Objects with overlapping influence regions are grouped together
and their influence regions are merged. This decomposes the image into (not
necessarily disjoint) rectangular sub-images I l containing the merged influence
regions (Fig. 1C). Eq. 1 is then evaluated independently for each sub-image and
we no longer consider pixels that are in no sub-image.

Estimating the outlines of the objects to sub-pixel resolution is done by
minimizing the energy functional in Eq. 1 with respect to the Θk. This amounts
to implicit deconvolution. The energies of different sub-images are minimized
independently in parallel. We use the optimizer proposed by Kass et al. [1] with
an explicit Euler method of adaptive step size. This requires approximating the
partial derivatives of E with respect to the x and y positions of all spline points
(xk

i , y
k
i ), i = 1, . . . , nk. We use a finite-difference approximation to the derivatives

with respect to a point (xk
i , y

k
i ) on the outline Θk by displacing the point by a

dynamically adapted ∆x. This yields a deformed hypothetical outline Θk
∗ in a

new set of outlines S∗. The derivative of the external energy El
ext in sub-image

l is then approximated as:

∂El
ext

∂xk
i

≈
El

ext
(
I l
m, I

l(S∗)
)
− El

ext
(
I l
m, I

l(S)
)

∆x
. (6)

The derivatives with respect to other points and in the y-direction are found
similarly. The hypothetical sub-image I l(S∗) needs to be computed once per
iteration of the minimization procedure. Since convolution is a linear operation,
the image I l(S∗) can be expressed as the sum of I l(S) and a change∆I l caused by
the deformation of Θk. ∆I l is found by computing O(i, j)k

∗ from Θk
∗ , subtracting

it from O(i, j)k, and convolving this difference ∆O(i, j)k with P . This drastically
reduces the number of compute operations and the run-time. The computational
cost of the algorithm is dominated by the cost of the convolutions; the cost of
the active contour updates is insignificant. The total cost of all convolutions is
proportional to the total number of non-zero entries in all ∆O(i, j)k, which scales
linearly with the length of the outline. Reducing the number of control points nk

would thus not lead to significant computational savings since the total length of
the outline (and hence the computational cost of the convolutions) remains the
same. After computing all partial derivatives of the image error, one Euler step is
performed. Minimization starts from the initial outline estimates and ends when
the L∞-norm of the change of outlines between two iterations, ‖Θi+1−Θi‖∞, is
below a user-defined threshold. This implies that the gradient-descent minimizer
has converged to a (local) minimum. Local minima can possibly be escaped by
increasing α.

4 Benchmarks

We quantify the accuracy and precision of the presented algorithm on synthetic
benchmark images of diffraction-limited objects. Images are generated as illus-
trated in Fig. 2A to C using a real, measured PSF with full width at half maxi-
mum FWHM = 322nm. We consider images of a circular object with diameter
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Fig. 2. (A–C) Generation of the synthetic benchmark images. (D) True (solid line)

and estimated (dashed line) outline for SNR = 12.5 (geometry error = 14%). (E–G)

Benchmark results for a pear-shaped (solid lines with diamonds) and circular (dashed

lines with crosses) object. Lines without markers delimit the ±1 standard error interval.

1.5FWHM and of a 0.6 to 1.2FWHM wide and 2.8FWHM long pear-shaped
object. The ground-truth O(i, j) is generated from the true outlines accord-
ing to Eq. 4. The object intensity c is set to 200 and a background level of
b = 20 is added (Fig. 2A). Different amounts of noise yield signal-to-noise ratios
SNR = (c−b)/σc in the range of 7 to 56, where σc is the noise level in the center
of the objects. For each object and SNR, 250 test images are generated, object
outlines are estimated, and compared to ground truth.

We quantify accuracy and precision of the estimated position, total intensity,
and geometry (Fig. 2E to G). The position error is defined as the difference
between the true and estimated x-position of the intensity centroid1. The total
intensity error is given by the difference in total intensity (sum over all O(i, j)
enclosed by the outline) between the estimated object and ground truth, divided
by ground truth. The geometry error is defined as the sum of non-overlapping

1 We prefer this over the Euclidean distance in (x, y) since it enables correlating shape

asymmetries with the position errors in the different directions.
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areas of the true and estimated outlines, normalized by the area enclosed by the
true outline. For both shapes, precision and accuracy of the estimated position
are in the range of a few nanometers (Fig. 2E). The errors in the y-direction are
comparable for the pear-shaped object and identical for circular shape (data not
shown). The position bias for the circular shape is always within an interval of
± the standard error, and hence not significant. As expected, a small systematic
position bias can be observed for the pear-shaped object. Since this shape is not
symmetric, the underestimation of high curvatures due to Eb causes a small shift
in the position estimate toward the less curved side. For both shapes the standard
deviation of the relative total intensity error drops below 5% for SNRs larger than
10 (Fig. 2F). The bias is larger than the standard error, almost always negative,
and converges to about -1%. This is due to Es favoring shorter outlines and thus
decreasing the enclosed object intensity. The means and standard deviations of
the geometry errors of both shapes converge to values of less than 10% and 3%,
respectively (Fig. 2G). The bending and stretching energies Eb and Es prevent
the mean geometry error from converging to zero, and the underestimation of
high curvatures causes an additional bias for the more complex pear-shaped
object. Nevertheless, we observe that the estimated outlines visually reproduce
well the essential characteristics of the true outlines, even at SNRs below 15 and,
therefore, error levels >10% (Fig. 2D).

Adjusting the bending stiffness β (Eq. 2) allows trading the accuracy of the
outline estimation against its robustness by limiting undulations of the contour.
Low values lead to a higher noise sensitivity (less regularization), but allow
better estimation of high curvatures. In order to qualitatively assess this trade-
off, we apply the algorithm to synthetic images of a triangle (Fig. 3), generated
as described above. As expected, we observe that low SNRs favor high values
of β, and vice versa. The algorithm is robust over two orders of magnitude
of β. Only the most extreme case (β = 0.02, SNR = 5) exhibits significant
shape instabilities. The stretching stiffness α has much less influence on the final
contour. Higher values lead to faster convergence of the algorithm and better
escape from local minima. At the same time, however, they bias the outlines to
shorter, more contracted contours. We find a value of α = 0.005 to be sufficient
to overcome local minima and speed up convergence.

5 Application to Real Data

We demonstrate the utility of the present algorithm on fluorescence microscopy
images of different intracellular structures. First, we apply it to an image of the
Golgi complex in HeLa cells labelled by fluorescent giantin antibodies (Fig. 4A
and B). The Golgi is a complex-shaped intracellular organelle composed of mem-
brane stacks of about 5µm size. The same image was also used to demonstrate
active mask segmentation [3]. We show how such a coarse, pixel-level segmen-
tation can be refined by the present implicit deconvolution method. We start
from a rough manual segmentation obtained from Fig. 11d of Ref. [3]. Since
no information about the PSF was available, we model it by a Gaussian with
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Fig. 3. Estimation of a highly curved outline at different SNRs and values of β (α =

0.005 in all cases). White lines: true outlines; black lines: estimated outlines.

Fig. 4. Outline estimation of the Golgi complex in HeLa cells [16]. (A) Original image

containing multiple cells. Magnification of a single cell (B) and a single Golgi segment

(C) with estimated outlines (white line); model image (D) and residual error (E).

σ = 150nm. This is a conservative choice for the imaging set-up used (spinning
disk confocal, NA = 1.4, oil immersion). The final deconvolving active contours
(Fig. 4B and C) capture well the morphological characteristics of the Golgi and
the model image I (Fig. 4D) is remarkably close to the real image (Fig. 4C).
The estimated outline shows no obvious signs of over-fitting. The residual error
Im − I (Fig. 4E) shows that the model image trends to be too bright in the
center of the object and under-represents the blur around it. As shown below,
this is likely due to a too narrow model PSF.
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Fig. 5. Outline estimation (white lines) of endosomes in a live HER 911 cell (A). (B)

Magnification, (C) model image, and (D) residual error in the magnified region.

The second application considers live HER 911 cells expressing EGFP-tagged
Rab5, a protein marker for endosomes. With diameters of about 500nm, endo-
somes are much smaller than the Golgi and they appear more compact. Initial-
ized with watershed segmentation, the present algorithm estimates the outlines
as shown in Fig. 5A and B. The PSF (FWHM = 322nm) of the microscope
(spinning disk confocal, NA = 1.35, oil immersion) was measured from images
of sub-diffraction objects as described in Sec. 3. Fig. 5B shows complex-shaped
endosome outlines in close vicinity. The outlines follow well the subjective con-
tours in the images, even for very dim objects. The correspondence between the
real and the model image (Fig. 5C) is remarkable. Also, unlike in the Golgi case,
there is no clear trend in the residual error (Fig. 5D), highlighting the advan-
tage of using the true, measured PSF. Except for slight over-estimation of the
central intensity of the large object on the left, the residual error is dominated
by detector noise.

6 Conclusions and Discussion

We have introduced deconvolving active contours, extending explicit active con-
tours to iterative constrained deconvolution by replacing the image-based exter-
nal energy with a model-based likelihood function that includes prior knowledge
about the imaging process. The algorithm iteratively refines an initial image
segmentation using regularized optimization. Optimizing the likelihood function
is computationally more involved than optimizing a classical pixel-based energy.
We have thus introduced a special-purpose algorithm that uses domain decom-
position parallelism and exploits the linearity of the convolution operator. Run-
times on a desktop computer are on the order of seconds for individual objects
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(e.g. 1.2 s for the object in Fig. 2D). The presented algorithm enables estimating
the outlines of diffraction-limited, asymmetric objects to sub-pixel accuracy. The
benchmarks demonstrated localization precision in the nanometer range (better
than 0.01FWHM) and fluorescence intensity estimation to within a few %. We
have further demonstrated the practical utility of deconvolving active contours
on images of the Golgi complex and endosomes in live cells.
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Abstract. Image Registration is a central task to different applica-

tions, such as medical image analysis, stereo computer vision, and op-

tical flow estimation. One way to solve this problem consists in using

Bayesian Estimation theory. Under this approach, this work introduces

a new alternative, based on Particle Filters, which have been previously

used to estimate the states of dynamic systems. For this work, we have

adapted the Particle Filter to carry out the registration of unimodal and

multimodal images, and performed a series of preliminary tests, where

the proposed method has proved to be efficient, robust, and easy to

implement.

1 Introduction

The goal of Image Registration is to find an optimal geometric transformation
between corresponding image data [1],[2], where the criterion for optimality de-
pends on a specific application. This task is very important to many applications
involving image processing or analysis such as medical-evaluation, biomedical
systems, image guidance, depth estimation, and optical flow. In the past 10
years, many methods have been published; an extensive and comprehensive sur-
vey can be found in [3],[4].

Image Registration Methods can be classified as global or local. In the global
approaches one searches a model, often a parametric one such as rigid, affine,
projective, or curved transformation, explaining the similarities between two
images. Local methods or dense registration seek individual correspondences for
each pixel in both images. A special kind of registration is called Multimodal
Image Registration, in which two or more images coming from different sources
are aligned; this process is very useful, for example, in computer aided visual-
ization in the medical field, since it allows one to find correspondences between
functional and anatomical images.

In the literature, the more common global methods are those based on in-
tensity changes [5],[6],[7]. Within these methods, there is a very popular one
based on Mutual Information (MI), proposed independently by Viola and Wells

� The author was supported by Grant PROMEP/103.5/04/1387 and Fac. de Ciencias,

UASLP, Mexico.
�� The author was supported by Grant PROMEP/103.5/09/2416 and Fac. de Ciencias,
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[8],[9] and Collignon and Maes [10],[11]. Even though it is theoretically robust, it
requires to find the maximum mutual information, for example, using optimiza-
tion techniques such as hill-climbing, making the methods very sensitive to its
initial parameters and the derivative calculations. Other related work is found
in [12], where an affine transformation between images is modeled locally using
a linear approximation (first order Taylor’s expansion), but due to this approx-
imation, the algorithm must use a differential multiscale framework in order to
approximate large geometric displacements with a series of shorter ones. Other
global approaches that have demonstrated to be very efficient to estimate affine
transformation parameters are those based on Bayesian Estimation. Generally,
in these methods, Image Registration is solved by estimating a statistic, for ex-
ample the mean or mode, from a cost function, given a posterior probability
[13],[14],[15]. A commonly used estimator is the maximum a posteriori (MAP),
which can be found by minimizing an energy function; unfortunately, these func-
tions are highly nonlinear with respect to the geometrical parameters, requiring
complex optimization methods and demanding considerable computing time.

Under the same Bayesian approach, in the present work, we propose a new
algorithm based on a method that has been used to estimate states of nonlin-
ear dynamics systems, known as Particle Filter [16],[17]. This method has been
adapted to solve the problem of image registration, showing that the method-
ology behind Particle Filter can be used in a very efficient way to solve these
kinds of image processing tasks. The paper is organized as follows: Section 2
describes the basis of the Particle Filter; in Section 3, we describe how the filter
is adapted to the image registration problem; Section 4 shows some experiments
and results; and finally, in Section 5, some conclusions are presented.

2 Particle Filter Basis

Particle Filter is a method based on Bayesian Estimation that uses a Monte
Carlo algorithm to estimate probability density statistics [16],[17]. The key idea
is to obtain a posterior density from a set of random samples with associated
weights, which allows one to estimate state variables defining a dynamic system.

In order to establish the problem, consider the evolution of a state sequence,
given by

sk = fk(sk−1,vk−1), (1)

where fk(.) is a function, possibly nonlinear, of the system state vector sk−1, at
time k-1, and vk−1 is independent and identically distributed (iid) noise. Thus,
the goal is recursively to estimate the state vectors sk from the measurements

zk = hk(sk, nk), (2)

where hk(.) is a possibly nonlinear function, and nk are iid noise samples. In
particular, we want to estimate the distribution p(sk|z1:k) from a set of mea-
surements z1:k = {zi, i = 1, ..., k}. Suppose that we have access to the pdf
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p(sk−1|z1:k−1) at time k-1. The method consists in a prediction stage to ap-
proximate the pdf of the state system at time k, via the Chapman-Kolmogorov
equation

p(sk|z1:k−1) =
∫
p(sk|sk−1)p(sk−1|z1:k−1)dsk−1. (3)

Notice that, we have used the fact that p(sk|sk−1, z1:k) = p(sk|sk−1), which
describes a Markovian process. At time k, a measurement zk is available, and
using the Bayes’ theorem, we can predict (update stage) the posterior density

p(sk|z1:k) =
p(zk|sk)p(sk|z1:k−1)

p(zk|z1:k−1)
, (4)

where the normalizing constant is

p(zk|z1:k−1) =
∫
p(zk|sk)p(sk|z1:k−1)dsk. (5)

Equations (3) and (4) provide a form to estimate the posterior probability
p(sk|z1:k) in a recursive way. This structure, in many cases, cannot be analyt-
ically established, particularly when fk(.) and/or hk(.) are nonlinear. One way
to solve the problem is applying Particle Filter. In this method, the distribution
p(sk|z1:k) is represented by samples (particles) {(si

k, w
i
k) : i = 1, ..., Ns}, where

si
k are the particles’ values, at time k, and wi

k are the associated weights such
that

∑
i w

i
k = 1.

The Particle Filter algorithm is by nature iterative, and is composed of two
stages: A) Prediction stage, in which each of the state variables (particles) is
modified according to equation (1); and B) Update stage, where the particles’
weights are recalculated using the measurements information described by equa-
tion (2). It is convenient to mention that it is common to take p(sk|s1:k−1) =
p(sk|sk−1), which means that the actual state variables depend on their previ-
ous values (1st order Markov process). Also the likelihood function p(zk|s1:k) =
p(zk|sk) depends only on the latest state.

In the prediction stage, particles at time k-1 are propagated to generate new
particles at time k. A common drawback in this process is a phenomenon known
as the Degeneracy Problem [18], where after a few iterations, all but one particle
will have negligible weights. One way to resolve this problem is by resampling,
in order to eliminate particles having small weights and concentrate in particles
having large contribution: the particles that represent p(sk−1|zk−1) at time k-1
are used to obtain new particles (resampling); next, the state of each of these
particles is modified according to (1)(prediction stage); finally, their weights wi

k

are updated using the likelihood function p(zk|sk) in order to obtain represen-
tative samples of p(sk|zk).

3 Image Registration Guided by Particle Filter

In the present work, we adapted the Particle Filter algorithm to solve the im-
age registration problem between two images I1 and I2, which are related by the
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observation model I1(x, y) = F (I2(T (x, y))), where F (.) is an intensity transfer
function, depending on the gray values of I2, and T (.) is the affine transformation:

T ([x, y]) = [x, y, 1]

⎡⎣λx cos θ − sin θ 0
sin θ λy cos θ 0
dx dy 1

⎤⎦ . (6)

In this equation, θ represents the rotation angle of one image with respect to
the other one, λx is the scale factor on the x-axis, λy on the y-axis, dx is the
translation on x, and dy on y-axis.

To carry out the registration, we assume as state variables the vector (si
k) =[

θi
k, λx

i
k, λy

i
k, dx

i
k, dy

i
k

]T
, the geometric transformation parameters in (6); and

define the state equation, which in this case is a simple random walk:⎡⎢⎢⎢⎢⎣
θi

k

λx
i
k

λy
i
k

dx
i
k

dy
i
k

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
θi

k−1
λx

i
k−1

λy
i
k−1

dx
i
k−1

dy
i
k−1

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
vθ

vλx

vλy

vdx

vdy

⎤⎥⎥⎥⎥⎦ . (7)

Notice that the prediction equation is very simple: it is the preceding value dis-
turbed by the noise vector

[
vθ, vλx , vλy , vdx , vdy

]T . Here we assumed Gaussian
and independent noise for each parameter with zero mean and standard devia-
tions σθ, σλ, σd, respectively.

In the update stage, we want to know how well each new particle value si
k fits

the observation model

F (I2(T (x, y))) = I1(x, y) + γ(x, y), (8)

where γ(x, y) is iid noise, with zero mean and standard deviation σγ . In order to
accelerate the process, we only consider a set of m uniformly distributed pixels
P = {(xi, yi); i = 1...m}, in the images I1, and I2, so that the likelihood function
may be expressed as

p(zk|si
k) =

∏
(x,y)∈P

p(I1(x, y), F (I2(T (x, y)))|si
k). (9)

Notice that the affine transformation is applied to the coordinates of one of the
images, meaning that the observation model is highly nonlinear with respect to
the transformation parameters. Next, we detail the image registration algorithm
guided by the Particle Filter.

3.1 Algorithm: Image Registration Guided by Particle Filter

Given a set of particles at time k-1, {(si
k−1, w

i
k−1) : i = 1, ..., Ns}, where the

state values are given by the transformation parameters

si
k−1 =

[
θi

k−1, λx
i
k−1, λy

i
k−1, dx

i
k−1, dy

i
k−1

]T
(10)
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1. For each particle, compute the cumulative probability as

c0k−1 = 0 (11)

cik−1 = ci−1
k−1 + wi

k−1, for i = 1, ..., Ns. (12)

2. For each particle si
k−1, do the resampling as follows:

– Generate a uniform random value u ∈ [0, 1].
– Find the smallest j such that cjk−1 ≥ u.
– Select the state ŝi

k−1 = sj
k−1.

3. Obtain the new set of samples at time k (Prediction stage), using the equa-
tion: si

k = ŝi
k−1 + vk.

4. For each new state si
k, compute the corresponding weights wi

k = p(zk|si
k);

that is the likelihood function (Update stage):

p(zk|si
k) =

∏
(x,y)∈P

p(I1(x, y), I2(T (x, y))|si
k). (13)

5. Normalize the weight, such that
∑

i w
i
k = 1.

6. Once the particles’ weights have been computed, we may evaluate the mean
for each affine transformation parameter to compute the estimations:

E[θk|zk] =
∑Ns

i=1 w
i
kθ

i
k, E[λxk|zk] =

∑Ns

i=1 w
i
kλx

i
k,

E[λyk|zk] =
∑Ns

i=1 w
i
kλy

i
k, E[dxk|zk] =

∑Ns

i=1 w
i
kdx

i
k,

E[dyk|zk] =
∑Ns

i=1 w
i
kdy

i
k.

(14)

4 Experiments and Results

In this section, we present two different kinds of results. The first one corresponds
to an observation model which tries to match similar gray values in order to carry
out the image registration. The model used in the experiments was

I2(T (x, y)) = I1(x, y) + γ(x, y). (15)

In this case, the function F (.) was the identity. In order to avoid numerical in-
stability, due to the likelihood p(zk|si

k) being computed as the product of the
individual measurement of pixels in the set P , it is appropriated to choose a ro-
bust γ function [19], having the maximum at the mean, and tails quickly reaching
nonzero values. A function that satisfies both requirements is the following one:

γ(x, y) =
1

1 + |I1(x,y)−I2(T (x,y))|
σ2

γ

(16)

where σ2
γ is a parameter that depends on the standard deviation of the noise.

Using (15) and (16), the following experiment consisted on registering 256×
256 pixel images. For the experiment, we used as initial parameter values the
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Fig. 1. Image registration. Left: reference image; middle: image to register; right: reg-

istered image I2.

identity (θ = 0, λx = 1, λy = 1, dx = 0, dy = 0), 100 particles, and 256 pixels
for computing the likelihood. The image to register was obtained by applying
an artificial affine transformation with θ = −45, λx = 0.6, λy = 0.6, dx = 10,
and dy = 15. The estimated parameters, after 5 seconds, were θ = −44.9276,
λx = 0.59821, λy = 0.59822, dx = 9.937, and dy = 15.015; Figure 1 shows the
obtained registered image.

Next, we tested the robustness of the algorithm with respect to noise. We
added normal random values, with standard deviations from 0 to 20, to the
image I2 in Fig. 1, and used the same initial values that the previous experiment.
The Box-Plot of the True Relative Mean Error (TRME) of the affine parameters
are shown in panel A) of Fig. 2; the mean and standard deviation are shown in

Fig. 2. TRME results for noise standard deviation from (0,...,20): A) TRME-Box-Plot;

B)TRME-Mean; C) TRME-SD
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panels B) and C). This error function has the advantage of independently taking
into account the unit scales of the quantities to evaluate, and it is computed as
follows:

TRME =

∑5
k=1 |

s∗(k)−s(k)
s∗(k) |

5
, (17)

where s∗(k) corresponds to the k-th true parameter value, and s(k) to the esti-
mated one by the algorithm. Notice that, no matter the noise level, the median
and mean are between 4% and 7%, and the standard deviation is between 1%
and 4%.

In the second set of experiments, we used as measure model the Mutual In-
formation (MI) defined as

I(I1, I2) = H(I1) +H(I2)−H(I1, I2), (18)

where H(I1) is the entropy of the gray value distribution of the image I1, and
H(I1, I2) is the joint entropy of the images I1 and I2. This is a more gen-
eral measure, since it allows one to register Multi-modal images, coming from
different sensor types. An example of such images is in panels A) and B) of
Fig. 3, where the first one is a CT-Image and the other one is a RM-Image. This
measure is more general in the sense that if I2 is the result of a 1-1 intensity
function mapping F (I1), then I(I1, I2) = I(I1, F (I1)) = I(I1, I1) = H(I1). Also,
we know that this measure is bounded: 0 ≤ I(I1, I2) ≤ min(I(I1, I1), I(I2, I2)).
Hence, we may define as likelihood function

γ(H(I1), I(I1, T (I2));σ) =
1√
2πσ

exp
{
− (H(I1)− I(I1, T (I2)))2

2σ2

}
, (19)

for a given σ, and an affine transformation T (.), since we have defined as refer-
ence image I1. Note that (19) has a gaussian shape and reaches its maximum
when I1(x, y) = F (I2(T (x, y))). In Figure 3.C), we used a checker-board in

Fig. 3. Multimodal image registration. Left: CT-image; center: MR-image; right: CT

and MR registration.
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order to appreciate the registration details, in which each square corresponds,
alternatively, to the image in A) and to the registered image in B).

Multi-modal image registration is very important in the medical field, since, for
example, it allows one to find correspondences between functional and anatomi-
cal images, or align a set of MR-slices to reconstruct a 3D brain volume. In this
work, we present an example of 3D volume reconstruction in which we took 27 ax-
ial MR-slices, each one of 128×128 pixels. For each one of these slices, we applied
an artificial relative geometrical transformation with respect to the previous one.
For the translation parameters, random values were generated between -10 to 10
pixels, and for the rotation between -10 to 10 degrees; panel A) in Fig. 4 shows the
volume obtained from these transformed slices. In order to realign the images, the
affine transformation between two consecutive images Ii and Ij was found, and it
was propagated from Ij until the last image; the process was repeated from slice
I2 to I27. Panel B) in Fig. 4 shows the 3D reconstructed volume. To verify nu-
merically how well the displacement and rotation transformation were estimated,
we compute the squared error for each parameter at each pair of adjacent slices.
Figure 5 shows the histograms of these estimations. Notice that the maximum
translation error on the x-axis is about 1.6 pixels, that corresponds only to one

Fig. 4. 3D-Reconstruction. A) Non-aligned volume; B) Aligned volume.

Fig. 5. Error histograms: A) displacement on x-axis; B) displacement on y-axis; C) ro-

tation
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Table 1. Mean and SD of the MSE

Parameter Mean SD

dx 0.1979 0.3923

dy 0.0700 0.0901

θ 0.0105 0.0162

slice; on the y-axis the maximum error is less than 0.5 pixels; and only one slice
had a rotation error of 4.5 degrees, the rest had less than 2 degrees. We found that
these maximum errors correspond to the last slices, from bottom to top in Fig. 4,
this is because the whole volume is composed only by 27 slices from which the
last ones are the less similar (top of head), and thus are more difficult to align. Fi-
nally, Table 1 shows the mean and standard deviation of the MSE of the estimated
geometrical transformations.

5 Conclusions and Future Work

In the present work, we described a new algorithm for Image Registration based
on Particle Filter method used to estimate states variables of dynamic systems.
This method was adapted to carry out affine image registration. Although Parti-
cle Filter is by nature stochastic, we presented experiments where the algorithm
showed to be very efficient and accurate to estimate geometric transformation
parameters. Finally, we showed that the algorithm is easy to implement and
robust with respect to noise, and it is possible to include complex likelihood ex-
pressions, in contrast to others optimization methods which complexity depends
on this term.

Some immediate perspectives for future research include: a generalization of the
proposed methodology for the registration of anatomic and functional 3D brain
images, and implementing the algorithm in a parallel computer architecture.
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Curve Enhancement Using Orientation Fields
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Abstract. We present a new method for enhancing the contrast of

curve-like structures in images, with emphasis on Transmission Electron

Microscopy tomograms of biological cells. The method is based on the

Orientation Field Transform, and we introduce new techniques for gen-

erating directions and weights of the orientation field. The new method

for generating the orientation field focuses on analyzing local asymme-

tries in the image. We demonstrate that analyzing geometric attributes

such as orientations and symmetries results in a robust method that is

relatively insensitive to poor and non-uniform contrast.

1 Introduction

Transmission Electron Microscopy (TEM) is a powerful tool to better understand
structure and functionality of biological cells [1]. By imaging a specimen from
multiple angles, tomographic reconstructions (tomograms) provide 3D images of
cellular structures. In order to build easily viewable models of cellular structures,
structures of interest are often segmented and rendered as surfaces.

Automating the segmentation process has proved difficult, and in most cases
the user has to rely on manual segmentation tools such as IMOD [2]. Building
3D models using manual segmentation tools is often a slow and tedious process,
sometimes requiring months of manual identification of cellular structures.

Due to the anisotropic resolution of TEM tomograms of cells [3], segmenting
a 3D tomogram is often done slice-wise in the plane of highest resolution. In
such slices, the cross section of structures often appear as curve-like structures.

In this paper we consider the problem of enhancing the contrast of curve-
like structures in slices of 3D tomograms. Once the contrast of such structures
has been enhanced, one can use thresholding and thinning operations to extract
contours. This paper will focus on the contrast enhancement step while referring
to the extensive literature for the thresholding/thinning problem (see [4] and
references therein).

More specifically, we consider the following problem: Given a 2D image and a
scale parameter r, generate an image where the contrast of curve-like structures
of thickness ∼r are enhanced, while the contrast of non-curve-like structures are
decreased.

A major obstacle for adaptation of automated segmentation algorithms for
cell biology is ¨the curse of parametrization¨. Many segmentation algorithms
rely on several parameters to be tuned in order to obtain satisfactory results.

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 564–575, 2009.
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Tuning such parameters can be both time consuming and frustrating, especially
in cases where the parameters lack intuitive meaning. We therefore consider
minimizing the number of parameters of the segmentation process a priority.

Popular automated segmentation methods include Active Contours [5], Level
Set methods [6], and the Watershed Transform [7]. Although these methods
quite successfully detect compartment-like structures, they are less suitable for
detecting curve-like objects [8]. In recent years there has also been an increasing
interest in so-called eigenvector techniques [9],[10], which are flexible and can be
tuned to detect curve-like structures.

Despite significant research in automatic segmentation techniques, few meth-
ods have proved useful for TEM tomograms of cells since these often suffer from
low and non-uniform contrast, low signal to noise ratio, and also the presence of
interfering structures [11],[8]. In this paper, interfering structures refer to high
contrast structures of different shape attributes than the ones the segmentation
algorithm targets (see Figure 1).

Fig. 1. a) A synthetically generated example where the goal is to detect the horizontal

line and the two vertical lines. The dots are considered interfering structures. b) Slice

of a tomogram of a Trypanosome. The structures inside the rectangle are examples of

what we will refer to as interfering structures.

To address the problem of low and non-uniform contrast while enhancing
curve-like structures, orientation fields have proved useful, particularly for finger
print segmentation and matching [12], and for segmenting slices of tomograms of
cells [11]. The orientation field is an assignment of a weighted line segment to each
pixel in the image (see Figure 2). Each orientation has two attributes: an angle
(ranging between 0 and 180 degrees), and a weight indicating the importance
of the orientation. The orientation field can show remarkable uniformity even in
cases where the contrast is highly non-uniform (see Figure 3 in [11]).

When using orientation fields for enhancing curve-like objects there are two
main questions that have to be addressed: 1) How to generate the orientation
field, and 2) how to detect curve-like objects in the orientation field. In this paper,
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we will focus on the first question and use the Orientation Field Transform (OFT)
[11] to detect curve-like objects once the orientation field has been generated.

A common method for generating the orientation field is to compute eigenvec-
tors of the structure tensor [13], or some type of gradient [14], often combined
with denoising. In 3D data sets, convolution-based edge detection methods have
been described in, e.g., [15] and [16]. In [11], the authors used an approach
based on line integration rather than differentiation, which turns out to be rela-
tively stable for the challenging properties of TEM tomograms. However, the ap-
proach in [11] has several shortcomings, particularly in the presence of interfering
structures.

In this paper, we develop new techniques for generating more robust weights
for the orientation field that will properly reflect the reliability of the orientation.
We also develop a new robust method for generating orientation directions. These
improvements will lead to a robust method for enhancing curve-like objects,
while leaving only one parameter, the scale r, for the user to adjust.

Although we will focus on segmentation of curve-like biological structures of
TEM images, we note that our approach is general and can be used to enhance
curve-like objects in any image. However, we have found TEM tomograms of
cells to provide particularly challenging test data sets and therefore an excellent
testing environment for image enhancement algorithms.

We review the definition of orientation fields and the OFT in Section 2 and
also illustrate where the method for generating the orientation field in [11] fails.
In Section 3 we present new techniques for generating a more robust orientation
field, and enhance curve-like structures of a synthetic example and a slice from
a real TEM tomogram in Section 4. We conclude the paper with a discussion of
our approach and mention some of its limitations and future research.

2 Review of Orientation Fields and the OFT

Throughout this paper, we let I(x) denote the image to be processed such that
I(x) gives the (gray scale) intensity at location x = (x, y). We will assume that
targeted structures have a locally higher intensity than the background.

We define an orientation F as the tuple {w, θ} where θ is a direction that
ranges between 0 and 180◦ and w is a positive weight indicating the importance
of the direction. An orientation field F(x) = {w(x), θ(x)} is the assignment of
an orientation to each location in the image. We can illustrate the orientation
field of an image by drawing a line segment at each pixel location, and vary its
intensity to indicate the weights (see Figure 2).

To generate the orientation field, we consider the line integral operator

R[I](x, y, θ) ≡
∫ r

2

− r
2

I(x+ s cos θ, y + s sin θ) ds, (1)

where r is a scale parameter. This line integral computes the total intensity along
a straight line of length r and direction θ centered at pixel (x, y).
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Fig. 2. The orientation field (right) of the image (left)

In [11], the orientation field was generated by

F(x, y) =
{

max
θk

R[I](x, y, θk), argmax
θk

R[I](x, y, θk)
}

(2)

for a sequence of equally spaced angles {θk}Nθ

k=1 in the range [0, π), where r was
chosen as approximately two times the width of a typical curve-like structure in
the image.

This definition has the advantage of being relatively insensitive to noise com-
pared to gradient based methods for orientation field generation [17],[8]. How-
ever, it has some disadvantages that we will now discuss.

First, the orientation field near a structure tends to align with the structure,
rather than perpendicularly to the structure, see Figure 3a and b. This hap-
pens since the integral along a line that cuts a structure diagonally will give a
larger response than an integral along a line that cuts a structure perpendicu-
larly. However, we shall see below that when using the OFT to detect curve-like
structures in the orientation field, it is crucial that orientations align parallel to
the curve for locations inside the curve, and align perpendicular to the curve for
locations near but outside curves.

Secondly, the weights of the orientation field may be large even when located at
or near a point-like structure, as illustrated in Figure 3d. Ideally, the orientation
weights should be close to zero in such case, since these orientations are not
associated with a curve-like structure.

In order to to detect curve-like structures in the orientation field, we will
use the Orientation Field Transform (OFT). To this end, we first define the
alignment integral operator Ω of the orientation field F(x, y) as

Ω[F ](x, y, α) = (3)∫ r
2

− r
2

w(x+ s cosα, y + s sinα) cos (2(θ(x+ s cosα, y + s sinα)− α)) ds
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Fig. 3. a) A synthetically generated line-like structure. b) Orientation field for the

structure in a) generated by the method in [11]. c) A synthetically generated point-

like structure. d) Density plot of the orientation field weights for the structure in c)

generated by the method in [11].

where α is an angle between 0 and 180◦. This operator integrates the weights
of the orientation field along straight lines through each pixel, multiplied by the
alignment factor cos(2(θ−α)). This alignment factor attains its maximum value
1 when θ and α are equal (parallel alignment), and attains it minimum value −1
when θ and α differ by 90◦ (perpendicular alignment).

To compute the OFT, we first search for the direction in which we have
the strongest alignment (parallel or perpendicular), followed by evaluating the
alignment integral Ω along the direction of strongest alignment. Formally, we
define the OFT, O, of the orientation field F(x) = {w(x), ρ(x)} as

O[F ](x) = Ω[F ](x, θ̃), θ̃ = argmax
αk

|Ω[F ](x, αk)| .

We note that this operator generates a large negative response near a curve where
the orientations (ideally) are aligned perpendicular to the curve, and large posi-
tive response inside a curve where the orientations (ideally) are aligned parallel
along the curve. Since negative response indicates the exterior of a curve, we can
therefore set O[F ](x) to zero at locations where the OFT response is negative.
For examples and details, see [11].
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3 A New Method for Generating Orientation Fields

In this section we address the shortcomings listed in Section 2 above. To this
end, it will be convenient to introduce operators W and Θ, which extract the
weight and direction from an orientation, that is, Θ(F) = θ and W (F) = w.

3.1 Stable Generation of Orientation Field Direction

To generate directions that point perpendicular to a nearby curve, we introduce
the notion of an ¨average¨ orientation. In order to compute the average of a
collection of orientations, we need an addition algorithm for orientations that is
associative (order independent). One way to do this, is to map each orientation
to a vector in 2D represented in polar coordinates by doubling the direction angle
such that {w, θ} is mapped to {w, 2θ}. This mapping provides an invertible map-
ping between orientations and vectors in the plane. Since vector addition in the
plane is associative, we can use the following algorithm for adding orientations
{w1, θ1} and {w2, θ2}:

1. Map orientations to 2D vectors:
{w1, θ1} �→ {w1, 2θ1} ≡ v1 and {w2, θ2} �→ {w2, 2θ2} ≡ v2

2. Compute vsum = v1 +v2 using the usual rules for vector addition and write
the vector vsum in its polar representation {wsum, θsum}.

3. Map the vector vsum to an orientation: {wsum, θsum} �→ {wsum, θsum/2}

In particular, we see that two orientations with directions 90◦ apart and identical
weights, add to a zero orientation (orientation with w = 0). For an alternative
averaging algorithm (which can be generalized to higher dimensions), see [17].

Using the rules for orientation addition, we generate the direction of the ori-
entation field of the image I as

θ(x, y) = Θ

(
Nθ∑
k=1

{R[I](x, y, θk), θk}
)

(4)

where R is the line integral operator defined in (1) above. This definition differs
to the one used in [11], by averaging over the response in different directions,
rather than looking for the direction of maximum response. This means that
outside a curve, the response will average (because of symmetry), to generate a
net orientation perpendicular to the edge (see Figure 4).

3.2 Generation of Orientation Weights

In order to address the problems with orientation weights discussed in Section
2, we will consider two attributes that we refer to as reliability and asymmetry
alignment. We will then use a simple fuzzy system to combine these two at-
tributes to a single weight. One could add even more attributes, but we limit
ourselves to only two since these two attributes are fairly general and should
therefore work for a broad class of images.



570 K. Sandberg

Fig. 4. The orientation field generated by (4) for the structure in Figure 3a

The Reliability Measure. The reliability measure, which we denote as wr(x),
is given by extracting the weight from the sum computed for generating the
direction in Section 3.1, that is,

wr(x) = W

(
Nθ∑
k=1

{R[I](x, θk), θk}
)
. (5)

This expression is best understood by considering the response at the center
of a radially symmetric point, in which case the response of the line integral
R[I](x, θ) is the same in all directions. By symmetry, the sum over orientations
will therefore sum to the zero orientation, which we illustrate in Figure 5a.

The Asymmetry Alignment Measure. To prevent large orientation weights
nearby point-like objects we observe that the absolute value of the 2D Fourier
transform of an image of a radially symmetric point is symmetric, whereas the 2D
Fourier transform of a line is highly asymmetric. By computing a local Fourier
transform of an area centered at each pixel and analyzing the asymmetry of
the resulting Fourier transformed data, we can measure ¨how curve-like¨ the
neighborhood is.

To formalize these ideas, we first define the following data set

Ĩ(x, y, ξ, η) =

∣∣∣∣∣
∫ x+ r

2

x− r
2

∫ y+ r
2

y− r
2

I(x′, y′)e−2πi(x′ξ+y′η) dx′ dy′
∣∣∣∣∣ .

This operator computes the absolute value of the 2D Fourier transform of an
r-by-r neighborhood of each pixel (x, y).

The asymmetry alignment measure wa is defined by measuring the asymmetry
of Ĩ with respect to the (ξ, η) variables, and measuring the alignment of this
asymmetry with the orientation direction:

wa(x, y) =
Nθ∑
k=1

(∫ r
2

− r
2

Ĩ(x, y, s cosφk, s sinφk) ds

)
cos(2(φk − θ(x, y) −

π

2
)) (6)

where {φk}Nθ

k=1 is a set of equally spaced angles in the interval [0, π).1

1 The shift π
2

is needed since the 2D Fourier transform of a curve orientated at θ
degrees in the space domain, will be oriented at θ− π

2
degrees in the Fourier domain.
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The purpose of this asymmetry measure is twofold. First, it measures the
¨strength¨ of the asymmetry.2 Secondly, it measures the alignment of the asym-
metry with the orientation direction computed in (4).

As an example, consider the value of wa(x) at a line structure with orientation
θ. The line integral

∫ r
2
− r

2
Ĩ(x, s cosφk, s sinφk) ds attains it maximum value for

φk = θ − π/2, for which the alignment factor cos(2(φk − θ − π
2 )) attains it

maximum value. Hence, wa will be large and positive at a line structure.
As a second example consider the response at (or near) a radially symmetric

point. Since the 2D Fourier transform of a radially symmetric dot is radially
symmetric, all terms in (6) cancel out. Hence, wa is zero at or near a point
structure.

As a final example, consider the response outside a straight line. Since we
are measuring the absolute value of the asymmetry in the Fourier domain, the
measure is independent of spatial shifts of the structure. Hence, the response
of
∫ r

2
− r

2
Ĩ(x, s cosφk, s sinφk) ds attains it maximum value for the same φk as if

located at the line structure. However, the orientation θ near but outside a line
structure will be perpendicular to the line structure (Figure 4). Hence, φk = θk,
for which the alignment factor cos(2(φk− θ− π

2 )) attains it minimum value (-1).
Hence, wa will be negative outside a line structure.3

In Figure 5b we display the weights wa for the image in Figure 1a.

Combining the Reliability and the Asymmetry Alignment Measures.
In order for a pixel to be associated with a curve-like object, we require large re-
liability response (wr) and large asymmetry alignment response (wa). Although
there are many ways of combining these measures into a single weight, we have
chosen the following criteria for simplicity: We first rescale wr(x) and wa(x)
to the interval [0, 1] by wr(x) = wr(x)−minx wr(x)

maxx wr(x)−minx wr(x) and similarly for wa. We
then define w(x) = wa(x)wr(x) (element-wise multiplication when the weights
are represented as matrices), which can be thought of as a simple fuzzy system
[18]. We choose this criteria because of its simplicity, and since it does not intro-
duce any additional parameters. In Figure 5c we display the weights w for the
image in Figure 1a.

3.3 Summary of the Algorithm

We summarize the curve enhancement algorithm as follows:4

2 One can obtain a more intensity independent measure by first setting Ĩ(x, y, 0, 0) = 0,

that is setting the DC component (or zero frequency) to zero, before computing the

sum in (6).
3 Since negative response indicates the exterior of a curve, we can therefore set wa(x)

to zero at locations where the response of (6) is negative.
4 Note that all integrals are assumed to be approximated by sums.
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1. Generate the orientation field:
(a) For each location x:

i. Generate the directions θ(x) by using (4).
ii. Generate the weights wr(x) by using (5).
iii. Generate the weights wa(x) by using (6). If wa(x) < 0, set wa(x) = 0.

(b) Rescale wr(x) and wa(x) to [0, 1].
(c) For each location x: Compute w(x) = wr(x)wa(x).

2. Compute the OFT. For each location x:
(a) Compute the OFT by using (3).
(b) If O[I](x) < 0, set O[I](x) = 0.

4 Results

We first verify the consistency of our algorithm by enhancing the line structures
in Figure 1a. Although this is obviously a synthetic example, it provides valuable
verification of our algorithm’s ability to handle noise, and also of its ability
to enhance the weak line-like structures while decreasing the contrast of the
strong point-like structures as shown in Figure 5d. We used a scale parameter r
corresponding to approximately 1.5 times the thickness of the line-like structures.

Fig. 5. Illustration of the orientation field weights for the image in Figure 1a displayed

as density plots. a) The weights wr. b) The weights wa. c) The final weights. d) Result

of applying the algorithm in Section 3.3 to the image in Figure 1a.
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Fig. 6. Enhancement of a tomogram slice of a Trypanosome. a) Original image b)

Result using the orientation field generated by the algorithm [11]. c) Result using the

algorithm in Section 3.3. d) Closeup of the original image. e) Closeup of the result in

b). f) Closeup of the result in c).

Wenext apply our algorithmto a slice froma realTEMtomogram5 (Figure 6). In
the left column we show the original image, in the center column the resultwhen us-
ing the orientation field generated by the algorithm in [11], and in the right column
the result of using our algorithm. We used a scale parameter r that corresponds to
approximately 1.5 times the thickness of a typical membrane.

5 Discussion

Whereas many traditional segmentation methods focus on detecting edges and
local correlation in texture, attributes which are known to be sensitive to nonuni-
form contrast and noise, the OFT detects correlations in geometrical attributes.
However, in order for the OFT to be robust, it is essential for the orientation
field to be based on attributes that are insensitive to contrast variations.

The method for generating the orientation field in [11] is relatively insensitive
to noise, but still highly dependent on intensity and therefore sensitive to the
presence of strong point-like structures. This problem can be partially remedied
by locally smoothing the orientation field, thresholding, and allowing different
5 Tomogram of Trypanosome, courtesy of Mary Morphew, the Boulder Laboratory for

3D Electron Microscopy of Cells, University of Colorado at Boulder.
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scale parameters r1 and r2 to be used in (2) and (3), respectively. However, this
requires more parameters to be tuned.

The methodology in this paper generates a significantly less contrast depen-
dent orientation field by focusing more on local asymmetries than local intensi-
ties, and only requires one parameter to be set.

In order for a segmentation algorithms to be used routinely in a laboratory,
experience shows that it is essential to minimize the number of parameters for the
user to tune, and ensure that existing parameters have intuitive interpretations.
The scale parameter used for the algorithm in this paper is easy to estimate as
it is directly related to the thickness of a target structure.

We also point out that the suggested algorithm can be extended with more
parameters. For example, one can introduce more attributes for generating the
weights, and combine these using fuzzy logic, possibly within a neural network
framework to train the fuzzy system.

In order to extend the current algorithmto detect objects with varying thickness
and curvature, one should introduce a multiscale methodology by simultaneously
process the data for a range of scale parameters r combined with some criteria
on how to locally select r. We also note that the OFT currently uses a family of
straight lines of fixed length to search for correlation in the orientation field. A
more sophisticated version can use a family of curves of varying curvature as well,
which should improve the accuracy for finding structures with large curvatures.

Finally, we plan on extending the current work to detect curves and planes in
3D data sets.

6 Conclusion

We have refined an earlier suggested method for enhancing the contrast of curve-
like structures in TEM tomograms. The method is based on the Orientation
Field Transform, but uses a more robust technique to generate the orientation
field of an image compared to earlier suggested methods. The resulting method is
stable both with respect to noise and presence of high contrast point-like objects.
Furthermore, the algorithm only requires one parameter to be set by the user,
and is therefore easy to use.
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Abstract. We present a practical graph-based algorithm for segmenting

circular-shaped structures from Hoffman Modulation Contrast images of

human zygotes. Hoffman Modulation Contrast is routinely used during

In Vitro Fertilization procedures, and produces images with a sidelit,

3D-like appearance; our algorithm takes advantage of such peculiar ap-

pearance in order to improve the robustness of segmentation. The task

is not straightforward due to the complex appearance of the objects of

interest, whose image is frequently affected by defocus, clutter, debris

and other artifacts. We show applications of our technique to the un-

supervised segmentation of the zygote oolemma and to the subsequent

supervised segmentation of its pronuclei. Experiments are provided on a

number of images with different characteristics, which confirm the algo-

rithm’s robustness with respect to clutter, noise and overexposure.

1 Introduction

During In Vitro Fertilization (IVF) procedures, biologists observe fertilized ova
at different times in order to assess their quality and select the ones maxi-
mizing the implantation success rate; this decision-making process is guided
by a number of criteria, usually requiring subjective classifications, which are
widely discussed in the related literature [1,2,3]; Beuchat, et al. show in [4] that
computer-based morphological measurements on zygotes, providing quantitative
rather than qualitative data, has the potential to improve the accuracy of im-
plantation predictions.

In order to provide such quantitative measurements, we consider the prob-
lem of segmenting circular-shaped structures in zygote images; in particular,
our technique is useful for segmenting the zygote cell’s oolemma (excluding the
surrounding zona pellucida), and pronuclei in the zygote cell (see Figure 1).

This allows us to readily compute a number of quantitative measures (appar-
ent size, simple shape descriptors, relative positions) for each of these objects,
which are not easily judged otherwise. The obtained segmentation may also be

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 576–585, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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(a) (b) (c) (d)

Fig. 1. Zygote cell (a,c) and its segmentation (b,d). Cell contour in yellow, pronucleus

contour in cyan. Note debris in (a) and non-elliptic shape in (b).

applied for other tasks, such as driving an automated microscope for unattended
imaging of zygotes, or providing a robust, precise initialization for subsequent
(automatic or user-assisted) analysis algorithms, such as those introduced in [5,6]
for the segmentation of the zona pellucida.

Our algorithm is designed to operate on Hoffman Modulation Contrast (HMC)
images1: HMC is an imaging technique converting optical slopes in variations of
the light intensity: it is routinely used in IVF labs for observing zygotes, as it
provides a large amount of contrast for transparent specimens and eases human
observation as the objects appear three-dimensional and side-lit, as if a light
source was illuminating them from a side (apparent lighting direction). After
locating the center of the structure, we compute a transformed representation of
the image in polar coordinates; we take advantage of said lighting peculiarities
by only considering edges whose orientation matches the expected sign of the
intensity gradient, while penalizing at the same time most unrelated edges. The
segmentation problem is finally efficiently solved as a minimum-cost problem
on a directed acyclic graph built on the transformed image, which implicitly
enforces shape priors.

The main contribution of our technique over the state of the art lies in our
simple method for taking advantage of HMC lighting, whose effectiveness is
quantitatively evaluated in Section 5. The complete system has shown to be
robust and efficient: an image is processed in less than one second, with little
effect of debris, noise, overexposure or defocus, and with no need of parameter
tuning. This allowed us to easily integrate the technique in the routine of an
IVF laboratory, in order to provide precise and effortless zygote measurements.

We briefly review related works in the following Section, then describe our
technique in Section 3 in the context of zygote segmentation, and in Section 4
for pronuclei segmentation. Experimental results are shown and discussed in Sec-
tion 5. Section 6 concludes the paper and presents ongoing work.

1 A technique delivering visually similar results is Differential Interference Contrast

(DIC), which is also a likely application scenario for our technique.
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2 Related Work

Classical region-based segmentation algorithms, including watersheds [7], are
not applicable in this context because of the complex appearance of the cell,
including the surrounding zona pellucida, clutter, and artifacts; this also hinders
the application of straightforward edge-based segmentation algorithms, as many
spurious contours are detected.

Iterative energy minimization methods such as active contours [8] and level
sets are frequently employed in biomedical imaging: in this context, their appli-
cation is not straightforward because debris are likely to generate several local
minima in the energy function, which makes quick and robust convergence prob-
lematic; for example, in [5] active contours are used for measuring the thickness
of the zona pellucida in embryo images, but only after a preprocessing step aimed
at removing debris and other artifacts.

In [4] a semisupervised technique for measuring various zygote features is
used, where the cell shape is approximated by an ellipse: in our case, instead,
we recover the actual shape of the cell, which is often not well approximated by
an ellipse.

The technique we are presenting includes a global energy minimization step,
and may be classified as a specialized graph-cut [9] approach, where: a) priors on
the cell shape are accounted for by operating on a spatially-transformed image
and searching for a minimum-cost path on a directed acyclic graph, and b) priors
on the contour appearance due to HMC lighting are directly integrated in the
energy terms.

Interestingly, several previous works handled the particular lighting in HMC
and DIC images as an obstacle to segmentation [10], and adopted preprocessing
techniques for removing it, whereas we actually exploit such appearance for
improving robustness. Preliminary results on the zygote contouring have been
presented in [11].

3 Segmentation of a Zygote Cell

We now describe the algorithm in the context of zygote cell segmentation. The
application of the algorithm to the segmentation of pronuclei is given in Section 4.

We divide the segmentation process in two sequential steps: first, we find the
approximate location (cx, cy) of the cell center; in doing this, we assume that a
single zygote is visible in the image, which is always the case as zygotes are kept
in separate wells. Then, the image of the cell is transformed to polar coordi-
nates, the lighting parameters are estimated (if unknown), and a shortest-path
formulation is used in order to recover the actual zygote contour. We briefly
introduce the former part, which we consider of lesser importance and inter-
est, in Section 3.1. The main focus is instead on the latter part, described in
Section 3.2.
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(a) (b) (c) (d) (e)

Fig. 2. Approximate localization of the cell center. (a): original image. (b): binary

mask obtained after thresholding the modulo of the gradient. (c): largest connected

component with holes filled. (d): distance transform. (e) the maximum of the distance

transform is considered as the approximate center of the cell. Note that the large artifact

on the left does not significantly displace the maximum of the distance transform.

3.1 Approximate Localization of Zygote Center

In order to find a rough location for the cell centroid, the modulo of the image
gradient is first computed at every pixel, then subsampled to a smaller image,
which is automatically thesholded and regularized by means of median filtering
(see Figure 2 a,b). The largest connected component is isolated and its holes filled
(Figure 2 c); for each point inside the resulting region, the minimum distance to
the region boundary is computed by means of the distance transform; the point
with the maximum distance is finally chosen as the approximate centroid of the
cell.

This preliminary analysis phase is not critical for the quality of results, as
the subsequent processing tolerates quite large displacements of the detected
centroid; nonetheless, this simple algorithm proves to be quite robust also in
presence of large artifacts attached to the cell; this is mainly due to the distance
transform, which implicitly cancels or reduces the effect of any non-convex arti-
fact protruding off the border of the cell.

3.2 Detailed Recovery of the Cell Contours

Once the zygote centroid (cx, cy) is detected, a circular corona around such point
is transformed using bilinear interpolation to an image J in polar coordinates:

J(θ, ρ) = I (cx + ρ cos (θ) , cy + ρ sin (θ)) 0 ≤ θ < 2π ρ′ ≤ ρ ≤ ρ′′. (1)

In order to account for variations in the cell shape and errors in the centroid
location, the range [ρ′ ÷ ρ′′] of ρ values is very conservatively set to [0.3r ÷
1.5r], where r represents the expected cell radius; this is a quite large range
(see Figure 2e), which allows for large variations in the actual radius of the
zygote, and for displacements of the estimated centroid (cx, cy). ρ and θ values
are uniformly sampled in ρn and θn intervals, respectively, which correspond to
rows and columns of image J . We use ρn = 80, θn = 180 in the following.
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(a) J (b) E (c)

(d) (e)

Fig. 3. Contour localization. (a) image in Figure 2 transformed to polar coordinates.

(b): energy E computed according to (2), and its graph structure (c). (d): minimum-

cost path. (e): the resulting segmentation.

Image J (Figure 3a) is then processed in order to associate an energy to
each pixel, which will drive the following graph-based formulation. Let α be the
direction of apparent lighting due to HMC, which only depends on the optical
setup and can be assumed known in most scenarios (if it’s not, it can be easily
estimated); we define the energy for each pixel as:

E(θ, ρ) = P

(︷ ︸︸ ︷
cos(θ − α) ·Gρ(J)+

︷ ︸︸ ︷
sin2(θ − α) · |Gρ(J)|

)
(2)

P (x) =
(
1 + e

x
k

)−1
(3)

where Gρ denotes the gradient operator along the ρ axis, and P (· · · ) is a simple
decreasing sigmoid function which conditions the energy values to lie in the [0÷1]
interval; the scaling parameter k is not critical, and can be safely set to 1/5 of
the image’s dynamic range.

The first term in (2) dominates where the contour is orthogonal to the appar-
ent light direction, i.e. where the cell is expected to appear significantly lighter
(θ−α ! 0) or darker (θ−α ! ±π) than the surroundings; large gradient values
with a sign consistent with this assumption lead to lower energies. The second
term takes account for the unpredictability of the contour appearance where
the contour is parallel to the apparent light direction, and just associates lower
energies to large absolute values for Gρ(J).

A directed acyclic graph is built over J , by considering a node for each pixel,
and arcs connecting each pixel to its three 8-neighbors at the right (see Figure 3c).
The cost of each arc is set to the energy of the source node. The minimum-cost
path is computed from every pixel in the first column to the corresponding pixel
in the last column; the cheapest of these paths is chosen as the actual contour
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(a) (b) (c)

Fig. 4. (a): Original image. (b): Cell segmentation (yellow) and manual initialization

of pronuclei contouring (light blue). (c): Segmentation of pronuclei allows to derive

relative size measures.

(see Figure 3d), then mildly smoothed for cosmetic reasons and brought back to
cartesian coordinates by using the inverse transform to (1). The interior of the
resulting polygon defines the computed binary mask M .

Larger values for ratio θn/ρn allow more freedom to the path built over J ,
which translates to better accomodation of an irregular cell shape or a displaced
centroid (cx, cy); at the same time, this reduces the robustness of the approach,
as shape priors are less strongly enforced. We found any ratio between 1.5 and
3.0 to be acceptable, although we keep with θn/ρn = 180/80 = 2.25 in the
following.

4 Segmentation of Pronuclei in a Zygote Image

The same technique described in the previous section can be easily adapted for
segmenting other circular-shaped structures of particular interest during IVF
procedures, which exhibit the same lighting peculiarities we described in Sec-
tion 3. In particular, we describe in this section the supervised segmentation
procedure of pronuclei in a zygote image.

Pronuclei are sometimes not well visible in the zygote images (see Figure 4),
which makes the problem somewhat harder than we described previously for the
cell’s oolemma: still, they are often bounded by (weak) edges which exhibit the
same appearance we described in Section 3.2, which also characterizes the whole
zygote cell.

In case of pronuclei, however, the apparent lighting direction is the opposite,
due to their different optical properties with respect to the surrounding medium2.

Therefore, the definition of energy E provided in (2) can be successfully used
in order to segment pronuclei, exactly as described in Section 3.2, as soon as
the α angle is inverted and the expected radius r is adjusted. As the shape of
pronuclei is less irregular than the shape of the whole cell, we improve results by
2 HMC images result from rather complex optical phenomena, which are necessary

in order to make the transparent cell visible; the resulting lighting is therefore only

apparent and not due to the reflectivity of the structures.
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using a reduced θn/ρn ratio of 1.50, which improves robustness by more strongly
enforcing shape priors, while being less tolerant about displacements of the given
center.

4.1 User-Assisted Segmentation

We developed a number of heuristics in order to automatically detect the number
of visible pronuclei, as well as the center of each. The task however turned out
to be extremely challanging, due to a number of reasons:

– although most of the cases show two pronuclei approximately at the center
of the zygote, the actual number and positions of pronuclei in the image can
not be assumed known;

– the edges of the pronuclei are weak, and their internal region is very similar to
external texture; moreover, pronuclei images may partially or totally overlap,
and/or appear out-of-focus;

– some structures, such as vacuoli, are extremely similar to pronuclei, but have
a completely different clinical meaning.

Therefore, we implemented a supervised segmentation technique, in which the
user is required to click at the center of each pronucleus, which is then seg-
mented. Still, overlap and weak edges cause localized segmentation errors in
a small number of cases. We handle these by allowing the user to adjust the
segmentation by clicking on a point on the expected contour; the contour is im-
mediately rerouted after setting the energy of the corresponding point to 0, then
recomputing minimum-cost paths on the modified graph; this can be iterated if
necessary.

5 Experimental Results

In order to quantitatively evaluate the effectiveness of the technique, we applied
the presented algorithms to the tasks described in the paper. The images were
acquired with a 0.35 megapixel JVC camera attached to an Olympus IX-51
inverted microscope equipped with a 20x or 40x objective and HMC.

Ground truth is obtained by manually segmenting the structures in each im-
age, thus obtaining a binary mask T representing the interior of each structure.

For a given computed segmentation, represented by a binary mask M , we
consider the Jaccard quality metric q = |T∩M|

|T∪M| 0 ≤ q ≤ 1, which approaches 1
for better segmentations. We also measure the average distance da and maxi-
mum distance dm between the true boundary and the computed one, as well as
the relative error in the measured area ea, and absolute error in the measured
eccentricity ee.

We evaluate the results obtained by minimizing the energy term E presented
in (2). In addition, in order to test the effectiveness of the lighting priors, we
also show results obtained by using two alternative energy terms, which do not
include lighting cues:
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(a) noise (b) defocus (c) overexposure

Fig. 5. Average segmentation quality q for zygote segmentation, with varying amounts

of degradation. Using enegy E (yellow line), Eρ (thick red line), EG (thin red).

Eρ(θ, ρ) = P (|Gρ (J (θ, ρ))|) , which only considers gradients in the radial direc-
tion, without discriminating the sign (i.e. disregarding the expected appearance
of the edge); and
EG(θ, ρ) = P (|G (J (θ, ρ))|) , which considers the gradient magnitude only, dis-
regarding both its sign and its direction.

5.1 Zygote Segmentation

The dataset is composed by 78 zygote images. The results are shown in the table
below:

q da dm ea ee

pixels fraction of R pixels fraction of R

E 0.9613 2.7065 0.0208 4.0438 0.0311 0.0131 0.0491
Eρ 0.9201 6.8936 0.0530 8.5208 0.0655 0.0757 0.0645
EG 0.8665 11.4400 0.0880 13.4744 0.1036 0.1589 0.0594

Moreover, we stress-tested our technique by simulating variable amounts of
additive white gaussian noise, overexposure, and defocus3 blur (Figure 5 a,b,c).

The results demonstrate that even in challanging conditions, the zygote seg-
mentation can be performed completely automatically, robustly and with a good
accuracy. This also illustrated in Figure 6.

5.2 Segmentation of Pronuclei

For pronuclei segmentation, we used the same dataset described in the previous
section, excluding 9 images where no pronuclei were present.

Our software provides a zoomed view of the zygote after the previously-
described segmentation phase, and the user is required to click on the center
3 Defocus blur is simulated by convolution with a disk-shaped kernel, which differs

from what would occur in a real microscope, where different parts of the cell would

come into focus.
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(a) (b) (c)

Fig. 6. (a) shows the segmentation obtained using the lighting-aware energy measure

E (yellow), versus measures Eρ (thick red) and EG (thin red), which are easily misled

by artifacts surrounding the cell. (b) shows a failure of our technique (about 15 pixels

of error at the bottom of the cell); the failure is due to the recovered approximate cell

center (blue dot) being quite displaced. A larger θn/ρn ratio would fix this problem.

(c) shows our technique working on an ovocyte (not a zygote), which however has a

regular enough appearance to be detected and correctly segmented.

of each of the pronuclei; we measured an average error in this phase of about 6
image pixels (which correspond to about 30 screen pixels in the zoomed view),
when the user is not required to be particularly careful. In our validation, the
user initialization for the pronucleus center is simulated by randomly choosing
a pixel within a 12 image-pixel distance from the actual centroid; the operation
is repeated 5 times for each of the 69 images available.

We consider that a pronucleus is segmented correctly when the Jaccard co-
efficient is larger than 0.9. In 86% of the images, both pronuclei are segmented
correctly; in 8% of the images, a correct segmentation of both pronuclei is ob-
tained after one or two additional clicks, in order to correct segmentation errors
(see Section 4). The remaining 6% of the images required more than two clicks on
the observed contour of the pronuclei, in order to obtain a correct segmentation
of both.

6 Conclusions

We presented a practical edge-based technique for precisely segmenting zygotes,
by taking advantage of the peculiar appearance of HMC lighting, which signif-
icantly increases the robustness of the system. The technique is easily imple-
mented and not computationally expensive.

The technique is not only useful for directly measuring relevant features: in
fact, we are currently using this for automatically initializing iterative techniques
for solving more complex problems, such as detection of nucleoli inside pronuclei,
or measurements on the zona pellucida around the zygote contour; also, our
technique is useful for automatically detecting the presence of the zygote in
the microscope field of view, which is an important prerequisite for unattended
zygote imaging within an automated microscopy system.
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Abstract. This paper proposes a method for rapidly reconstructing 3D

models of the spine from two planar radiographs. For performing 3D

reconstructions, users only have to identify on each radiograph a spline

that represents the spine midline. Then, a statistical articulated model

of the spine is deformed until it best fits these splines. The articulated

model used on this method not only models vertebrae geometry, but

their relative location and orientation as well.

The method was tested on 14 radiographic exams of patients for which

reconstructions of the spine using a manual identification method where

available. Using simulated splines, errors of 2.2±1.3mm were obtained

on endplates location, and 4.1±2.1mm on pedicles. Reconstructions by

non-expert users show average reconstruction times of 1.5min, and mean

errors of 3.4mm for endplates and 4.8mm for pedicles.

These results suggest that the proposed method can be used to re-

construct the human spine in 3D when user interactions have to be

minimised.

1 Introduction

Three-dimensional reconstructions of the spine are required for evaluating spinal
deformities, such as scoliosis. These deformities have a 3D nature that cannot
be conveniently assessed by planar radiography. Clinical indexes that may only
be measured with 3D models include, for example, the maximum plane of curva-
ture [1], but there are several others that cannot be accurately quantified using

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 586–595, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Fast 3D Reconstruction of the Spine Using User-Defined Splines 587

planar radiography, such as the axial rotation of vertebrae. On the other hand,
3D imaging techniques (i.e. Computer Tomography (CT) and Magnetic Reso-
nance Imaging (MRI)) are not suitable because they require patients to be lying
down, which alters the spine configuration. Additionally, they are more expen-
sive and, in the case of CT, the doses of radiation required for a full scan are too
high to be justified for multiple follow-up examinations. For all those reasons,
3D reconstructions of the spine are usually done using two (or more) planar
radiographs.

Three-dimensional reconstruction of the spine using radiographs is usually
done by identifying a predefined set of anatomical landmarks in two or more
radiographs. In [2] a set of 6 stereo-corresponding points per vertebra is required
to be identified, and in [3] this set is increased even more to enable identifying
landmarks that are visible in only one of the radiographs. These methods require
expert users and, additionally, they are very time-consuming, error-prone and
user-dependent. In [4] the time required by a user to reconstruct a 3D model was
decreased to less than 20min by requiring a set of 4 landmarks per vertebra in
each radiograph. However, this amount of user interaction is still high for clinical
routine use.

Very recently, new methods are arising that try to reduce user interaction by
requesting the identification of the spine midline on two radiographs, and make
use of statistical data for inferring the shape of the spine. This is the case of [5]
where, besides the splines, two additional line segments are needed for achieving
an initial reconstruction. Then, several features are manually adjusted that are
used along with the initial input for producing the final model. This processes
requires an average time of 2.5min, although users may refine reconstructions,
increasing interaction time to 10min. Kadoury et al. also proposed using a sta-
tistical approach to obtain an initial model of the spine from two splines, which
is then refined using image analysis [6]. However, this study only uses the spine
midline as a descriptor to get the most probable spine shape for that midline.
While this is acceptable, there may be a range of spine configurations for the
same spline. Additionally, in both studies, the authors do not make a complete
use of the user input, since the control points that the user marks for identify-
ing the spine midline are ignored, while they may carry information about the
location of some vertebrae. Finally, the statistical models of this studies do not
conveniently explore the inter-dependency of position and orientation between
vertebrae.

In this paper, we propose a method for reconstructing the spine from its
midline that uses an articulated model [7] for describing anatomical variability.
This model effectively represents vertebrae inter-dependency and it has already
demonstrated capabilities for inferring missing information [8]. The model is
then deformed using an optimisation process for fitting the spine midline while
making use of all the information that the user inputs, that is, the location of the
control points that define the midline are used for controlling the deformation
of the statistical model.
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2 Methods

2.1 Articulated Model of the Spine

Statistical models of anatomical structures are often composed by a set of land-
marks describing their geometry. In the case of the spine, this could be done
by using a set of landmarks for each vertebra. However, the spine is a flexible
structure. The position and orientation of the vertebrae are, therefore, not inde-
pendent. Capturing the spine as a cloud of points does not differentiate vertebrae
and, consequently, information is lost that may be important to capture spinal
shape variability and vertebrae inter-dependencies.

For tackling this problem, Boisvert et al. proposed the use of articulated mod-
els [7]. These models capture inter-vertebral variability of the spine geometry by
representing vertebrae position and orientation as rigid geometric transforma-
tions from one vertebra to the other along the spine. Only the first vertebra (e.g.
L5) has an absolute position and orientation, and the following vertebrae are
dependent from their predecessors. This may be formalised as:

T abs
i = T1 ◦ T2 ◦ · · ·Ti, for i = 1..N, (1)

where T abs
i is the absolute geometric transformation for vertebra i, Ti is the

geometric transformation for vertebra i relative to vertebra i − 1 (with the ex-
ception of the first vertebra), ◦ is the composition operator, and N is the number
of vertebra represented by the model.

In order to include data concerning vertebrae morphology, a set of landmarks
is mapped to each vertebra in the vertebrae coordinate system, which has its
origin at the vertebral body centre. The absolute coordinates for each landmark
may be calculated using the following equation:

pabs
i,j = T abs

i � pi,j , for i = 1..N, j = 1..M, (2)

where pabs
i,j are the absolute coordinates for landmark j of vertebrae i, pi,j are the

relative coordinates, � is the operator that applies a transformation to a point,
and M is the number of landmarks per vertebra.

The method proposed on this paper uses an articulated model of the spine
composed by N = 17 vertebrae (from L5 to T1) with M = 6 landmarks per
vertebra (centre of superior and inferior endplates (j = 1..2), and the superior
and inferior extremities of the pedicles (j = 3..6)).

2.2 User Input

User input is limited to identifying the spine midline in two different views using
parametric splines like illustrated by figure 1. Both splines should begin at the
centre of the superior endplate of vertebra T1 and should end at the centre of
the inferior endplate of L5. These are the only landmarks that must be present
in both radiographs, all the other control points may be identified in only one
radiograph without having a corresponding point in the other.
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Fig. 1. Graphical user interface designed for defining the splines

In order to impose restrictions concerning vertebrae location, users are asked
to mark all the control points in the centre of the vertebral bodies (with the
exception of T1 and L5). In fact, there is a natural tendency for users to place
control points on the centre of vertebral bodies, even when not asked to, and
this way splines also carry information about the location of some vertebrae.

2.3 Fitting the Articulated Model to the Splines

For fitting the model to the splines, an optimisation process is used that iter-
atively deforms the articulated model and projects the anatomical landmarks
on both radiographs simultaneously, towards reducing the distance between the
projected landmarks of the model and the splines. Principal Components Anal-
ysis (PCA) is used for reducing the number of dimensions of the articulated
model, while capturing the main deformation modes. Using PCA in a linearised
space, a spine configuration x = [T1, . . . , TN , p1,1, . . . , pN,M ], may be generated
using the following equation:

x = x̄+ γd, (3)

where x̄ is the Frechét mean of a population of spines represented by articulated
models [7], γ are the principal components coefficients (calculated using the co-
variance matrix of the same population), and d is the parameter vector that
controls deformations. The absolute position of every landmark for any config-
uration x may be obtained by applying equation 1 (for calculating the absolute
transformations) and then equation 2.

The goal of the optimisation process is finding the values of d that gener-
ate the spine configuration that best fits the splines of both radiographs. For
calculating the distance between the articulated model and the splines, we pro-
pose projecting to both radiographs the landmarks of the articulated model that
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define the spine midline. This midline may be represented as a subset of pabs

where only the landmarks of the centres of endplates are used:

q =
{
pabs

i,j : ∀i, j ∈ {1, 2}
}
. (4)

From q, projections of the midline landmarks, q2D
1 and q2D

2 , may be calculated
for the two calibrated radiographs respectively. This is illustrated on figure 2
where it is possible to see the user-identified splines and the projections of the
spine midline of the articulated model for the two radiographs.

At this stage, the user input and the articulated model are in the same dimen-
sional space (2D), and both may be represented by splines. However, it is not
straightforward to quantify the distance between the two since the user splines
may have a different length than the spine midlines of the articulated model
(q2D

k ). For tackling this, we first project q2D
k to the one dimensional space defined

by the spline that has q2D
k as control points and normalise this 1D projections

to the spline length. This may be formalised in the following way:

αk,l =
length(q2D

k , 1, l)
length(q2D

k , 1, 2N)
for k = 1..2, l = 1..2N, (5)

where length(q2D
k , a, b) is the function that calculates the length of the segment

of spline q2D
k delimited by control points a and b. Vector α is independent of the

spline length and, thus, it may be used for mapping the projected spine midlines
of the articulated model with the splines identified by the user (figure 2a). This
enables to define the following cost function:

C =
2∑

k=1

2N∑
l=1

∥∥q2D
k,l − (sk # αk,l)

∥∥2 , (6)

where sk represents the user spline for radiograph k, and # is the operator that
maps 1D normalised coordinates of a given spline to 2D coordinates. This func-
tion is minimised using Matlab’s implementation of the trust-region-reflective
method [9] for nonlinear least-squares problems.

2.4 Optimising Vertebrae Location

The fitting process just presented only enables to capture the spine shape by
placing vertebrae in their probable location along the spine midline, which may
not be the correct one. For improving this issue without requesting additional
information to the user, we make use of the location of the control points of the
splines, which are placed at the centre of vertebral bodies (with the exception
of the first and the last control points). Using this specific anatomical position
enables us to know that there is a vertebra at the control point location. However,
the vertebra identification is unknown, and, therefore, it is not possible to know
for sure which vertebra in the articulated model should be attracted by a given
control point.
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Fig. 2. Fitting the articulated model to the splines: a) The spine midline of the 3D

articulated model (AM) is projected to both radiographs (frontal and lateral). The

1D normalised coordinates (α) of the landmarks that compose the 2D spine midline

are used for mapping the articulated model with the user splines. b) Control points

attract the nearest vertebra of the articulated model (each vertebra is represented by

the centre of its endplates, with the exception of T1 and L5).

For tackling this issue, after a first optimisation with the previously presented
process, for each control point, the two nearest vertebrae of the articulated model
are selected as candidates. Then, the nearest candidate is elected if the level of
ambiguity is low enough. This may be formalised on the following way:

2dm,1

dm,1 + dm,2
≤ ω, (7)

where dm,1 is the distance of control point m to the nearest candidate of the
articulated model, dm,2 is the distance to the second nearest candidate, and ω
is a threshold that defines the maximum level of ambiguity allowed. Ambiguity
takes the value of 1 when the candidates are equidistant to the control point
(total ambiguity), and takes the value of 0 when the nearest candidate is in the
exact location of the control point (no ambiguity).

After determining the set of elected candidates, E, the optimisation process
is repeated, but now including a second component that is added to equation 6
that attracts the elected vertebrae of the articulated model towards their corre-
spondent control points (figure 2b):

C =
2∑

k=1

2N∑
l=1

∥∥q2D
k,l − (sk # αk,l)

∥∥2 +
∑
m∈E

‖dm,1‖2 . (8)

When the second optimisation finishes, the vertebrae location of the articulated
model should be closer to their real position, and some of the ambiguities may be
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solved. Therefore, several optimisation processes are executed iteratively while
the number of elected candidates, E, increases.

Concerning the value of ω, using a low threshold of ambiguity may result in
a considerable waste of control points due to an over-restrictive strategy. On the
other hand, a high threshold of ambiguity may produce worst results, especially
when there are control points placed on erroneous locations. For overcoming this is-
sue, a dynamic thresholding technique is used that begins with a restrictive thresh-
old (ω = 0.60), and when no candidates are elected the threshold is increased (by
0.10) up to a maximum threshold of ambiguity (ω = 0.80). If there are any control
points still ambiguous at this stage, they are considered to be unreliable.

3 Experiments and Results

For all experiments a data set of 14 in vivo exams of scoliotic patients was used.
All exams were composed of at least one posterior-anterior (PA) and one lateral
(LAT) radiograph. The 6 anatomical landmarks were previously identified on
both PA and LAT radiographs by an expert and 3D reconstructions of the land-
marks were available. These reconstructions were obtained using a previously
validated method [10] and were used as reference on this study.

The articulated model that was used in all experiments was built using 291
exams. The principal components that explained 95% of the data variability
were extracted, resulting in a model with 47 dimensions.

3.1 Evaluation Using Simulated Splines

The first experiment consisted of evaluating the proposed method using perfectly
marked splines for determining the expected error in ideal conditions. For this,
splines with 6 control points were built using the available 2D hand-marked
points. In particular, the centre of the superior endplate of T1 (first control point
of splines) and the centre of the inferior endplate of L5 (last control point) were
copied from the original 2D points. Then the centre of the vertebral body of the
remaining vertebrae was calculated using the average location of the centres of
both endplates. Finally, for each exam, and for each radiograph, 4 vertebral body
centres were selected as control points of the spline in order to best fit all the
endplates’ centres that were manually identified by an expert. Reconstructions
with these splines resulted on an error of 2.2±1.3mm for the endplates and
4.1±2.1mm for pedicles (mean ± S.D.).

For determining the effect of identification errors of the control points on the
quality of reconstructions, a second experiment was made where Gaussian noise
with standard deviation up to 8 pixels was introduced to the 2D coordinates of
the control points. Results of this experience are presented in figure 3.

3.2 Evaluation Using Manually Identified Splines

The last experience concerned evaluating the method performance when using
splines manually identified by non-experts. For conducting it, 2 volunteers with
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Fig. 3. Effect of simulated Gaussian noise added to the 2D location of the control

points of the splines (reconstruction errors for: left – endplates; right: – pedicles)

Table 1. Results for the experiment with splines identified by non-experts with 20min

of training. Mean values (± S.D. for input and reconstruction errors). Number of C.P.

is the average number of control points used for identifying the splines.

User Number
Input error (pixels)

Reconstruction
Reconstruction Error (mm)

of C.P. Spline C.P. Time (min:s) Endplates Pedicles

A 6.1 6.3±5.7 5.9±5.4 1:22 3.4±1.9 4.8±2.5

B 5.5 5.2±5.0 8.7±8.6 1:32 3.4±2.0 4.8±2.6

very limited knowledge of the spine radiological landmarks marked the same 14
exams that were used in the previous experiments. Both of them only had 20min
of training with the software tool before performing the experiment. Results of
this experiment are presented in table 1, including the average time needed for a
reconstruction. The presented times are dominated by user interaction since the
average processing time is approximately 10s (on a Pentium Dual Core of 1.86
GHz). Additionally, the input error of each spline was calculated in two ways: a)
Spline error: the distance between every endplate centre of the 2D reference data
and the nearest point of the spline, and b) Control Points error: the distance
between the control points coordinates and their ideal location. Figure 4 shows
reconstructions of the proposed and reference methods for an average case.

4 Discussion and Conclusion

The method proposed here achieves 3D reconstructions of the spine by only
requiring the identification of two splines by an user. Results with simulated
splines composed by 6 control points were compared with the reference method,
which needs 102 points per radiograph to be manually identified. The proposed
method showed errors near of the in vitro accuracy of the reference method [10]
for the endplates (2.2±1.3mm vs 1.5±0.7mm), but higher errors for pedicles
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Fig. 4. Comparison of a reconstruction using the proposed method (solid line) with

the reference method (dashed line) for an average case of manual identification by

non-experts (endplates error– 3.2mm; pedicles error – 4.8mm)

(4.1±2.1mm vs 1.2±0.7mm). We believe that this happens because there is no
direct input from the user concerning the localisation of pedicles, and therefore
pedicles position and vertebrae axial rotation are completely inferred from the
spine curvature.

Simulations considering artificial noise (figure 3) show a robust behaviour with
a standard deviation of the noise up to 4 pixels. After this, the curve becomes
steeper, especially on the 95th percentile of the endplates error. It is also visible
that identification errors have an higher impact on the accuracy of the endplates
position than on pedicles, which is natural since the endplate position is much
more dependent of the user input. Nevertheless, reconstruction errors of the
endplates with noise of 8 pixels are comparable to pedicle errors with no noise.

Experiments with non-expert users revealed an average user time inferior to
1.5min, which is an advance in comparison with the previous generation of recon-
struction algorithms. Reconstruction errors are mainly influenced by the quality
of the user input either on the accuracy of the spline midline (higher on user A),
or in the identification of the precise location of the control points (mainly on
user B). In spite of this variability on the dominant source of error, reconstruc-
tion errors were comparable for both users. These errors are not comparable with
reconstructions performed by experts, but show that a rough initial estimation
is at the reach of ordinary users. This is especially visible on figure 4 where it
is noticeable that despite the visible input error, vertebrae location is quite ac-
curate given the small amount of user input. Additionally, using more than one
user on this experiment gives more credibility to the obtained results, and the
fact that reconstruction errors were very similar for both users makes us believe
that these results may be generalised. Future work will include thorough tests
with even more users to reinforce these conclusions.

We believe that in future assessments of the method with an expert user, the
results will be closer to the results achieved with simulated splines. Additionally,
using more control points may improve the location of endplates, which creates a
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tradeoff between accuracy and user interaction. However, additional information
will be needed for accurately locating pedicles. Future work includes determining
the impact of knowing the location of small sets of pedicles landmarks, which
may be either identified by users or by image segmentation algorithms.
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High-Quality Rendering of Varying Isosurfaces
with Cubic Trivariate C1-Continuous Splines

Thomas Kalbe, Thomas Koch, and Michael Goesele

GRIS, TU Darmstadt

Abstract. Smooth trivariate splines on uniform tetrahedral partitions

are well suited for high-quality visualization of isosurfaces from scalar

volumetric data. We propose a novel rendering approach based on spline

patches with low total degree, for which ray-isosurface intersections are

computed using efficient root finding algorithms. Smoothly varying sur-

face normals are directly extracted from the underlying spline representa-

tion. Our approach is using a combined CUDA and graphics pipeline and

yields two key advantages over previous work. First, we can interactively

vary the isovalues since all required processing steps are performed on

the GPU. Second, we employ instancing in order to reduce shader com-

plexity and to minimize overall memory usage. In particular, this allows

to compute the spline coefficients on-the-fly in real-time on the GPU.

1 Introduction

The visualization of discrete data on volumetric grids is a common task in var-
ious applications, e.g., medical imaging, scientific visualization, or reverse engi-
neering. The construction of adequate non-discrete models which fit our needs
in terms of visual quality as well as computational costs for the display and
preprocessing is an interesting challenge. The most common approach is tri-
linear interpolation [1,2], where the tensor-product extension of univariate linear
splines interpolating at the grid points results in piecewise cubic polynomials.
A sufficiently smooth function is approximated with order two, but in general,
reconstructions are not smooth and visual artifacts, like stair-casing or imper-
fect silhouettes, arise. However, the simplicity of this model has motivated its
widespread use. Tri-quadratic or tri-cubic tensor-product splines can be used to
construct smooth models. These splines lead to piecewise polynomials of higher
total degree, namely six and nine, which are thus more expensive to evaluate.

In order to alleviate these problems, we use cubic trivariate C1-splines [3] for
interactive visualizations of isosurfaces from volumetric data with ray casting.
The low total degree of the spline pieces allows for efficient and stable ray-patch
intersection tests. The resulting spline pieces are directly available in Bernstein-
Bézier–form (BB-form) from the volumetric data by simple, efficient and local
averaging formulae using a symmetric and isotropic data stencil from the 27-
neighborhood of the nearest data value. The BB-form of the spline pieces has
several advantages: well-known techniques from CAGD, like de Casteljau’s al-
gorithm and blossoming, can be employed for efficient and stable evaluation of

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 596–607, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Blending of different isosurfaces from real-world data sets. From left to right :
VisMale (2563 voxels), Tooth (2562 × 161 voxels), and Foot (2563 voxels). VisMale

and Tooth are smoothed with a Gaussian filter on the GPU. Choosing the desired

isosurfaces and smoothing to an appropriate degree is an interactive process.

the splines. The derivatives needed for direct illumination are immediately avail-
able as a by-product. The convex hull property of the BB-form allows to quickly
decide if a given spline patch contributes to the final surface.

A first GPU implementation for visualization with cubic trivariate splines has
been given by [4]. Data streams of a fixed isolevel were prepared on the CPU and
then sent to the GPU for visualization. This pre-process, which takes a couple of
seconds for medium-sized data sets (≥ 2563 data values), has to be repeated for
each change of isolevel. However, in many applications it is essential to vary the
isosurface interactively in order to gain deeper understanding of the data (see
Fig. 1). In this work, we significantly accelerate the pre-process using NVIDIA’s
CUDA framework and achieve reconstruction times which are even below the
rendering times of a single frame. In addition, current innovations of the graphics
pipeline in Shader Model 4.0, like instancing, allow us to compute all necessary
spline coefficients on-the-fly directly in the vertex shader. Therefore, we do not
need to inflate the data prior to visualization, but merely store the volume data as
a texture on the GPU. In addition, geometry encoding is simplified and memory
overhead is reduced. Combining these contributions, we significantly improved
the usability of high-quality trivariate splines in real-world applications.

2 Related Work

Techniques for visualizations of gridded scalar data can be categorized into two
general classes. Full volume rendering, where the equations of physical light
transport are integrated throughout the volume, commonly along viewing rays,
and the somewhat less complex isosurfacing. In the latter case, we are inter-
ested in the zero contour of a continuous implicit function which approximates
or interpolates the discrete values given at the grid points. We can classify isosur-
facing further into methods that obtain discrete representations of the surfaces,



598 T. Kalbe, T. Koch, and M. Goesele

e.g., triangle meshes. A standard approach in this area is marching cubes [5].
Alternatively, we are only interested in visualizations of the isosurfaces, which is
often done by ray casting, where the first intersection of each viewing ray with the
surface is determined for later illumination. The recent development of graphics
processors has been a massive impulse for interactive volume graphics on con-
sumer hardware (see [6] for a survey). Interactive techniques exist for full volume
rendering, isosurface visualization and reconstruction, e.g, [7,8,9,10]. Still, most
of these approaches are based on tri-linear interpolation and therefore trade vi-
sual quality in favor of rendering speed. Gradients can be pre-computed at the
grid points, at the cost of increased memory and bandwidth consumption. Alter-
natively, the gradients are computed on-the-fly using central differences, which is
an expensive operation. Either way, the obtained gradients are not smooth, and
visual artifacts arise. To circumvent these problems, higher-order filter kernels,
e.g., smooth tri-cubic or tri-quartic box splines, have been proposed [2,11]. One
of the few successful implementations of interactive isosurface visualization with
higher order filtering has been given by [12]. These splines lead to polynomials of
total degree nine, for which no exact root finding algorithms exist. Furthermore,
data stencils are large (usually the 64-neighborhood), and important features
might be lost resulting from the large support of the filter kernels.

We use smooth trivariate splines defined w.r.t. uniform tetrahedral partitions.
Here, the filter kernels are small and isotropic. Since the total degree of the
polynomial pieces does not exceed three, we can choose suitable starting values
for an iterative root finding algorithm, such that precise intersections with the
isosurface are obtained in a stable and efficient way. No further refinements, e.g.,
near the surface’s silhouette, are needed. For an example see Fig. 7, right. An
approach for interactive visualization using trivariate splines, has been given by
[4]. While this work was the first to allow for real-time rendering of up to millions
of smoothly connected spline patches simultaneously, it is based on the common
principles described by, e.g, [13,14,15]. These methods project the bounding
geometry of the polynomials in screen space and perform intersection tests and
illumination during fragment processing. [4] rely on a CPU preprocessing of the
data for each change of isovalue, which can be done only off-line. Furthermore,
memory requirements for the storage of spline coefficients are substantial. In this
paper, we shift the preprocessing to the GPU in order to allow for an interactive
change of isosurface. To do that, we use parallel prefix scans as described in
[16,17]. In addition, we show how to reduce memory overhead to a minimum
using current innovations in the graphics pipeline.

3 Trivariate Splines and the BB-Form

In this section, we give a brief outline of the basic terminology and mathematical
background of trivariate splines in BB-form on tetrahedral partitions, along with
a description of the calculation of the spline coefficients. These coefficients can
be directly obtained from the volume data by simple averaging formulae.
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ξ3000

ξ0021 ξ0012
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ξ2010

ξ1002

ξ2001

ξ1011

Fig. 2. Left : the cube partition ♦ of the domain Ω. Middle: the type-6 partition is

obtained by first subdividing each cube into six pyramids, which are then further split

into four congruent tetrahedra each. Right : the zero contour of a single cubic trivariate

spline patch s|T within it’s bounding tetrahedron T . The domain points ξijk� associated

with the BB-coefficients bijk� of the front-most triangle are shown.

3.1 Preliminaries and Basic Notation

For n ∈ N let V := {vijk = (ih, jh, kh) : i, j, k = 0, . . . , n} be the cubic grid
of (n + 1)3 points with grid size h = 1/n ∈ R. We define a cube partition
♦ = {Q : Q = Qijk} of the domain Ω, where each Qijk ∈ ♦ is centered at vijk

and the vertices of Qijk are (2i± 1, 2j ± 1, 2k ± 1)t · h/2, see Fig. 2, left.
We consider trivariate splines on the type-6 tetrahedral partition ∆6, where

eachQ is subdivided into 24 congruent tetrahedra. This is done by connecting the
vertices of Qijk with the center vijk . Each of the resulting six pyramids is then
further split into four tetrahedra, see Fig. 2, right. The space of cubic trivariate
C1 splines on∆6 is defined by S1

3 (∆6) = {s ∈ C1(Ω) : s|T ∈ P3, for all T ∈ ∆6},
where C1(Ω) is the set of continuously differentiable functions on Ω, P3 :=
span{xνyµzκ : 0 ≤ ν + µ + κ ≤ 3} is the 20-dimensional space of trivariate
polynomials of total degree three, and T is a tetrahedron in ∆6. We use the
BB-form of the polynomial pieces, i.e.

s|T =
∑

i+j+k+�

bijk�Bijk�, i+ j + k + � = 3,

where the Bijk� = 3!
i!j!k!�!φ

i
0φ

j
1φ

k
2φ

�
3 ∈ P3 are the cubic Bernstein polynomi-

als w.r.t a tetrahedron T = [v0,v1,v2,v3] ∈ ∆6. For each T , we set v0 to
the center of it’s cube Q, v1 to the centroid of one of the faces of Q and
v2,v3 to the vertices of Q sharing a common edge. The barycentric coordinates
φ(x) = (φ0(x), φ1(x), φ2(x), φ3(x))t of a point x = (x, y, z, 1)t w.r.t. a non-
degenerate T are the linear trivariate polynomials determined by φν(vµ) = δν,µ,
ν, µ = 0, . . . , 3, where δν,µ is Kronecker’s symbol. They are given by the linear
system of equations

φ(x) =

(
v0 v1 v2 v3

1 1 1 1

)−1

· x. (1)

The BB-coefficients bijk� ∈ R are associated with the 20 domain points ξijk� =
(iv0 + jv1 + kv2 + �v3)/3, see Fig. 2, right, and we let D(∆6) be the union of
the sets of domain points associated with the tetrahedra of ∆6. As pointed out
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Fig. 3. The masks for the coefficients associated with the domain points ξ0003 (left),

ξ0021 (middle) and ξ0111 (right) for the shaded tetrahedron in Qijk. The remaining

coefficients of ΓQijk follow from symmetry and rotations. Black dots denote data values.

by e.g. [18], the BB-form is especially useful for defining smoothness conditions
between neighboring polynomial pieces. Let T, T̃ be two neighboring tetrahedra
sharing a common face F = T ∩ T̃ = [v0,v1,v2], then a cubic spline s on T ∪ T̃
is continuous (s ∈ S0

3 ) if s|T (x) = s|T̃ (x), x ∈ F . Using the BB-form, we have
s ∈ S0

3 if bijk0 = b̃ijk0 and a continuous spline s is uniquely defined by the
coefficients {bξ : ξ ∈ D(∆6)}. Furthermore, s is C1-continuous across F iff

b̃ijk1 = bi+1,j,k,0 φ0(ṽ3) + bi,j+1,k,0 φ1(ṽ3) + bi,j,k+1,0 φ2(ṽ3) + bi,j,k,1 φ3(ṽ3), (2)

where i+ j + k = 2 and ṽ3 is the vertex of T̃ opposite to F . Smoothness of the
splines on ∆6 is thus easily described when considering only two neighboring
polynomial pieces. The complexity of the spline spaces arises from the fact that
smoothness conditions have to be fulfilled not only between two neighboring
patches, but across all the interior faces of ∆6 simultaneously.

We can evaluate a spline patch s|T (x) with de Casteljau’s algorithm. Set b[0]ijk�

= bijk�, a de Casteljau step computes b[η]
ijk�, i+j+k+� = 3−η, as the inner prod-

uct of (φ0(x), φ1(x), φ2(x), φ3(x))t and (b[η−1]
i+1,j,k,�, b

[η−1]
i,j+1,k,�, b

[η−1]
i,j,k+1,�, b

[η−1]
i,j,k,�+1)

t

with s|T (x) = b
[3]
0000. In addition, the (3 − 1)th step provides the four indepen-

dent directional derivatives
∂s|T (x)

∂φν(x)
= b[2]

ν , ν = 0, . . . , 3, (3)

where ν ∈ N4
0 is the vector with a 1 at position ν and 0 everywhere else. With

s|T = p and using the chain rule, we have

∂p(x)

∂xι
=
∑

ν

∂s|T (x)

∂φν(x)
· ∂φν(x)

∂xι
, ι ∈ 1, 2, 3, (4)

with the gradient∇s|T (x) = (∂p/∂x1, ∂p/∂x2, ∂p/∂x3)t. Since each φν is a linear
polynomial, the ∂φν/∂xι are scalar constants characterized by the barycentric
coordinates of the ιth Cartesian unit vector eι w.r.t. T .

Trivariate blossoming [19] is a generalization of de Casteljau’s algorithm,
where the arguments may vary on the different levels. For any xη, η ∈ 1, 2, 3
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with φη = φ(xη), we denote the blossom of s|T as bl[φ1,φ2,φ3], meaning that
the first step of de Casteljau’s algorithm is carried out with φ1, the second step
with φ2 and the third with φ3. It is easy to see that bl[φη,φη,φη] = s|T (xη).
In addition, the blossom is multi-affine

bl[. . . , α · φη + (1 − α) · φ̄η, . . .] = α · bl[. . . , φη, . . .] + (1 − α) · bl[. . . , φ̄η, . . .], (5)

for α ∈ R, and symmetric, i.e., for a permutation σ = (σ(1), σ(2), σ(3)) we have

bl[φ1, φ2, φ3] = bl[φσ(1), φσ(2), φσ(3)].

These properties of the blossom enable us to find intersections of rays with a
spline patch in an efficient way, see Sect. 4.4.

3.2 The Approximating Scheme

For smooth approximations of the given data values f(vijk), associated with the
grid points vijk , we use quasi-interpolating cubic splines as described in [3], which
approximate sufficiently smooth functions with order two. The BB-coefficients bξ
for each tetrahedron are directly available from appropriate weightings of the
data values in a symmetric 27-neighborhood of the centering data value f(vijk),

bξ =
∑

i0,j0,k0

ωi0j0k0f(vi+i0,j+j0,k+k0), i0, j0, k0 ∈ {−1, 0, 1},

where the ωi0j0k0 ∈ R are constant and positive weights. A determining set
Γ ⊆ D(∆6) is a subset of the domain points with associated BB-coefficients, from
which the remaining coefficients for each s|T can be uniquely identified from the
smoothness conditions. We use a symmetric determining set ΓQ for each Q ∈ ♦,
formed by the coefficients associated with the domain points ξ00k�

⋃
ξ0111, where

k + � = 3. For a tetrahedron, ξ0030 and ξ0003 are vertices of Q, ξ0021 and ξ0012
are on the outer edges of Q, and ξ0111 corresponds to the centroid of the face
v1,v2,v3. We show the weights for the coefficients of the determining set in
Fig. 3. The weights for the remaining coefficients follow from the smoothness
conditions (see Eq. 2) and can also be found in [3,4].

4 Trivariate Splines – GPU Visualization

In this section, we give an overview of our GPU-algorithm for efficient visual-
ization of varying isosurfaces, see also Fig. 4, left. In the first part, we use a set
of CUDA kernels, which are invoked for each change of isolevel or data set. The
kernels determine all the tetrahedra which can contribute to the final surface
and prepare the appropriate data structures. The second part uses vertex and
fragment programs for the visualization of the surface in a combined rasteriza-
tion / ray casting approach. For a 2-dimensional example of the visualization
principle see Fig. 4, right top. For each active tetrahedron, i.e., tetrahedra con-
tributing to the surface, the bounding geometry is processed in the OpenGL
pipeline. The vertex programs initialize various parameters, such as the viewing
rays, the BB-coefficients and appropriate barycentric coordinates. The fragment
programs then perform the actual ray-patch intersection tests.
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Fig. 4. Left : Overview of our our GPU algorithm. The CUDA part specifies the relevant

cubes and tetrahedra, respectively, when the isovalue or data set is modified. The

visualization is using the rendering pipeline. Right top: 2-dimensional illustration of

the ray casting principle. On each triangle satisfying the convex hull property (dark

shaded), the corresponding BB-curve is intersected with the viewing rays. Right bottom:

parallel stream compaction with prefix scans. For each entry with a 1 in Qclass, Qscan

contains an unique address into the compressed array Qactive. The sum of the last

entries of Qclass and Qscan gives the size of Qactive. Illustration based on [17].

4.1 The CUDA Kernels

For each Q ∈ ♦, we first start a kernel thread that computes the coefficients
for the determining set ΓQ, from which the remaining coefficients can be found
quickly using simple averaging. The cube classification tests if the coefficients
of ΓQ are either below or above the isolevel. In this case, it follows from the
convex hull property of the BB-form that the patches in Q cannot contribute
to the surface and we can exclude Q from further examination. Otherwise, Q
contains at least one tetrahedron with a visible patch. The result of the classifi-
cation is written in the corresponding entry of a linear integer array Qclass of size
(n+ 1)3: we write a 1 in Qclass if Q passes the classification test and a 0 other-
wise. From this unsorted array Qclass, we construct a second array Qscan of the
same size using the parallel prefix scan from the CUDA data parallel primitives
(CUDPP) library. For each active cube, i.e., cubes with a 1 in Qclass, Qscan then
contains an unique index corresponding to the memory position in a compacted
array Qactive. Since we use an exclusive prefix scan, the sum of the last entries
of Qclass and Qscan gives the number of active cubes a for the surface. In the
compaction step, we reserve memory for the array Qactive of size a. For each
active Qijk, we write the index i + j · (n + 1) + k · (n + 1)2 in Qactive at the
position given by the corresponding entry of Qscan, see Fig. 4, right bottom.
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Similarly, we perform a compaction for the active tetrahedra. Since we use
instancing for later rendering of the tetrahedra, we reserve 24 arrays Tclass,i,
where each Tclass,i has size a and corresponds to one of the 24 different orienta-
tions of tetrahedra in ∆6. For each active cube Q, a kernel thread performs the
classification for T0, T1, . . . , T23 ∈ Q, now using the convex hull property of the
BB-form on the tetrahedra. Note that the BB-coefficients for Q have to be cal-
culated only once and are then assigned to the corresponding domain points on
the tetrahedra using a constant lookup table. The following stream compaction
works exactly as described above, except that here we use 24 distinct arrays
Tscan,i, and the compaction is performed by a set of 24 kernels (one for each
type of tetrahedron), which write their results into the arrays Tactive,i. These ar-
rays are interpreted as pixel buffer objects, which can be directly used to render
the bounding geometry of the spline patches.

4.2 Geometry Instancing Setup

The 24 arrays Tactive,i give us all the information needed to visualize the surface.
In order to encode the necessary bounding geometries, i.e., the active tetrahedra,
in the most efficient way, we construct a triangle strip for each generic tetrahe-
dron of ∆6 in the unit cube [−0.5, 0.5]3. These 24 triangle strips are then stored
as separate vertex buffer objects (VBOs). Each VBO is used to draw all the
active tetrahedra of it’s type with a call to glDrawArraysInstanced, where the
number of tetrahedra is given by the size of Tactive,i.

4.3 Vertex Shader Computations

We use 24 different shader sets, one for each of the different types of tetrahedra.
Since each tetrahedron has it’s dedicated vertex and fragment programs, we can
avoid conditional branches. For every vertex vµ, µ = 0, 1, 2, 3, of a tetrahedron T ,
the vertex program first determines T ’s displacement vQ from a texture reference
into Tactive,i. For later computation of the ray-patch intersection (see Sect. 4.4),
we find the barycentric coordinates φν,µ, ν = 0, 1, 2, 3 as φν,µ(vµ) = δν,µ. In
addition, a second set of barycentric coordinates φ̄ν,µ, corresponding to the unit
length extension of the vector defined by vµ+vQ and the eye point e is computed
as φ̄ν,µ(v̄) = φ̄ν,µ(vµ + (vµ − (e − vQ))/||vµ − (e − vQ)||). To do this, we use
Eq. 1, where the matrices are pre-computed once for each generic tetrahedron.
The barycentric coordinates φν,µ, φ̄ν,µ are interpolated across T ’s triangular faces
during rasterization. Finally, we have to determine the 20 BB-coefficients of s|T .
This can be done in the following way: first, we read the data values f(vQ) and
it’s neighbors from the volume texture. For one patch, only 23 of the 27 values
have to be fetched, corresponding to 23 texture accesses. Then, we can directly
obtain the bijk� according to Sect. 3.2. Alternatively, we can pre-compute the
determining set for each Q in a CUDA kernel and store them as textures. Then,
only the remaining coefficients for s|T need to be computed. This method is less
memory efficient, but leads to a slightly improved rendering performance. For a
comparative analysis, see Sect. 5.
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Fig. 5. Varying isosurfaces for a synthetic function of Chmutov type, f(x, y, z) = x16 +

y16 + z16 − cos(7x) − cos(7y) − cos(7z), sampled from a sparse grid (643 data points)

with real-time reconstruction and rendering times

4.4 Fragment Shader Computations

For every fragment of a front-facing triangle, the fragment program performs the
actual ray-patch intersection. To do this, we need an univariate representation
of s|T restricted along the viewing ray. Using trivariate blossoming, we obtain an
univariate cubic BB-curve which can be easily intersected. In addition, we can re-
use intermediate results from the blossoms for quick gradient calculation and do
not need to determine the exit point of the ray w.r.t. T . Using the interpolated
barycentric coordinates φ = (φ0, φ1, φ2, φ3) and φ̄ = (φ̄0, φ̄1, φ̄2, φ̄3) obtained
from rasterization, we can read off the univariate BB-coefficients directly from
the blossoms, setting b30 = bl[φ,φ,φ], b21 = bl[φ,φ, φ̄], b12 = bl[φ̄, φ̄,φ], and
b03 = bl[φ̄, φ̄, φ̄], see Sect. 3. Since intermediate results can be re-used, the first
step of de Casteljau’s algorithm, which accounts for ten inner products each,
has to be performed for φ and φ̄ only once. We proceed in the same way for
the second de Casteljau step with b

[1]
ijk�(φ) (resulting from the first step with φ)

and φ, as well as b[1]ijk�(φ̄) and φ̄, where i + j + k + � = 2, using in total eight
inner products. Finally, the blossoms are completed with four additional inner
products using b[2]ijk�(φ) and b

[2]
ijk�(φ̄), i+ j + k + � = 1, which correspond to the

remaining de Casteljau steps on the last level.
Next, the monomial form of the BB-curve,

∑3
i=0 xi · ti, is solved for the ray pa-

rameter t. There exist several ways to find the zeros of a cubic equation. [14] choose
an analytic approach, whereas [15] apply a recursive BB-hull subdivision algo-
rithm. Since the first method involves trigonometric functions and the second does
not converge very quickly, we opt for an iterative Newton approach. As starting
values we choose t(0)1 = −x0/x1, t

(1)
1 = ( 1

4 (x3 + x2) − x0)/( 3
4 · x3 + x2 + x1) and

t
(2)
1 = (2 · x3 + x2 − x0)/(3 · x3 + 2 · x2 + x1). Note that this corresponds to the

first Newton iteration starting with 0, 1/2, and 1, respectively. Four additional it-
erations with t(µ)

j+1 = ((t(µ)
j )2(x2 + 2 · t(µ)

j x3)− x0)/(t
(µ)
j (2 · x2 + 3 · t(µ)

j x3) + x1),
µ = 0, 1, 2, suffice to find precise intersections without notable artifacts. For each
solution t ∈ t(µ)

5 , the associated barycentrics φ(x(t)) are found by a simple linear
interpolation with φ and φ̄. We take the first valid zero t, where all the compo-
nents of φ(x(t)) are positive, if it exists, and discard the fragment otherwise. From
the multi-affine property of the blossom (see Eq. 5), it follows that the directional
derivatives b[2]ν (φ(x(t))) (see Eq. 3) are obtained by a linear interpolation of b[1]ν (φ)
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Fig. 6. Left : MRI scan (1922 × 126 voxels) volume clipped with the plane x = 0.

Right : timings of the reconstruction process and the visualization (using pre-computed

determining sets as well as on-the-fly spline coefficient computations) for selected data

sets and isovalues c. For each data set, the number of active tetrahedra, the size of the

determining set ΓQ and for the geometry encoding Tactive, respectively, are given.

and b[1]ν (φ̄), with the ray parameter t, followed by a de Casteljau step on the sec-
ond level using φ(x(t)) Finally, we calculate the gradient for later illumination
according to Eq. 4 with three additional scalar products. Here, the ∂φν/∂xι are
pre-computed for each of the 24 different generic tetrahedra.

5 Results and Discussion

We demonstrate our results with a series of data sets: Tooth, VisMale and Foot
(see Fig. 1) are publicly available from the Universities of Tübingen and Erlan-
gen, and the US Library of Medicine. Fig. 5 is an example of synthetic data
obtained from a sparsely sampled smooth function. Fig. 6, left, shows a MRI
scan of the head of one of the authors. Finally, the Asian Dragon (Fig. 7) is gen-
erated from a signed distance function on the original triangle mesh. All results
demonstrate the high visual quality and smooth shading of our method.

Note that the low total degree of the spline patches allows us to obtain pre-
cise intersections, even for the objects’ silhouettes, without resorting to interval
refinements or similar approaches (see Fig. 7, right). Precise intersections are
also needed for procedural texturing (see Fig. 5 and 7), and for volume clipping
with arbitrary planes and surfaces (see Fig. 6, left). Furthermore, the obtained
intersections are exact w.r.t. z-buffer resolution, which allows us to combine ray-
casted isosurfaces with standard object representations, i.e., triangle meshes.

The table in Fig. 6, right, summarizes the performance for the chosen data
sets and lists typical isovalues c, the number of active tetrahedra, as well as the
size of the determining set ΓQ and the geometry encoding Tactive. Timings were
recorded on a GeForce GTX 285 and CUDA 2.2. For each data set, the first
two bars show the timings of our GPU kernels (see Sect. 4.1), which are invoked
when the surface needs to be reconstructed. The on-the-fly computation of co-
efficients is slightly faster than preparing the determining sets, since less data is
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Fig. 7. Ray casted isosurface of the Asian Dragon head (2563 voxels) with noise-based

procedural texturing. Right : close-up into the Dragons’ mouth where the C1-continuous

boundary curves on the outside of each cube of ♦ are shown in black.

written. The most expensive part in the reconstruction is the classification, i.e.,
the determination of the array Qclass. This could be improved by using appro-
priate spatial data structures, e.g., min/max octrees, but the recursive nature
of these data structures makes an efficient implementation challenging. In addi-
tion, the data structures have to be rebuilt if the data itself changes over time,
which is not necessary in our simpler approach. Still, for our largest data sets
the reconstruction times are in a range of a few hundred ms and in most cases
even below the rendering times of a single frame. Compared to former optimized
CPU reconstruction based on octrees [4], we achieve significant speed-ups of up
to two orders of magnitude.

The per-frame rendering times in Fig. 6, right, are given for a 1280×1024 view
port with the surface filling the entire screen. This corresponds to a worst-case
scenario, where all active tetrahedra need to be processed and the number of
tetrahedra is the limiting factor in both approaches (on-the-fly coefficients and
using determining sets). The bottleneck is then determined by the vertex shader
complexity. The fact that our on-the-fly vertex programs have about 1/3 more
instructions than the version using determining sets is thus directly reflected
in the rendering times. An analysis of our fragment programs with NVIDIA’s
tool ShaderPerf yields a peak performance of more than 430 Mio. fragments
per second. Thus, fragment processing is already very efficient and further im-
provements should concentrate on the vertex programs, load balancing, and the
reduction of processed geometry during rendering. E.g., for close inspections of
the surface, significant speed ups can be achieved from hierarchical view frustum
culling, where whole areas of the domain can be omitted and less tetrahedra are
processed in the pipeline. This requires splitting up the arrays Tactive based on
a coarse spatial partition of ♦. As [4] have shown, in this case we can expect
that frame-rates increase by an order of magnitude.

6 Conclusion

We have shown that interactive and high-quality visualization of volume data
with varying isosurfaces can be efficiently performed on modern GPUs. Both,
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isosurface reconstruction and rendering, are hereby performed using a combined
CUDA and graphics pipeline. Our approach benefits strongly from the mathe-
matical properties of the splines. Memory requirements for geometry encoding
are significantly reduced using instancing. The method scales well with the fast
developing performance of modern graphic processors, and will directly bene-
fit from increased numbers of multiprocessors and texture units. The proposed
algorithm can be used for an interactive variation of isolevels, as well as for appli-
cations where the data itself varies over time, e.g., simulations and animations.
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Abstract. Given a Cylindrical Algebraic Decomposition [2] of an implic-

itly defined algebraic curve, visualizing distinct curve arcs is not as easy as

it stands because, despite the absence of singularities in the interior, the

arcs can pass arbitrary close to each other. We present an algorithm to vi-

sualize distinct arcs of algebraic curves efficiently and precise (at a given

resolution), irrespective of how close to each other they actually pass. Our

hybrid method inherits the ideas of subdivision and curve-tracking meth-

ods. With an adaptive mixed-precision model we can render the majority

of curves using machine arithmetic without sacrificing the exactness of the

final result. The correctness and applicability of our algorithm is borne out

by the success of our web-demo1 presented in [11].

Keywords: Algebraic curves, geometric computing, curve rendering, vi-

sualization, exact computation.

1 Introduction

Fig. 1. “Spider”: a degenerate

algebraic curve of degree 28.

The central singularity is en-

larged on the left. Arcs are ren-

dered with different colors.

In spite of the fact that the problem of raster-
izing implicit algebraic curves has been in re-
search for years, the interest in it never comes
to an end. This is no surprise because alge-
braic curves have found many applications in
Geometric Modeling and Computer Graphics.
Interestingly enough, the task of rasterizing sep-
arate curve arcs,2 which, for instance, are use-
ful to represent “curved” polygons, has not been
addressed explicitly upon yet. We first give an
overview of existing methods to rasterize com-
plete curves. For an algebraic curve C = {(x, y) ∈ R2 : f(x, y) = 0}, where
f ∈ Q[x, y], algorithms to compute a curve approximation in a rectangular do-
main D ∈ R2 can be split in three classes.
1 http://exacus.mpi-inf.mpg.de
2 A curve arc can informally be defined as a connected component of an algebraic

curve which has no singular points in the interior; see Section 2.

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 608–619, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://exacus.mpi-inf.mpg.de


Visualizing Arcs of Implicit Algebraic Curves, Exactly and Fast 609

− pixel size

singular point

singular point
isolation
root

isolation
root

− pixel size

singular point

singular point

(a) (b) (c)

Fig. 2. (a) an attempt to cover the curve arc by a set of xy-regular domains results in a

vast amount of small boxes; (b) our method stops subdivision as soon as the direction

of motion along the curve is uniquely determined; (c) lifting curve points using root

isolation

Space covering. These are numerical methods which rely on interval analysis
to effectively discard the parts of the domain not cut by the curve and recursively
subdivide those that might be cut. Algorithms [9, 18] guarantee the geometric
correctness of the output, however they typically fail for singular curves.3 More
recent works [1,5] subdivide the initial domain in a set of xy-regular subdomains
where the topology is known and a set of “insulating” boxes of size ≤ ε enclos-
ing possible singularities. Yet, both algorithms have to reach a worst-case root
separation bound to guarantee the correctness of the output. Altogether, these
methods alone cannot be used to plot distinct curve arcs because no continuity
information is involved.

Continuation methods are efficient because only points surrounding a curve
arc are to be considered. They typically find one or more seed points on a curve,
and then follow the curve through adjacent pixels/plotting cells. Some algorithms
consider a small pixel neighbourhood and obtain the next pixel based on sign
evaluations [6, 21]. Other approaches [16, 17, 19] use Newton-like iterations to
compute the point along the curve. Continuation methods commonly break down
at singularities or can identify only particular ones.

Symbolic methods use projection techniques to capture topological events –
tangents and singularities – along a sweep line. This is done by computing Sturm-
Habicht sequences [8, 20] or Gröbner bases [7]. There is a common opinion that
knowing exact topology obviates the problem of curve rasterization. We disagree
because symbolic methods disrespect the size of the domain D due to their “sym-
bolic” nature. The curve arcs can be “tightly packed” in D making the whole
rasterization inefficient; see Figure 2 (a). Using root isolation to lift the curve
points in a number of fixed positions also does not necessarily give a correct ap-
proximation because, unless x-steps are adaptive, high-curvature points might be
overlooked, thereby violating the Hausdorff distance constraint; see Figure 2 (c).

Given a Cylindrical Algebraic Decomposition (CAD) [2] of C, for each curve
arc we output a sequence of pixels which can be converted to a polyline approx-
imating this arc within a fixed Hausdorff distance.

3 By geometrically-correct approximation we mean a piecewise linear approximation

of a curve within a given Hausdorff distance ε > 0.
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The novelty of our approach is that it is hybrid but, unlike [19], the roles of
subdivision and curve-tracking are interchanged – curve arcs are traced in the
original domain while subdivision is employed in tough cases. Also, note that, the
requirement of a complete CAD in most cases can be relaxed; see Section 3.5. We
start with a “seed point” on a curve arc and trace it in 2 opposite directions. In
each step we examine 8 neighbours of a current pixel and choose the one crossed
by the arc. In case of a tie, the pixel is subdivided recursively into 4 parts. Local
subdivision stops as soon as a certain threshold is reached and all curve arcs
appear to leave the pixel in one unique direction. From this point on, the arcs
are traced collectively until one of them goes apart. When this happens, we pick
out the right arc using a real root isolation (e.g., [14]); see Figure 2 (b).

According to our experience, the algorithm can trace the majority of curves
without resorting to exact computations even if root separation bounds are very
tight. To handle exceptional cases, we switch to more accurate interval methods
or increase the arithmetic precision.

2 Preliminaries

Arcs of algebraic curves. For an algebraic curve C = {(x, y) ∈ R2 : f(x, y) =
0} with f ∈ Q[x, y], we define its gradient vector as �f = (fx, fy) ∈ (Q[x, y])2

where fx = ∂f
∂x and fy = ∂f

∂y . A point p ∈ R2 is called x-critical if f(p) = fy(p) =
0, similarly p is y-critical if f(p) = fx(p) = 0 and singular if f(p) = fx(p) =
fy(p) = 0. Accordingly, regular points are those that are not singular.

We define a curve arc as a single connected component of an algebraic curve
which has no singular points in the interior bounded by two not necessarily reg-
ular end-points. Additionally, an x-monotone curve arc is a curve arc that has
no x-critical points in the interior.

Interval analysis. We consider only advanced interval analysis (IA) techniques
here; please refer to [13] for a concise overview. The First Affine Form (AF1) [15]
is defined as: x̂AF1 = x0 +

∑n
i=1 xiεi +xn+1ε̃, where xi are real coefficients fixed

and εi ∈ [−1, 1] represent unknowns. The term xn+1ε̃ stands for a cumulative
error due to approximations after performing non-affine operations, for instance,
multiplication. Owing to this feature, the number of terms in AF1, unlike for
a classical affine form, does not grow after non-affine operations. Conversion
between an interval [x, x] and an affine form x̂ proceeds as follows:

Interval→ AF1: x̂ = (x+ x)/2 + [(x− x)/2]εk, ε̃ ≡ 0,

AF1→ Interval: [x, x] = x0 +

(
n∑

i=1

xiεi + xn+1ε̃

)
× [−1, 1],

here k is an index of a new symbolic variable (after each conversion k gets
incremented). Multiplications on AF1 are realized as follows:

x̂ · ŷ = x0y0 +
n∑

i=1

(x0yi + y0xi)εi +

(
|x0|yn+1 + |y0|xn+1 +

n+1∑
i=1

|xi|
n+1∑
i=1

|yi|
)
ε̃.
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The Quadratic Form (QF) is an extension of AF1 that adds two new symbolic
variables ε+ ∈ [0, 1] and ε− ∈ [−1, 0] to attenuate the error when an affine form
is raised to even power, and a set of square symbolic variables ε2i to capture
quadratic errors:

x̂QF = x0 +
n∑

i=1

xiεi + xn+1ε̃+ xn+2ε
+ + xn+3ε

− +
n∑

i=1

xi+n+3ε
2
i ,

where ε2i ∈ [0, 1]. For reasons of space we refer to [15] for a complete set of
arithmetic operations on AF1 and QF.

Modified Affine Arithmetic (MAA) [12] is more precise than AF1 and QF. We
consider the 1D case here as the only relevant to our algorithm. To evaluate a
polynomial f(x) of degree d on [x, x], we denote x0 = (x+ x)/2, x1 = (x− x)/2
and Di = f (i)(x0)xi

1/i!. The interval [F ;F ] is obtained as follows:

F = D0 +

d/2�∑
i=1

(min(0, D2i)− |D2i−1|) , F = D0 +

d/2�∑
i=1

(max(0, D2i)+ |D2i−1|).

In our implementation we use all three interval methods with AF1 as a default
one and QF/MAA used in tough cases; see Section 3.5.

In order to further shrink the interval bounds we exploit the derivative infor-
mation [13]. To evaluate a polynomial f(x) on X = [x, x], we first evaluate f ′

on X using the same interval method. If the derivative is non-zero, f is strictly
monotone on X and the exact bounds are obtained as follows:

[F ;F ] = [f(x), f(x)] for f ′ > 0, [F ;F ] = [f(x), f(x)] for f ′ < 0.

The same approach can be applied recursively to compute the bounds for f ′, f ′′,
etc. Typically, the number of recursive derivatives in use is limited by a threshold
chosen empirically.

3 Algorithm

3.1 Overview

We begin with a high-level overview of the algorithm which is a further develop-
ment of [10]. After a long-term practical experience we have applied a number of
optimizations aimed to improve the performance and numerical stability of the
algorithm. In its core the algorithm has an 8-way stepping scheme introduced
in [6]; see Figure 3 (a). As the evidence of the correctness of our approach we
use the notion of a witness (sub-)pixel.

A “witness” (sub-)pixel is a box whose boundaries intersect only twice with an
arc to be plotted and do not intersect with any other arc. We implicitly assign
a witness (sub-)pixel to each pixel in the curve trace. If we connect the witness
(sub-)pixels by imaginary lines, we obtain a piecewise linear approximation of a
curve arc within a fixed Hausdorff distance; see Figure 3 (b).
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Fig. 3. (a) the 8-pixel neighbourhood with numbered directions, plotted pixels are

shaded; (b) adaptive approximation of a curve arc and a polyline connecting witness

(sub-)pixels (shaded); (c) more detailed view

Given a set of x-monotone curve arcs, we process each arc independently.
The algorithm picks up a “seed point” on an arc and covers it by a witness
(sub-)pixel such that the curve arc leaves it in 2 different directions. We trace
the arc in both directions until the end-points. In each step we examine an 8-
pixel neighbourhood of a current pixel; see Figure 3 (a). If its boundaries are
crossed only twice by the arc, we say that the neighbourhood test succeeds (see
Section 3.2). In this case, we step to the next pixel using the direction returned
by the test. Otherwise, there are two possibilities: 1. the current pixel is itself a
witness (sub-)pixel: we subdivide it recursively into 4 even parts until the test
succeeds for one of its sub-pixels or we reach the maximal subdivision depth.4

2. the current pixel has an assigned witness (sub-)pixel: we proceed with tracing
from this witness (sub-)pixel. In both situations tracing at a sub-pixel level is
continued until the pixel boundary is met and we step to the next pixel. The last
sub-pixel we encounter becomes a witness of a newly found pixel. Details on the
subdivision are given in Section 3.4 in terms of the algorithm’s pseudocode.

Suppose we start with a witness (sub-)pixel marked by α1 in Figure 3 (c),
its 8-pixel surrounding box is depicted with dashed lines. The pixel it belongs
to, namely α, is added to the curve trace. Assume we choose the direction 1
from α1 and proceed to the next sub-pixel α2. The test fails for α2. Thus, we
subdivide it into 4 pieces, one of them (α21) intersecting the arc is taken.5 We
resume tracing from α21, its neighbourhood test succeeds and we find the next
“witness” (sub-)pixel (γ1), its corresponding pixel (γ) is added to the curve
trace. The process terminates by reaching one of the arc’s end-points. Then, we
trace towards another end-point from a saved sub-pixel β1.

In Section 3.3 we present a technique to stop the local subdivision earlier even
if the number of arcs in the pixel neighourhood is not one. Finally, in Section 3.5
we discuss the numerical accuracy issues and the termination criteria of the
algorithm. As a possible alternative in the design process we considered using

4 In this situation the algorithm restarts with increased precision; see Section 3.5. We

define a subdivision depth k as the number of pixel subdivisions, that is, a pixel

consists of 4k depth-k sub-pixels.
5 To choose such a sub-pixel we evaluate a polynomial at the corners of α2 since we

know that there is only one curve arc going through it.
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Fig. 4. (a) and (b): Depending on the incoming direction, the curve can leave the

shaded pixel’s neighbourhood along the boundary depicted with solid lines. Dash-

dotted curves show prohibited configurations; (c) boundaries to be checked for all

incoming directions; (d) an arc passes exactly between two pixels.

an 4-way stepping scheme (with the steps in diagonal directions forbidden).
However, this scheme has a number of disadvantages (see [10]), among them the
main ones is the necessity to use 2D range analysis (which is more costly and
less accurate than its 1D counterpart) and the fact that the tracing is as twice
as slow due to the forbidden diagonal directions.

3.2 Counting the Number of Curve Arcs

In this section we discuss the neighbourhood test. Due to the x-monotony con-
straint, there can be no closed curve components inside a box enclosing an 8-pixel
neighbourhood. Hence, the boundary intersection test suffices to ensure that only
one curve arc passes through this box. We rely on the following consequence of
Rolle’s theorem:

Corollary 1. If for a differentiable function f(x) its derivative f ′(x) does not
straddle 0 in the interval [a; b], then f(x) has at most one root in [a; b].

First, we sketch the basic version of the neighbourhood test, and then refine
it according to some heuristic observations. The test succeeds if the proce-
dure check segment given below returns “one root” for exactly 2 out of
9 sub-segments AB,BC, . . . , LA, and “no roots” for the remaining ones; see
Figure 3 (a). The test fails for all other combinations, resulting in pixel

1: procedure check segment([a, b] : Interval, f : Polynomial)
2: if 0 /∈ {[F, F] = f([a, b])} then � evaluate f at [a, b] and test for 0 inclusion
3: return “no roots” � interval does not include 0 ⇒ no roots
4: if sign(f(a)) = sign(f(b)) then � test for a sign change at end-points
5: return “uncertain” � no sign change ⇒ even number of roots
6: loop
7: if 0 /∈ {[F, F] = f′([a, b])} then � check interval for 0 inclusion
8: return “one root” � f ′ does not straddle 0 ⇒ one root
9: Split [a, b] in 2 halves, let [x, y]+ be the one at which f(x) has no sign change

10: if 0 ∈ {[F, F] = f([x, y]+)} then � check interval for 0 inclusion
11: return “uncertain” � f straddles 0 ⇒ nothing can be said for sure
12: Let [x, y]− be the half at which f(x) has a sign change
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root isolation
(exiting coincide mode)

root
isolation

(a) (b) (c)

Fig. 5. (a) Tracing arcs collectively in “coincide mode”; (b) diagonal “coincide mode”:

the neighbourhood test succeeds for the shaded pixel even though 3 arcs are crossing

its boundary; (c) pixel grid perturbation

13: [a, b] ← [x, y]− � restart with the refined interval
14: end loop
15: end procedure

subdivision. The search space can be reduced because we know the direction of
an incoming branch. In Figure 4 (a), the algorithm steps to the shaded pixel in
a direction “1” relative to the previous pixel. Hence, a curve must cross a part
of its boundary marked with thick lines. The curve can leave its neighbourhood
along a part of the boundary indicated by solid lines. Configurations shown by
dash-dotted curves are impossible due to x-monotonicity. In Figure 4 (b) we
enter the shaded pixel in direction “2”, dash-dotted curves are again prohibited
since, otherwise, an 8-pixel neighbourhood of a previous pixel (the one we came
from) would be crossed more than twice by the curve resulting in a subdivision.
Figure 4 (c) lists parts of the boundary being checked for all possible incoming
directions. Thus, the neighbourhood test succeeds if check segment returns
“one root” for exactly one of the “enabled” sub-segments respecting the incoming
direction (and “no roots” for the remaining enabled ones).

If an arc passes exactly between two pixels as in Figure 4 (d), we can choose
either direction (1 or 2 in the figure). This case is detected by an additional
exact zero testing.

3.3 Identifying and Tracing Closely Located Arcs, Grid
Perturbation

To deal with tightly packed curve arcs, we modified the neighbourhood test in
a way that we allow a pixel to pass this test once a new direction can uniquely
be determined even if the number of arcs over a sub-segment on the boundary is
more than one. We will refer to this as tracing in coincide mode. In other words,
the test reports the coincide mode if check segment returns “uncertain” for one
sub-segment and “no roots” for all the rest being checked (as before, the test fails
for all other combinations leading to subdivision). From this point on, the arcs
are traced collectively until one of them goes apart. At this position we exit the
coincide mode by picking up the right arc using root isolation (see Figure 5)(a, b),
and resume tracing with subdivision. The same applies to seed points – it is de-
sireable to start already in coincide mode if the arcs at this position are too close.
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Typically, we enable the coincide mode by reaching a certain subdivision depth
which is an evidence for tightly packed curve arcs (depth 5 works well).

Observe that, we need to know the direction of motion (left or right) to be
able to isolate roots on exiting the coincide mode. Yet, it is absolutely unclear
if we step in a vertical direction only. Then, we obtain the direction using the
tangent vector to C evaluated at the “seed” point.

In Figure 5 (c) the arcs are separated by the pixel grid thereby prohibiting the
coincide mode: for example, the curve f(x, y) = y2−10−12 (two horizontal lines).
A simple remedy against this is to shift the grid origin by an arbitrary fraction of
a pixel (grid perturbation) from its initial position before the algorithm starts.

Remark that, the coincide mode violates our definition of a witness (sub-)pixel.
Nevertheless, the approximation is correct because an arc is guaranteed to lie
within an 8-pixel neighbourhood even though this neighbourhood does not nec-
essarily contain a single arc.

3.4 Algorithm’s Pseudocode

We present the pseudocode in terms of a procedure step computing the next
pixel in a curve trace. The procedure is applied until tracing reaches one of the
end-points (this test is not shown for the sake of simplicity). The neighbourhood
test (test pix) returns a new direction (0−7) in case of success (it can also set the
flag coincide mode switching to “coincide mode”) or −1 otherwise. The step pix
advances the pixel coordinates with respect to a given direction.

1: procedure step(pix: Pixel, witness: Pixel, d: Direction)
2: new d : Direction ← test pix(pix, d) � check the pixel’s neighbourhood
3: if new d 	= −1 then
4: p:Pixel ← step pix(pix, new d) � step to the next pixel and return it
5: return {p, p, new d} � a pixel, its witness sub-pixel and a new direction
6: if coincide mode then � curve branches go apart ⇒ need a new seed point
7: coincide mode = false � we exit the “coincide mode”
8: {p, new d} ← get seed point(pix, d) � get a new seed point and a direction
9: return {get pixel(p), p, new d} � a pixel, its witness and a new direction

10: if witness = pix then � witness sub-pixel is a pixel itself ⇒ perform subdivision
11: {p: Pixel, new d} ← subdivide(pix, d)
12: else � otherwise continue tracing from the witness sub-pixel
13: {p: Pixel, new d} ← {witness, d}
14: while get pixel(p) = pix do � iterate until we step over the pixel’s boundary
15: new d ← test pix(p, new d) � check the pixel’s neighbourhood
16: if new d = −1 then
17: {p,new d} ← subdivide(p, new d)
18: p ← advance pixel(p, new d)
19: end while
20: return {get pixel(p), p, new d}� a pixel, its witness sub-pixel and a new direction
21: end procedure
22:
23: procedure subdivide(pix: Pixel, d: Direction)
24: sub p: Pixel ← get subpixel(pix, d) � get one of the four sub-pixels of ‘pix’
25: new d: Direction ← test pix(sub p, d)
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26: if new d = −1 then
27: return subdivide(sub p, d) � neighbourhood test failed ⇒ subdivide
28: return {sub p, new d}
29: end procedure

3.5 Addressing Accuracy Problems and Relaxing CAD Assumption

Numerical instability is a formidable problem in geometric algorithms because,
on the one hand, using exact arithmetic is unacceptable in all cases while, on the
other hand, an algorithm must handle all degeneracies adequately if one strives
for an exact approach. To deal with it, we use a mixed-precision method, that
is, high precision computations are applied only when necessary. The following
situations indicate the lack of numerical accuracy:

– reached the maximal subdivision depth (typically 12). It is reasonable to
restart with increased precision because we are “stuck” at a single pixel;

– subpixel size is too small, that is, beyond the accuracy of a number type;
– no subpixel intersecting a curve arc was found during subdivision. This in-

dicates that the polynomial evaluation reported a wrong sign.

When any of this occurs, we restart the algorithm using a more elaborate IA
method (QF and then MAA; see Section 2). If this does not work either, the
arithmetic precision is increased according to a three-level model given below.

Level 0: all operations are carried out in double-precision arithmetic. Polyno-
mial coefficients are converted to intervals of doubles. If a polynomial evaluation
results in an interval including zero, the quantity is reevaluated using rational
arithmetic.
Level 1: all operations are performed in bigfloat arithmetic. Accordingly, poly-
nomial coefficients are converted to bigfloats. As before, the quantity is reevalu-
ated with rationals if the evaluation with bigfloats is not trustful.
Level 2: rational arithmetic is used in all computations. At this level arbitrary
subdivision depths are allowed and no constraints are imposed on a sub-pixel
size.

In the course of practical application we have not been faced with any par-
ticular instance that cannot be handled by this model. The correctness of the
algorithm rests on the fact that at a very tiny scale any curve arc can be replaced
by a straight line, hence, given the absence of singularities, the tracing always
terminates.

x−isolating
interval

Recalling the introduction, unless we deal with isolated singu-
larities, our algorithm can proceed having only x-coordinates of
x-critical points of C (resultant of f and f ′

y). Hence, an expensive
lifting phase of a symbolic CAD algorithm can be avoided. How-
ever, since y-coordinates of end-points are not explicitly given, we
exploit the x-monotony to decide where to stop tracing. Namely,
the tracing terminates as soon as it reaches a (sub-)pixel contain-
ing an x-isolating interval of an end-point, and there exists such a box inside this
(sub-)pixel that the curve crosses its vertical boundaries only. The last condition
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mul fxy 24 (degree 24) bundle 26 (degree 26) sil 18 (degree 18) dgn 7 (degree 7)

Fig. 6. First two rows: curves rendered using our method with zooming at singu-

larities; 3rd row: plots produced in Axel; 4th row: plots produced in Maple. Curve

degrees are given w.r.t. y variable.

is necessary to prevent a premature stopping alarm for arcs with a decent slope;
see figure to the right.

4 Results and Conclusion

Our algorithm is implemented in the context of Cgal (Computational Geome-
try Algorithms Library, www.cgal.org) as part of Curved kernel via analysis 2
package [3]. The Cgal’s development follows a generic programming paradigm.
This enabled us to parameterize our algorithm by a number type to be able to
increase the arithmetic precision without altering the implementation.

We tested our algorithm on 2.2 GHz Intel Core2 Duo processor with 4 MB
L2 cache and 2 GB RAM under 32-bit Linux platform. Multi-precision number
types were provided by Core with Gmp 4.3.1 support.6 The CAD of an algebraic
curve was computed using [8]. We compared our visualization with the ones
provided by Axel and Maple 13 software.7 Axel implements the algorithm given
in [1]. Due to the lack of implementation of the exact approach, we compared

6 Core: http://cs.nyu.edu/exact; Gmp: http://gmplib.org
7 Axel: http://axel.inria.fr; Maple: www.maplesoft.com

www.cgal.org
http://cs.nyu.edu/exact
http://gmplib.org
http://axel.inria.fr
www.maplesoft.com
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Table 1. Running times in seconds. Analyze: the time to compute the CAD; Render:
visualization using our method; and visualization using Axel and Maple 13 respectively.

Curve Analyze Render Axel Maple Curve Analyze Render Axel Maple

mul fxy 24 22.2 4.1 2.93 3.35 bundle 26 60.5 2.8 2.11 1.88
sil 18 35.2 6.4 265 2.22 dgn 7 0.61 0.82 timeout 3.1

Fig. 7. Rendering curves on a surface of Dupin Cyclide (about 64000 rendered points)

with a subdivision method. We varied the accuracy parameter ε from 5 ·10−5 to
10−8 depending on the curve. The “feature size” asr was set to 10−2. In Maple
we used implicitplot method with numpoints = 105. Figure 6 depicts the curves8

plotted with our method, Axel and Maple respectively. Notice the visual artifacts
nearby singularities. Moreover, in contrast to our approach, the algorithms from
Axel and Maple cannot visualize the arcs selectively. Table 1 summarizes the
running times. Rendering the curve dgn 7 in Axel took more than 15 mins and
was aborted, this clearly demonstrates the advantages of using coincide mode.

Figure 7 depicts an intersection of a Dupin Cyclide with 10 algebraic surfaces
of degree 3 computed using [4]. Resulting arrangement of degree 6 algebraic
curves was rendered in tiles with varying resolutions and mapped onto the Dupin
Cyclide using rational parameterization. Visualization took 41 second on our
machine.

To conclude, we have identified that the interplay of a symbolic precompu-
tation and a numerical algorithm delivers the best performance in practice, be-
cause, once the exact solution of f = 0∧fy = 0 is computed, rendering proceeds
fast for any resolution. In contrast, the subdivision methods have to recompute
the topological events for every new domain D due to the lack of “global” infor-
mation. Moreover, they can often report a wrong topology if ε is not chosen small
enough. Finally, the amount of symbolic computations required by our algorithm
can be reduced substantially; see Section 3.5. Yet, the current implementation
is still based on a complete CAD, thus we have not been able to evaluate this in
practice which is an object of future research.

8 Visit our curve gallery at: http://exacus.mpi-inf.mpg.de/gallery.html

http://exacus.mpi-inf.mpg.de/gallery.html
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Fast Cube Cutting for Interactive Volume
Visualization

Travis McPhail, Powei Feng, and Joe Warren

Rice University

Abstract. Visualizing 3D volume datasets has received a great deal of

attention in many areas: medical imaging, geoscience, and astrophysics

are a few such areas. With improvements of commodity graphics cards,

texture-based visualization methods have become popular. Within these

methods, intersecting a series of planes with a cube is a common prob-

lem. While there are standard methods for approaching this problem,

visualizing large data sets in real-time require faster approaches. We

present a sweeping algorithm that determines the sequence of topology

changes (STC) of the intersection of a cube with a plane as it moves

through the cube. We use this algorithm to construct a table of these

topological changes that maps view vectors to an STC. With this se-

quence of topology changes, we generate the polygonal intersections via

vector addition. Finally, we use our approach in an octree-based, empty-

space culling framework to further reduce the rendering time for large

volumes.

1 Introduction

Comprehending the geometric and physiological content of volume data has
applications in a variety of fields: medical imaging, geoscience, astrophysics,
molecular visualization, and fluid dynamics. There are two primary means for
visualizing volume data: polygon rendering (or indirect volume rendering) and
direct volume rendering. Polygon rendering involves extracting a surface mesh
from grid data and using conventional rendering pipeline to display the surface.
These meshes correspond to level-sets of the implicit function given by the vol-
ume data. Most well-known works in this area are Marching Cubes and, more
recently, Dual Contouring [1, 2]. Direct volume rendering (DVR) is the class of
techniques that draws volumetric data directly without constructing polygons
that approximate the data [3]. DVR methods can provide internal structure in-
formation by using techniques such as transfer function. This extends beyond
the capabilities of typical indirect volume rendering methods.

In the history of direct volume rendering techniques, ray-casting, shear-warp,
splatting, and texture mapping stand out as being most used and researched [4].
Raycasting and splatting techniques are high-quality but non-interactive meth-
ods, whereas shear-warp and texture mapping are fast, hardware-supported
methods but lack in fidelity without extra care [5–8]. We will focus on texture-
mapping techniques in our work.

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 620–631, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Because of the wide availability of hardware support, texture-hardware-based
volume rendering, has been a popular topic for research. The technique of
texture-mapping requires the generation of a set of view- or object-aligned
”proxy” geometries. These geometries are assigned texture coordinates at their
vertices, and texture-mapping from these coordinates is either done on the hard-
ware or the software. Cullip et al., Wilson et al., and Cabral et al. were among
the first to suggest the use of texture-mapping hardware with volume render-
ing [8–10]. Much of the earlier work focused on using object-aligned 2D-textures.
Lacroute and Levoy used object-aligned slices to render volumes, but they did
not rely on hardware acceleration for rendering [7]. Westermann and Ertl de-
scribed methods for drawing shaded iso-surface using OpenGL extensions to
exploit 3D texturing capabilities on the hardware [11]. Rezk-Salama et al. de-
scribed a method for shaded iso-surfaces using 2D textures [12]. Engel et al.
improved the quality of texture-based rendering with a pre-integration tech-
nique [13]. Other works on the subject span a wide range of techniques that
leveraged performance against quality of rendering [14–16].

Our effort addresses the problem of generating proxy geometries in texture-
hardware-based volume rendering. In general, this involves trimming a set of
view-aligned planes to a cube, as illustrated in Figure 1. We found few works
that are related in this respect. In particular, Dietrich et al. proposed a plane-
sweep algorithm for plane-cube intersection that is similar to our work [17].
However, their description is brief, their application is different, and it is unclear
how geometries are generated in their algorithm. Rezk-Salama and Kolb have
described a method for computing proxy geometries on the vertex shader, where
each plane/cube intersection is computed independently [18]. Additionally, six
vertices are passed to the GPU for every proxy plane, which is redundant in
many cases. In contrast, our method pre-computes all unique topologies from
plane/cube intersections and stores the information in a table. This table en-
ables us to extract the exact polygonal intersection on the fly. We will compare
our method against Rezk-Salama and Kolb’s work to show that a plane-sweeping

Fig. 1. Comparison between series of quadrilaterals (left) that span the volume of

interest versus polygons trimmed to the exact boundary (right). In the right figure,

note the amount of superfluous texels that do not contribute to the image.
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method is more efficient in the case of multiple plane-cube intersections. Fur-
thermore, we also compare with the use of hardware clipping planes and show
that our method performs well in comparison.

Our contributions are as follow:

• Develop a data structure to tabularize all topological changes.
• Generate exact intersections for a cube and series of parallel planes using

the data structure.
• Explore the use of this algorithm in an octree-based empty-space culling

framework.

2 Method

2.1 Overview

As noted in the introduction, the key to texture-based hardware rendering of
3D volumetric data is generating a set of proxy geometries for mapping volume
densities into 3D rendering space. Typically, this process involves generating a
set of intersections between a single cube and a sequence of parallel planes. These
planes are usually perpendicular to a given viewing vector and equally-spaced.
These proxy geometries tile the volume so that the composite of their texture-
mapped images produce a 3D rendering of the data. Figure 2 and Figure 1 shows
2D and 3D examples of this tiling processing, respectively.

This paper is built on two key observations. The first observation is that,
given a fixed view vector, the cube can be partitioned into a finite set of wedges.
These wedges are formed by projecting the vertices of the cube onto the view
vector and building a set of planes perpendicular to the view vector that pass
through these projected points. Figure 2 illustrates this process in 2D.

Inside a given wedge, any plane perpendicular to the view vector intersects
the cube in the same set of cube edges. If one wishes to sweep this plane through

Fig. 2. Illustration of wedges with respect a view vector. We start with a view vector

and cube (left). We project the vertices on the view vector(middle). Then we define

the regions between the projected vertices as wedges.
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Fig. 3. Series of images that illustrate the occurrence of a change in the order of the

vertices. The middle image shows that two vertices have the same projection on the

view vector when the ray between them is perpendicular to the view vector.

the wedge, the only updates that need to be done are incremental updates of
the positions of the edge intersection points. (Note that no topology calculations
need be done.) Thus, the intersection of the cube and a swept sequence of planes
perpendicular to the view vector be computed extremely efficiently inside a single
wedge.

More generally, if one could pre-compute the set of edge intersections of each
wedge, a simple plane sweep algorithm could be used to tile the entire cube. As
a plane normal to the view vector is swept through the cube, an outer loop tests
whether the plane had moved from one wedge to the next wedge. If not, a second
inner loop continues the sweep through a given wedge.

The second key observation is that varying the view vector slightly normally
does not affect the algorithm described above. The set of intersected edges as-
sociated with each wedge remains unchanged unless the order of the projected
vertices changes. Figure 3 shows an example of three different vertex orderings
and their associated sequence of wedges for the 2D case.

Our approach will be to pre-compute a sequence of topology changes (STC) for
each possible distinct ordering of projected vertices. An STC will be indexed by
its vertex ordering and consist of a list of edge intersection sets associated with
each wedge. In the 2D case, there are only eight distinct STCs associated with all
possible view vectors. Figure 4 depicts these eight case and the STCs associated
with two of these cases. This approach is viable in 3D since the numbers of
distinct vertex orderings is also relatively small (96) (see Figure 5 for the 3D
partition of the view vector space).

We will briefly describe how to apply our method. The table containing STCs
is invariant of the rendering parameters. As long as our bounding polyhedron is
a cube, we only need to compute this table one time and use it to supplement
the texture-based volume rendering algorithm. During rendering phase, for every
change in view direction, the user queries the table of STCs using the view vector.
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The query returns an STC for the current view direction. Using this STC, user
then applies the plane sweep algorithm, which outputs a set of cube-trimmed
polygons. These polygons are sent to the graphics card for 3D volume texturing
using standard texture-based DVR. Hence, our method relies on CPU trimming
to relieve the GPU of excessive processing.

In the next two subsections, we discuss:

• A method for constructing the table of STCs associated with each distinct
vertex ordering as well as a fast method for determining vertex ordering,
• The resulting plane sweep algorithm for generating trimmed polygons.

2.2 Table Structure

Our motivation for building a look-up table for STCs is based on the observation
that the number of all vertex orderings is small. Akin to the sign-change table
in Marching Cubes, we use table look up to avoid the need to do topological
calculations while generating the intersection of the swept planes and the cube.

As noted earlier, the look-up table has one entry for each distinct ordering of
the projected cube vertices. A naive approach would be to consider all 8! possible
vertex orderings of the eight vertices of the cube. However, this approach is
unwieldy. In practice, most of the vertex orderings are impossible. For example,
in Figure 4, the ordering 〈4, 2, 1, 3〉 is impossible.

A more precise method for constructing the set of possible vertex orderings
is to note that the two vertices of the cube project onto the same point on the
view vector if their perpendicular bisecting plane is normal to the view vector.
This observation leads to the following algorithm for constructing the look-up
table.

Fig. 4. 2D depiction of the partition of the view vectors for a 2D cube and two example

sequence of topological changes (STC). The STC is represented as a list of vertex

orderings followed by an edge list.



Fast Cube Cutting for Interactive Volume Visualization 625

• Given a unit cube centered at the origin, for each pair of distinct vertices
ci, cj of the cube, construct its perpendicular bisecting plane Pij ,
• Use these planes Pij to partition the unit sphere centered at the origin into a

set of spherical patches Sk. (Note that there are multiple copies of the same
bisecting planes.)
• Points on each patch Sk correspond to the set of view vectors for which

the ordering of the projected cube vertices is the same. For each patch Sk,
compute this vertex ordering and its associated STC.

Figure 4 shows the partition of the unit circle into eight circular arcs by the
four distinct perpendicular bisecting planes associated with the square. In 3D,
there are 13 perpendicular bisecting planes; 3 distinct planes for edge adjacent
vertices, 6 distinct planes for face adjacent vertices and 4 distinct planes for
diagonally opposite pairs of vertices. These planes then partition the unit sphere
into 96 spherical patches shown in Figure 5.

To complete our table lookup method, we need to construct a method that,
given the view vector, computes the index k for the patch Sk. Our method is
a simple one based on BSP trees [19]. We note that the 3 distinct bisecting
planes associated with edge adjacent cube vertices partition the unit sphere into
8 octants. (One octant is highlighted in Figure 5). Given a view vector, the top
three levels of our BSP tree use these three planes to split the unit sphere into
eight octants. Next, note that the six distinct bisecting planes associated with the
face adjacent pairs of vertices partition this octant into six triangular patches.
(In fact, only three planes even intersect the patch in the dashed edges). The next
three levels of the BSP tree use these three planes and partition each octant into
six triangular patches. Finally, we note that only one of the four distinct bisecting
planes associated with diagonally opposite pairs of cube vertices intersects a
particular triangular patch. The last level of our BSP tree uses this plane to
partition this triangular patch into two patches, one of which is our desired
spherical patch Sk.

Thus, this BSP tree of depth seven allows one to compute the vertex ordering
and associated STC using only seven dot products. Given this information, we
now present our plane sweep method in detail.

Fig. 5. Partition of the view vectors for a 3D cube. The highlighted portion of the right

figure represents a octant.
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2.3 Plane Sweeping

Given a view vector v, we want to generate a set of proxy geometries, which
are the intersection of view parallel planes and a cube. Our algorithm utilizes
the BSP-tabularized result given in the previous section for fast look-up of the
topological changes with respect to v. Also stored within the BSP tree is the
order of the cube vertices projected onto the view vector.

We compute the plane-cube intersection by starting from one end of the cube
and sweep through the cube in the direction of the view vector. We use P to
denote the current plane of the sweep, and P is always normal to the view vector.
Let d be the step size of the plane sweep; this is a user given parameter that
determines that number of trimmed geometries. We let the wedges be defined as
W1,W2, . . . ,WN , and note that the number of wedges varies with respect to the
view vector (wedges are the regions between dotted blue lines in Figure 6). Let
T1, T2, . . . , TN be the topology (a set of edges) associated with each wedge. (In
Figure 6 the topology of the first wedge is {{1, 2}{1, 4}}). We write uij = ci− cj
where (ci, cj) is an edge in Tk. (These vectors are oriented in the same direction
as v; in Figure 6, they are the red arrows).

The algorithm proceeds thus: we initialize P to contain the vertex closest
to the eye point. Then we step through each wedge Wk, where for each edge,
we compute the intersection of P with the edges of Tk. These intersections are
denoted as mij for each edge (ci, cj) ∈ Tk. These intersections will be the starting
vertices for the current wedge. After finding the starting vertices, we generate
the coordinates of the following trimmed geometry by vector addition. We add
to the geometries of the previous iteration by the scaled vector

yij =
d

uij · v
uij

for each of the edges in Tk. We also advance P by a fixed distance d along the
view vector in every iteration when generating the new geometries (tick marks
in Figure 6 denote the plane’s advancement). While P is still in Wk, we know
that all trimmed geometries will have the same topology. When P crosses over

Fig. 6. The left figure is an example of the plane-sweep algorithm in 2D. The right figure

shows the pseudo-code of the algorithm. The notations are detailed in the following

section.
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into Wk+1, then we need to again find the starting vertices for Tk+1. (Instances
of where this computation is necessary are marked as red circles in Figure 6).
This process iterates until P crosses the last wedge. The pseudo-code is given in
Figure 6.

The running time of this algorithm is linear in the number planes specified
by the user. We cut down on the constant factor of the asymptotic running
time by using a table look-up and by replacing edge-plane intersections with
vector additions. The initializing step for each wedge presents the heaviest load
of computation. However, this step only occurs a small number of times in a
sweep.

3 Results

We ran our method against two other methods for comparison. The first is
the software implementation of Rezk-Salama and Kolb’s method (denoted as
RSK) [18]. The second method for comparison uses hardware clipping planes
to trim the cubes; this is a straightforward GPU implementation with minimal
computation on the CPU. We include results from volume-rendering with no
plane trimming (No Op) to establish a baseline of comparison. This is a naive
method that sends untrimmed, view-perpendicular, and screen-filling quads to
the graphics card (See left image of Figure 1). Although the “No Op” method
incurs the very little CPU computation, it introduces wasteful pixel processing
for empty regions.

Our primary test machine is a Pentium Xeon machine with two 2.66GHz
CPUs and 4GB of memory. The graphics card is NVIDIA Geforce 8800 GTX
with 768MB of texture memory.

We compare our method against RSK by just counting the number of planes
that can be trimmed in a fixed amount of time. RSK showed a speed of 650,000
planes trimmed per second, and our method posted a speed of 2,500,000 planes
per second. Although our method is 3 to 4 times faster than that of RSK, the
empirical rendering results we gathered only indicate marginal speed-up. This is
due to the fact that the rendering time is mostly dominated by filling pixels as
oppose to plane-cube intersections.

3.1 Single Cube

The results from Figure 7 suggest that all three methods perform two to three
times better than volume rendering without any optimization. First, for the
500 × 500 tests, our method has higher frames-per-second than the other two
methods. We observe that as the rendering resolution increases from 500× 500
to 1000× 1000, pixel fills becomes the bottleneck.

We ran tests on a second machine to establish the trade-off between CPU
vs. GPU in terms of hardware differences. Our second test machine is a Pen-
tium 4 machine running at 2.8GHZ with 1GB of memory. Its graphics card is
NVIDIA Geforce 6200 with 256MB of texture memory. In Figure 8, the hardware
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Fig. 7. The left graph records the frames-per-second for each method where the ren-

dering window is 500 × 500 pixels. The right graph has results for 1000 × 1000 pixels.

”No Op” stands for volume rendering with no plane-trimming; ”RSK” stands for the

method by Rezk-Salama and Kolb as described in [18]; ”Clip” stands for the hardware-

clipping-planes method; and ”Trim” is our cube-trimming algorithm.

Fig. 8. Results of all the methods running on a machine with limited graphics hardware

clipping-plane method has the lowest number of frames-per-second. However, its
performance in the high-end machine tests is highly competitive. Given this
trend, we believe that as more powerful graphics hardware become available,
the clipping-planes method can out-perform either of the two software imple-
mentations on a desktop machine. In the next section, we will discuss a case
where the performance issue cannot be addressed with better hardware.

3.2 Empty-Space Culling Using Octree

We use a simple heuristic for empty-space culling by decomposing the volume
into an octree where each cell stores the min and max values of the contained
subvolume. This is a simple scheme based on ideas from Lamar et al [15]. With
the optimization, we can avoid rendering regions that are not within our range
of interest. We apply the three methods on each octcell and render the resulting
planes or polygons.

We used a largely empty volume as our test example. The results of Figure 9
indicate that empty-space skipping can provide significant speed-up. However,
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Fig. 9. Results of the three methods running with octree decomposition enabled.

”Depth” represents the depth of the octree decomposition. The top four figures show

the top-down views of the largely empty volume used in this test. The gray box is the

bounding octcell in the octree. The four different levels of decompositions are 0, 2, 4,

and 5 (from left to right).

we see the gain from performing empty-space skipping by octree-decomposition
diminishes as the octree traversal depth increases beyond level 4. This is an
expected result as the decomposition at level 4 is refined enough such that the
waste due to rendering empty-spaces is minimized.

In Figure 9, we see a drop in frame rate for the clipping-plane method for levels
beyond 2. This is due to the high number planes that have to be passed to and
trimmed by the GPU. Since the GPU has to handle both the volume clipping
and rendering, its performance staggers as the number of planes increases. We
conclude that the hardware approach is not suitable for cases with high number
of planes, such is the case with empty-space culling using octrees. Again, note
that our cube-trimming method outperforms RSK.

4 Conclusion

We have provided a method for generating the intersection of multiple planes
defined by a view vector with cubes. For a given vector, we use a sweeping
algorithm uses the vertex connectivity of a cube to create a sequence of topology
changes for the plane as it moves through the cube. We tabularize all possible
sequences of topology changes for a given cube into a BSP tree. We use this table
to quickly map a view vector to a sequence of topology changes and perform a
simple sweeping algorithm that generates the polygonal intersections via simple
vector addition which is computationally more efficient than regular plane-edge
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intersection tests. We use this quick polygon generating approach in an octree-
based empty-space culling framework. We have shown results that indicate our
method is more efficient than previous methods, and in the case of empty-space
culling, it outperforms the pure hardware implementation.

For future works, we would like to examine moving some of the computation
on to the graphics hardware. As implied in the results section, load-balancing
between CPU and GPU requires careful analysis; furthermore, this process is
highly dependent on the hardware specification. We think that a careful imple-
mentation can make use of the increasingly faster GPU and transfer some of
the work-load to the GPU. This direction is especially relevant given the recent
development of geometry shaders.
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Abstract. In this paper we present a statistical model, learnt from em-

pirical data, which captures variations in the spectra of daylight. We

demonstrate two novel techniques which use the model to constrain vi-

sion and graphics problems. The first uses the model generatively to

render scenes using spectra which are constrained to be plausible. The

second uses the model to solve the ill-posed problem of estimating high

dimensional illumination spectra from one or more tristimulus images,

such as might be observed over the course of a day.

1 Introduction

The analysis of spectra, both reectance and illuminant, is of considerable im-
portance to both computer vision and computer graphics. In vision applications
this additional information, lost in the transformation to tristimulus spaces, can
help in the identification of objects. In computer graphics, knowledge of how
materials respond to specific wavelengths can improve the quality of rendering.

While this additional information is useful, traditional hyperspectral and mul-
tispectral cameras require high precision, expensive, optics. There are numerous
on going studies working towards alternative, cheaper systems to capture the
additional spectral information using COTS tristimulus cameras. Common tech-
niques involve the use of filters to change the response of the camera [1] or the
use of modulated light sources [2]. By choosing the optimum filters or illuminants
it is hoped that higher dimeinterpreted from a small number of measurements.

In order to convert the observed radiance values of pixels into an object’s
reflectance, knowledge of the illuminant is required. Typically, an in scene cali-
bration material of known reectance is used to determine the illuminant [1,3,4].
However, in some situations it may not be possible or convenient to place a
calibration material in the scene.

Nieves et al. [5] have proposed an unsupervised system capable of recovering
the illuminant from a scene without the need of a calibration material, using
just a COTS Red, Green, Blue (RGB) camera. This technique creates a di-
rect transform from pixel intensities to the illuminant spectra, by use of a linear
pseudo-inverse method. This system must be trained independently for the cam-
era to be used for the recovery. This removes some generality from the system,
since it must be retrained if a new camera is used.

In this paper we propose an error minimisation approach to recovering the
illuminant spectra in a scene. To do this we first construct a linear model for

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 632–643, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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daylight illumination spectra. This model is then used to constrain the error min-
imisation problem of illuminant recovery. We use a number of tests to determine
the validity of this solution, including both ground truth and realworld data.
The model created will also be used to demonstrate plausible spectral daylight
relighting of multispectral images.

1.1 Related Work

The response of a single pixel P in a RGB sensor is a function of the reflective
characteristics of the surface imaged at the pixelR, the illuminant incident on the
surface I and the response of the sensor to light S. Each of these values are them-
selves dependent on the wavelength of the incident light. The pixel responses for
red PR, green PG and blue PB are given by three integrals Equation 1.

PR =
∫ λmax

λmin

I(λ)R(λ)SR(λ) dλ

PG =
∫ λmax

λmin

I(λ)R(λ)SG(λ) dλ

PB =
∫ λmax

λmin

I(λ)R(λ)SB(λ) dλ

(1)

Previous studies have shown that use of Principal Components Analysis (PCA)
can significantly lower the dimensionality of both reflectance [6] and daylight
spectra [7,8,9]. These allow for the I and R terms to be represented with far
fewer parameters than would be required if the spectra were considered in a raw
form.

In most vision tasks it is the reflectance function for a surface which is of
interest, not the irradiance values for pixels. It is desirable to know the incident
illuminant spectrum to be able to recover the reflectance functions. In most sce-
narios it is infeasible to have a spectrometer in the scene to record the illuminant.
In scene calibration materials can be used to convert the radiance values to re-
flectance values. This technique has been shown to be effective in both satellite
based observations [4] and ground based material identification [3,10].

These in scene calibration methods still require a multi-spectral camera to be
used to capture the images. With growing interest in using sensors capturing
less spectral data and inferring higher dimensionality, having a robust method
to estimate the scene illuminant has become critical.

Chiao et al. [11] attempted to recover the spectral illuminant in forest scenes
using only an RGB camera and a white calibration panel. A training set of 238
images of the panel and corresponding ground truth spectra was used to create
a direct transformation matrix from RGB values to spectra.

An on going study is being performed at the University of Grenada into re-
covery of spectra from RGB images. Initial work was performed proving the
feasibility of using linear models to describe daylight spectra [8,9,12]. Studies
were performed determining the optimum sensors for daylight recovery [13]. It
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was demonstrated that a standard RGB camera could determine the spectral
daylight illuminant in both simulated and real data [14]. Two methods were
demonstrated, a pseudo-inverse method based on the eigenvectors in an earlier
study [9] and a direct transformation, trained on RGB spectra pairs. The direct
transform out performed the eigenvector based approach, however some ambi-
guities in the use of training and test data may cast a shadow over these results.
Finally, a fully unsupervised approach, mentioned earlier, was shown which was
capable of determining the daylight illuminant in RGB images without the re-
quirement of any calibration materials [5].

In all previous studies a direct transform was created to take an RGB value
to a plausible daylight spectra. This transform implicitly contained the S terms
in Equation 1. However, such transforms are camera specific and cannot be gen-
eralised to cameras with arbitrary spectral response.

2 Statistical Modelling

Our data was collected during November and December of 2008 using a BWTEK
BSR111E-VIS spectroradiometer, between 350 and 760 nm at approximately 1/4
nm intervals. This device allows calibrated measurements to be taken, providing
data in units of µW/cm2/nm. A total of 72 daylight spectra were collected. To
provide the most comparability with past reports [6,7,8,9], the captured spectra
were down sampled to run from 400 to 700nm at 5nm intervals. All spectra
were also normalised to unit length. This prevents the model from fitting to the
changes in intensity, instead allowing it to react to the changes in the shape of
the spectra.

For measuring spectra similarity a metric is required. A particularly thor-
ough review of available metrics and their applicability was undertaken by Imai
et al. [15]. We only regard spectra purely for their physical characteristics and
not their effects on human vision, as such the most suitable metrics are the Good-
ness of Fit Coefficient (GFC) of Romero et al. [8] and the Root Mean Square
Error (RMSE). The GFC comes with guidance on its interpretation [8]: a GFC
> 0.99 is deemed acceptable, > 0.999 represents a very good representation and
> 0.9999 is an exact spectra.

We used PCA to construct a linear statistical model of the data. Any spectra
which lay more than 4 standard deviations from the mean in this space were
pruned from the data set. This process was repeated until there were no outliers
in the data set. In total 4 outlying spectra were removed.

To test the models ability to generalise to out of sample data, a leave-one-out
testing strategy was used. A model was trained using all but one spectra in the
training set. This model was then used to reconstruct the one spectra not in the
model, this process was repeated for every spectra in the training set. Figure 1
shows the effect of varying the number of dimensions in the model on the average
GFC values for all the spectra. As expected, using more dimensions improves
the reconstructions. Using more than 3 dimensions is sufficient for all spectra in
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our sample to be represented to at least a very good level, and at least half the
spectra to an exact level.

Figure 2 shows the distribution of GFC values for reconstructions with 3 di-
mensions. It can be seen that 82% of samples could be modelled exactly and all
samples could be modelled to a very good or better level.

Fig. 1. 1-GFC errors for odd one out analysis against different number of model di-

mensions. The calculated GFC value is the average for all the spectra captured.

Fig. 2. 1-GFC errors for odd one out analysis. These results were calculated using 3

dimensions.
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3 Rendering

We begin by visualing the modes of variation of the statistical model described
above. Figure 3 shows 3 images from the Finlayson et al. [16] multi-spectral
database, relit using illuminants created by varying the value of the first model pa-
rameter. The images were created by applying the rendering equation (Equation 1)
to each pixel independently. The top images have not had any white balancing ap-
plied, the images shown are how the raw CCD image would look. This gives a slight
green tinge to all the colours, due to the integral of the camera response over 400
- 700nm being greater for the green channel than the other channels. The images
in the lower half of the figure have been white balanced by dividing the value for
each channel by the integral of its corresponding response curve.

A data sample x can be expressed in terms of the matrix of model eigenvectors,
P, the mean, x and a vector of n parameters, b, as x = M(b) = Pb + x. The
model provides a constraint on the length of parameter vectors, which is that
the square of the Mahalanobis distance from the mean will follow a chi-squared
distribution with mean n. Hence, the expected length is:

n∑
i=1

(
bi√
λi

)2

= n, (2)

where λi is the variance of bi. This is equivalent to constraining parameter vec-
tors to lie on a hyperellipsoid in parameter space, the diameters of which are
defined by the eigenvalues of the PCA. This fact has been used to relight the
images with plausible illuminants (Figure 4) created by randomly selecting the
parameters of the model and then scaling them such that Equation 2 is satis-
fied. This demonstrates that our statistical model could be used generatively to
provide plausible daylight spectra for rendering.

4 Illuminant Spectra Estimation

The system of Nieves et al. [5] uses the brightest pixels in the scene to interpret
the illuminant spectra, these pixels have the highest likelihood of being the colour
of the illuminant. This is similar to the max-RGB colour constancy algorithms.
Another approach to the colour constancy problem is to use the gray world
theorem [17]. This states that the the mean reflectance of objects in an image
will be gray, thus the mean colour of an image will be indicative of the light source
in an image. We use this fact to generate a colour to be used to reconstruct the
illuminant from. The mean RGB value for an image is given by:

PAve
{R,G,B} =

1
wh

w∑
i=1

h∑
j=1

P{R,G,B}(i, j), (3)

where w is the image width and h is the image height. Substituting this value
into Equation 1 and given that the average reflectance will be gray, the following
integral is obtained:
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Fig. 3. Testing relighting of multispectral images. The top images are equivalent to a

the raw CCD image, the bottom have been white balanced to better reflect the eyes

response.
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Fig. 4. Relighting to random illuminants. The top images are equivalent to the raw

CCD image, the bottom have been white balanced to better reflect the eyes response.

The 3 model parameters (in standard deviations from mean) are shown at the top of

each column.
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PAve
{R,G,B} =

∫ λmax

λmin

I(λ)µS{R,G,B}(λ) dλ. (4)

Here µ ∈ (0, 1] is a constant for all wavelengths, it is the average gray reflectance.
In this integral there is now only one unknown, the incident light spectral func-
tion. As a spectrometer takes n discrete samples across λ, these integrals can be
replaced with sums over i where λ(i) is the wavelength of light for sample i < n.
For convenience, define Ĩ, S̃R, S̃G and S̃B to be n-dimensional vectors such that
the element i of each corresponds to the value of I(λ(i)), SR(λ(i)), SG(λ(i)) and
SB(λ(i)) respectively. This gives

PAve
{R,G,B} =

n∑
i=0

I(λ(i))µS{R,G,B}(λ(i)) = µĨ.S̃{R,G,B}. (5)

To estimate Ĩ we define the error in an approximation of a spectrum to be

ε(̃I) = (c̃I.S̃R − PAve
R )2 + (c̃I.S̃G − PAve

G )2 + (c̃I.S̃B − PAve
B )2, (6)

with c some unknown scaling, which minimises c̃I.S̃ − PAve for a given Ĩ. c
represents all the linear unknowns in the system which cannot be modelled,
including, among others: our µ value, unknowns in the camera such as lens
transmittance and internal amplification, all scalings to the spectra and scalings
in the RGB values as the only true quantities are the ratios between channels.

4.1 A Statistical Constraint

An approximation to the incident spectrum is given when ε is minimised. With-
out further knowledge, this problem is heavily under constrained. To make the
problem well-posed, we reduce the problem from estimating a 61 dimensional
spectra to estimating the 2 or 3 model parameters of our statistical model de-
scribed above. Substituting M(b) for Ĩ in Equation 6 gives

ε(b) = (cM(b).S̃R−PAve
R )2 +(cM(b).S̃G−PAve

G )2+(cM(b).S̃B−PAve
B )2. (7)

This can now be minimised to solve for b. We constrain the solution of this
minimisation such that only plausible spectra can be generated. To do so, hard
constraints are placed on each of the model parameters to ensure they lie within
3 standard deviations of the mean. This constraint means that the minimisation
is non-linear and we solve it using the Levenberg-Marquadt technique.

5 Experimental Evaluation

In this section we present the results of applying our statistical image-based
spectra estimation technique to real world and synthetic data.
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5.1 Data Collection

For real world data, two time lapse sequences were captured along with images
of di?ering scenes. In each case, images were taken with a Nikon D70 and cor-
responding ground truth spectra captured. All images were captured in RAW
mode which yields 12-bit measurements with linear response.

The first time lapse sequence comprises images of an outdoor scene and spectra
recorded every 15 minutes between 1105 and 1650. Sunset on this day was at
1642 [18], so the later images will be a?ected by this transition. The second
time lapse sequence comprises images taken indoors (but where the principal
light source is the sun) and spectra recorded every 15 minutes between 1145 and
1745. On this day sunset was at 1716 [18]. In this sequence, the images included a
Macbeth Colour Checker chart which comprises 24 patches of known reectance.

5.2 Experimental Results

An odd one out analysis was performed on all the collected spectra. In this
analysis the odd spectra out was used to generate the associated RGB colour for
a perfect reector and the camera response curves. The illumination recovery was
then performed on this RGB value and the estimated spectra compared against
the ground truth spectra. The left hand plot of Figure 5 shows the resultant
GFC values when varying the dimensions used. It can be seen that the best
results occur when 2 dimensions are used. It seems likely that using additional
dimensions results in overfitting to spurious data.

The right hand plot of Figure 5 shows the distributions of GFCs for recon-
structions using 2 dimensions. Approximately 13% of spectra can be recon-
structed exactly when convolved through the camera response curves. 83% can

Fig. 5. 1-GFC errors for odd one out analysis against different number of dimensions

used in the reconstruction. The calculated GFC value is the average for all the spectra

captured. Right: 1-GFC errors for odd one out analysis. These results were calculated

using 2 dimensions for reconstruction.
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Table 1. Distributions of GFC values for illuminant recovery

Best case (odd one out) Time Lapse 1 Time Lapse 2 All images

Median 0.9998 0.9978 0.9929 0.9960

Standard Deviation 0.0005 0.0157 0.0028 0.0302

be reconstructed to at least a very good level and all can be reconstructed
acceptably.

The results of the odd one out analysis represent the best case for this system.
The RGB values tested are those that would be seen if the illuminant were to
reflect off a perfect reector. In a true system deducing the RGB value indicative
of the light is a non-trivial task, as has been shown by ongoing research into
colour constancy.

Figure 6 shows the reconstructed spectra for different images, both using the
mean RGB value for the reconstruction and using the model to reconstruct the
ground truth spectra. The lower plots demonstrate just how effective the model
is at fitting to illumination spectra. The upper plots show the results of image-
based spectra estimation, using the average RGB value to fit to. It is clear that
for images which deviate largely from the grayworld assumption, such as the first
three images (where two contain predominantly grass and the other is largely
shadowed), our method performs poorly. However, for the other three scenes, a
snowy car park, a building and a macbeth chart the reconstructions register as
acceptable by the Romero et al. GFC value.

Table 1 shows the median and standard deviations of Goodness of Fit Co-
efficient (GFC) values for the various tests performed. The best case, given by
reconstructing the spectra directly from its simulated RGB value, gives a median
GFC value just below the level required for exact reconstructions. The two time
lapse sequences gave acceptable median reconstructions. Finally, when taking
the median of all the images from the time lapses, and of the various situations
in Figure 6 the median reconstruction was again acceptable.

6 Conclusions

We have presented a statistical model for daylight spectra and shown how it
can be used to relight multispectral images with plausible illuminants. We have
also shown how the model can be used to constrain the process of estimating
illuminant spectra from RGB images under the gray world assumption. The
method shows promise, however its performance is determined by the validity
of the gray world assumption.

In future work, we will investigate simultaneously estimating the spectral re-
flectance of ob jects in the scene alongside the illuminant spectra. We also intend
to compare our method with the only other published approach to estimating
illuminant spectra from RGB images [5].
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Abstract. Multi-resolution techniques are commonly used to render volumetric 
datasets exceeding the memory size of the graphics board, or even the main 
memory. For these techniques the appropriate level of detail for each volume 
area is chosen according to various criteria including the graphics memory size. 
While the multi-resolution scheme deals with the memory limitation, distracting 
rendering artifacts become noticeable between adjacent bricks of different lev-
els of detail. A number of approaches have been presented to reduce these arti-
facts at brick boundaries, including replicating or interpolating data between  
adjacent bricks, and inter-block interpolation. However, a visible difference in 
rendering quality around the boundary remained, which draws the attention of 
the users to these regions. Our ray casting approach completely removes these 
artifacts by GPU-based blending of contiguous levels of detail, which considers 
all the neighbors of a brick and their level of detail.  

1   Introduction 

During the past years multi-resolution hardware-accelerated volume rendering has 
been an important research topic in the scientific visualization domain. Due to the 
progressive improvements of imaging devices such as tomographs and magnetic 
resonators, the size of volume datasets continuously increases. Such datasets often 
exceed the available memory of graphics processing units (GPU), and thus multi-
resolution techniques need to be employed to guarantee interactive frame rates for 
GPU-based rendering approaches. Out-of-core techniques are required for even larger 
datasets exceeding the main memory capabilities of regular desktop computers, which 
are generated e.g. by scientific projects such as the visible human ® [1] and the time-
dependent turbulence simulation of Richtmyer-Meshkov [2].  

While multi-resolution approaches in combination with out-of-core techniques deal 
with the memory limitations, distracting rendering artifacts between adjacent blocks 
of different level of detail occur (see Fig. 1). The source of these visual artifacts is the 
interpolation process since coarser data generates different samples during interpola-
tion, which may be mapped to different colors by classification and during integration 
along the ray. The presence of these kinds of artifacts in the resulting image subcon-
sciously draws the attention of the user to these regions of the volume instead of al-
lowing the user to focus on the actual data. 
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Fig. 1. Angiography dataset with aneurism. Images have been generated by using (a) 30MB of 
texture memory and (b) 4 MB of texture memory. In both cases, disturbing artifacts are notice-
able at levels of detail transitions. 

We developed an approach for effectively removing the rendering artifacts related 
to the quality difference between adjacent bricks of different level of detail. The 
bricks of the current cut through the octree are interpolated with their representation at 
the next coarser LOD, such that the resolutions are identical on boundaries between 
adjacent bricks. This GPU-based interpolation results in an imperceptible transition 
between adjacent bricks. Our approach requires a restricted octree, where adjacent 
bricks differ only by one LOD. We consider the resolution of all the neighbors of a 
brick of the cut during the generation of a volume sample. The interpolation coeffi-
cients for a sampling point in the volume can be efficiently generated on the fly from 
a small pre-computed 3D texture.  

Previous research on reducing these multi-resolution rendering artifacts [3], [10], 
[11] focused on replicating or interpolating boundary voxels between adjacent bricks. 
While these schemes produce a smooth transition only for the boundary voxels be-
tween adjacent bricks, the abrupt change in visual quality around the boundary is still 
quite noticeable similar to Fig. 1. Our work is inspired by LaMar et al. [12], who 
achieved imperceptible transitions between LODs for an oblique clipping plane 
through a multi-resolution volume. 

The main contribution of this paper is an effective and efficient approach for re-
moving multi-resolution volume rendering artifacts between adjacent bricks of differ-
ent level of detail. We integrated our technique into a GPU-based volume ray casting 
system, which also supports pre-integrated rendering [24], [25]. Our experiments 
show that the typical memory overhead introduced by our approach is about 10 per-
cent while the increase in computation time is about 20 percent. Our approach extends 
to CPU-based rendering as well, is easily integrated in any multi-resolution volume 
rendering system and has the potential to become a standard technique for multi-
resolution volume rendering.   

a. b. 
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2   Related Work 

Hardware-accelerated rendering is the current standard for real-time rendering of 
volume datasets. It was introduced by Akeley [13], who suggested considering the 
volume dataset as a hardware-supported 3D texture. Various implementations of 
hardware-accelerated volume rendering have been popular during the past decade, 
including view-port aligned polygons [14], spherical shells [3], and GPU-based ray 
casting [15]. These schemes have also been adapted to render large volume datasets 
[3], [4], [16]. The term “large” is used for volumes, which do not fit into texture 
memory, and can potentially also exceed the available main memory. To deal with 
these limitations, the volume can be divided into sub-volumes or bricks, generally of 
equal size, such that each brick can be rendered independently, and easily swapped 
with another one [17]. However, the limited bandwidth between the main memory 
and the GPU still represents a bottleneck for large datasets on desktop computers, 
limiting the interactivity. Distributed architectures using multiple GPUs have been 
recently evaluated to alleviate the texture memory and bandwidth limitations [27]. 

 

 
 
 
 
 
 
 

Fig. 2. Consistent interpolation between bricks or blocks of different LODs. (a) The voxels left 
and right of the boundary between the blocks A and B are used to replace voxels of that bound-
ary for the next LOD. The right boundary voxel is copied into the right boundary voxel of the 
next coarser LOD, and the average voxel is copied into the left voxel of the next coarser LOD. 
Notice that when blocks A and B with different LODs are selected for rendering, a consistent 
interpolation between samples is obtained at boundaries. (b) Samples are replaced only in half 
of the boundary faces. The voxels of the right (xmax), up (ymax) and back (zmax) faces are 
replaced, taking the boundary data from adjacent bricks. (c) Interblock interpolation. In general, 
each sample to be reconstructed at brick boundaries is obtained by weighting up to 4 voxels (8 
voxels for the 3D case). 

Artifacts at brick boundaries have been reduced with various techniques. LaMar  
et al. [3] share the boundary voxels between adjacent bricks in each LOD. In this case, 
the artifacts are only removed between adjacent bricks of the same LOD. Weiler et al. 
[10] obtain a consistent interpolation between contiguous LODs by letting the bound-
ary voxels between blocks interpolate the scalar field of the coarser LOD. Although 
this idea is initially outlined for transitions of contiguous LODs, it can be applied itera-
tively to achieve higher order transitions. Fig. 2a illustrates this process for one-
dimensional textures. For the 3D case, this process has to consider the six faces of the 
blocks. Subsequently, Guthe et al. [7] use a similar concept for octrees, but they repli-
cate voxels of only 3 faces of each brick (see Fig. 2b). Finally, Ljung et al. [11] parti-
tion the volume into blocks with a local multi-resolution hierarchy, but boundary  
voxels are not shared between adjacent blocks. During rendering, they perform the 

block A block B 

0 
1 
2 
3 

a. b. c. 
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interpolation between blocks of arbitrary resolutions in a direct way (see Fig. 2c), i.e. 
without replicating voxels or pre-calculating intermediate samples by interpolation. 

LaMar et al. [12] presented a multi-resolution technique for interactive texture-
based rendering of arbitrarily oriented cutting planes. They achieved smooth transi-
tions on a clipping plane by blending contiguous LODs. We extend this idea to 3D 
volume rendering considering the volumetric blending of bricks and show how it can 
be efficiently implemented. Their approach requires also that adjacent bricks along 
the clipping plane differ in at most one LOD. A similar constraint has been previously 
introduced for terrain visualization (restricted quad-trees) [18], to guarantee consistent 
triangulation and progressive meshing during roaming.  

3   Multi-resolution Approach 

We use a multi-resolution scheme to deal with large volume datasets. During pre-
processing, the volume is downsampled into LODs, and partitioned into bricks, to 
build an octree-based multi-resolution hierarchy [3], [5], [6]. For each frame, a sub-
tree of the whole octree is chosen according to a priority function P(x), which may 
include data-based metrics [9] and image-based metrics [4]. The LOD of each volume 
area is chosen by a greedy-style subdivision process, considering the priority P(x) [5], 
[8]. It starts by inserting the root node into a priority queue. Iteratively, the node with 
highest priority (head node) is removed from the queue, and its children are re-
inserted into the queue. This process continues until the size limit is reached, or the 
head node represents a leaf in the octree hierarchy. We adapt this greedy-style selec-
tion algorithm such that the difference between adjacent bricks does not exceed one 
LOD. Also, the memory cost of the parent bricks has to be considered. Our rendering 
algorithm implements GPU-based ray casting, with pre-integrated classification.  

The multi-resolution approach is presented in the following subsections. We first 
introduce the core of the approach, which is based on blending of contiguous LODs. 
Then, the selection algorithm is described, which considers the priority function and 
the constraint of the levels of detail between adjacent bricks. Finally, we include im-
plementation details of the pre-integrated ray casting system with out-of-core support. 

3.1   Blending 

Fig. 3a shows a basic one-dimensional example of the blending approach. Consider 
brick B located at LOD i, and its adjacent brick CD located at the next coarser LOD 
(level i−1). Brick B is gradually blended with its representation at the next coarser 
LOD (brick AB) such that the coarser representation is reached at the boundary to 
brick CD. A weight t varying from 0 to 1 along B is required to perform the blending.  

For the 3D case, any selected brick x located at the i-th LOD is adjacent to other 
bricks (26 bricks for the general case), which can be located at level i−1, level i or 
level i+1. Weights are assigned to each vertex of the brick; a weight of 0 is assigned if 
the vertex is only adjacent to bricks located at finer or the same LOD (level i+1 or 
level i), indicating that the resolution in this vertex corresponds to level i. Otherwise, 
its weight is 1 (the resolution of that vertex corresponds to level i−1). Fully transpar-
ent adjacent bricks are not considered during the weighting process, since they are  
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Fig. 3. Interpolation between LODs of adjacent bricks. (a) Levels i and i−1 are two subsequent 
LODs partitioned into bricks. Adjacent bricks of the same LOD share half a voxel at bounda-
ries. The selection criterion selects bricks A, B and CD for rendering. During the rendering, the 
voxel data is interpolated to generate a volume sample. The difference between LODs of adja-
cent bricks generates visible artifacts. These artifacts are removed by means of gradual interpo-
lation from the finer level to its next coarser representation, such that the respective LOD 
matches at the brick boundary. (b) Blending a brick located at level i with its parent at level i−1. 
The blending factor β of any position (s,t,r) inside the brick is computed by a tri-linear interpo-
lation of the weights assigned to each brick vertex. 

excluded from rendering. If the weight of every vertex is 0, then its parent brick is not 
required for blending. In any other case, the blending is performed for each volume 
sample with texture coordinates (s,t,r) in brick x. Thus, the volume sample x(s,t,r) and 
the corresponding volume sample p(s′,t′,r′) of its parent are linearly interpolated using 
equation (1): 

pxblend ⋅+⋅−= βββ )1()( , (1) 

where β is computed by tri-linear interpolation of vertex weights (see Fig. 3b). Notice 
that the blended volume sample blend(β) is obtained by quad-linear interpolation 
since x and p are reconstructed via tri-linear interpolation. Particularly, blend(β)=x 
(level i) if the interpolated weight is β=0, and blend(β)=p (level i−1) if β=1. For any 
other value of β in (0,1), the level of detail of the resulting volume sample is i−β, i.e. 
an intermediate level of detail between the levels i−1 and i. This also shows that the 
rendering achieves voxel-based LODs, guaranteeing a smooth transition between 
adjacent bricks. 

For fast tri-linear interpolation of the vertex weights, a single 3D texture of 2x2x2 
voxels (corresponding to the weights of brick vertices) can be used for each brick. 
However, downloading one extra 3D texture into texture memory for each brick to 
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blend is not appropriate. Similarly to the marching cubes approach [26], this table 
could be reduced to 15 cases by transforming the texture coordinates (s,t,r) appropri-
ately. However, this would increase the overhead for the fragment program and we 
opted for using a larger 3D texture instead. This 3D texture of 2x2x512 weights is 
downloaded only once into texture memory (see Fig. 4). Therefore, a simple index 
indicating which combination corresponds to the brick being rendered is required for 
accessing the correct weights for each volume sample. 

 
 
 
 

Fig. 4. Look-up table with all possible combinations of vertex weights 

3.2   Priority Function 

In our implementation, the priority of brick x, P(x), combines two metrics similar to 
[20]: the distortion D(x) in the transfer function domain, and the importance level I(x), 
based on the distance from x to the viewpoint and region of interest. We present a 
short summary of the computation of the priority function. A more detailed explana-
tion of the priority function and the real-time updating is found in [20].  

D(x) is the distortion of approximating the source voxels (si) by the voxels xi of x. 
It can be written as (2):  

∑
=

=
sn

i
ii xsDxD

1

),()( , (2) 

where D(si,xi) is computed in CIELUV color space after applying the transfer function 
to the voxels si and xi, and ns is the number of voxels of the source data approximated 
by x [4]. The importance level I(x) of the brick x is computed considering the distance 
from brick x to the region of interest (ROI) and to the viewer:  
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where diag(x) is the diagonal length of the brick x in object space, d(x,eye) is the 
minimum Euclidean distance from the brick x to the eye, and d(x,ROI) is the average 
between the minimum distance between x and the ROI and the minimum distance 
between x and the ROI center. The value of t is used to weigh the distance to the ROI 
versus the distance to the eye. In our tests, we set t=0.25, giving more priority to the 
distance to the ROI. The distortion level and the importance level are multiplied to 
define the priority function P(x) as (4): 

)()()( xIxDxP ⋅= . (4) 

3.3   Selecting the Bricks 

Before rendering, the set of bricks for representing the volume under the texture 
memory constraint have to be selected. We use a greedy-style algorithm, which  

  0     1      2     3              16   17             254  255 
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selects the nodes with highest priority P(x) for splitting. It uses a priority queue PQ to 
perform this process. Starting by inserting the root node into the queue, the selection 
process consists of splitting the node of PQ with highest priority [4], [5], [7], i.e. 
removing the head of PQ and re-inserting its non-fully transparent children into PQ. 
We use a min-max octree [22] to discard fully transparent bricks. During the refine-
ment process, the following constraints are considered in this approach:  
 

• Splitting a node must not violate the adjacency constraint. This constraint in-
dicates that the difference with respect to the LOD between adjacent bricks 
selected for rendering must not exceed one level. It suggests building a re-
stricted octree, which can be constructed using an adaptation of the restricted 
quad-tree algorithm for terrain rendering [18]. 

• Every node x∈PQ requires blending with its own parent node during render-
ing, if at least one of its adjacent bricks is coarser than x.  

• The number of bricks used for rendering (including parent nodes) is limited 
by a hardware constraint or user-defined texture size (N bricks).  

 

The adjacency constraint is respected by evaluating the LOD of adjacent bricks be-
fore splitting a node x∈PQ. Each coarser node y adjacent to x needs to be split before 
splitting the selected node x. Notice that the adjacency constraint has to be evaluated 
again before splitting any adjacent node, and so on. This suggests using a recursive 
procedure or an auxiliary queue to perform this task. In addition, for each node x in 
PQ, we keep the list of its adjacent nodes A(x). When an individual split is performed, 
the adjacency list of each child is created with the union of its brother nodes and a 
subset of A(x); also, the adjacency list of each adjacent node is updated, replacing the 
entry x by the corresponding subset of children(x). 

The algorithm keeps track of the number of nodes selected for rendering, including 
the parent bricks. Each node x in PQ has a flag, indicating if such a node requires its 
parent for blending. One node requires its parent if any of its adjacent bricks is 
coarser than itself. If a node x is split, the flag of x and the flag of its adjacent bricks 
need to be re-evaluated. 

The refinement process stops if a split operation exceeds the texture memory con-
straint, or no more refinement is possible. 

3.4   Rendering 

The selected bricks are rendered in front-to-back order, using GPU-based ray casting 
with pre-integrated classification. They are composited with the under operator [19]. 
The pre-integrated table is incrementally generated using the O(n2) incremental algo-
rithm of Lum et al. [24], which requires about 0.06 seconds for n=256. Each brick is 
stored in an individual 3D texture object; thus, loading and rendering can be performed 
in an interleaved fashion, and potentially in parallel [21]. For each brick, the front faces 
of its bounding box are rasterized [15], interpolating the texture coordinates of the 
vertices, and the viewing vector. Therefore, each fragment obtained from rasterization 
contains the viewing ray and the entry point into the brick in texture space. 

The ray is sampled with constant step length. For each pair of consecutive samples 
xf and xb, the 2D pre-integration table is fetched at (s,t)=(xf,xb) to retrieve the corre-
sponding color integrals RGB(xf,xb) and the opacity α(xf,xb) in the interval [xf,xb]. If 
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the brick requires blending with its parent, the parent is sampled at constant steps as 
well. The front sample xf of the brick x is blended with the corresponding front sample 
pf of its parent (1), obtaining the blended front sample f. Also, the back samples are 
blended, obtaining the blended back sample b. Thus, the pre-integration table is only 
fetched at location (f,b), i.e. there is only one fetch of the pre-integration table per ray-
segment. The last ray-segment inside the brick is clipped at the brick boundaries. In 
this case, the segment length is used to scale the color integrals, and also to correct the 
opacity [10]. 

3.5   Caching and Out-of-Core Support 

A texture memory buffer containing 3D texture objects (bricks) is created to store the 
octree cut in texture memory. To exploit frame-to-frame coherence, we keep a list of 
used bricks in texture memory, and another list of unused bricks. Every time the list 
of bricks requested for rendering changes between frames, unused bricks are replaced 
by new bricks and moved to the used list, according to an LRU (replace the least 
recently used page) scheme [6]. Since the number of new bricks can be eventually 
large, it may influence the frame rate significantly. A better approach is suggested in 
[20], which incrementally updates the previous cut through the octree towards the 
new cut on a frame-by-frame basis, limiting the number of bricks that are exchanged 
between frames. 

For large datasets fitting only partially into main memory, out-of-core techniques 
have to be considered. In our system, a simple paging on demand is implemented. A 
main memory cache is used to hold the bricks required for rendering, and also to keep 
some other bricks that can be used in future frames. The paging process is running in 
a separate thread to avoid stalling the rendering process [6], [23]. A simply LRU 
scheme is also used to replace unused bricks by new bricks [7], [23].  

The multi-resolution dataset is stored in a single huge file, and the bricks are 
loaded in groups of at most 8 bricks (which share the same parent), since the disk 
bandwidth increases by loading contiguous data [20], [23]. In our tests, for brick sizes 
varying between 163 and 643 samples, loading blocks containing 8 bricks doubles the 
disk bandwidth, in comparison to loading independent bricks. While the requested 
data is not available in main memory, the rendering thread continues rendering the 
last available data, which keeps the system interactive. 

4   Implementation and Results 

The system prototype was developed and evaluated under 32-bit Windows XP using 
Visual C++ 2005 with OpenGL® support. The hardware platform used for the tests is 
a desktop PC with a 2.4GHz quad core Intel® processor, 2 GB of main memory, an 
NVidia® Geforcetm 8800 graphics card with 640MB on-board memory, and a SATA 
II hard disk of 7200 rpm. Medical datasets (See Table 1, and Fig. 5) have been se-
lected for testing: computer tomography of the visible female from the Visible Human 
project ® [1] (VFCT), angiography with aneurism (Angio), and grayscale-converted 
photos of the visible female from the Visible Human project ® [1] (VF8b). 
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Table 1. Test Datasets 

Attribute VFCT VF8b ANGIO Measurement VFCT VF8b ANGIO 
Width (v=voxels) 512 2048 512 FPS naive approach 20.01 15.00 22.09 
Height (v) 512 1216 512 FPS blended approach 16.7 11.72 17.80 
Slices (v) 992 5186 1559 % Blending overhead 16.54% 21.87% 19.42% 
Source Size (GB) 0.85 12.03 0.76 (a) Nr. Selected bricks  3865 2761 3255 
Brick Size (v) 163 323 163 (b) Nr. Parents used  426 308 426 
Bits per voxel 16 8 16 Total bricks = (a)+(b) 4291 3069 3681 
Tex. Cache (MB) 35 100 30 % Parent bricks 9.93% 10.04% 11.57% 
Ram Cache (MB) 140 400 120 % Blended bricks 65.74% 54.04% 70.26% 
Block Size (KB) 64 256 64 (c) LOD ave. naive  5.39 5.67 5.48 
Bandwidth (MB) 10 33 10 (d) LOD ave. blended 5.21 5.53 5.30 
LODs 0..7 0..8 0..8 LOD difference (c) – (d) 0.17 0.14 0.18 

a.1

a.2

b.1 

b.2 

c.1

c.2  
Fig. 5. Removing artifacts of our test datasets. (a) VFCT: Head of the visible female, obtained 
from CT. (b) VF8b: Feet of the visible female, from full color images converted to grayscale. 
(c) Angio: Angiography with aneurism. Upper images (*.1) are rendered using the naive ap-
proach; bottom images (*.2) are rendered with blending. Each brown arrow points to a visual 
artifact between adjacent bricks. 

For each dataset, a texture memory size is set for caching. A further budget is re-
served in main memory to page bricks from disk. We use four times the texture mem-
ory size for caching bricks in main memory. During pre-processing, datasets are split 
into bricks and downsampled to build the multi-resolution hierarchy. Each set of 
nodes sharing the same parent is grouped into a single block. All blocks are stored in 
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a single binary file. Datasets of 12 bits per sample are scaled to 16 bits to increase the 
interpolation accuracy [23]. 

Results are shown in Table 1 and Fig. 5. The transfer function used for VFCT and 
VF8b is illustrated in Fig. 6. The blended version reduces the frames rate (FPS) rate 
by about 20%, although more than 54% of the bricks require blending with their par-
ent during rendering. Notice that only about 10% additional bricks (parent bricks) are 
required for our blending approach. In theory, up to 1/8th of the bricks in the cut may 
be required for a full octree.  However, not every selected brick requires its parent for 
rendering.  

We estimated the average LOD for the generated images, both for the naive ap-
proach as well as for the blended approach. The average LOD for the naive approach 
is calculated as the sum of the LODs of each selected brick, weighted by the volume 
ratio represented by each brick. Let T be the list of nodes selected for rendering 
(without parent bricks). The average level of detail is defined by equation (5). 
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The average LOD of the blended approach is also calculated by equation (5). How-
ever, the level of detail of brick x (LOD(x)) is estimated by averaging the level of 
detail assigned to each brick vertex. Due to the blending of some bricks with the next 
coarser LOD, the average LOD of the blended approach is lower. However, it is only 
about 0.18 levels coarser than the naive approach for our examples. 

 
 
 
 
 
 
 
 
 

Fig. 6. Normalized transfer functions for the visible female. (a) VFCT, (b) VF8b. R, G and B 
channels are shown with the corresponding color. Absorption function is stored in the alpha 
channel A, denoted by a black dotted line. 

5   Conclusions and Future Work 

We introduced an efficient and effective technique to remove disturbing artifacts be-
tween adjacent bricks for direct multi-resolution volume rendering. Our approach blends 
a brick of the cut with its next coarser representation in such a way that the resolutions 
match at boundaries with its adjacent bricks. Thus, the LOD is gradually reduced inside 
a brick instead of simply displaying bricks of different level of detail next to each other 
or blending a few boundary pixels. Our results show the effectiveness of this technique, 
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which only increases the rendering time by about 20% while requiring only about 10% 
of texture memory overhead. 

Our approach can be extended to work in a multi-resolution framework, which 
supports roaming through a volume [6], [20]. In this case the cut is often updated 
from frame to frame, which may incur popping artifacts if the LOD changes in a cer-
tain area of the volume. Our technique can be used to generate an animated transition 
between the previous cut and the current cut. However, the cuts should be nowhere 
more different than one LOD and the animated transition becomes a 5D interpolation, 
since each cut requires already a 4D interpolation to perform the blending. Fortu-
nately, the 3D interpolation part is directly hardware-supported. 
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Abstract. We propose a new intrinsic representation of geometric tex-

ture over triangle meshes. Our approach extends the conventional height

field texture representation by incorporating displacements in the tan-

gential plane in the form of a normal tilt. This texture representation

offers a good practical compromise between functionality and simplicity:

it can efficiently handle and process geometric texture too complex to be

represented as a height field, without having recourse to full blown mesh

editing algorithms. The height-and-tilt representation proposed here is

fully intrinsic to the mesh, making texture editing and animation (such

as bending or waving) intuitively controllable over arbitrary base mesh.

We also provide simple methods for texture extraction and transfer using

our height-and-field representation.

1 Introduction

The advent of laser scanners, structured light scanners, and other modalities for
capturing digital 3D models from real objects has resulted in the availability of
mesh with complex geometric details at a wide range of scales. Handling this
geometric complexity has brought numerous challenges. In this paper, we ad-
dress the problem of representation and editing of the finest level details known
as geometric texture. It is important to distinguish this use of the word texture
from texture mapping where an image is mapped onto a shape via parametriza-
tion. In recent years the use of texture mapping has expanded greatly, and one
application of texture mapping is to map geometric texture onto a smooth base
shape by means of height map images. This approach often performs adequately,
but geometric texture such as thorns, scales, bark, and overhangs simply cannot
be described by height fields: a single valued height field is insufficient for these
common types of geometric texture, see Fig. 1.

Tangential displacements could be included alongside normal (height) dis-
placements. However, there is no simple canonical basis in which to encode tan-
gent vectors. To produce a basis one might use the partial derivative of a map
from parameter domain to the surface, or choose one outgoing edge from each
vertex. Unfortunately, these obvious methods are not intrinsic to the shape, re-
quiring either an added parametrization, or an ordering of the edges, and further
editing of the geometric texture may suffer from artifacts accordingly.

To deal with full 3D texture, researchers have proposed cut-and-paste [1] and
example-based [2] methods, as well as approaches that stretch and fit patches

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 656–667, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Limitations of the height field representation of the geometric texture. Of the

two textures only the left one can be described as the texture superimposed on the a

shape.

Fig. 2. Examples from our height-and-tilt geometric texture representation. Left: A

lychee fruit scan is modified to wrap the spikes. Middle: Geometric texture applied after

a deformation of the base shape. Right: A synthetic texture over plane is transferred

onto an arbitrary object.

of 3D texture to create complex geometric textures [3]. These methods are also
capable of handling weaved textures, or textures of high topological genus. They
do not, however, offer intrinsic representations of the texture on the surface, but
increase the geometric complexity of the object instead, making use of full-blown
mesh editing methods [4].

Contributions. We propose an intermediate type of geometric texture representa-
tion, compact and practical, offering a compromise richer than displacement field
textures but much simpler than full 3D textures. We will assume that small-scale
surface details are easily separable from the base surface, but are not necessarily
representable as height fields over the base surface. Our representation adds a tilt
field to the conventional height field texture representation, with this tilt field
being stored using one scalar per edge in a coordinate-free (intrinsic) manner. A
resulting height-and-tilt texture model can be used for extraction, synthesis and
transfer of a large family of geometric textures. Additionally, we demonstrate
that dividing a texture into a height field and a tilt field offers new and intuitive
mesh editing and animation possibilities without the computational complexity
associated with global mesh editing methods, see Fig. 2.

Related Work. Texture is often an important feature of 3D objects, explain-
ing the abundance and variety of methods proposed to synthesize texture on
surfaces [5,6,7]. The main goal of most texture synthesis algorithms is to syn-
thesize a texture (color, transparency, and/or displacement) onto an arbitrary
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surface resembling a sample texture patch [8,9]. Common to these methods is
the limitation to textures represented by an image or a scalar displacement field.

While height fields defined over surfaces have been used for many years, newer
and richer representations have only started to appear recently. In [10] for in-
stance, fur was modeled through the addition of a tangential displacement to
rotate a discrete set of hair strands away from the normal direction. A similar
idea based on vector-based terrain displacement maps to allow for overhangs was
also proposed for gaming [11].

Tangent fields have also recently been used to control texture growth direc-
tions [12,13]. A convenient, intrinsic representation of tangent vector fields was
even proposed in [14], along with vector field processing directly through edge
value manipulations.

To overcome the limitations of conventional heightfield-based texture repre-
sentations, we model geometric texture as a locally tilted height field over the
base shape. By storing the height field as scalars over mesh vertices (i.e. discrete
0-forms [15]), and storing the tilt field as scalars over mesh edges (i.e. discrete
1-forms), we obtain an intrinsic, coordinate-free representation of fairly complex
geometric textures.

2 Background on Tangent Vector Fields as One-Forms

As we make heavy use of representing tangent vector fields as discrete 1-forms,
we briefly review the mathematical foundations proposed in [15,14].

From vector fields to 1-forms. From a vector field defined in the embedding
space, one can encode its tangential part t to a surface mesh by assigning a
coefficient cij to each edge eij . This coefficient represents the line integral of the
tangent vector field t along the edge. The set of all these values on edges offers
an intrinsic representation (i.e. needing no coordinate frames) of the tangent
vector field.

From 1-forms to vector fields. From the edge values, a tangent vector field can
be reconstructed using, for instance, a vertex-based piecewise-linear vector field.
The value of the vector field at a vertex is computed from the coefficients of the
incident edges: the contribution of one face fijk (see Fig. 3, left) to the field at
the vertex vi is

tijk(vi) =
1

2Aijk
(cije⊥ki − ckie⊥ij) , (1)

where cij and cki are coefficients on edges eij and eki respectively, and e⊥ij and
e⊥ki are edges eij and eki (as 3D vectors) rotated for π/2 in the plane of fijk

(see the discussion about Whitney edge basis functions in [15]). Averaging these
contributions from all incident triangles thus provides a 3D vector per vertex of
the mesh.
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Fig. 3. Left: The contribution of the face fijk to the tangent field at vertex vi.

Right: Piecewise linear interpolation of the tangent field.

Least-squares 1-form assignment. The averaging process used in the reconstruc-
tion makes the encoding of vector fields by 1-forms lossy: a piecewise-vector field
converted into a 1-form may not be exactly recovered once converted back. To pro-
vide the best reconstruction of the field from edge coefficients, we do not compute
the edge coefficients locally, but proceed instead through a global least squares fit.
If we store in M the reconstruction coefficients defined in (1) (that depend only
the connectivity and vertex coordinates of the mesh, not on the tangent vector
field), we find the set of edge coefficients C by solving the linear system

M C = V , (2)

where the vector V contains the coordinates of the input vector field at vertices.
Each vertex contributing three equations while there is only one unknown per
edge, this system is slightly overdetermined (depending on the genus), and solv-
ing it in a least squares fashion yields a very good representation of a tangent
vector field over the triangular mesh with little or no loss.

Tangent vector field reconstruction. To transfer a tangential field from one mesh
to another we need to evaluate the field on arbitrary point of the mesh surface.
For a point P on the face fijk with barycentric coordinates (αi, αj , αk) associated
with vertices i, j and k we get

t(P ) =
1

2Aijk

(
(ckiαk − cijαj)e⊥jk + (cijαi − cjkαk)e⊥ki + (cjkαj − ckiαi)e⊥ij

)
,

which amounts to evaluating the face contribution to each of the vertices, as in
(1), and linearly interpolating those using barycentric coordinates, as illustrated
in Fig. 3, right.

3 Texture Representation

In the texture representation proposed here, we make the usual assumption
that the finely-tesselated textured object comes from a smoother base shape,
onto which a small-scale geometric texture is superimposed without affecting the
topology of the base shape. We will first describe how to establish our discrete
representation before introducing applications.
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3.1 Texture Extraction

Given a finely-tesselated textured object, we must first decide what constitutes
geometry (base shape) and what constitutes small-scale texture (displacement
from base shape, see Fig. 4, left). While this is a notoriously ill-posed problem,
many good practical methods have been proposed. In fact, any approach that
proceeds through a smoothing of the textured surface while minimizing the tan-
gential drift throughout the process is appropriate in our context. For example,
a few steps of mean curvature flow [16] provides a good vertex-to-vertex corre-
spondence between the original textured surface and a smoother version, used as
base shape. For more intricate geometries, a multiresolution smoothing strategy
such as [17] or a spectral approach such as [18] are preferable (see Fig. 4, middle).
Alternatively, defining or altering the base shape by hand might be appropriate
if specific texture effects are sought after or if the condition mentioned in Fig. 4,
left, is significantly violated.

3.2 Pseudo-height and Tilt

From displacements to heights and tilts. With a base shape available, the dis-
placement of vertex vs is simply defined as

d = v0 − vs ,

where vs is a position of the vertex vs on the base (smoother) shape, and v0
is the position of the corresponding vertex on the textured surface (see Fig. 4,
right). Storing this displacement as a vector would require either using three
coordinates, or defining and maintaining an explicit two-dimensional local coor-
dinate frame over the surface. Instead we split the displacement into two fields:
a pseudo-height and a tilt, both of which can be represented in a coordinate-free
way based on discrete differential forms [15], [14].

d

vs

ns

Fig. 4. Left: Geometry texture superimposed on objects’s base shape in form of vector

displacements. The points at the intersections of the textured surface and the base

shape have zero displacements. Middle: One way of obtaining the base shape in case of

non-heightfield texture would be to use the multiresolution hierarchies as in [17] and

trace the points through a sufficient number of levels. Right: The displacement d of

the vertex vs can be described in terms of displacement length and the rotation from

the normal vector.
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The Pseudo-height field h represents the signed length of the displacement

h = sign(d · ns)‖d‖ ,

where ns is the normal on the surface at vs. Our pseudo-height is thus analogous
to a typical height field, with values sampled at vertices then linearly interpolated
across triangles. However we also define a tilt field: this is a vector field that
defines the tilt (rotation) of the displacement direction with respect to the base
normal direction. More precisely, the tilt t is induced from the displacement d
and the base normal ns as

t =
d
‖d‖ × ns .

Notice that the tilt is a vector in the tangent space of the base shape: its direc-
tion is the rotation axis for a rotation that transforms the displacement direction
into the normal direction and the magnitude of the tilt is the sine of the rotation
angle. Therefore, we encode the tilt using the edge-based discretization reviewed
in Sect. 2. Using the tilt instead of the tangential displacement offers an intuitive
description of the texture: the height truly represents the magnitude of the dis-
placement, while the tilt indicates the local rotation of the normal field. We will
see that this particular decomposition allows for very simple editing of geometric
textures.

In summary, we converted a displacement field into an intrinsic, coordinate-
free geometric texture representation

texture = (h, t) ,

consisting of two terms, the pseudo-height h stored as a single scalar per vertex,
and the tilt t stored as a single scalar per edge.

Continuity of height and tilt. Notice that if the condition explained in Fig. 4 is
satisfied, our height-and-tilt representation is continuous: the height field van-
ishes when the textured surface crosses the base shape, while the tilt field ap-
proaches the same value on both sides of the surface. However, in practice, one
cannot exclude the possibility of having some points that have displacement
only in tangential direction, which creates a discontinuity in the height field. To
avoid loosing texture information (the “height” of the tangential drift), we use
a non-zero sign function in our implementation.

3.3 Texture Reconstruction

Given a base shape and the height-and-tilt texture representation as described
above, we can easily reconstruct the textured object. The tilt field t is calculated
first from the edge coefficients, as explained in in Sect. 2. To obtain the direction
of the surface displacement, we then simply need to rotate the base shape normal
ns around the axis ns × t by the angle α satisfying

sinα = ‖t‖, cosα = sign(h)
√

1− ‖t‖2 .
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Our height-and-tilt texture can also be transferred from a source shape to a
target shape. We need to define a mapping between the two shapes and sample
both the height field and the target shape. Typically, such a mapping between
two shapes uses a small number of patches as flat as possible [19], and a map-
ping between each pair of patches is achieved through, for instance, conformal
parametrization of small circular patches. Once such a mapping has been es-
tablished, our pseudo-height field can be copied from source to target through
simple resampling (using, e.g., barycentric coordinates). The tilt can also be
transferred efficiently: for each of the target edges, we sample the edge at a
number of locations (5 in our implementation), evaluate the tilt vector field (as
covered in Sect. 2) at these samples from the map we have between the source
and the target, and integrate the dot product of the linearly interpolated vector
field over the edge.

Fig. 5 and 6 show three examples of transferring a non-heightfield texture
patch to the target mesh by the means of simple resampling.

Fig. 5. The texture of the scanned lychee fruit (edited to achieve the whirl effect, left)
is extracted from the base shape (middle) and transferred to the base shape of the

avocado fruit (right)

Fig. 6. The synthetical texture (left) transferred to the shape of an avocado (middle)

and to the shape of a lychee fruit (right)
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4 Applications

We present two types of applications of our height-and-tilt texture representa-
tion. For editing and animation, the shape of the object is held constant while
the texture on the shape is altered; for deformation and resizing, the shape is
deformed and the texture is simply reapplied to it.

4.1 Editing and Animation

Our height-and-tilt texture representation is amenable to a number of simple
editing functions. Height and tilt fields can be modified together or separately,
which results in new possibilities for geometric texture editing and animation.
For instance, we can simulate the effect of spikes swaying on the surface (as if
moved by the wind) by changing the texture fields in time. Fig. 7 demonstrates

Fig. 7. An example of simple operations on height-and-tilt fields. Left to right: A tilt-

free texture, set tilt operation, wrap operation and wave operation. Up to down: The

effect on 2D synthetic texture for two different parameters, on 3D synthetic texture,

and on a scan of a lychee fruit for two different directions.
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Fig. 8. Our texture representation allows us to extract the texture of the tentacle stick

using a (given) base shape. After bending the shape, we can reapply the texture to

the shape. On far right is the result of applying the space deformation directly to the

textured shape. Notice on the enlarged detail that our method does not deform texture

elements.

Fig. 9. The original tentacle stick and its (given) shape, left up. The shape is then

resized (grown by the factor of 1.5 on right, shrunk to half size on left down) and the

texture is put back on it. Due to the texture elements being represented as heights and

tilts the size and the shape of the tentacles is not significantly affected by resizing.
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a few examples, such as set tilt, which fixes the tilt of the texture; wrap, which
wraps (bends) the texture spikes; and wiggle, which creates a wave-like effect on
the spikes. While these operations may not be visually relevant on all textures,
they are very effective on spiky textures.

4.2 Deformations and Resizing

Combined with base shape deformation, our representation can also handle a
wide range of effects. Fig. 8 exhibits some of the benefits of our approach, where
a non-purely height field texture is extracted using a given base shape. The base
shape is then deformed, and the texture can be added back in a realistic way.
However, since our representation is normal-based, it will still exhibit distortion
artifacts for severe bending (i.e. large compared to the scale of the texture).
The simplicity of our method cannot (and in fact, is not designed to) handle
very complex shape deformation that much more costly Laplacian-based editing
methods can [20]. Nevertheless, it alleviates the limitations of height field texture
methods while keeping their computational efficiency. In an another example
shown in Fig. 9 the base shape has been scaled, but the height-and-tilt texture
representation preserves the size and shape of the texture elements.

5 Discussion and Conclusion

Wepresented a height-and-tilt texture representation to efficiently encode andpro-
cess small-scale geometric textures over fine meshes. As an extension of heightfield-
based textures, they share their simplicity (texture editing is achieved only via local
computations) andand their intrinsic nature (i.e. theyare coordinate-free).Thanks
to the added tilt field, a rich spectrum of geometric textures can be stored, edited,
animated, as well as transferred between surfaces.

One has to bear in mind some of the present limitations of our method. Firstly,
we rely on existing methods to separate texture from geometry. As our notion
of texture is richer than the usual height field approach, it is likely that better
methods to provide base shapes can be derived. Second, since our representation
is normal based, the texture extraction can be sensitive to the smoothness of
the base shape. This can be addressed by additional smoothing of the normal
field of the base shape prior to texture extraction in our implementation. Ad-
ditionally, storing the tilt in the tangent field may be, for some applications,
inappropriate if the tilt field does not vary smoothly over the surface. To be
more robust to non-smoothly varying tilt fields, we utilize the fact that tilt field
has maximal magnitude one and constrain the least squares system (2) so that
an edge coefficient is not larger than the edge length.

The obvious extension of height-and-tilt texture representation is to synthe-
size (grow) geometric texture on arbitrary meshes, possibly using the tilt field to
control the direction of the growth. Another future endeavor could be to inves-
tigate whether we can provide a high fidelity geometric texture with fewer base
vertices through field and surface resampling.
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Also note the our texture representation is simple enough that a GPU im-
plementation would be fairly easy, allowing for real-time animation of objects
displaced with non-heightfield geometric texture or, perhaps more importantly,
a system for real time editing of 3D objects with complex geometric texture.

Acknowledgments. This research was partially funded by the NSF grant CCF-
0811373.
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Using Coplanar Circles to Perform
Calibration-Free Planar Scene Analysis under a

Perspective View

Yisong Chen

Key Laboratory of Machine Perception (Ministry of Education), Peking University

Abstract. Conics have been used extensively to help perform camera

calibration. In this paper, we present a lesser-known result that con-

ics can also be applied to achieve fast and reliable calibration-free scene

analysis. We show that the images of the circular points can be identified

by solving the intersection of two imaged coplanar circles under projec-

tive transformation and thus metric planar rectification can be achieved.

The advantage of this approach is that it eliminates the troublesome

camera calibration or vanishing line identification step that underlies

many previous approaches and makes the computation more direct and

efficient. Computation of the vanishing line becomes a by-product of our

method which produces a closed form solution by solving the intersection

of two ellipses in the perspective view. Different root configurations are

inspected to identify the image of the circular points reliably so that 2D

Euclidean measurement can be directly made in the perspective view.

Compared with other conic based approaches, our algorithm success-

fully avoids the calibration process and hence is conceptually intuitive

and computationally efficient. The experimental results validate the ef-

fectiveness and accuracy of the method.

1 Introduction

Conics are widely accepted as one of the most fundamental image features in
computer vision due to their elegant mathematical forms and popularities [20].
The study of conics is vital to developing computer vision systems and has been
widely employed in computer vision applications to perform camera calibration
and pose estimation [14,6,10].

Although recent research based on conics has come up with many fruitful
achievements, most work has concentrated on the field of camera calibration
while the potential of conics in other vision applications has to a large extent
been neglected. In addition, conic based calibration work often involves multiple
views, restricted patterns and complicated computations [13]. For example, the
work in [17] employs a specially designed pattern with a circles and a pencil of
straight lines passing through its center and needs at least three different views
to conduct calibration. The work in [15] makes use of planar concentric circles
and requires at least two views. The work of [3] uses only a single view but needs
complicated computations and iterative optimizations to estimate the direction

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 668–677, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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and the center of a circle in the perspective view. These constraints make the
approaches not particularly attractive to real-world applications.

We point out that it is the process of scene analyses, rather than the esti-
mation of camera parameters, that helps us to understand and to interpret the
scene content. Therefore, it is very attractive if we could avoid or by-pass the
calibration step and directly go into the work of scene analysis with as few views
and computations as possible. Single view metrology [5] and planar rectification
[16] are both representative attempts based on this idea. Calibration-free scene
analysis represents the most attractive trait of these approaches.

Planar rectification plays a very important role in calibration-free scene anal-
ysis. Generally speaking, metric rectification of a perspective view of a world
plane is possible once the circular points or the absolute conic is identified on
the image plane. This is achieved through either stratified or unstratified pla-
nar rectification methods [22,7]. Vanishing line identification is one of the most
important steps in planar rectification and there have been many approaches
about how to identify the vanishing line on the image plane [2,23,11].

Interestingly, although conics have been extensively used to help perform cam-
era calibration, they have received limited attentions in the field of calibration-
free scene analysis. In fact, conics can play as important a role in single view
metrology as in camera calibration. An interesting attempt to conduct rectifica-
tion with the help of conics is made in [4], where the image of the absolute conic
(DIAC) is identified by algebraically solving the intersection of the vanishing
line and the image of a circle. The advantage of this approach is a rapid and
closed form solution for the image of the absolute conic. However, this method
still requires the vanishing line to be identified on the image plane.

In this paper, we reap the potential of planar conics in the context of calibration-
free scene analysis by exploiting the interaction of multiple coplanar circles. Our
approach exhibits the following advantages. First, we use only a single image to
achieve good planar scene analysis. Second, we use planar conics to exploit met-
ric properties under 2D homography directly from perspective views and avoid
the complicated calibration process. Third, we eliminate the requirement of van-
ishing line identification that is necessary in most of the related work, and make
calibration-free planar scene analysis possible under many difficult cases. Last but
not least, our formulation leads to concise closed-form solutions. The simplicity of
the underlying mathematics means only minimal knowledge is required to under-
stand our algorithm and put it into practice. Specifically, we propose an alterna-
tive planar rectification method that is able to perform quick and reliable planar
measures directly from the perspective view with neither camera calibration nor
homography parameter estimation. We show that the circular points can actually
be identified algebraically by solving the intersection of the images of two circles.
The vanishing line and the image of the absolute conic can be calculated later from
the two identified imaged circular points.

The major contribution of our work is a simple and elegant algebraic frame-
work to solve the images of the circular points, which eliminates the troublesome
but mandatory step of vanishing line identification in many related approaches.
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2 Solving the Images of the Circular Point

It is a well known result in projective geometry that every circle on the plane
intersects the line at infinity at two fixed complex circular points I = (1, i, 0)′ and
J = (1,−i, 0)′. These two points are fixed under any similarity transformation.
The fact that every circle passes through the two circular points implies that
the circular points can be identified by solving the intersection of two circles.
Although this fact is obvious and can be easily deduced from most projective
geometry textbooks, to the best of our knowledge it has been rarely exploited
to help perform scene analysis. Note that intersection is an invariant property
under projective transformation. Therefore the images of the circular points can
be identified on the image plane by identifying the two appropriate intersection
points of the images of two world-plane circles, which are in general two ellipses
on the image plane.

Suppose that two world-plane circles are mapped to two ellipses on the image
plane by 2D non-degenerate homography, which have the forms of equation (1).

a1x
2 + b1xy + c1y

2 + d1xw + e1yw + f1w
2 = 0

a2x
2 + b2xy + c2y

2 + d2xw + e2yw + f2w
2 = 0

(1)

The above equations are not as easily solved as the case in [4]. Additionally,
unlike in many applications, we are interested only in the complex roots of the
equations. Hence the powerful numerical methods searching for real roots are
of little help here. Fortunately, such equations have been thoroughly studied in
mathematics and there are ready-made algorithms and tools to help solve it
[8,1,21]. It is easy to integrate any of the solvers to the above equations into our
planar rectification framework. Here we focus on the implications of the solutions
and how they can be exploited in calibration-free scene analysis.

After equations (1) are solved we obtain the images of the circular points as
in equation (2).

I ′ = (x0, y0, 1) = (Re(x0) + i · Im(x0), Re(y0) + i · Im(y0), 1)
J ′ = (x0, y0, 1) = (Re(x0) + i · Im(x0), Re(y0) + i · Im(y0), 1)

(2)

Since the incidence of the circular points and the line at infinity is invariant
under homography, the vanishing line can now be computed by

l′∞ = I ′ × J ′ = (y0 − y0, x0 − x0, x0y0 − x0y0) (3)

The image of the absolute conic, ω, can also be computed from I ′ and J ′ using
the following equation (4) due to the dual relationship between the circular
points and the absolute conic.

ω′ = I ′J ′ + J ′I ′ (4)

We stress that ω is a real symmetric matrix although I ′ and J ′ are complex.
After ω is identified on the image plane the angle between two world-plane lines
l and m can be calculated from their perspective images with equation (5):
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cos(θ) = l′ω′m′/
√

(l′ω′l′)(m′ω′m′) (5)

Equation (5) is an equivalent expression of the Laguerre formula under 2D ho-
mography and can be used to compute the cosine value of any angle between
two world-plane lines directly from the image plane without explicitly recovering
the world plane [18]. This means that metric rectification is achieved without
solving the homography parameters.

Finally, it is worthwhile to make an insightful comparison between our work
and that of [3] which is a recent work and closely related to the approach pre-
sented here. The two methods look similar in that both approaches work on a
single perspective view of two coplanar circles. However, as we have stressed in
Section 1, the two approaches are different in their intrinsic motivation. The work
in [3] is from the point of view of calibration while ours is from the point of view
of calibration-free scene analysis. Although the work in [3] can finally achieve
metric rectification, complicated optimization and computations have to be first
conducted to estimate the camera parameters and the solution is confronted with
the risk of instability in the presence of image noise. By contrast, in our approach
we show that it is actually not necessary to perform calibration to achieve met-
ric rectification. Euclidean measurement under projective transformation can be
directly reached with much more concise and simple computations. This makes
our approach very practical and efficient.

3 Root Configurations

In general there are four pairs of roots to equations (1). So we have to be careful
in selecting the appropriate circles and roots because an incautious choice may
significantly ruin the final result. We will give some discussions in this section
based on several different root configurations of the equations (1).

3.1 Two Intersecting Circles

This is the simplest case. Because the two circles intersect on the world plane, we
know immediately that the equations have two pairs of real roots and two pairs of
complex roots. In addition, the two pairs of complex roots are conjugate to each
other because they are the roots of a real coefficient equations set. Accordingly,
the two pairs of complex roots act as the identified images of the circular points.

3.2 Two Non-intersecting, Non-concentric Circles

This case is a little more complicated. The reason is that two such circles on
the world plane will have two pairs of complex roots other than the images of
the circular points. So a bit of attention should be paid to make sure that no
wrong roots are selected. Fortunately this is not a tough task. The incorrect
roots can generally be distinguished from the correct ones because they often
lead to obviously wrong vanishng line or measure results. Therefore they can
be easily removed from the candidates. This will be depicted in more detail in
Section 4.
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3.3 Two Concentric Circles

As a matter of fact, this is the most popular case in real-world scenes due to the
fact that a ring on the world plane naturally defines two concentric circles with
its inner edge and outer edge. This looks like an exciting observation because a
single ring in the scene seems sufficiently powerful to achieve planar rectification.
Unfortunately this is only partially true. In fact, we have to pay special attention
here because most degeneracy occurs in this case. We give a brief interpretation
in this subsection.

Unlike the aforementioned two cases there are in theory only two pairs of
roots to equations (1) for two concentric circles. At first glance this is good
news because it seems that no effort is needed to pick up the true images of the
circular points from the outliers. Nevertheless this rarely happens in practice. In
the presence of noise the error is unavoidably introduced during photo taking and
ellipse fitting. As a result we always get four pairs of different roots. Moreover,
if the two circles are close in distance then none of the four pairs are actually
reliable. This is not surprising because two circles near each other denote a
degenerate case and fail to provide adequate information to identify the circular
points. Fortunately, as long as the two circles are not very close to each other
the degeneracy will NOT occur, even if they are concentric. Therefore, two non-
close concentric circles still help to identify the circular points quite well as
long as necessary steps are taken to prevent degradation. This is verified by our
experiments.

4 Experimental Results

In our experiments, ellipse detection and fitting is conducted by some robust
feature extraction and regression algorithms [11,9,19]. One point to stress is that
our experiments are done in normalized image coordinates to ensure a steady
order of magnitude during the solving process and to achieve a better precision
[12].

4.1 Synthetic Scene

In the first experiment, we make a synthetic planar scene with an Olympic logo
and several simple geometric shapes on it, as shown in Figure 1(a). The virtue
of the Olympic logo is that we can take different circle combinations to test
different root configurations addressed in section 3. From figure 1(a) we can
see that it is not easy to identify the vanishing line reliably without adequate
cues. Nevertheless, the circles in the figure help to avoid this difficulty and make
planar rectification possible. The distribution of the roots in the complex plane
is intuitively drawn in Figure 2 for five different circle combinations. Figure 2
shows that all but one degenerate case (the inner and the outer edge of the green
ring) generate a pair of roots very close in distance (the bold cells in Table 1).
This pair of roots is exactly the images of the circular points associated with the
corresponding circle combinations.
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(a) (b)

Fig. 1. (a) The original image. (b) The rectified image.

Fig. 2. Distribution of the roots solved by 5 different circle combinations. The ”o”s

denote the x roots and the ”x”s denote the y roots. Different colors denote different

circle combinations listed in Table 1. Under all non-degenerate cases (red, blue, cyan,

black) the images of the circular points are very close to each other (almost overlap-

ping), which are approximately encircled by 3 dashed circles. In contrast, the roots

generated by the degenerate case (green) are all far from the expected positions and

none of them is reliable.

Table 1. Circular points computation and selection with different circle combinations

Red-Green Yellow-Blue Red-yellow Green-innergreen

x1,x2 -0.0229±5.7100i 0.0129±5.7256i -0.0154±5.6756i -1.6811±3.1004i

y1,y2 5.0964±0.0183i 5.0892±0.0171i 5.0587±0.0063i 2.4467±1.3476i

x3,x4 -1.0465,-0.0750 0.5904,0.2470 -0.2024±0.7884i 4.6277±3.2340i

y3,y4 -0.9129,-0.8062 0.3617,0.8781 -0.2509±0.2187i 3.1346±4.6727i

l’ (-0.003,1.000,-5.096) (-0.003,1.000,-5.098) (-0.001,1.000,-5.059) NA



674 Y. Chen

Table 2. Angle estimating results for the Olympic logo scene (in degrees)

AD/AB EG/FG HK/JK LM/MN IJ/LN BD/AB JK/MN AD/FG

Red-green 89.81 57.71 60.34 45.09 0.16 29.96 15.51 75.27

Yellow-blue 89.78 57.63 60.44 44.93 0.11 29.97 15.45 75.26

Red-yellow 89.82 57.70 60.28 45.03 0.18 29.91 15.54 75.23

Red-innergreen 89.54 57.80 60.61 44.90 0.09 29.98 15.51 75.48

Ground truth 90.00 57.62 60.25 45.00 0.00 30.25 15.25 75.00

After the images of the circular points are recovered the Laguerre formula is
employed directly on the image plane to make 2D measurements. As shown in
Table 2, in all non-degenerate cases the results are very good. The maximum
angle deviation is only about 0.5 degrees. Figure 1-b gives the rectified image
for comparison.

4.2 Real World Scene

We use a very challenging plaza scene to test the cases of concentric circles.
Although this scene is much noisier compared with the previous one, the distinct
magenta color of the two rings in the scene allows robust detection of both edges
of the inner ring and the inner edge of the outer ring. The three identified circles
are indexed from inner to outer and are highlighted in Figure 3(a), together with
several feature lines. All three combinations of the three circles are tested and the
results are given in Figure 4 and Table 3. Again except for the degenerate case
(circle1-circle2) the images of the circular points are successfully estimated. An
interesting observation here is that in the two non-degenerate cases, the two sets
of conjugate roots are near each other in the complex number field and both sets
can produce reasonable results as the images of the circular points. This result
is expected because theoretically these two sets of roots should be identical. The
difference is just caused by the impact of the noise. In our experiment, we obtain
the final result by averaging the corresponding roots in the two sets and an even
better performance is achieved. The rectified image is given in Figure 3(b) and
several measure results are listed in Table 4.

The vanishing line can be computed from the images of the circular points by
equation (3). The result is also given in Table 3. For comparison we also give the

(a) (b)

Fig. 3. (a) The plaza photo. (b) The rectified plaza image.
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Fig. 4. Distributions of the roots solved by 3 different circle combinations. The ”o”s

denote the x roots and the ”x”s denote the y roots. Different colors denote different

circle combinations described in Table 3. Under the two non-degenerate cases (red,

blue) the images of the circular points are sufficiently close to each other, which are

approximately encircled by 4 dashed circles. In contrast, the roots generated by the

degenerate case (green) are far from the expected positions.

Table 3. Circular points computation and selection for the plaza scene

Circle1-Circle3 Circle2-Circle3 Circle1-Circle2

x1,x2 -1.5581±7.9239i -1.3254±6.6795i 0.1136±2.1698i

y1,y2 4.6410±3.0492i 3.9511±2.5537i 0.2238±0.9403i

l∞(estimated) (-0.385,1.000,-5.241) (-0.382,1.000,-4.458) (-0.433,1.000,-0.175)

l∞(by fitting) (-0.403,1.000,-5.535) (-0.403,1.000,-5.535) (-0.403,1.000,-5.535)

Table 4. Angle estimating results for the plaza scene (in degrees)

L1/L2 L1/L3 L1/L5 L1/L7 L3/L5 L3/L7 L5/L7

Circle1-circle3 0.124 30.662 61.251 89.178 30.611 59.164 29.549

Circle2-circle3 0.313 30.611 60.901 89.374 30.028 59.645 29.477

Ground truth 0.00 30.00 60.00 90.00 30.00 60.00 30.00

vanishing line computed by conventional method with the help of several sets of
parallel lines. Table 3 shows that the two approaches give similar results. This
validates the feasibility of our approach.

The image of the absolute conic can be computed with the combination of
circle3 and either of circle1 and cirlce2. Both results do well in metric rectifica-
tion. The results in table 4 verify that each neighboring stripe pair forms a 30
degree angle. The largest deviation from the expected value is only about 1.3
degrees. The rectified image in Figure 3-b shows a satisfactory rectification.

There is one point that deserves attention here. To employ equation (5) to
make Euclidean measures effectively, we strongly recommend that all straight
lines should be fitted through as many points as possible that can be detected
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from the image. This is due to the fact that statistically more measures will
determine the line more accurately and thus generate smaller estimation error
[19]. Our experiment reveals that careful line fitting will improve the precision of
angle measurement result by as large as 1.0 degrees. Therefore, Line fitting is not
an optional but an essential step and should be considered whenever possible.

Finally, it is worth noting that measures can be made directly from the image
plane through equation (5) and explicit image rectification is not necessary. The
rectified images in Figure 1-b and Figure 3-b are given just for comparison.

All the experiments are conducted through our C++ implementation of the
algorithm running on a PC workstation equipped with a 3.0G Pentium4 proces-
sor and 1GB of RAM. Feature extraction routine is the dominant time consumer
in our experiments. For a photograph of the size 640*480, line and ellipse feature
extraction spend around 1.00 seconds. The work of line fitting, ellipse fitting and
IAC solving takes less than 0.02 seconds.

5 Conclusion

In this paper, we show that calibration-free planar scene analysis can be per-
formed efficiently by solving the intersections of two world-plane circles on the
image plane algebraically. This algorithm achieves metric rectification in the ab-
sence of vanishing line and can in turn determine the vanishing line. The idea
is implemented by an efficient algorithm for solving the equations set together
with a roots selection strategy. Effective length and shape measures can be made
directly on the image plane without having to explicitly perform camera calibra-
tion, solve the homography parameters, or recover the world plane. Our work ex-
hibits three distinctive advantages: First, It outperforms calibration-mandatory
approaches in computational cost in that it is calibration-free. Second, it is more
practical than many other calibration-free approaches in that it avoids the van-
ishing line identification process. Third, it is extremely simple in concept and
easy to understand and implement.
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Abstract. In this work we describe a parallel implementation of the

Poisson Surface Reconstruction algorithm based on multigrid domain

decomposition. We compare implementations using different models of

data-sharing between processors and show that a parallel implementation

with distributed memory provides the best scalability. Using our method,

we are able to parallelize the reconstruction of models from one billion

data points on twelve processors across three machines, providing a nine-

fold speedup in running time without sacrificing reconstruction accuracy.

1 Introduction

New scanning and acquisition technologies are driving a dramatic increase in the
size of datasets for surface reconstruction. The Digital Michelangelo project [1]
created a repository of ten scanned sculptures with datasets approaching one
billion point samples each. New computer vision techniques [2] allow three di-
mensional point clouds to be extracted from photo collections; with an abun-
dance of photographs of the same scene available through online photo sites,
the potential for truly massive datasets is within reach. Processing such large
datasets can require thousands of hours of compute time. Recent trends in micro-
processor evolution show a movement toward parallel architectures: Multi-core
processors are now commonplace among commodity computers, and highly par-
allel graphics hardware provides even higher performance per watt. Traditional
single threaded algorithms will no longer benefit from Moore’s law, introducing
a new age in computer science in which efficient parallel implementations are
required.

This paper presents an efficient, scalable, parallel implementation of the Pois-
son Surface Reconstruction algorithm [3]. The system is designed to run on
multi-processor computer systems with distributed memory, allowing the recon-
struction of some of the largest available datasets in significantly less time than
previously possible. We begin our discussion with a brief review of both serial
and parallel surface reconstruction algorithms in Section 2. We then provide a
more in-depth review of the Poisson Surface Reconstruction algorithm on which
our work is based, presenting a review of the original implementation in Section
3, and its adaptation to a streaming implementation in Section 4. We describe
our parallel reconstruction algorithm in Section 5 and evaluate its effectiveness
in terms of both accuracy and efficiency in Section 6. Finally, we conclude by
summarizing our work in Section 7.

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 678–689, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Related Work

Surface reconstruction has been a well studied problem within the field of Com-
puter Graphics. The work can be roughly divided into two categories: Compu-
tational geometry based methods; and function fitting methods.

Computational Geometry: Computational geometry based methods use ge-
ometric structures such as the Delaunay triangulation, alpha shapes or the
Voronoi diagram [4,5,6,7,8,9] to partition space based on the input samples.
Regions of space are then classified as either ‘inside’ or ‘outside’ the object be-
ing reconstructed and the surface is extracted as the boundary between interior
and exterior regions. As a consequence of using these types of structures, the
reconstructed surface interpolates most or all of the input samples. When noise
is present in the data, the resulting surface is often jagged and must be refit to
the samples [7] or smoothed [5] in post-processing.

Function Fitting: The function fitting approaches construct an implicit func-
tion from which the surface can be extracted as a level set. These methods can
be broadly classified as global or local approaches.

Global fitting methods commonly define the implicit function as the sum of ra-
dial basis functions centered at each of the input samples [10,11,12]. However, the
ideal basis functions, poly-harmonics, are globally supported and non-decaying,
so the solution matrix is dense and ill-conditioned. In practice such solutions are
hard to compute for large datasets.

Local fitting methods consider subsets of nearby points at a time. A simple
scheme is to estimate tangent planes and define the implicit function as the
signed distance to the tangent plane of the closest point [13]. Signed distance
can also be accumulated into a volumetric grid [14]. For function continuity, the
influence of several nearby points can be blended together, for instance using
moving least squares [15,16]. A different approach is to form point neighborhoods
by adaptively subdividing space, for example with an octree. Blending is possible
over an octree structure using a multilevel partition of unity, and the type of
local implicit patch within each octree node can be selected heuristically [17].
Since local fitting methods only consider a small subset of the input points at
a time, the solutions are more efficient to compute and handle large datasets
with greater ease than global methods. The greatest challenge for local fitting
methods is how to choose the subset of points to consider at any given point
in space. These heuristic partitioning and blending choices make local fitting
methods less resilient to noise and non-uniformity in the input samples.

Parallel Surface Reconstruction. Despite the increasing presence of com-
modity parallel computing systems, there has been comparatively little work on
parallel surface reconstruction. The work of [18] implements the Poisson method
on the GPU, achieving significant speedups for small datasets. A significant lim-
itation of the implementation is that it requires the entire octree, dataset and
supplemental lookup tables to reside in GPU memory, limiting the maximum
size of reconstructions possible. To simplify the lookup of neighbor nodes in the



680 M. Bolitho et al.

octree and reduce the total number of node computations required, the imple-
mentation also uses first-order elements. While this allows a more GPU-friendly
implementation, the lower-degree functions make the method more susceptible
to noise and other anomalies in the input data.

Some other surface reconstruction algorithms lend themselves to efficient par-
allel implementations. Many local implicit function fitting methods can be at
least partially parallelized by virtue of the locality of most data dependencies.
Global implicit function fitting methods often have complex data dependen-
cies that inhibit parallelism. Finally, computational geometry approaches can
leverage parallel processing by computing structures such as the Delaunay tri-
angulation in parallel (e.g. [19]).

3 Poisson Surface Reconstruction

The Poisson Surface Reconstruction method [3] uses a function fitting approach
that combines benefits from both global and local fitting schemes. It is global
and therefore does not involve heuristic decisions for forming local neighbor-
hoods, selecting surface patch types, and choosing blend weights. Yet, the basis
functions are associated with the ambient space rather than the data points,
are locally supported, and have a simple hierarchical structure that allows the
resulting linear system to be solved efficiently.

The Poisson Idea: To solve the surface reconstruction problem, the Poisson
method reconstructs the indicator function, a function that has value one inside
the surface and zero outside. The key idea is to leverage the fact that an ori-
ented point set can be thought of as a sampling of the gradient of the indicator
function. This intuition is formalized by using the discrete point set to define
a continuous vector field V representing the gradient field of the (smoothed)
indicator function. Solving for the indicator function χ then amounts to finding
the scalar function whose gradient best matches V , a variational problem that
is optimized by solving the Poisson equation: ∆χ = ∇ · V .

Function Representation: Since the indicator function (and therefore its gra-
dient) only contains high-frequency information around the surface of the solid,
an adaptive, multi-resolution basis is used to represent the solution. Specifically,
an octree O is adapted to the point samples and then a function space is defined
by associating a tri-variate B-spline Fo to each octree node o ∈ O. The B-spline
Fo is translated to the node center and scaled by the size of the node, and the
span F of the translated and scaled B-splines defines the function-space over
which the Poisson equation is solved.

Solving the Poisson Equation: To solve the Poisson equation, a finite-
elements approach is used, with the system discretized by using the elements
Fo as test functions. That is, the system is solved by finding the function χ in
F such that: 〈∆χ,Fo〉 = 〈∇ · V, Fo〉 for all o ∈ O.
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4 Streaming Implementation

To enable the reconstruction of models larger than memory, the algorithm was
adapted to operate out-of-core, using a streaming implementation to maintain
only a small subset of the data into memory at any given time [20]. The key ob-
servation in performing Poisson Surface Reconstruction in an out-of-core manner
is that the computations required for each step of the process are local, due to
the compact support of the basis functions Fo. Specifically, each step can be
described by evaluating a node function N across all nodes in O, where the
result of N(o) for each o ∈ O is dependent only on the nodes o′ ∈ O where
〈Fo, Fo′〉 
= 0 (i.e whose base functions overlap). Spatially, this corresponds to a
small neighborhood immediately surrounding o and all its ancestors in O.

In one dimension, the most efficient streaming order is a simple left to right
traversal of the tree nodes: in this configuration, neighborhoods are always com-
pact and contiguous in the data streams. This ordering is generalized to higher
dimensions by grouping nodes into 2D slices (i.e. all nodes at a certain depth
with the same x-coordinate), and streaming the data on a slice-by-slice basis.
Since a node must remain in main memory from the first to the last time it is
referenced by other nodes, and since coarse levels of the tree have longer lifetimes
than finer levels of the tree, a multi-level streaming approach is used.

5 Parallel Surface Reconstruction

When designing the streaming implementation, one of the primary concerns
was minimizing the effect of the I/O required for out-of-core processing. In par-
ticular, this motivated the streaming approach (since streaming I/O is highly
efficient) and the minimization of the number of passes required through the
data (minimizing the total amount of I/O performed). When considering a par-
allel implementation, a different set of design concerns prevail: minimizing data
sharing and synchronization.

5.1 Shared Memory Implementation

In this section, we consider a simple, shared-memory parallelization of the re-
construction algorithm. Although this is not the model we use for our final im-
plementation, analyzing the shared-memory implementation provides valuable
insight regarding the key properties a parallel solver must satisfy to demonstrate
good speed-up when parallelized across numerous processors.

The most straightfoward parallelization of the serial streaming implementa-
tion is to evaluate each node function Ni in parallel, since the restrictions placed
on data dependencies for efficient streaming allow the function to be evaluated in
any order within a slice. With slices in large reconstructions typically containing
tens or hundreds of thousands of nodes, there appears to be ample exploitable
parallelism. A data decomposition approach can be used, with each processing
slice in the octree partitioned into a coarse regular grid. Since the data depen-
dencies of a node function are compact, the only shared data between partitions
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within the same level of the tree resides around the perimeter of each partition.
To execute a node function across a slice, each processor is assigned a num-
ber of data partitions for processing in a way that best balances the workload.
Although this approach provides a straightforward implementation, it has two
significant scalability issues.

First, for distributive functions, data are shared not only within a level of
the tree, but across all depths of the tree. At the finest levels, the contention
for shared data is very low – since a very small portion of each partition is
shared, the probability of two processors needing concurrent access to a datum
are low. At the coarser levels of the tree, however, the rate of contention becomes
very high – and the data associated with the coarsest levels of the tree are
updated by each processor for every computation. We found that this problem
persisted even when we used an optimistic, lock-free technique that implemented
an atomic floating-point accumulation (i.e. A+ = x) using the compare-and-set
(CAS) instruction found in most modern processor architectures.

Second, scalability is limited by the frequency of global synchonization barriers
required to evaluate multiple functions correctly. Each streaming pass, P , across
the octree is a pipeline of functions P = {N1, N2, ..., Nn} that are executed in
sequence. Although the data dependencies are such that the evaluation of Ni(o)
cannot depend on the result of Ni(o′), it is possible that Ni may depend on Nj if
i > j. The implication of this in a parallel setting is that function Ni cannot be
evaluated for a particular slice until Nj has completed processing in dependent
slices on all processors, requiring a global synchronization barrier between each
function, for each processing slice. For all but the very largest reconstructions, the
resulting overhead is prohibitive. Although this synchronization frequency can be
reduced by processing functions over slabs of data formed from multiple octree
slices, the associated increase in in-core memory usage results in an undesirable
practical limitation on the reconstruction resolution.

5.2 Distributed Memory Implementation

To address the scalability issues that arise from using a shared memory, multi-
threaded architecture, we instead implement our solver using a distributed mem-
ory model. In this model, each processor shares data explicitly through message
passing, rather than implicitly through shared memory. The advantages of this
model over the shared memory approach are as follows:

1. Each processor maintains a private copy of all data it needs. Thus, data
writes during computation can be performed without the need for synchro-
nization. Data modified on more than one processor can be easily and effi-
ciently reconciled at the end of each computation pass.

2. Without the need for shared memory space, the system can be run on com-
puting clusters, offering the potential for greater scalability, due to the in-
creased memory and I/O bandwidth, as well as number of processors.

Furthermore, we adapt the streaming implementation by implementing each of
the functions as a separate streaming pass through the data. While this increases
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Fig. 1. An illustration of the way data partitions are formed from the tree with p =

4 processors. All nodes in O0, O1 and O2 are shared amoungst all processors, and

together form the data partition Ofull. The nodes in remaining depths are split into

spatial regions defined by the x-coordinates {x0, x1, x2, x3, x4}, to form the partitions

Od
i .

the amount of I/O performed, it alleviates the need for global, inter-slice, syn-
chronization barriers that are required to allow multiple functions to be evaluated
correctly.

Data Partitioning. Instead of fine-grained, slice-level parallelism, the dis-
tributed system uses a coarse-grained approach: given p processors, the re-
construction domain is partitioned into p slices along the x-axis given by the
x-coordinates X = {x0, x1, x2, ..., xp}. The nodes from depth d in the octree are
split into partitions Od = {Od

1 ,Od
2 , ...,Od

p} where Od
p are all nodes o ∈ O such

that xp ≤ o.x < xp+1 and o.d = d.
Since the coarse nodes in the tree are frequently shared across all processors,

we designate the first dfull levels in the tree to be part of its own data partition
Ofull, which is not owned by a particular process, and whose processing is carried
out in duplicate by all processors. Since the total data size of Ofull is small, the
added expense of duplicating this computation is significantly less than the cost
of managing consistent replication of the data.

Figure 1 summarizes the decomposition of the octree into partitions. A pro-
cessor Pi is assigned to own and process the nodes in O∗

i in a streaming manner.
To allow for data sharing across slabs, processor i has a copy of data in partitions
O∗

i−1 and O∗
i+1 from the result of the previous pass through the data, as well

its own copy of Ofull. Since only a very small portion of data in O∗
i−1 and O∗

i+1
are ever read or written from Pi (only the data in slices immediated adjacent
to O∗

i ), the neighboring data partitions are sparsely populated minimizing the
amount of redundant storage required.

Since each function is implemented in a separate streaming pass, the execu-
tion of a function Ni in one data partition can no longer depend on the ex-
ecution of a function Nj in another partition, and a global synchronization is
only required between the different streaming passes. In practice, we have found
that the arithmetic density of most functions is such that the I/O bandwidth
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required to perform a streaming pass is more than an order of magnitude less
that the bandwidth that modern disk drives can deliver, so processing only a
single function per pass does not noticeably affect performance.

Load Balancing. Because the octree is an adaptive structure, its nodes are non-
uniformly distributed over space. This presents a challenge when choosing the
partition boundsX in order to most optimally allocate work across all processors.
To minimize workload skew, each partitionOd

i should be approximately the same
size (assuming that the processing time of each node is, on average, constant).

Because we wish to perform the allocation of nodes to partitions before the
tree has been created, we use the input point-set to estimate the density of
nodes in the tree. Since an octree node may not straddle two data partitions,
the partition bounds X must be chosen such that each xi is a multiple of 2−dfull

(i.e. the width of the coarsest nodes in the high-resolution tree). We use a simple
greedy algorithm to allocate X : Given an ideal partition size of Nideal = N

p we
grow a partition starting at x = 0 until the partition size would exceedNideal. We
then over-allocate or under-allocate the partition depending on which minimizes
|Ni−Nideal|. The procedure is continued along the x-axis until all partition sizes
have been determined.

Replication and Merging of Shared Data. Once data have been modified by
a processor, the changes need to be reconciled and replicated between processors.
A majority of the shared updates performed by the reconstructor are of the form
o.v = o.v+v; that is, accumulating some floating point scalar or vector quantity
into tree nodes. The merge process for a process Pi is as follows:

1. If Pi has written to Oi−1 and Oi+1, send data to Pi−1 and Pi+1 respectively.
2. If Pi−1 and Pi+1 have modified data in Oi, wait for all data to be received.
3. Merge the received data blocks with the data in Oi (an efficient vector ad-

dition operation).

Once data has been reconciled, the updated data can then be redistributed to
other processes as follows:

1. If Pi has been updated and is needed by Pi−1 or Pi+1 in the next pass, send
Oi to the neighboring processors.

2. If Pi−1 and Pi+1 have modified data needed for the next pass, wait for all
updated data blocks.

Because each processor streams through the data partitions, changes made to
data can be sent asynchronously to other processing nodes as each block in the
stream is finalized, rather than after the pass is complete, thereby hiding the
latency involved in most message passing operations.

In addition to the accumulation-based data reconciliation, there are two im-
portant steps in the reconstruction process that cannot be merged and replicated
as efficiently.
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Tree Construction. To maximize the parallel processing capability of our
system, the construction of the octree itself is performed in parallel. The input
point-set P is partitioned during pre-processing into segments P = {P1, ...,Pp}
where Pi contains all points xi ≤ p.x < xi+1 (where xi is the partitioning bounds
separating the domain of process Pi−1 from process Pi).

The first challenge presented in the construction of the tree is the different
topological structure created in Ofull by each processor. To facilitate efficient
merging of data in later steps, it is desirable to have a consistent coarse resolution
tree. Although it is possible to merge each of the coarse resolution trees after
the first pass, we take a simpler approach: because the coarse resolution tree is
small, we pre-construct it as a fully refined octree of depth dfull.

The second challenge is that in the initial phases of the reconstruction, a
point in partition Pi may affect the creation of nodes outside of Oi (since the B-
splines are supported within the 1-ring of a node). Although this problem could
be resolved by allowing processors to generate nodes outside their partition and
then merging the nodes at the end of the streaming pass, we have opted for a
simpler solution. Recognizing that the points that can create nodes and update
data in Oi are in the bounds xi − δx ≤ p.x < xi+1 + δx, (where δx = 2−dfull is
the width of the finest-level nodes in the full octree Ofull) we have processor Pi

process this extended subset of points and only perform the associated updates
of nodes in Oi. In practice, this adds a small computational cost by processing
overlapping point data partitions, but greatly simplifies the creation of the tree.

Solving the Laplacian. To solve the Poisson equation correctly in a parallel
setting, we use an approach inspired by domain decomposition methods [21]. In
the serial implementation, the linear system is solved in a streaming manner us-
ing a block Gauss-Siedel solver, making a single pass through the data. Although
we can still leverage this technique within each data partition, the regions of the
linear system that fall near the boundaries need special treatment to ensure that
the solution across partitions is consistent and correct. To avoid the need for the
solver in Oi to depend on a solution being computed in Oi−1, each processor Pi

solves a linear system that extends beyond the bounds of Oi by a small region of
padding, and once solutions have been computed by all processors, the solution
coefficents in overlapping regions are linearly blended together to give a solution
which is consistent across partition boundaries.

6 Results

To evaluate our method, we designed two types of experiments. In the first, we
validate the equivalence of our parallel implementation to the serial one, demon-
strating that correctness is not sacrificed in the process of parallelization. In the
second, we evaluate the scalability of our parallel implementation.

Correctness. We wish to ensure that the surface generated by the parallel im-
plementation is equivalent in quality to the serial implementation. In particular,
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we want to ensure that the model doesn’t significantly change as the number
of processors increases, and that any differences that do exist do not accumu-
late near partition boundaries. To test this, we ran an experiment using the
distributed implementation, reconstructing the Stanford Bunny model at depth
d = 9 using 1, 2, 4, and 8 processors. We then compared the model generated
with only one processor Mserial, to the models generated with multiple proces-
sors Mi by computing an error value δ at each vertex of Mi that is the Euclidean
distance to the nearest point on the triangle mesh of Mserial. The units of δ are
scaled to represent the resolution of the reconstruction so that 1.0δ = 2−d (the
width of the finest nodes in the tree).

The table in Figure 2 presents the results of this experiment. Some differences
in the output are expected between different numbers of processors because of the
lack of commutativity of floating point arithmetic. The results show that in all
cases, the average error is low, and the maximum error is bounded within the size
of the finest tree nodes. It also shows that error does not change significantly as
the number of processors increases. The image in Figure 2 shows the distribution
of error across the mesh for p = 8, and is typical of all multiple processor results.
The image highlights that error is evenly distributed across the mesh, and that
the only significant error occurs along the shape crease along the bottom of the
bunny’s back leg. These errors are the result of a different choice in triangulation
along the edge.

Scalability. One of the most desirable properties of a parallel algorithm is scal-
ability, the ability of an algorithm to run efficiently as the number of processors
increases. Table 1 shows the running times and Figure 3 shows the speedup of
both the shared memory and distributed memory implementations on up to 12
processors when reconstructing the Lucy dataset from 94 million points, and the
David dataset from 1 billion points. The shared memory implementations were
run on a dual quad core workstation. The distributed memory implementation
was run on a three machine cluster with quad core processors and a gigabit

Procs. Verts. Tris. Max δ Average δ

1 320,944 641,884 - -

2 321,309 641,892 0.73 0.09

4 321,286 641,903 0.44 0.06

8 321,330 641,894 0.98 0.12

Fig. 2. An analysis of correctness: A comparison of several different reconstructions of

the Bunny dataset at depth d = 9 created with the distributed implementation. The

table summarizes the size of each model, and the maximum and the average distance

of each vertex from the ground-truth. The image on the right shows the distribution of

error across the p = 8 model. The color is used to show δ values over the surface with

δ = 0.0 colored blue and δ = 1.0 colored red.
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Table 1. The running time (in minutes), aggregate disk use (in MB), and peak memory

use (in MB) of the shared memory and distributed memory implementations of the

Parallel Poisson Surface Reconstruction algorithms for the Lucy dataset at depth d =

12, dfull = 6 and the David dataset at depth d = 14, dfull = 8, running on one through

twelve processors. It was not possible to run the shared memory implementation on

more than eight processors.

Shared Memory Distributed Memory

Lucy Lucy David

Processors Lock Time Lock-Free Time Time Disk Memory Time Disk Memory

1 183 164 149 5,310 163 1,970 78,433 894

2 118 102 78 5,329 163 985 79,603 888

4 101 68 38 5,368 164 505 81,947 901

6 102 61 26 5,406 162 340 84,274 889

8 103 58 20 5,441 166 259 86,658 903

10 - - 18 5,481 163 229 88,997 893

12 - - 17 5,522 164 221 91,395 897
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Ideal Scaling

Spatial Locking (Lucy)

Lock-Free (Lucy)

Distributed (Lucy)

Distributed (David)

Fig. 3. Analysis of scalability: The speedup of three different parallel Poisson Surface

Reconstruction algorithms for the Lucy dataset at depth d = 12 and the David dataset

at depth d = 14 running on one through twelve processors. The Spatial Locking and

Lock-Free methods use a shared memory based implementation with two different

locking techniques to resolve shared data dependencies. The distributed method uses

data replication and message passing to resolve shared data dependencies.
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ethernet interconnect. Two variations of the shared memory implementation
are examined: one which uses fine-grained spatial locking to manage concurrent
updates, and the other using the lock-free update procedure. The lock-free tech-
nique is faster and offers greater scalability than the spatial locking scheme, but
the scalability is still limited when compared to the distributed implementation.
One significant factor affecting the performance is the way in which both the spa-
tial locking and lock free techniques interact with architectural elements of the
underlying hardware. When locking shared data between processors, data that
was kept primarily in fast on-chip memory caches has to be flushed and shared
through main memory each time it is modified to keep separate caches coherent.
This forces frequently shared data to be extremely inefficient to access, with no
cache to hide high latency memory access. Because the distributed implemen-
tation doesn’t need to coordinate writes to the same data, the computation is
far more efficient, and cleanly scales with increasing numbers of processors. The
reduced scalability as the number of processors increases is due to the complete
occupancy of all processors on each machine, causing the algorithm to become
memory bandwidth bound. Table 1 also lists the peak in-core memory use and
aggregate disk use of the distributed algorithm. Since the in-core memory use
is related to the size of the largest slices and each data partition is streamed
independently, peak memory use is consistent across all degrees of parallelism.
Because of the replication of across processors, the disk use grows as the number
of processors increases. A majority of the extra data storage is from Ofull, whose
size grows as dfull is increased. For the Lucy model, with dfull = 6, the size of
Ofull is 18MB, whereas for the David model, with dfull = 8, it is 1160MB.

7 Conclusion

We have presented an implementation of the Poisson Surface Reconstruction
algorithm that is specifically designed for parallel computing architectures using
distributed memory. We have demonstrated both its equivalence to the serial
implementation and efficient execution on commodity computing clusters with a
nine-fold speedup in running time on twelve processors. One avenue we intend to
persue in future work is support for parallel processing on a GPU-based cluster.
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Abstract. This paper presents a method of 3D object mapping using

a binocular stereo camera. The method employs edge points as map

element to represent detailed shape and applies a variant of ICP algo-

rithm to 3D mapping. A SIFT descriptor is attached to each edge point

for object recognition and segmentation. The 3D map is segmented into

individual objects using training images of target objects with different

backgrounds based on SIFT-based 2D and 3D matching. In experiments,

a detailed 3D map was built by the stereo SLAM and a 3D object map

was created through the segmentation of the 3D map into 36 object

instances.

1 Introduction

Environment recognition is essential for the robot to perform tasks. Robotic
mapping including SLAM (Simultaneous Localization and Mapping) is a key
technology for this purpose, and have been studied intensively for decades. Most
of the maps created by the conventional mapping schemes are composed of grid
cells or geometric elements such as points and polygons for the purpose of repre-
senting free space and landmarks for robot navigation. However, more structured
maps are necessary in order for the robot to perform high-level tasks such as ob-
ject manipulation and carrying. Typically, it is desirable that the map describes
the shape and pose (location and orientation) of objects relevant to the tasks. If
the map are composed of individual objects and have the features to recognize
them, the robot can recognize objects in the environment and move to the target
object to handle it. We refer to such a map as object map.

In this paper, we propose a method of 3D object mapping with a binocular
stereo camera. First, we build a 3D map from stereo images based on stereo
SLAM. Then, we segment the map into individual objects using training images.
The training images have only to contain the objects to be modeled, and need no
annotations except object name and object existing region. The 3D map built
by the stereo SLAM have the whole shape of the environment, and the object
map created from the 3D map contains not only objects but also unstructured
regions which can be used in path planning and obstacle detection.

For stereo SLAM, we employ the method proposed by [21]. The method uti-
lizes edge points as map element to represent objects because detailed object

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 690–699, 2009.
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shape is crucial for robotic applications. Edge points can represent more detailed
object shape than corner points, which are used for most vision-based SLAM
schemes. Moreover, edge points are suitable for recognition of non-textured ob-
jects, in which corner points can not be detected sufficiently. The stereo SLAM
scheme computes 3D points from the edge points detected by the Canny detector
[3] in a stereo image pair, and then estimates the camera motion by matching the
consecutive stereo image with the 3D points. The ICP (Iterative Closest Points)
algorithm [2] is applied to the registration process.

The object segmentation scheme is based on the co-occurrence of the edge
points in the 3D map and training images [20]. Our scheme segments the 3D
map into individual objects by extracting the edge points which are contained
in both the 3D map and training images. The training images are stored with
local descriptors in an image database. The system retrieves a training image
that matches with a query stereo image from the image database using local
descriptors attached on edge points. We employ a variant of the SIFT (Scale
Invariant Feature Transform) descriptor [10] for edge point. Then, we find the 3D
points which match with edge points in the training image by 3D-2D matching.
The extracted 3D and 2D points from the 3D map are expected to be used as
object model for object recognition from a monocular image and task planning
using knowledge attached on the target object.

Fig. 1 shows the block diagram of the proposed method. The inputs to the
system are stereo images and training images. The stereo images can also be used
as training image if there are multiple instances of the target object. Note we
need no motion sensors, but some motion sensors could improve the performance
of the stereo SLAM. The outputs of the stereo SLAM are a set of 3D points and
a camera motion. The outputs of the object segmentation are an object map
and object models. The object map consists of 3D points with an object label
and 2D points with a SIFT descriptor. An object model is a subset of the 3D
and 2D points in the 3D map.

The main contribution of this paper is the integration of stereo SLAM and
object segmentation to build a 3D object map and object models. An advan-
tage is that the system provides detailed object shape represented by 3D edge
points. Another advantage is the method builds an object map in very weak
supervised manner in the sense that no detail annotations for training images
are necessary. Our method is based on specific-object recognition technique not
category recognition. Category recognition is a powerful scheme, but most of
the proposed schemes require supervised training, in which a number of ground
truth data are given by human. Our method does not needs such training phase,
but just collects training images which contain target objects.

The rest of this paper is organized as follows. Section 2 presents the related
work. Section 3 explains 3D mapping by a stereo camera, and Section 4 presents
object mapping and object segmentation. Section 5 gives experimental results
followed by conclusions.
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Fig. 1. Block diagram of the proposed method

2 Related Work

In the early stages of object mapping, 3D object maps are built manually using
CAD models or simple elements such as lines and polygons. In the last decade,
semi-automatic object modeling and object recognition have been utilized for
object mapping. 3D object mapping using a laser scanner with functional ob-
ject recognition rules was proposed by [16]. In general, the laser-based approach
provides accurate 3D maps, but is less suitable for object recognition than cam-
era images. 3D object mapping using a monocular camera and a laser scanner
was proposed by [19]. This approach performs 3D object modeling and object
recognition from monocular images, but it needs a 2D global map created with a
laser scanner. 3D scene modeling using camera images were presented in [14,18].
These methods can provide semantic information of the environment but not
provide detailed 3D maps.

3D mapping by stereo vision has been studied intensively in the last decade
[4,6,17,7]. The most popular approach in recent years is the corner-like feature
based one, in which the camera motion is estimated with corner-point matching
between consecutive frames, and 3D point clouds are generated based on the
estimated camera motion. However, the corner-like features cannot represent
detailed object shape, and the corner-based mapping is not suitable for precise
object mapping. Recently, edge-point based stereo SLAM has been developed
by [21], which provides a detailed 3D map.

Object segmentation methods have been developed due to the highly dis-
criminative features [8,11,15,13]. Object regions can be extracted by clustering
the features that co-occur in images. Many of the object segmentation methods
aim at category recognition, and their main goal is learning object categories
to discover and segment a large variety of objects in 2D images. The precise
segmentation of specific 3D objects in real environments was proposed by [20].
The method proposed in this paper is based on the similar idea, and it is applied
to object mapping.

3 Stereo SLAM Using Edge Points

Our stereo SLAM is based on the method proposed by [21] since the detailed
shape of the objects can be represented using edge points.
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Stereo Reconstruction. Edge points are detected using the Canny detector
[3]. We refer to a pair of left and right images as stereo frame (frame, for short).
Intra-frame reconstruction (i.e., between the left and right images) is performed
based on the epipolar geometry in parallel stereo. We search the matching pair
of edge points between left and right images along the scanline since epipolar
lines are horizontal for parallel binocular stereo cameras. The matching criterion
is the normalized correlation of a small window around the edge point. Also, the
orientation of the image gradient at the edge point is optionally used to reduce
outliers.

Camera Motion Estimation. A key to stereo SLAM is the estimation of
the camera motion between frames. Unlike intra-frame reconstruction, epipolar
geometry is unknown in inter-frame reconstruction. Thus, edge point correspon-
dences are much harder to obtain.

The camera motion from time t − 1 to t can be estimated by matching the
edge points in frame It−1 and those in frame It. The scheme employs 3D-2D
matching, in which the 3D points reconstructed from It−1 are matched with
the 2D points detected in It. The 3D-2D matching is more stable than 3D-3D
matching since errors in depth have less influence on the registration accuracy
due to perspective projection [12].

The registration is performed using a variant of ICP algorithm [2] on the
image plane. Let rt be the camera pose at t, P i

t−1 be the i-th 3D edge point
reconstructed at t − 1, and pi

t−1 be the projected point of P i
t−1 onto image It.

Then, pi
t−1 can be written as pi

t−1 = h(P i
t−1, rt), where h() is the perspective

transformation. Let qi
t be the image edge point at t which corresponds to pi

t−1.
A cost function F () is defined as follows.

F (rt) =
1
N

N∑
i=1

d(qi
t, p

i
t−1) (1)

Here, d(qi
t, p

i
t−1) is the perpendicular distance between pi

t−1 and the edge segment
on which qi

t lies.
Camera motion rt and edge point correspondences are searched by minimiz-

ing F (rt) using the ICP. The initial value of rt is set to rt−1, and the initial
correspondence qi

t of pi
t−1 is set to the edge point which is the closest to pi

t−1 in
terms of Euclidean distance. By repeating the minimization of F (rt) and edge
point matching, the optimal rt and edge point correspondences are obtained.

The scheme employs a coarse-to-fine approach to improve efficiency. At the
first step, the ICP is performed using a small number of edge points, and then
the ICP is repeated increasing edge points step by step.

Map Building. Based on the obtained camera pose rt, a 3D map is built by
transforming the intra-frame 3D points from the camera coordinates to the world
coordinates. Let P i

c be the i-th 3D point in the camera coordinates. The location
of 3D point P i can be written as P i = f(P i

c , rt), where f() is the coordinate
transformation based on the rotation and translation components of rt.
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4 Object Mapping

The object mapping phase generates a 3D object map from the 3D map cre-
ated by the stereo SLAM and training images. The training images are stored
beforehand in an image database. Each training image contains a target object
captured from a typical view. The entry of a training image in the database
consists of an object name, a rectangle roughly indicating the object existing
region given by human and the edge points with SIFT descriptors [10] extracted
from the image.

4.1 Retrieval of Training Images

We choose keyframes from the image sequence used for the stereo SLAM, for
example, one keyframe for 10 to 20 stereo frames. For each keyframe, training
images are retrieved from the image database based on edge-point matching. The
basic scheme is similar to that in [20]. A SIFT descriptor is attached to each edge
point for edge-point matching. We re-detect edge points from the keyframe with
scale-space analysis [9] in order to find edge points invariant to scale change.
Note the scale-space analysis is not performed for stereo images in the stereo
SLAM because it is time consuming. Since the detected scale is proportional to
object size in the image, the SIFT descriptor is invariant to object size. Using
the scale-invariant descriptors, edge-point matching is performed robustly even
when the object size in the training image is different from that in the stereo
image.

We perform 2D recognition to find the training image which contains the
object in the stereo image from the image database by matching edge points
between the images. The SIFT descriptor of each edge point is utilized for nearest
neighbor indexing using a kd-tree [1]. Then, we choose the training images having
a large number of matched edge points. These candidate training images have
false correspondences, many of which are caused by coincidentally matching edge
points in the background with those in the stereo image. We eliminate them
based on the geometric constraint using a pose clustering technique in terms of
similarity transform [20]. Then, the training images which have a high clustering
score are selected as good candidate.

4.2 Matching between 3D Map and Training Images

We extract the 3D points of the retrieved object from the 3D map. This is
performed by matching 3D points in the 3D map with 2D edge points in a
training image. The scheme proposed in [20] needs several training images to
separate the target object clearly. We improve this scheme to separate the target
object using only one training image.

First, we find the correspondences of edge points between the 3D map and
the training image. This is done based on the correspondences of edge points
between the 3D map and the stereo images obtained by the stereo SLAM, and
also based on the correspondences of edge points between the stereo image and
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the training image obtained by 2D matching. Then, we calculate the camera pose
relative to the 3D map, at which the object in the training image is matched
with the 3D map. The camera pose is estimated by minimizing the average
reprojection errors of the 3D edge points onto the training image. This non-
linear minimization problem is solved using a gradient descent method. The
initial value given to the method is the camera pose of the selected stereo image.

To cope with outliers in this process, we employ the RANSAC (Random
Sample Consensus) algorithm [5]. The ICP used in the stereo SLAM is not
suitable for this purpose since the camera pose of the stereo frame can be distant
from that of the training image while the camera poses of two consecutive frames
in the stereo SLAM is very close. If we simply use the ICP, it will easily fall
into local minima. RANSAC is applicable in this case. However, RANSAC is
a randomized approach and sometimes provides a solution (best score sample)
with large matching errors due to variation in random sampling. This increases
false matches between edge points in the training image and 3D edge points. To
address this problem, we use not only the best sample in RANSAC but also all
the good samples.

We define a score for each edge point for a RANSAC sample. Based on the
estimated camera pose of the sample, we find the correspondences of edge points
between the 3D map and the training image I. Let E be the set of 2D edge points
detected from I, and P be the set of 3D edge points in the 3D map. Let pj be the
reprojected point of Pj ∈ P to I under camera pose r, and qj be the edge point
in the stereo image that corresponds with pj . We check correspondence between
ei ∈ E and Pj ∈ P based on the locations of ei and pj and the similarity of the
SIFT descriptors of ei and qj . We define a score for indicating that 3D point Pj

belongs to the target object.

g(Pj ,E, r) =

⎧⎨⎩1, if d1(ei, pj) ≤ th1 ∧ d2(ei, qj) ≥ th2
for ∃ei ∈ E

0, otherwise.
(2)

Here, d1(ei, pj) is the Euclidean distance between ei and pj , and d2(ei, qj) is the
normalized correlation between the SIFT descriptors of ei and qj . th1 and th2 are
thresholds, which are determined empirically. In implementation, th1 = 2 [pixel]
and th2 = 0.8.

To cope with the abovementioned problem in using RANSAC, we calculate
the average score S for the RANSAC samples {rm} (m = 1 to M) which have
inliers more than a threshold th3. In the experiment, th3 is set to 50% of the
number of the inliers in th best sample.

S(Pj ,E) =
1
M

M∑
m=1

g(Pj ,E, rm) . (3)

Then, we attach an object label to the 3D edge points such that S(Pj ,E) exceeds
a given threshold (0.2 in the experiment).
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The integration of the scores for multiple training images is useful to refine ob-
ject segmentation [20]. However, the abovementioned scheme provides relatively
good results even if we use only one training image.

5 Experiments

We conducted an experiment of building an object map of a room. The size of the
room is approximately 7.8[m] × 6.1[m]. 485 stereo frames were captured man-
ually with Point Grey Research’s binocular camera Bumblebee2. The baseline
distance is 120 [mm]. The image size was reduced to 320×240 pixels. No motion
sensors were used. Fig.2 shows the 3D map generated by the stereo SLAM and
some of the captured images. The maximum error compared with the handmade
map is approximately 300 [mm]. Fig.3 shows a hand-made map of the room.

Fig. 2. The map generated by the stereo SLAM. Top: some of the images used for the

stereo SLAM. Bottom: the 3D map from several views.

Fig. 3. The floor map of the room. Left: a handmade map of the room. Right: top view

of the map generated by the stereo SLAM.
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We chose 36 instances of the objects of 11 kinds in the room for object segmen-
tation. 9 desks, 9 chairs (type A), 1 chair (type B), 2 cabinets, 2 book shelves,
7 PC monitors, 1 cupboard, 1 kitchen sink, 1 unit of drawers, 1 white board, 2
small robots. Actually, there are 4 cabinets and 4 book shelves in the room, but
two of them are not visible behind the white board.

The image database contains 30 training images for the objects of 11 kinds: 6
images for desk, 12 for chairA, 3 for chairB, 1 for cabinet, 1 for book shelve, 1 for
PC monitor, 1 for cupboard, 1 for kitchen sink, 1 for drawers, 1 for white board
and 2 for small robot. The chairA needs many training images for the following
reason. We prepared training images for its upper part (seat) and its lower part
(leg) separately because the upper part turns. When either part is recognized,
the region of the other part can be restricted using the relative position between
the parts to improve recognition performance. This is useful because the lower
part of chairA is easy to recognize but the upper part of chairA is hard.

Fig.4 shows examples of the training images. The rightmost three images at
the bottom row were obtained from commercial catalogs, and have no back-
ground. All the other images were taken in different environments using the
same kinds of objects, or were taken by moving the same object instance if it
is movable (e.g., chairs, white board, small robot). The purpose of this is to get
training images with different background than the stereo frames. We roughly
determined each object region manually as designated by the red rectangles in
the images. These object regions still contain some background clutters.

Object recognition was performed using keyframes in the stereo frames.
Fig. 5 shows some of the results. In this experiment, 32 of the 36 object instances
were recognized with the top recognition score. Three of the 36 instances were
recognized with the 2nd score, and one of the 36 instances was recognized with
the 3rd score.

Fig. 6 shows a 3D object map created by segmenting the 3D map into the
objects of 11 kinds using the result of the object recognition. The colored points
represents the separated objects. The 32 instances with the top score were sepa-
rated directly using the recognition results. For the four instances with 2nd or 3rd
score, the correct ones were selected by human from the recognition candidates.

Fig. 4. Image database. From top left to bottom right: desk, book shelf and cabinet,

chairA, chairB, PC monitor, small robot, white board, drawers, kitchen sink, cupboard.
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Fig. 5. Results of object recognition and segmentation. From top left to bottom right:

PC monitor, desk, chairA’s leg, book shelf, chairB, and kitchen sink. The right of each

image pair shows an input stereo image, and the left image shows the training image

retrieved. The red dots in the right image are the 3D points labeled as the object. The

red dots in the left image are the 3D map reprojected onto the image based on the

estimated camera pose.

Fig. 6. Object map created by segmenting the 3D map

6 Conclusions

The paper has presented a method of 3D object mapping using a binocular stereo
camera. We employ edge points as map element to represent detailed shape and
apply a variant of ICP algorithm to build a 3D map. A SIFT descriptor is at-
tached to each edge point for object recognition. The 3D map is segmented using
training images of target objects with different backgrounds. In experiments, a
detailed 3D map was built by the stereo SLAM and the 3D map was segmented
into 36 object instances.
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Abstract. The topographical and photometric reconstruction of the moon from 
Apollo metric data has gained attention to support manned mission planning 
since the NASA has been working on return to the moon in 2004. This paper fo-
cuses on photometric recovery of the moon surface from Apollo orbital imagery. 
The statistical behavior of photons generates the scene radiance which follows a 
continuous Poisson distribution with the mean of surface radiance. The pixel 
value is determined by the camera response of sensor exposure which is propor-
tional to scene radiance and exposure time. The surface radiance, exposure time 
and camera response are estimated by the maximum likelihood method for sen-
sor exposure. The likelihood function is highly nonlinear and we were unable to 
find an estimator in closed form. Grouping the three sets of parameters (surface 
radiance, exposure time, and camera response), an EM-like juggling algorithm is 
proposed to determine the one family of parameters from the others. The photo-
metric recovery of otho-images derived from Apollo 15 metric camera imagery 
was presented to show the validity of the proposed method. 

1   Introduction 

The Lunar Mapping Modeling Project (LMMP) has been actively carried out to de-
velop maps and tools to benefit the Constellation Program (CxP) lunar planning. It 
will provide common, consistent and useful access to this information for lunar explo-
ration and science communities. One of the requirements for LMMP is to construct 
geo-registered global and local albedo (visible image) base maps of the Moon from 
the digital stereo pair scans collected by Apollo era lunar missions (Figure 1). These 
scans, despite their high quality, are affected by noise inherent to the scanning proc-
ess: the presence of film grain, dust and lint particles. Attenuating the effect of these 
scanning artifacts and estimating the surface radiance from Apollo orbital imagery are 
the central focus of this paper. 

More than ever, scanned images are used as texture maps for geometric models. 
When a picture of a scene is taken and digitized to obtain “brightness” values, these 
values are rarely true measurements of relative radiance in the scene. There is usually 
a nonlinear mapping that determines how radiance in the scene becomes pixel values 
in the image [1]. The image acquisition pipeline shows how the nonlinear mapping 
composite the each component in a digital image formation (Figure 2).  
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Fig. 1. Examples of Ortho-images from Apollo 15 Metric Camera Imagery 

In this paper, the scene radiance is modeled as a continuous Poisson distribution 
with surface radiance due to the statistical behavior of photons. The pixel value is 
determined by the camera response of sensor exposure which is proportional to scene 
radiance and exposure time. The surface radiance, exposure time and camera response 
are estimated by the maximum likelihood method for sensor exposure. The likelihood 
function of all parameters is highly nonlinear and an estimator was unable to be found 
in in closed form. An EM-like juggling algorithm is proposed to determine the one 
family of parameters from the others. Finally, the reconstructed radiance map from 
lunar orbital imagery is presented. 

2   Image Formation 

Scene radiance becomes pixel values through several linear and nonlinear transforma-
tions as seen in the image acquisition pipeline (Figure 2). These unknown nonlinear 
mapping scan occur during exposure, development, scanning, digitization, and re-
mapping. The camera response function is the aggregate mapping from sensor expo-
sure X to pixel values Z. We estimate it from a set of sufficiently overlapped images 
with different exposure times, as described in [1]. 

After the development, scanning and digitization processes, we obtain an intensity 
value Z, which is a nonlinear function of the original exposure X at the pixel. Let us call  

 

 

Fig. 2. Image Acquisition Pipeline  
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this function f, which is the composition of the characteristic curve of the film as well 
as all the nonlinearities introduced by the later processing steps. We write down the 
film reciprocity equation as: 

                                                   ( )Z f X= .                                                           (1) 

Since we assume f is monotonic, it is invertible, and we can rewrite (1) as: 

                                                   ( )X g Z= .                                                           (2) 

where 1g f −= . 

A continuous Poisson distribution is adopted to model the scene radiance and sen-
sor exposure. Several sources of image noise are listed in [2], but the photon noise 
dominates the other components in CCD or CMOS cameras. The other noise can be 
reduced by appropriate design of manufacturer and negligible. Photon production is 
governed by the laws of quantum physics which restrict us to consider an average 
number of photons within a give observation window. The probability distribution of 
p  photons during seconds is known to be discrete Poisson [2,3]: 

                                               

( )
( | , )

!
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p

ρρρ
−

= ,                                            (3) 

where ρ  is the rate or intensity parameter measured in photons per second. By the 

continuous nature of measurement, the sensor exposure X  is represented by the con-
tinuous Poisson distribution: 
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−

=
Γ +

,                                             (4) 

where r  is the scene radiance.  

3   Radiance Maps from Apollo Imagery 

The input to our algorithm is n digitized photographs taken from the same vantage 
point with different known exposure durations jt ( 1,2, ,j n= L ). Let the pixel values 

be uniformly quantized. In this case, 256 gray levels ( 0,1, ,255z = L ). We will as-
sume that the scene is static and that lighting changes can be safely ignored. For brev-
ity and simplicity, one-dimensional illustrations of images will be presented which 
can be easily extended to two-dimensional images (Figure 3). 

Suppose that we have perfectly aligned images on a regular grid (Figure 4). It can 
then be assumed that each pixel value on a grid point comes from the same radiance 
value on that point. We denote i  by a spatial index over pixels and j  by an image 

index. Let ir  be the radiance value on ith grid point and jt  be the exposure time of jth 

image. The inverse function of camera response is represented by a vector. We will 
denote sensor exposure and pixel values by ijx  and ijz , respectively. From (2) we can 

write 
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Fig. 3. Radiance Map Recovered from Orbital Imagery 

 
Fig. 4. Aligned Image Set in Regular Grid 

                                                      
( )ij ijx g z= .                                                       (5) 

All parameters such as surface radiance, exposure time, and camera response are es-
timated by the maximum likelihood method of the continuous Poisson distribution. 
Let g , r , and t  be the parameterized vectors for camera response, sensor irradiance 

and exposure time, respectively. We then have their likelihood of the continuous 
Poisson distribution: 
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subject to  

                                  0 (0) (1) (254) (255)g g g g≤ ≤ ≤ ≤ ≤L .                               (7) 

Taking the natural logarithm of (6), we have: 
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Taking the derivative with respect to ir , jt  and ( )g k , we have: 
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where Ψ  is the digamma function. 

4   Juggling Algorithm 

Since we were unable to find a close form solution to make (9) zeros, we determine 
them iteratively as in the expectation maximization (EM) method. Fortunately, we 
have the closed-form solution for scene radiance and exposure times from (9):  
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We have the closed-form solution for the camera response function from (9) as long 
as it satisfies the increasing property (7): 
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In practice, we have to optimize (8) directly with linear constraints of (7). This optimi-
zation is stable in that the objective function and domain are convex. Still, (12) is use-
ful to provide a good initial guess of the optimization. The following approximation is 
also useful unless we have a built-in function code of the inverse digamma function: 
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This is based on the fact that the digamma function has the same value with the loga-
rithm function asymptotically: 

                                                      ( 1) lnx x .                                                     (14) 

Iteratively we can update all parameters from an initial guess to the convergence. We 
call it juggling algorithm as the one family of parameters are fully determined by the 
others. It is reasonable to choose exposure times uniformly because the images were 
taken continuously. The camera response function is initialized linearly because most 
cases it follows the gamma correction function. 

 
Fig. 5. Unaligned Image Set with Virtual Pixels 

The extension to the case of the unaligned images is straightforward for the expo-
sure times and the camera response function in that they have sufficient number of 
real observations to be determined. However, scene radiance should be determined by 
a single point of interest because there is no corresponding observation in the other 
overlapping images. This eliminates the robustness of the estimation. To avoid single 
observations, virtual observations for all real observations are generated in all other 
images. Figure 5 illustrates that the virtual observations (hollow points) are interpo-
lated bilinearly to real observations (solid points). But, it is sufficient to calculate ex-
posure times and camera response function from the real observations as in the regu-
lar case. The virtual observations are used to calculate the radiance: 
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where ( )ijg z%  is the estimated sensor exposure for real observation or interpolated 

values for virtual observations.  

5   Experimental Results 

The National Aeronautics and Space Administration (NASA) Exploration Systems 
Mission Directorate (ESMD) has been charged with producing cartographic products 
via LMMP for use by mission planners and scientists in NASA’s Constellation pro-
gram. As part of the LMMP, we have produced 70 preliminary Digital Terrain Models  
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(a) Original Image Mosaic 

 

(b) Photometric Recovery Map 

Fig. 6. Radiance Maps of Subset Images 

 

(a) Original Image Mosaic 

 

(b) Photometric Recovery Map 

Fig. 7. Radiance Maps of Full Set 
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(DTMs) and ortho-images derived from Apollo 15 Metric Camera (AMC) orbit 33 
imagery using the Ames Stereo Pipeline (ASP); a software tool that generates high 
quality DTMs from orbital imagery using a fully automated process. Given a pair in 
Apollo Metric Imagery, the reference image is projected onto the reconstructed DTM 
from the pair by ASP and then the ortho-image is reconstructed by orthographic pro-
jection. The whole image set consists of 66 ortho-images and has significant overlap 
between adjacent frames (80%) so that it is well-suited for photometric recovery. 
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Fig. 8. Camera Response Functions 

0.50

0.55

0.60

0.65

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Ex
po

su
re

 T
im

e 
(s

)

Image Number  
Fig. 9. Exposure Times 

The photometric recovery program is implemented based on the NASA Vision 
Workbench (VW). The NASA VW is a general purpose image processing and com-
puter vision library developed by the Intelligent Robotics Group in the Intelligent  
Systems Division at the NASA Ames Research Center. Figure 6 shows the original 
mosaic image constructed from ortho-images and photometrical radiance maps from 
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the consecutive 12 images. The relative radiance is adjusted to be consistent with the 
remaining images. As you can see in the figure, the original image mosaic shows the 
vertical seams on the overlapping boundaries. However, the proposed method provides 
the seamless radiance map. Figure 7 shows the whole image mosaics of original im-
ages and the proposed method. The aspect ratio is adjusted because of limited space. 

The camera response is shown in Figure 8. The initial guess by (13) is much closer 
to the optimal solution. The camera response function is obtained by the inverse func-
tion shown in Figure 8b. The estimated exposure times of each image are shown in 
Figure 9. 

6   Conclusion 

The photometric radiance map of the moon was successfully reconstructed from 
Apollo 15 metric camera imagery. The pixel value is determined by the camera re-
sponse of sensor exposure which is proportional to scene radiance and exposure time. 
The statistical behavior of photons was considered and the maximum likelihood func-
tion of the parameters was derived. The surface radiance, exposure time and camera 
response are estimated by the maximum likelihood method. The likelihood function is 
highly nonlinear so that the three sets of parameters (surface radiance, exposure time, 
and camera response) are iteratively optimized. A juggling algorithm is proposed to 
determine the one family of parameters from the others. The experimental results 
show the validity of the proposed method. 

A residual analysis would be desirable to provide a quantitative measure of the 
proposed method. A parametric representation of surface radiance would also be 
valuable to enhance the recovery resolution and robustness of the algorithm. 
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Abstract. Generating accurate three dimensional planetary models is

becoming increasingly important as NASA plans manned missions to re-

turn to the Moon in the next decade. This paper describes a 3D surface

reconstruction system called the Ames Stereo Pipeline that is designed to

produce such models automatically by processing orbital stereo imagery.

We discuss two important core aspects of this system: (1) refinement of

satellite station positions and pose estimates through least squares bun-

dle adjustment; and (2) a stochastic plane fitting algorithm that general-

izes the Lucas-Kanade method for optimal matching between stereo pair

images.. These techniques allow us to automatically produce seamless,

highly accurate digital elevation models from multiple stereo image pairs

while significantly reducing the influence of image noise. Our technique

is demonstrated on a set of 71 high resolution scanned images from the

Apollo 15 mission.

1 Introduction

Accurate, high resolution Lunar 3D maps will play a central role in NASA’s
future manned and unmanned missions to the moon. These maps support land-
ing site selection and analysis, lunar landing simulation & training efforts, and
computer assisted landing systems. Furthermore, 3D digital elevation models
(DEMs) provide valuable information to scientists and geologists studying lunar
morphology.

Several recent recent lunar satellite missions, including NASA’s Lunar Re-
connaissance Orbiter, have returned stereo pairs with unparalleled resolution
and image quality. However, historical data collected during the Apollo era still
provide some of the best lunar imagery available today [1]. In fact, the Apollo
Metric Camera system collected roughly 8,000 images covering roughly 20% of
the lunar equatorial zone at a resolution of 10-m/pixel (Figure 1). The exten-
sive coverage and relatively high resolution of this camera makes this data set
extremely relevant in modern lunar data processing.

In this paper, we introduce the Ames Stereo Pipeline, a C++ software frame-
work for automated stereogrammetric processing of NASA imagery. We begin

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 710–719, 2009.
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Fig. 1. Adjacent Apollo Metric Camera frames (e.g. AS15-M-1135 and AS15-M-1136

shown here) overlap by 80%. This combined with the relatively wide field of view of

the camera (74 degrees) results in ideal stereo angles between successive images.

with an overview of this stereo reconstruction framework in Section 2. Then, spe-
cific attention is given to two core components of the system: Section 3 describes
the bundle adjustment approach for correcting extrinsic camera parameters and
co-registering overlapping images; and Section 4 describes our sub-pixel accu-
rate stereo correlation technique. Finally, in Section 5 we present the results of
processing Apollo Metric Camera imagery.

2 The Ames Stereo Pipeline

The entire stereo correlation process, from raw input images to a point cloud or
DEM, can be viewed as a multistage pipeline as depicted in Figure 2.

The process begins with least squares Bundle Adjustment, which is described
in Section 3, below. This produces corrected extrinsic camera parameters that
are utilized by various camera modeling steps.

Then, the left and right images are aligned using interest points or geometric
constraints from the camera models. This step is often essential for performance
because it ensures that the disparity search space is bounded to a known area.
Next, a prepossessing filter such as the Sign of the Laplacian of the Gaussian filter
is used, which has the effect of producing images that are somewhat invariant
to differences in lighting conditions [2].

Following these pre-processing steps, we compute the disparity space image
DSI(i, j, dx, dy) that stores the matching cost between a left image block cen-
tered around pixel (i, j) and a right image block centered at position (i−dx, j−
dy). At this stage, the quality of the match is measured as the normalized cross
correlation [3] between two 15x15 pixel image patches. We employ several opti-
mizations to accelerate this computation: (1) a box filter-like accumulator that
reduces duplicate operations in the calculation of DSI [4]; (2) a coarse-to-fine
pyramid based approach where disparities are estimated using low resolution
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Fig. 2. Flow of data through the Ames Stereo Pipeline

images, and then successively refined at higher resolutions; and (3) partitioning
of the disparity search space into rectangular sub-regions with similar values of
disparity determined in the previous lower resolution level of the pyramid [4].

The DSI estimate just described efficiently computes integer estimates of dis-
parity between the two images. These estimates are subsequently refined to sub-
pixel accuracy using the technique described in Section 4. Finally, in conjunction
with the bundle adjusted camera models, the sub-pixel disparity estimates are
used to triangulate the location of 3D points as the closest point of intersection
of two forward-projected rays emanating from the centers of the two cameras
through the matched pixels.

3 Bundle Adjustment

The Apollo-era satellite tracking network was highly inaccurate by today’s stan-
dards with errors estimated to be 2.04-km for satellite station positions and
0.002 degrees for pose estimates in a typical Apollo 15 image [5]. Such errors
propagate through the stereo triangulation process, resulting in systematic po-
sition errors and distortions in the resulting DEMs (see Figure 3). These errors
can be corrected using least-squares bundle adjustment.

In bundle adjustment the position and orientation of the camera are deter-
mined jointly with the 3D position of a set of image tie-points points chosen in
the overlapping regions between consecutive images. Tie-points are automati-
cally extracted using the SURF robust feature extraction algorithm [6]. Outliers
are rejected using the RANSAC method and trimmed to 1000 matches that are
spread evenly across the images.

Our bundle adjustment approach follows the method described in [7] and
determines the best camera parameters that minimize the projection error given
by ε =

∑
k

∑
j(Ik − I(Cj , Xk))2 where Ik are feature locations on the image
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Fig. 3. Bundle adjustment is illustrated here using a color-mapped, hill-shaded DEM

mosaic from Apollo 15 Orbit 33 imagery. (a) Prior to bundle adjustment, large disconti-

nuities exist between overlapping DEMs. (b) After bundle adjustment, DEM alignment

errors are no longer visible.

plane, Cj are the camera parameters, and Xk are the 3D positions associated
with features Ik. I(Cj , Xk) is an image formation model (i.e. forward projection)
for a given camera and 3D point. The optimization of the cost function uses the
Levenberg-Marquartd algorithm. Speed is improved by using sparse methods
described in [8].

To eliminate the gauge freedom inherent in this problem, we add two addition
error metrics to this cost function to constrain the position and scale of the
overall solution. First, ε =

∑
j(C

initial
j − Cj)2 constrains camera parameters

to stay relatively close to their initial values. Second, a small handful of 3D
ground control points are chosen by hand and added to the error metric as
ε =

∑
k(Xgcp

k −Xk)2 to constrain these points to known locations in the lunar
coordinate frame. In the cost functions discussed above, errors are weighted by
the inverse covariance of the measurement that gave rise to the constraint.

4 Sub-pixel Stereo Correlation

Apollo images are affected by two types of noise inherent to the scanning process:
(1) the presence of film grain and (2) dust & lint particles. The former gives rise
to noise in the DEM values that wash out real features, and the latter causes in-
correct matches or hard to detect blemishes in the DEM. Attenuating the effect of
these scanning artifacts while simultaneously refining the integer disparity map to
sub-pixel accuracy has become a critical goal of our system, and is necessary for
processing real-world data sets such as the Apollo Metric Camera data.

A common technique in sub-pixel refinement is to fit a parabola to the corre-
lation cost surface in the 8-connected neighborhood around the integer dispar-
ity estimate, and then use the parabola’s minimum as the sub-pixel disparity
value. This method is easy to implement and fast to compute, but exhibits a
problem known as pixel-locking: the sub-pixel disparities tend toward their inte-
ger estimates and can create noticable ”stair steps” on surfaces that should be
smooth [9], [10]. One way of attenuating the pixel-locking effect is through the
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use of a symmetric cost function [11] for matching the “left” and “right” image
blocks.

To avoid the high computational complexity of these methods another class
of approaches based on the Lucas-Kanade algorithm [12] proposes an asymmet-
ric score where the disparity map is computed using the best matching score
between the left image block and an optimally affine transformed block from the
right image. For example, the sub-pixel refinement developed by Stein et. al. [9]
lets IR(m,n) and IL(i, j) be two corresponding pixels in the right and left image
respectively, where i = m + dx, j = n + dy and dx, dy are the integer dispari-
ties. They develop a linear approximation based on the Taylor Series expansion
around pixel (i, j) in the left image

IL(i+ δx, j + δy) ≈ IL(i, j) + δx
dIL
dx

(i, j) + δy
dIL
dy

(i, j) (1)

where δx and δy are the local sub-pixel displacements. Let e(x, y) = IR(x, y) −
IL(i+ δx, j+ δy) and W be an image window centered around pixel (m,n). The
local displacements are not constant accross W and they vary according to:

δx(i, j) = a1i+ b1j + c1

δy(i, j) = a2i+ b2j + c2. (2)

The goal is to find the parameters a1, b1, c1, a2, b2, c2 that minimize the cost
function

E(m,n) =
∑

(x,y)∈W

(e(x, y)w(x, y))2 (3)

where w(x, y) are a set of weights used to reject outliers. Note that the local
displacements δx(i, j) and δy(i, j) depend on the pixel positions within the win-
dow W . In fact, the values a1, b1, c1, a2, b2, c2 that minimize E can be seen as
the parameters of an affine transformation that best transforms the right image
window to match the reference (left) image window.

The shortcoming of this method is directly related to the cost function that it
is minimizing, which has a low tolerance to noise. Noise present in the image will
easily dominate the result of the squared error function, giving rise to erroneous
disparity information. Recently, several statistical approaches (e.g. [13]) have
emerged to show how stochastic models can be used to attenuate the effects
of noise. Our sub-pixel refinement technique [14] adopts some of these ideas,
generalizing the earlier work by Stein et. al. [9] to a Bayesian framework that
models both the data and image noise.

In our approach the probability of a pixel in the right image is given by the
following Bayesian model:

P (IR(m,n)) =
∏

(x,y)∈W

N (IR(m,n)|IL(i+ δx, j + δy),
σp√
gxy

)P (z = 0) + (4)

+ N (IR(m,n)|µn, σn)P (z = 1)
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The first mixture component (z = 0) is a normal density function with mean
IL(i+ δx, j + δy) and variance σp√

gxy
:

P (IR(m,n)|z = 0) = N (IR(m,n)|IL(i+ δx, j + δy),
σp√
gxy

) (5)

The 1√
gxy

factor in the variance of this component has the effect of a Gaussian
smoothing window over the patch. With this term in place, we are no longer
looking for a single variance over the whole patch; instead we are assuming the
variance increases with distance away from the center according to the inverted
Gaussian, and are attempting to fit a global scale, σp. This provides formal
justification for the standard Gaussian windowing kernel.

The second mixture component (z = 1) in Equation 5 models the image noise
using a normal density function with mean µn and variance σn:

P (IR(m,n)|z = 1) = N (IR(m,n)|µn, σn) (6)

Let IR(m,n) be a vector of all pixels values in a window W centered in pixel
(m,n) in the right image. Then,

P (IR(m,n)) =
∏

(x,y)∈W

P (IR(x, y)) (7)

The parameters λ = {a1, b1, c1, a2, b2, c2, σp, µn, σn} that maximize the model
likelihood in Equation 7 are determined using the Expectation Maximization
(EM) algorithm. Maximizing the model likelihood in Equation 7 is equivalent to
maximizing the auxiliary function:

Q(θ) =
∑

k

P (k|IR, λt) logP (IR, k, δ|λ)

=
∑

k

∑
x,y

P (k|IR(x, y), λt) logP (IR(x, y)|k, λ)P (k|λ) (8)

Note that the M step calculations are similar to the equation used to determine
the parameters a1, b1, c1, a2, b2, c2 in the method presented in [9], except here the
fixed set of weights is replaced by the a posteriori probabilities computed in the E
step. In this way, our approach can be seen as a generalization of the Lucas-Kanade
method. The complete algorithm is summarized in the following steps:

– Step 1: Compute dIL

dx
(i, j), dIL

dy
(i, j) and the IR(x, y) values using bilinear

interpolation. Initialize the model parameters λ.
– Step 2: Compute iteratively the model parameters λ using the EM algorithm

(see [14] for details).
– Step 3: Compute δx(i, j) and δy(i, j) using Equation 2.
– Step 4: Compute a new point (x′, y′) = (x, y) + (δx, δy) and the IR(x′, y′)

values using bilinear interpolation.
– Step 5: If the norm of (δx, δy) vector falls below a fixed threshold the iter-

ations converged. Otherwise, go to step 1.

Like the computation of the integerDSI, we adopt a multi-scale approach for sub-
pixel refinement. At each level of the pyramid, the algorithm is initialized with the



716 M.J. Broxton et al.

(a) (b)

Fig. 4. Hadley Rille and the Apollo 15 landing site derived from Apollo Metric Camera

frames AS15-M-1135 and AS15-M-1136. (a) superimposed over the USGS Clementine

base map, (b) oblique view.

disparity determined in the previous lower resolution level of the pyramid. This
allows the subpixel algorithm to shift the results of the integerDSI by many pixel
if a better match can be found using the affine, noise-adapted window.

5 Results

The 3D surface reconstruction system described in this paper was tested by
processing 71 Apollo Metric Camera images from Apollo 15. Specifically, we
chose frames from orbit 33 of the mission, which includes highly overlapping
images that span approximately 90 degrees of longitude in the lunar equatorial
region. This exercised our algorithms across a wide range of different terrain
and lighting conditions. Figure 4 shows the final results in the vicinity of Hadley
Rille: the Apollo 15 landing site.

Tests were carried out on a 2.8-GHz, 8-core workstation with 8-GB of RAM.
Stereo reconstruction for all 71 stereo pairs took 2.5 days. In the end, the results
were merged into a DEM at 40-m/pixel that contained 73,000 x 20,000 pixels.

5.1 Bundle Adjustment

Bundle adjustment was carried out as described in Section 3. Initial errors and
results after one round of adjustment are shown in columns two and three of
Table 1, respectively. Subsequently, any tie-point measurements with image-
plane residual errors that were greater than 2 standard deviations from the
mean residual error were thrown out. Bundle adjustment was run a second time
yielding slightly improved results shown in column four of the table.

To constrain the scale and absolute position of the solution, 7 ground control
points were selected in a triangle wave pattern across the extent of the orbit to tie
specific image pixels to known positions in the lunar coordinate frame. The sigma
weights for ground control points were based on the resolution of the underlying
base map from which ground control points were derived. These were 300-m on
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the surface and 500-m normal to the surface. Furthermore, the camera station
position and pose estimates were constrained to stay close to their initial values
based on radio tracking data. Sigma weights for camera parameters were 2-km
for position, and 0.01 radians for pose. These values were drawn from historical
estimates of Apollo tracking network accuracy as previously discussed.

Table 1. Residual error at various stages of bundle adjustment. Residual error in the

image plane decreases as image tie-point constraints are satisfied. This improvement is

made possible as residual “error” for camera position, orientation and ground control

points increase to compensate. Triangulation is a measure of the average distance

between the closest point of intersection of two forward projected rays for a set of

tie-points. Its decrease indicates a substantial improvement in the self-consistency of

the DEMs in the data set.

Residual Reconstruction Initial After Round 1 After Round 2

Image Plane 0.444-mm 0.012-mm 0.0075-mm

Camera Position 0-km 1.31-km 1.31-km

Camera Orientation 0-mrad 9.0-rad 9.1-mrad

Ground Control Point 0-m 481-m 465-m

Triangulation Error 911-m 24.1-m 15.58-m

(a) (b) (c)

(d) (e)

Fig. 5. (a) Left Image (with a speck of dust), (b) Right Image, (c) Horizontal integer

disparity map, (d) Horizontal disparity map using the parabola method, (e) Horizontal

disparity map using the Bayesian approach
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5.2 Subpixel Correlation

Film grain and the dust particles are inherent to the scanning process and can
significantly limit the accuracy of the stereo processing system. One example
where dust particle noise occurs in one of the stereo pair images is shown in
detail in Figure 5 (a) and (b). Figure 5 (c) illustrates the integer disparity map
obtained by running the fast discrete correlation method described in Section 2.
Figure 5 (d), and (e) compares the horizontal sub-pixel disparity maps obtained
using the parabola method and the Lucas-Kanade method with the Bayesian
approach we introduced in Section 4. The Bayesian approach reduces the “stair-
stepping” artifacts apparent in the results from the parabola method. It also
demonstrates a degree of immunity to the noise introduced by the speck of dust
in (a).

6 Conclusions and Future Work

This paper has introduced a novel statistical formulation for optimally determin-
ing stereo correspondence with subpixel accuracy while simultaneously mitigat-
ing the effects of image noise. Furthermore, we have successfully demonstrated
a significant improvement to the geometric consistency of the results after us-
ing least squares bundle adjustment. These techniques were successfully used
to process a large, real-world corpus of images and were found to produce use-
ful results. However, this was a preliminary demonstration of these capabilities,
and much work remains to quantify residual errors and characterize the degree
of noise immunity in our new correlation algorithm. Further research will be
directed towards building a comprehensive error model for the 3D surface re-
construction process that can be used to systematically test our system under a
variety of different conditions and inputs. Ultimately, we hope to use our tech-
nique to process the full collection of over 8,000 Apollo Metric Camera stereo
pairs.
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Abstract. A correspondence and camera error analysis for dense correspon-
dence applications such as structure from motion is introduced. This provides
error introspection, opening up the possibility of adaptively and progressively ap-
plying more expensive correspondence and camera parameter estimation methods
to reduce these errors. The presented algorithm evaluates the given correspon-
dences and camera parameters based on an error generated through simple trian-
gulation. This triangulation is based on the given dense, non-epipolar constraint,
correspondences and estimated camera parameters. This provides an error map
without requiring any information about the perfect solution or making assump-
tions about the scene. The resulting error is a combination of correspondence and
camera parameter errors. An simple, fast low/high pass filter error factorization is
introduced, allowing for the separation of correspondence error and camera error.
Further analysis of the resulting error maps is applied to allow efficient iterative
improvement of correspondences and cameras.

1 Introduction

The main challenges in tracking, structure from motion and other applications that make
use of dense correspondences are attributable to faulty correspondences and the esti-
mated camera parameters. These challenges result from different lighting conditions,
occlusions, and moving objects within the scene, which introduce uncertainty to the
correspondence algorithm. This makes it desirable to be able to iteratively improve
these correspondences based on an error metric. To the knowledge of the authors there
has been no work evaluating correspondences and camera pose without knowledge of
the ground truth. This paper introduces a novel, simple error evaluation based on the
triangulation error, without ground truth knowledge.

The usual approach for epipolar-constrained applications is based on the following
steps: (1) Find a small number of reliable correspondences between the two images.
(2) Estimate camera poses with calculated correspondences. (3) Calculate dense corre-
spondences and scene structure with the help of epipolar constraints.

This project does it by calculating general dense, non epipolar-constrained corre-
spondences and the camera pose estimation from a subset of these correspondences.
Based on these two steps, this paper introduces an error metric based on a 3D geomet-
ric error. The main contribution of this paper is the factorization of the error into the two
main error sources, the camera parameter error and the correspondence error. This error

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 720–729, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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metric opens up the possibility of automatically performing feedback on both corre-
spondence and camera parameter calculation given a general, non epipolar-constrained,
dense correspondence algorithm. While this is not the paper that introduces such a feed-
back loop, it lays the fundamentals for it.

Further analysis of the extracted errors is performed to allow a quantitative error
evaluation. This analysis allows a more systematic decision in which previous steps,
correspondence calculation or camera parameter estimation, need further exploration.

The approach presented in this project was chosen because of improvements in hi-
erachical dense correspondence algorithms, which allows efficient general correspon-
dence calculation without knowledge of epipolar geometry. The main reason for this
approach is the potential to incrementally improve the correspondences and camera
poses by the proposed feedback loop. This is possible because correspondence errors
for non-epipolar constraint dense correspondences are independent of the epipolar map-
ping. The freedom in unconstrained correspondence calculation allows the introduction
of geometrical error extraction. By the knowledge of the authors this is the first time that
an error factorization for correspondence and camera error in dense correspondence al-
gorithms is possible.

2 Previous Work

Image registration, establishing the correspondence between two images, is a major step
towards extracting model geometry. There are different approaches to evaluate pixels in
two images representing the same object. Harris and Stephens [1] introduced a motion
analysis algorithm based on corners and edges. This approach is only suitable for image
motion analysis where objects of interest have to be tracked. Other approaches base the
correspondence search on epipolar constraints as shown in [2]. To exploit the epipolar
constraints the camera poses have to be known in advance or have to be calculated with
a subset of reliable correspondences. The algorithm used in this project is based on
dense, non-epipolar constraint correspondences. Due to this constraint a direct method
solving correspondences coarse-to-fine on 4-8 mesh image pyramids, with a 5x5 lo-
cal affine motion model as outlined by Duchaineau et al. [3] has been introduced. The
algorithm guarantees that every destination pixel is used only once and, if possible, ev-
ery pixel gets a correspondence pixel in the destination frame. All the correspondences
are calculated without any knowlegde of the camera pose or epipolar constraints. This
leads to a very flexible but still reliable correspondence calculation, which fits our newly
proposed iterative correspondence calculation.

The camera pose estimation from two corresponding images has been extensively
studied in Computer Vision. Hartley [4] introduced the eight-point algorithm that re-
quires at least eight correspondences to evaluate the relative poses of the cameras. Nistér
introduced a five-point algorithm in [5]. According to the literature, this algorithm is
considered to be more robust than the eight-point algorithm. The five-point algorithm,
embeded in RANSAC [6] is used in this project.

The fundamental question is how to quantify the quality of correspondences and
calculated camera pose. There has been a vast amount of work in the stereo vision com-
munity in error and quality analysis for correspondence and camera pose estimation
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Fig. 1. Triangulation based on camera pose and correspondences. Error metric is defined by d.
Resulting Error Maps: Total Error (left), Camera Error (middle), Correspondence Error (right).
All error maps are normalized.

algorithms. Rodehorst et al. [7] introduced an approach to evaluate camera pose esti-
mation based on ground truth data. For correspondence evaluation Seitz et al. [8] intro-
duced a comparison and evaluation platform for reconstructions from stereo, termed the
Middlebury Stereo Evaluation. This approach is based on reconstructing scenes that are
known exactly and comparing the reconstructions against the ground truth data. Mayoral
et al. [9] introduced an approach to evaluate the best matching algorithm by introduc-
ing a disparity space image based on matching errors. Xiong and Matthies [10] analyse
and correct major error sources, based on matching errors, for a certain scene type,
in this case a cross country navigation of an autonomous vehicle. All these approaches
are based on matching errors in epipolar-constrained correspondence algorithms. To the
knowledge of the authors there is no work covering error analysis for correspondences
and camera pose at the same time. This paper on the other hand presents a novel tech-
nique based on non-epipolar constrained correspondences and a geometric error extrac-
tion to evaluate correspondence and camera errors on the fly, without the prerequisite
of ground truth data or assumptions about the scene, and lays the fundamentals for an
iterative correspondence and camera pose improvement.

3 Factorization of Correspondence and Camera Pose Errors

The error factorization is based on two preceding steps not further covered in this pa-
per, the general dense correspondence calculation and the camera pose estimation. The
main achievement of this paper is the introduction of a measure for correspondence and
camera quality without knowledge of the perfect solution, any information, or assump-
tion of the scene. This opens the way for automatic iterative correspondence and camera
pose calculation.

The error metric is based on triangulation. The basic idea is to intersect rays com-
ing from both cameras which go through corresponding pixels. In order to calculate
the direction of these rays we have to take the extrinsic and intrinsic parameters of the
cameras into consideration. The camera pose is defined by R, the camera rotation, and
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Fig. 2. Aerial source images (left, middle) and the resulting triangulation from a different view
point(right)

T , the camera translation, which are given through camera pose estimation. The intrin-
sic parameters K are given through a one time calibration of the cameras. With these
parameters and the correspondences the ray directionsDA and DB can be calculated; x
and y are defined as the pixel coordinates in the base image or the corresponding pixel
in the destination image.

Di = Ri ∗K−1
i ∗

⎛⎝x
y
1

⎞⎠ (1)

Having the directions of the rays calculated and knowing the start points TA and TB ,
which are based on camera pose estimation, the shortest distance between the two rays
can be calculated. The points PA and PB on the rays that correspond to the nearest
distance points on the rays are defined in the following equations, where tA and tB
define how far in the given direction the pointsPA andPB are from the camera locations
TA and TB .

PA = TA + tA ∗DA (2)

PB = TB + tB ∗DB (3)

Knowing PA and PB the length of the shortest distance between the two rays is defined
by d. In general these rays will not intersect because of noise and errors in the camera
pose and the correspondences. Based on this knowledge the length of the nearest dis-
tance between the two rays is introduced as the error metric d. Figure 1 illustrates the
error calculation. The error is considered to be directional for further calculations. In
order to get a direction, the cross product of the two direction rays is evaluated and the
resulting vector direction is considered to be the positive direction.

This error calculation is performed for every given correspondence pair across the
pair of images. Figure 1 shows the resulting error map on the left. This map consists
of a smooth global error superimposed by high frequency errors. Knowing that the
main error sources are the camera parameters and the correspondences it can be said
that the camera parameters would have to introduce a smooth overall error and the
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correspondences have a local high frequency error. A closer look at error d results in
equations (4) and (5) respectively for PA and PB . For this analysis the calculations are
done in the coordinate system of camera A. This means that the rotation and translation
between camera A and B are relative.

PA = tAK
−1
EA

⎛⎝x+ xEd

y + yEd

1

⎞⎠ (4)

PB = REtBK
−1
EB

⎛⎝xc + xEd
+ xEc

yc + yEd
+ yEc

1

⎞⎠+ TE (5)

Camera parameter errors consist of error in relative rotationRE , relative translation TE ,
the intrinsic errors KEA and KEB , and the radial distortion errors xEd

and yEd
. The

errors introduced by the inaccuracies in correspondence calculation are represented by
xEc and yEc . All errors introduced by the camera parameters are global and influence
the reconstruction in a smooth manner, resulting in the smooth parts of the total error
map. The correspondence errors on the other side are local and therefore result in high
frequency errors in the error map. To separate the two error sources from each other
the camera error is first estimated. The error map shown in Figure 1 shows the absolute
values of the error. The direction of the error is taken into account as it is possible that
the crossing rays change their spatial order. This can be seen in the upper right corner
of the total error map in Figure 1. The black circle corresponds to an area where the
sign of the error changes.

To extract the camera error, a least-square B-spline approximation to the total error
height field is introduced. This approximation consists of a 5x5 support point grid and
is a special case called Bézier Curve. The goal is to filter the smooth camera error out.
The correspondence error is defined as the difference between the total error and the
camera error. The resulting smooth camera error can be seen in Figure 1 in the middle.
The correspondence error can now be calculated by subtracting the camera error from
the total error in each pixel. Figure 1 shows the correspondence error (on the right)
based on the image pair in Figure 2. The latter figure shows the triangluation based on
the given correspondences and the calculated camera pose. In areas of high error in the
correspondence error map the resulting reconstruction shows artifacts. Also the camera
error map represents the smooth reconstruction displacements seen in the upper right
corner of the reconstruction. This error is produced by internal and external errors of
the camera.

4 Error Metric Analysis

4.1 Signal-to-Noise Ratio (SNR) Analysis

As discussed in the previous section, the camera error is modeled as a deterministic
function. Correspondence error, on the other hand, appears to be more like ‘noise’, due
to its high-frequency and non-deterministic nature. Thus, a convenient way to examine
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their relationship is by applying the signal-to-noise ratio (SNR) concept, which is com-
monly used in image and signal processing. It must be mentioned that the two errors are
assumed to be independent, since only an inlier subset of the correspondences chosen
by RANSAC are used to compute the camera pose, which are not necessarily repre-
sentative of the entire set of correspondences. It is also important to take into account
that correspondence error is a signal in itself, despite its treatment as noise here for our
purposes. Thus, a range of low SNR values, uncommon in normal signal and processing
applications, is permissive here, whenever the influence of camera error is less than that
of the correspondence error. Our formulation fo the SNR is given by eq. 6, where µs

and µn are respectively the average camera and correspondence errors, while σn is the
standard deviation of the correspondence error.

SNR =
µs − µn

σn
(6)

A high SNR indicates numerically that the camera error is dominant, and that some
algorithm should be applied to overcome this deficiency. On the other hand a SNR
smaller than one suggests that the correspondences are the main error source and that
the main focus should be on global or local correspondence improvement.

5 Results

In this section the results of the presented approach are discussed and evaluated by
using different data sets to show the flexibility of the approach. These tests have been
conducted on a machine with Quad Core CPU @2.66 Mhz and 4 GB of RAM. All
results were achieved in a few seconds depending on the size of the input images.

5.1 Aerial Imagery

The first data set consists of aerial images taken from different viewing angles of a
downtown district. Figure 2 shows the image pair and resulting reconstruction. Figure 1
displays the error maps resulting from the introduced approach. It can be concluded
that the largest correspondence errors appear in occlusion areas and in areas where
there is not enough texture for the correspondence algorithm to lock down the best

Fig. 3. Source images (left pair), 3D reconstruction with calculated camera pose and correspon-
dences (middle) / perfect camera pose and perfect correspondences (right)
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Fig. 4. Left pair: Calculated camera pose/perfect correspondences: camera error
(left)/correspondence error (right). Right pair: Perfect camera pose/calculated correspon-
dences: total error (left)/correspondence error (right).

Fig. 5. Estimated camera pose and calculated correspondences. Total error map (left), correspon-
dence error map (middle) and ground truth correspondence error map (right).

correspondences. There are also high errors on the reconstruction of the static scene,
such as the streets, where movers appear. The problem is that these objects move from
one frame to the other and therefore the correspondences are incorrect. These results
demonstrate that problem areas are found by the introduced correspondence error map.

5.2 Artificial Data

Further tests have been completed with artificial data, where the perfect camera posi-
tions and correspondences are known. Figure 3 shows the used camera views and the
resulting triangulation with calculated and perfect correspondences. The goal of this
test is to prove that the assumption of the smooth camera error is correct and that the
extraction of correspondence errors results in a reliable error map. The algorithm was
run with the perfect camera pose and the calculated correspondences. The resulting cor-
respondence error map can be seen in Figure 4 on the right. This error map illustrates
that the main errors in the correspondences are around occlusions and repetitive tex-
tures on the cylinders. Considering that we have perfect camera poses the camera error
is very small overall, which is supported by the resulting SNR of -0.77. This explains
the similarity of the total error map and the correspondence error map. Figure 5 shows
the extracted error maps with calculated camera poses and calculated correspondences.
This demonstrates that the resulting correspondence error map (middle) is up to nor-
malization just like the one with the perfect camera poses. This shows that the assumed
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Fig. 6. Middlebury data set. Base camera view (left), depth map extracted after reconstruction
(middle) and Correspondence Error Map (right).

interaction of camera error and correspondence error is correct. In this case the SNR
result is 28.31 which implies that the camera error is dominant.

The next test has been conducted to prove that in case of perfect correspondences the
total error corresponds to the camera error. Figure 4 shows the results of this test (left).
It can be seen that the camera error represents the entire error. The SNR of value 292.96
implies that all the error is in the camera and correspondence errors are negligable. This
fulfills the assumed error relation.

A ground truth correspondence error map is introduced to support the extracted cor-
respondence error map. The ground truth correspondence error is given by the distance
of the two 3D points based on the perfect camera pose and the perfect correspondences
or calculated correspondences respectively. In areas of occlusions no ground truth data
can be produced as no perfect correspondences exist. Figure 5 shows that the error ar-
eas in the ground truth (right) and the calculated correspondence error (middle) maps
are similar up to scale. By taking into account that the error estimation is done without
knowledge about the scene it can be said that the results are conclusive.

The introduced approach has additionally been tested with the ‘Rocks2’ data set
from the Middlebury Stereo Evaluation data sets [11]. The resulting correspondence
error map can be seen in Figure 6. The comparison of extracted depth map, input image
and the correpondence error map shows that problem areas for the correspondences are
detected.

5.3 Signal-to-Noise Ratio

The SNR based on the error maps gives information about the relative importance rela-
tion between camera and correspondence errors. To underline the benefit of this analy-
sis, tests with the artifical data were conducted. The results in table 1 show the changes
in SNR, based on different camera poses and correspondences. The correspondences are
reduced in quality from left to right. In the calculated correspondences the number of
iterations the algorithm runs are restricted to get different correspondence qualities. For
testing purposes the camera poses are optimized based on bundle adjustment (BA) [12].
It can be seen that the better the camera poses get, the lower the SNR is. The worse the
correspondences are, the lower the SNR is too. The SNR gives us a measure to estimate
which error sources are relatively more dominant. A SNR of approximately one implies
that both errors have about the same influence. The SNR value for perfect camera pose
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Table 1. SNR values based on different camera poses (vertical) and different correspondences
(horizontal)

SNR Perfect Calculated (5x) Calculated (1x)
Perfect 6.69695 -0.789583 -0.770614
Calculated (BA) 278.659 28.5515 27.3323
Calculated 292.969 30.4882 28.3113

and perfect correspondences results because the intrinsic parameters in this data set are
not perfect, which shows in the camera error map. These tests were run with all the used
data sets and the results comply.

At this point a simple feedback loop can be introduced. An initial camera pose based
on dense correspondence calculation is calculated and the resulting SNR is 28.31. This
implies that the camera pose is the dominant error source. By using BA the extrinsic
parameters can be improved, which shows in the smaller SNR value 27.33. Despite the
correction the camera error is still dominant, which implies that most of the remaining
camera error is based on internal camera parameters and distortion. To improve this,
further parameters could be added to the camera refinement. On the other side a simple
global correspondence improvement would be to run the correspondence algorithm with
more iterations. This leads to a higher SNR, which implies that the correspondences get
globally relatively better. A more advanced way to improve correspondences would
be to use the correspondence error map to locally improve bad correspondences with
more expensive fitting algorithms. This discussion shows the proof of concept for an
iterative correspondence and camera pose estimation algorithm, based on error analysis
and separation, though this is out of the scope of this particular paper.

5.4 Zero Crossings

A closer look at the correspondence error map reveals thin lines of ‘no-error’ inbetween
high error regions. The same regions in the total error map reveal that this occurs where
total error changes from being smaller to being bigger than the estimated camera er-
ror. This is a result of the taken assumptions as we try to calculate the error without
comparison to the perfect solution. This artifact is acceptable as it is only a small part
of the error and only introduces false positives. Used in an iterative correspondence
calculation algorithm these areas will show up as errors in the next iterations.

6 Conclusion

This paper introduces an automated correspondence and camera error metric based on
triangulation for general, non-epipolar constrained, dense correspondence applications.
The goal of this error metric is to find faulty camera poses and correspondences and
lay foundation for feedback to allow updates with more sophisticated and expensive
algorithms. To solve for this error metric a triangulation based on correspondences and
camera poses is executed. The length of the nearest distance between the resulting tri-
angulation rays is used as the error for this approach. Based on the assumption that
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the error introduced by the camera is smooth over an image the camera error can be
extracted with a least squares B-spline approximation of the total error. The correspon-
dence error, which is considered to be local and represented by high frequency errors is
the difference between camera error and total error. Further SNR analysis of the errors
reveals if correspondence or camera parameter errors are dominant and helps to itera-
tively improve the weaker link. An overall test demonstrates the usefulness of the SNR
value towards identifying which source of error is relatively dominant, and in case it is
the correspondence error the problem areas identified are consistent with ground-truth
error maps, such that posterior local corrections can be applied in only these regions.

References

1. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference,
vol. 15, p. 50 (1988)

2. Pollefeys, M., Van Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch, R.:
Visual Modeling with a Hand-Held Camera. International Journal of Computer Vision 59,
207–232 (2004)

3. Duchaineau, M., Cohen, J., Vaidya, S.: Toward Fast Computation of Dense Image Correspon-
dence on the GPU. In: Proceedings of HPEC 2007, High Performance Embedded Comput-
ing, Eleventh Annual Workshop, Lincoln Laboratory, Massachusetts Institute of Technology,
pp. 91–92 (2007)

4. Hartley, R.: In defense of the eight-point algorithm. IEEE Transactions on Pattern Analysis
and Machine Intelligence 19, 580–593 (1997)

5. Nistér, D.: An Efficient Solution to the Five-Point Relative Pose Problem. IEEE Transactions
On Pattern Analysis And Machine Intelligence, 756–777 (2004)

6. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with ap-
plications to image analysis and automated cartography. Communications of the ACM 24,
381–395 (1981)

7. Rodehorst, V., Heinrichs, M., Hellwich, O.: Evaluation of relative pose estimation methods
for multi-camera setups. In: ISPRS 2008, pp. B3b: 135 (2008)

8. Seitz, S., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of
multi-view stereo reconstruction algorithms. In: Int. Conf. on Computer Vision and Pattern
Recognition, pp. 519–528 (2006)

9. Mayoral, R., Lera, G., Perez Ilzarbe, M.: Evaluation of correspondence errors for stereo.
IVC 24, 1288–1300 (2006)

10. Xiong, Y., Matthies, L.: Error analysis of a real time stereo system. In: CVPR 1997,
pp. 1087–1093 (1997)

11. Hirschmuller, H., Scharstein, D.: Evaluation of cost functions for stereo matching. In: IEEE
CVPR, pp. 1–8 (2007)

12. Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle adjustment-a modern syn-
thesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883,
pp. 298–372. Springer, Heidelberg (2000)



Natural Facial Expression Recognition Using Dynamic
and Static Schemes

Bogdan Raducanu1 and Fadi Dornaika2,3

1 Computer Vision Center, 08193 Bellaterra, Barcelona, Spain
bogdan@cvc.uab.es

2 IKERBASQUE, Basque Foundation for Science
3 University of the Basque Country, San Sebastian, Spain

fadi dornaika@ehu.es

Abstract. Affective computing is at the core of a new paradigm in HCI and AI
represented by human-centered computing. Within this paradigm, it is expected
that machines will be enabled with perceiving capabilities, making them aware
about users’ affective state. The current paper addresses the problem of facial ex-
pression recognition from monocular videos sequences. We propose a dynamic
facial expression recognition scheme, which is proven to be very efficient. Fur-
thermore, it is conveniently compared with several static-based systems adopting
different magnitude of facial expression. We provide evaluations of performance
using Linear Discriminant Analysis (LDA), Non parametric Discriminant Anal-
ysis (NDA), and Support Vector Machines (SVM). We also provide performance
evaluations using arbitrary test video sequences.

1 Introduction

There is a new paradigm in Human-Computer Interaction (HCI) and Artificial Intelli-
gence focused on human-centered computing [1]. From the HCI perspective, comput-
ers will be enabled with perceptual capabilities in order to facilitate the communication
protocols between people and machines. In other words, computers must use natural
ways of communication people use in their everyday life: speech, hand and body ges-
tures, facial expression. In the past, a lot of effort was dedicated to recognize facial
expression in still images. For this purpose, many techniques have been applied: neural
networks [2], Gabor wavelets [3] and active appearance models [4]. A very important
limitation to this strategy is the fact that still images usually capture the apex of the
expression, i.e., the instant at which the indicators of emotion are most marked. In their
daily life, people seldom show apex of their facial expression during normal communi-
cation with their counterparts, unless for very specific cases and for very brief periods of
time. More recently, attention has been shifted particularly towards modelling dynam-
ical facial expressions [5, 6]. This is because that the differences between expressions
are more powerfully modelled by dynamic transitions between different stages of an
expression rather than their corresponding static key frames. This is a very relevant
observation, since for most of the communication act, people rather use ’subtle’ facial
expressions than showing deliberately exaggerated expressions in order to convey their
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message. In [7], the authors found that subtle expressions that were not identifiable in
individual images suddenly became apparent when viewed in a video sequence.

Dynamical classifiers try to capture the temporal pattern in the sequence of feature
vectors related to each frame such as the Hidden Markov Models (HMMs) and Dy-
namic Bayesian Networks [8]. In [9], parametric 2D flow models associated with the
whole face as well as with the mouth, eyebrows, and eyes are first estimated. Then, mid-
level predicates are inferred from these parameters. Finally, universal facial expressions
are detected and recognized using the estimated predicates. Most proposed expression
recognition schemes rely on the use of image raw brightness changes, which may require
fixing the same imaging conditions for training and testing. The recognition of facial ex-
pressions in image sequences featuring significant head motions is a challenging prob-
lem. However, it is required by many applications such as human computer interaction
and computer graphics animation [10] as well as training of social robots [11].

In this paper we propose a novel scheme for dynamic facial expression recogni-
tion that is based on the appearance-based 3D face tracker [12]. Compared to existing
dynamical facial expression methods our proposed approach has several advantages.
First, unlike most expression recognition systems that require a frontal view of the face,
our system is view independent since the used tracker simultaneously provides the 3D
head pose and the facial actions. Second, it is texture independent since the recognition
scheme relies only on the estimated facial actions—invariant geometrical parameters.
Third, its learning phase is simple compared to other techniques (e.g., the HMM). As
a result, even when the imaging conditions change, the learned expression dynamics
need not to be recomputed. It is worth noting that the proposed expression recognition
schemes are only depending on the facial shape deformations (facial actions) and not
on the image rawbrightness. Certainly, the shape deformations are retrieved using the
rawbrightness of the sequence using the 3D face tracker based on the flexible Online
Appearance Models [12].

The proposed approach for dynamic facial expression recognition has been com-
pared afterwards against static frame-based recognition methods, showing a clear su-
periority in terms of recognition rates and robustness. The paper presents comparisons
with several static classifiers that take into account the magnitude of facial expressions.
We provide evaluations of performance using Linear Discriminant Analysis (LDA),
Non parametric Discriminant Analysis (NDA), and Support Vector Machines (SVM).

The rest of the paper is organized as follows. Section 2 briefly presents the pro-
posed 3D face and facial action tracking. Section 3 describes the proposed recognition
schemes. In section 4 we report some experimental results and method comparisons.
Finally, in section 5 we present our conclusions.

2 3D Facial Dynamics Extraction

2.1 A Deformable 3D Face Model

In our work, we use the 3D face model Candide [13]. This 3D deformable wireframe
model was first developed for the purpose of model-based image coding and computer
animation. The 3D shape of this wireframe model is directly recorded in coordinate
form. It is given by the coordinates of the 3D vertices Pi, i = 1, . . . , n where n is the
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number of vertices. Thus, the shape up to a global scale can be fully described by the
3n-vector g; the concatenation of the 3D coordinates of all vertices Pi. The vector g is
written as:

g = gs + A τ a (1)

where gs is the static shape of the model, τa the animation control vector, and the
columns of A are the Animation Units. The static shape is constant for a given person.
In this study, we use six modes for the facial Animation Units (AUs) matrix A. We have
chosen the following AUs: lower lip depressor, lip stretcher, lip corner depressor, upper
lip raiser, eyebrow lowerer, and outer eyebrow raiser. These AUs are enough to cover
most common facial animations. Moreover, they are essential for conveying emotions.
Thus, for every frame in the video, the state of the 3D wireframe model is given by the
3D head pose parameters (three rotations and three translations) and the internal face
animation control vector τa. This is given by the 12-dimensional vector b:

b = [θx, θy, θz, tx, ty, tz, τ
T
a ]T (2)

where:

– θx, θy , and θz represent the three angles associated with the 3D rotation between
the 3D face model coordinate system and the camera coordinate system.

– tx, ty , and tz represent the three components of the 3D translation vector between
the 3D face model coordinate system and the camera coordinate system.

– Each component of the vector τa represents the intensity of one facial action. This
belongs to the interval [0, 1] where the zero value corresponds to the neutral config-
uration (no deformation) and the one value corresponds to the maximum deforma-
tion. In the sequel, the word ”facial action” will refer to the facial action intensity.

2.2 Simultaneous Face and Facial Action Tracking

In order to recover the facial expression one has to compute the facial actions encoded
by the vector τa which encapsulates the facial deformation. Since our recognition
scheme is view-independent these facial actions together with the 3D head pose should
be simultaneously estimated. In other words, the objective is to compute the state vector
b for every video frame.

For this purpose, we use the tracker based on Online Appearance Models (OAMs)—
described in [12]. This appearance-based tracker aims at computing the 3D head pose
and the facial actions, i.e. the vector b, by minimizing a distance between the incoming
warped frame and the current shape-free appearance of the face. This minimization is
carried out using a gradient descent method. The statistics of the shape-free appearance
as well as the gradient matrix are updated every frame. This scheme leads to a fast and
robust tracking algorithm. We stress the fact that OAMs are more flexible than Active
Appearance Models which heavily depend on the imaging conditions under which these
models are built.

3 Facial Expression Recognition

Learning. In order to learn the spatio-temporal structures of the actions associated with
facial expressions, we have used a simple supervised learning scheme that consists in
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Surprise

Anger

Joy

Fig. 1. Three video examples associated with the CMU database depicting surprise, anger, and joy
expressions. The left frames illustrate the half apex of the expression. The right frames illustrate
the apex of the expression.

two stages. In the first stage, continuous videos depicting different facial expressions are
tracked and the retrieved facial actions τa are represented by time series. In the second
stage, the time series representation of all training videos are registered in the time do-
main using the Dynamic Time Warping technique. Thus, a given example (expression)
is represented by a feature vector obtained by concatenating the registered τa.

Video sequences have been picked up from the CMU database [14]. These sequences
depict five frontal view universal expressions (surprise, sadness, joy, disgust and anger).
Each expression is performed by 70 different subjects, starting from the neutral one. Al-
together we select 350 video sequences composed of around 15 to 20 frames each, that
is, the average duration of each sequence is about half a second. The learning phase
consists of estimating the facial action parameters τ a (a 6-element vector) associated
with each training sequence, that is, the temporal trajectories of the action parameters.
The training video sequences have an interesting property: all performed expressions
go from the neutral expression to a high magnitude expression by going through a mod-
erate magnitude around the middle of the sequence. Therefore, using the same training
set we get two kinds of trajectories: (i) an entire trajectory which models transitions
from the neutral expression to a high magnitude expression, and (ii) a truncated tra-
jectory (the second half part of a given trajectory) which models the transition from



734 B. Raducanu and F. Dornaika

small/moderate magnitudes (half apex of the expression) to high magnitudes (apex of
the expression). Figure 1 show the half apex and apex facial configurations for three
expressions: surprise, anger, and joy. In the final stage of the learning all training tra-
jectories are aligned using the Dynamic Time Warping technique by fixing a nominal
duration for a facial expression. In our experiments, this nominal duration is set to 18
frames.

Recognition. In the recognition phase, the 3D head pose and facial actions are recov-
ered from the video sequence using the appearance-based face and facial action tracker.
We infer the facial expression associated with the current frame t by considering the es-
timated trajectory, i.e. the sequence of vectors τ a(t) within a temporal window of size
18 centered at the current frame t. This trajectory (feature vector) is then classified using
classical classification techniques that rely on the learned examples. We have used three
different classification schemes: (i) Linear Discriminant Analysis, (ii) Non-parametric
Discriminant Analysis, and (iii) Support Vector Machines with a Radial Basis Function.

4 Experimental Results

In our experiments, we used a subset from the CMU facial expression database, con-
taining 70 persons who are displaying 5 expressions: surprise, sadness, joy, disgust and
anger. For training and testing we used the truncated trajectories, that is, the temporal
sequence containing 9 frames, with the first frame representing a ”subtle” facial expres-
sion (corresponding more or less with a ”half apex” state, see the left column of Figure
1) and the last one corresponding to the apex state of the facial expression (see the right
column of Figure 1). We decided to remove in our analysis the first few frames (from
initial, ”neutral” state to ”half-apex”) since we found them irrelevant for the purposes
of the current study.

It is worth noting that the static recognition scheme will use the facial actions as-
sociated with only one single frame, that is, the dimension of the feature vector is 6.
However, the dynamic classifier use the concatenation of facial actions within a tem-
poral window, that is, the feature vector size is 6 × n where n is the number of frames
within the temporal window. In the sequel, n is set to 9.

4.1 Classification Results Using the CMU Data

The results reported in this section are based on the ”leave-one-out” cross-validation
strategy. Several machine learning techniques have been tested: Linear Discriminant
Analysis (LDA), Non-parametric Discriminant Analysis (NDA) and Support Vector
Machines (SVM). For LDA and NDA, the classification was based on the K Nearest
Neighbor rule (KNN). We considered the following cases: K=1, 3 and 5.

In order to assess the benefit of using temporal information, we performed also
the ”static” facial expression recognition. Three static classifier schemes have been
adopted. In the first scheme, training and test data are associated to the apex frames.
In the second scheme, training and test data are associated to the half-apex frames. In
the third schemes, we considered all the training frames in the 9-frame sequence be-
longing to the same facial expression, but with different magnitudes. However, during
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Table 1. LDA - Overall classification results for the dynamic and static classifiers

Classifier type K=1 K=3 K=5

Dynamic 94.2857% 88.5714% 82.8571%
Static (apex) 91.4286% 91.4286% 88.5714%
Static (half-apex) 85.7143% 82.8571% 80.0000%
Static (all frames) 84.1270% 91.4286% 89.5238%

Table 2. NDA - Overall classification results for the dynamic and static classifiers

Classifier type K=1 K=3 K=5

Dynamic 88.5714% 88.5714% 85.7143%
Static (apex) 85.7143% 88.5714% 91.4286%
Static (half-apex) 82.8571% 80.0000% 80.0000%
Static (all frames) 90.7937% 90.1587% 91.1111%

Table 3. SVM - Overall classification results for the dynamic and static classifiers

C Dynamic Apex Half-apex All frames
5 94.2857% 97.1428% 82.8571% 87.9364%
10 97.1428% 100.0000% 85.7142% 88.8888%
50 100.0000% 94.2857% 94.2857% 86.6666%
100 97.1428% 94.2857% 94.2857% 86.3491%
500 97.1428% 94.2857% 94.2857% 87.3015%
1000 97.1428% 94.2857% 91.4285% 88.5714%

testing every frame is recognized individually and the recognition rate concerns the
recognition of individual frames.

The whole results (dynamic and static) for LDA and NDA are reported in tables 1
and 2, respectively. The SVM results for the dynamic classifier are reported in table 3.
The kernel was a radial basis function. Thus, the SVM used has two parameters to tune
’C’ and ’g’ (gamma). The first parameter controls the number of training errors, and the
second one controls the RBF aperture. In general, gamma is taken as the inverse of the
feature dimension, that is, it is set to 1/dim(vector) = 1/54 for the dynamic classifier
and to 1/dim(vector) = 1/6 for the static classifier. In this case we wanted to see
how the variation of the parameters ’C’ (cost) affects the recognition performance. We
considered six values for ’C’.

To conclude this part of the experimental results, we could say that, in general, the
dynamic recognition scheme has outperformed all static recognition schemes. More-
over, we found out that the SVM clearly outperforms LDA and NDA in classification
accuracy. Moreover, by inspecting the recognition results obtained with SVM we can
observe that the dynamic classifiers and the static classifiers based on the apex frames
are slightly more accurate than the static classifiers (half-apex) and (all frame) (third
and fourth columns of Table 3). This can be explained by the fact that these static
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Table 4. LDA - Cross-check validation results for the static classifier. Minor: train with half-apex
frames and test with apex. Major: train with apex frames and test with half-apex.

Static classifier K=1 K=3 K=5

Minor 82.8571% 85.7143% 85.7143%
Major 57.1429% 65.7143% 62.8571%

Table 5. NDA - Cross-check validation results for the static classifier. Minor: train with half-apex
frames and test with apex. Major: train with apex frames and test with half-apex.

Static classifier K=1 K=3 K=5

Minor 94.2857% 88.5714% 85.7143%
Major 65.7143% 62.6571% 60.0000%

Table 6. SVM - Cross-check validation results for the static classifier. Minor: train with half-apex
frames and test with apex. Major: train with apex frames and test with half-apex.

C Minor Major
5 80.0000% 60.0000%
10 85.7142% 51.4285%
50 85.7142% 45.7142%
100 80.0000% 48.5714%
500 82.8571% 48.5714%
1000 82.8571% 48.5714%

classifiers are testing separately individual frames that may not contain high magnitude
facial actions.

4.2 Cross-Check Validation Using the CMU Data

Besides the experiments described above, we performed also a cross-check validation.
In the first experiment, we trained the static classifier with the frames corresponding to
half-apex expression and use the apex frames for test. We refer to this case as ’minor’
static classifier. In a second experiment, we trained the classifier with the apex frames
and test it using the half-apex frames (’major’ static classifier). The results for LDA,
NDA and SVM are presented in the tables 4, 5 and 6, respectively. By analyzing the ob-
tained results, we could observe that the ’minor’ static classifier has comparable results
to the static half apex classifier. This was confirmed by the three classification methods:
LDA, NDA, and SVM. This means that a learning based on data featuring half apex ex-
pressions will have very good generalization capabilities since the tests with both kinds
of data (half-apex and apex expressions) have a high recognition rate. Also, one can
notice that the recognition rate of the minor static classifier is higher than that of the
major static classifier.

This result may have very practical implications assuming that training data con-
tain non-apex expressions, specially for real-world applications. In human-computer
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Fig. 2. Four snapshots from the second video sequence

interaction scenarios, for instance, we are interested in quantifying human reaction
based on its natural behavior. For this reason, we have to acquire and process data
online without any external intervention. In this context, it is highly unlikely to capture
automatically a persons apex of the facial expression. Most of the time we are tempted
to show more subtle versions of our expressions and when we indeed show apex, this is
in very specific situations and for very brief periods of time.

4.3 Dynamic vs. Static Recognition on Non-aligned Videos

In order to assess the robustness of our method, we also tested the recognition schemes
on three arbitrary video sequences. The length of the shortest one is 300 frames and
that of the longest is 1600 frames. Figure 2 shows four snapshots associated with the
second test video sequence. These sequences depicted unseen subjects displaying a
variety of different facial expressions. For training, we employed all the videos from
the CMU database used in the previous sections (for which the dynamic expressions
are represented by aligned 9-frame sequences). It is worth mentioning that the CMU
videos and these three test videos are recorded at different frame rates. Moreover, the
displayed expressions are not so similar to those depicted in the CMU data.

We compare the recognized expressions by the static and dynamic classifiers with
the ground-truth displayed expressions. Since the test videos are not segmented, we
perform the dynamic and static recognition only at some specific frames of the test
videos. These keyframes correspond to significant facial deformations and are detected
using the heuristic developed in [15]. These keyframes does not correspond to a specific
frame in the time domain (onset, apex, offset of the expression). As a result of this,
the task of the dynamic classifier will be very hard since the temporal window of 9
frames centered at this detected keyframe will be matched against the learned aligned
trajectories. The static recognizer will not be so affected since the recognition is based
on comparing the attributes of the individual detected keyframe with those of a set of
learned individual frames depicting several amplitudes of the expression.

In the tables 7 and 8, we present the results for the dynamic and static classifiers,
respectively. The static scheme has outperformed the dynamic scheme for these three
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Table 7. Recognition results for the dynamic classifier on arbitrary non aligned video sequences

Sequence name LDA NDA SVM

Data 1 43.4783% 34.7826% 60.8696%
Data 2 60.0000% 40.0000% 60.0000%
Data 3 61.1111% 55.5556% 66.6667%

Table 8. Recognition results for the static classifier on the three arbitrary non aligned video
sequences. We considered only the keyframes.

Sequence name LDA NDA SVM

Data 1 69.5652% 65.2174% 65.2174%
Data 2 80.0000% 80.0000% 60.0000%
Data 3 66.6667% 66.6667% 72.2222%

sequences. This confirms that the dynamic classifiers need better temporal alignment.
As can be seen, the recognition rates obtained with both recognition schemes are lower
than those obtained with a cross validation test based on the same database. This is due
to the fact that the test was performed only on two subjects displaying arbitrary facial
expressions.

5 Conclusions and Future Work

In this paper, we addressed the dynamic facial expression recognition in videos. We in-
troduced a view and texture independent scheme that exploits facial action parameters
estimated by an appearance-based 3D face tracker. We represented the universal expres-
sions by time series associated with learned facial expressions. Facial expressions are
recognized using several machine learning techniques. In order to show even better the
benefits of employing a dynamic classifier, we compared it with static classifiers, built
on half-apex, apex, and all frames of the corresponding facial expressions.

In the future, we want to further explore the results obtained in this paper by focusing
on two directions: trying to discriminate between a fake and a genuine facial expression,
and solving simultaneously the alignment and recognition.
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Abstract. By the assumption that a face image under an arbitrary

point light source is a linear combination of three linearly independent
random vectors, we propose a novel statistical Shape From Shading (SFS)

algorithm which can recover 3-D facial shape irrespective of the illumi-

nation direction, unlike most other statistical SFS algorithms. The scaled
surface normal vectors, which are the products of albedos and surface

normal vectors, can be represented by three linearly independent ran-

dom vectors if we assume that human face is Lambertian. Thanks to

this linearly independent representation, 3-D facial shape reconstruction

can be accomplished by a few matrix multiplication under an arbitrary

point light source. The experimental results show that the proposed al-

gorithm shows good performance under various light conditions at low

computational cost.

1 Introduction

Shape From Shading (SFS) [1] has been an active research area in 3-D reconstruc-
tion of images, because of the advantage that SFS requires only a single image. SFS
is an ill-posed problem having more unknowns than equations, and early works
have focused on finding plausible constraints or approximations that make it pos-
sible to find a reasonable solution [1]. These approaches, however, do not work well
because of some unrealistic assumptions like the uniform albedo assumption, and
some ambiguities, such as the generalized bas-relief ambiguity or convex-concave
ambiguity [2], and are hardly applicable to practical applications.

A lot of alternative approaches have been proposed to overcome these short-
comings, most of them try to either restrict the object of interest or to incorpo-
rate a statistical model about the object [3,4,5,6,7,8,9,10]. This narrows down
the searching space and guarantees a unique solution, which gives relatively
good results. Atick et al. [3] proposed a parameter estimation method based on
‘eigenheads’ derived by Principal Component Analysis (PCA) using the depth
information in the cylindrical coordinate. Morphable Model (MM) [4], which gen-
erates 3-D face shape by fitting a face image to a pre-built statistical model of
face shape and texture. Lei et al. [6] used Canonical Correlation Analysis (CCA)
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mapping to find the correspondence between image and depth in conjunction
with tensor decomposition [11] to preserve the 2-D structure of images. Smith
et al. [8] used the statistical model combined with the azimuthal equidistant
projection and Lambert’s law to estimate the surface normal directions. Biswas
et al. [10] applied nonstationary stochastic image estimation framework [12] to
estimate the albedo and illuminance, irrespective of the illumination condition.

These statistical methods, however, still have some drawbacks, such as requir-
ing face images to be in frontal pose under frontal light source, being computa-
tionally expensive, or showing poor performance, etc. In this paper, we propose
an efficient 3-D facial shape recovery algorithm, which does not have any require-
ments on the light direction, by using the linearly independent property of the
scaled surface normal vectors which are the surface normal vectors multiplied by
albedos. If we assume that the human face is Lambertian and the scaled surface
normal vectors are linearly independent, a face image under an arbitrary point
light source is just a linear combination of the scaled surface normal vectors,
which can be uniquely determined up to scale. We also show that the 3-D shape
of human face satisfies a certain condition, under which these vectors can be de-
termined without scale ambiguity along with the light direction. The algorithm
can be implemented with just a few matrix multiplications, so the computational
cost is low.

The rest of the paper is organized as follows: We explain the algorithm of facial
shape recovery in Section 2. The performance evaluation follows in Section 3,
and finally we conclude the paper in Section 4.

2 Facial Shape Recovery

Let us assume that the surface of a human face exhibits Lambertian reflectance.
The well-known equation of Lambertian reflectance is

z(x, y) = ρ(x, y)sT n(x, y), (1)

where z(x, y) is the brightness, ρ(x, y) is the albedo, n(x, y) (∈ R3) is the surface
normal vector of the pixel at (x, y), and s (∈ R3) is the light source vector. This
equation can be expressed as the following form.

z(x, y) = sT (ρ(x, y)n(x, y)) = sTx(x, y). (2)

Here we define x(x, y) = ρ(x, y)n(x, y) (∈ R3) as the scaled surface normal vector
of the pixel at (x, y). Let si and xi(x, y) be the ith elements of s and x(x, y),
respectively. Also let z be the vector corresponding to the image {z(x, y)}, and xi

be the vector corresponding to the image {xi(x, y)}. Then (2) can be represented
as

z = s1x1 + s2x2 + s3x3 =
∑

i

sixi. (3)
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Table 1. Minimum principal angles (degree)

Set 1

S(1) S(2) S(3)

Set 2
S(i) 0.93 2.03 0.58

S(j1,j2), jk �= i 6.60 4.92 4.26

Table 2. Minimum angle between X
i

and S̃(i) (degree)

1 2 3

10.53 16.24 18.56

Let us assume that z and xis are the realizations of random vectors Z and Xi

for human face, then
Z =

∑
i

siXi. (4)

Hence Z is a linear combination of vectors Xi.
Let us define S(i1,i2,...,in) be the the linear subspace formed with the linear

combination of all possible Xi1 ,Xi2 , . . . ,Xin of human faces and S̃(i1,i2,...,in)

be the the linear subspace formed with the linear combination of all possible
X̃i1 , X̃i2 , . . . , X̃in of human faces, where X

i
= E

[
Xi
]

and X̃i � Xi −X
i
. Also

assume two things : 1) S(i) is linearly independent with S(j1,j2), jk 
= i. 2) all
possible S̃(i) is linearly independent with X

i
. Then the following can be derived.

Z =
∑

i

siXi =
∑

i

si

(
X

i
+ P̃ iỸi

)
=
[
X

1
P̃ 1 X

2
P̃ 2 . . . X

m
P̃m
] [
s1 s1(Ỹ1)T s2 s2(Ỹ2)T . . . sm sm(Ỹm)T

]T
� PV,

(5)

where P̃ i is the matrix whose columns are the bases of S(i), Ỹi is the random
vector that satisfies X̃i = P̃ iỸi. Because of the assumption, P has a full column
rank. Therefore, we can reconstruct x̂i,k as the following.[

ŝk
i

ŝk
i ỹi,k

]
= Eiv̂k = EiP+zk,

x̂i,k = X
i
+ P̃ iŝk

i ỹi,k/ŝk
i ,

(6)

where Ei =
[
0ni×(∑ i−1

j=1 nj) Ini 0ni×(∑m
j=i+1 nj)

]
, (̂·) is the estimate of (·), vk, zk,

xi,k, yi,k, and sk
i are the kth sample of V, Z, Xi, Yi, and si.
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It has to be verified first whether the above assumptions holds for Xis before
going through facial shape recovery. We reconstructed 3-D face shapes from PF07
Face Database [13] by photometric stereo [14], and calculated the maximum
canonical correlations [15] to check the assumption. 184 subjects were divided
into two sets with 92 subjects each, and the minimum principal angles, which
are the arccosine of maximum canonical correlations between the two sets, were
calculated as in Table 1. Here we can see that the minimum principal angles
are smaller for the same index is. Ideally, the angle should be zero for the same
index is and nonzero for the others, but the angle for the same index i usually
has some small value due to noise or small-sample-size. We assume that S(i)s
are linearly independent based on the fact that the angles are larger for different
index is. Additionally, Table 2 shows that the minimum angle between the mean
of Xi and S̃(i) are relatively large, which means that they are independent.

If there is a large shadow area in a face image, then the result of (6) will be
erroneous. To mitigate the error, we reformulate the problem as the following.

minimize
vk

∥∥wk ◦ (Pvk − zk)
∥∥2

(7)

Here wk is a weight vector whose elements are one if the corresponding element
of zk is not less than a small number ε (> 0) and is zero otherwise, ‖ · ‖ is the
Euclidean norm, and ◦ is the Hadamard product, or element-wise product. The
objective function is just a quadratic function of vk and its solution is

v̂k =
(
W kP

)+
W kzk, (8)

Where W k is a diagonal matrix whose elements are the same as the elements of
wk.

Before applying the proposed algorithm, an affine transform (Gk, tk) is applied
to zk(x, y) and xi,k(x, y)s for each k so that the centers of eyes and mouth are
located at the designated locations respectively, which mitigates small-sample-
size problem.

z′k(x′, y′) = zk(x, y),

x′i,k(x′, y′) = xi,k(x, y),[
x′

y′

]
= Gk

[
x
y

]
+ tk,

(9)

where x′ and y′ are the coordinates after the affine transform and z′k and x′i,k are
the brightness and the scaled surface normal vector of the transformed images.
Active Appearance Model (AAM) [16] can also be used as an alternative for this

purpose. After retrieving x̂′i,k(x′, y′)s from the transformed image z′k(x′, y′) for
reconstruction, the inverse transform is applied to find x̂i,k(x, y)s. Note that the
depth recovery should not be applied before the inverse transform, because the
relationship between the surface normal vector n(x, y) and the depth h(x, y)



744 M. Lee and C.-H. Choi

changes after the affine transformation. Let us define the transformed depth
function h′(x′, y′) = h(x, y), then the corresponding surface normal vectors are

n(x, y) =

[
−hx(x, y) −hy(x, y) 1

]T√
hx(x, y)2 + hy(x, y)2 + 1

,

n′(x′, y′) =

[
−h′x′(x′, y′) −h′y′(x′, y′) 1

]T√
h′x′(x′, y′)2 + h′y′(x′, y′)2 + 1

=

[
−hx′(x, y) −hy′(x, y) 1

]T√
hx′(x, y)2 + hy′(x, y)2 + 1

=

[
−
[
hx(x, y) hy(x, y)

]
G 1
]T√

hx′(x, y)2 + hy′(x, y)2 + 1
,

n′(x′, y′) =
[
GT 0
0 1

]
n(x, y)

√
hx(x, y)2 + hy(x, y)2 + 1
hx′(x, y)2 + hy′(x, y)2 + 1

.

(10)

The rightmost term of the last equation is nonlinear, which confirms the statement
given in the above. Hence the order of reconstruction should not be changed.

There is one more thing to be considered, when the light direction is ‘singular’.
If one or two elements of sks are very small, e.g. s = [0 0 1]T , we will not be able
to reconstruct the depth function or the reconstruction error will be very large
because xi,k will not be retrievable for the sk

i with a small value. To avoid this,
we should prepare several Pls by rotating the coordinates with several different
rotation matrix Rl (∈ R3×3), l = 1, 2, · · · . Here Pl is the matrix P in (5) with
Xi,l instead of Xi for a rotation matrix Rl, where⎡⎣(X1,l)T

(X2,l)T

(X3,l)T

⎤⎦ = Rl

⎡⎣(X1)T

(X1)T

(X3)T

⎤⎦ . (11)

If some of sis are very small for P1, (6) should be computed with different l 
= 1,
to obtain full 3-D information.

After finding x̂i,ks, the surface normal vectors can be easily calculated by
normalizing x̂k(x, y). Since the reconstructed surface may not be integrable, we
use the Frankot-Chellappa’s method [17] to calculate the depth map. The overall
procedure for 3-D facial shape recovery is summarized as follows.

[Modeling]

1. Apply an affine transform to training samples zk(x, y) and xi,k(x, y), i =
1, 2, 3 for all k so that the centers of eyes and mouth are located at their
designated coordinates, and transform them into vectors zk and xi,k.

2. Let x̃′i,k = x′i,k − x′i, where x′i = 1
N

∑
k x′i,k. Apply PCA to x̃′i,k in order

to obtain the basis matrices P̃ i.
3. Construct P̃ as in (5).
4. Repeat Steps 2 and 3 with x′i,k,l in (11) for all l.
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[Reconstruction]

1. Apply the affine transform to a test sample zk(x, y), and transform the resul-
tant image into a vector zk.

2. Set l = 1.

3. Find ŝk,l
i and ŝk,l

i ỹk,l
i for all i by evaluating

⎡⎣ ŝk,l
i

̂sk,l
i ỹi,k,l

⎤⎦ = Ei(Pl)+zk.

4. Compute sl′ = Rl′(Rl)T sl. If l∗ = argminl′{std(sl′)} 
= l and std(sl) −
std(sl∗)) > γ, set l = l∗ and go back to Step 3, otherwise go to Step 5. Here

γ is a small nonnegative real number, and std(sl) =

√
1
3

∑
i

(
sl

i − 1
3

∑
j s

l
j

)2
.

5. Find x̂′i,k,l for all i by evaluating x̂′i,k,l = x′i,l + Pi,l ̂
sk,l

i ỹi,k,l/ŝk,l
i . Then find

x̂′i,k = (Rl)T x̂′i,k,l.

6. Transform x̂′i,k into an image and apply the inverse transform of the affine
transform in Step 1 to obtain x̂i,k(x, y) in the original coordinate. Calcu-
late the albedo and the surface normal vectors by evaluating ρ̂k(x, y) =∥∥∥x̂i,k(x, y)

∥∥∥ and n̂k(x, y) = x̂i,k(x,y)
ρ̂k(x,y)

.

7. Reconstruct the depth map from n̂k(x, y) using the Frankot-Chellappa’s
method.

Note that the reconstruction algorithm is composed of a few matrix multipli-
cations, and the loop in Steps 3 and 4 usually takes two or three iterations.
Therefore the computational cost is low.

3 Experimental Results

For lack of laser-scanned 3-D face databases, we used the photometric stereo
results of the PF07 Face Database [13] as a ground truth data. The PF07 Face
DB is a large database which contains the true-color face images of 200 people,
100 men and 100 women, representing 320 various images (5 pose variations ×
4 expression variations × 16 illumination variations) per person. Among the 16
illumination variations, 15 corresponds to various directional+ambient lights and
the last one corresponds to ambient light only. We have used our own variant
of photometric stereo to make 3-D models, and the detailed procedure is not
included in this paper due to space limitation.

In the experiments, the images with frontal poses of 185 subjects, who did
not wear glasses, in PF07 Face DB were used. All the images were transformed
by the affine transformation based on the eyes and mouth coordinates, and were
cropped to 100× 120 pixels. 100 subjects were used for training and 85 subjects
were used for test. The MATLAB implementation of the proposed algorithm
took 3.09 seconds on average for reconstruction, using Intel Pentium 4 3.0 GHz
PC. PCA basis vectors were selected from the eigenvectors with the largest
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Fig. 1. Reconstructed shapes using the proposed method under various light conditions
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Fig. 2. Reconstructed shapes (frontal light)
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eigenvalues to make up 95% of the total sum of eigenvalues. We calculated Pl

for 8 different rotations. We compared the proposed method with Tensor-based
CCA mapping [6], which is denoted as ‘CCA’. Performance was evaluated in
terms of mean absolute angle error Eangle and mean absolute depth error Edepth
of surface normal vectors,

Eangle =
1
n

∑
x,y

cos−1(
∣∣nr(x, y)T nt(x, y)

∣∣). (12)

Edepth =
1
n

∑
x,y

∣∣hr(x, y)− ht(x, y)
∣∣ , (13)

Here nr and hr are the ground truth surface normal vector and depth, and nt

and ht are the reconstructed surface normal vector and depth. These two error
measures are not necessarily proportional to each other.

Since the proposed method can handle illumination variation, its performance
has been tested under various light directions using the synthetic images based
on 3-D models. The detailed results are not included in this paper due to space
limitation. But the results shows that the proposed method exhibits good per-
formance evenly under various directional light conditions, giving Eangle in the
range of 10.1-12.7 degrees and Edepth of 3.1-4.4 voxels. CCA can be applied
only for the frontal light source, and in this case the proposed method performs
better than CCA in Eangle by 15 % (10.40 degrees for the proposed, and 11.99
degrees for CCA), but worse in Edepth by 10 % (3.08 voxels for the proposed,
and 2.78 voxels for CCA). This is because the proposed scheme is trained based
on the the scaled surface normal vectors while CCA is based on the depth data,
and error is introduced in the process of converting surface normal vectors to
depth map or vice versa. Figures 1 and 2 shows some examples of reconstructed
shapes.

4 Conclusion

We proposed an effective statistical SFS method that can be applied to a face im-
age with an unknown point light source. By using the disjoint property of scaled
surface normal vectors, the problem becomes a simple linear algebra problem.
The experimental results showed that the proposed algorithm can reconstruct
a facial shape quite accurately with low computational cost under various light
conditions. There are some issues left for future work: 1) The current version of
the algorithm needs several Pls to handle full range of light directions, requiring
large memory space, which is not preferable. A more simple and convenient rep-
resentation should be exploited. 2) A way to handle the pose variations should
be found.
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Locating Facial Features and Pose Estimation Using a  
3D Shape Model 

Angela Caunce, David Cristinacce, Chris Taylor, and Tim Cootes 

Imaging Science and Biomedical Engineering, The University of Manchester, UK 

Abstract. We present an automatic method for locating facial features and es-
timating head pose in 2D images and video using a 3D shape model and local 
view-based texture patches. After automatic initialization, the 3D pose and 
shape are refined iteratively to optimize the match between the appearance pre-
dicted by the model, and the image. The local texture patches are generated us-
ing the current 3D pose and shape, and the locations of model points are refined 
by neighbourhood search, using normalized cross-correlation to provide some 
robustness to illumination. A key aspect is the presentation of a large-scale 
quantitative evaluation, comparing the method to a well-established 2D ap-
proach. We show that the accuracy of feature location for the 3D system is 
comparable to that of the 2D system for near-frontal faces, but significantly bet-
ter for sequences which involve large rotations, obtaining estimates of pose to 
within 10º at headings of up to 70º. 

1   Introduction 

There are many potential applications which require the location of facial features in 
unseen images - from in-car safety to crime-prevention.  One of the major challenges 
stems from the fact that the pose of the head, relative to the camera, is often unknown.  
Although 2D statistical model-based approaches have proved quite successful, they 
do not deal well with large variations in pose, because the models lose specificity 
when significant pose variation is included in the training set [1].  Some authors [2, 3] 
have attempted to augment a 2D approach with a 3D shape model, and, in recent 
years, other authors have begun to experiment with fully 3D matching algorithms (see 
[4] for a review). 

We present our 3D matching approach and with it attempt to progress two areas. 
The first is to provide a comprehensive quantitative evaluation of performance in both 
feature detection and pose estimation.  The second is to show that the 3D approach 
performs as well as a well-developed 2D system on large datasets of near frontal 
images [5, 6], and surpasses it on large rotations.   

1.1   Comparison to Other Methods  

The first stage in any 3D modelling approach is building the model. In some work the 
3D model is generated from multiple 2D search results [3]. Some authors use an  
artificial head model [7] or prior knowledge of face deformation [2]. Others find  
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correspondences between 3D head scans [4, 8] or generate artificial examples [9]. We 
use manual markups as the basis for our model thus overcoming the correspondence 
problem. 

In early work, authors have used manual methods to show that a good initialisation 
leads to good pose estimation accuracy [10, 11]. Some authors therefore use auto-
mated means to not only locate the face beforehand, but also to make some estimate 
of the pose before searching begins [3, 9, 12, 13]. Also, integrating the search into a 
tracking strategy [3, 7, 13] enables systems to deal with the larger rotations without 
the need for complex initialisations on every image. In our experiments, we use a face 
detector [14] on images where an independent initialisation is required, and a tracking 
strategy on sequences. 

To compensate for illumination variation, some approaches use illumination mod-
els [11, 12]. We use normalised view-based local texture patches similar to Gu and 
Kanade [9], but continuously updated to reflect the current model pose. 

In summary, our approach uses a sparse 3D shape model [15] for pose invariance, 
and continuously updated view-based local patches for illumination compensation.  
On images with small rotations the system can locate the features well with a face 
detector and no specialized pose initialisation.  For larger rotations the system works 
best when integrated into a tracking strategy and we successfully tackle images at 
headings of up to 70º to within 10º accuracy. 

2   Shape Model 

We built a 3D statistical shape model [15] from 923 head meshes.  Each mesh was 
created from a manual markup of photographs of an individual.  The front and profile 
shots of each person were marked in detail and the two point sets were combined to 
produce a 3D representation for that subject (Figure 1 top). A generic mesh, with 
known correspondence to the 3D points, was warped [16] to fit the markup giving a 
mesh for each individual (Figure 1 bottom).  Since the same mesh was used in each 
case the vertices are automatically corresponded across the set. 

Any subset of vertices from this mesh can be used to build a sparse 3D shape 
model.  We used 238 points (Figure 1 right) which are close to features of interest 
such as eyes, nose, mouth, etc. 

Each example is represented as a single vector in which the 3D co-ordinates have 
been concatenated: 

 

1 1 1( , , , , , )T
n n nx x y y z zK K K                                      (1) 

 
Principle Component Analysis is applied to the point sets to generate a statistical 

shape model representation of the data.  A shape example xi can be represented by the 
mean shape x  plus a linear combination of the principle modes of the data concate-
nated into a matrix P: 

 

i ix = x + Pb                                                           (2) 
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where the coefficients bi are the model parameters for shape xi. We established that 
the model performance improved when the number of modes was restricted. The 
results here are quoted for a model with 33 columns in P which accounts for ap-
proximately 93% of the variation in the training data. None of the subjects used in 
training was present in any of the images or videos used in the experiments. 

 

 

3   View-Based Local Texture Patches 

The local patches are sampled from an average texture generated from 913 subjects.  
The individual examples are in the form of faces ‘unfolded’ from the meshes de-
scribed in Section 2.  Because all the vertices of the meshes have the same (UV) co-
ordinates into the texture, all the unwrapped examples correspond directly pixel for 
pixel and it is easy to obtain the mean (Figure 2).  Variation in the texture was not 
modelled for these experiments. 

In order to successfully match the 3D shape model to the face in a 2D image, a tex-
ture patch is required at each point for comparison to the image. This patch is always 
the same size and shape throughout the matching process (5x5 pixels) but changes 
content at every iteration. It is updated based on the surface normal of the point and the 
current orientation of the model, and represents the view of the texture at that point 
(Figure 3). It is assumed for this purpose that the head is a globe and the texture lies 
tangential to the surface at each point with its major (UV) axes aligned to the lines of 
latitude and longitude. Black pixels are substituted outside the texture. To reduce 
speed, only a subset of 155 points are considered in the search. Many of the points 
excluded are from around the outside of the face where there is less information. Fur-
ther, of the 155, only points which have surface normals currently facing forwards (less 
than 90 degrees to the view axis) are actually used to search at each iteration. 

 
 

Fig. 1. The front and profile markups are combined to create a 3D point set (top). Using 
known correspondences between the markup and a generic head mesh, an individual mesh can
be created for each subject (bottom). Only a subset of the mesh vertices are used to build the 
statistical shape model (right). 
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4   Locating the Features 

The model is initialised using the Viola-Jones (V-J) face detector [14]. The detector 
returns the location of a box, bounding the most likely location of a face in the image. 
The 3D shape model is placed within the box adopting its default (mean) shape and 
facing forwards (0° rotation). 

The view-based patches are normalized and compared to the image using an ex-
haustive neighbourhood search. This is done for several iterations at each of a series 
of resolutions of both the model and the target image. Beginning with the lowest, the 
search is completed at each resolution before moving on to the next, and the shape 
and pose parameters are inherited at each resolution from the previous one. As the 
resolution increases (x2 at each step) the neighbourhood is increased by 2 pixels in 
each direction, which gradually concentrates the search. 

The method begins at the lowest resolution and, at each point, a match value is cal-
culated for all surrounding pixels in a 9x9 neighbourhood using normalised correla-
tion. The best value gives the new target for each point. The targets are weighted in 
importance by the improvement in match value from the current position. Greater 
improvements are weighted more strongly. Once each point has a new 2D target loca-
tion the z-component is estimated as the current z co-ordinate of the point. This as-
sumes an orthogonal projection. Finally, the shape model is fitted in 3D to give a new  
 

Fig. 2. The texture patches are sampled from a mean texture (bottom) averaged over a set of 
faces ‘unwrapped’ from the head meshes. Some example faces are shown (top). 

Fig. 3. The local texture patches are generated based on the current pose of the model.  The UV 
axes of the texture are assumed to follow the lines of latitude and longitude of the head at 0º 
rotation (left). During matching the patches are a ‘window’ onto the texture oriented by the 
estimated pose of the head.  Only forward facing points, determined from the surface normal 
are used to search. 
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estimate of the shape and pose parameters. This is a 2 stage process extended from the 
2D case [15]. Firstly the points are rigidly aligned (rotation, scale, and translation) to 
minimise the sum of squared distances between matched points, then the shape model 
parameters (b in (2)) are updated using a least squares approximation. 

4.1   Search Summary  

• Initialise the model to the mean shape with 0º rotation using the V-J face detector. 
• At the lowest resolution of the model find the best matching image resolution. 
• At each model resolution and matching image resolution. 

o For a number of iterations. 
 For each forward point construct a patch based on the current model pose. 
 Search the neighbourhood around each point for the best match using nor-

malised correlation to get a target point position. 
 Estimate pose and shape parameters to fit to the target points. 

5   3D to 2D Comparison 

In order to test the efficacy of the 3D in 2D search, it was compared to an implemen-
tation of a well-developed 2D shape matching approach: the Constrained Local Model 
(CLM) [17].  The two search methods were applied to images from two large publicly 
available datasets, neither of which contain large variations in pose: 
 

• XM2VTS [6]: We used 2344 images of 295 individuals at 720x576 pixels. 
• BioID [5]: We used 1520 images of 23 individuals at 384x286 pixels. 

 
Both of these sets have manual markups but not the same features are located in each.  
Because of this, and the difference in model points from the 2D and the 3D model, 
only a small subset of 12 points was used for evaluation.  The points chosen are lo-
cated on the better defined features, common to all sets: the ends of the eyebrows 
(least well localised); the corners of the eyes (well localised); the corners of the mouth 
(well localised); and the top and bottom of the mouth (moderately well localised). 

Both the 2D and 3D systems are initialised using the Viola-Jones face detector.  We 
assessed the detector’s performance by comparing the box returned by the algorithm 
to the 12 points of interest in the manual markup.  If any points fell outside the box 
the detection was considered a failure.  It was found that the detector failed on 8% of 
the BioID data set.  These examples were excluded from the analysis, since both 
methods require initialisation in the location of the face. 

6   Comparison Results 

Figure 5 shows the cumulative distribution of the average point-to-point accuracy for 
the two methods and Table 1 provides a summary of these results.  Due to the wide 
variation in size of the faces in the images, particularly in the BioID data, the errors 
are presented as a percentage of the inter-ocular (between pupils) distance and those 
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in the table are the median of the average errors in each example.  Also shown are the 
numbers of poorly located results.  This is defined by a median average error of over 
15%. The table distinguishes between the average results over all 12 points and the 
results just for the eyes, which are an easy feature to localise when marking manually. 
From the Figure and Table it can be seen that the 3D model results are generally bet-
ter than those of the 2D CLM. Figure 8 shows some sample results for the 3D system.  

7   Pose Handling and Estimation 

The images in the data sets used in the experiments of section 5 are mainly near front 
facing. Although still challenging, it would not be expected that either system would 
dramatically outperform the other.  However the advantages of a 3D model search are 
more apparent when dealing with larger rotations, both in terms of performance and 
pose estimation.  To test this, a series of artificial images were generated with known 
poses. 

Using the full mesh statistical model of the head described in Section 2, and a tex-
ture model built from the unwrapped textures described in Section 3, 20 synthetic 
subjects were generated.  These were posed against a real in-car background to gener-
ate the artificial images.  Figure 4 shows some examples.  Feature marking was done 
automatically by extracting the 2D positions of selected mesh vertices. 

The heads were posed as follows (Figure 4): 
 

• Heading +/- (r/l) 90º in 10 degree intervals (right and left as viewed) 
• Pitch +/- (d/u) 60º in 10 degree intervals  
• Roll +/- (r/l) 90º  in 10 degree intervals 

 
For each rotation direction, the images were presented to the 2D and 3D systems as a 
sequence starting at zero each time.  To perform tracking, the 3D system uses its latest 
result, if successful, to initialise the next search.  Otherwise, the search is initialised as 
in section 4, using the V-J detector.  The success of a search, for this purpose, is 
measured in 2 ways: by the final scaling of the model with respect to the image size; 
and by the average matching value over all the texture patches.  The upper limits for 
both tests were fixed for all sequences. 

 Fig. 4. Some of the synthetic subjects (top). And the 48 poses (in addition to zero). 
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8   Pose Results 

Figure 5 shows the cumulative distribution of the point-to-point distances for the two 
methods on the artificial images. Table 1 summarises the results.  The point-to-point 
errors are presented as pixels (inter-ocular distance is approximately 100 pixels). The 
automatic markup process described in the previous section failed in 3 cases therefore 
the results are reported on 977 images. 

 

 

Fig. 5. The cumulative distribution of average point-to-point accuracy as % of inter-ocular 
distance for the real datasets (top), and as pixels for the artificial driver (bottom) 

It can be seen that the 3D system out performs the 2D system and has a much lower 
failure rate. The graphs of Figure 6 indicate, as might be expected, that this is related 
to the larger rotations.   

In addition to feature location the 3D model also provides an estimate of pose.  
Figure 7 shows the accuracy of the pose estimation at each rotation and Table 2 shows 
the ranges for which the median estimate lies within 10 degrees. 

The pose estimation is returned as a quaternion which represents an angle of rota-
tion about an axis and takes the form: 

 

( , , , ); cos ; ( , , ) sin ( ', ', ')
2 2

Q w x y z w x y z x y z
θ θ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

    (3) 

 

Where θ is the angle of rotation and (x’, y’, z’) is the axis. The graphs of Figure 7 
show two error values for the angle and the axis (angle from actual rotation axis). It 
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can be seen that at smaller rotations the axis error is larger than that at higher rota-
tions. This is due to the ambiguity in head pose close to zero. It is compensated for by 
the shape model in feature detection.  

 

 
Fig. 6. The median average pixel errors at each rotation for the 2D system (left) and the 3D 
system (right). Each graph shows the angle across the horizontal and the pixel error on the 
vertical. 

 

Fig. 7. The median angle errors for the pose estimation at each rotation. Each graph shows the 
rotation angle across the horizontal and the error, in degrees, on the vertical. 

Heading 
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2D 3D 

Heading Pitch

Roll 
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Table 2 indicates the ranges handled by each system where median average errors 
are within 15 pixels and median angle estimation is within 10º. Both systems handled 
all roll angles within these limits so these are not included. The 3D system has diffi-
culty estimating pitch at positive rotations above 30º. This is probably due to the dis-
appearance of the nostrils and mouth as the head rotates downwards.  In contrast these 
features can be seen in larger upward rotations. 

Figure 8 shows some sample search results from the artificial images for the 3D 
model. 

9   Tracking Video Sequences 

The 3D model was used to track features in 3 real-world in-car video sequences of 
2000 frames each. The camera is located behind the steering wheel and below the 
head, therefore the model was initialized with a 40 degree upward pitch. Tracking was 
performed as described in section 7. Every 10th frame was manually marked but, due 
to occlusion from the steering wheel, not all 200 frames were suitable for inclusion. 
Table 1 shows the number of frames used for each assessment and the median aver-
age % errors and failures (>15% error).  These sequences present difficult challenges 
because, as well as changing pose and expression, the illumination changes quite 
dramatically, and there are harsh shadows partially over the face at times. Figure 8 
shows some search results. The errors are comparable to those on the datasets of sec-
tion 5 although the failure rates are somewhat higher. 

Table 1. Median average point to point errors for all data sets, presented as % inter-ocular 
distance or pixels, as indicated. The values are shown for all 12 pts and for just the eyes. 

 All Eyes All Eyes 

Data Set Images Model Med. Av. Error % 
Fails (>15% Error) 
As % of set [No.] 

2D 6.44 5.03 4.56 [107] 3.58 [84] 
XM2VTS 2344 

3D 5.80 4.44 3.75 [88] 3.41 [80] 
2D 6.33 5.75 4.51 [63] 3.86 [54] 

BioID 1398 
3D 3.98 2.83 5.01 [70] 3.22 [45] 

Video 1 150 8.11 6.37 16.00 [24] 14.67 [22] 
Video 2 156 8.85 5.68 24.36 [38] 24.36 [38] 
Video 3 136 

3D 
5.57 4.45 14.71 [20] 13.97 [19] 

 
Med. Av. Error 

(Pixels) 
Fails (>15 pixels Error) 

As % of set [No.] 
2D 7.47 5.54 32.86 [321] 32.24 [315] Artificial 

Driver 
977 

3D 5.51 4.61 14.53 [142] 14.33 [140] 

Table 2. The ranges handled by each system to within the tolerance shown 

Point to Point Median 
Average Error 
<15 pixels 

Pose Estimation Median 
Error <10 degrees 

 

Heading Pitch Heading Pitch 
2D -30 to 40 -30 to 40   
3D -50 to 70 -50 to 60 -50 to 70 -50 to 30 
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Fig. 8. Some sample 3D search results from: XM2VTS (1st column); BioID (2nd column); Arti-
ficial images (4 top right); Video sequences (rest). The two images at top left illustrate the 
failure modes of the search which generally result from the mouth confused with a moustache 
or the nose. In some cases the ears are not well shaped. This is because only forward facing 
points are used in the search and therefore the backs of the ears are generally not used. The 
model deals well with occlusion, glasses, variable illumination, low contrast, and, in many 
cases, facial hair. 
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10   Discussion and Future Work 

On large datasets of near frontal images the 3D model has been shown to be compa-
rable to a well developed 2D shape matching method.  In addition, it has proved supe-
rior when handling large rotations and can provide an estimate of pose, critical for 
gaze dependant applications such as in-car safety. 

On the XM2VTS dataset we achieved a median feature detection error of less than 
6% inter-ocular distance with only 3.75% of examples falling outside a distance limit 
of 15%.  On artificial images, with known poses, the 3D search exhibited similarly 
low errors at up to 50º headings and handled rotations of up to 70º with <15 pixels 
median average error. The system was able to estimate the pose in these images to 
within a median of 10º for rotations up to 70º right (as viewed) and 50º up. 

Currently, the 3D system is initialised using a detector tuned to frontal faces and is 
instantiated in a frontal pose.  One of the key ways that this system may be improved 
is by developing a more versatile initialisation for unseen sequences, which may not 
conform to these assumptions. 
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Abstract. In surveillance applications, cameras are usually set up with wide
fields of view to capture as much of the scene as possible. This normally results in
low-resolution images of the objects of interest. Since most image analysis appli-
cations require high or medium resolution inputs, the development of approaches
aiming at improving the quality of these image regions has been an active re-
search area in the last few years. A new family of approaches, based on statistical
machine learning, aims at analyzing large data sets of images of a particular class
of objects and learning the mapping from low-quality to high-quality images of
that class. This enables them to infer, for example, the most likely high-resolution
face image depicting the same person as a low-resolution image given as input.
These super-resolution algorithms are time-consuming, due to the need for ex-
haustive search in a database of models. This work improves the efficiency of face
image super-resolution using stochastic search for local modeling. Experimental
results show that the proposed algorithm generates high-quality face images from
low-resolution inputs while reducing the computation time dramatically.

1 Introduction

In digital image analysis applications, high-resolution (HR) images are often required.
However, in surveillance systems, the regions of interest are often impoverished or
blurred due to the large distance between the camera and the objects, or the low spatial
resolution of the sensing devices. Figure 1 illustrates an image collected from a surveil-
lance video. In this image, people at a large distance appear very small and their faces
cover a small number of pixels, without enough detail to enable analysis by humans or
automated face recognition programs. In these type of applications, a way to enhance
these low-resolution (LR) images is needed.

Image super-resolution should provide an improvement in the perceived detail content
compared to that of the original images. This typically involves restoration of the high-
frequency content, which in turn requires an increase in pixel density. Furthermore, in the
process of capturing digital images, several problems can affect the quality of the sensed
images, such as CCD variations due to different responses of different cells to identical
light intensities, scattering due to the medium through which the light beams pass, motion
blur due to limited shutter speed, and quantization effects. Hence, the images obtained
from digital cameras are distorted. Thus, image super-resolution is closely related to im-
age restoration, which aims to enhance a degraded image without changing its size.

Existing methods for image super-resolution can be divided into two categories:
multiple-frame super-resolution and single-frame super-resolution. In multiple-frame

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 762–773, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Faces in surveillance images

super-resolution, the LR frames typically depict the same scene. This means that LR
frames are distorted as well as shifted with subpixel precision. If the LR frames contain
different subpixel shifts from each other, then the new information contained in each
LR frame can be used to construct an HR frame. Through motion analysis from frame
to frame, a super-resolution image can be inferred by combining these LR frames into
a single image [1].

Single-frame super-resolution aims to estimate missing high-resolution details from
a single input low-resolution image. The problems under this category can be generic
or object-specific. Generic image super-resolution techniques, such as interpolation,
band-pass filtering, and unsharp masking, can be applied on any images. However, they
commonly result in blurring of sharp edges, introduction of blocking artifacts, and an
inability to generate high frequency components or fine details of semantically impor-
tant structures [2,3,4,5].

Object-specific super-resolution assumes that only images of a certain type are input.
Most approaches to object-specific super-resolution are based on statistical machine
learning and work by analyzing large data sets of images of a particular class, for ex-
ample faces, and learning the mapping from low-resolution to high-resolution images
of that class. This enables them to infer, for example, the most likely high-resolution
image depicting the same object as a low-resolution image given as input. When applied
to face images, this process is known as face hallucination, first proposed by Baker and
Kanade [6,7], and has been an active research area at the intersection of computer vision
and computer graphics for the last decade [5,8,9,10,11,12,13,14].

We introduce a fast object-specific super-resolution approach. The approach com-
bines separate global and local modeling stages. Global modeling, which provides the
general structure of the face image, is done by eigentransformation [13,14], while local
modeling, which provides high frequency details, is performed using a novel stochastic
search algorithm that efficiently finds near-optimal local patches in a training set of face
images. Our experimental results show that our approach provides high-quality results
while significantly reducing running times relative to other state-of-the-art methods.

2 Related Work

Baker and Kanade [6,7] first developed a face hallucination method based on a prior
on the spatial distribution of the image gradient for frontal face images. It infers the
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high-frequency component from a parent structure by recognizing the local features
of the training set, and aims to recover extremely high-quality HR images of human
faces from LR images. For example, given a LR image of 12 × 16 pixels only, which
could barely be recognized as a face, face hallucination can synthesize an HR image of
96× 128 pixels.

A successful face super-resolution algorithm must meet the global constraints, which
means that the results must have common human characteristics, and the local con-
straints, which means that the results must have specific characteristics of a particular
face image [12]. To fulfill these two constraints, Liu et al. [10,12,11] introduce a two-
step statistical hybrid modeling approach that integrates both a global parametric model
and a local non-parametric model. The first step is to derive a global linear model to
learn the relationship between HR face images and the corresponding smoothed down-
sampled LR ones. The second step is to model the residue between an original HR
image and the reconstructed HR image by a non-parametric Markov network. Then by
integrating both global and local models, they generate the photo-realistic face images.

However the above methods use probabilistic models and are based on an explicit
resolution reduction function, which is sometimes difficult to acquire in practice [14].
Instead of using a probabilistic model, Wang et al. [14,13] propose a face hallucination
model using PCA to represent the structural similarity of face images. They render the
new hallucinated face image by mapping between the LR and HR training pairs of face
images. In the PCA representation, different frequency components are independent.
By selecting the number of eigenfaces, they extract the maximum amount of facial
information from the low-resolution face image and remove the noise.

Motivated by the fact that belief propagation converges quickly to a solution of the
Markov network, Freeman et al. [9,5] explore a simpler and faster one-pass algorithm,
which uses the same local relationship information as the Markov networks but requires
only a nearest-neighbor search in the training set for a vector derived from each patch of
local image data. Their algorithms are an instance of a general-training-based approach
that can be useful for image processing or graphics applications. It can be applied to
enlarge images, remove noise, and estimate 3D surface shapes.

3 Framework

As shown in Figure 2, the proposed method work consists of two steps. The first step
uses eigentransformation to infer global faces Ig

H , which we call global modeling. Prin-
cipal Component Analysis (PCA) is used to fit the input face images as a linear com-
bination of the LR face images in the training set. The HR images are then inferred

Fig. 2. Face hallucination framework
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by replacing the LR training images with HR ones, while retaining the same combina-
tion coefficients [14]. At the second step, high-frequency contents of the HR images,
I l
H , are captured by a patch-based one-pass algorithm, [9], which we call local mod-

eling. To improve the efficiency of searching the most compatible patch, we introduce
stochastic search into the one-pass algorithm, which is a probabilistic method that iter-
atively propagates the targets’ position using Bayes’ rule. Finally, the super-resolution
image, IH , is the sum of global face and local face, IH = Ig

H + I l
H . The details of these

algorithms are given in the next three sections.

4 Global Modeling

In global modeling we use an algorithm originally introduced by Wang [14], which is
called eigentransformation. The eigentransformation is a simple and powerful technique
for image enhancement based on principal component analysis (PCA). It assumes that
we have a training set of pairs of images 〈(L1, H1), . . . , (Ln, Hn)〉, where each pair
(Li, Hi) contains a low resolution face image Li and its corresponding high-resolution
counterpartHi. The eigentransformation allows to represent any image as a linear com-
bination of images in the training set. When given a low resolution image L, it finds the
vector of coefficients [c1, . . . , cn] so that

L = Σn
i=1ciLi + µL

where µL is the mean low-resolution face.
Given the vector [c1, . . . , cn], the approximate high resolution image H can be com-

puted by

H = Σn
i=1ciHi + µH

where µH is the mean high-resolution face image.
Because the coefficients are not computed from the HR training data, some non-

face-like distortion may be introduced. To reduce the distortion, we apply constraints
by bounding the projection onto each eigenvector by its corresponding eigenvalue, then
the synthesized face image is reconstructed from these constrained coefficients.

5 Local Modeling

Given a global face, to construct the corresponding local face, we first filter the global
face with a Gaussian high-pass filter, and then subdivide the filtered global face into
patches, which we call the low-frequency patches of the HR faces, by scanning a win-
dow across the image in raster-scan order. Similarly, we also filter and subdivide the
HR faces in the training set into patches which we call high-frequency patches of the
training HR faces.

To construct a local face, for each low-frequency patch, a high-frequency patch of
the training HR face is selected by a nearest neighbor search from the training set based
on local low-frequency details and adjacent, previously determined HR patches. The se-
lected high-frequency patch should not only come from a location in the training images
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that has a similar corresponding low-frequency appearance, but it should also match
at the edges of the patch with the overlapping pixels, which we call high-frequency
overlap, of its previously determined high-frequency neighbors to ensure that the high-
frequency patches are compatible with those of the neighboring high-frequency patches.

In this work we compute the local faces with an algorithm that is an extension of
the one-pass algorithm, proposed by Freeman et al. [9,5]. In the one pass algorithm, we
first concatenate the pixels in the low-frequency patch and the high-frequency overlap
to form a search vector. The training set also contains a set of such vectors. Then we
search for a match by finding the nearest neighbor in the training set. When we find
a match we extract the corresponding high-frequency patch from training data set and
add it to the initial global face to obtain the output image.

Mathematically, this process can be described as follows. Suppose we have a training
data set

{〈(x(i,j,k), y(i,j,k)), z(i,j,k)〉,

i = 1, 2, . . . , l; j = 1, 2, . . . ,m; k = 1, 2, . . . , n}

where x(i,j,k) is the low-frequency patch at the ith row and jth column of the kth

training HR face image, y(i,j,k) is the corresponding high-frequency overlap and z(i,j,k)

is the corresponding high-frequency patch of the training HR face image, l is the number
of rows of patches in a training image, m is the number of columns of patches in a
training image and n is the number of training images,

Given an input LR patch x, we need to find an HR patch z(i′,j′,k′) such that

(i′, j′, k′) = argmin(i,j,k)(d(x, x
(i,j,k)) + α ∗ (d(y(i,j,k), y

(i,j,k)
N )

where d(x, y) is the Euclidean distance between x and y, y(i,j,k)
N is the overlap of

z(i,j,k) with the adjacent, previously determined high-frequency patches z(i−1,j,k) and
z(i,j−1,k), α is a user-controlled weighting factor, and z(i′,j′,k′) is the selected high-
frequency patch.

6 Stochastic Search in Local Modeling

This work improves the efficiency of face image super-resolution using stochastic
search for local modeling by exploiting the fact that face patches maintain relatively
tight distributions for shape at successive iterations. For example, suppose we found the
best match at iteration t, which is a patch from a left eye taken from training image T ;
intuitively, there is a high probability that the best match at iteration t + 1 should also
belong to a left eye and come also from T , or from a training image that is similar to
T . Therefore the position of the most compatible high-frequency patch at iteration t, zt,
and its history Zt = z1, z2, . . . , zt−1 form a temporal Markov chain, so that the new
position is conditioned directly only on the immediately preceding state, independent
of its earlier history.

P (zt|zt) = P (zt|zt−1)
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Fig. 3. Local modeling with stochastic search

Therefore, based on zt−1, we could estimate the most likely positions of zt and we
just need to search these positions instead of the exhaustive search performed by the
conventional one-pass algorithm.

The key idea of the proposed algorithm is shown graphically in Figure 3, where we
show how a stochastic search is performed using candidate patches taken from locations
and images that are similar to the most recently found patch.

Let z(i,j,k)
t be the most compatible patch found at iteration t (for t = 0, an exhaustive

search needs to be performed). To find the best patch at iteration t + 1, we generate a
set of N candidate patch locations {(i′, j′, k′)1, ..., (i′, j′, k′)N} around location (i, j)
in images that are similar to image k.

Each location (i′, j′, k′)q will be randomly generated according to the following dis-
tributions: ⎧⎨⎩ i′ = i+ α

j′ = j + β
k′ = γ(A(k))

where α and β are normally distributed random variables, A(k) is a list of face images
that are similar to image k (which includes k itself) and γ(.) is a sampling function that
randomly selects face images from A(k) with a probability that is directly proportional
to their similarity with face image k. In a preprocessing stage, we build a directed graph
where every vertex contains a face image and there is an edge e(k, v) if vertices k and v
contain similar face images, according to a mean-squared distance metric, as illustrated
in Figure 4. Thus A(k) is the set of vertices that are adjacent to k in this graph.

After generating the N candidate patches, we select as the next patch the best match
within the generated point set and repeat the process again.

The proposed algorithm generates a set of N candidates around the point (i, j, k).
Suppose we have n images in our training data set and each image has k patches, for ex-
haustive search, the running time for constructing one local face isO(nk2); for stochas-
tic search, the running time is O(kn+ kN).
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Fig. 4. Similar faces are connected in a graph structure

7 Experimental Results

For experiments we use the BioID data set which consists of 1521 gray-level face im-
ages of 384× 288 pixels with a frontal view of 23 different people under a high variety
of lighting conditions, backgrounds and face sizes. As the variations of human faces,
such as glasses and beard, may greatly affect the performance of face hallucination in
global modeling, we construct class-based subsets that contain images of small varia-
tions as training dataset. In preprocessing we crop and normalize, and then register the
face images by 23 manually selected facial feature points (Figure 5), so that we can
assume that the same parts of faces appear in roughly the same parts of the images. The
face image size is fixed to 128 × 128 pixels and we use them as the training HR face
images. The training LR face images are down-sampled from the training HR face im-
ages by averaging the neighborhood pixels. In our experiments, the down-sample factor
is 8.

To construct our training dataset, we generate global faces from the training LR face
images and filter them with a Gaussian high-pass filter. Then we subdivide the filtered
global face images into low-frequency patches by scanning a 4×4 pixel window across
the image in raster-scan order. Then we again filter and subdivide the training HR face
images into 4×4 pixel high-frequency patches. At each step we also get a 9-bit overlap
of each high-frequency patch with the high-frequency patches above and to the left.
Then we create our training vectors by concatenating the low-frequency patches and
corresponding high-frequency overlaps. In practice, the size of low-frequency patches
and high-frequency patches is not necessarily the same. The parameter α, which con-

Fig. 5. 23 manually selected facial feature points
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Table 1. Quantitative evaluation

N MSE SSIM
300 37.2095 0.9319

500 30.1520 0.9387
1200 28.3502 0.9386

2000 29.6137 0.9396

exhaustive 31.2918 0.9403

Table 2. Computational time

Algorithm Image size Mean time
Stochastic 128 × 128 16s

Exhaustive 128 × 128 99s

(a) (b) (c) (d) (e) (f)

Fig. 6. (a) Original high-resolution face images. (b) Input low-resolution face images. (c) Gener-
ated super-resolution face images. (d) Results of bicubic interpolation. (e) Global faces. (f) Local
faces. This figure shows the super-resolution results of exhaustive search. Compared with the in-
put low-resolution images and the bicubic interpolation results, the super-resolution face images
have much clearer detailed features.

trols the trade-off between matching the low-frequency patches and finding the most
compatible high-frequency patches, is set to 0.2.

Figure 6 shows the face image super-resolution results of exhaustive search. The LR
inputs are 16 × 16 pixel face images. The super-resolution face images are 128× 128
pixel face images. Compared with the input images and the bicubic interpolation results,
the super-resolution face images have much clearer features.

Figure 7 to 10 show the examples of face image super-resolution results of stochastic
search. In Figure 7, the size of the randomly generated search set is 300, which is too
small, so that the quality of local face is low. In Figure 8, the size of the randomly
generated search set is 1200. In Figure 9, the size of the randomly generated search set
is 500. In Figure 10, the size of the randomly generated search set is 2000. The results
show that a larger generated search set provides a better-quality local face.
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(a) (b) (c) (d) (e) (f)

Fig. 7. (a) Original high-resolution face images. (b) Input low-resolution face images. (c) Gener-
ated super-resolution face images. (d) Results of bicubic interpolation. (e) Global faces. (f) Local
faces. This figure shows the results of super-resolution using stochastic search. The size of ran-
domly generated search set is set to 300. However, this is too small, so that the quality of local
face decreases.

(a) (b) (c) (d) (e) (f)

Fig. 8. (a) Original high-resolution face images. (b) Input low-resolution face images. (c) Gener-
ated super-resolution face images. (d) Results of bicubic interpolation. (e) Global faces. (f) Local
faces. In this figure, the size of randomly generated search set is set to 1200.

In Table 1, we report the Mean-Squared-Error (MSE) between the super-resolution
face images and the ground truth. Although the MSE is a physically meaningful metric
for signal reconstruction, it does not necessarily reflect perceived visual quality by hu-
mans [15]. Thus we also use the mean Structural Similarity (SSIM) Index, which aims
to primarily measure the structural changes between a reference image and its distorted
version [16]. These results confirmed the results observed from Figure 7 through 10
that generally a better-quality local face can be generated with a larger search set.

In Table 2 we report our computation time testing results. The time to synthesize a
local face of 128 × 128 pixels using the stochastic search, with a randomly generated
set of size 2000, is about 16s, while using the exhaustive search takes about 99s, on a
2.4 GHz PC in Matlab.
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(a) (b) (c) (d) (e) (f)

Fig. 9. (a) Original high-resolution face images. (b) Input low-resolution face images. (c) Gener-
ated super-resolution face images. (d) Results of bicubic interpolation. (e) Global faces. (f) Local
faces. In this figure the size of randomly generated search set is set to 500.

(a) (b) (c) (d) (e) (f)

Fig. 10. (a) Original high-resolution face images. (b) Input low-resolution face images. (c) Gener-
ated super-resolution face images. (d) Results of bicubic interpolation. (e) Global faces. (f) Local
faces. In this figure, the size of randomly generated search set is set to 2000. From Figure 7 to 10,
we can see that stochastic local modeling with a larger generated search set would have better
quality of local faces but take a longer time. Therefore, a tradeoff between quality and efficiency
need to be found.

From Table 1 and 2, and Figure 7 to 10, we can see that stochastic local modeling
with a larger generated search set generates better-quality local faces but takes a longer
time. Therefore, a tradeoff between quality and efficiency has to be considered.

8 Conclusions and Future Work

In this work, we presented a framework for face image super-resolution integrating
global modeling and local modeling. In global modeling, we infer the global face of
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the input LR face image with a linear combination of PCAs from the HR faces in the
training set. In local modeling, we use a stochastic patch-based one-pass algorithm to
infer the local face. The final super-resolution image is the sum of the global face and the
local face. The most computational intensive part of this approach is local modeling, the
computation time of which is proportional to the size of training dataset. We introduce
a stochastic local search into the one-pass algorithm that constraints the search space to
a fixed size and makes real-time super-resolution possible. If we have n images in our
training data set, each image has k patches, and the generated set contains N patches,
our method reduces the running time for constructing one local face from O(nk2) in
exhaustive search to O(kn + kN) in stochastic search. Experimental results show that
the difference in quality relative to exhaustive search is negligible.

For future work, we will extend this algorithm to generic object super-resolution,
for which we need a very large training dataset that contains a subset for each spe-
cific object. We are also interested in approaches to exploit super-resolution for object
recognition, both by computers and by people.

To further reduce the running time of the super-resolution algorithm, we will use
stream processing to parallelize the execution. Stream processing permits the execu-
tion of data-parallel algorithms with stream processors such as graphic processing units
(GPUs), while using the central processing unit (CPU) for other purposes simultane-
ously. This would enable a conventional PC to run the image super-resolution algorithm
in real time.
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Abstract. This paper introduces a framework for long-distance face recognition 
using both dense- and sparse-stereo reconstruction. Two methods to determine 
correspondences of the stereo pair are used in this paper: (a) dense global stereo-
matching using maximum-a-posteriori Markov Random Fields (MAP-MRF) al-
gorithms and (b) Active Appearance Model (AAM) fitting of both images of the 
stereo pair and using the fitted AAM mesh as the sparse correspondences. Expe-
riments are performed regarding the use of different features extracted from 
these vertices for face recognition. A comparison between the two approaches 
(a) and (b) are carried out in this paper. The cumulative rank curves (CMC), 
which are generated using the proposed framework, confirms the feasibility of 
the proposed work for long distance recognition of human faces. 

1   Introduction 

Automatic face recognition is a challenging task that has been an attractive research 
area in the past three decades (for more details see [1]). At the outset, most efforts 
were directed towards 2D facial recognition which utilizes the projection of the 3D 
human face onto the 2D image plane acquired by digital cameras. The face recogni-
tion problem is then formulated as follows: given a still image, identify or verify one 
or more persons in the scene using a stored database of face images. The main theme 
of the solutions provided by different researchers involves detecting one or more 
faces from the given image, followed by facial feature extraction which can be used 
for recognition. Challenges involving 2D face recognition are well-documented in the 
literature. Intra-subject variations such as illumination, expression, pose, makeup, and 
aging can severely affect a face recognition system.  

To address pose and illumination, researchers recently are focusing on 3D face 
recognition [2]. 3D face geometry can either be acquired using 3D sensing devices 
such as laser scanners [3] or reconstructed from one or more images [4-6]. Although 
3D sensing devices have been proven to be effective in 3D face recognition [7], their 
high cost, limited availability and controlled environment settings have created the 
need for methods that extract 3D information from acquired 2D face images. 

Recently, there has been interest in face recognition at-a-distance. Yao, et al. [8] 
created a face video database, acquired from long distances, high magnifications, and 
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both indoor and outdoor under uncontrolled surveillance conditions. Medioni, et al. 
[9] presented an approach to identify non-cooperative individuals at a distance by 
inferring 3D shape from a sequence of images.  

To realize our objectives and the current lack of existing facial stereo databases, we 
constructed our own passive stereo acquisition setup [10]. The setup consists of a 
stereo pair of high resolution cameras (and telephoto lenses) with adjustable baseline. 
It is designed such that user can remotely pan, tilt, zoom and focus the cameras to 
converge to the center of the cameras’ field of views on the subject’s nose tip. This 
system is used to capture stereo pairs of 30 subjects at various distances (3-, 15-, and 
33-meter ranges). 

The paper is organized as follows: Section 2 discusses stereo reconstruction me-
thods (dense and sparse), Section 3 shows the experimental results, Section 4 vali-
dates the best method in Sec. 3 using the FRGC database, and later sections deal with 
discussions and limitations of the proposed approaches, conclusions and future work. 

2   Stereo Matching-Based Reconstruction 

Dense, Global Stereo Matching: The objective of the classical stereo problem is to 
find the pair of corresponding points p and q that result from the projection of the same 
scene point (X, Y, Z) to the two images of the stereo-pair. Currently, the state-of-the-art 
in stereo matching is achieved by global optimization algorithms [11], where the prob-
lem is formulated as a maximum-a-posteriori Markov Random Field (MAP-MRF) 
scenario. Given the left and right images, the goal is to find the disparity map D, where 
at each pixel p, the disparity is . To correctly solve this problem, the con-
straints of the visual correspondence should be satisfied: (a) uniqueness, where each 
pixel in the left image corresponds to at most one pixel in the right image and (b) occlu-
sion, where some pixels do not have correspondences. To achieve these constraints, 
similar to Kolmogorov’s approach [12], we treat the two images symmetrically by com-
puting the disparity maps for both images simultaneously. The disparity map D is com-
puted by minimizing the energy function . The 
terms refer to the penalty, smoothness, and visibility constraint terms [13][14]. To fill 
the occluded regions, we propose to interpolate between the correctly reconstructed 
pixels of each scan line using the cubic splines [15] interpolation model. Finally, after 
getting a dense disparity map from which we get a set of correspondence points, we 
reconstruct the 3D points of the face [10]. To remove some artifacts of the reconstruc-
tion, an additional surface fitting step is done [16].  

 

Sparse-Stereo Reconstruction: The independent AAM version of [17] is used to 
find sparse correspondences of the left and right images of the stereo pair. The shape 
 can be expressed as the sum of a base shape  and a linear combination of  shape 

vectors , ∑ , where  are the shape parameters. Similarly, the appear-
ance  can be expressed as the sum of the base appearance  and a linear 
combination of basis images , ∑ , where the pixels  lie 
on the base mesh . Fitting the AAM to an input image involves minimizing the 
error image between the input image warped to the base mesh and the appearance ∑ , that is, ∑ ∑ ;  . For this 
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work, the error image is minimized using the project-out version of the inverse com-
positional image alignment (ICIA) algorithm [17].  

To facilitate a successful fitting process, the AAM mesh is initialized according to 
detected face landmarks (eyes, mouth center, and nose tip). After detecting these 
facial features, the AAM base mesh is warped to these points.  

The detection of facial features starts with identifying the possible facial regions in 
the input image, using a combination of the Viola-Jones detector [18] and the skin 
detector of [19]. The face is then divided into four equal parts to establish a geome-
trical constraint of the face. The face landmarks are then identified using variants of 
the Viola-Jones detector, i.e., the face detector is replaced with the corresponding face 
landmark (e.g., eye detector) detector [20]. False detections are then removed by 
taking into account the geometrical structure of the face (i.e., expected facial feature 
locations). 

3   Experimental Results 

The 3D acquisition system in [10] is used to build a human face database of 30 sub-
jects at different ranges in controlled environments. The database consists of a gallery 
at 3 meters and three different probe sets at the 3-, 15-, and 33-meter ranges. Table 1 
shows the system parameters at different ranges.  

Table 1. Stereo-based acquisition system parameters 

 
 
Dense, Global Stereo 3D Face Reconstructions: The gallery is constructed by cap-
turing stereo pairs for the 30 subjects at the 3-meter range. We reconstruct the 3D face 
of each subject using the approach that is described in Section 2. Fig. 1(a) illustrates a 
sample from this gallery for different subjects. This figure shows the left image of 
each subject and two different views for the 3D reconstruction with and without the 
textures.  

For the dense, global 3D reconstruction approach, only the images from the probe 
sets 3-meter and 15-meter ranges are considered. The reason behind this is that the 
methodology from Sec. 2.1 fails to determine acceptable correspondences of the ste-
reo-pair images of the 33-meter range, leading to unacceptable 3D reconstructions. 
This result has led the authors to propose the second method (sparse-stereo) to deal 
with stereo-pairs that are difficult to extract dense correspondences. Fig. 1(b) and 
1(c) illustrate the samples from these probe sets.  

 
Sparse-Stereo 3D Face Reconstructions: The gallery and probe sets are similar to 
above, except that the 33-meter images are now included in the probe set. The train-
ing of the AAM model involves images from the gallery. The vertices of the final  
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Moment-based Recognition: For the dense 3D reconstructions, to compare between 
gallery and probe sets, feature vectors are derived from moments [21] derived from 
the 3D vertex coordinates. The moments are computed as ∑ ∑ ∑ . 
 
Principal Component Analysis (PCA): To apply PCA [22] for feature classification, 
the primary step is to solve for the matrix P of principal components from a training 
database, using a number of matrix operations. The feature vectors Y can then be 
determined as follows: , where  is a centered input data. The similarity 
measure used for recognition is the L2 norm. 
 

Goodness-of-fit (Procrustes): The Procrustes distance [23] between two shapes is a 
least-squares type of metric that requires one-to-one correspondence between shapes. 
After some preprocessing steps involving the computation of centroids, rescaling each 
shape to have equal size and aligning with respect to translation and rotation, the 
squared Procrustes distance between two shapes  and  is the sum of squared point 
distances, 1 2 .  

 

Fig. 3. Cumulative match characteristic (CMC) curve of the: (a) 3-meter probe set, (b) 15-meter 
probe set, and (c) 33-meter probe set. Note that only the 3-m and 15-m probe sets use moment-
based recognition (see Fig. 3). 

Discussion of Results: Fig. 3 shows the cumulative rank curves (CMC) curves for the 
five types of feature extraction methods in the previous section (Sec. 3), using 3-, 15-, 
and 33-meter probes. We can draw four conclusions: (a) both 2D Procrustes (i.e., x-y 
projection of 3D-AAM) and 2D PCA outperform both 3D Procrustes and 3D PCA, 
(b) goodness-of-fit criterion (Procrustes) slightly outperforms PCA in both 2D and 
3D, (c) degradation of recognition at increased distances, and (d) the moment-based 
methods perform poorly at lower ranks but shoots up quickly to 100% at rank-5 and 
rank-8 for the 3-m and 15-m probe sets, respectively. 
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simulate errors introduced to the system, the fitted AAM vertices of the stereo pair are 
randomly perturbed with additive white Gaussian noise of a certain variance. Fig. 5 
shows the plot of rank-1 recognition rates versus point sigmas, for the 3-, 15-, and 33-
meter ranges. The recognition method used is the 2D Procrustes approach of Fig. 3. 
These findings reinforce the known fact that acceptable AAM fitting is necessary to 
get satisfactory correspondence, which leads to suitable recognition. 

 

Fig. 5. Sensitivity analysis of recognition with respect to errors in the AAM fitting of the stereo 
pair of images. Notice that the recognition rates are fairly stable across various values of σ for 
the 3- and 15-meter probe sets. However, for the 33-meter probe set, the recognition perfor-
mance severely deteriorates after 5.  

4   Validation with FRGC Database 

The main purpose of this section is to test if the 2D (x-y projection of 3D-AAM) 
Procrustes results of Fig. 5 carry over to the much larger FRGC database. Since the 
FRGC database contains close-to-perfect dense 3D information, the advantage of 2D 
Procrustes over its 3D equivalent would also be investigated. The section of the 
FRGC database [24] with range (3D) data is used. Each range is accompanied by a 
corresponding texture image. 115 subjects (with three images each, for a total of 345) 
were chosen out of the total number of subjects, the number being restricted by the 
manual annotation of AAM training data.  

Fig. 6 may provide some insights regarding the better performance of 2D Pro-
crustes over 3D Procrustes. Note that the 2D+3D (range, depth) partition of the 
FRGC database contains 2D video images with corresponding range values for each 
pixel. After the manual/automatic fitting of AAM vertices, the corresponding range 
(depth) value is extracted for each vertex. In Fig. 6, the red dots represent the ex-
tracted depth values using the 2D coordinates of the fitted vertices. Notice that some 
depth values are undesirable; they do not contain the intended depth of the facial 
feature points (e.g., nose area of Fig. 6(a) and face boundary of Fig. 6(b)). The 2D 
coordinates of the AAM vertices (except for the face boundary) are adjusted accord-
ing to the COSMOS framework [25]; specifically, the vertices are adjusted along a 
local neighborhood in the horizontal ( ) direction, according to some extremum val-
ues defined by [25]. The green dots represent the adjusted 3D vertices. The face 
boundaries are adjusted using ad-hoc methods that investigate the most acceptable 
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these few vertices, as opposed to the whole set of points of the human face (dense 
reconstruction). 

The authors are aware of more elaborate methods of 3D shape classification related 
to face recognition (even with the presence of face expression), such as [7]. However, 
for this application (of identifying faces at far distances), a close-to-perfect dense 3D 
scan of the face is difficult to obtain; therefore, this study currently deals with sparse 
3D points related to the AAM vertices. The next step of this work is to densify the 
AAM mesh to have a reconstruction that has a close semblance to a dense 3D scan 
but still contain lesser vertices than conventional 3D scans. This study does not cur-
rently consider face expression (since the 3D sparse reconstruction can only do so 
much) but will be considered as future work once the densification of the AAM ver-
tices is taken care of. Additionally, the authors plan to increase the database size (for 
better statistical significance) and capture images at further distances (with the help of 
state-of-the art equipment). 
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Abstract. We present a general vision-based method for reconstructing multiple 
unknown objects (e.g. humans) within a known environment (e.g. tables, racks, 
robots) which usually has occlusions. These occlusions have to be explicitly con-
sidered since parts of the unknown objects might be hidden in some or even all 
camera views. In order to avoid cluttered reconstructions, plausibility checks are 
used to eliminate reconstruction artifacts which actually do not contain any un-
known object. One application is a supervision/surveillance system for safe  
human/robot-coexistence and –cooperation. Experiments for a voxel-based im-
plementation are given. 

1   Introduction 

Geometrical information about objects is required in many applications. In several 
cases this information is known. For example, most industrial robots act in a geomet-
rically completely known environment. It is indispensable, to guarantee the correct-
ness of this information anytime, in order to avoid collisions. Therefore, fences and 
safety light barriers are set up to guarantee this correctness and to stop the robot in an 
unexpected situation. In other cases, the geometrical information is not known in 
advance. Thus, vision sensors can be used, to reconstruct this information. In the 
example, it would become possible, that a human can walk through the robots work-
space, since its geometrical information is reconstructed and included in the robot’s 
environment model, such that even in this case no collision occurs. 

The reconstruction of objects based on its silhouettes in multiple cameras is known 
as surface from silhouette or inferred visual hull ([12], [15]). Many volume-based 
([3], [11], [16]) and surface-based ([5], [13]) approaches have been investigated in the 
past. Most of them have the assumption that the object(s) to reconstruct resides within 
the common volume which is seen by all cameras. Furthermore, almost all approaches 
have the assumptions that the object(s) to reconstruct is not occluded by static obsta-
cles – like tables, racks or the robot itself in the example. It may result in an incom-
plete reconstruction of a human, since conventional background subtraction methods 
([4], [6]) are not able to generate the silhouette of the occluded parts of the human. 
Thus, it is necessary to explicitly consider these occlusions. 
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Fig. 1. Illustration of the visibility for a setup with one camera C1 (first row, a-d) and a setup 
with multiple cameras Ci (second row, e-h) using different approaches for treating occlusions 
(b-d and f-h) resulting from the known environment (a, c) 

Recently, two concepts to overcome these limitations have been investigated. First, 
occlusions can be modeled by occlusion masks Mi which are binary masks in image 
space marking regions where occlusions can occur. These marked regions are simply 
added to the segmented regions Si detected by the background subtraction method 
when calculating the inferred visual hull (Fig. 1 b, f). In [2] and [10] the concept of 
occlusion masks has been used for masking dynamic occluding objects (i.e. robots) in 
order to avoid future collisions with objects, while [7], [8] and [9] automatically gen-
erate these occlusion masks for static occluding objects by observing active objects in 
a scene. Unfortunately, using occlusion masks causes more occlusions in the recon-
struction than necessary since the volume between the camera and the occluding ob-
ject is interpreted as occlusion as well even though a background subtraction method 
could detect objects in front of this occluding object. Second, objects which reside 
outside the common observed volume can be correctly integrated in the inferred vis-
ual hull, if the complement of the fused back-projected free space is calculated [5]. In 
Fig. 1 c, g this concept is applied in conjunction with the previously described occlu-
sion masks. Note, the object residing outside the common observed volume is now 
included. But still the reconstruction contains unnecessary occlusions. 

Thus, we propose a new approach (Fig.1 d, h), for treating occlusions in a general 
and more accurate way by additionally utilizing the geometrical information of the 
known environment (Section 2). Both concepts described above are contained by our 
approach. Furthermore, the information about how far a pixel can see up to the first 
occluding object is included (M’i), resulting in more accurate reconstructions. In most 
cases, it results in cluttered reconstructions due to the occlusions. Therefore, we pro-
pose using plausibility checks, which revise reconstruction artifacts that do not con-
tain an object. Furthermore, a voxel-based algorithm of our approach is provided in 
Section 3. The memory consumption of look-up tables, which are used for optimiza-
tion purpose, is analyzed. Experimental results are discussed in Section 4. The paper 
concludes with Section 5. 
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2   Occlusions and Visibility 

This section comprises a theoretical look at the problem of occlusions and visibility in 
a multi-camera setup using plausibility checks to eliminate pseudo objects, i.e. recon-
struction artifacts which actually do not contain an object. 

In the first subsection, the types of objects that are contained by surveyed scenes 
are described. In the following subsection, visibility and occlusions for a single cam-
era are considered, taking the types of objects into account. Thereafter, the simultane-
ous use of several cameras with different perspectives onto the surveyed scene is 
described. The last subsection discusses how reconstruction artifacts can be revised, 
using plausibility checks. 

 

Fig. 2. Illustration of the visibility and the occlusions using color or grayscale cameras with 
common background subtraction methods. Nomenclature: Ci: Camera i; Fi: Free in camera i; S: 
Static known object; D: Dynamic known object; U: Unknown object; Oi

K: Known occlusion in 
i; Oi

U: Unknown occlusion in i; Bi
F: Free boundary in i; Bi

O: Occlusion boundary in i; Bi
U: 

Unknown boundary  in i. 

2.1   Object Types 

The surveyed scene contains static and dynamic objects. Static objects S are racks, 
tables etc. The geometry, position and the appearance of those objects are known and 
do not change over the time (apart from possibly occurring shadows and from illumi-
nation changes caused by the dynamic objects). Dynamic objects are robots, conveyor 
belts, humans etc. This group must be divided into two subgroups. The first subgroup 
contains known dynamic objects D, with changing geometry, position and the appear-
ance but in a known manner. The robots and conveyor belts pertain to this subgroup. 
The second subgroup contains dynamic objects U with unknown changing geometry, 
position and appearance, e.g. humans. In the majority of cases approximate informa-
tion about size, volume or similar can be provided. Note that static unknown objects 
do not exist. The free space F of a surveyed scene does not contain any known object 
but may contain unknown objects. Fig. 2 illustrates the introduced object types. In 
summary, the following three equations hold true: 

S ∪ D ∪ F = En, with En: Euclidian Space (1) 
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S ∩ D = S ∩ F = D ∩ F = ∅ and U ⊆ F (2) 

2.2   Single Camera 

A number of N calibrated cameras with focal points Ci ∈ En, i ∈ {1, …, N} and a 
frustum Li = {x ∈ En| x is projected via Ci onto the image plane of camera i}, are used 
to detect and finally reconstruct the unknown objects which reside in-between the 
known objects as accurate as possible. Here, we only consider color and grayscale 
cameras, but the approach can easily be extended to depth cameras. 

One fundamental characteristic of these vision sensors is that they can only see up 
to the surface of the nearest opaque object per viewing direction (e.g. pixel center 
direction). Thus, occlusions always occur at the rear side of an opaque object. More-
over, the visibility of these sensors is limited by the frustum Li. Outside this frustum, 
the sensor is not able to see anything. Thus, these parts can be interpreted as occlu-
sions as well. 

Now, the terms visibility and occlusions have to be introduced and detailed (Fig. 2). 
The visibility Vi of a camera i is the region of the free space F where a camera is able to 
detect unknown objects. The known occlusion OK

i of a camera i is the region of the free 
space F where a camera can not detect unknown objects due to occlusions caused by 
known objects. Thus, it can be stated that OK

i ∩ Vi = ∅ and OK
i ∪ Vi = F for each 

camera i. The unknown occlusion OU
i of a camera i is the region of the visible space Vi 

where an unknown object has to be assumed, due to the evaluation of a camera image 
by a background subtraction method. The free space seen by camera i Fi is defined by 
Fi = Vi\OU

i. It can be stated, that OK
i ∩ OU

i = OK
i ∩ Fi = OU

i ∩ Fi = ∅ and OK
i 

∪ OU
i ∪ Fi = F for each camera i. The concrete structures of the sets Vi, OK

i, OU
i 

depend directly on the used camera type with its detection capabilities. 
In order to describe our formalism for a specific camera type (here color-/grayscale 

cameras), we use the concepts of rays and segments in the Euclidean Space. A ray(S, 
E) and a segm(S, E) are point sets and are defined by 

},,|)({:),(ray 0
nEStSEtSES ER ∈∈−⋅+= +  (3) 

},   ,10|)({:),(segm nESttSEtSES ER ∈≤≤∧∈−⋅+=  (4) 

Furthermore, a distance function dist(P, Q), with P, Q ∈ En exists, since the Euclid-
ean Space is a metric space. Having the visibility and the occlusions, sets containing 
the most distant visible points and the nearest occluded points (per viewing direction) 
can be specified by 

)},(dist{max),(dist|{
),(ray

yCxCVxB i

xCVy

iii
F ii ∩∈
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Using color or grayscale cameras, conventional background subtraction methods can 
be utilized. These methods segment an image into foreground and background based 
on the known appearance and a current image of the surveyed scene. If an unknown 
object resides in the scene and is not occluded by the known environment, it is 
marked as foreground in the segmented image. But usually the dynamic known ob-
jects are also – if not occluded – identified as foreground in the segmented image. 
Thus, the detection of unknown objects in front of a dynamic known object is not 
possible. Since the change detection method is not able to decide whether the cone 
between the camera and the dynamic known object is free or contains unknown ob-
jects, it must be interpreted as known occlusion. Thus, the visibility is described by 

)))},(dist),(dist

),(ray),(ray(

),(ray(

),(segm|{

),(ray),(ray
zCyC

SxCDxC
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ii

xCDzxCSy
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As detailed above, the known occlusions are formulated by ii
K VFO \= . Since depth 

values are not available for unknown objects with this sensor type, unknown occlu-
sions start at the camera: 

}),(ray|{ ∅≠∩∩∈= iiii
U VUxCVxO  (9) 

2.3   Simultaneous Use of Several Cameras 

Using several cameras with different perspectives onto the surveyed scene, each cam-
era that is used provides a different occlusion and visibility situation, as discovered in 
the previous section that now has to be merged. 

For every camera i, a collection of sets can be provided describing the known and 

unknown occlusions as well as the surveyed free space by },,{ ii
U

i
K

i FOOQ = . 

The partitioning of the free space via the reconstruction step can be described by 

})1()0(,]1,0[::,

|...{ 1

yfxfAfAyx

QqqqAR iiN

=∧=→∃∈∀
∧∈∩∩==

 (10) 

In words, all different labeled regions of all cameras are intersected among each other. 
Furthermore, the resulting intersections are grouped into connected components. All 
these connected components are contained by R (Fig. 3 b). Again, it can be stated that 
∪A∈R A = F. 

Volumes in the free space of the surveyed scene which are actually seen as free (cf. 
Fi) by at least one camera are not further considered, since no unknown object can 
reside there. This results in (Fig. 3 c): 

}:},...,0{|{' ∅≠∧∉=∀∈= xFxNiRxR i  (11) 

To each set of R’ a tuple (o, u) can be assigned, containing the number of seen known 
occlusions and unknown occlusions (Fig. 3 c). 
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Fig. 3. Illustration of combining several camera views. (a) setup; (b) partitioning of the space; 
(c) Occluded parts with occlusion-tuples. 

2.4   Plausibility Checks 

In the majority of applications some information like size, volume, etc. about the 
unknown objects is available. Several sets of R’ actually cannot contain an unknown 
object. Thus, plausibility checks are used to eliminate those occlusions which do not 
contain unknown objects. The mentioned plausibility checks aim for a quasi-static 
consideration. Another kind of plausibility checks can utilize temporal considerations, 
like “an unknown object can not suddenly appear in and surrounded by free space”. 

Note plausibility checks can apply to the whole scene or only to a part of the scene. 
In the following, a couple of quasi-static plausibility checks are discussed. 

Minimum Volume: If only unknown objects like humans with a typical volume of 
0.075 m³ should be detected, one might set a maximum volume for occlusions to be 
eliminated to 0.05 m³. Thus, all connected sets of R’ obtained as described in the 
previous section with a volume smaller than 0.05 m³ can be safely removed. Only 
unknown objects with a specified minimum volume remain. 

Maximum Distance to Ground: Typically, objects do not hover but have contact with 
the ground. If this can be guaranteed, all connected sets of R’ with no contact to the 
ground S or D can be eliminated. More general, all objects with a distance larger than 
a specified maximum distance to the ground can be eliminated. Thus, setting the 
maximum distance to 1 m also a jumping human can be detected and is not removed 
by this plausibility check. 

Surveillance Zones: In most cases, only certain parts of the whole surveyed scene are 
actually interesting so that unknown objects outside this part can be eliminated. 

Occlusion parameter θ: If it can be guaranteed, that an unknown object can be com-
pletely occluded by the known environment in a maximum number of θ cameras, all 
regions where more than θ cameras see a known occlusion can be eliminated if no 
other region is connected to it with equal or less than θ cameras which see a known 
occlusion, since no unknown object can reside within this region. For more details 
about θ, see [10]. 

3   Reconstruction Algorithm 

In this section we provide a voxel-based reconstruction algorithm, which works on the 
surfaces of the objects and is capable to deal with occlusions. Regarding the camera 
model, we only assume a two-dimensional field of connected pixels, with their back 
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projected volumes also connected. Furthermore, the position and geometry of the 
pixels and the back projected volumes have to be known. Thus, we assume neither a 
pinhole camera model nor undistorted images. 

3.1   Surface Voxel Determination 

Given several calibrated cameras and images segmented into free, known and un-
known and a voxel space, surface voxels can be determined by the following algo-
rithm. Then the result is a voxel space with voxels marked according to the occlusions 
of all perspectives and a list containing all these voxels. At first, the needed functions 
are explained. 

The classification value (free, known or unknown) of a pixel P is provided by the 
function classification(P). Assuming that two adjacent pixels are separated by a pixel 
edge E, a list of voxels that are intersected by the back projection of this pixel edge E 
down to its visibility depth is provided by the function voxelList(E). The function 
neighborClassification(E) for a pixel edge E provides the value unknown, if one of 
the two pixels is classified as unknown. It provides known, if one pixel is classified as 
known and the other as free. In all other cases, it provides free. For each voxel, the 
pixels it projects to in all cameras are needed. For simplification, here we only use the 
center of the voxels with the consequence, that objects that are smaller than the half of 
the voxel diagonal may be reconstructed incorrectly. Thus, it is necessary to choose 
an appropriate small voxel size. (Another voxel-like but camera centric-representation 
called conexels [1] could be applied, which avoids this drawback). The pixel of the 
projection of the voxel center V into a camera image C is provided by the function 
projectVoxelCenter(V, C). The distance for a voxel center V to a camera C is provided 
by the function distance(V, C). Per pixel P, the visibility depth (distance to Bi

F) and 
the occlusion depth (distance to Bi

O) as described in Section 2.2 is provided by the 
functions visibleDepth(P) and occlusionDepth(P). The function markVoxelAn-
dAddToList(V, OK, OU) marks the voxel V in voxel space by the two counter variables 
OK, OU representing the number of known and unknown occlusions respectively, and 
adds it to a list containing all surface voxels. 

foreach camera C do 
  foreach silhouette pixel edge E do 
    foreach voxel V in voxelList(E) do 
      counter OU = 0, F = 0, OK = 0 
      if neighborClassification(E) == unknown 
        OU = 1 
      else if neighborClassification(E) == known 
        OK = 1 
      endif 
      foreach camera C’ != C do 
        pixel P = projectVoxelCenter(V, C’) 
        if classification(P) == known 
           or distance(V, C’) ≥ occlusionDepth(P) 
          OK++ 
        else if classification(P) == unknown 
           and distance(V, C’) ≤ visibleDepth(P) 
          OU++ 



 Multi-view Reconstruction of Unknown Objects within a Known Environment 791 

        else 
          F++ 
        endif 
      done 
      if F == 0 
        markVoxelAndAddToList(V, OK, OU) 
      endif 
    done 
  done 
done 

In summary, each camera provides lists of potential surface voxels due to the seg-
mentation. These voxels are sequentially tested in all other cameras. If no camera 
marks a voxel as free, it actually is a surface voxel. All actual surface voxels are 
stored in a list and marked in voxel space by the tuple (OK, OU). 

Since the surface is not necessarily closed at the known objects, one may use a 
constrained flood fill algorithm to close it. Furthermore, completely occluded regions 
exclusively caused by the static environment are not revealed by this algorithm but 
can be determined in an initialization step by testing each voxel for visibility against 
the static environment in all cameras. 

Having the surface voxels, partitions of related voxels, i.e. voxels with the same 
known and unknown occlusion counter can be built. Then, the sorted plausibility 
checks can be applied according to the costs and success probability. Dependent on 
the plausibility check additional information like volume of a partition, has to be 
calculated. 

Besides pixel discretization, the accuracy of the voxel based algorithm depends on 

the voxel size and can be described by 32/ ⋅±= ve , with v length of a voxel edge, 
while the quality of the reconstruction depends on the scene and camera positions, i.e. 
the visibility and the occlusions. 

3.2   Memory Consumption 

Some of the used functions can be implemented as look-up tables to enable fast calcu-
lations. In order to give a memory consumption estimation M of these look-up tables, 
the following variables are introduced: A voxel space with dimensions X, Y and Z is 
used and the resolution of N cameras is provided by W and H. 

The visibility depth and occlusion depth per pixel has a memory consumption for 
all images of: 

M1 = 2 · N · W · H (12) 

The memory consumption for the voxel lists per pixel edges and for all cameras can 
be estimated by: 

M2 ≤ N · [((H + W + 2)) · E  + ((W + 1) · (H − 1) + (W − 1) · (H + 1))  · G ],  
with G = X + Y + Z and E = Z · Y + Z · X,  X ≤ Y ≤ Z 

(13) 

Furthermore, the distances for each voxel to all cameras results in a memory con-
sumption of: 
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M3 = 2 · N · X · Y · Z (14) 

Thus, the overall memory consumption is bounded by M ≤ M1 + M2 + M3. As an ex-
ample the parameters are set to N = 4, W = 320, H = 240 and X = Y = Z = 100, with a 
typical camera placement and voxel-, pixel-addresses and floating point variables of 4 
bytes, results in an upper bound of M ≤ 907 MB and actually of 411 MB. 

4   Experiments 

In order to evaluate our methods and algorithms, we set up a test environment (Fig. 4 
a), with five color cameras mounted around the scene to survey. It is available in a 
virtual simulation environment, too (Fig 4. b). 

 

Fig. 4. Our test environment (a), the simulated one (b) and four frames of the experiment (c-f) 

4.1   Hardware and Software Configuration 

The computer contains an Intel Core™2 Quad CPU, with 2.6 GHz, 6 MB Cache and 4 
GB RAM, but currently only one core of the CPU is utilized by our implementation. 
The graphics card is an NVIDIA GeForce 9600 GT with 512 MB and it is CUDA 
enabled. The operating system is a SUSE 11.0, with the gcc/g++ compiler suite version 
4.3.1. The cubical volume of the test environment is 76 cm × 76 cm × 76 cm. Five 
Unibrain FireWire Fire-i™ Digital Board Cameras with 15 and 30 fps and a resolution 
of 640x480 Bayer Pattern are used. The calibration results, obtained by [14] for the 
images with a resolution of 640x480 have a low 3D position projection error (mean 
deviation < 1.6 pixels and standard deviation < 1 pixel). 

The following performance tests for the reconstruction uses the virtual test envi-
ronment, based on the real test environment providing a virtual object (here: sphere 
with a radius of 6 cm) and its segmented camera images. Additionally, a surveillance 
zone and a static object are included (Fig 4. b). 

4.2   Performance Tests 

The unknown object in the virtual test environment is moved on a circular path 
around and through the static known object in the middle of the scene. The virtual 
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object is projected into all camera images simulating a conventional background sub-
traction. The segmented images are used to reconstruct the unknown object within the 
predefined surveillance zone and in consideration of the occlusions. Two cycles of 
this movement with a total of 1200 frames have been recorded. Fig. 4 c-f illustrates 
four interesting frames of the recorded sequence. The white dots represent voxels 
which have been tested for being surface voxels. The resulting surface voxels are 
shown containing the visibility tuples. 

Dependent on the position of the unknown object, different numbers of pixels and 
voxels are marked and thus, different computation times are needed. The diagram in 
Fig. 5 shows the computation time for reconstructing the unknown object. Further it 
shows the number of tested voxels and the number of voxels that actually lie on the 
surface. Obviously, the calculation time corresponds to the number of potential sur-
face voxels which have to be tested for each camera. Furthermore, the number of 
actual surface voxels must always be smaller or equal to the number of potential sur-
face voxels. The calculation time is high, if the unknown object is seen by all cam-
eras, such that many potential voxels have to be tested (frame# 250). Although the 
unknown object may be outside the surveillance zone, potential surface voxels have to 
be tested because of the absent depth information of this unknown object. Only the 
number of actual surface voxels is zero (frame# 450). In Fig 4. d the lower part of the 
sphere is only seen by the rightmost camera. Thus, the complete cone of potential 
surface voxels within the surveillance zone caused by that camera actually results in 
surface voxels. In this case, the ratio between actual surface voxels and potential sur-
face voxels is relatively high. 

 

Fig. 5. Diagram of the computation times (gray area) for reconstructing the sphere using five 
cameras with a resolution of 320x240 and a voxel space of 152x152x138 voxels. Additionally, 
the number of tested voxels is described by the upper curve and the voxels that actually lie on 
the surface are described by the lower curve. 

Table 2. summarizes the measured computation times by comparing the average 
values of different configuration pairs. A and B use a camera resolution of 320x240, a 
voxel space resolution of 152x152x138 and two different number of cameras – 3 and 
5. C and D use four cameras, a voxel space of 152x152x138 and two different camera 
resolutions – 160x120 and 320x240. E and F use four cameras, a camera resolution of 
320x240 and two different voxel space resolutions of 76x76x69 and 152x152x138. 

The quintessence of this table is that although multiplying the number of pixels or 
voxels by a factor, the average time increases slower. This behavior is due to the con-
sideration of surfaces and silhouettes instead of volumes and areas, respectively. 
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Table 2. Comparison of different configuration pairs for reconstructing the sphere 

5   Conclusions 

For the first time, a general and consistent formalism for describing the visibility and 
occlusions within a camera surveyed scene with a known environment is provided. To 
do so, objects are classified as known/unknown and static/dynamic. A voxel-based 
algorithm constructing the visual hull, which works on surfaces using grayscale/color 
cameras in combination with a conventional background subtraction method, has been 
presented. The experimental results show that the computation time for the reconstruc-
tion step depends mainly on the number of tested surface voxels. Additionally, the 
measurements show that the computation time increases slower than the camera reso-
lution and voxel space resolution, due to the surface and silhouette consideration. 

In the future, the plausibility checks especially the temporal ones will be considered 
more intensively, since these promises a valuable enhancement in the reconstruction of 
unknown objects. The plausibility checks will be integrated into the voxel-based algo-
rithm. Furthermore, the presented algorithm can be parallelized, such that potential 
surface voxels are tested simultaneously. For this, NVIDIAs CUDA seems to be 
suited. In addition, non-voxel-based approaches will be investigated. 
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Abstract. Estimating the disparity field between two stereo images is a

common task in computer vision, e.g., to determine a dense depth map.

Variational methods currently are among the most accurate techniques

for dense disparity map reconstruction. In this paper a multi-level adap-

tive technique is combined with a multigrid approach that allows the

variational method to achieve real-time performance (on a CPU). The

multi-level adaptive technique refines the grid only at peculiarities in the

solution. Thereby it reduces the computational effort and ensures that

the reconstruction quality is kept almost the same. Further, we introduce

a technique that adapts the regularizer, used in the variational approach,

dependend on the the current state of the optimization. This improves

the reconstruction quality. Our real-time approach is evaluated on stan-

dard datasets and it is shown to perform better than other real-time

disparity estimation approaches.

1 Introduction

A classical correspondence problem in computer vision is the estimation of a
disparity field between a stereo image pair. During disparity estimation, for
each pixel in one image the corresponding pixel in the other image is sought,
so that the corresponding pixels are the projections of the same 3D position.
Afterwards, if the camera calibration is known, a depth map can be calculated
from the disparity field. If a standard stereo setup is used, the corresponding
pixels are constrained to lie on the same row. Thus, the search range for the
disparity is 1-dimensional.

Estimation of a 1D disparity field is related to the estimation of a 2D dis-
placement field. A displacement field of corresponding pixels arises, e.g, between
consecutive frames in an image sequences. Such a displacement field, represented
as a vector field, is called optic flow. Variational methods allow to compute a
precise and dense estimation of an optic flow field. Moreover, the research by
Mémin and Pérez [1] and Brox et al. [2] has proven the variational methods to be
among the best techniques for optic flow reconstruction. These techniques mini-
mize an energy functional by solving the corresponing Euler-Lagrange equation.
Numerically, the Euler-Lagrange equation is represented as a system of differen-
tial equations with finite differences. To optimize the energy functional, iterative
solvers, like the Jacobi and Gauss-Seidel methods, are used. The speed of con-
vergence of these methods is quite slow. As a result, processing a single image
pair takes several minutes or even up to half an hour on todays CPUs.

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 796–807, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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As a remedy against this slow convergence, multigrid methods were devel-
oped [3], which allow to overcome the rigidity of the single grid approach by
using multiple discretization levels. With a single fixed sampling grid, multiple
solution components that have different scales may produce conflicting solutions
and, thereby, cause slower convergence. For example, the smooth components,
which are effectively approximated on coarse grids but slowly converge on fine
grids, are often in conflict with high-frequency components, which should be
taken into account only on fine grids.

In 1961, Fedorenko [4] formulated the multigrid algorithm for a standard 5-
point discretization of the Poisson equation, which allowed to gain a numerical
solution in O(N) arithmetical operations (where N is the number of grid nodes).
During the 1980s, Brandt [5], Stuben and Trottenberg [6], and Hackbush [7] made
important contributions by transfering the multigrid ideas to the area of non-
linear problems, by introducing multi-level adaptation techniques (MLAT), and
by developing the full multigrid (FMG) method. In 2006, Bruhn et al. [8] have
demonstrated a real-time variational solver for optic flow reconstruction with
discontinuity-preserving techniques. The solver uses a coarse-to-fine strategy in
combination with a full approximation scheme (FAS).

Because the first-order Taylor expansion to linearize the energy functional is
only valid for small disparities, for large disparities, multigrid methods are often
combined with so-called warping steps. With warping steps [9,2] the original
problem is compensated by the already computed solution from all coarser levels
before the remaining residual is minimized on the finer level. In this paper, we use
linear interpolation to linearize the energy functional. This approach can handle
large displacements directly and was shown to be faster and more accurate [10].

In this paper a current variational approach with multigrids is extended by a
MLAT in combination with a FAS. In contrast to the current multigrid meth-
ods, a grid adaptation technique refines the sampling grid not for the whole
image, but locally in regions where interesting structures are located [11]. A
similar adaptive mesh algorithm, which is based on a Galerkin finite element
method on a triangular mesh for object flow computation [12], is difficult to use
with the FAS. It will be shown that with multigrids in combination with the
MLAT, heterogeneous adaptive structures can be used with a variational solver
for real-time disparity estimation. Thereby, the MLAT allows to quickly perform
local and precise adjustment. Furthermore, improved reconstruction quality is
achieved by adapting the applied regularizer locally during optimization. A com-
parison on standard data sets with other real-time disparity estimators shows
that our real-time variational approach outperforms the current state-of-the-art.

The paper is organized as follows. The next section gives an introduction
to disparity estimation with variational methods. In Section 3 first state-of-
the-art multigrid techniques are described and afterwards a different multigrid
techniques to improve computation time is suggested. This technique is base on
what we call null-cycles (O-cycles). Section 4 describes our multi-level adaptive
technique for variational solvers. In Section 6 the approach is evaluated and the
paper ends with a conclusion.
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2 Variational Methods

Let us suppose that we are given a stereo image pair. Each scalar-valued image
I(x, y) is stored in a pixel matrix and (x, y)� is the coordinate of the pixel within
the rectangular image domain Ω. Having two images of a stereo pair I1(x, y)
and I2(x, y), we try to estimate the position to which every pixel from the first
image has moved in the second image. In order to do that, we have to assume
that certain image features are still the same in both images. Such features may
include the grey value, higher image derivatives (such as the gradient or the
Hessian), or scalar-valued expressions (such as the norm of the gradient, the
Laplacian, or the determinant of the Hessian) [13]. For simplicity, we will only
consider grey value constancy assumption in the remainder of this paper.

If (x, y)� is the coordinate of a pixel in the first image and u(x, y) is the
disparity, then (x + u(x, y), y)� is the new position of the pixel in the second
image. By formulating the problem like that, we can state that the computation
of the disparity field is actually the computation of the vector field (u(x, y), 0)�.
Now we can write the grey value constancy assumption:

I1(x, y)− I2(x + u(x, y), y) = 0 . (1)

As we are working with continuous real-world data, which is not discrete like the
pixel locations in the pixel matrices, the disparities are not necessarily integer
values. To perform the linearization, we use a linear interpolation technique [14].
We express the disparity u(x, y) as the sum of two components: integer A(x, y)
and floating point b(x, y), such that:

u(x, y) = A(x, y) + b(x, y), with |b(x, y)| < 1 . (2)

The linearized form of Eq. (1) is given by:

I1(x, y)− |b(x, y)| · I2(x+A(x, y), y) − (3)
(1− |b(x, y)|) · I2 (x+A(x, y) + sign(b(x, y)), y) = 0

We construct an energy functional, that consists of two terms: a data term that
imposes constancy on the grey values, and a smoothness term that regularizes the
often non-unique (local) solution of the data term by an additional smoothness
assumption.

2.1 Data Term

Due to possible occlusions or unpredictable reflection properties of the object’s
surfaces, the equality from Eq. (1) can usually not be satisfied perfectly in reality.
However, we can fulfill the demand: ‖I1(x, y)− I2(x+ u(x, y), y)‖2 → min. The
energy functional E(u(x, y)), based on the grey value constancy assumptions,
can be written as:

E(u(x, y)) =
∫∫

Ω

‖I1(x, y)− I2(x+ u(x, y), y)‖2 dS . (4)
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2.2 Smoothness Term

The smoothness term is derived from the assumption that the neighboring re-
gions belong to the same object and thus these regions have similar disparity.
The main role of the smoothness term is the redistribution of the computed
information and the elimination of local disparity outliers. In case that reliable
information from the data term is not available, the smoothness term helps to
fill the problematic region with disparities calculated from neighboring regions.

In this paper, we use 3 different regularizers: Tichonovm, Charbonnier, and
Perona-Malik regularization. Tichonov regularization assumes overall smooth-
ness and does not adapt to semantically important image or flow structures
(Horn and Schunck [15]). Charbonnier’s and Perona-Malik’s flow-driven regu-
larization assumes piecewise smoothness and respects discontinuities in the flow
field (see, e.g., [16,17,18,19]). For all three regularizers, the smoothness term in
general form is given by

Ψ(|∇u(x, y)|2) . (5)

Thus, we can rewrite the energy functional (4) as follows:

E(u(x, y)) =
∫∫

Ω

‖I1(x, y)− I2(x+ u(x, y), y)‖2 + ϕ · Ψ(|∇u(x, y)|2) dS, (6)

where ϕ is a weighting factor for the smoothness term. In case of the Tichonov
regularizer the smoothness term is given by

Ψ(s2) = s2 , (7)

for the Charbonnier regularizer by

Ψ(s2) = 2λ2

√
1 +

s2

λ2 − 2λ2 , (8)

and for the Perona-Malik regularizer by

Ψ(s2) = λ2ln(λ2 + s2)− λ2ln(λ2) . (9)

2.3 Euler-Lagrange Equation

The goal of the variational method is to find a function u(x, y), which mini-
mizes the energy functional E(u(x, y)). In other words, having constructed the
energy functional, we should minimize it in order to find the best solution for
the disparity field. Moreover, if the constructed functional is strictly convex, it
will have a unique solution that minimizes it.

The Euler-Lagrange equation is an equation satisfied by the unknown func-
tion u(x, y) that minimizes the functional E(u(x, y)) =

∫∫
Ω F (x, y, u, ux, uy) dS,

where ux = ∂u
∂x , uy = ∂u

∂y and F is a given function which has continuous first
order partial derivatives. The Euler-Lagrange equation then is the partial differ-
ential equation:

Fu −
∂

∂x
Fux −

∂

∂y
Fuy = 0 . (10)
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For the energy functional (6) the Euler-Lagrange equation for each pixel (x, y)�

is given by

I2x(x+ u, y)(I1(x, y)− I2(x+ u, y)) + ϕ · div(Ψ ′(|∇u|2) · ∇u) = 0 . (11)

In order to minimize our energy functional, we solve the resulting system of dif-
ferential equations with homogeneous Neumann boundary conditions [20]. This
step is done via discrete numerical schemes. The Euler-Lagrange equations are
discretized, linearized with the Eq. (3), and approximated via finite-differences
schemes. In the end, we arrive at a linear (in case of Tichonov regularizer)
or non-linear (in case of Charbonnier or Perona-Malik regularizers) system of
equations.

3 Multigrid

In general, large equation systems arising from finite difference approximations
of elliptic boundary problems are solved with iterations methods, like the Jacobi
or Gauss-Seidel method [21,22].

However, such methods converge very slowly for equation systems that are
only coupled via a small local neighborhood because numerous iterations are
needed to exchange data between unknowns that are coupled indirectly. This
leads to efficient computation of high-frequency components, while the lower-
frequency components remain almost unchanged. Multigrid methods effectively
handle this problem by starting from a fine grid but then perform correction
steps that compute the error on a coarser grid and propagate this information
back to the finer grid. Thus, lower frequency components of the error reappear
as higher ones on the coarser grid and allow an efficient attenuation with basic
iterative methods.

To employ this multigrid approach to non-linear problems, the Full Approxi-
mation Scheme (FAS) is used. For completeness, in the next subsection a short
introduction to the FAS is given.

3.1 Full Approximation Scheme (FAS)

In the following equations the indices H and h indicate entities from a coarser
grid and a finer grid, respectively. For the sake of clarity, let us reformulate
Eq. (11) as

Lh uh = −fh . (12)

Here Lh is a non-linear operator and fh stands for the right hand side, which
in our particular case is equal to zero. Let ui

h denotes the approximate solution
after i iterations. Then the error is given by

ei
h = uh − ui

h . (13)

Substituting uh in equation (12) with uh from Eq. (13), we obtain

Lh(ui
h + ei

h) = −fh . (14)
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Now we substract Lhu
i
h from the left and right parts of the Eq. (14):

Lh(ui
h + ei

h)− Lhu
i
h = −fh − Lhu

i
h . (15)

Then we restrict the solution to the coarser grid. Here we have to introduce two
operators Ih

H and IH
h . Let IH

h denote the restriction operator from a fine grid h
to a coarse grid H and Ih

H the interpolation operator from a coarse grid H to a
fine grid h. For the coarser grid we get:

LH(IH
h ui

h + ei
H)− LHI

H
h ui

h = −IH
h fh − IH

h Lhu
i
h . (16)

If we denote
fH = IH

h fh + IH
h Lhu

i
h − LHI

H
h ui

h , (17)

then we can rewrite Eq. (16) in a short form: LH(IH
h ui

h + ei
H) = −fH (note the

similarity with Eq. (12)). Let ui
H denote the new approximation of the solution on

the coarse grid with ui
H = IH

h ui
h + ẽH , where ẽH is the new error approximation

after i iterations. From that follows:

ẽH = ui
H − IH

h ui
h . (18)

Now we interpolate the error to the finer grid ẽh = Ih
H ẽH and after that correct

the solution on the finer grid: ũh = ui
h+ẽh. The steps of the FAS are summarized

in Fig. 1. Note that only the error and the residual are transfered to the finer
grid, but not the solution, since only the error and the residual are smooth
functions.

ui
h ← Solve(Lhuh = −fh)

ui
h ← Solve(Lhũh = −fh)

ũh = ui
h + ẽh

ui
H ← Solve(LH uH = −fH) coarser grid

ẽh = Ih
H ẽH

ẽH = ui
H − IH

h ui
h

fH = IH
h fh + IH

h Lhui
h − LHIH

h ui
h

finer grid

Fig. 1. The steps of the full approximation scheme

3.2 V-Cycle and W-Cycle

The main idea of the multigrid method is that on a coarse grid we are not obliged
to solve LH uH = −fH precisely. It is enough to perform a few iterations and
achieve an approximate solution ui

H . On each multigrid level, only a few iter-
ations must be performed to compute the high-frequency components, because
the lower-frequency components can be more efficiently computed on the coarser
grids. Therefore, in order to increase the computational efficiency, two types of
grid cycle are commonly used: V- and W-cycles. While the V-cycles make one
recursive call of a two-grid cycle per level, the more reliable W-cycles perform
two. The cycles are applied in a hierarchical way as depicted in Fig. 2.
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W-cyclesV-cycles
h

H

2H

4H

Fig. 2. V-cycles and W-cycles with two, tree and four levels

3.3 Full Multigrid (FMG)

It is possible to significantly improve the convergence of the multigrid methods
to the correct solution by applying the full multigrid method (FMG), also known
as method of nested iterations. In contrast to the simple multigrid approach, the
FMG approach starts from a coarse grid and not from a fine grid. The schematic
view of the FMG method with W-cycles is shown in Fig. 3. The full multigrid
method combines the solution from coarser grids as initial approximations and
than applies V- and W-cycles for calculating the solution at finer grids. Details
about the FMG can be found in [5,6].

h

H

2H

4H

O-cyclesFMG: W-cycles

Fig. 3. Left:Full Multigrid (FMG) implementation with W-cycles per resolution level,

Right: O-cycles. Refinement steps are marked with red color. Each W- and O-cycle is

marked with a blue color.

3.4 O-Cycle

The FMG method assumes that the information from a finer grid is necessary
to guide the solver on the coarser grid to the correct solution. This comes at
the cost of additional V- and W-cycles. In our experiments we found that these
additional V- and W-cycles are redundant for most input images and a similar
reconstruction quality can be obtain with less computational effort, which is
desirable for real-time applications. To achieve a similar reconstruction quality
compared to FMG constructed with V- or W-cycles, we introduce a new ap-
proach, based on what we call O-cycle (or null-cycle). The idea is to perform
significantly more iterations on the coarse grids, which have a low computational
cost since the image resolution is smaller, and thereby increase the likelihood of
convergence on the coarse grid. Once convergence on a coarse grid is obtained,
the algorithm processes the next finer grid and never returns to the coarser one.
As illustrated in Fig. 3, the iteration number m now is dependend on the current
multigrid level. In particular, we have obtained good results for m = m1 · (np),
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where p = {1, 2} and n ∈ [1, N ] with n = 1 for the finest grid and n = N for the
coarsest grid. The user parameter m1 defines the number of iterations on the
finest grid.

4 Multi-Level Adaptive Technique (MLAT)

In this section, a multi-level adaptive technique is described that reduces the
computational effort of the variational solver and at the same time retains a
high reconstruction quality. From a coarser to a finer grid, we usually only need
to refine the reconstruction at some regions of interest in the image. This means
that with a static grid we waste resources on grid nodes that do not improve the
resulting solution. Therefore, we employ a non-static grid structure.

The whole process starts on the coarsest grid. After finding a solution on
the coarsest grid using FAS and O-cycles, we use this solution to identify the
grid nodes that need refinement. Therefore, we evaluate the residual error of
the energy functional in Eq. (4) as well as the spatial gradient of the solution.
These two criteria are used to detect peculiarities of the solution. If either the
residual E(u(x, y)) > εE or the spatial gradient ||∇u(x, y)||2 > ε∇, the grid cell
is refined. Thereby, the thresholds εE and ε∇ are user-defined parameters.

As shown in Fig. 4, the number of nodes is always upsampled by to factor
of 2 when going from a coarser to a finer grid. Thereby, the area covered by a
finer grid cell, can only be a part of the area covered with a coarser grid cell.
For example, let us assume that the red arrow in Fig. 4 marks a local image
peculiarity. Then the algorithm will employ finer grids at this location.

Fig. 4. Irregular grids: left: nodes concentration near to the local image peculiarity;

right: structure of two grid levels Gh and GH : common nodes of Gh and GH (red

crosses); nodes which belong only to Gh (yellow rhombi); nodes which belong only to

GH (blue circles); boundary nodes of Gh (black squares)
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Despite the irregular grid structure, the differential equations can still be
solved with a multigrid solver. This is done in a similar way as with regular
grids. As shown in Fig. 4, there are different types of nodes:

1. The nodes belonging only to the grid GH , which will not be refined and no
further calculation must be performed for them.

2. The nodes of GH belonging at the same time to Gh, which will be used for
gaining the solution correction with the FAS at nodes on the finer grid Gh.

3. The boundary nodes of the finer grid Gh. In order to connect the solutions
from both grids, these nodes are initialized from the coarser grid but are not
altered during optimization.

The multi-level grid adaptation can not only be used with O-cycles (which we
use for our real-time results), it can also be used with a classical FMG approach.
In the areas on the coarse grid GH , which are not covered with the fine grid Gh,
we need not only the error, but the whole solution. Therefore, even if we have a
linear problem (e.g., when using Tichonov regularizer in the smoothness term)
the FAS must be employed.

Let us consider the error of restriction, when coming from a finer grid to a
coarser one. Using Eq. (17), we can write

fH = IH
h fh + τH

h , (19)

where τH
h = IH

h Lhu
i
h−LHI

H
h ui

h is the error of restriction or the transfer correc-
tion from the finer to a coarser grid. This transfer correction for the equation on
the coarser level provides a measure for the co-occurrence between the solutions
on the coarse and fine grid. When solving the equation LHuH = −FH on the
coarse grid GH , the term FH is given by Eq. (19), but in the areas where the
corresponding node on the fine grid Gh is not available, we assume that τH

h is
equal to zero.

5 Regularizer Adaptation

We found in our experiments that the reconstruction results can be further im-
proved, if the applied regularizer for each pixel is changed locally within the
iteration process. For each pixel we always start with the Tichonov regularizer.
Based on thresholds for E(u(x, y)) and ||∇u(x, y)||2 the algorithm decides when
to switch to the Charbonnier or Perona-Malik regularizer. Furthermore, we adapt
the parameters λ and ϕ (see Eqs. (6), (8), and (9)). The choice for these param-
eters depends on the regularizer, the multi-grid level, as well as ||∇u(x, y)||2 and
E(u(x, y)). The best parameters for the actual situation are trained off-line by
Monte-Carlo simulation on stereo pictures which have a similar characteristic as
the test images, e.g., similar range of disparities, comparable image resolution,
and equivalent scene illumination conditions. Once these parameters are found
they are kept fixed during real-time experiments.
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Table 1. Excerpt from the evaluation table generated by the Middlebury stereo eval-

uation webpage (error threshold = 2 pixels)

Tsukuba Venus Teddy Cones Average Percent
Algorithm nonocc all disc nonocc all disc nonocc all disc nonocc all disc of bad pixels
DoubleBP 0.83 1.24 4.49 0.10 0.35 1.46 1.41 4.13 4.73 1.71 7.02 5.16 2.72

CoopRegion 0.77 1.00 4.14 0.11 0.18 1.53 2.14 3.41 6.61 2.10 5.95 6.24 2.80
. . .

our method 1.33 3.13 6.94 0.27 1.07 3.16 1.30 2.30 3.87 2.31 3.43 6.90 3.00
. . .

MultiResGC 0.67 1.05 3.64 0.22 0.46 2.97 4.20 7.13 11.6 3.22 8.80 8.07 4.30
RealtimeBP 1.25 3.04 6.66 0.63 1.53 7.68 5.68 8.27 10.2 2.90 9.11 8.27 5.43

RealTimeGPU 1.34 3.27 7.17 1.02 1.90 12.4 3.90 8.65 10.4 4.37 10.8 12.3 6.46
Infection 6.34 7.81 22.8 2.70 3.66 26.0 12.8 18.3 33.5 10.7 16.6 30.1 15.9

Table 2. Computational effort of our algorithm using FMG with V- and W-cycles or

O-cycles at the same reconstruction quality, as used in Table. 1

Speed [fps]

Scene FMG:V-cycles FMG:W-cycles O-cycles

Tsukuba 0,6 1,3 2,15

Venus 1,15 1,85 3,75

Teddy 1 1,3 3,3

Cones 0,75 2,1 3,5

Fig. 5. Top to bottom: Tsukuba, Venus, Teddy, and Cones scene; Left to right: the

right image of the stereo pair, solution disparity map, bad pixels (absolute disparity

error > 1.0 pixel), the finest MLAT grid
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6 Evaluation

To evaluate our novel multigrid variational solver with MLAT, we use the stan-
dard stereo data sets provided by the Middlebury Stereo evaluation website [23].
These datasets include stereo images as well as ground-truth disparity maps.
The resolution of the provided stereo images is approximately 450 × 375 pixels
and the disparities are in the range [0; 22] pixels.

The Middlebury stereo evaluation website provides a convenient and objective
way to evaluate the accuracy of the reconstruction by the percentage of bad pixels
(see more details in [24]). As can be seen in Table. 1, our approach is among
the most accurate methods. Furthermore, those methods, which have a higher
accuracy, are not marked to be real-time approaches like ours.

In Fig. 5 the corresponding results for the Tsukuba, Venus, Teddy, and Cones
scene are shown. The timings for our approach are given in Table. 2, where we
compare the performance of FMG with V- and W-cycles or O-cycles. All speed
measurements are carried out using a standard desktop PC with a 2.83 GHz
Intel Pentium CPU executing C++ code.

7 Future Work and Conclusion

In this paper, we have introduced a combination of multigrids and a multi-level
adaptive technique for the variational approach to reconstruct a disparity field.
Furthermore, a regularizer adaptation technique was proposed. This allows the
variational solver to achieve a real-time performance even on a CPU. The gained
reconstruction quality is competitive to other state-of-the-art approaches that
require more computation time.

In future, we are going to develop and implement a parallel version of our
algorithm, which could be capable to run on multiple CPUs or a GPU with
stream processing technology. Another direction of future work is to extend our
method of 1-dimensional disparity estimation to the problem of 2-dimensional
optic flow reconstruction.
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Abstract. We present a faster than real-time parallel implementation

of standard sum of squared differences (SSD) stereo vision algorithm, on

an SIMD architecture, the CSX700. To our knowledge, this is the first

highly parallel implementation of this algorithm using 192 processing

elements. For disparity range of 16 pixels, we have achieved the rate of

160 and 59 stereo pairs per second on 640x480 and 1280x720 images,

respectively. Since this implementation is much faster than real time, it

leaves enough time for performing other machine vision applications in

real time. Our results demonstrate that CSX architecture is a powerful

processor for (low level) computer vision applications. Due to the low-

power consumption of CSX architecture, it can be a good candidate for

mobile computer vision applications.

1 Introduction

Many embedded applications of vision system, such as mobile robots and Hu-
manoid require a supercomputing capability for various complex image process-
ing tasks while being severely limited by the power consumption and size of
the computing architecture. Our objective is to develop a flexible low-power
lightweight computing architecture for such applications, using new emerging
massively parallel low-power computing processors. As starting point, we have
focused on digital stereo vision which provides depth information, as the first
step of complex and time consuming tasks such as object tracking and obstacle
avoidance. To meet the real time processing requirements, digital stereo vision
should be performed in such a way to leave enough time for these time consuming
tasks.

An extended overview of stereo vision algorithm has been presented in [1].
There are many works in the literature focusing on real time implementation

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 808–818, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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of stereo vision on various architectures ranging from General Purpose Proces-
sors (GPP) to FPGA implementation [2], [3], [4], [5], [6], [7]. Due to the real-
time processing requirement, built-in SIMD accelerators, e.g. MMX and SSE in
new generation of the general processors, can be employed to become closer to
the real-time processing requirement [2], [3]. Sunyoto et al. [3] have presented
real time algorithm using the SSE2 instructions available on Intel Pentium 4
and AMD Atlon 64 processors. They have reported 35 frames per second for
a 256x256 image and disparity 24. Another way to improve performance is to
utilize the processing power of Graphics Processing Units (GPUs) [4], [5]. They
typically use texture capability of graphics hardware to compute cost function
in stereo vision algorithm. Yang et al. [4] could achieve 289 MPDs (mega-pixel
disparities per second) using ATI Radeon 9800 graphics cards. Moreover, in-
creasing density, speed and programmability of Field Programmable Gate Ar-
rays(FPGAs) provide the opportunity to implement stereo vision on these kind
of hardwares [6], [7]. Woodfill et al. [6], utilizing 16 Xilinx 4025 FPGAs, have
achieved 42 frames per second at 320x240 pixel resolution which is less than 80
MPDs. While utilizing Xilinx Spartan-3 FPGA, Murphy et al. [7] claim that
processing 320x240 pixel images at the rate of 150 frames per second is possible.

FPGAs are dedicated hardwares, which should be designed for specific appli-
cations. GPU is more flexible and provides some level of programmability, but
the main problem is that GPU provides good performance only for some kind of
applications. The other issue that should be considered is power consumption.
Generally, GPPs and GPUs are high power consuming units, while FPGAs re-
quire less power. None of the solutions mentioned above satisfies mobile vision
system design goals including low power consumption, flexibility, and real time
processing capability.

In this paper, we have used the ClearSpeed CSX [8] user programmable mas-
sively parallel SIMD architecture for parallel implementation of the conventional
SSD stereo vision algorithm. CSX has 192 Processor Elements (PEs) with a peak
of 96 GFOLPS computation power, while its power consumption is less than 9
watts. Implementing SSD on CSX, we have achieved 688 MPDs correspond-
ing to a 3x3 window size, 640x480 image, maximum disparity of 16 , and 160
stereo pairs per second(fps). Experimental results show that CSX architecture is
a good candidate to provide low-power supercomputing capability for embedded
computer vision applications.

This paper is organized as follows. Sect. 2 explains SSD algorithm. Sect. 3
gives an overview on the CSX architecture and discusses the features used in
our implementation. In Sect. 4 parallel implementation of SSD on the CSX
architecture is described. Sect. 5 discusses the performance of the architecture.
Finally, Sect. 6 concludes the paper and discusses future works.

2 SSD Algorithm

The SSD algorithm is a straightforward window based approach to obtain dis-
parity map on a pair of rectified stereo images.
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Assume IR(i, j) and IL(i, j) as the intensity of pixel located at row i and
column j in the right and left image, respectively. The input parameters of the
algorithm are ω, the window size, and β, the maximum disparity. Assuming right
image as the reference, the disparity for each pixel (i, j) in the right image is
calculated as follow:

– Consider a window centered at (i, j) in the right image
– Consider a window centered at (i, j+k) in the left image where j ≤ k < j+β
– Calculate convolution of the windows in the left and right image using (1).

S(i, j, k) =
i+ w−1

2∑
l=i− w−1

2

j+ w−1
2∑

m=j− w−1
2

[
IR(l,m)− IL(l,m+ k)

]2
(1)

– The pixel which minimize S(i, j, k) is the best match. So,

k∗ = arg min
j≤k<j+β

S(i, j, k), (2)

d(i, j) = k∗

Briefly, the SSD algorithm consists of the following three steps:

1. Calculating the squared differences of intensity values in a given disparity
2. Summing the squared differences over square windows
3. Finding two matching pixels by minimizing the sum of squared differences.

3 CSX

Our implementation platform, ClearSpeed CSX700 architecture [9], provides
both high performance computing capability and low-power consumption.
CSX700 has two similar cores, each includes one poly execution unit which
is an SIMD architecture, containing 96 PEs. Poly execution unit is in charge
of parallel data processing. Each PE consists of a register file, 6KB of SRAM,
a high speed I/O channel to adjacent PEs and external I/O, an ALU, integer
multiply-accumulate (MAC) unit, and an IEEE 754 compliant floating point unit
(FPU) with dual issue pipelined add and multiply (see Fig. 1). The maximum
performance, 96 GFLOPs, is reachable if PEs are fully pipelined and vectorized.

Each core is equipped with a DDR2 memory and a 128KB SRAM called
external (mono) memory, while PEs’ SRAM is called poly memory. PIO unit
controls data transfers between mono and poly memory (see Fig. 1). Poly exe-
cution unit and PIO unit can operate asynchronously. To utilize the underlying
bus bandwidth, the size of the data which transfered between external and poly
memory have to be at least 32 bytes, i.e. the time required to transfer 32 byte
data and less is almost the same.

Moreover, Each PE is able to communicate with the two neighboring PEs
using a dedicated bus called swazzling path. Swazzling path connects the register
file of each PE core with the register files of its left and right neighbors (see
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Fig. 1. Simplified CSX Architecture

Fig. 1). Consequently, on each cycle, PEs are able to perform a register-to-
register data transfer to either its left or right neighbor, while simultaneously
receiving data from the other neighbor. In fact, the swazzling path provides the
facility for parallel data communication among PEs. Obviously, data transfer
time between two PEs increases linearly with their distance.

Furthermore, to achieve higher floating point operation performance, CSX
provides the facility of vector operations which are a set of hardware instructions
that perform floating point operation on a block of operands and thus utilize
the pipeline nature of the PE’s units.

4 Parallel SSD Algorithm Aspects

Like many other low-level image processing tasks, SSD is a highly regular process
wherein the same operation is performed on a large set of data. Such a feature
enables exploitation of massive data-parallelism and SIMD architecture to obtain
a higher processing speed. However, the obtained speedup is affected by data
mapping strategy and communication overhead.

4.1 Overlapping Communication and Computation

Each computer application consists of transferring data from memory to the pro-
cessor, processing data, and transferring data back to the memory (see Fig. 2(a)).
So, the total time will be:

T = Tr + Tc + Tw (3)

where Tr, and Tw are the required time to transfer data to the processor, and
back to the memory, respectively, and Tc is the computation time.
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To parallelize an application, several processors are employed to run concur-
rently in order to decrease the processing time. However, reading and writing
from/into the memory is still strictly sequential. Even assuming that the pro-
cessing part can be fully parallelized, according to the Amdahl’s law, the commu-
nication time could limit the overall speedup available from parallelization. Ts

and Tp denote the execution time of serial and parallel applications, respectively.
Taking into account the communication time, using p processors, the speedup
will be:

S =
Ts

Tp
=
Tr + Tc + Tw

Tr + Tc

p + Tw

(4)

Let α = Tr+Tw

Tc
, the speedup can be written as follows:

S =
αTcp+ Tcp

αTcp+ Tc
=
αp+ p

αp+ 1
= 1 +

p− 1
αp+ 1

(5)

This shows that using p processors, to achieve higher speedup, α should be de-
creased. As α = Tr+Tw

Tc
and Tc should be kept as small as possible, decreasing

memory communication time is the only way to decrease α. As memory com-
munication has a sequential nature, maximum overlapping of computation and
memory communication reduces the effect of this serial part in total time.

Due to the initial and final memory communication overheads, the complete
overlap of computation and communication is not possible. In the initial phase,
processors wait to receive the first segment of data and in the final phase, pro-
cessors are ideal and the last segment of data is written back into the memory
(see Fig. 2(b)). So, if intermediate memory communication overlaps with com-
putation, and initial and final memory communication times are negligible, the
speedup is maximized.

(a) (b) (c)

Fig. 2. Computation-Communication Model. Different boxes represent computation

(black box), memory read (vertically shaded) and memory write (horizontally shaded).

(a). Sequential communication-computation model, (b) Overlapping communication-

computation model, (c) Overlapping communication-computation model, in the case

that size of PE’s memory is limited.

4.2 Data Distribution

In most parallel architectures using distributed memory, data locality is used to
minimize communication time. This is due to the fact that global communication
cost is much higher than computation cost. Since PE’s memory, in CSX architec-
ture, is too limited, it is just able to keep small segment of data. Consequently,
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PE obtains data by communicating external memory or other PEs. In CSX ar-
chitecture, data transfer from external (mono) memory to poly memory is much
more expensive than interprocess communication. In fact, interprocess commu-
nication cost for neighboring PEs is even less than simple arithmetic operations.
Thus, to minimize communication time, it is better to use interprocess communi-
cation instead of mono-poly memory communications. Moreover, as mentioned
in Sect. 4.1, data mapping strategy should be developed in such a way that
overhead of the initial and final memory communications are insignificant.

Considering CSX architecture, we can examine various data distribution
strategies to determine the best one. According to the above discussion, com-
parison between various data distributions can be done in terms of the following
parameters.

– initial and final memory communication overheads
– poly memory used for input data
– inter-process communication time

Having an image and a linear array of PEs, several data distributions are possible
such as row (column)-stripe distribution, block distribution, and row (column)-
cyclic distribution. Selecting any data distribution, to process boundary data,
each PE should receives the neighboring data from external memory or other
PEs. The former policy means that redundant data should be transferred from
memory to the processors. The latter means using interprocess communication.

Assume c and r are the number of columns and rows in image matrix, respec-
tively. Also, w indicates the size of window in SSD algorithm, β is the maximum
disparity, and p denotes the number of PEs. Besides, in each memory communi-
cation, each PE read or write m bytes of data from/into the external memory,
and t m is the time taken by just one memory communication, i.e. t m is the
time required to transfer m∗p bytes of data between external and poly memories.

Block distributions. If the image is divided into d ∗ s blocks, each block has
c/d columns and r/s rows. The first block is assigned to the first processor, the
second one to the second processor, and so on. As each block is processed in one
PE, the number of blocks should be equal to the number of processors. So, each
block can be identified by an ordered pair (i, j) where 1 ≤ i ≤ s and 1 ≤ j ≤ d.
In the same way, each ordered pair can denote the PE which is responsible for
processing corresponding block. To process the first segment of arrived data, any
PE (i, j) requires last segment of data that will be sent to PE (i, j − 1). Here,
interprocess communication cannot be used, since PE (i, j − 1) has not received
data that its neighbor needs. So, this part of data should be sent to both PEs
(i, j − 1) and (i, j). To process the last segment of data, PE (i, j) needs data
which has already been sent to PE (i, j + 1). To use interprocess communica-
tion, PE (i, j+1) should keep this part of data in its memory. Furthermore, each
PE (i, j) requires some boundary data that has been sent to the PE (i−1, j) and
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vice versa. In this case, also , swazzaling can be used, but the distance between
two corresponding PEs is equal to d.

Row-stripe distribution. The rows are divided into several groups, each has
r/p rows. Then, the first group is assigned to the first processor, the second one
to the second processor, and so on. To process boundary data, PE i receives
some data from PE i − 1 and vice versa. So, row-stripe distribution can utilize
interprocess communication between neighboring PEs.

Row-cyclic distribution. In this scheme, the first row is assigned to the first
processor, the second row to the second processor, etc. Each PE needs to com-
municate with the PEs which are at most at the distance w−1

2 . Also, each PE
can start doing computation, as soon as receiving a small chunk of data.

Table 1. Figure of merit related to the different data distributions. In calculating

number of inter-process communication for block and row-stripe distributions, it is

assumed that window size is less than number of rows which are assigned to the PEs.

The third column shows the memory used for input data in each PE.

Data Dist. Initial overhead Inter-Process Comm PE Memory

Block Dist. r
s
t m r

s

[
β + w − 1

]
+ d c

d
β(w − 1) (w − 1 + 2β + 2m) r

s

Row-stripe Dist. r
p
t m (w − 1)cβ r

p
(2m + β)

Row-cyclic Dist. t m r
p
(w − 1)cβ 2m + β

The parameters calculated for each data distributions are summarized in
Table 1. Having maximum memory usage and inter-process communication in-
dicates that block distribution does not use CSX interprocess communication ef-
fectively. Row-stripe distribution has the minimum interprocess communication
and using this strategy needs more memory space. Considering limited memory
space of PEs and the minimum initial and final memory communication over-
head, row-cyclic distribution is the optimal solution which well matches the CSX
architecture features.

4.3 Parallelized SSD

Sequential SSD algorithm has three steps (see Sect. 2): evaluating square of
differences, evaluating sum of squared differences over windows, and selecting
the minimum. Using row-cyclic data distribution, PE i receives the data of line
i and is responsible to calculate the line i of the output. Each PE can perform
step 1, evaluating square of difference, just accessing local data, while evaluating
sum over windows, it requires the data assigned to the other PEs. Each PE is
able to calculate the sum of squared differences over one line of the window.
So, performing step 2 is divided into two steps: first, calculating summation
over one line using local data, and then receiving the results of other PEs and
calculating sum over the window. Finally, during receiving data from other PEs,
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Table 2. Algorithm 1- Parallelized SSD

Input: matrix of right & left images, maximum disparity (d), and window size (w)

Output: disparity image

For any PE K, Read the first m (m + d) bytes of the k-th line in the right(left) image

from external memory into WR (WL), the working data buffer of right(left) Image

Main Loop: While there is any unprocessed segments

For any PE K, Read the next m bytes of the k-th line in the right(left) image

from external memory into MR (ML), buffer of right(left) Image, asynchronously

Step 1: Evaluate square of differences

for i = 1 to m

for j = 1 to d

SD[i, j] = (WR[k, i] − WL[k, i + j])2

Step 2: Evaluating sum of squared differences over lines

for j = 1 to d

for i = 1 to m

SSD[i, j] = SSD[i − 1, j] − SD[i − w+1
2

, j] + SD[i + w−1
2

, j]

Step 3: Evaluating SSD over windows and selecting the minimum

min value = ∞ for i = 1 to m

for j = 1 to d

3.1: Sazzling and Sum over windows

SSD[i, j] = SSD[i, j] + swazzle down((w − 1)/2) + swazzle up((w − 1)/2)

3.2: Select the minimum

if SSD[i, j] < min value
min value = SSD[i, j] , min idx = j

WO[i] = min idx

Write the result buffer, WO, into external memory asynchronously

Swap working and memory input, output buffers

the minimum value which has been meet by that time can be evaluated. Thus,
the parallelized SSD has three steps as follows: evaluating square of differences,
evaluating sum over one line of the window(local-sum), and finally, evaluating
sum over windows and selecting the minimum.

Due to the memory limitation of PEs in CSX architecture, memory manage-
ment has an important rule in algorithm implementation. Indeed, PEs’ memory
cannot keep large amount of data, and after processing each segment of data, the
input segment should be substituted with unprocessed data and result should be
written back into the external memory as soon as possible. So, double-buffering is
the only way to realize communication-computation overlapping (see Fig. 2(c)).
When PEs are working with one buffer, the other one is reading or writing
data from/into the external memory. The pseudo code of the parallelized SSD
algorithm is shown in Table 2.
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5 Implementation and Performance Results

To evaluate the performance, we have developed the proposed parallelized SSD
algorithm. In order to utilize both cores of CSX700 processor, the input images
should be divided into two nearly equal parts. The first 'r/2(+(w−1)/2 rows are
assigned to the first core, and the last )r/2*+(w−1)/2 lines are assigned to the
second core. Sending boundary lines to both cores enables each core to perform
all computation locally. Table 3 gives the timing of various steps, running the
code on the 640x480 input images with disparity range of 16 pixels.

Table 3. Timing of the parallelized SSD steps on CSX architecture for 640x480 input

images and disparity range of 16 pixels. The second and third columns show the timing

related to ordinary and vector floating point operations, respectively.

Step Timing Timing (vector operation)

Initial & Final Overhead 17.37 µs No Change

Square-of-differences 3.36 ms 1.176 ms

Sum(over line) 1.974 .888 ms

Sum(over window)& Selecting the Min 4.08 ms No Change

Total 9.6 ms 6.25 ms

To analyze the performance of different steps of the algorithm and memory
communication, we have used the CSX visual profiler tool. Fig. 3 depicts initial
part of the log file related to the initial memory read. It shows that reading the
first segment of data, the processors are ideal. Receiving the first data, computa-
tion starts, and next memory communication are overlapped with computation.
The output of the visual profiler is consistent with the model illustrated in
Fig. 2(c). It shows that ignoring the initial and final steps, the poly execution
unit is working and never becomes ideal to receive data from external memory.
According to the Table 3, the initial and final memory communication takes
17.37 µs which is just 0.2% of the whole time and PEs’ execution unit are busy
98.3% of the time. The remaining 1.5% is control overhead.

As all PEs are running concurrently all the time, the only way to improve
performance is to decrease the PE processing time. Vector operations can be used
to decrease the computation time. Vector operations are applicable in steps 1

Fig. 3. Running Profile of Parallelized SSD on CSX processor related to initial memory

read. Poly Compute shows the time poly execution unit is busy. PIOE Data Transfer

indicates data transfer between poly and external memory. Receiving the first data seg-

ment, PEs start computation, and computations and communications are overlapped.



Real-Time Parallel Implementation of SSD Stereo Vision Algorithm 817

and 2, evaluation square of differences and summation over the lines. The third
column of Table 3 shows the vectorization effect on timing. Utilizing vector
operation in Step 1 and 2 yields an speedup around 2.8 and 2.2, respectively. It
is not possible to use vector operations in the third step which takes more than
65% of the total time. As the assembly code generated by the compiler is not
optimized, developing assembly code results in better performance in this step.

The number of floating point operation per second (FLOPS) is used as a
performance evaluation measurement. Here, the number of operations required
to compute disparity map should be divided by running time. Assuming that
the algorithm applies 3x3 windows, the FLOPS will be calculated using (6).

Number of Floating Point Operation
Total Time

=
7crβ

Total Time
(6)

Our implementation computes disparity map of 640x480 images with maximum
disparity 16 at rate 160 stereo pairs per second (6.25 ms for processing each
pair). Increasing the maximum disparity to 32 results in rate of 83 stereo pairs
per second (12 ms for processing each pair). Even for the resultion of 1280x720,
the disparity map can be calculated in real time. For maximum disparity 16 and
32 the running time is 16.8 and 32 ms, respectively. Table 4 summarizes the
running time and GFLOPs for different image sizes. In the last iteration of the
algorithm, for 1280x720 and 640x480 images the number of the idle PEs are 16
and 42, respectively. So, due to the more utilization of PEs, we achieve better
GFLOPS for 1280X720 images.

Table 4. Perforamnce of parallelized SSD Algorithm. Execution time depends on both

image size and maximum disparity, while GFLOPS is just related to the image size.

Image Size Max Disparity = 16 Max Disparity = 32 GFLOPS

640x480 6.25 ms 12 ms 5.7

1280x720 16.8 ms 32.08 ms 6.4

6 Conclusion and Future Works

This paper focuses on parallel implementation of SSD algorithm on CSX SIMD
architecture. To do so, we have investigated different data distributions and PE
scheduling. Our analysis shows that row-cyclic data distribution is the optimal
solution considering CSX architecture and SSD algorithm. Our approach maxi-
mizes the communication-computation overlap to minimize the effect of memory
communication which is always sequential on the speedup. Experimental results
show that the PEs are computing 98.4% of the time. Our architecture computes
16 stereo disparities on 640x480 images at rate 160 stereo pairs per second, which
is 80% faster than real-time. Also, for the 32 stereo disparities on the same im-
age size, the rate is 83 stereo pairs per second. This result through the proposed
architecture has two major consequences:
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– It allows to free more time to support more advanced and more complex
algorithms,

– It needs less power consumption enabling energetically efficient embedded
solutions

We can think about more advanced scenes 3D descriptions like objects of interest
localization, tracking or more globally, navigation-oriented tasks like obstacle
avoidance, path planing or SLAM etc., with minimizing the critical resources for
autonomous mobile systems, namely, energy.
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Revisiting the PnP Problem with a GPS
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Abstract. This paper revisits the pose estimation from point correspon-

dences problem to properly exploit data provided by a GPS. In practice,

the location given by the GPS is only a noisy estimate, and some point

correspondences may be erroneous. Our method therefore starts from the

GPS location estimate to progressively refine the full pose estimate by

hypothesizing correct correspondences. We show how the GPS location

estimate and the choice of a first random correspondence dramatically

reduce the possibility for a second correspondence, which in turn con-

strains even more the remaining possible correspondences. This results

in an efficient sampling of the solution space. Experimental results on a

large 3D scene show that our method outperforms standard approaches

and a recent related method [1] in terms of accuracy and robustness.

1 Introduction

The recent development of mobile devices has made applications such as localiza-
tion using a simple embedded camera realistic on such devices. Research in this
direction, however, has mostly focused on image retrieval techniques to consider
large-scale environments [2]. Such approach can only provide a coarse pose, and
more accuracy will be needed, for example in Augmented Reality applications.

In this paper, we focus on the estimation of an accurate 3D pose from corre-
spondences between 3D points and their projections in the image. This is most
certainly one of the oldest problems in Computer Vision, however in this work,
we explicitly target pose estimation of photographs taken with a hand held de-
vice. In particular, this implies that we can exploit the other sensors these devices
are typically equipped with beside the camera.

These sensors include accelerometers, magnetometers (i.e. electronic com-
passes), and GPS. Accelerometers, or inertial sensors, have been used for several
years in tracking applications [3]. They can measure the camera motion, which is
of no use in our application1, and the camera orientation. In practice, however,
it is not uncommon to see errors of over 90 degrees in the obtained orientation
estimate, and so we choose not to use orientation measurements. Instead, we
only consider the GPS.

� Computer Vision Laboratory, École Polytechnique Fédérale de Lausanne (EPFL).
1 In practice the accuracy of the accelerometers available for mobile devices combined

with the erratic motion of such a device together make it virtually impossible to

integrate acceleration signal to obtain location.

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 819–830, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The standard GPS is typically said to have an accuracy of around few meters.
This gives a strong prior on the camera pose, but the uncertainty must still be
properly taken into account for an accurate pose estimation. Our method starts
from the GPS location estimate to progressively refine the full pose estimate.
This is done by sequentially hypothesizing correct correspondences. Because the
choices for the previous correspondences dramatically constrain the possibilities
of the next correspondence, this allows a particularly efficient sampling of the
solution space.

The closest method in the literature is [1], which starts from a prior on the full
pose and applies an Extended Kalman filter each time a correspondence is picked
to shrink the search space for the next hypotheses. Our experimental results show
that our method performs better in terms of robustness and accuracy. This is
most likely due to the analytical solution to constrain the search where [1] has
to linearize the Kalman filters equations.

In the remainder of the paper, previous work which has used GPS and other
sensors is first briefly reviewed. A formalization of the problem is given in Sec-
tion 3, and Section 4 describes and analyses the sequential sampling procedure.
Finally Section 5 compares the proposed method to the standard solution using
RANSAC and [1] on a large real 3D scene.

2 Related Work

Carceroni et al. [4] have studied a similar problem of estimating camera ori-
entation from multiple views, given the locations of the viewpoints and a set
of point correspondences between views. The uncertainty in the viewpoint lo-
cations, however, has not been taken into account. Their method essentially
reduces the problem to three degrees of freedom, while we optimize over the full
six degrees of freedom of the camera pose.

Some work has been done with inertial sensors and GPS where pose estimation
is relevant [3,5,6,7]. Many of these systems do not truly use all the redundancy of
the given measurements, but rather use sensors to initialize and help the visual
system [3]. When low level sensor fusion is used, it is often done as the prediction
part of a Kalman filter such as in [5] and is only useful for tracking applications.

Pollefeys et al. [7] use GPS and inertial tracking for camera pose estimation,
and then correspondences for reconstruction. There is therefore no fusion of
image and sensor information. GPS and orientation sensor data are used in [6] to
compute an initial pose estimate by solving a linear system. This estimate is then
refined using a non-linear optimization of an objective function that incorporates
a GPS term with an arbitrary weighting factor. Both of these methods require a
measurement of the full pose, while we rely only on the GPS and its uncertainty
to initialize our method.

We want to be able to deal with outlier correspondences, and RANSAC-
like methods have proved their robustness and efficiency. Many variants have
been proposed over the years, and we can roughly classify them into four
categories:
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1. Methods to reduce cost of evaluation to increase the number of iterations
that can be done in a given time [8,9].

2. Methods that use prior knowledge to guide sampling [10,11,12].
3. Methodsthatexploit theconnectivityofnearlyoptimalmodels [13,14,15,16,17].
4. Methods that modify the evaluation function to get better results [18,19].

Most improvements of RANSAC fall into Categories 1 and 3. In most cases, these
improvements can be combined with our method. For instance, our method
has been successfully combined with the Hill Climbing strategy [13] to create
a combined optimization strategy which performs better than Hill Climbing
strategy alone.

The method we propose falls mostly in the second category, taking advan-
tage of very specific prior knowledge. The closest method in this category is
perhaps [11] in the sense they use a model specific sampling strategy. They,
however, consider a different problem than ours since they focus on homography
estimation. They use a different consistency constraint, enforced as a prepro-
cessing step which introduces a fixed overhead.

Like our method, NAPSAC [15] uses the idea of generating sample sets se-
quentially, but its only assumption was that neighbouring points of an inlier are
more likely to be inliers. This method does not use any prior knowledge and falls
in Category 3.

Moreno-Noguer [1] also uses sequential sample generation and considers the
camera pose estimation problem but requires a prior on the full pose, while
we use a prior on the camera center location only. In [1], the correspondences
between 3D points and their reprojection are not assumed to be known, and
each consecutive point is treated as an observation of the unknown pose in a
Kalman filter setting. In contrast, we take a fundamentally different approach
as each consecutive point is instead used to reduce degrees of freedom of the
pose estimate and the covariances are propagated to represent the uncertainty
in the fixed degrees.

However, the algorithm presented in [1] is probably the closest one to ours in
that it solves the same problem, uses similar prior knowledge and builds minimal
sets sequentially. We therefore compare it against our method in Section 5.

3 Problem Statement

This section gives a formal mathematical definition of the problem we solve.
The camera pose estimation is formulated as a minimization problem of a cost
function that considers the log likelihood of the pose given the observed cor-
respondence and of the location measurement from the GPS. Because these
measurements have meaningful units, the relative weights of the two different
kinds of measurements are properly described by the covariance matrices.

We assume we are given a set of world points Xi ∈ R3 and their reprojections
xi ∈ R2 in the image. In practice we use SURF [20] to find these correspondences.
The reprojections xi are corrupted by noise, and some can even be completely
mismatched.
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We denote by θ the camera pose and by projθ (xi) the projection of point Xi

by the camera. In other words, for the inliers it is expected that

xi = projθ (Xi) + ε , (1)

where ε is a Gaussian noise term.
The location provided by the GPS is denoted by g, and to simplify we assume

its true value ḡ can be computed directly from the true value θ̄ of the camera
parameters as the camera center ḡ = c(θ̄).

The problem can finally be stated as recovering the pose θ which minimizes
the cost function

cost(θ) = Ec(θ) +
∑

i

ρ(e2i ) , (2)

where

Ec(θ) = (g − c(θ))�Σ−1
c (g − c(θ))

e2i = (xi − projθ (Xi))�Σ−1
x (xi − projθ (Xi))

(3)

and ρ(.) is a robust estimator:

ρ(e2i ) =

{
e2i e2i < T 2

T 2 e2i ≥ T 2 . (4)

4 Sequential Sampling

For the pose estimation problem, three correspondences define a pose. In the pro-
posed sequential sampling, this minimal set is generated by selecting each con-
secutive correspondence from a different distribution, starting from the uniform
distribution. Each consecutive correspondence reduces the degrees of freedom of
the unknown pose. The probability distribution of the location measurement is
mapped to a probability distribution of the correspondences, with the assump-
tion that the first correspondence was correct.

This effectively uses the location measurement to guide the generated minimal
sets to be consistent with the location measurement. The proposed poses are
evaluated against the robust cost function to find a good inlier set.

4.1 Sampling the First Correspondence

Assuming the rotation of the camera is unknown, then even with known location
any single correspondence is a priori equally likely. It is always possible to align
any point in 3D to any point in the camera image by rotating the camera. So the
first correspondence x1 ↔ X1 is randomly selected from a uniform distribution.
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4.2 Sampling the Second Correspondence

Lets first assume that the camera location and the image location x1 of the first
correspondence are known exactly. The only remaining degree of freedom is the
rotation about the axis formed by the camera center and the corresponding 3D
point X1. Under this constraint, the projection x2 of a given world point X2 lies
on an ellipse in the image plane.

Since the value of the angle defined by X1, the camera center g, and X2
should remain the same when expressed in the camera coordinate system and in
the world coordinate system, the following formula should hold:

x�
1 x2

‖x1‖‖x2‖
− (X1 − g)�(X2 − g)
‖X1 − g‖‖X2 − g‖ = 0 , (5)

where x1 and x2 are considered to be in homogeneous coordinates. This equation
defines an implicit function constraint of the type:

f(x2,x1,g) = 0 . (6)

In practice, however, the location g provided by the GPS and the projection
x1 are corrupted by noise. For a given x2, there is then some probability that
Equation (6) is satisfied. The exact computation of this probability involves
integrating over the sets of x1 and g for which the constraint holds. This is not
computationally feasible, so instead, we linearize f in the neighbourhood of the
observations:

f(x2,x1,g) ≈ Jx2x2 + Jx1x1 + Jgg, (7)

where Jx1 , Jx2 and Jg are the Jacobians of (6) with respect to to x1, x2 and g
respectively, and evaluated at the measured points.

Since we assumed that x1, x2 and g are normally distributed, the residual
f(x2,x1,g) can now be thought of as a normally distributed random variable:

f(x2,x1,g) ∼ N(0, σ2
e)

σ2
e = Jx2ΣxJ

�
x2

+ Jx1ΣxJ
�
x1

+ JgΣcJ
�
g .

(8)

Figure 1 illustrates the error introduced by the linear approximation. The ground
truth was obtained by randomly sampling the camera center and first corre-
spondence according to the assumed normal distributions. For each sample, the
possible exact projections were accumulated.

The likelihood of any point xi satisfying the constraint, assuming that x1 is
an inlier corrupted by noise, can now be computed by taking the residual of
Equation (6) where x2 = xi and plugging it into Equation (8). The second point
is randomly selected proportional to these likelihoods.

4.3 Sampling the Third Correspondence

Even if a given location and two correspondences constitute an over-constrained
pose estimation problem, we found it is still better to consider a third correspon-
dence because of the uncertainty in the location measurement. We give here an
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Simulated ground truth
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Fig. 1. An example of the linear approximation of the correspondence likelihood. The

biggest error happens close to the edges of the image. Light areas of the difference map

indicate where the linear approximation under estimates the probability.

Fig. 2. The scene used in the experi-

ments contains 99 cameras and 10000

world points. The world point visibility

in the cameras is based on the original

matching information in the original re-

construction.

Fig. 3. The sensitivity of the projection

of the third point depends on its loca-

tion relative to the first two points and

the camera. Points such as Candidate 1

that are far from the first points are sen-

sitive to camera location. Candidate 2, on

the other hand, is close to one of the first

two selected points and is less sensitive to

camera location.
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approximation of the covariance for the projection x3 of a selected third point
X3 that works well in practice and keeps the computation tractable.

We first assume that the biggest contributor to the variance comes from the
camera location uncertainty and all other sources are neglected. We compute a
current estimate for the camera pose by taking for the moment the GPS location
measurement g as camera center, and by using the first two correspondences to
estimate the rotation R. Intuitively, as shown in Figure 3, when the third point
X3 is close to the two first points X1 and X2, the covariance Σx3 of x3 will be
small. When it is moved away from these points, the covariance will increase.
We therefore use the following approximation for Σx3 :

Σx3 = κ2
1κ

2
2W

�ΣcW (9)

where

κ1 = min
(
‖X3 −X1‖
‖X1 − g‖ ,

‖X3 −X2‖
‖X2 − g‖

)2

κ2 = min
(

1
‖X1 − g‖ ,

1
‖X2 − g‖

)2

W = R�

⎛⎝1 0
0 1
0 0

⎞⎠ .

(10)

The matrix W maps the covariance of the camera location to the image plane.
We still have to explain how we compute the rotation matrix R that appears

in the third row of (10). The camera maps the 3D points X1 and X2 to their
respective 2D locations x1 and x2 and its rotation R must satisfy

RX̂1 = x̂1

RX̂2 = x̂2

R(X̂1 × X̂2) = x̂1 × x̂2 ,

(11)

where X̂i = Xi−g
‖Xi−g‖ and x̂i = xi

‖xi‖ . The last equation in (11) comes from the
properties of a rotation matrix.

This can be written as a linear system, and solved in the least-squares sense to
obtain the elements of the rotation matrix. We force the solution R′ to a proper
rotation matrix by computing the singular value decomposition R′ = UDV�

and then taking R = UV�.
A summary of our method is given in Algorithm 1. This version has no other

stopping criterion than a limited time budget. The function cost is the cost
function defined in (2). Functions EllipseLikelihood and PointLikelihood will
randomly draw a correspondence index according to the likelihoods defined in
Sections 4.2 and 4.3 respectively. Function PossiblePoses returns the four solu-
tions of the P3P problem.
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Input: A set of N possible correspondences and location information g
Output: Camera pose estimate
while time left do

i1 := Uniform(1..N);
i2 := EllipseLikelihood(g, i1, x1, ...,xN );
i3 := PointLikelihood(g, i1, i2, x1, ...,xN );
Θ := PossiblePoses(xi1 , xi2 , xi3);
foreach θ ∈ Θ do

if cost(θ,x1, ...,xN , g) < cb then
cb := cost(θ,x1, ...,xN , g);
θ∗ := θ;

end

end

end

Algorithm 1. Overview of pose estimation

5 Experiments

5.1 Setup

We reconstructed a real 3D scene from 99 images with GPS measurements using
our own reconstruction pipeline based on SURF features [20] and the sparse
bundle adjustment library described in [21]. The resulting reconstruction con-
tains over 20000 world points. 10000 of the world points were randomly selected
for the test set. The resulting scenario is shown in Figure 2.

To analyze the effect of keypoint localization noise and GPS noise, we first
corrected the keypoint locations in the images to match the reconstructed world
exactly. This created a noise free reconstruction with perfectly known camera
poses, which nevertheless represents a real world scenario.

We then added noise to the keypoint locations. Inliers were corrupted with
Gaussian noise with a standard deviation of 5 pixels in the original 800 × 600
pixel images used to capture the scene. With a given probability a keypoint is
treated as an outlier, in which case its location is randomly drawn from the
uniform distribution over the image. We tests with 4 different outlier ratios from
10% to 70%.

The GPS measurement was generated by adding noise to the camera location
in the reconstruction, which after the corrected projections is effectively noise-
less. The noise was drawn from the three dimensional Gaussian distribution and
normalized to a fixed length. Tests were run with 6 different GPS offsets from 0
to 5 meters. The distribution used for the GPS error in the cost function and in
sequential sampling had a standard deviation of 5 meters.

This results in a total of 24 noise scenarios. Three methods were tested under
these conditions:

1. Standard RANSAC to optimize the compound cost function.
2. The pose prior method of [1] modified as described below.
3. The proposed sequential sampling method.

The original method described in [1] does not assume known correspondences
and performs an exhaustive search. It was adapted to the Random Sampling
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Consensus framework as follows. Starting from the given pose prior, the pose
estimate and its covariance are updated according to the Kalman filter rules as
new points are selected. The selection of the next point is done according to
the likelihoods defined by the reprojection error obtained using the current pose
estimate. The reprojection error covariance is obtained by propagating the pose
estimate covariance using the Jacobian of the projection function.

The pose prior method requires a full pose. To be fair, it was tested with
realistic noise which corresponds to the kind of orientation estimate that might
be obtained from sensors embedded in a mobile device. The rotation matrix was
corrupted by random noise until a rotation matrix was obtained where the mean
angle between the axis of the original rotation matrix and the corrupted rotation
matrix was between 20 and 25 degrees.

A sample run consists of 10 iterations of the algorithm to estimate the pose
of a randomly selected image from the set. A test comprises of 1000 sample runs
of an algorithm under specific noise conditions.

5.2 Results

The three histograms of the left of Figure 4 show the results obtained with the
three different methods for various GPS errors when there are only 10% outliers.
In that case, the three methods perform about the same.

The proposed GPS method, however, is most valuable when the images are
difficult to match. In practice, urban scenes have many repetitive structures, for
example the windows of a building, and to guarantee the existence of the real
correspondence, multiple hypotheses from feature matching should be retained,

0 1 2 3 4 5 6 7 8 9 Inf
0

500

1000
GPS Error: 0.00m

Distance to ground truth

# 
of

 te
st

s

0 1 2 3 4 5 6 7 8 9 Inf
0

500

1000
GPS Error: 2.00m

Distance to ground truth

# 
of

 te
st

s

0 1 2 3 4 5 6 7 8 9 Inf
0

500

1000
GPS Error: 4.00m

Distance to ground truth

# 
of

 te
st

s

0 1 2 3 4 5 6 7 8 9 Inf
0

500

1000
GPS Error: 0.00m

Distance to ground truth

# 
of

 te
st

s

0 1 2 3 4 5 6 7 8 9 Inf
0

500

1000
GPS Error: 2.00m

Distance to ground truth

# 
of

 te
st

s

0 1 2 3 4 5 6 7 8 9 Inf
0

500

1000
GPS Error: 4.00m

Distance to ground truth

# 
of

 te
st

s

10% outliers 70 % outliers

Fig. 4. Comparison with RANSAC and the modified pose prior method of [1] for

two different ratios of outliers, and three levels of GPS errors. The bars in the stacks

correspond, from left to right, to the proposed method (blue), the modified method

of [1] (green), and RANSAC (red). Left: For small ratios of outliers, the three methods

perform about the same. Right: For large ratios of outliers, which correspond to more

realistic scenarios, our method is clearly more accurate.
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Fig. 5. Left: Median distance to ground truth location for different noise conditions

and for all the methods. In this test we also included, for comparison, the modified pose

prior method of [1] with no error in the orientation. It can be seen that RANSAC and

pose prior with realistic noise in the pose both tend to break down after 50% outliers.

Although our method shows degraded performance as the GPS error approaches values

unlikely according to the assumed covariance, it still outperforms previous methods. Of

course, the full pose prior method with perfect orientation performs very well as with

perfect orientation measurement there is little to optimize. Right: The histograms of

distance to ground truth location for 70% outliers for the proposed method and the

full pose prior with different levels of noise in the orientation. The bars in the stacks

are from left to right: the proposed method (blue), full pose prior with maximum 5

(cyan), 5-10 (yellow) and 10-15 (red) degrees of error. As is to be expected, with no

error in the location and very little error in the orientation, the full pose prior method

works very well. When the GPS error is increased, the performance of the proposed

method approaches that of the method with nearly perfect orientation. The full pose

prior with noisy orientation does not perform as well as the proposed method. It can

be observed that if the orientation measurement is available, it must have error less

than 5 degrees before the switch to full pose prior method is justified.

resulting in a large number of outliers. As shown by the histograms on the
right of Figure 4, our method efficiently takes advantage of the GPS data, and
outperforms the other methods.

Figure 5 (left) summarizes the results of more experiments. We also include
the results obtained with the modified method of [1] provided by the exact
orientation. This version performs remarkably well, unfortunately currently no
sensors are able to provide such accuracy on the orientation. It can be seen that
RANSAC and pose prior with realistic noise in the pose both tend to break down
after 50% outliers.

Finally, we tested our method against the full pose prior method with differ-
ent levels of noise in the orientation and location measurements. The test case
contained 70% outliers and is based on 1000 sample runs. The results are shown
in Figure 5 (right). We tested against three different orientation noise cases:
where the average angluar error to the axes of the ground truth rotation was
less than 5 degrees, when it was between 5 and 10 degrees and between 10 and
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15 degrees. Obviously, with nearly perfect prior pose information the full pose
prior method performs extremely well. It can be observed, however, that as the
GPS error is increased the performance difference becomes smaller.

The results show that if the orientation measurement is available, it has to
have an error less than 5 degrees for it to be useful. The proposed method, which
uses only GPS, outperforms the full pose prior method with 5-10 degrees of error
in the orientation.

6 Conclusion

We showed how GPS information can be used to guide sampling in a RANSAC
setting to estimate inliers of the pose estimation problem. This novel sequential
sampling method was shown to effectively guide the sampling towards the correct
solution.

In the experiments, the method shows clear performance advantage when the
number of outliers is high. In real world applications, extremely high outlier
ratios commonly occur when multiple hypotheses from feature matching are re-
tained. In the case of repeated patterns, multiple hypotheses can lead to multiple
consensus sets only one of which represents the correct pose. The use of GPS
effectively resolves this ambiguity and the proposed method does this efficiently.

It should be noted, however, that the evaluation of the likelihoods for each
candidate match in steps 2 and 3 is roughly equivalent to one evaluation of the
objective function. One iteration of the proposed algorithm in a naive imple-
mentation therefore equals to roughly three iterations of standard RANSAC in
terms of CPU time. This means, unfortunately, that in practice it is usually
faster to not apply the GPS based weighting on the candidate matches unless
the outlier ratio is very high. It might be possible to develop more advanced
selection strategies which would avoid full evaluation of the likelihoods for each
point.
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Abstract. For structured-light scanners, the projective geometry be-

tween a projector-camera pair is identical to that of a camera-camera

pair. Consequently, in conjunction with calibration, a variety of geomet-

ric relations are available for three-dimensional Euclidean reconstruction.

In this paper, we use projector-camera epipolar properties and the pro-

jective invariance of the cross-ratio to solve for 3D geometry. A key con-

tribution of our approach is the use of homographies induced by reference

planes, along with a calibrated camera, resulting in a simple parametric

representation for projector and system calibration. Compared to exist-

ing solutions that require an elaborate calibration process, our method is

simple while ensuring geometric consistency. Our formulation using the

invariance of the cross-ratio is also extensible to multiple estimates of 3D

geometry that can be analysed in a statistical sense. The performance

of our system is demonstrated on some cultural artifacts and geometric

surfaces.

Keywords: 3D Reconstruction, Structured-Light Scanner, System Cal-

ibration, Projector Calibration, Homography, Cross-Ratio.

1 Introduction

While the two-view (epipolar) geometry can be used to solve for the 3D scene
geometry via triangulation [1], the need to obtain reliable point correspondences
is a significant limitation. In structured-light systems, this problem is overcome
by projecting a known series of light patterns on the object of interest that is
imaged through the camera. As the projected patterns are known, a dense set of
correspondences can be established between the projector pixels and the camera
pixels. Typically, structured-light patterns are efficiently projected by codifying
the view-space either spatially [2], temporally [3] or by geometric arrangement
of cameras [4]. See [5] for a review of various pattern codification strategies.

A projector can be effectively modelled as a ‘direction-reversed’ camera, im-
plying that in projective-geometric terms it can be treated as a camera. Conse-
quently, the projector-camera pair can be treated as a two-view camera pair. The
geometry of such a camera pair is well understood and can be effectively applied
to the dense correspondences available in structured-light systems. While the
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c© Springer-Verlag Berlin Heidelberg 2009
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epipolar relations are sufficient to recover structure by triangulation, such depth
estimates are only available in a projective sense. To recover the true Euclidean
shape (or depth) of an object, we need to carry out a calibration procedure.
A common approach for system calibration involves the projection of coded-
light patterns on one or more reference planes that allows for the calibration
information to be recovered [6,7,8,9]. In terms of the overall system accuracy,
there exists a trade-off between the complexity and precision of the calibration
method and the ease and accuracy of the estimation of shape. While some re-
construction methods work without any calibration, such approaches suffer from
limited accuracy. In [10] the system accuracy is improved by a non-linear mini-
mization of an energy functional involving all 3D-points. However, this implies
a significant computational complexity. In [9], the complexity of calibration is
transferred to precisely controlled mechanical movement of the reference planes
that maintain a fixed orientation, i.e. the reference planes have to be parallel. In
contrast, systems that calibrate all components explicitly often involve an elab-
orate calibration process [8]. In [11] and [7] the projection planes are calibrated
resulting in an over-parameterisation of the geometry thus requiring additional
consistency constraints. As will be described later, our approach of parameter-
ising the projector and system calibration information by using homographies
induced between camera and projector by known reference planes reduces the
complexity of the calibration process and achieves accurate estimation.

In our approach, the frame of reference for measurements is attached to the
camera which is calibrated using a commonly used method [12]. To calibrate
the scanner system, one common approach is to project sinusoidal patterns onto
reference planes to generate reference phase maps [6,9]. By relating the phase-
information between the projector and image pixels, a dense mapping is ob-
tained. However, this is an over-parameterisation of the calibration information.
Since the reference object is a plane, we can use the projective relationships
induced by a plane. In our approach, we estimate the homographies between the
projector-camera pair induced by the reference planes to encode the reference
phase maps. Given the large number of correspondences between the projector
and camera pixels, such homographies can be accurately estimated, resulting in
an accurate parameterisation of the reference phase maps. For the estimation
of the three-dimensional structure of the imaged object, we utilise the fact that
the cross-ratio of four collinear points is invariant to projective transformations.
In conjunction with epipolar geometry, we utilise the cross-ratio to solve for
the three-dimensional geometry that utilises the calibration information of two
reference planes. In contrast with the methods that require precise placement
of the reference planes, our method does not impose any such restriction. Our
formulation is also extensible to utilise more than two reference planes. Multiple
reference planes allow us to use multiple cross-ratio relationships that allow us
to compute more than one estimate of the depth of a given point. Such estimates
are amenable to statistical analysis which allows us to derive both the shape of
an object and associate reliability scores to each estimated point location.
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Fig. 1. The correspondences between camera and projector are related by the epipolar

relationship described by the fundamental matrix. In addition, the 3D plane Π induces

a homography that relates the correspondences in the two views. See text for details.

2 Projective Geometric Relations

For two views (projector-camera pair in our case), given a point in the first
view p1 (in homogeneous form) and its corresponding point p2 in the second
view, the epipolar relation is stated as p2

TFp1 = 0, where F is the fundamental
matrix. While this is always true for object points in general position, for an
imaged plane (i.e. reference plane in our case), there is an additional linear
mapping that is satisfied by corresponding points, i.e. matched points satisfy
the relationship p2 = Hp1 where H is the homography induced by the reference
plane, see Fig. 1. In the case of an implicit system calibration process using a
reference plane, each reference phase map act as a function that uniquely maps
each camera pixel location to the corresponding location in projector’s display
plane. While such a mapping function exists for any reference object, in the
case of a plane this mapping can be fully described by a linear transformation
determined by the homography induced by it. In other words, in general each
reference phase map has as many degrees of freedom as the number of pixels
in image plane. However, in the case of a reference plane, there are only eight
degrees of freedom (9 elements for the 3×3 homography minus 1 global scale). As
a result, for each reference plane used, the entire mapping between the camera
pixels and the projector plane can be easily and robustly estimated in the form
of the induced homography H .

Throughout the above formulation using the induced homography, we use a
pin-hole model for the projector and the camera. In [6] and [9], the authors use
a complete reference phase map so as to account for non-linearities like radial
distortion in the projector that deviate from an ideal pin-hole model. However, [6]
ignores such non-linearities in their computation of the projector center and 3D
point locations. In general, the degree of such non-linear distortion is only of
significance at the periphery of the projected set of rays and in an area centered
around the optical axis of the projector, the linear pin-hole model is accurate
enough. As a result, we choose to model the projector as a pin-hole camera
and only use the central region of the projected image for scanning objects.
By approximating the non-linear effects we gain significantly in that the entire



834 D.S. Dhillon and V.M. Govindu

reference phase map can be described by a 3× 3 homography matrix which can
be estimated with high accuracy using the high redundancy of correspondences
available. A key advantage of this approach is that the parametric form of the
homography significantly simplifies both the acquisition of calibration data and
its estimation. Using the homographies allows us to place the reference planes in
general position. This eliminates the need for any precisely controlled placement
of reference planes as well.

To compute homographies, we project a single fixed grid pattern on each
reference plane, see Fig. 3(b), and establish correspondences for the grid corners
in the respective camera image. These correspondences are then used to solve for
the homography induced between the projector and the camera. Since all such
correspondences (i.e. for each reference plane) satisfy the epipolar geometry as
well, we use all of them to robustly estimate the fundamental matrix [13]. Using
a single projected pattern per reference plane simplifies the acquisition process
and estimation for system calibration. Further, we can use the same calibration
plane for acquiring both the image of the calibration marker pattern, see Fig. 3,
and the image of the grid pattern projected onto it for computing homography.
This incorporates the system calibration into the process of camera calibration.

3 3D Estimation Using the Cross-Ratio

Once the implicit calibration is carried out using the reference planes we use
the following approach for estimate the 3D geometry of an object. Throughout,
we use a ‘camera-centric’ approach, i.e. we attach the frame of reference to the
camera, see Fig. 2. For every image pixel i, there is a ray Ri passing through
this pixel and the camera optical centre at Oc = (0, 0, 0). Let this ray intersect
the reference planes ΠA and ΠB at points Ai and Bi respectively. The location
and orientation of the reference planes in general positions can be resolved using
a calibrated camera [12] 1. Then for each camera pixel i we can compute 3D
locations of the reference points Ai and Bi. Let (ui, vi) be the co-ordinates of
pixel i and K be the camera calibration matrix. Then the ray Ri passes through
the origin Oc and the normalized co-ordinates are K−1[ui, vi, 1]T , i.e. any point
on the ray is given by λK−1[ui, vi, 1]T for some λ. Consequently we can solve
for the 3D points Ai and Bi as the intersection of the ray Ri with the planes
ΠA and ΠB respectively.

During scanning, the unknown 3D point that is imaged at the pixel i also
lies on Ri and we denote it as Xi. Thus, for every camera pixel i we have 4
collinear points on line Ri, i.e. {Oc,Ai,Bi,Xi}. The ray Ri projects onto the
projector plane as a line li. From epipolar geometry we know that the camera
optical centre Oc projects onto the projector plane at the epipole ep that can be
computed from the fundamental matrix [1]. Using the estimated homographies
Ha and Hb, we can project the points Ai and Bi onto the projector plane at
1 We use a calibration plane with known marker locations in lieu of every reference

plane. Thus, each reference plane’s location & orientation and the global scale for

the scan are resolved using Euclidean distances between markers.
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Fig. 2. Camera with optical center Oc and projector with optical center Op are placed

in general positions. Two reference planes Πa and Πb are sequentially placed in general

positions. Points Ai and Bi lie on planes Πa and Πb respectively. Point Xi is at an

unknown location. All of points Ai, Bi and Xi project at pixel location i in image

plane. Points Ai, Bi and Xi are illuminated by light from pixel locations ai, bi and xi

respectively, in projector’s display plane. ec is the epipole in camera’s image plane and

ep is the epipole in projector’s display plane.

ai and bi. Finally, by decoding the phase relationship for pixel i during the
scanning process, see Section 3.1, we can find the corresponding point for the
camera pixel i as xi on the projector plane.

It is well known that for any four collinear points, there exists a cross-
ratio that is invariant under projective transformations [1]. For collinear points
p1,p2,p3,p4, the cross-ratio is defined as

CR(p1,p2,p3,p4) =
||(p1 − p3)(p2 − p4)||
||(p2 − p3)(p1 − p4)||

Since the mapping from the ray Ri to the line li on the projector plane is
a projective transformation, we note that the cross-ratio is preserved for the
corresponding points, i.e. CR(Oc,Ai,Xi,Bi) = CR(ep, ai,xi,bi)2. In this re-
lationship, the only unknown quantity is the location of the 3D point Xi and
since the cross-ratio on the right-hand side can be estimated, we can solve for
the location of the 3D object point Xi.

3.1 Phase-Shifted Patterns

While we are unable to present all details due to space constraints, here we briefly
sketch the nature of the sinusoidal projection patterns used in our approach.
For a set of N phase-shifted sinusoidal patterns, where N is a power of 2, the
projection image Sn, n = 0 · · · (N − 1), is given as Sn

c = A + Bsin(2π(c/P +

2 Since every ray passes through the origin Oc, the origin and the epipole ep are present

in every cross-ratio that we compute. Thus, we need to use only two reference planes.

To avoid limiting conditions for cross-ratios, we ensure that reference planes don’t

intersect in the field of view. This can be done easily without any precise control.
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n/N)). Here A is a dc-offset that ensures that the signal Sn
c is always non-

negative, c is the column index of the projector pixel and P is the period of the
sinusoidal in pixels units. Since phase value is not unique beyond a single period,
usually multiple sets of sinusoidal patterns with different periods (P ) are used in
conjunction to uniquely encode view-space [5,6]. In our case, instead we project
additional graycode patterns such that, for n = 0, area corresponding to each
sinusoidal period in the projector’s display plane has one unique graycode.

For a camera image pixel i, it’s phase map value is computed from N im-
ages Ik, k = 0 · · · (N − 1), corresponding to N sinusoidal patterns projected on
unknown surface using following equation

φi = arctan

(∑
k
Ik
i cos(2πk/N)∑

k
Ik
i sin(2πk/N)

)
(1)

By utilising decoded graycodes to unwrap the phase map, we derive a phase
map that establishes unique correspondence between every camera pixel and its
corresponding projector plane location. In addition, we also suppress shadow
areas from which no meaningful structure information can be derived. Further,
we note that the cross-ratio of {ep, ai,xi,bi} can be measured using column
co-ordinates alone by projecting the epipolar line li onto the column-axis. While
doing this does not change the cross-ratio, it makes use of row co-ordinates
redundant. Thus, sinusoidal patterns encoding the projector plane along only
one-dimension are sufficient, thereby reducing the number of patterns needed to
half.

3.2 Error Statistics

If more than two reference planes are used, we can derive multiple estimates of
the location of the 3D point. Since the process of acquiring images for calibrating
reference plane homographies is simple and incorporated into camera calibration
process, we can easily use more than two reference frames. If we use N reference
frames, we can have as many as N(N−1)

2 pairs of reference frames, each of which
gives us an estimate of the location of the 3D point imaged at a pixel i. As a
result we use these estimates of the 3D location of a point to derive both an
average 3D location and also its variance along the ray Ri. Thus, in addition to
solving for a 3D surface we can also associate a measure of accuracy with each
estimated 3D point. This accuracy (or conversely variance) information can be
used to improve post-processing algorithms that either smooth the point cloud
representation to reduce the effects of noise or to develop a robust estimate of
the 3D point location.

4 Experiments

A set of quantitative and qualitative tests were carried out to evaluate the ac-
curacy and efficiency of the proposed system. Throughout, we used a Canon
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(a) (b)

Fig. 3. (a) Camera Image of calibration pattern with plus marks (b) Camera Image of

the grid pattern projected onto reference plane to compute homographies (with colours

inverted)

S5IS digital camera and an NEC NP400 LCD projector set at resolutions of
2048×1536 and 1024×768 pixels respectively. The object was usually placed at
around 1.1 meters from the camera. The reference plane was placed between 900
mm to 1300 mm from the camera in different positions. The projector was placed
at around 250 mm on right-side of camera at an angle between 5◦-20◦ . For cal-
ibrating the camera and also to solve for the reference plane equations, we used
the Caltech Calibration Toolkit [14]. Each induced homography was estimated
using 121 grid point correspondences (see Fig. 3(b)). All such correspondences
for all reference planes satisfy epipolar geometry and their collective set was
used to estimate fundamental matrix using MAPSAC from Torr’s library [15].
We used 32 phase-shifted sinusoidal patterns varying along the column axis with
an offset(A) of 128 and amplitude(B) of 96. In addition, 4-bit graycode patterns
were used to label the sinusoidal periods (P = 64 pixels) , (1024/64 = 24), along
with an extra bit for accurately resolving phase unwraps at boundary pixels for
sinusoidal periods. Finally, after thresholding the amplitude at a level of 25 to
identify shadow pixels, we smoothed the phase signal using a Gaussian low-pass
filter. For visualising the results, we generated mesh either by using Delaunay tri-
angulation with X and Y co-ordinate planes for the point cloud or by generating
grid mesh for adjacent pixels in image plane. Texture information was extracted
from an image of the scene and the final results were viewed in MeshLab [16].

4.1 Quantitative Evaluation (Parametric Surfaces)

A plane surface was placed in an unknown position & orientation and scanned.
Parametric equation of this plane was estimated by fitting a plane on recon-
structed 3D points. Reconstruction error was determined for each individual
point as its distance from the estimated parametric plane. Root Mean Square
(R.M.S) value for these error distances was computed to analyse the efficiency
of the scan. For Plane 1, we computed error measures with selective inclusion
or exclusion of various steps for proposed approach and results are presented in
Table 1. Up to 5 reference planes were used for comparison. In addition, basic
cross-ratio scanning approach using three complete reference phase maps was
implemented. We used the same set of reference planes and image-dataset for all
the scan results, for Plane 1, presented in Table 1. As compared to basic method,
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Table 1. Error measures for planar surfaces with different methods/conditions : For

Plane 1, (a) represents basic cross-ratio method using 3 complete reference phase maps

(no homographies). (b) is for method with 3 reference maps represented using homogra-

phies; (c),(d),(e) & (f) used 2,3,4 & 5 reference map homographies along with epipolar

geometry. For Planes 2,3 & 4 four reference map homographies along with epipolar

geometry were used. All Units are in (mm)

Absolute
Error

Plane 1
Plane 2 Plane 3 Plane 4

(a) (b) (c) (d) (e) (f)

Median 0.0988 0.0979 0.0974 0.0980 0.0979 0.0977 0.073 0.047 0.085

Max 0.6593 0.4463 0.4444 0.4470 0.4482 0.4468 0.783 0.323 0.592

R.M.S 0.1426 0.1266 0.1264 0.1262 0.1262 0.1259 0.110 0.071 0.125

(a) (b) (c)

Fig. 4. Scan results for simple surfaces. Insets on top-right corners show object images

: (a) A Spherical surface (b) A Bottle that is a surface of revolution. The outer surface

is rendered in darker shade (c) Buddha figure with smooth surface variations.

using induced homographies improved scan accuracy by about 12%. Table 1 also
shows error measures for the reconstruction of the plane when placed in 3 other
unknown positions. Four reference planes were used along with fundamental
matrix for each of these reconstructions. R.M.S error for proposed approach is
observed to be on the order of one-tenth of a millimeter for each of these scans3.

4.2 Qualitative Evaluation

For a qualitative evaluation, we scanned objects with varying degrees of surface
complexity and the results were visually examined. Fig. 4 shows scan results for
simple surfaces that are seen to be accurately recovered. Fig. 5 shows results for
an object with surface of medium complexity, a clay figurine of the Hindu god,
Ganesh. Some fine details on the trunk, head and limbs are distinctly noticeable
in the surface rendering.

3 For evaluations with plane fitting we did not perform low-pass filtering on the phase

map.
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(a) Image (b) Point Cloud (c) Surface (d) With Texture

Fig. 5. Scan results for an object (70mm by 90 mm) with medium complexity, a clay

figurine of the Hindu god, Ganesh

Table 2. Error Statistics for non-parametric surfaces: Point-wise standard deviation

computed from multiple estimates for each surface using 5 reference planes

Error Measure (in mm) Ganesh idol Hanuman idol

Minimum σ 0.277 0.084

Maximum σ 1.111 1.334

Median of σ 0.546 0.439

We also scanned another artifact with a significantly high degree of surface
complexity, a clay idol with five heads, i.e. the panchamukhi Hanuman. The
reconstruction results are shown in Fig. 6. As it is seen, details like that of iris
in eyes, nostrils, hand prints and ornamental details on the chest are accurately
reconstructed. We also note that even finer details like etching marks on legs
are clearly visible. These details are shown in Fig. 6(c) with close-up views of
selected regions of the scan. Fig. 7 shows enlarged images for those regions.

4.3 Quantitative Evaluation (Non-parametric Surfaces)

Error statistics proposed in Section 3.2 were computed for Ganesh and Hanuman
idols. Results are presented in Table 2. Median value for standard deviation
for each scan is about half a millimeter. This implies, multiple estimates using
different pairs of reference planes give consistent results.

For the Hanuman idol, we physically measured a set of 5 distances using
Vernier Calliper with a precision of 0.05 mm. To account for human error, each
distance was measured 10 times and its average value was used for comparison.
Measured distances spanned across all 3 Euclidean dimensions. The same set
of distances were estimated from the reconstructed model as follows. The end-
points for each ‘distance segment’ were carefully located in the camera image.
The reconstructed 3D points corresponding to located pixels were used to esti-
mate the respective distance from the model. Results are shown in Table 3 and
absolute errors in distances estimated from reconstructed model are observed to
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(a) (b)

(c)

Fig. 6. Scan results for a complex object, a clay idol of the panchamukhi Hanuman

that is 250 mm wide and 280 mm high : (a) Lateral-view of the reconstruction (b)

Front-view (c) Image of the idol with associated close-up views for (i) Head, (ii) Eyes,

(iii) Ornament on chest, (iv) Rightmost hand & (v) Etching marks on left leg
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(a) Head (b) Chest (c) Hand & Leg (d) Marked Distances

Fig. 7. Some images of Hanuman idol: (a), (b) and (c) are enlarged images for the

regions with close-up view. (d) It indicates the Euclidean distances measured for quan-

titative evaluation of non-parametric surfaces.

Table 3. Distances measured physically and from reconstructed model for Hanuman

idol are shown along with absolute errors: (D1) From rightmost head’s eye to leftmost

head’s eye, (D2) From left-eye to the tip of rightmost hand’s thumb, (D3) From tip

of the head-mark to center of the flower at base (D4) From a key-point on abdominal

ornament to tip of the rightmost groove at base, (D5) From center of the necklace to

tip of the rightmost groove at base. All units are in (mm)

Source
Distance Measured

D1 D2 D3 D4 D5

Physical Object 128.515 168.415 161.540 69.565 137.290

Reconstructed Model 128.625 168.386 161.421 69.407 137.312

Absolute Error 0.110 0.029 0.119 0.158 0.022

be on the order of 0.1 mm. Thus, the accuracy of our approach to reconstruct
surfaces, in Euclidean sense, is observed to be high.

5 Conclusion

In this paper we have presented a method that uses homographies induced by a
reference plane to calibrate a structured-light scanner. By using the projective
invariance of the cross-ratio, we solved for the 3D geometry of a scanned surface.
We demonstrate the fact that accurate 3D geometric information can be derived
through this combination of implicit parameterisation for system calibration and
using the cross-ratio to solve for 3D geometry. In addition, by using more than
two reference planes we introduce simple statistical measures for the estimated
3D geometry that can be utilised for further intelligent processing. Future work
will introduce a maximum likelihood estimator applied to the cross-ratio that
will result in a statistically principled estimate of 3D geometry.
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Abstract. We present a novel method for 3D shape acquisition, based

on mobile structured light. Unlike classical structured light methods, in

which a static projector illuminates the scene with dynamic illumination

patterns, mobile structured light employs a moving projector translated

at a constant velocity in the direction of the projector’s horizontal axis,

emitting static or dynamic illumination. For our approach, a time multi-

plexed mix of two signals is used: (1) a wave pattern, enabling the recov-

ery of point-projector distances for each point observed by the camera,

and (2) a 2D De Bruijn pattern, used to uniquely encode a sparse subset

of projector pixels. Based on this information, retrieved on a per (camera)

pixel basis, we are able to estimate a sparse reconstruction of the scene.

As this sparse set of 2D-3D camera-scene correspondences is sufficient to

recover the camera location and orientation within the scene, we are able

to convert the dense set of point-projector distances into a dense set of

camera depths, effectively providing us with a dense reconstruction of the

observed scene. We have verified our technique using both synthetic and

real-world data. Our experiments display the same level of robustness as

previous mobile structured light methods, combined with the ability to

accurately estimate dense scene structure and accurate camera/projector

motion without the need for prior calibration.

1 Introduction

In the last few decades, there has been a continuous improvement in the quality
of synthetic imagery produced by rendering techniques. As a result, the visual
quality of present day rendered graphics mostly depends on the quality of the
provided 3D models, and less on the choice of a specific method. As physical
entities often exhibit small shape imperfections, modeling them into detail can
be a tedious task. To this end, automatic shape acquisition systems have been
proposed. In this work we will present such a novel system.

One traditional class of shape acquisition methods, which utilizes cameras
to obtain a 3D reconstruction, is based on matching distinguishable features
observed from multiple viewing locations [1]. However, acquiring these corre-
spondences is non-trivial (e.g. disappearing features due to specular highlights,
depth discontinuities, . . . ) or correspondences are ambiguous as multiple feature
candidates match due to the uniform or repetitive nature of the texture around
the feature. In this light, alternative techniques have been proposed.

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 843–854, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



844 C. Hermans et al.

A traditional approach to circumvent the correspondence problem is known as
structured light. In this group of methods, one or more cameras are replaced by a
projector, which is capable of creating easily distinguishable features through the
use of controlled illumination [2,3,4,5,6]. These techniques assume Lambertian
reflection properties, an assumption that almost never holds in practice. In real
world scenes, the majority of materials exhibit much more complex reflectance
properties such as specular reflections off a piece of plastic, or subsurface scat-
tering within a piece of marble. These deviations from the assumed Lambertian
reflection model are a common source of mismatches.

In the work of Hermans et al. [7] only the presence of a reasonable amount
of Lambertian reflection is assumed, while the influence of specular reflections
and diffusion due to scattering is regarded as minimal, as these phenomena
only have a minimal effect on the observed per pixel principal frequency caused
by the translating projected stripe pattern [6,8]. This principal frequency is
linearly related to the per pixel depth value, providing an excellent cue for
dense depth reconstruction. In a similar fashion, their method is robust against
interreflections, as high frequency patterns become sufficiently blurred by second
and higher order reflections [9,10]. However, depth is recovered with respect to
the projector’s principal plane. Hence, if we want the computed depth values
to coincide with each pixel’s camera depth, the camera’s principal plane needs
to be perfectly aligned with respect to the projector’s principal plane. In our
work, no delicate hardware alignment is required and depth values are measured
directly in camera space instead of projector space.

In practice, projectors suffer from a limited depth-of-field range. This is due to
the fact that they are most commonly used to project on planar surfaces, more
or less aligned with the image plane, and that they are required to provide bright
projections, which suggests a large aperture [11]. Although the majority of pro-
jector based acquisition methods have a limited scanning volume because of this
property, there are existing methods that are insensitive to this problem [7,12],
or even exploit it as a depth cue [11,13]. In a similar fashion, most methods
are sensitive to camera defocus, while others ignore [7] or exploit it [14,15,16].
Our approach is to a large extent insensitive to camera and projector defocus,
allowing for scanning extended volumes compared to the defocus sensitive ap-
proaches.

In this work we present a mobile structured light method which obtains depth
estimates directly in camera space, combining spatial encoding and frequency
analysis using a sliding projector [7] alternating between a sine wave and a De
Bruijn pattern. As the per pixel frequency analysis is robust against specular
highlights, subsurface scattering, interreflections and camera/projector defocus,
projector depths can robustly be found. After calibration, based on the informa-
tion from the spatial encoding, we obtain a 3D reconstruction of the observed
scene. After estimating the position and orientation of the camera in the scene,
we can convert the dense set of point-projector depths into a dense set of point-
camera depth values. Compared to previous work, this increases the flexibility
of the approach considerably, as a delicate setup alignment is no longer required.
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2 Related Work

Throughout the years, a large body of work has been developed on camera based
depth acquisition methods. For the purpose of this paper, we will focus on two
distinct categories: triangulation based and plane sweeping methods.

2.1 Triangulation Based Methods

The common denominator of all triangulation based methods is their search for
corresponding features, visible in multiple camera images taken under multiple
viewpoints. The images are recorded by two or more cameras [17,18] placed in a
(multi-viewpoint) stereo configuration, or by a single moving camera [19,20,21].
Although this is very common way of obtaining depth information for a scene,
this class of algorithms generally has problems with reconstructing uniform
regions, depth discontinuities, specular highlights or other more exotic BRDFs
[17,18]. Our proposed technique can deal with the previous difficulties, although
perfectly mirroring and fully transparant materials are beyond its scope.

An alternative to detecting corresponding features is the creation of easily
distinguishable features using controlled illumination (usually in the form of
a projector). This enables a more robust labeling, especially within previously
uniform regions. This labeling comes in a variety of forms, from projecting a
single spatially encoded pattern [3,4] such as De Bruijn codes [22], to a temporal
encoding scheme such as binary/Gray codes [2,5] or viewpoint encoding [23].
Single pattern methods typically yield very fast but lower quality approxima-
tions, whereas methods that employ multiple patterns are slower, but higher
quality acquisitions. However, both types are generally sensitive to specular
outliers, have problems with global light transport (i.e. subsurface scattering
and interreflections), or encounter difficulties on depth discontinuities. Problems
due to the global light transport can be reduced, employing high frequency
illumination modulation [10,24,8], light polarization [25,6] or immersing the
scene in a fluorescent dye [26]. Recently, Mohit et al. [12] have been able to
fully eliminate global illumination. However, their method does not allow for
any camera defocus. Our proposed technique is highly insensitive to the typical
problems of global light transport, and it does not suffer from camera defocus.

2.2 Plane Sweeping and Related Methods

Plane sweeping methods work fundamentally different, compared to their trian-
gulation based counterparts. The specific details behind each technique aside,
plane sweeping and related methods have a set of labels, each corresponding to
one depth value, for which they can compute a cost function. Each pixel thus
can be assigned a label which minimizes the given cost function. These cost
functions come in many forms, e.g. by analyzing camera (de)focus [14,15,16],
projector (de)focus [11,13], quadratic light attenuation [27] or frequency analysis
of a physically linearly moving vertical stripe projection [7].



846 C. Hermans et al.

Fig. 1. A picture of our setup: a projector is translated in the direction of its horizontal

axis, while a static camera observes the scene

A common advantage to these methods consist of the possibility to create
a dense depth map, as they are considerably less prone to occlusion problems.
Unfortunately, these methods are either limited to a narrow class of materials, or
they come with setups that are rather complex to build or handle. For example,
defocus kernels and their corresponding depths have to be calibrated [11,12],
camera and projector have to be confocal [11,12] or the linear translation has to
be perfectly parallel to the camera’s image plane [7].

2.3 A Hybrid Method

The mobile structured light method proposed in this work is a hybrid method,
combining ideas from both triangulation and plane sweep techniques. By alter-
nating between a vertical sine wave pattern and a spatially encoded pattern,
projected by an unaligned sliding projector, we are able to obtain depth values
with respect to both the projector as well as camera. Previously, it was impossible
to obtain a depth map in camera space using a sliding projector technique for
arbitrary camera positions. Our approach is considerably less delicate since the
projector does not have to be perfectly aligned with the camera for a desirable
reconstruction in camera space. Additionally, because we have a euclidian re-
construction, we are able to calibrate our system without any knowledge of the
projector’s speed or display angle, stripe width, or the camera’s recording speed,
using a sphere with a known radius as a calibration object.
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3 Our Approach

Our method produces a depth estimate for each individual pixel, as a result of a
three-step process. First, we analyze the temporal intensities of a projected wave
pattern on each pixel, providing us with pixel depths from the perspective of the
projector. Then, we use a 2D De Bruijn pattern fitted onto this wave pattern to
uniquely label a sparse set of projector pixel coordinates. This labeling allows us
to perform a sparse reconstruction of the scene, based on projector depths only.
In order to establish camera depths for a dense reconstruction, we compute the
camera matrix from this sparse set of 2D-3D correspondences.

3.1 Recovering Point-Projector Distances

For the first step of our algorithm, we assume that the mobile projector il-
luminates the scene with a sinusoidal stripe pattern. As has been shown by
Hermans et al. [7], there exists a linear relationship between the projector depth
of the points and the period of their observed wave patterns. Converting the
observed changes in intensity over time into an equivalent frequency domain
representation allows for a search for the dominant frequency f , which can be
directly converted into a corresponding depth value µ:

µ =
s

f
(1)

The scaling factor s is uniquely defined by the parameters of the projector and
the camera. For more detail on this phase, including its robustness in case of
various material properties, we refer to the paper mentioned above.

3.2 Labeling the Projector Pixels

Temporal Encoding. Once we have a projector depth estimate for all our
scene points, we want to retrieve the projector’s position at each timestep. In
order to achieve this, we need to have a set of projector points which we can track
throughout the entire sequence. This requires uniquely encoding a sparse set of
spatial positions in the illumination pattern in such a way that, based solely on
the analysis of the temporal intensities, camera-projector correspondences can
be inferred. Thus, we create a mapping from a 1D temporal code to a 2D spatial
position.

De Bruijn Sequences. In combinatorial mathematics, a k-ary De Bruijn
sequence B(k, n) of order n is a cyclic sequence of a given alphabet A of size
k, for which every possible subsequence of length n in A appears as a sequence
of consecutive characters exactly once. As such, every position in a B(2, n) De
Bruijn sequence is directly linked to a unique binary subsequence of length n,
making it an excellent candidate for our 1D pattern.
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Fig. 2. (left) 1D sine wave pattern used to recover point-projector depth estimates,

(center) 2D spatially encoded pattern, (right) close-up of two patches of both

patterns, in which it becomes clear the employed binary code is mapped onto the

pre-existing wave pattern, (bottom) 1D De Bruijn sequence used to spatially encode

a sparse set of 2D positions in the center image. Note that each of the encoded

2D positions is encoded by a unique 16 × 1 window which maps to a unique 16-bit

subsequence in the De Bruijn sequence.

Whilest many algorithms exist for the efficient generation of general De Bruijn
sequences, we have opted for the use of (16-bit Fibonacci) Linear Feedback Shift
Registers [28]. Starting from a random 16-bit pattern, excluding the state in
which all bits are equal to zero, each next bit can be generated as a linear
function of its previous state. We can continue this process until we have cycled
through all states except the all-zero state.

Signal-to-Code Conversion. Assuming our camera has observed a subse-
quence of a De Bruijn sequence, there still remains the matter of scale that
needs to be resolved in order to convert a temporal intensity signal into a binary
code. We need to be able to establish the beginning and the end of each single
bit in the code. To this end, we have opted to map the De Bruijn sequence onto
the same wave pattern we have used to establish point-projector distances (see
Figure 2). Each recorded wave has a known period p, directly related to point’s
distance from the projector’s principal plane, which was already established in
an earlier step using eq.(1). Also, in order to avoid aliasing effects due to light
bleeding from one line of code into another, we have opted to perform horizontal
interlacing into the pattern.

Assuming we are able to simultaneously observe both the wave pattern and
the De Bruijn pattern, we are able to locate the timesteps at which the indivual
bits of the De Bruijn code are visible at the local maxima of each wave period.
Comparing the intensity value of the observed De Bruin signal to the local
extrema within the observed wave period provides us with a simple and robust
method for resolving the De Bruijn code. If the observed De Bruijn signal is
sufficiently close to the local maximum, we assign a 1, otherwise we assign a 0.
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Fig. 3. The observed intensities in the top sequence, contain information of two

separate signals: the scene point illuminated by the wave pattern (bottom sequence,

blue), and the scene point illuminated by the De Bruijn pattern (bottom sequence,

red). Separating these signals, and interpolating the missing information allows for (1)

frequency/period estimation on the wave pattern, and (2) recovering the binary code

from both signals (e.g. the depicted sequence clearly encoded the sequence 1001010101).

In the example above, the De Bruijn pattern is projected at even timesteps, while the

wave pattern occurs at odd timesteps.

Time Multiplexing. In the previous section, we have assumed the simultane-
ous observation of both the wave pattern and the De Bruijn pattern. In practice,
a projector can only emit one illumination pattern at a time. We simulate this by
time multiplexing the patterns displayed by our projector, alternating between
the wave and De Bruijn pattern at the same frequency as the camera, and
demultiplexing the observed intensities into two separate signals. Missing values
can then be interpolated from the available data if needed be (Figure 3).

3.3 Recovering Structure and Projector Motion

Once we have a sparse set of camera-projector pixel correspondences, the next
step is to perform a sparse reconstruction of the scene. For the remainder of this
section, we will assume the intrinsic parameters of the projector are known.

For each scene point X i =[xi, yi, µi]T , we have a set of projector pixels [ut, vt, 1]T :

PtX
i =

⎡⎣1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
−λt
0
0

⎤⎦
⎡⎢⎢⎣
xi

yi

µi

1

⎤⎥⎥⎦
=

⎡⎣xi − λt
yi

µi

⎤⎦ ∝
⎡⎣ut

vt

1

⎤⎦
(2)
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Fig. 4. (left) A random image from our Stanford bunny dataset, with the

superimposed sparse set of identified projector pixels at that timestep. The color code

represents the projector pixel’s horizontal position, from left (yellow) to right (red).

(right) Visualization of the computed sparse reconstruction, based on the information

from the projector pixel correspondences.

From eq.(2) one can see the only unknown parameter in this equation is λ, related
to the projector’s speed. An initial estimate of this parameter is computed by
averaging over all λirs values, r and s being random timesteps at which point
X i registered known projector pixel positions [ur, vr, 1]T and [us, vs, 1]T , where

λirs = µi

(
ur − us

s− r

)
(3)

Using the initial estimate, we employ Levenberg-Marquardt minimization to find
the optimal λ which minimizes the overall reprojection error of all X i for all Pt.
This results in a sparse reconstruction of the scene, e.g. as depicted in Figure 4.

3.4 Recovering Camera Parameters and Dense Depth Map

For each point X i of the sparse dataset, we have the corresponding camera pixel
coordinates [ui, vi, 1]T . From this set of correspondences, we can estimate the
parameters of the camera matrix, using one of many available methods [29].

Once the position and orientation of the camera are known, we convert the dense
map of point-projector distances into a corresponding camera depth map, by in-
tersecting each camera pixel’s back-projected ray with the plane π(0, 0, 1,−µi).

3.5 Calibrating the Setup

The initial per pixel depth computation, as briefly described in section 3.1,
assumes that the scaling factor s in eq.(1) is known. However, in practice it
is not always easy to accurately recover this constant, as it is dependent on
many parameters of both the projector and the camera [7]. However, using a
single sphere of a known radius, we can accurately recover this scale factor.
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Table 1. Projector pixel reprojection errors for the displayed datasets. Note that

these errors are for superpixels consisting of 8 × 8 pixels, and should be interpreted

accordingly.

Dataset Bunny 4 Objects Sphere Flag House

Mean Error 0.997067 0.992447 1.092911 0.858623 1.042102

Standard Deviation 0.012627 0.016163 0.014703 0.014192 0.014237

Each choice of the parameter s gives rise to a sparse set of 3D points X i =
[xi, yi, s

fi ]T . By fitting a sphere through these points, we can compute the overall
error for each instance. Applying iterative minimization of this error allows us
to quickly find the optimal scale factor.

4 Discussion

There are several aspects of to our method that require verification: (1) the
robustness of the depth estimation component for different material properties;
(2) the influence of time multiplexing to these depth estimation results; (3) the
robustness of the signal-to-code conversion algorithm; and (4) the quality of the
estimated reconstruction. As the first of these four items has already been the
subject of discussion in the work of Hermans et al. [7], we will focus in this work
on the other three items. Results from our method are shown in Figure 5.

Time Multiplexing. Compared to previous work, time multiplexing effectively
cuts our amount of potential depth planes in half. In order to combat this issue,
we could add color multiplexing to our method, alternating between the R/GB
and GB/R channels for the wave/spatial code patterns, but we have yet to
further explore this option.

Signal-to-Code Conversion. Our experiments have indicated that. In order
to avoid mismatches, we need to use tri-state codes instead of binary codes,
assigning ’unknown’ bits in the code when there is no clear inclination towards
a local minimum or maximum. A simple backtracking algorithm suffices to
uniquely identify the observed code. However, as mismatches are impossible to
avoid, outlier rejection is required at the end of this step.

Estimated Reconstruction. The error metric we discuss in order to validate
our estimated reconstruction is the (projector pixel) reprojection error. Using a
projector stripe width of 8 pixels, we are able to encode width×height

64×4 different
projector pixel positions. After estimating the sparse reconstruction, these posi-
tions are reprojected back to the projector’s image plane at each timestep, with
an average reprojection error of approximately a pixel for each block of 8 × 8
pixels per position (see table 1).
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Fig. 5. A set of results produced by our method, each consisting of four columns:

(1) the fully illuminated scene; (2) the estimated dense depth map, computed from

the projector’s perspective; (3) the computed sparse reconstruction; (4) the converted

depth map, with respect to the camera instead of the projector. All results were

generated with 1500 frames or less, using patterns with a wave period of 8 projector

pixels.
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Fig. 6. Rendered reconstructions of the ’house’ dataset. (left) A reconstruction with

the superimposed camera pixel depth. For reference, we display a plane parallel to the

camera’s image plane. (right) A reconstruction with the superimposed color image.

Note that we are able to capture very fine detail such as the relief on the door and

windows, or the tiles on the roof.

5 Conclusions

In this paper we have extended the scope of mobile structured light for dense
depth estimation, by relieving the need for finely tuned camera-projector config-
urations. Our method combines the ability of previous mobile structured light
methods to cope with a wide variety of materials, with the ability to estimate
both structure and motion for the captured scene. Additionally, we provide a way
to calibrate the proposed setup by automatically determining the scale factor,
without prior knowledge of the related camera and projector parameters.
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A New Algorithm for Inverse Consistent Image
Registration
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Abstract. This paper presents a novel variational model for inverse

consistent deformable image registration. This model deforms the source

and target image simultaneously, and aligns the deformed source and

deformed target images in the way that the both transformations are

inverse consistent. The model does not computes the inverse transforms

explicitly, alternatively it finds two more deformation fields satisfying

the invertibility constraints. Moreover, to improve the robustness of the

model to noises and the choice of parameters, the dissimilarity measure

is derived from the likelihood estimation of the residue image. The pro-

posed model is formulated as an energy minimization problem, which

involves the regularization for four deformation fields, the dissimilarity

measure of the deformed source and deformed target images, and the in-

vertibility constraints. The experimental results on clinical data indicate

the efficiency of the proposed method, and improvements in robustness,

accuracy and inverse consistency.

1 Introduction

Image registration is a very important subject and has been widely applied in
medical research and clinic applications. The task of image registration is to
find a transformation field that relates points in the source image to their cor-
responding points in the target image. Deformable image registration allows
localized transformations, and is able to account for internal organ deforma-
tions. Therefore, it has been increasingly used in health care to assist diagnosis
and treatments. In particular, deformable image registration has become a crit-
ical technique for image guided radiation therapy. It allows more precise tumor
targeting and normal tissue preservation. A comprehensive review for image
registration in radiation therapy can be found in [1].

A deformable image registration is called inverse consistent, if the correspon-
dence between two images is invariant to the order of choice of source and target.
More precisely, let S and T be the source and target images, and h and g be the
forward and backward transformations, respectively, i.e. S◦h = T and T ◦g = S,
then an inverse consistent registration satisfies h ◦ g = id and g ◦ h = id, where
id is the identity map. By applying an inverse consistent registration, measure-
ments or segmentations from one image can be precisely transferred to the other.
In imaging guided radiation therapy, the inverse consistent deformable registra-
tion technique provides the voxel-to-voxel mapping between the reference phase

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 855–864, 2009.
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and the test phase in four-dimensional (4D) radiotherapy [2]. This technique is
referred to as ”automatic re-contouring”.

Inverse consistent deformable image registration has been an active subject
of study in the literature. There have been a group of work that developed
various of models in the context of large deformation by diffeomorphic metric
mapping, e.g. [3,4,5,6]. The main idea of this method is modeling the forward
and backward transformations as a one-parameter diffeomorphism group. Then,
a geodesic path connecting two images is obtained by minimizing an energy
functional symmetric to the forward and backward transformations.

Variational method is one of the popular approaches. This method minimizes
the energy functional(s) symmetric to the forward and backward transforms, and
in general, consists of three parts: regularization of deformation fields, dissimi-
larity measure on the target and deformed source image, and penalty of inverse
inconsistency [7,8,9,10]. In [7], Christensen and Johnson proposed to minimize
the following coupled energy functionals with respect to h and g alternatively:{

E(h) = E1 + ρ‖h− g−1‖2L2(Ω)

E(g) = E2 + ρ‖g − h−1‖2L2(Ω)

(1)

whereE1 = λEs(S◦h, T )+Er(u), E2 = λEs(T ◦g, S)+Er(v), h(x) = x+u(x) and
g(x) = x+v(x). The dissimilarity Es is defined as Es(S◦h, T ) = ‖S◦h−T ‖2L2(Ω),
and the regularity of deformation field u is defined asEr(u) = ‖a∆u+b∇(divu)−
cu‖2L2(Ω) where a, b, c > 0 are constants. The last term in both energy functionals
in (1) enforces the transforms h and g to be inverse to each other. This model
solves a system of two evolution equations associated with their Euler-Lagrange
(EL) equations iteratively, and gives considerably good results with parameters
chosen carefully. However, it needs to compute the inverse mappings g−1 and
h−1 explicitly in each iteration. This may cause accumulative numerical error in
the estimation of inverses and is computationally intensive.

The variational models developed in [8] and [10] have the same framework as
in [7] with different representations of Es, Er, and inverse consistent constraints.
In both of work the terms ‖h ◦ g(x)− x‖2L2(Ω) and ‖g ◦ h(x)− x‖2L2(Ω) are used
in the energy functional to enforce the inverse consistency. By using these terms
the explicit computation of the inverse transforms of h and g can be avoided
during the process of finding optimal forward and backward transformations.
The similarity measure in [10] is the mutual information for multi-modal image
registration. The Es(S ◦ h, T ) in [8] is ‖S ◦ h − T ‖2L2(Ω)/max |DT |. The reg-
ularization term Er(u) in [10] is a function of Du, and that in [8] is a tensor
based smoothing which is designed to prevent the transformation fields from
being smoothed across the boundaries of features. In [11,12] the proposed mod-
els incorporated stochastic errors in the inverse consistent constraints for both
forward and backward transformations.

In [13], Leow et al. proposed an approach that updates the forward and back-
ward transformations simultaneously by a force that reduces the energies E1 and
E2 in (1) and preserves the inverse consistency. However, it only takes linear or-
der terms in the Taylor expression to approximate the inverse consistency and
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hence the truncating errors can be accumulated and exaggerated during itera-
tions. This results in large inverse consistent error, despite that it can produce
a good matching quickly [14].

In this paper we propose a novel variational model to improve the accuracy, ro-
bustness and efficiency of inverse consistent deformable registration. The current
framework of variational method finds the forward and backward transforma-
tions that deform a source image S to match a target image T and vice versa.
In this work, we propose to deform S and T simultaneously, and the registration
matches the deformed source and deformed target images. Since the disparity
between deformed S and deformed T is smaller than that between deformed S
and fixed T or deformed T and fixed S. Therefore, the deformation by the bidi-
rectional simultaneous deformations is in general smaller than the deformation
by unidirectional deformation that deforms S full way to T or T full way to S.
Therefore, as shown in our experimental results deforming S and T simultane-
ously leads to a faster and better alignment than deforming S to the fixed T
or vice versa. Let u and ũ represent the deformation fields such that S(x + u)
matches T (x+ ũ). It is not difficult to verify that if u and ũ are invertible, then
the registrations from S to T , and T to S are inverse consistent. To avoid the
direct computation of the inverse transformations of x+ u(x) and x+ ũ(x), our
model seeks for two additional deformation fields v, ṽ such that x + u(x) and
x + v(x) are inverse to each other, and the same for x + ũ(x) and x + ṽ(x).
Moreover, the registration process enforces certain regularity for these four de-
formation fields, and aligns the deformed S and deformed T . Then, the optimal
inverse consistent transformations from S to T , and T to S can be obtained
simply by appropriate compositions of these four transformations. Although the
idea of deforming S and T simultaneously has been applied in the models where
the forward and backward transformations as a one-parameter diffeomorphism
group [5], our approach is different from the aspect that our model finds regular-
ized invertible deformation fields rather than a one-parameter diffeomorphism
group in [5], which brings expensive computational cost, and hence limits its
application in clinic. Moreover, our model allows parallel computations for all
the deformation fields to significantly reduce the computational time.

Furthermore, to improve the robustness of the model to noises and the choice
of the parameter λ (1) in that balances the goodness of matching and smoothness
of the deformation fields, we adopt the maximum likelihood estimation (MLE).
This results in a self-adjustable weighting factor that makes the choice of λ more
flexible, and also speeds up the convergence to the optimal deformation fields.

2 Proposed Method

For simplicity we suppose both the source image S and target image T are
defined on Ω ⊂ R2, and let ‖ · ‖ denote the L2 norm hereafter.

In this paper, we propose to deform S and T simultaneously, and align the
deformed S and deformed T . This means that ideally we pursuit for a pair of
half-way transformations φ, φ̃ : Ω → Ω such that S ◦ φ = T ◦ φ̃. To ensure
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the transformations from S to T and T to S are inverse consistent, φ and φ̃
are required to be invertible. To avoid direct computation of the inverses of φ
and φ̃ during iterations, we enforce the invertibility of φ and φ̃ by seeking for
ψ, ψ̃ : Ω → Ω, such that

ψ ◦ φ = id, φ ◦ ψ = id, and ψ̃ ◦ φ̃ = id, φ̃ ◦ ψ̃ = id. (2)

Then, once ψ and ψ̃ are obtained, we can construct the objective full-way trans-
formations h and g that deform S to T and T to S using h = φ◦ ψ̃ and g = φ̃◦ψ.
From (2), it is clear that h and g also satisfy the inverse consistent constraints
h ◦ g = g ◦ h = id. Let the functions u, ũ, v and ṽ represent the corresponding
deformation fields of the transformations φ, φ̃, ψ and ψ̃, respectively, i.e.

φ(x) = x+ u(x), φ̃(x) = x+ ũ(x), ψ(x) = x+ v(x), ψ̃(x) = x+ ṽ(x). (3)

Then, the constraints (2) can be rewritten as

u+ v(x+ u) = v + u(x+ v) = 0, ũ+ ṽ(x+ ũ) = ṽ + ũ(x + ṽ) = 0. (4)

Moreover, to improve the robustness of the algorithm, we use the negative
log-likelihood of the residual image as a measure of mismatching. Consider pixel
intensities of the residue image W := S ◦ φ − T ◦ φ̃ as independent samples
drawn from a Gaussian distribution of zero mean and to be optimized variance
σ2. Then we define the negative log-likelihood as the fitting term F :

F (u, ũ, σ) := ‖S(x+ u)− T (x+ ũ)‖2/2σ2 + |Ω| log σ. (5)

The advantages of using MLE over the Sum of Squared Distance (SSD) as the
fitting term will be shown later in this section and in the experimental results.

Now we propose our model as the following minimization problem:

min
u,ũ,v,ṽ;σ

R(u, ũ, v, ṽ) + λF (u, ũ, σ), s.t. condition (4) holds, (6)

where R is the regularization of the deformation fields(u, ũ, v, ṽ) defined by

R(u, ũ, v, ṽ) := ‖Du‖2 + ‖Dũ‖2 + ‖Dv‖2 + ‖Dṽ‖2. (7)

By using (3), it is easy to see that the final full-way forward and backward
deformation fields ū and v̄ can be obtained by

ū = ṽ + u(x+ ṽ) and v̄ = v + ũ(x+ v), (8)

respectively. Also, the inverse consistency of h and g can be preserved and ū +
v̄(x+ ū) = v̄ + ū(x+ v̄) = 0, which can be derived from (4).

The term F (u, ũ, σ) in (6) is from the negative log-likelihood of the residue im-
age as in (5). Minimizing this term forces the mean intensity of the residue image
to be zero, and allows it having a variance to accommodate certain variability.
This makes the model more robust to noise and artifacts, and less sensitive to
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the choice of the parameter λ than the model with the SSD. The parameter
λ balances the smoothness of deformation fields and goodness of alignments,
and affects the registration result greatly. In the proposed model, the ratio of
the SSD of the residue image over the smoothing terms is λ/2σ2 rather than
a prescribed λ. Since σ is to be optimized, and from its EL equation σ is the
standard deviation of the residue image., it updates the weight on the matching
term during iterations. When the alignment gets better, the σ, i.e. the standard
deviation of the residue as shown in (11), decreases, and hence the weight on
the matching term automatically increases. This self-adjustable feature of the
weight not only enhances the accuracy of alignment, but also makes the choice
of λ flexible, and results in a fast convergence.

To solve problem (6), we convert the constraints to classical quadratic penal-
ties in the energy functional, and obtain an unconstrained minimization problem

min
u,ũ,v,ṽ;σ

R(u, ũ, v, ṽ) + λF (u, ũ, σ) + µ (I(u, v) + I(ũ, ṽ)) , (9)

where I(u, v) = Iv(u) + Iu(v), Iv(u) = ‖u+ v(x+ u)‖2 and Iu(v) = ‖v+ u(x+
v)‖2. Similarly, we have I(ũ, ṽ). With sufficiently large µ, solving (9) gives an
approximation to the solution of (6).

3 Numerical Scheme and Experimental Results

Since the compositions in the invertible constraints Iu(v) and Iv(u) bring in
a difficulty to get explicit form of the EL equations for the deformation fields
and their inverses, we solve the following two coupled minimization problems
alternately instead of solving (9) directly:⎧⎨⎩

min
u,ũ

Ev,ṽ(u, ũ) = ‖Du‖2 + ‖Dũ‖2 + λF (u, ũ, σ) + µ (Iv(u) + Iṽ(ũ))

min
v,ṽ

Eu,ũ(v, ṽ) = ‖Dv‖2 + ‖Dṽ‖2 + µ (Iu(v) + Iũ(ṽ)) .
(10)

whose EL equations can be computed in a straight forward manner. Also, the
first variation of σ gives

σ = ‖S(x+ u)− T (x+ ũ)‖/|Ω|1/2. (11)

It is important to point out that, in each iteration, the computations of u, ũ, v, ṽ
can be carried out in parallel. To measure the accuracy of matching, we use the
correlation coefficients (CC) between the target and deformed source images.
Then, for fixed µ, our iterative process is terminated when the mean of CC(S(x+
ū), T ) and CC(T (x + v̄), S) converges, and we can obtain (u, ũ, v, ṽ) and hence
ū and v̄ by (8). If the maximum inverse consistency error (ICE) δc, defined by

δc = max {|ū+ v̄(x+ ū)|, |v̄ + ū(x+ v̄)| |x ∈ Ω} , (12)

is large, one can gradually increase the parameter µ in (9) and use the previous
(u, ũ, v, ṽ) as a warm start. Then the whole computation can be stopped once



860 X. Ye and Y. Chen

(a) S (b) T (c) T (x + v̄) (d) S(x + ū)

Fig. 1. Inverse consistent registration result by proposed model (9) on the prostate

data, (c) and (d) are the deformed T and deformed S respectively

δc is less than a prescribed tolerance ε. In our experiments, we set ε = .5, in
which case the maximum ICE δc would be less than half of the grid size between
two concatenate pixels/voxels and hence the invertibility is exactly satisfied with
respect to the original resolution of the images.

We first test the accuracy of registration and auto re-contouring of the pro-
posed algorithm on a clinical data set of 100 2D-prostate MR images. Each
image, called a phase, is a 2D image of dimension 288 × 192 that focuses on
prostate area. The first phase is used as a source image S, as shown in Fig 1a.
The boundaries of the regions of interests (ROI) in S are delineated by contours
and superimposed by medical experts, as enlarged and shown in Fig. 2d. The
rest 99 phases are considered as target images. In this experiment we applied
the proposed model (9) with parameters (λ, µ) set as (.05, .2). For demonstration
we only show the results using the 21st phase as T , as shown in Fig. 1b. The
deformed T and deformed S are shown in Fig. 1c and 1d. The errors after the
alignment |S(x + ū) − T | and |S − T (x + v̄)| in the squared area (as shown in
Fig. 1a) are displayed in Fig. 2a and 2c, respectively. With comparison to the
original error |S−T | in Fig. 2b, we can see the errors after alignment are signifi-
cantly reduced. This indicates that the proposed registration model (9) is highly
accurate in matching two images. The final optimal forward and backward de-
formation fields ū and v̄ are displayed by applying them to a domain of regular
grids, shown as Fig. 3a and 3b, respectively. Furthermore, to validate the well-
preserved inverse consistency by model (9) we applied ū+v̄(x+ū) on a domain of
regular grids, and the resulting grids are plotted in Fig. 3c. The resulting grids by
v̄+ ū(x+ v̄) has the same pattern so we omitted it here. From Fig. 3c, we can see
that the resulting grids are the same as the original regular grids. This indicates
that the inverse consistent constraints ū+ v̄(x+ ū) = v̄+ ū(x+ v̄) = 0 are almost
exactly satisfied. We also computed the maximum ICE δc using ū, v̄ and (12),
which is .46 of a pixel. The mean ICE (‖ū+ v̄(x+ ū)‖+ ‖v̄ + ū(x+ v̄)‖) /2|Ω|
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(a) |S(x + ū) − T | (b) |S − T | (c) |S − T(x + v̄)| (d) S w/contour (e) T w/contour

Fig. 2. Results of model (9) applied to S and T in the squared area shown in Fig. 1a.

Contours in (e) are obtained by deforming the contours in (d) using ū.

(a) ū (b) v̄ (c) ū + v̄(x + ū)

Fig. 3. Deformation fields applied to regular grids

versus the number of iterations are plotted on the right of Fig. 3, which shows
the inverse consistency is preserved in the registration.

One of the applications of this algorithm is auto re-contouring, that deforms
the expert’s contours from a planning image to new images during the course of
radiation therapy. In this experiment, we had expert’s contours superimposed in
the square area of the source image S as shown in Fig. 2d. Then by applying the
deformation field ū on these contours we get the deformed contours on the target
image T as shown in Fig. 2e. The accuracy in auto re-contouring is evident.

The second experiment was aimed to test the effectiveness of the proposed
model (9) in registering 3D images. We applied this model to a pair of 3D brain
MR images of dimension 128× 128× 73 taken from two different subjects. The
parameters (λ, µ) were set to be (.05, .1). The registration is performed in 3D,
but for demonstration, we only show the corresponding sagittal (xy plane with
z = 53), coronal (yz plane with x = 47) and axial (zx plane with y = 97)
slices as in the top, middle and bottom rows of Fig. 4, where the columns in
Fig. 4a and 4b show the corresponding slices of S and T , respectively, and
columns in Fig. 4c and 4d deformed T and deformed S, i.e. T̄ := T (x + v̄)
and S̄ := S(x + ū), respectively. Columns in Fig. 4e, 4f and 4g are |S − T |,
|S(x+ ū)−T | and |S−T (x+ v̄)|, respectively. The initial CC(S, T ) = .736, and
CC(S̄, T ) and CC(T̄ , S) reach .946 and .941 after 200 iterations, and the mean
of inverse consistency errors is .027. The results show the high accuracy and well
preserved inverse consistency obtained by using proposed model (9).
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(a) S (b) T (c) T̄ (d) S̄ (e) |S − T | (f) |S − T̄ | (g) |S̄ − T |

Fig. 4. Registration result of proposed model (9) applied to 3D brain MR image. The

results of slices z = 53, x = 47 and y = 97 are plotted on the top, middle and bottom

rows, respectively. Here T̄ := T (x + v̄) and S̄ := S(x + ū).

The third experiment was aimed to compare the efficiency of model (9) with
the conventional full-way inverse consistent deformable registration model:

min
u,v,σu,σv

‖Du‖2 + ‖Dv‖2 + λJ(u, v, σu, σv) + µ (Iv(u) + Iu(v)) (13)

where u and v are forward and backward deformation fields, respectively, and
the term J is defined by J(u, v, σu, σv) = ‖S(x + u) − T ‖2/2σ2

u + ‖T (x + v) −
S‖2/2σ2

v + |Ω| log σvσv. The comparison was made on the efficiency and accu-
racy of matching, as well as the ability of preserving inverse consistency. In this
experiment we applied models (13) and (9) to the images in the first experiment
shown in Fig. 1 with parameters (λ, µ) in both models set to be (.05, .2). On the
left Fig. 5, we plotted the CC obtained by model (13) and proposed model (9) at
each iteration. It can be observed that the CC obtained by model (9) is higher
and increases faster than that by model (13). This demonstrates that proposed
model (9) is more efficient than the conventional full-way model. The reason is
that the disparity between both deformed S and deformed T must be smaller
than that between deformed S and fixed T or deformed T and fixed S. When S
and T are deformed simultaneously, the two deformation fields u and ũ are not
necessarily to be large even if the underlying deformation field is large, which
usually makes it difficult for the full-way based registration model to reach a
satisfactory alignment in reasonable time.

The last experiment was aimed to test the robustness of the model to noises
and the choice of the parameter λ with the use of MLE based disparity measure
(5). The images S and T in Fig. 1 with additive Gaussian noises (using Matlab
function imnoise with standard deviation being 3% of largest intensity value of
S) were used in this experiment. The CC between S and T before registration
was CC(S, T ) = .901. We applied model (9) to the noisy data with σ updated
using its EL equation (11), as well as σ fixed to be 1, which is equivalent to using
SSD as similarity measure. We proceeded the registration with various values of
λ, but kept other parameters unchanged. Then the numbers of iterations (Iter)
for convergence and the final CC were recorded and shown in Table 1. One can
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Fig. 5. Left: CC in each iteration obtained by full-way model (13) and proposed model

(9). Right: Mean of inverse consistent errors (ICE) of the final deformation fields ob-

tained by using full-way model (13) and proposed model (9).

see that while λ decreases, the accuracy of model (9) using fixed σ reduces as
the final CC become much smaller, and it also takes significantly longer time
for the algorithm to converge. On the other hand, with σ being updated (whose
computational cost is extremely cheap) model (9) can obtain good matching in
much less iterations for a large range of λ. This shows that model with MLE
fitting is much less sensitive to noise and the choice of λ, and can achieve fast and
accurate results compared with the model using SSD as the disparity measure.

Table 1. Number of iterations used for convergence and the final CC obtained by

proposed model (9) with σ updated/fixed. For a large range of λ, updating σ in each

iteration consistently leads to faster convergence and higher accuracy.

Update σ Fix σ

λ CC Iter CC Iter

1e2 .962 48 .955 89

1e1 .962 97 .946 420

1e0 .960 356 .933 1762

4 Conclusion

In this work, we proposed a novel registration model that is featured at finding
two invertible transformations that deform the source and target image simul-
taneously, and the registration process aligns both of the deformed source and
deformed target images. From the theoretical analysis and experimental results,
one can see the proposed model produces a fast convergence of the objective
deformation field as well as provides a better correspondence for the ROIs in
source and target images. This makes the auto re-contouring results with data
involved in the course of radiation therapy much more accurate and efficient.
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Abstract. We present an active surface model designed for the segmen-

tation of Drosophila Schneider cell nuclei and nucleoli from wide-field

microscopic data. The imaging technique as well as the biological appli-

cation impose some major challenges to the segmentation. On the one

hand, we have to deal with strong blurring of the 3D data, especially

in z-direction. On the other hand, concerning the biological application,

we have to deal with non-closed object boundaries and touching objects.

To cope with these problems, we have designed a fully 3D active surface

model. Our model prefers roundish object shapes and especially imposes

roughly spherical surfaces where there is little gradient information. We

have adapted an external force field for this model, which is based on

gradient vector flow (GVF) and has a much larger capture range than

standard GVF force fields.

1 Introduction

For the analysis of living cells, wide-field fluorescence microscopy still plays an
important role, because it is prevalently available and, compared to confocal
microscopy, has some advantages concerning temporal resolution and phototox-
icity. The major disadvantage is the recorded defocused light - volume datasets
recorded in wide-field microscopy suffer from strong blurring.

For the analysis of cellular mechanisms, exact knowledge about the subcellu-
lar anatomy is necessary. We are looking for a method to accurately detect and
segment Drosophila cell nuclei and a subcellular structure, the nucleolus, from
three dimensional recordings of cell cultures from a Schneider cell line. Nucleus
and nucleolus have been recorded in two separate channels. Channel 1 shows
the cell nuclei stained with the fluorescent stain 4’,6-diamidino-2-phenylindole
(DAPI), channel 2 shows the green fluorescent protein (GFP) stained fibrillarin
inside the nucleolus. The voxel size in xy-direction is 0.064µm in z-direction
0.2µm. For the segmentation of this data, we are dealing with a variety of prob-
lems inherent in the biological setting as well as with problems originating from

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 865–874, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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the microscopy technique. In figure 1, an example slice from each channel is dis-
played, as well as orthogonal slices of one of the nuclei in channel 1. In channel 1,
the brighter spots of dense chromatin and the low intensity regions, where there
is no chromatin, lead to non-closed boundaries. This and the fact, that there
are typically touching cells in the dataset make the segmentation of the nuclei
challenging. Additionally, due to artifacts caused by the point spread function,
the nucleolus in channel 2 often seems to range outside the nucleus, which, in a
biological sense, cannot be the case.

For the detection and segmentation of the nucleoli, the use of all available
information in both recorded channels is therefore necessary. We thus designed
a preprocessing step, in which we combine the two channels to a Channel Dif-
ferential Structure. This procedure is inspired by the color differential structure
described in [4]. The description of this preprocessing step constitutes the first
section of this paper. After this preprocessing step, the segmentation of nuclei
and nucleoli are both addressed with a two-step procedure. First, the nuclei are
detected by the generalized Hough-Transform [1] for the detection of spherical
objects, as it has been used e.g. in [3] for the 3D detection of Arabidopsis thaliana
root nuclei in confocal microscopic data and in [2] for the 2D detection of pollen
grains in brightfield data. The detection method will be presented in section 3.
The second step, which constitutes the main part of this paper, consists in spec-
ifying the objects boundary using a three dimensional active surface model. In
the field of biomedical image analysis, active contour methods are widely used
for the segmentation and modeling of anatomical structures. The mathematical
foundamentals can be found e.g. in [5], a review of deformable models is given
e.g. in [6] and [7]. Here, we design a 3D active surface model especially adapted
for the segmentation and representation of smooth, 2-sphere like shapes. The
grid representation as well as the external forces have been adapted, providing a
robust and accurate segmentation with a large capture range even under strong
blurring. The detection of the nucleoli is done as for the nuclei with the gen-
eralized Hough transform, the segmentation is achieved by the presented active
surface model as well - thus proving its generalization ability. Finally, we present

(a) (b) (c) (d)

Fig. 1. Example slices from the two channels of the Drosophila cell raw data and

orthogonal slice views of one of the nuclei. (a) and (b): channel 1 shows the cell nuclei

stained in DAPI. Brighter regions are caused by denser chromatin. In the location of

the nucleoli, no signal is recorded in this channel, thus causing a hole. (c) and (d): in

channel 2, the GFP-stained fibrillarin inside the nucleoli has been recorded.
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the results of our segmentation. These results will be compared to the results
that can be achieved with an active surface implementation using a classical
gradient vector flow force field and to a standard state of the art method: the
user-guided level set implementation ITK-SNAP [8]. For the detection as well
as for the segmentation, we decided to use undeconvolved data. Deconvolution
makes the images appear clearer in xy-direction but the deconvolution artifacts
in z-direction made a good segmentation nearly impossible.

2 Channel Differential Structure

For the detection of the nuclei, only channel 1 is used, since here, the boundaries
can be seen best (see figure 2(a)). For the nucleoli, the situation is different.
In channel 2 (see figure 2(b)), only the fibrillarin inside the nucleoli has been
stained,which results in a bright region inside the nucleolus - but also the whole
nucleus can be seen in this channel at a much lower intensity. In channel 1, one
can see a hole at the nucleolus’ position, which is larger than the stained region in
channel 2 - the correct nucleolus boundaries are between the borders of this hole
and the fibrillarin in channel 2. Therefore, it makes sense to use the information
of both channels for the detection and segmentation of the nucleoli. To do so,
the arctangent of the ratio of the intensities in channel 2 Ich2 and channel 1
Ich1 is computed in each position, yielding some kind of channel diffenrential
structure CDS. This was inspired by the color differential structure defined in
[4]. In [4], this color differential structure is computed as the convolution of the
spectral color information with a gaussian derivative to detect gradients between
complementary colors.

For our task, not the perceptual color difference is important, which heav-
ily depends on human color perception, but the relation of the channels. The
arctangent of the ratio can thus be considered a good distance measure. The
two-channel volume data is considered as function I : R3 → R2

>0. The CDS(I)
can then be computed as

CDS(I) = ∇
(

2
π

arctan
(
Ich2

Ich1

))
, (1)

where ∇ =
(

∂
∂x1

, ∂
∂x2

, ∂
∂x3

)
is the the grad operator and arctan

(
Ich2
Ich1

)
is scalar

valued between 0 and π
2 . Positions, where the ratio of the channels has large

(a) channel 1 (b) channel 2 (c) 2
π

arctan
(

Ich2
Ich1

)
(d)||CDS(I)||

Fig. 2. xy-slices from the raw data channels, their ratio and the magnitude of CDS(I)
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values are likely to correspond to the nucleolus. The ratio of the intensities
inside the nucleus are small, such that the boundaries of nucleus and nucleolus
cannot be confounded. Compare figure 2(c). The CDS(I) is used instead of∇Ich2
for the further segmentation of the nucleoli.

3 Detection

The detection of nucleus and nucleolus is done with the generalized Hough trans-
form for spherical objects [1] as presented in [3]. The main idea is to let each
voxel vote for possible positions c of sphere centers at specific radii r.

For this, the dataset has to be smoothed first. We use a Gaussian smoothing
with σ1 = 2µm in all directions. Given the recorded resolution, the resulting
estimation for the radii r can therefore not be very precise, but as these radii
are used only for the initialization of the active surfaces, these rough estimations
are sufficient. Then, one has to select the voting voxels. We choose to use all
voxels for the voting and weight the votes with the respective gradient magnitude
values. A threshold would not make sense, because the intensity variations of the
nuclei within one dataset are too strong. The gradient magnitude and direction
of the voxels is used to determine the position of the votes. Finally, the votes
are combined by integration. Formally, the four dimensional voting field P of a
function I : R3 → R is computed as follows.

P (c, r) =
∫

R3
Gσ2

(
c− r (∇(Gσ1 ∗ I))(x)

||(∇(Gσ1 ∗ I))(x)||

)
||(∇(Gσ1 ∗ I))(x)||dx, (2)

where Gσ is the 3D Gaussian distribution with standard deviation σ in all di-
rections. Gσ2 is used as an indicator function giving contribution only if the
argument is nearby zero.

The detection is then done by determining the local maxima of the voting
field P .

4 Active Surfaces

After the detection step, we have an estimated center c and radius r for each
nucleus and nucleolus, but in reality, both structures are not spherical. Thus,
the best radius can only give a very rough estimation of the object’s size. An
exact segmentation has been done based on this estimation by employing active
surface models.

The three dimensional active surface can be described as a function X : [0, 1]×
[0, 1] → R3 which is placed on a dataset I : R3 → R. These active surfaces
have internal energies, depending only on the shape of the model itself, and are
subjected to external energies coming from the underlying dataset to which the
model shall be adapted. The total energy of an active surface is thus

E = Eint(X) + Eext(X). (3)

The adaption takes place in minimizing this energy.
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4.1 Implementation

Mesh Design. For the realization of the active surface model in three dimen-
sional space, a good choice of the grid structure is crucial. As we suppose a
roughly spherical shape of the objects to detect, it is intuitive to initialize the
active surface with a spherical grid. To provide an equidistant sampling of the
sphere, an icosahedron can be used as initial structure. We have used subdivi-
sions of the icosahedron, which still provide a nearly equidistant sampling, with
a higher resolution, leading to a more accurate segmentation.

As initialization, we used the parameters found in the detection step, i.e. we
initialized the grid as a subdivided icosahedron with 162 vertices vi ∈ V located
at positions xvi around the center c of the nucleus or nucleolus. All vertices vi

have distance r from the center.

Fig. 3. The sampling of the spherical surface can be done equidistantly by using an

icosahedron. Icosahedron subdivisions yield a nearly equidistant sampling.

Mesh Operations. To ensure that, during the evolution of the active surface,
the resolution of the grid is always high enough, we implement splitting and
merging operations. After each iteration, the length l of every edge is checked.
Edges longer than a threshold tu are split and a new vertex is inserted. This new
vertex has to be connected to all its neighboring vertices. If edges are shorter
than threshold tl, they are deleted and the corresponding vertices are merged.
See figure 4 for an example.

Fig. 4. (left) If the length l > tu, the edge is split. (right) Edges for which l < tl are

merged.

4.2 Internal Forces

As internal energy, the weighted first and second derivative of the surface are
used, corresponding to the classical continuity and curvature energies:

Eint =
1
2

∫
s

α

∣∣∣∣∣∣∣∣∂X∂s
∣∣∣∣∣∣∣∣2 + β

∣∣∣∣∣∣∣∣∂2X
∂s2

∣∣∣∣∣∣∣∣2 ds (4)
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where s ∈ [0, 1] × [0, 1] and α and β are the weighting coefficients. The mini-
mization of E thus leads to the Euler-Lagrange equation

∂

∂s

(
α
∂X
∂s

)
− ∂2

∂s2

(
β
∂2X
∂s2

)
−∇Eext = 0, (5)

where the internal forces Fela := ∂
∂s

(
α∂X

∂s

)
and Frig := ∂2

∂s2

(
β ∂2X

∂s2

)
prevent the

surface from stretching and bending too much. These energies are minimal for
planar surfaces. Therefore, on spherical structures, they act as shrinking forces.

The internal forces of the active surface have to be adapted for the three di-
mensional grid implementation. Since we want to preserve the equidistant sam-
pling, the elasticity force can be approximated with

Fela(vi) =
1
c2

⎛⎝ ∑
j,vj∈N(vi)

xvj − xvi

|N(vi)|

⎞⎠ , (6)

where N(vi) is the set of all neighbors of vertex vi and c is the average distance
between two neighboring vertices

c = |V|
∑

i

∑
j,vj∈N(vi)

|N(vi)|
||xvj − xvi ||

(7)

|V| is the cardinality of the set of vertices. The rigidity force corresponding to
the forth derivative can by analogy be approximated as

Frig(vi) =
1
c4

1
|N(vi)|(|N(vj)| − 1)

∑
j,vj∈N(vi)

∑
k,vk∈N(vj)

k �=i

(4xvj − xvk
− 3xvi). (8)

4.3 External Forces

Since the external forces are responsible for the attraction of the active surface to
the underlying data, these forces have to be adapted very carefully to the specific
task. A classical choice would be Fext = −∇Eext with Eext = −||∇I||2, but for
the segmentation of the nuclei, some application specific challenges are given. As
the chromatin displayed in channel 1 is not homogeneous, some blob structures
and holes can be seen in the nucleus. Thus, neither the intensity values nor the
pure gradient information can be used as an external energy for the segmentation
of the nuclei. Especially nucleoli lying near the nucleus boundary cause the image
gradients to pull the contour inwards into the nucleus. To address this problem,
we use external forces based on the gradient information of the data coupled
with prior knowledge from the detection step. We assume the nuclei to have a
star-shaped surface, i.e. every surface point can be reached from the detected
center c. As proposed in [2] for the 2D case in pollen segmentation, we then
used a projection of the dataset gradients onto radial vectors pointing away
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from the detected center (∇Iradial)(x) =
〈
(∇I)(x) , x−c

||x−c||
〉
, thus reducing the

influence of vectors pointing in other directions. Additionally, as done in [2], those
vectors originating from darker inner structures and thus pointing outwards were
set to zero length. The resulting gradient image contains by far less gradients
corresponding to structures other than the nucleus, but the vectors set to zero
length still cause problems in the next step.

Instead of applying the Canny edge detector as it was done in [2], we di-
rectly use the resulting gradient magnitude as edge information. We compute
the gradients of this edge image and, to get rid of the gradients now caused by
the zero-magnitude regions, we use the radial projection of these gradients. This
results in a vector valued function A : R3 → R3 with

A(x) =
〈

(∇(s(∇Iradial)))(x) ,
x− c
||x− c||

〉
· x− c
||x− c|| , (9)

where 〈. , .〉 is the scalar product and s(x) is defined as

s(x) =

{
x, if x > 0
0, otherwise.

(10)

The external force was finally found as the weighted sum of the gradient vector
flow GVF(A) (e.g. in [5]) and the radially projected gradients, pulling the surface
outside the object.∇Iradial counteracts the shrinking effect of the internal forces.

Fext = γGVF(A)− δ∇Iradial (11)

γ and δ are the weighting coefficients. The in this way defined external force field
has some major advantages compared to standard gradient based force fields.
On the one hand, the projection onto the radial vectors promotes 2-spherical
shapes, on the other hand, these projections and the deletion of gradient vectors
pointing in the wrong direction has the effect that the capture range of the
resulting force field is much larger. This is important, because of the touching
cells in the dataset.

(a) (b) (c) (d)

Fig. 5. (a) xy-slice from the original dataset (b) xy-slice from the gradient magnitude

of the data with the estimated center and radius (c) xy-slice from the magnitude of

the projected gradients ||∇Iradial||, (d) xy-slice from the magnitudes of the gradient

vector flow ||GVF(A)||
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5 Experiments and Results

The method was tested on 45 datasets containing 440 cells. For the detection
of the nuclei, we searched for spheres with diameters between 3.6 and 6.4 µm.
Although more or less strong deformations of the nuclei can be observed, a quite
reliable detection of the nuclei was possible. Nuclei clearly lying on the border of
the captured dataset were not detected and left out of the evaluation. Out of 440
nuclei, we have correctly detected 437 nuclei, 3 nuclei have not been detected.
There were 16 false positives: 8 nuclei were detected where there was no data
and 8 defect cells have been detected as nuclei. For some of the nuclei, the esti-
mated radii were too small (compare figure 6), which results from the relatively
strong smoothing. For the detection of the nucleoli, we searched for spheres with
diameters between 0.6 and 1.6 µm. The result of the nuclei segmentation was
used as a mask for the detection of the nucleoli, i.e. every nucleolus has to lie
inside a nucleus. To ensure this, only the Hough-votes within the nucleus were
evaluated and exactly one nucleolus was searched inside each nucleus, since for
healthy cells, there should only be one nucleolus. Despite this fact, there are cells
in the datasets containing more than one clearly defined nucleolus. Detection re-
sults for an example dataset can be seen in figure 6. Correct nucleoli positions
were found in all of the analyzed datasets - only where there was more than one
nucleolus inside the same nucleus, one of the nucleoli was missed.

Fig. 6. (left) Detection results of nuclei displayed in the maximum intensity projection

(MIP) of channel 1. (right) Detection results of nucleoli in the MIP of channel 2.

For the accurate segmentation, we manually tested some parameter sets for
three example nuclei and then used the best parameters for the segmentation
of all the nuclei. Finally, we used α = β = 0.2, γ = 0.9, and δ = 0.7, but the
method turned out to be very robust against smaller parameter variations. For
the nucleoli, we picked α = β = 0.1, γ = 0.9, and δ = 0.5. With those parameters,
satisfying results could be achieved for the segmentation of all nuclei and nucleoli
of the dataset. Some randomly chosen example results can be seen in figure 7.

To evaluate the results of the segmentation, we compared the segmentation
carried out with the presented method with the results that could be achieved
with an active surface implementation using a standard GVF force field as well
as with results from the ITK segmentation tool ITK-SNAP [8], which is based on



A 3D Active Surface Model for the Segmentation of Cell Nuclei 873

a level set implementation. The standard GVF force field was computed directly
from the image gradients as GVF(∇||∇I||). The ITK-SNAP segmentation im-
plements two algorithms: 3D geodesic active contours, where the internal forces
are based on the gradient magnitude in the dataset, and a region competition
method, based on voxel probability maps, which are estimated by manually ad-
justed intensity thresholds. In all cases, it was not possible to find parameters
that worked for the whole dataset. For our four example cells, we manually
adapted the parameters for each nucleus as good as possible, but even though
we could not get good results for all of the cells. The 3D geodesic active contours
even did not work at all, because of the blurring in z-direction. It was not possible
to find parameters, that prevented the contour from running out of the object in
upper and lower dataset regions before filling the nucleus’ volume in the center,
where there are in fact stronger gradients. For a comparison of the other two
methods to our presented method, see figure 7. Although the region competition
method from ITK-SNAP in most cases yields acceptable results if the manual
threshold is carefully adjusted, our method worked best for all of the nuclei.

Fig. 7. (above) Orthogonal views of the segmentation results of four nuclei and nucleoli

displayed in channel 1. The overall result is satisfying for nuclei as for nucleoli. (below)

Segmentation results for the same nuclei segmented with our method (green), active

surfaces with standard force field (red) and the region competition method from ITK-

SNAP (blue). The red contours are attracted by inner structures as well as neighboring

cells and thus yield bad segmentation results, the blue contours are quite good, but

elongated in z-direction, which is caused by the blurring in the dataset.

6 Conclusion

We have presented an active surface model on an icosahedron subdivision grid
structure, which is specially adapted to the segmentation of 2-sphere like objects.
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We have designed an external force field that is able to address the problems
caused by wide-field microscopy imaging as well as the specific challenges of the
segmentation of Drosophila Schneider cell nuclei. The segmentation results with
our method were not only better and more reliable than the results found with
standard methods, it was also possible to segment all correctly detected nuclei
with the same parameter set, such that no further tedious manual adjustments
were necessary. The model has shown its generalization ability in yielding very
good results for the segmentation of the nucleoli inside these nuclei.

Acknowledgments

This study was supported by the Excellence Initiative of the German Federal
and State Governments (EXC 294).

References

1. Ballard, D.H.: Generalizing the hough transform to detect arbitrary shapes. Pattern

Recognition 13(2), 111–122 (1981)

2. Ronneberger, O., Wang, Q., Burkhardt, H.: Fast and robust segmentation of spher-

ical particles in volumetric data sets from brightfield microscopy. In: Proc. of the

ISBI, pp. 372–375 (2008)

3. Schulz, J., Schmidt, T., Ronneberger, O., Burkhardt, H., Pasternak, T., Dovzhenko,

A., Palme, K.: Fast scalar and vectorial grayscale based invariant features for 3d

cell nuclei localization and classification. In: Proc. of the DAGM, Berlin (2006)

4. Geusebroek, J.-M., Ter Haar Romeny, B., Koenderink, J., van den Boomgaard,

R., van Osta, P.: Color differential structure. In: Front-End Vision and Multi-Scale

Image Analysis, Computational Imaging and Vision, vol. 27. Springer, Netherlands

(2003)

5. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Imag.

Proc. 7(3), 321–345 (1998)

6. Montagnat, J., Delingette, H., Ayache, N.: A review of deformable surfaces: topology,

geometry and deformation. Image and Vision Computing 19/14, 1023–1040 (2001)

7. He, L., Peng, Z., Everding, B., Wang, X., Han, C.Y., Weiss, K.L., Wee, W.G.: A

comparative study of deformable contour methods on medical image segmentation.

Image and Vision Computing 26/2, 141–163 (2008)

8. Yushkevich, P.A., Piven, J., Hazlett, C., Smith, H., Smith, G., Ho, R., Ho, S.,

Gee, J.C., Gerig, G.: User-Guided 3D Active Contour Segmentation of Anatomi-

cal Structures: Significantly Improved Efficiency and Reliability. Neuroimage 31/3,

1116–1128 (2006)



Weight, Sex, and Facial Expressions:
On the Manipulation of Attributes in Generative 3D

Face Models
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University of Basel

Abstract. Generative 3D Face Models are expressive models with applications
in modelling and editing. They are learned from example faces, and offer a com-
pact representation of the continuous space of faces. While they have proven to
be useful as strong priors in face reconstruction they remain to be difficult to use
in artistic editing tasks. We describe a way to navigate face space by changing
meaningful parameters learned from the training data. This makes it possible to
fix attributes such as height, weight, age, expression or ‘lack of sleep’ while let-
ting the infinity of unfixed other attributes vary in a statistically meaningful way.

We propose an inverse approach based on learning the distribution of faces in
attribute space. Given a set of target attributes we then find the face which has the
target attributes with high probability, and is as similar as possible to the input
face.

1 Introduction

When producing movies or computer games it is common to use low dimensional gen-
erative 3D face models, which encode the space of possible faces with a few hundred pa-
rameters. These models encode the variability of the 3D shape, albedo, and reflectance
properties. By varying the parameters of the model new 3D faces are created, which can
then be rendered in the movie or game. The parameters of face models like 3D-MM [1]
are a compact description of faces, but they are generally not meaningful. And even
in manually constructed face models one can only change characteristics of the mesh
like the size of the chin, but what the artist really wants is not to change the chin but
to create a face which looks older, more male, or even more trustworthy. We propose
a system which allows such manipulations directly in attribute space. To this end we
learn an association between face and attribute space. We demonstrate our system with
a 3D-Morphable Model (3D-MM) of Shape and Texture, but it is equally applicable
to other models, which might be better at capturing statistics of wrinkles, hair, or re-
flectance properties of the skin. 3D-MMs are interesting because the starting face can
be easily initialised from a real person using a reconstruction method as proposed for
images in [1], videos in [2] or 3D scans in [3].

In this paper we use a relatively wide definition of attribute, ranging from physical
attributes like crookedness of the nose or testosterone level over latent attributes like
lack of sleep to cultural attributes like trustworthiness.

Our method is not only useful as a tool for character generation, but also for the
investigation and visualisation of the dependencies between attributes and faces. We can

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 875–885, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Sex: Female Male Male Male Male
Height: 164cm 188cm 185cm 176cm 176cm
Weight: 54kg 87kg 66kg 66kg 66kg
Joy: 0% 0% 0% 0% 100%

(a) (b) (c) (d) (e)

Fig. 1. Generating new faces by changing some attributes of a face while keeping other attributes
fixed. Starting from an initial face we can fix some attributes (typeset in bold) and let other
attributes (typeset in italic) vary according to the statistical distribution of attributes in our training
set. When an attribute is fixed we determine the face which simultaneously 1) is most similar to
the starting face, 2) has the requested attributes with high probability and 3) is a likely face.

visualise the change of face features associated with attributes, or generate an infinity
of psychological stimuly with precisely defined attributes, where it is possible to vary
only a single attribute and keep others constant. We can for example generate images
which vary in handsomeness while keeping perceived sex, height and weight constant.

2 Facial Attribute Manipulation

We state the problem as follows. For a given starting face and a new set of attributes,
find the face which has the chosen attribute vector while being as close as possible to the
input face in the natural distance in face space. With our method the artist generates in
an intuitive way different distance functions in face space by specifying which attributes
can vary and which should be fixed. This is explained in more detail in the next section.

We want to find the distribution p(x̄ | x,a) of faces x̄ which are similar to a starting
face x and have the attributes a. Our training data consists of a collection ofN example
faces, described by their model coefficient xi ∈ Rk = F , and corresponding attribute
vectors ai ∈ Rl = A. Attributes can be physical measurements like age, height, weight
and sex which can be determined by measurement, subjective attributes like trustwor-
thiness which are gauged with questionnaires, latent attributes like lack of sleep, and
rapidly changing attributes like facial expressions, which were classified by asking the
subjects to perform a specific expression. We model the likelihood as

p(x̄ | x,a) ∝ p(x,a | x̄)p(x̄) (1)

= p(x | x̄)p(a | x̄)p(x̄), (2)

where the probability p(a | x̄) is learned from labelled training data. If enough data
is available it is sensible to use a Gaussian Process for the regression, to get varying
variances, or one can assume homoscedastic uncertainty and learn only a single σa and
model

p(a | x̄) = N (a |M(x̄), σaI) . (3)
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where M(x̄) is a regressed mapping from face space to attribute space. A normal dis-
tribution is used for the similarity measure, which assumes that face space is smooth
in face appearance. This corresponds to the Mahalanobis distance in face space, which
has shown good performance in face recognition experiments (e.g. [3]).

p(x | x̄) = N (x | x̄, σdI) . (4)

The choice of normal distributions is motivated by the ease of handling and the small
number of parameters, but when enough data is available more sophisticated probability
densities can be used. With the proposed distributions one arrives at the likelihood

p(x̄ | x,a) ∝ p(a | x̄)p(x | x̄)p(x̄) = (5)

1
2π
√
σaσd

exp

(
−‖M(x̄)− a‖2

σ2
a

− ‖x̄− x‖2

σ2
d

− ‖x̄‖2
)

We could now sample from this distribution, but our purpose is to generate a single
predictable answer. Therefore we calculate the maximum likelihood solution.

TML(x,a) = argmin
x̄

‖M(x̄)− a‖2 + γ1 ‖x− x̄‖2 + γ2 ‖x̄‖2 (6)

where γ1, γ2 are trade-off parameters derived from σd, σa, which determine how closely
the attributes should be matched.

Note that even though we used simple distributions the resulting model can be arbi-
trarily expressive – and the optimisation problem arbitrarily complicated – depending
on the choice of the regression function. By taking the limit case of modelling p(a | x̄)
as a Dirac function we can also get a “hard” formulation of our problem, which when
combined with linear regression leads to a very efficient optimisation problem. More
details are given in section 2.2. We found that while the “hard” formulation works well
for some attributes, it is for many attributes better to use the probabilistic formulation.
The probabilistic version is harder to optimize but is still fast enough for interactive use.
Our method is illustrated in figure 2.

2.1 Regression Methods

We evaluated a number of linear and nonlinear regressors and will describe them in this
section. We found, that for the attributes attractiveness and, trustworthiness a linear re-
gression worked best. For age, weight, height we got good results with Support Vector
Regression (SVR) and the binary attribute sex and the expressions were best modelled
by using the probability of one of the classes as the attribute. This is explained in
section 2.1.

Measured Attributes. In addition to the attributes established with questionaires we
included nonlinear measures on the shape model, namely distance between two points
and angle between three points to allow changing the nose size and shape and to open
and close the eyes and to fix the inter eye distance. These measures are (nonlinear)
functions of the shape parameters and can be directly used instead of regressed attributes
in our framework.
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p(α | x̄) > τ

Face Space

x

x̄||x − x̄||

Fig. 2. Given a current face x and a target attribute vector a, we find the face x̄ which has
the target attributes (with a high probability) as measured by the regression function M(x̄) =

a, while having the least change in identity as measured by the distance function ||x − x̄||.
Additionally we incorporate the face-prior, which is not depicted here.

Linear Classifier. The simplest classifier is a linear function of the input coefficients

M(x) := Mx + g . (7)

Each row in M is essentially what has been used as an attribute vector in [1], it encodes
how much a change in the attribute changes the coefficients of the face parameter.

Binary Attributes. Some of the attributes we are using are of a discrete nature. Most
prominently sex takes on only two distinct values, male and female.1 So while for height
or attractiveness we can acquire continuous values on which a regression can be per-
formed, this is impossible for discretely labeled attributes. Typically this was handled
by determining the direction of main variance by linear regression where the classes
c1, c2 are identified with the labels -1, 1. We found, that for this types of attributes a
more intuitive and accurate method is to use the probability p(c1 | x) as the attribute.
The probability is determined with Bayes theorem as

p(c1 | x) = 1− p(c2 | x) (8)

= p(x | c1)p(c1)/p(x)
= p(x | c1)p(c1)/(p(x | c1)p(c1) + p(x | c2)p(c2)) .

The priors p(ci) are determined either from the samples, or in the case of sex we fixed
them at 1/2. The probabilities p(x | ci) are modelled with parametric distributions,
where we found that in the case of sex these probabilities were well modelled by normal
distributions. A comparison between using linear regressor to model the change of sex
and using equation 8 is shown in figure 3. Though the effect is subtle, it is visible that a
change of sex does not correspond to a movement in the same direction in feature space
for each face. Males and females are nonlinearly distributed, which is captured nicely
by the mixture model. This concurs with the fact that when interpreted as a classifier,
the probability p(c1 | x) does better in a cross-validation than the linear classifier. This
method can be extended to n-ary attributes by splitting them into n − 1 two valued
attributes.

1 Obviously there are other taxonomies, but we regard only this simple system.
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2.2 Solving Attribute Manipulation

We solve equation 6 with a Levenberg-Marquardt method. The optimisation was fast
enough to allow us to build an interactive application.

An efficient algorithm for the linear regression. A very efficient algorithm can be de-
rived when using (1) the Mahalanobis Distance for face similarity and (2) a linear clas-
sifier with an associated dirac distribution for the attribute distribution and (3) a uniform
face prior. In this case we are searching for the minimum of ‖x̄− x‖2 under the con-
straint that M(x̄) = a. For the linear classifier the solutions lie in a displaced subspace
of face-space, such that the closest face fullfilling the attributes can be found by a pro-
jection. We can derive the solution from the Lagrange equation

L(x̄,λ) = ‖x̄− x‖2 + λT (Mx̄ + g − a) , (9)

which takes on its extremum at

2x̄− 2x−MT λ = 0 (10)

Mx̄ + g − a = 0 .

This linear system can be written in matrix notation as[
I −2−1MT

M 0

] [
x̄
λ

]
=
[

x
a− g

]
. (11)

The solution is a linear function of input face and target parameters

x̄ =
[
I 0
] [ I −2−1MT

M 0

]+
︸ ︷︷ ︸

constant

[
x

a− g

]
, (12)

where we use ·+ to denote the pseudo inverse. Note that this is different from the method
in [1], as it allows the simultaneous handling of multiple parameters, where attributes
can be fixed or left free to vary at the discretion of the user. Also, we can prescribe
absolute values, such as 30 years and 83 kilos, instead of only offsets from the current
shape.

3 Evaluation

As this method is targeted at humans, it is inevitable to assess the performance of the
system based on human judgement – it has to look good. But additionally, as the basis
of this method are regression methods, it is possible to evaluate the regressions on a test
set, which we used to determine the kind of classifier to use for each attribute. If the
classifier is unable to correctly classify the test set, then the method must also fail human
judgement. We will now present some results, more are shown in the accompanying
online material.
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3.1 Model

We constructed the underlying 3D model in the same way as [3]. We acquired 800 facial
scans from over 300 IDs, which were brought into correspondence with a nonrigid ICP
method similar to [4] but with a different regularisation term. To increase the database
we added mirrored versions of all scans. Every ID had at least one neutral scan. From
the neutral scans we build separate PCA models of shape and texture, which we call the
identity models. Two more PCA models where built from the offsets between the ex-
pression scans and the corresponding neutral scans. We call this the expression model.
The two models are concatenated, such that we have two sets of coefficients, the identity
coefficients and the expression coefficients. For the experiments in this paper we used
80 neutral shape, 40 expression shape and 20 neutral texture components, resulting in a
140 dimensional face space.

3.2 Speed

The runtime of the optimisation depends on the evaluation of the regression functions
and their derivatives. For the experiments used in this paper we have real-time results
when using only linear constraints and the method proposed in section 2.2. When using
the nonlinear classifiers presented here, we have typically a runtime of less than half a
second for the iterative methods, allowing interactive exploration of attribute space. To
speed up the iterative methods we first fit 25 steps from the reference face a and from
the current estimate from the previous fitting, and continue then a full fitting from the
position with the lower residual, which speeds up the search time in interactive use.

3.3 Binary Attributes

We show in figure 3 that changing the sex when using the nonlinear probability p(male |
x) as the attribute results in a face which has convincingly changed sex but is closer
to the starting face than that resulting from linear regression. While fixing the target
probability p(male | x) to 0 or 1 results in convincing faces, it is more difficult to
determine a suitable value in the linear scale, where -1 or +1 often correspond to too
pronounced or not enough pronounced changes in sex. For this comparison we fixed
the value of the linearly regressed sex to that which we determined for the face gen-
erated from the nonlinear regression. This should result in a fair comparisons of the
methods.

The second set of attributes that we applied this method to were expressions. Our
dataset includes labeled examples of five different expressions, and we trained one clas-
sifier per expression, in a one against all scheme. In figure 5 we show a sequence, where
the starting face has a sad expression, which we then remove by setting all expressions
to neutral. By changing then the joy value to one and keeping the other expression at-
tributes fixed we changed the initial sad face into a happy face. As we have relatively
little data in this high dimensional face-space, we had to regularize the estimation of
the Gaussian for each class. This was done by setting the small eigenvalues of the co-
variance to a constant.
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(a) (b) (c) (a) (b) (c)
Original Linear Nonlinear Original Linear Nonlinear

Fig. 3. Modelling the distribution of sex in face space as a Gaussian mixture is superior to deter-
mining just the direction of main variance. Using the probability of ‘male’ as an attribute as in
equation 8 results in faces (c) which retain more of the characteristics of the source face (a) while
undergoing a perceived change of sex than the result achievable with linear regression (a).

Start Scan Neutral Expressions Hooked Nose Long Nose Closed Eyes

Fig. 4. Face Space Measures allow the manipulation of length and angles in the face. They in-
tegrate naturally into our framework, such that we determine the most likely face for the given
length and angle constraints. To demonstrate the integration of expressions and measures we first
remove the expressions from the starting face using the expression attribute, then make its nose
more hooked, enlarge the nose and finally close the eyes.

3.4 Measured Attributes

Distance and angular measures as introduced in section 2.1 are another powerful edit-
ing method, which is closer to traditional mesh editing. The difference is, that as we
determine the maximum likelihood solution of the model, a local change always has
global influence. So changing the length of the nose will also change the size of the
nose, and if that should not happen, then the size of the nose has to be constrained by
another measure and set to fixed. And the strength of our approach is that both appli-
cations are possible, depending on the use case at hand. We demonstrate in figure 4 a
number of changes to the size and shape of the nose of the input face, and show that
this can be combined with other classifiers by finally changing the expression to sad.
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(a) (b) (c)
Original Expressions fixed Expression joy set
Sad Scan to Neutral and other expressions

fixed at neutral.

Fig. 5. Our method allows the removal (b) of an expression from the input scan (a) and subsequent
addition of other expressions (c)

4 Prior Work

Manipulation of facial attributes with the help of statistics learned from example faces
has been introduced already by [1] in the seminal paper on 3D-MMs. They learned the
direction of maximum variance of an attribute from a labelled set of faces and changed
the face parameters of a given identity according to that direction. In addition to not be-
ing able to manipulate “pure” attributes, i.e. changing only the weight but not the height,
this approach can neither prescribe attributes in an absolute scale, i.e. to age a person
to 43 years, nor does the change of attributes depend on the starting identity – every
person ages in the same way. Later work [5] of the same group which is most closely
related to our approach extended this work to absolute scales and multiple attributes by
constraining the generated face to be in the solution space of a linear regression from
faces to attributes. Their proposal is a special case of our method.

Other authors propose to learn a function from attributes to shapes [6,7,8,9,10,11],
which addresses a different problem. Only the mapping from shapes to attributes is
surjective, i.e. to a single face there is always only a single value of each attribute,
but not the mapping from attributes to shapes, many faces share the same attributes.
Therefore, these approaches can only generate an “average” face for each attribute.
The mentioned papers explore combinations of anthropometric or subjective attributes,
and linear or nonlinear mappings and linear, multilinear or nonlinear models, but all of
them do not constrain the solution by similarity to a starting face, as we do. To gen-
erate faces conforming to anthropometric measurements [7] fits a linear function from
measurements to faces, which is correct for distance measurements, but not for angle
measurements. Similarly, [10] interpolate the example faces based on their distance
in measurement space with RBF interpolation, which also does not guarantee correct
distance. Our method works with correct measurements, and, as stated, overcomes the
injectivity problem by further constraining the mapping by distance to a starting face.

Note that while multilinear models as in [12,11] separate meaningful groups of la-
tent factors, they do not offer meaningful parameters inside of a group (tensor mode).
Because multilinear models do not have meaningful parameters [11] suggested to drive
face manipulation by motion capture data of actors, and combine identity and expres-



On the Manipulation of Attributes in Generative 3D Face Models 883

sion tensor parameters from different measurements for expression transfer. This is also
an interesting application, but it is very different from our goal of attribute and ex-
pression editing in a meaningful parameters space. The same applies to [13] where a
generative body model is fitted to motion capture data.

We expect, that the change in face parameters for a change of attributes would de-
pend on the starting face. This was addressed in [14] They learned a nonlinear age
regression, and directions of change which are parallel to the gradient of the regres-
sion function were used to determine a trajectory through face space. This addresses
the problem that different individuals should change differently and makes it possible
to set an absolute value for an attribute. The disadvantage of that method is, that it only
handles a single attribute, and does not model the covariance of multiple attributes.
Changing first a persons weight also changes the height, so it is impossible to change
height and weight simultaneously to a fixed value. [15] recently proposed a method
to manipulate attractiveness in 2D frontal photographs. The method is similar to [14].
They also perform a regression from faces described by the distance between feature
points to an attractiveness rating. The input face is then morphed such that its attrac-
tiveness rating increases. Our approach, which is also based on a regression, allows
simultaneous manipulation of many attributes, enables the artist to specify a precise
set of target attributes, and makes it possible to explicitly choose the attributes which
should covary and which should stay fixed.

While [14] assume that the direction of the gradient of the nonlinear age regression
will leave the attributes which make up the identity the same, as this corresponds to
the smallest Mahalanobis distance in face space which achieves the desired change
of attribute. Correspondingly [15] assume that closer faces in a euclidean distance in
their parametrization of face space corresponds to the smallest change in identity. In
reality, when the age of a person changes it is for example the case that the inter-eye
distance stays fixed and the sex of the person does not change, measures like this are not
incorporated in the distance function used in the mentioned papers. We propose to learn

Linear: Height (+/- 20 cm) Linear: Age (-10/+30 Years)

SVR: Height (+/- 20 cm) SVR: Age (-10/+30 Years)

Fig. 6. For some attributes we can achieve better control with support vector regression than with
linear regression. The effect is relatively subtle in this presentation, but notice e.g. the mouth
shape which stays more constant and also the more similar global shape.
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many attributes and decide depending on the task at hand which attributes should stay
the same, and which are allowed to vary. So with our method it is possible to specify the
understanding of what makes two faces similar by deciding on attributes which should
not vary, while previous methods only assumed that a short distance in face space leaves
the identity unchanged.

5 Conclusion

We presented a method to manipulate attributes of faces in generative face models,
where the attribute space is learned from labelled examples. We demonstrated the
method using a 3D Morphable Model. There exist an infinity of possible attributes
ranging from physical values like the curvature of the ears to cultural valuations like
attractiveness. Attributes are distributed nonlinearly in face space, which we addressed
by learning a nonlinear regression from face space to attribute space. And attributes co-
vary, when navigating attribute space it is desirable to be able to choose which should
vary, and which should be fixed. For example a change of attractiveness should not
change the sex of the modelled face, but might be allowed to change the curvature of
the nose. We addressed this in a probabilistic framework.

Our method has three applications. It enables psychologists to generate stimuli with
systematically varying attributes, it gives artists a powerful and intuitive new tool for
character design based on learned statistics of real faces, and additionally, it is fun to
play with.
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6. Allen, B., Curless, B., Popović, Z.: The space of human body shapes: reconstruction and
parameterization from range scans. ACM Trans. on Graphics, SIGGRAPH 2003 22, 587–
594 (2003)
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Abstract. This paper presents a more robust and efficient level set method than
the original Local binary fitting (LBF) model in [6] for image segmentation under
a constrained energy minimization framework. Image segmentation is formulated
as a problem of seeking an optimal contour and two fitting functions that best ap-
proximate local intensities on the two sides of the contour. The contribution in
this paper is twofold. First, we introduce a contrast constraint on the fitting func-
tions to effectively prevent the contour from being stuck in spurious local minima,
which thereby makes our model more robust to the initialization of contour. Sec-
ond, we provide an efficient narrow band implementation to greatly reduce the
computational cost of the original LBF algorithm. The proposed algorithm is val-
idated on synthetic and real images with desirable performance in the presence
of intensity inhomogeneities and weak object boundaries. Comparisons with the
LBF model and the piecewise smooth (PS) model demonstrate the superior per-
formance of our model in terms of robustness, accuracy, and efficiency.

1 Introduction

Image segmentation, an important and fundamental task in computer vision and im-
age analysis, has been extensively studied in the past decades. However, it is still a
challenging problem in applications to real-world images. Difficulties in image seg-
mentation typically arise from image noise, low contrast, and artifacts in the images.
In particular, the widely used region-based methods [3,11,12,14,10] can be misled by
intensity inhomogeneities, which often occur in real-world images due to spatial illumi-
nation variations or imperfections of imaging devices. Standard region-based methods
aim to identify each region of interest by using a certain region descriptor, such as the
mean of the intensity of a region, for image segmentation. However, it is rather difficult
to define an appropriate region descriptor for images with intensity inhomogeneities.

Most of region-based models are based on the assumption of intensity homogene-
ity [3,9,11,14]. A typical example is the piecewise constant (PC) model proposed in
[3]. These models are not applicable to images with intensity inhomogeneities. Sophis-
ticated methods [4,14], such as the PS models [1,2,10,13,12], are able to address in-
tensity inhomogeneities. Based on the well-know Mumford-Shah model [8], Vese and
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Chan [13] introduced an energy functional on a level set function φ and two smooth
fitting functions u+ and u− that approximate the intensities outside and inside the zero
level contour of φ, respectively. PS models overcome the limitation of the PC models
in segmenting images with intensity inhomogeneities. However, the smoothness condi-
tion of the functions is ensured by solving a set of PDEs during the level set evolution.
Therefore, the computation in such method is rather expensive. Moreover, due to the
non-convexity of the underlying energy functionals, the corresponding energy mini-
mization algorithms may converge to local minima. This renders the algorithm quite
sensitive to the initialization of the contour, and the contour may be stuck in the back-
ground or foreground.

Recently, Li et al.[6] proposed a region-based level set method, called local binary
fitting (LBF) model, which is able to deal with intensity inhomogeneities. The LBF
model formulates image segmentation as a problem of seeking an optical contour and
two spatially varying fitting functions that locally approximate the intensities on the two
sides of the contour. This method is significantly faster than the PS model [5,6]. More-
over, the LBF model has desirable performance for images with weak object bound-
aries, and its implementation is simple and straight-forward. However, because there is
no constraint on the fitting functions in the LBF model as the PS model, the correspond-
ing energy minimization algorithms may still converge to the local minima. Therefore,
the LBF model is still sensitive to the initialization of contour, and the contour may be
stuck in the background or foreground. In addition, the LBF model is simply imple-
mented by the full domain algorithm in [5,6], so that there is still plenty of room for
improvement in computational efficiency.

In this paper, we propose a robust and efficient level set method for image segmen-
tation under a constrained energy minimization framework, aiming to overcome the
sensitivity to initialization and computational inefficiency of the original LBF model.
Image segmentation is formulated as a problem of seeking an optimal contour and two
fitting functions that best approximate local intensities on the two sides of the contour.
We introduce a contrast constraint on the fitting functions to effectively prevent the con-
tour from being stuck in spurious local minima. As a result, our proposed model, which
we call a contrast constrained local binary fitting (CCLBF) model, is more robust to the
choice of initialization than the original LBF model. This presents a great improvement
over the original LBF model, which is rather sensitive to initialization. Furthermore, we
provide an efficient narrow band algorithm to implement the level set evolution in the
proposed model, which greatly improves the computational efficiency over the original
LBF model.

2 Contrast Constrained Local Binary Fitting Model

2.1 Local Binary Fitting Model

The LBF model is based on the assumption that the intensities on the two sides of the
object boundary can be approximated by two constants [5,6]. Therefore, image segmen-
tation can be formulated as a problem of seeking an optimal contourC and two spatially
varying fitting functions f1 and f2 that locally approximate the intensities on the two
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sides of the contour. This optimization problem can be formally defined to minimize
the local binary fitting energy

EFit
x (C, f1(x), f2(x)) = λ1

∫
outside(C)

K(x − y)|I(y) − f1(x)|2dy (1)

+ λ2

∫
inside(C)

K(x − y)|I(y) − f2(x)|2dy,

where K(x − y) is a weighting function, which decreases to zero as y goes away from
x. The weighting function can be chosen as a truncated Gaussian kernel

K(u) =
{

1
ae

−|u|2/2σ2
for |u| ≤ ρ

0 else,

where a is a normalization constant such that
∫
K(u) = 1, σ is the standard devi-

ation of the Gaussian function, and ρ is the radius of the neighborhood. λ1 and λ2
are positive constants, and f1(x) and f2(x) are two values that approximate image
intensities in outside(C) and inside(C) respectively. The two fitting values approxi-
mate the image intensities in a region centered at the point x, whose size can be con-
trolled by the scale parameter σ. In this sense, the fitting energy EFit

x is localized around
the point x. This local binary fitting energy should be minimized for all x in the im-
age domain Ω, which can be achieved by minimizing the integral of EFit

x , namely∫
Ω EFit

x (C, f1(x), f2(x))dx.
By embedding the contour C as the zero level set of a function φ, which is referred

to as a level set function, the regions outside(C) and inside(C) can be represented by
{x : φ(x) > 0} and {x : φ(x) < 0}. Therefore, the above local binary fitting energy
for all x in image domain Ω can be expressed in a level set formulation

EFit(φ, f1, f2) =
∫

Ω

EFit
x (φ, f1(x), f2(x))dx

= λ1

∫ (∫
Kσ(x − y)|I(y) − f1(x)|2H(φ(y))dy

)
dx (2)

+ λ2

∫ (∫
Kσ(x − y)|I(y) − f2(x)|2(1 −H(φ(y)))dy

)
dx,

where H is the Heaviside function. In addition, it is necessary to smooth the contour
C by penalizing its arc length L(φ) =

∫
Ω

|∇H(φ(x))|dx, and preserve the regularity
of the level set function φ by imposing the regularization term P(φ) =

∫ 1
2 (|∇φ(x)| −

1)2dx. Thus, the entire energy functional of LBF model [6] is defined as

F(φ, f1, f2) = EFit(φ, f1, f2) + µP(φ) + νL(φ). (3)

where, µ and ν are positive constants. This energy functional will be minimized to find
the object boundaries.

The LBF model is able to segment images with intensity inhomogeneities as demon-
strated in an experiment on a synthetic image. Given an appropriate initial contour (e.g.
the dashed rectangle in Fig. 1(a) ), the LBF model produces a desirable segmentation
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result as shown in Fig. 1(a). However, a different initial contour (e.g. the dashed rectan-
gle in Fig. 1(b) ) may lead to a spurious segmentation result as shown in Fig. 1(b), from
which we can see that two segments of the contour are stuck within the background
and foreground. In fact, the undesirable result in Fig. 1(b) is a local minimum of the
energy F(φ, f1, f2). This spurious result is due to the localization property of the LBF
model, which allows for the fitting functions f1 and f2 to take different values at dif-
ferent locations, as long as they approximate the local intensities. For instance, at parts
of the contour that are stuck in the background and foreground in Fig. 1(b), the final
fitting functions f1 and f2 are close to each other, both approximating the local inten-
sities there. The local binary fitting energy EFit

x (C, f1(x), f2(x)) in Eq. (1) is indeed
minimized by such f1 and f2, even for a contour that is partly stuck at locations far
away from the true object boundary.

(a) (b)

Fig. 1. Sensitivity of original LBF model to initialization. Figures (a) and (b) show different
segmentation results (solid contours) with two different initial contours (dashed contours).

2.2 Contrast Constrained Local Binary Fitting Model

To overcome the above drawback of the LBF model, we impose a constraint on the
fitting functions f1 and f2 to prevent the contour from being stuck in the background
or foreground. We assume that there is a difference between the local intensities on the
two sides of the object boundary. Therefore, we propose to impose a constraint on the
fitting functions f1 and f2 based on a property of the local intensities around object
boundaries — there is a contrast between the background and foreground. To reflect
this property, we impose a contrast constraint |f2(x) − f1(x)| ≥ c, i.e.

f2(x) − f1(x) ≥ c or f2(x) − f1(x) ≤ −c, (4)

where c ≥ 0 is a constant, and usually set to a small number (e.g. c = 1). To simplify
the problem without loss of generality, we consider the first case in Eq. (4), namely
f2(x) − f1(x) ≥ c, as the contrast constraint on f1 and f2. Therefore, we define

A = {(f1, f2) : f2(x) − f1(x) ≥ c, for all x ∈ Ω},

Thus, we propose to solve the following constrained energy minimization problem:

Minimize F(φ, f1, f2) subject to (f1, f2) ∈ A. (5)



890 X. Bai et al.

2.3 Energy Minimization

We minimize the energy functional F(φ, f1, f2) in Eq. (3) with respect to φ using the
standard gradient descent method by solving the gradient flow equation as follows

∂φ

∂t
= −δ(φ)(λ1e1 − λ2e2) + νδ(φ)div

(
∇φ
|∇φ|

)
+ µ

(
∇2φ− div

(
∇φ
|∇φ|

))
, (6)

where δ is the Dirac function, and e1 and e2 are the functions

ei(x) =
∫
Kσ(y − x)|I(x) − fi(y)|2dy, i = 1, 2.

The functions f1 and f2 are updated after every iteration of the level set function φ.
The update of f1 and f2 is performed by solving the above contrast constrained energy
minimization problem in Eq. (5) given the updated level set function φ.

3 Narrow Band Algorithm for Contrast Constrained Local Binary
Fitting Model

In this section, we present a narrow band level set evolution algorithm for the above
proposed CCLBF model. A pixel P = (i, j) is a zero crossing pixel of a function φ on
the grid, if either φi−1,j and φi+1,j , or φi,j−1 and φi,j+1 are of opposite signs. Given
a set of zero crossing pixels Z of the function φ, we define the corresponding narrow
band as a neighborhood of Z by

B =
⋃

x∈Z

Nr(x),

where Nr(x) is a (2r + 1) × (2r + 1) square block centered at the pixel x. This
parameter r can be chosen as the minimum value r = 1 to reduce the computation. The
level set function is updated only at the points on the narrow band B during the level
set evolution.

Our narrow band algorithm for the CCLBF model is described below:

Step 1. Initialization. Set k = 0 and initialize φ to an initial function φ0. Then,
build the initial narrow band B0 =

⋃
x∈Z 0 Nr(x) where Z 0 is the set of the zero

crossing pixels of φ0. Go to Step 4.
Step 2. Update narrow band. Determine the set of all the zero crossing pixels of

φk on Bk−1, denoted by Z k. Then, update the narrow band by setting Bk =⋃
x∈Z k Nr(x).

Step 3. Assign values to new pixels on narrow band. For every pixel x in Bk but
was not in Bk−1, set φk(x) to s if φk(x) > 0, or else set φk(x) to −s, where
s = r + 1.

Step 4. Update level set function at all the points on narrow band. Update φk+1

for all pixels x ∈ Bk according to Eq. (6).
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Step 5. Determine the termination of iteration. If either the L2 distance between
φk+1 and φk is less than a prescribed threshold ε > 0 or k exceeds a prescribed
maximum number of iteration, then stop the iteration, otherwise, go to Step 2.

To illustrate the above described narrow band algorithm, we show an application to a
synthetic image in Fig. 2. The evolution of the zero level contour is depicted in the first
row, and the corresponding narrow band is shown as white band in the second row. For
r = 1, there are four pixels across the narrow band according to the above definition
of narrow band. The computation on the narrow band with such a small width is much
more efficient than the computation on the full domain.

Fig. 2. Illustration of curve evolution and the corresponding narrow band. Row 1: Original image
with the initial contour and the contours at iterations 100, 250, 440; Row 2: Narrow band (the
white band) with zero level contour (the black contour) corresponding to Row 1.

The level set regularization is important in the CCLBF model. In traditional level set
methods, level set functions can be degraded during the evolution by developing steep
and flat shapes and noisy features [7]. To show the necessity of level set regularization
in the proposed model, we remove the level set regularization term in our model (by
setting µ = 0), and apply the model to the synthetic image in Fig. 2. The corresponding
results are shown in Fig. 3(a), from which we can clearly see the severe irregularity of
the zero level set, with many small contours densely scattered in the image as shown
in its close-up view of Fig. 3(b). Such irregularity is a result of the level set evolution
without regularization. The densely scattered small contours significantly increase the
size of narrow band as shown in Fig. 3(c) and its close-up view of Fig. 3(d), which
introduces additional computation in each iteration. In the CCLBF model, the zero level
contour and the narrow band are maintained in a regular shape throughout the level set
evolution as shown in Fig. 2. The above experiments show the necessity of the level set
regularization in the proposed CCLBF model.

4 Experimental Results

We implement the proposed CCLBF model using the above described narrow band al-
gorithm. Our model has been validated on both synthetic and real images from different
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(a) (b) (c) (d)

Fig. 3. Zero level set and the corresponding narrow band of the CCLBF model without regular-
ization. (a) Zero level contour at 440 iteration; (b) Close-up view of the squared region in (a); (c)
Narrow band corresponding to (a); (d) Close-up view of the squared region in (c).

modalities. To demonstrate the performance of our model in the presence of intensity
inhomogeneities, we tested it on images with intensity inhomogeneities in all the ex-
periments in this paper. We use the following parameters for all images in this paper:
λ1 = λ2 = 1.0, µ = 1.0, r = 1, and time step ∆t = 0.1. We note that, the segmen-
tation results are mainly influenced by the scale parameter σ and the coefficient ν of
the arc length term. The value of σ should be chosen appropriately according to the de-
gree of the intensity inhomogeneity. For images with severe intensity inhomogeneity, a
relatively smaller σ provides more localized computation, so that the object boundaries
can be located more precisely. Parameter ν should be tuned according to the level of
image noise. For images with high level noise, a relatively larger ν can be used to avoid
creating small scattered contours caused by noise. However, the CCLBF model is in
general not sensitive to the variation of parameters.

4.1 Results of Contrast Constrained Local Binary Model

We first test the proposed CCLBF model on five real images shown in Fig. 4. These im-
ages exhibit significant intensity inhomogeneities caused by spatial illumination vari-
ations. We use ν = 0.01 × 255 × 255 and σ = 3 for all these images. Due to the
intensity inhomogeneities, there are overlaps between the distribution of the intensi-
ties in the backgrounds and foregrounds. In addition, the contrast between parts of the
backgrounds and foregrounds are quite low, which introduces additional difficulty in
the segmentation of these images. Despite the above difficulties, our method is able to
provide desirable results for these challenging images as shown in the second row of
Fig. 4.

The contrast constraint imposed on the fitting functions of our CCLBF model amelio-
rates the problem of the solutions falling into spurious local minima, which makes our
model robust to the initialization of the contour. For example, we applied the CCLBF
model to a image of a T-shaped object and an X-ray vessel image shown in Fig. 5. Both
images exhibit obvious intensity inhomogeneities, and part of the vessel boundaries are
quite weak in the X-ray image. We use the parameters ν = 0.006 × 255 × 255 and
σ = 3 in this experiment. For each image, we apply our model with five different ini-
tializations of contour (the dashed circles), which are shown together with the resulted
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Fig. 4. Segmentation results of the CCLBF model on five real images. Row 1: Original images
with initializations of contour. Row 2: Segmentation results of the CCLBF model.

Fig. 5. Results of the CCLBF model (the solid contours) for real images with different initializa-
tions (the dashed circles)

contours (the solid contours) in Fig. 5. Obviously, despite significant intensity inhomo-
geneities and weak object boundaries, the results are all in good agreement with the
true object boundaries. This demonstrates the robustness of our model to the choice of
initial conditions.

4.2 Comparisons with Local Binary Fitting Model and Piecewise Smooth Model

To demonstrate the advantage of our proposed CCLBF model in terms of accuracy eval-
uation and computational efficiency over the LBF and PS models [6,13], we apply the
three models on a group of synthetic images to extract the object boundaries. For these
synthetic images, we have the ground truth that can be used to quantitatively evaluate
the accuracy of the results. These 15 images are generated by smoothing an ideal bi-
nary image of size 128 × 128, and then adding different intensity inhomogeneities and
different levels of noise. Fig. 6 shows five of these images as examples, with the corre-
sponding results of the CCLBF, LBF and PS models in Rows 2, 3 and 4 respectively. We
use the same initial contour (the circle in Row 1), and parameters ν = 0.006×255×255
and σ = 4 for the three models. It is obvious that the CCLBF model produces more
reliable segmentation results than the LBF and PS models. For both the LBF and PS
models, part of contours are stuck in the background and the foreground as shown in
the first column of Rows 3 and 4. By contrast, the results of the CCLBF model are all



894 X. Bai et al.

Fig. 6. Comparisons of the CCLBF, LBF and PS models. Row 1: Original images with initial
contours; Rows 2-4: Results of the CCLBF, LBF, and PS models.

in good agreement with the true object boundaries. Particularly, no contour is stuck in
the background or foreground.

Meanwhile, the narrow band implementation of the CCLBF model is much more ef-
ficient than the LBF and PS models, which is demonstrated by the CPU times consumed
by the three models for the 15 images. Our model is about 10 times faster than the LBF
model, and 200 to 470 times faster than the PS model. Take the 12th image shown in
the middle of Fig. 6 as example, the CPU times of the CCLBF, LBF, and PS models
are 0.42, 5.13, 174.18 seconds, respectively. The CPU times in these experiments are
obtained by running Matlab programs on a Lenovo ThinkPad notebook with Intel (R)
Core (TM)2 Duo CPU, 2.4 GHz, 2GB RAM, with Matlab 7.4 on Windows Vista.

The above comparisons of the CCLBF, LBF, and PS models demonstrate that the
CLBF model possesses much better performance than the other two models for images
under difficult situations, such as in the presence of intensity inhomogeneities and weak
object boundaries. Furthermore, the narrow band implementation of the CCLBF model
is much computational efficient than the other two models.

5 Conclusion

We have presented a contrast constrained local binary fitting (CCLBF) model for im-
age segmentation, which is able to deal with intensity inhomogeneities. This model is
more robust to initialization due to the introduced contrast constraint in our model. Fur-
thermore, we provide an efficient narrow band implementation to greatly reduce the
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computational cost. Our model has been validated on synthetic and real images with
desirable performance in the presence of intensity inhomogeneities and weak object
boundaries. Comparisons with the LBF model and the PS model demonstrate the supe-
rior performance of our model in terms of robustness, accuracy, and efficiency.
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Abstract. Rendering of wood combustion has received some attention

recently, but prior work has not incorporated effects of internal wood

properties such as density variation (i.e. “grain”) and pre-combustion

processes such as drying. In this paper we present the status and results

of our extensions to prior work of others in the graphics community,

leveraging insights and modeling results from physical science fields to

simulate the influence of wood grain and moisture on the speed and

pattern of decomposition of a burning wooden object.

1 Introduction

Natural phenomena provide some of the most compelling challenges in computer
graphics, producing distinct visuals that can elicit strong reactions in human
observers. In computer graphics applications, visually accurate representations
of natural phenomena can help to suspend disbelief for the viewer, making a
rendered scene appear real and helping the viewer understand and relate to the
scene being depicted. Ultimately, graphic artists producing animation sequences
(e.g., for movies and video games) seek to produce the same emotional reactions
that a person might experience were they to witness an image of a rendered
scene in real life.

Among these natural phenomena, fire is a particularly interesting case. The
process of combustion is extremely complicated, making it a challenging subject
for modeling and simulation. At the same time, the visual effects are immediately
recognizable and can provide powerful reactions, as humans readily recognize the
inherent power of one of nature’s most destructive forces.

There are other applications in which simulation of the effects of combustion is
desirable. Fire safety researchers work to understand how building materials will
degrade when burned, in order to design appropriate safety margins in structures
and benefit from visualizing that process.

While there has been much research into rendering flames, showing the under-
lying degradation of the material being burned has received less attention. Here,
we first provide an overview of the physical processes at work during the com-
bustion process and some of the fundamental simulation and graphics advances

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 896–905, 2009.
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that may be used to model these processes. We then review previous work on
simulation and visualization of combustion. Finally, we present the early status
of our ongoing efforts in extending work that has been done to model combustion
effects, with an ultimate goal of improving realism in rendering of the physical
degradation of wooden and other fibrous objects as they undergo combustion.

2 Background

A good first step in rendering any natural phenomenon is to understand the
physical processes at work. We may then produce simulation and visualization
algorithms that correspond to reality.

2.1 The Physics of Combustion

Combustion of wood (and similar fuels) is a particularly complex series of physi-
cal reactions and processes. While we naturally understand that a piece of wood
will burn when subjected to sufficient heat, in reality the wood is undergoing
a breakdown into component materials, which provide the necessary catalysts
for combustion. There are two distinct precursors to combustion: drying and
pyrolysis.

Drying is commonly understood. Water entrained in a solid fuel such as wood
will begin to evaporate as the temperature of the wood exceeds the boiling point
of water (100 ◦C under normal conditions). The resulting water vapor may then
migrate through, and escape from, the porous fuel.

The second, pyrolysis, is perhaps less familiar and is the key process that
enables combustion to occur. When wood reaches a sufficiently high temperature
(e.g., 300 ◦C), chemical reactions cause the solid material to decompose into a
combination of gases (volatile and nonvolatile), tar, and char (the leftover solids
made primarily of carbon)[1]. When the released volatile gases encounter oxygen,
the resulting oxidation can lead to flaming combustion[2].

Accompanying these physical changes to the structure of wood are corre-
sponding changes to the physical environment within the wood. The chemical
reactions involved generate additional heat, raising the interior temperature. In
addition, the release of gaseous products causes an increase in internal pressure,
which in turn causes migration of the gases through the porous solid[3]. Some
of the gaseous products will migrate into cooler regions of the solid, where they
may recondense[4].

2.2 Level Sets

The temperature-driven nature of the drying and pyrolysis phenomena produce
moving fronts within the solid. These processes in turn produce physical changes
to the topology of the wood object. Level set methods[5] provide widely used
techniques for tracking moving geometric interfaces. In level set methods, an
implicit surface is represented by a grid of values, with a particular isovalue
(typically zero) defining the points at which the surface lies.
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2.3 Physical Characteristics of Wood

Within a solid piece of wood, there are variations in physical characteristics that
result from the seasonal growth of the wood. In particular, concentric rings of
higher density are formed due to the differing growth processes in “early wood”
and “late wood” [6].

These variations affect the physical processes described above, for example,
by causing variation in the rates at which gaseous products migrate through
the solid. In the densely packed late wood regions (the tree rings), the reduc-
tion in air space through which gas may migrate has a significant effect on the
overall combustion process. Empirical studies of burning rates show that ther-
mal conductivity is considerably greater “across” the grain of the wood (e.g., in
a direction parallel to the axis about which the wood grew) than “along” the
grain [3].

3 Previous Work

Previous work relevant to the problem at hand falls into two distinct categories:
mathematical models of combustion and rendering of combustion effects. In both
cases, advances in computing capabilities have enabled progressively greater lev-
els of detail to be considered.

3.1 Mathematical Models of Combustion

Mathematical models of wood combustion are prevalent in fields related to struc-
tural engineering[3,4] and energy production[7]. These models simulate the un-
derlying physical processes of combustion in varying (but generally high) levels
of detail. The mathematical formulations of these models are used to predict
how fast wooden bodies will burn, including features such as char depth and
its rate of progression, and the associated structural weakening of the wooden
body. In the case of wood combustion for energy production, models generally
deal with small particles of wood heated in furnace conditions.

Typically these models are expressed as systems of equations, and the only
visual communications of results are graphs showing the evolution of particular
characteristics (e.g., temperature profile, pyrolysis depth, etc.) over time under
varying heating conditions.

Summary review papers dealing with mathematical combustion models pro-
vide a good source of information for the interested reader to learn more about
the history and state-of-the-art in pyrolysis models.[1]

3.2 Rendering Combustion

In the field of computer graphics, the emphasis is on translating the combustion
process into a visual representation. Models employed in the rendering of com-
bustion are less detailed when considering the internal physical processes, as the
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desired end result is a graphic or animation that looks real, but need not predict
the decomposition of a burning solid with the same degree of accuracy as the
aforementioned structural and energy models.

As the most immediate visual indication of the burning process is the presence
of flames, it is not surprising that early work in rendering combustion focused
largely on depictions of flames and their interactions with their encompassing en-
vironments. More recently, there has been pioneering work by Melek and Keyser
on modeling the underlying decomposition of a burning solid in addition to the
rendering of flames[8,9]. Melek and Keyser also worked on providing visual rep-
resentations of deformations that result from combustion[10]. In this previous
work on rendering of combustion, the focus is largely on techniques that may be
used by animators, requiring some degree of control by an animator to guide or
shape the processes before allowing the simulation to generate animation frames.
Losasso et al. rendered burning of solids but with a focus on thin shells rather
than volumetric solids[11].

4 Synthesis

In our work to extend the state-of-the-art in rendering of combustion, a primary
goal is to increase realism. While previous work has incorporated topological
changes to the overall shape of a wood object undergoing combustion[8], internal
physical characteristics of the wood were not used to influence the combustion
process (although the idea of incorporating variations of thermal conductivity
in nonuniform material was posited). Subsequently, follow-on work to simulate
deformation of objects under combustion[10] has required simulation-specific
definition of proxy objects that respond to environmental changes according to
rules set up by an animator.

Our motivation is to provide graphical simulations in which internal physi-
cal characteristics of the wood influence combustion effects with a minimum of
simulation-specific user- or programmer-driven setup. Ultimately, we envision a
system in which complicated secondary processes—such as the weakening and
eventual breakage of a wooden object—may be simulated and represented based
only on the initial geometry of the wooden object and initial ignition conditions.

As noted in previous sections, while the effects of internal wood characteristics
on wood combustion have not been considered in computer graphics, they have
received considerable attention in fire safety and engineering fields. Our approach
is therefore to synthesize results from these disparate yet overlapping fields.

4.1 Reconstructing Prior Work

We have chosen to use the work of Melek and Keyser[8] as a starting point.
For the sake of familiarity, we provide the following summary of the portions of
the method which we have used (with some slight modifications), and refer the
reader to that work for a complete description.
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– Volumetric grid: Object properties (amount V and temperature T of solid
fuel) and a signed distance field φ representing the surface level set are stored
on voxel grids.

– Heat transfer: Heat is transferred to the solid object from the surrounding
environment. Here we should note that while [8] couples the solid simulation
with a surrounding fluid simulation and transfers heat between the two, we
use a simpler method (as we are only concerning ourselves with the solid
behavior at this point). In our case, we allow the introduction of heat by
specification of any of the solid grid cells as ignition points, and define a
constant value Hi which is the amount by which we increase the temper-
ature of a solid cell at each time step if the cell is in an ignition state.
Similarly, we define a value Hp as a per-time-step incremental heat increase
to be introduced when a cell is in a pyrolysis state. As these are gross sim-
plifications of the true underlying processes, we also institute a cap on the
solid temperature to prevent runaway temperature increases. It should be
noted that, since we do not yet track heat outside the solid in our current
implementation, the resultant effects on flame spread at the surface of the
model are not treated.

– Heat diffusion: Heat is diffused through the solid object at a rate based
on a constant k which encapsulates a number of physical properties (e.g.,
density, specific heat) into a thermal conductivity constant, using a diffusion
solver defined by Stam.[12]

– Decomposition: When T surpasses a pyrolysis threshold, the cell begins
to decompose, resulting in a reduction in solid fuel amount V . Constant
parameters are used to control the rate and strength (or completeness) of
decomposition. The change in V drives a change in φ (according to one of two
pyrolysis rate formulae; in our work we have used Constant Rate Pyrolysis
as described in [8]).

– Polygonization: Tetrahedral decomposition[13] of the signed distance field
is used to generate an isosurface for rendering of the solid object.

4.2 Extension 1: Wood Grain

The first extension we introduce is incorporation of the appearance and effects
of wood grain. We model wood grain as a Boolean value G stored on a voxel
grid, such that a value of true indicates that a given cell within the grid is part
of the grain.

Our wood grain generation routine is fairly simple. We assume that the object
in question has been cut from a solid block of wood that came from a cylindrical
log and provide control over the position and orientation of the resulting wood
grain relative to the carved object. We allow specification of two defining param-
eters: a point Pc that lies on the central axis of the log and a unit vector V̂a, the
axial direction of the log. This axis need not lie within the simulation space. To
assign G for each point P on the grid, we find the shortest distance from P to
the axis defined by Pc and V̂a. We then add a scaled Perlin noise function [14],
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(as Perlin himself did to avoid creating unnaturally perfectly concentric rings)
and call the result the radial function R(P ):

R(P ) =
∣∣∣(P − Pc) −

(
(P − Pc) · V̂a

)
V̂a

∣∣∣+ fnN(P ) (1)

where N(P ) is a Perlin noise function and fn is a scale factor, typically 0.1, to
indicate the degree of modulation.

Given R(P ), we use a simple test such as

G =
{
R(P )
rg

}
< fg (2)

where {x} is the fractional part of x, rg is the “grain spacing” an (approximate)
spacing between growth rings, and fg is a “grain fraction” that controls how
much grain is in the wood. If we take fg = 1

4 , we specify that the grain rings will
be one quarter of the thickness of the non-grain rings that lie between them.

We apply the values of G in two ways. First, we define a 3D texture as a color
modulator, with a darker color if G is false and a lighter one if it is true. This
will provide the appearance of wood grain in our solid, but does not in itself
affect the underlying physical characteristics of the simulation.

The second application of G is used to modify the behavior of the underlying
simulation. Since the darker areas of wood in the rings are the result of higher
density, they tend to inhibit diffusion processes within the wood. We model this
by selecting an alternate value, kg, for the diffusion rate constant k. While we do
not yet calculate this alternate value based on all possible physical properties—
which would vary based on a number of factors such as wood species and age—
we alter the thermal conductivity of the grain material based on results from
combustion literature. Consistent with [3], we choose kg to be equal to k/4.

A limiting factor that must be considered when applying this method is the
coupling of visual and physical scales. The slower heat diffusion within the grain
material causes the appearance of ridges in the burned wood. In order for these
to align with the visual representation of the grain (the 3D texture), the solid
properties V and T must be defined at the same resolution as G, which needs
to be comparatively higher in order to display detailed wood grain.

4.3 Extension 2: Moisture

The second extension of physical characteristics is the consideration of a moisture
level. We track as a fractional moisture content M defined over the same grid
as the other solid properties. We also define a water vapor content variable v on
the same grid for use in tracking evaporated water within the solid wood. Wood
will absorb water up to a saturation point. For our work we use a saturation
point of Msat equal to 0.3 [15].

For the visual representation of moisture, we simply darken the model by
applying an ad-hoc scalar multiplier dm to each of the color components:

dm = 1 − 0.4
M

Msat
(3)
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This entrained moisture has significant effects on precombustion and com-
bustion processes. de Souza Costa and Sandberg describe formulas for thermal
conductivity showing higher conductivity for moist wood [16]. From these for-
mulas we derive an approximate scaling factor

kmod = 4.03 + 6.15M (4)

which scales k when M > 0.
As T exceeds 100 ◦C, water begins to evaporate. We model this process by

defining an arbitrary constant per-time-step evaporation fraction Re. When T
in a cell exceeds the evaporation threshold, we define a conversion of a portion
of the water to vapor as

∆ve = VMRe (5)

This value is added to the vapor amount v, and decreases M by

M → M − ∆ve

V
(6)

To account for the heat of vaporization, we apply a rough estimation by
imposing an energy sink such that T for any cell that is actively undergoing
evaporation is limited to a maximum temperature Tm. We note that beyond
this approximated energy sink, we have not yet attempted to model secondary
temperature diffusion effects that would result from migration of heated steam
through the solid material.

This evaporated water vapor is then able to diffuse through the porous solid.
While the actual driving factors are derived from saturation pressure and partial
pressure of water vapor [7], in our case we are not modeling internal pressure. We
therefore use a similar diffusion process as for heat diffusion, defining a diffusion
rate kv. As with heat diffusion, this rate is modified by existing moisture content
in a cell, although in the opposite fashion: whereas the heat diffusion rate is
increased by moisture content, diffusion of gaseous products through the wood
should be slowed by moisture, as adsorbed moisture will occupy some of what
would otherwise be air space. We model this as a simple linear relationship, and
assume that there is no modification to kv in dry wood, and a complete blockage
of vapor diffusion in saturated wood, by

kv =
{

0 if M >Msat

(1 − M
Msat

)kv if M ≤ Msat
(7)

As water vapor migrates through the solid, some will recondense as it cools
[4,7]. We account for this condensation in much the same way as we handled
evaporation, except that this process occurs in cells where T is less than a con-
densation threshold, the change in vapor is negative and is driven by an arbitrary
condensation fraction Rc, and the change in cell moisture is positive, e.g.:

∆vc = −vRc (8)

M → M − ∆vc

V
(9)
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4.4 Extension 3: Arbitrary Distance Field

In order to facilitate use of a variety of models, we handle three distinct model
import cases:

1. Models may be specified as a set of polygons (e.g., in a PLY file [17]). We
find the minimum distance to any polygon in the set from each point in our
voxel grid, assigning a positive sign if the point lies outside the object and
negative if it lies inside.
Note that these polygons are used only to initialize the distance field, and
not for rendering. Polygons for rendering are generated at each time step by
tetrahedral decomposition.

2. Models may be specified by direct population of the signed distance field on
the grid. For example, shapes that can be described by an implicit formula
can be represented directly.

3. Models may be loaded from our cached signed distance field files.

5 Results

Figure 1 shows the decomposition of a pyramid under two cases: The three
images on the left show decomposition with constant k, and were generated
using our implementation of the baseline method [8]. The images on the right
show decomposition at the same time steps, applying our extension of variable
kg for grain cells.

Figure 2 shows two views of a sphere, half of which is soaked (but not satu-
rated) with M = 0.2. The image on the left shows an ignition point that begins
in the dry portion, while the right shows an ignition point on the other side
of the sphere beginning in a wet portion after the same number of time steps.
The most readily apparent effect of moisture is an overall slowing of the burning
process, as shown by the larger volume of decomposition in the dry portion. A
secondary effect can be observed by looking at the edge of the burning front, and
in particular the small region of material surrounding the decomposed area. In
this region, the temperature of the material has increased (indicated by lighter
color) but the wood has not yet begun to decompose: The presence of moisture
in a cell causes a delay in the start of pyrolysis while the moisture is evaporated.

Fig. 1. Burning of a pyramid, ignoring grain (left), with grain (right)
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Fig. 2. Half-soaked sphere, combustion started at two points (one dry, one wet)

Fig. 3. Burning of an arbitrary model

Figure 3 demonstrates burning of an arbitrary object, in this case loaded from
a PLY file[18].

6 Conclusions and Future Work

In this paper we have demonstrated extensions to prior combustion simulation
and rendering work to improve visual realism. Through these extensions, we
can simulate the effects of wood grain orientation and moisture on an arbitrary
burning wooden object, with no simulation-specific tuning of control parameters.
There are a number of potential areas that we may explore in future work:

– Replacing arbitrary constants with physically derived values
– Modeling weakening of wood as it burns
– Handling of deep pyrolysis (in solid cells not exposed to air)
– Decoupling of grain and solid grid resolutions
– Defining alternative solid representations to replace the voxel grid.
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Abstract. Original active contour formulations may become ill-posed especially
for boundaries characterized by prominent features. Attempts to yield well-posed
formulations lead to bias towards short contours. We provide a framework to
unify existing bias correcting energy methods and propose a novel local bias cor-
recting scheme similar to non-maximum suppression. Our method can be seen as
an approximation to a well-known algorithm that transforms a graph with posi-
tive and negative weights to a graph with only positive weights while preserving
the shortest paths among the nodes.

1 Introduction

One of the most well-known energy criteria for modeling and extracting object bound-
aries is that of Snakes, initially proposed in [1]:

E[C(s)] =
∫

C(s)

1
2
(α|C′(s)|2 + β|C′′(s)|2)ds− λ

∫
C(s)

‖∇I‖ds (1)

C(s) denotes the contour parametrized by s. The first two terms favor smooth contours,
whereas the third favors contours adhering to prominent image features like strong dis-
continuities. The above energy has no intrinsic preference towards short boundaries,
however it may become ill-posed. Good boundary segments receive negative cost and
the minimum of the objective may become −∞. Past approaches that attempted to cor-
rect the formulation ([2,3,4]) led to criteria strongly biased towards short segments. An
example is shown in Figure 1. Given two points on the object boundary, the criterion
in [2] will extract the shortest possible curve instead of the actual boundary.

(a) original image (b) biased criterion (c) optimal solution

Fig. 1. Traditional energy criteria suffer from bias towards segments of short length. Given two
points on the object boundary, the criterion of [2] will produce a straight line (shown in (b)). The
desired boundary is shown in (c).

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 906–913, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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We offer a novel interpretation of the bias problem and introduce a framework for
correcting it. Our framework unifies existing approaches like min ratio cycles [5], piece-
wise extension of the contour [6], non maximum-suppression [7], and our probabilistic
formulation in [8].

The length bias is a result of converting Criterion 1 to positive by adding a large con-
stant. Such a transformation leads to a well-posed functional, however the minima are
not preserved. The new optimum solution is strongly biased towards short boundaries.

To remove the bias we turn to a discrete representation of Criterion 1. We represent
the image with a graph where each node corresponds to a pixel and neighboring pixels
are connected. The edge weights are derived from the biased criterion that is, Equation 1
plus constant, and are positive. The goal is to find the quantity α to remove from the
weights so that they remain positive and the bias is eliminated. We show that earlier bias
elimination approaches follow this framework and provide different choices regarding
α. We additionally propose a local bias correction scheme, which is an approximation
of a well-known algorithm of converting a graph with positive and negative weights to
a graph with only positive weights while preserving the shortest paths among nodes.

The problematic nature of Functional 1 has been recognized early on and some of
the problems consistently appearing in the literature include: The contour fails to latch
to prominent image discontinuities and shrinks to a point. The contour produced is of-
ten too smooth and can not model geometrically complex boundaries. Self-intersecting
contours are allowed and cannot be easily avoided. These problems have been mostly
attributed to either the suboptimal nature of the optimization method, or the parametric
form of the energy functional. Rarely have they been linked to the bias introduced when
the energy criterion is converted to positive.

Earlier approaches required initialization of the contour very close to the actual
boundary [1,9]. The intelligent scissors method described in [2,3,4] provided a novel
way for the user to guide the delineation process. Usually, these approaches require a lot
of user interaction to delineate the boundary. Level set methods [10] employ an intrinsic
representation of the curve and thus are not prone to problems related to parametriza-
tion. However, it is difficult to impose topological constraints, for example extraction
of a single region. Methods like the ones in [11,6,7] have incorporated heuristics in the
optimization process; they essentially extract the boundary in a piecewise manner. Ad-
ditional image features ([12,13,14]) and stronger contour priors ([15,16,17]) have also
been explored. Such methods impose additional constraints but do not correct the built-
in bias of the original criterion. The most direct attempt to address the bias problem has
been to normalize the quality score of the contour by the length of the contour [5,18].

2 The Boundary Length Bias Problem

To better understand the nature of the bias we will employ a discrete version of Func-
tional 1 and we will omit the second-order derivative. We assume that a curve C is
discretized into n points. Let ci be the i-th point. Then, the energy 1 is given by:

E[C] =
n∑

i=1

{d(ci+1, ci) − λ ‖∇I‖ci} (2)
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where d(ci+1, ci) is an approximation of the first derivative of the curve and ‖∇I‖ci is
the gradient intensity at point ci. d(ci+1, ci) can be defined as the Euclidean length of
the linear segment connecting neighboring points ci+1 and ci.

Criterion 2 can be globally optimized with dynamic programming. To this end, the
image is represented with a graph. Each arc (u, v) is weighted according to Eq. 2:

w(u, v) = d(u, v) − λf(u, v) (3)

where f(u, v) refers to the image-derived features term.
The weights of Eq. 3 become negative at image locations with prominent image fea-

tures. In the case where negatively weighted cycles are formed, the minimum of Eq. 2
is −∞ and the problem becomes ill-posed. A negative cost cycle acts as a black hole in
the energy landscape and forces all candidate boundary segments to include that cycle.
Such an example is illustrated in Fig. 2. When the weights are positive, the shortest
paths from S to all the other nodes include the bold edges. However, when negatively
weighted cycles are introduced (Fig. 2(c)), the shortest paths are altered entirely so that
they include negative cycles.
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(a) graph with positive weights (b) shortest paths from S (c) shortest paths for neg. cycle

Fig. 2. Negatively weighted cycles act as black holes in the energy landscape. (a) Original graph
with positive weights. (b) Shortest paths from S to all the other nodes for the weights of (a)
(shown with bold arrowed lines). (c) The edge indicated with dashed line has obtained negative
weight -7 and negative cycles have been created. The shortest path from S (shown with bold lines)
are forced to include such cycles.

Removing negatively weighted cycles is computationally very difficult. An image
will typically consist of many prominent features which will cause the creation of an
exponential number of such cycles. Further, because the optima of the solution change
drastically when such a cycle is created, it is difficult to impose simple constraints that
will ensure the extraction of contours adhering to the object boundaries.

In practice, algorithms like [2,3,4] assume that the weights are positive. This is equiv-
alent to adding a large positive constant M to the original weights such that:

M = { max
w(u,v)<0

|w(u, v)|} + c (4)

where c > 0. The weights obtained will be

wM (u, v) = w(u, v) +M (5)
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Such a transformation does not preserve the optima of the objective criterion since
the length of the contour is implicitly part of the optimization process. The objective
criterion optimized instead, is:

EM (C) =
∑

(u,v)∈C

{d(u, v) − λf(u, v)} + nM (6)

This difference between Equations 1 and 6 is the term nM which is an additional
smoothing term proportional to the length of the contour. Its introduction is arbitrary
and its effect can be significant when long and geometrically complex contours are
to be extracted. When such criteria are used for interactive contour extraction a large
amount of human input is required, as has been observed in [19].

3 Removing the Bias

To remove the bias introduced by adding a constant (Eq. 5), we seek ŵ of the form:

ŵ(u, v) = wM (u, v) − α(u, v) (7)

Our goal is to estimate α(u, v) so that ŵ(·) > 0 and we will do so in a local fashion.
Previously proposed bias correction methods provide different choices for α(u, v).

3.1 Local Bias Correction

The role of negative weights is to encourage the inclusion of boundary segments in the
final solution. Thus, we need to assign very low positive weights to good boundary seg-
ments. The quality of a segment can be assessed based on the quality of its neighbors: a
segment should receive low value if it is significantly better than nearby segments. The
simplest segment is the edge between two nodes and we define:

w+(u, v) = wM (u, v) − max
v

wM (u, v) (8)

where u and v are adjacent.
Non-maximum suppression and piecewise extension of the boundary are very similar

to this transformation. Non-maximum suppression assigns high values to locally best
pixels. Piecewise boundary extension, extracts a boundary in an incremental fashion so
that it is composed from high-score segments.

Converting Negative Weights to Positive. Provided there are no negatively weighted
cycles, a graph with negative and positive weights can be converted to a graph with
positive weights so that the shortest paths among the nodes are preserved. Such a trans-
formation is part of Johnson’s all pairs shortest paths algorithm ([20]) and defines a new
weighting function w+(u, v) as:

w+(u, v) = w(u, v) + h(u) − h(v) (9)

The function h(·) is computed as follows. We create a new graph G′ consisting of all
the nodes of the original graphG and an additional dummy node s. Node s is connected
to all the other nodes with weights equal to 0. Then, h(u) is defined as the cost of the
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Fig. 3. (a) Original graph with positive and negative weights. (b) Graph with transformed weights.
The numbers inside the nodes indicate the shortest path costs from a dummy node s.

shortest path from s to u. The weights thus defined are positive. Figure 3 shows an
example of such a transformation.

Since a criterion with both positive and negative weights (but without negatively
weighted cycles) does not suffer from the length bias, it follows that there exist criteria
with positive terms which do not have an implicit bias.

In practice however, this algorithm cannot be applied since the weights induced by
the image features will lead to negative cycles. Our local correction method can be seen
as an approximation to the optimal algorithm. Instead of a single dummy node s, we
use as many dummy nodes as the nodes of the graph, and find the shortest paths in a
small neighborhood of each node. If there is a single best contour, our method yields
the same contour as the optimal method.

3.2 Ratio Weight Cycles

The ratio weight criterion in [5] minimizes a normalized version of the original energy
functional given by:

w(C) =
∑

ew(e)∑
e n(e)

(10)

where w(C) is the weight of a contour C.
Finding the minimum of Eq. 10 is equivalent to converting the original graph weights

w(e) to w(e) − λn(e) and finding zero cost cycles, i.e.:

ŵ(C) = w(e) − λn(e) = 0 (11)

This is equivalent to finding the largest λ such that no negatively weighted cycles are
created. The approach as presented in [5] does not model open curves and does not
admit user interaction. It provides a way of estimating λ given a fixed n(e).

The authors explore two types of n(e). When n(e) = 1, the shortest mean cycle is
found and the bias of Eq. 6 is reduced to M . The data term is also altered so that the
contour extracted has on average good features. When n(e) = 1/|∇I|(e), the criterion
minimized is very similar to the original snakes criterion. The stronger the gradient
intensity, the shorter the contour extracted.

3.3 Probabilistic Formulation

In [8], we proposed a probabilistic formulation which is capable of extracting geomet-
rically complex boundaries. The weights defined by this method are of the form:
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w(u, v) = xj − log
∑

i

e−xi (12)

where xi, xj are the scores of neighboring segments, in our case edges emanating from
the same node. The approximation scheme used to compute the log of the summation
of exponentials results in weights similar to the ones of the local correcting method.
That is, locally best segments receive very low costs.

4 Evaluation

4.1 Toy Example

Figure 4 demonstrates how the methods presented transform the weights and alter the
optima of the criteria. Bold lines indicate the desired boundary. In the optimal case,
(Fig. 4(a)) the graph contains both positive and negative weights and the desired bound-
ary is the petal-shaped one. Inside the parentheses, the weights obtained from the opti-
mal transformation are indicated. If the weights are translated by a constant, as is shown
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Fig. 4. Bold lines indicate the optimal contour. In (a) the weights in parentheses are obtained by
optimally converting the negative weights to positive. Graph (b) is obtained by adding 3 to the
original weights of graph (a). In (c) the local bias correction is applied to the weights of (b). In
(d) the weights of (b) are transformed according to the min ratio cycle method.
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(a) original image (b) seed points (c) biased (d) locally corrected

Fig. 5. Seed points were selected as strong edge points on the object boundary (b). Shortest paths
between all seed points were found and displayed for the biased method (c) and the locally cor-
rected method (d).

in Figure 4(b), then the optima of the criterion are not preserved. As a result, the opti-
mum contour has been smoothed out (part of the inner cycle is included). The local bias
transformation is shown in Figure 4(c); for this example the weights calculated are not
similar with the optimal ones but the optimal contour is the desired boundary. Finally,
in Figure 4(d) the weights obtained from the mean ration are shown. In this case, the
optimal contour includes part of the outer cycle.

4.2 Contour Completion

Figure 5 shows results obtained for some real images for the task of contour completion.
The gradient of the image was only used to guide the process. Seed points were selected
by identifying consecutive strong gradient intensity points. The shortest paths among
all seed points were found using biased weights and the locally corrected weights. In
the case of biased weights one can see the tendency towards simpler contours. Further,
boundaries which are not characterized with high intensity gradient are not always fol-
lowed, as for example in the black and white flower. On the other hand, the locally
corrected weights produce more detailed edge maps and oftentimes complete the con-
tours in a more conceptually compatible fashion. On the downside, they may lead to
irregular boundaries as in the case of the woman example.
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Abstract. In this paper, we propose a novel and fast method to local-

ize and track needles during image-guided interventions. Our proposed

method is comprised of framework of needle detection and tracking in

highly noisy ultrasound images via level set and PDE (partial differen-

tial equation) based methods. Major advantages of the method are: (1)

efficiency, the entire numerical procedure can be finished in real-time:

(2) robustness, insensitive to noise in the ultrasound images and: (3)

flexibility, the motion of the needle can be arbitrary. Our method will

enhance the ability of medical care-providers to track and localize needles

in relation to objects of interest during image-guided interventions.

1 Medical Background

Image guided interventions have become the standard of care for many surgical
procedures. Optimal visualization of the object of interest and biopsy needle in
ultrasound images requires the use of specialized biopsy needles and high cost,
cart-based ultrasound units. The success of image guided interventions is depen-
dent on anatomic knowledge, visualization, and precise tracking and control of
the biopsy needle. A majority of medical care-providers utilize low resolution
ultrasound units. In addition, many office-based or emergency department pro-
cedures are performed using generic (non-specialized) needles. Unfortunately,
the quality of the imagery obtained by most ultrasound units does not allow for
clear and concise visualization of a regular needle during many needle-based pro-
cedures. The inability to clearly see the tip of a needle in relation to the object
of interest (e.g., a vein, artery, or mass) makes such image guided interventions
less accurate.

In view of the inadequacy of ultrasound technology identifying inserted needles
with desired resolution, a new and improved system for tracking such needles
needs to be developed. A more accurate method for localizing the distal tip of
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inserted needles will greatly improve the efficacy and safety of ultrasound image-
guided interventions. In this paper, we shall employ modern level set and PDE
methods and fast numerical algorithms to solve the needle tracking problem for
ultrasound images.

The rest of the paper is organized as follows. In Section 2, we shall lay down
the fundamental mathematical model which is the core of solving our problem.
In Section 3 we shall describe the complete schematic procedure of needle lo-
calization. Numerical experiments on ultrasound image frames will be given in
Section 4 and concluding remarks will be given in Section 5.

2 Mathematical Model

We denote the video frames of ultrasound images as I(x, t) with 0 ≤ I(x, t) ≤ 1,
and define the integrated difference of frames as

f(x, t) :=
∫ t

t−δ

∣∣Gσ(x) ∗ ∂τ I(x, τ)
∣∣dτ, δ > 0, (1)

where Gσ is Gaussian with standard deviation σ. We note that the parameter σ
is not essential for our method, we will fix it throughout our experiments.

If the motions of the needle, e.g. jiggling or insertion, are different from the
motions of the tissues and organs, which is usually the case, then in f(x, t) we
can see regions with such motions highlighted. However these regions in f(x, t)
are usually not very clear and have noisy boundaries. Therefore, a robust and
efficient segmentation on f(x, t) for each t is needed. Since we will focus on the
segmentation of f(x, t) for each fixed t, we now omit the variable τ and denote
f(x, t) as f(x) for simplicity.

There are numerous image segmentation methods in the literature [1, 2, 3, 4,
5, 6, 7]. In this paper, we shall consider the following energy introduced in [1]

E(u) =
∫
g(x)|∇u(x)|dx + λ

∫
|u(x) − f(x)|dx. (2)

Here g(x) is some edge indicator function defined as g(x) = 1
1+β|∇(Gσ̃∗f)| (see

e.g. [1, 3]). It is shown in [1] that for any minimizer u of (2) and for almost all
threshold µ ∈ [0, 1], the characteristic function

1Ω(µ)={x:u(x)>µ}(x)

is a global minimizer of the corresponding geometric active contour model (see [1]
for more details). Therefore, a segmentation of f(x) can be obtained by first
computing a minimizer of (2) and then letting Ω := {x : u(x) > 0.5}. Now the
key issue here is to minimize (2) efficiently.

To minimize the energy (2) efficiently, we adopt the idea of the split Bregman
method introduced in [8]. Define

|d|∗ := g(x)
√
d2
1 + d2

2 + λ|d3| and Fu := (∇uT , u− f)T ,
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then minimizing energy (2) is equivalent to

Minimize
∫

|d|∗

s.t. d = Fu.

(3)

After “Bregmanizing” the constrained optimization problem (3), we obtain the
following algorithm which minimizes the original energy (2) rather efficiently
(the derivation is similar to that in [8]),

(uk+1, dk+1) = argminu,d

∫
|d|∗ +

µ

2
‖d− Fu− bk‖2

2

bk+1 = bk +
(
Fuk+1 − dk+1). (4)

For convenience, we denote d̄ = (d1, d2)T and hence d = (d̄, d3)T . Similarly, we
can define b̄ and b. Then we introduce the following algorithm to solve (4):

Algorithm 1. We start with d0 = 0 and b0 = 0.

1. First update u by solving

(−∆+ I)uk+1 = ∇ · (b̄k − d̄k) + dk
3 + f − bk3 ;

2. Then update d by

dk+1
1 = max(sk − g(x)

µ
, 0) · u

k
x + bk1
sk

,

dk+1
2 = max(sk − g(x)

µ
, 0) ·

uk
y + bk2
sk

,

dk+1
3 = shrink(uk − f + bk3 ,

λ

µ
),

where sk = |∇uk + b̄k|.
3. Finally update bk+1 by

bk+1 = bk +
(
F (uk+1) − dk+1);

4. If ‖uk+1−uk‖
‖uk‖ > tol, go back to step 1 and repeat.

The Algorithm 1 is very efficient in terms of total number of iterations and the
cost for each iteration. According to our experiments, it usually only takes about
30 iterations until ‖uk+1−uk‖

‖uk‖ ≈ 10−3. For each iteration in Algorithm 1, the
major calculation is in step 1, where the PDE can be solved rather efficiently by
either FFT, for periodic boundary condition, or multigrid method, for Neumann
and Dirichlet boundary conditions. An example is given in the following Figure 1
where noise was added to the original image. We note that the image is provided
by Laboratory of Neural Imaging, Center for Computational Biology, UCLA.
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For the special image f(x) obtained from frames of ultrasound images by (1),
the object of interest in f(x) is either a needle or the tip of the needle, which
are both simple geometric objects. Therefore, we can stop our iteration at an
even earlier stage (e.g. in our experiments, we only perform two iterations) and
the segmentation results would not change much if more iterations were carried
out. The efficiency of Algorithm 1 ensures that the entire needle localization
procedure can be finished in real-time. To be precise, by “real-time” we mean
that the total time spent by the entire numerical procedure is no greater than
that spent by the ultrasound machine in acquiring each image frame. A detailed
description of the needle localization procedure will be given in next section.

5 10 15 20 25 30
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−2

10
−1

5 10 15 20 25 30

10
−3

10
−2

10
−1

10
0

Fig. 1. The left figure shows segmentation result using Algorithm 1; the middle one is

the decay of
‖d−F uk‖

‖d‖ ; and the right one is the decay of
‖uk+1−uk‖

‖uk‖

3 Schematic Descriptions of Needle Detection and
Tracking Procedure

The entire needle localization procedure can be decomposed into two phases. The
first phase is to locate the needle in the images at the very beginning, based on a
few seconds’ image frames. During this phase, one can jiggle the needle or gently
poke the tissues to help our algorithm locate the needle fast and accurately. The
second phase is to track the motion of the tip of the needle when it moves.

3.1 Phase I

To locate the needle when it is first inserted into the tissue, we perform the
following operations:

1. Obtain f(x) using (1) based on the previous 1-2 seconds’ frames, denoted as
I(x, t);

2. Segment the region that indicates needle movements using (4) via the Algo-
rithm 1 (with 2 iterations);

3. Regularize the region obtained by step 2 via the fast algorithm of area-
preserving mean curvature motion in [9];

4. Obtain the skeleton of the regularized region to represent the needle, and
then the tip of the needle can be located from the skeleton.
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To help localize the needle based on f(x), one could gently jiggle the needle,
in order to differentiate its motion from that of the tissues or organs. The fol-
lowing Figure 2 illustrates the four steps described above. We first note that it
is obviously crucial to consider f(x) instead of any single frame in order to rule
out other regions with comparable intensities as the needle (e.g. some tissues or
organs). The left two figures in Figure 3 show that if we perform segmentation
directly on a single frame, we will capture several regions besides the needle. We
also note that the third step above is important because otherwise, we may not
get a single line representing the needle, but several branches (see the right figure
in Figure 3). In step 4, there is always an ambiguity of the tip (it could be the
alternative end of the line). However the ambiguity can be easily removed when-
ever the needle starts moving. Therefore, here and in the experiments below, we
assume the tip is picked up correctly.

Fig. 2. The four figures from left to right describes the four steps, and the four images

are the same one f(x) obtained by (1)

Fig. 3. Left figure shows direct segmentation of one single frame; middle one shows

the skeletons extracted from the segmented regions; right one shows the importance of

step 3 in Phase I, where the blue curve is represented by the solution u obtained form

step 2, and the red one is the skeleton by step 4

3.2 Phase II

The second phase is to track the movements of the tip of the needle starting from
the location we obtained from Phase I. We perform the following operations:

1. Obtain f(x) using (1) based on the current and the previous 1-2 frames;
2. Segment the region indicating needle movements using (4) via the Algorithm

1 (with 2 iterations);
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3. Regularize the region obtained by step 2 via the fast algorithm of area-
preserving mean curvature motion in [9];

4. Shrink the (possibly disconnected) region to points, and then choose one
point from them that is closest to the previously tracked location.

The following Figure 4 illustrates the four steps described above. We note that
when the noise level is high or some irregular motions exist in tissues or organs,
multiple locations may be captured in step 3, most of which are false detections.
Therefore, step 4 affects the smoothness of the overall tracking. Evidently, there
are more sophisticated ways to regularize the trajectory of the tracking. For ex-
ample, if we know a priori that the needle moves in a smooth fashion, then we
can estimate the current location of the tip based on the approximated locations
in previous frames such that the overall motion curve is smooth. For our experi-
ments in Section 4, we only use the simple operation described in step 4 because
the needle moves in an irregular fashion. However, the result of the overall track-
ing is still quite satisfactory. We also note that in step 1, instead of considering
the entire image f(x), we can just consider a patch of f(x) that centered at the
previously located point (location of the tip in the previous frame). In this way,
we can save some computations and also increase the smoothness of the overall
tracking. Again, this only works when the motion of the needle is not too fast
(which is usually the case in practice). In our experiments in Section 4, we will
still use the entire image f(x).

Fig. 4. The four figures from left to right describes the four steps

4 Numerical Result

All of the frames of ultrasound images are obtained by a Sonosite (Titan) ultra-
sound machine. The ultrasound machine captures 20 frames per second. In our
following experiments, 120 frames are used, including 20 frames in Phase I and
100 frames in Phase II. Each image is of size 251 × 251. In Figure 5 we present
5 of the 20 frames in Phase I, and in Figure 7 we present 12 of the 100 frames
in Phase II.

The numerical results for Phase I are given in Figure 6, and those for Phase
II are given in Figure 8. We note that the PDE in (1) of Algorithm 1 is solved by
FFT. Here we also provide a ground truth in Figure 9 as validation of our results,
where we manually selected the positions of the needle based on neighboring
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Fig. 5. Images from left to right are 5 sample frames among total 20 frames of ultra-

sound images during Phase I

Fig. 6. Left figure is f(x) obtained from the 20 frames; middle one shows the result of

localization of the body of the needle; right one shows the result of localization on the

first image frame in Figure 5, where the blue dot indicates the tip of the needle

Fig. 7. Images above are 12 sample frames among total 100 frames of ultrasound images

during Phase II

frames. We note that for almost all of the frames during Phase II, the tracking
is rather accurate. However for some of the frames, the localization is not very
accurate, for example the fourth figure in the first row of Figure 8. The reason
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Fig. 8. Tracking results of the 12 sample frames in Phase II shown in Figure 7

Fig. 9. Manual segmentation results of the 12 sample frames in Phase II shown in

Figure 7

is because of acoustic shadows in some image frames, which appear in f(x) with
high intensities and conceal the movement of the tip of the needle (see the middle
figure of Figure 10). However, an acoustic shadow only seems to appear in f(x)
occasionally when we extract the needle, instead of inserting the needle, and an
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Fig. 10. First figure is the current frame as shown in the fourth figure in first row of

Figure 7; second figure is the previous frame of the first figure; third figure shows the

corresponding f(x) obtained from the first two figures and the red dot is the tracking

result; the last one shows the tracking result on the current frame which is the same

figure as in the upper fight figure of Figure 8

accurate tracking of the needle is only required during insertion. Therefore in
practice, this error is not an issue and will not affect the safety concerns during
image guided surgical operations.

5 Conclusion

Image guided interventions have become the standard of care for many surgical
procedures. One of the most important problems in image guided interventions
for ultrasound images is the precise tracking and control of biopsy needles. In
this paper, we introduced a novel and efficient method for needle localization
in highly noisy ultrasound images. Our numerical experiments showed that our
proposed method tracks the tip of needle efficiently with satisfactory accuracy.

There are also improvements of the current method that can be done. Firstly,
the regularity of the tracking results can be improved. For the current version
of the method, we are only segmenting f(x, t) for each t independently, while
ideally speaking the segmentation should depend on both x and t so that the
approximated needle locations will lie on a smooth path. However, taking t into
account during segmentation will increase computational complexity. Therefore,
a very efficient algorithm is required.

Another possible improvement is to detect and remove some of the known
artifacts, e.g. acoustic shadow, in the images before performing segmentation.
This will improve the accuracy of tracking and also helps to improve regularity.
Again, the challenge is that the process of artifact removal needs to be done
rather efficiently.
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Abstract. We present a novel method to provide fast access to large

3D volumetric data sets from biological or medical imaging atlases. We

extend the Internet Imaging Protocol with an open specification for re-

questing tiled sections of 3D objects. We evaluate the performance of the

protocol and demonstrate it with a platform independent web viewer that

allows on-the-fly browsing of section views of multi-gigabyte 3D objects.

The method uses Woolz, an efficient image processing library, to pro-

vide very fast access to section views of the volumetric data. The server

has been implemented to run on standard Linux systems and it avoids

the requirement for high-performance parallel processing or expensive

software. We have tested the system on data volumes up to 13.4 GB and

demonstrated no loss of responsiveness for the user.

1 Introduction

In the field of biomedical science, the ability to access 3D image objects over a
wide-area network such as the internet is often imperative. Previous solutions
involve the Internet Imaging Protocol (IIP)[1], which is an open protocol that
provides fast tiled delivery of large images through a multi-resolution image
representation, but which may only be used with 2D images. Since a similar
presentation method for 3D objects does not exist, we have developed extensions
to IIP which we call Woolz Internet Imaging Protocol (WlzIIP), implemented a
server to provide this service and built a web application to use it.

Recent work has demonstrated the clear advantages of tile-based image trans-
mission and many zoom-viewers have been developed for example by Google and
Zoomify. The IIP server has been developed as an open-source resource and is used
in tele-pathology and educational archives [2]. It allows a user to select a region
of interest at a desired zoom level and provides efficient image transmission.

The importance of virtual slicing systems for remote access of images was
previously noted [3] and the IIP protocol was identified as a suitable interface
� We acknowledge support from the Medical Research Council, UK and NIH support
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for independent client-server applications. However the availability and flexibility
of these imaging systems was limited by the proprietary (and costly) nature
of existing implementations. Some existing image servers are able to deliver
3D image data, such as in BrainMaps.org, they provide only predefined 2D
sections. Glatz-Krieger et al. [3] consider virtual slices only in the original focal
planes of the biological material in the context of a 2D microscope slide. In this
paper, we cut an arbitrary virtual section from the digitised 3D model. Such
sectioning software exists, either as standalone (e.g. Amira [4]) or as online
Java applications (e.g. NeuroTerrain [5]). The latter aims for compatibility
and platform independence, but sometimes falls short of this in practice: for
example, Iowa Slidebox[6] suffers from its binding to an obsolete Java runtime
environment.

Tile based image delivery, that transmits the target as smaller image blocks,
is known from commercial web applications such as Google maps. This runs in
any web browser and does not require additional software or an applet.

The Visible Human project has generated several internet based image servers
and clients. The EPFL server [7] is the most similar to ours. It is a high through-
put parallelised sectioning server using a FastCGI (FCGI) web interface. How-
ever, compared to WlzIIP, it does not allow tiled requests and has a proprietary
protocol. To deliver section data the EPFL server requires a high performance
cluster. In contrast, the WlzIIP server will run on standard Linux-based servers
with the only requirement that the installed memory is larger than the image
volume.

Sections 2 and 3 present the internal image representation and 3D sectioning
that provide fast image generation. Sect. 4 explains our WlzIIP extension of IIP.
Then, a visualisation interface using the WlzIIP is presented in Sect. 5, and in
Sect. 6 we compare WlzIIP to the NeuroTerrain image server. The paper ends
with a discussion and conclusions.

2 3D Object Representation

As part of our work, we use the image processing library known as Woolz [8]. In-
ternally Woolz uses an interval coded representation for objects which is efficient
with regard to both sparse data storage and image processing operations.

In 2D, an image is defined over an arbitrary region of a discrete 2D space with
coordinates (k, l) where k is the column coordinate and l the line coordinate. For
each line in the image there is a list of intervals which gives the start and end
points of the image along that line. There is a list (possibly empty) of intervals
for each line and it is clear that an arbitrarily complex region of the discrete
space can be defined in this way. It is assumed that the discretisation in the x
and y directions is at fixed regular intervals, constant in both directions but not
necessarily equal. The 3D structure is simply a stack of 2D images. The plane
coordinate is defined to be p, where the planes are evenly spaced, each with a
2D image, or possibly an empty structure.

The advantage of the Woolz encoding is that only grey-level information
within the domain of the image is stored rather than for the whole rectangular
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box defined by the column, row and plane bounds. For a biological atlas this
reduces storage and memory requirements with lossless compression.

3D object reconstructions are built with specialised Woolz tools for section
data registration. In this paper the reconstruction technique is immaterial and
not discussed and in fact the WlzIIP can be applied to any volumetric image.

Each object has its own internal discrete coordinate system with an associated
affine transform which will provide the link between internal coordinates and
external, biologically relevant coordinates.

2.1 Coordinate Transformation

There are many ways to define an arbitrary rotation, scaling and translation of
one coordinate frame into another. For the purposes of sectioning we use a set of
parameters that are chosen to correspond to those used in the MAPaint Woolz
viewing tool to select arbitrary planes through reconstructions. The underlying
coordinate transformation methods have been extensively used for developing
the e-MouseAtlas models and gene-expression database.

We define a viewing plane with a new set of coordinate axes such that the
new z-axis is along the line-of-sight. The viewing plane is defined to be perpen-
dicular to the viewing direction given by angles θ and φ which are yaw and pitch
respectively. The actual plane is distance d from the fixed point f . Internally the
full rotation transformation is defined in terms of the Euler angles [9, p. 107]
with British definition [10, p. 9]. The third degree of freedom (d.o.f. ) is called
roll and for the user corresponds to rotating the section image as viewed on the
screen. In many cases the user will want a standard view of the data without
the requirement of an additional control to set the viewing angle, so we have
implemented a number of viewing modes which automatically determine this
angle.

3 Viewing Modes

With views that are perpendicular to the line of sight, we present four options
to determine the orientation of the section image on the screen.

Statue mode: The viewing plane is flat but the image is oriented as if the
viewer were walking around the object. The actual displayed image is then
obtained by rotating the viewed plane about an axis parallel to the line of
intersection of the view plane and the horizontal which is defined to be a
plane of constant z. This has the merit of providing clear feedback of the
position of the plane within the whole but is not ideal because for some
angles the projection will introduce perspective distortion of the image.

Up-is-Up mode: The projection of a predefined direction up will always be
displayed as the vertical in the section view. If the viewing direction is parallel
to this vector then the angle of rotation around the viewing direction is
not defined and an arbitrary choice can be made. As a consequence, small
changes in viewing direction around the up vector may give rise to arbitrarily
large changes in the display orientation.
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Fixed point mode: Navigation through a 3D volume can give rise to confusion
if unfamiliar views are presented. However it may often be possible to identify
one or more points within the image volume that the user wishes to be visible.
If one point is fixed then there are two d.o.f. left to set the view and if there
are two fixed points then there is only one d.o.f.

The transformation is defined so that by setting one fixed point, f , the
orientation parameters, θ and φ, will rotate the view plane about this point.

Fixed line mode: If two points are fixed then θ and φ are dependent and can
be represented in parametric form using a third angle parameter, ψ, which
corresponds to the angle around the line joining the two fixed points.

The two fixed points f1 and f2 give direction vector n1 = f2−f1
|f2−f1| which

must remain in the view plane. The values of pitch and yaw of the original
plane in which the fixed line was established define a direction perpendicular
to this vector n1 and can be used to establish the formula linking ψ to new
viewing angles.

This technique has proved very powerful and is widely used in MAPaint.

4 Tile Based Imaging with WlzIIP

In this section we present the extension of WlzIIP to the IIP protocol.

4.1 Image Tiles

In WlzIIP, we keep the tile based imaging capability of IIP and so each image
is divided into fixed sized tiles (except right-most or bottom-most tiles which
might be smaller).

Displaying 3D objects involves multiple coordinate systems, and WlzIIP will
automatically perform transformations between these. For clarity, the conven-
tions used are explained in Fig. 1.

4.2 Protocol Extension

The added commands and feature queries are shown in Tables 1 and 2.
The commands specify an object, set the viewing section parameters and

request image data or metadata, similar to existing IIP parameters. The com-
mands for image requests are the same as in the original IIP specification[1]:
CVT for full frame; JTL and TIL for jpeg-compressed and uncompressed tile
answers. For a Woolz object, SCL specifies an arbitrary scaling factor, so reso-
lution number is ignored in JTL or TIL commands.

For 2D images, pyramidal tiled TIFF images are specified by the FIF com-
mand, while for WlzIIP the WLZ command sets the 3D Woolz object. These
are cached in the server’s memory for efficiency.

MOD specifies the projection mode being STATUE, UP IS UP, FIXED LINE or
ZETA (fixed point) as described in section 3.
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Fig. 1. Coordinate systems. The object coordinate is defined by the object, and the

section coordinates result from the sectioning process. The origin of the sectioning

coordinates is in an arbitrary position with respect to the visible pixels of the sectioning

plane. However, images are normally represented using pixels with positive coordinates.

Hence, the display coordinates translate section coordinates such that the lower bound

of the bounding box of the visible pixels is at (0, 0). Further, on the right, the section

is divided into non-overlapping tiles covering the whole section. Tiles are numbered

with 0, 1, 2, etc., with the coordinates of the 0th tile (i.e. top-left corner) matching

the display coordinates. The 1st, 2nd, etc. tiles continue from left to right and top to

bottom in raster fashion. Finally, the view coordinates are defined for the region of the

reassembled tiles displayed in the viewer application.

Table 1. WlzIIP command extension summary

Command Purpose Syntax

WLZ Specify the Woolz object WLZ=path
MOD Specify the projection mode MOD=mode
DST Specify the distance of the sectioning plane DST=dis
PIT Specify the pitch angle of the sectioning rotation PIT=angle
ROL Specify the roll angle of the sectioning rotation ROL=angle
YAW Specify the yaw angle of the sectioning rotation YAW=angle
SCL Specify the scale used in the sectioning transformation SCL=scale
FXP Specify the fixed point of the viewing section rotation FXP=X,Y,Z
FXT Specify the second fixed point of the viewing section rotation FXT=X,Y,Z
PAB Specify the 3D query point absolute in the object coordinate PAB=X,Y,Z
PRL Specify the 2D query point relative in tile or display or tile

coordinate

PRL=T,X,Y

UPV Specify the up vector for the up is up mode UPV=X,Y,Z

DST sets the viewing plane distance, while PIT, ROL and YAW set the
plane angles. Other commands set parameters specific to the viewing mode.

The retrieval of a tile is an HTTP request that includes a combination of the
above commands. Such an example is shown in Fig. 2.
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Fig. 2. WlzIIP tile request ex-

ample. The HTTP request con-

sists of the web address of the

FCGI server, the specification of

the 3D Woolz object, the section-

ing and image parameters and fi-

nally the tile request command.

The response is the first tile out of

the four of a 3D tomographic ob-

ject section.

Proxy Server
(WlzIIPProxy)

Web Server
(appache2)

Image Server
(WlzIIPSrv)

Other Image
Servers

Other Image
Servers

Woolz ObjectWeb Browser

1

8

7 6

32

5

43a

3b

6b

6a

Fig. 3. Architecture of WlzIIP server using a

proxy server. The web server passes the user

requests to the proxy, which forwards them to

individual IIP servers. These servers have di-

rect access to the Woolz Object and return the

requested data. The numbered lines show the

order of the requests (continuous lines) and the

replies (dotted lines).

Table 2. WlzIIP object request extension summary

Object Purpose

IIP-server Identify if WlzIIP server is running

Max-size The size of the section

Tile-size The size of a tile

Wlz-true-voxel-size The voxel size of the object

Wlz-volume The volume of the object

Wlz-distance-range The range of the sectioning plane distance

Wlz-sectioning-angles The pitch, yaw and roll angles of of the sec-

tioning plane

Wlz-3d-bounding-box The first and last plane, line and column

number of the object

Wlz-coordinate-3D The 3D coordinates defined in 2D by the

PRL command

Wlz-grey-value The grey or RGB value of a point specified

either the PRL or the PAB commands

Features of a given section can be obtained with OBJ queries listed in Table 2.
We provide also coordinate translations and voxel queries. An example query for
a sectioning plane distance range is

http://localhost/fcgi-bin/iipsrv.fcgi?YAW=61&PIT=3&ROL=0&MOD=ZETA
&WLZ=/objects/small.wlz&OBJ=Wlz-distance-range

which results in the reply

Wlz-distance-range:0 171
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Our C++ software is based on a GPL implementation of the IIP server by
Pillay and Pitzalis[11]. This is a FastCGI (FCGI) web server module that is
called by the web server (e.g. Apache).

4.3 WlzIIP Proxy

To handle multiple requests, large objects and to provide a single access point to
image servers separated from the Internet by a firewall, we have developed a tool
called WlzIIPProxy that filters FCGI requests and forwards them to different
WlzIIP servers. The communication conforms to the FCGI protocol. Though it
was designated to work for IIP and Woolz requests, it is generic and can route
any FCGI request, hence it is also possible to chain multiple proxies.

The multiple WlzIIP server architecture is shown in Fig. 3. WlzIIPProxy is an
independent program running on the proxy server. The web server (e.g. Apache
2) forwards the FCGI request to this server on a configurable port, then the
HTML request string is checked by WlzIIPProxy and if the definition string
of any remote WlzIIP server is a substring of the request parameters then this
query is forwarded to the matching server. If no correspondence was found then
the request is passed to the default server.

5 Web Viewer Prototype with WlzIIP

For testing WlzIIP, we have developed a JavaScript application that runs in
a web browser, based on the viewer of Pillay [12]. The WlzIIP viewer allows
browsing through the objects with four controls. These change the pitch and
yaw angles of the sectioning plane in the fixed point mode, alter the sectioning
plane distance and the zoom level, and pick the current viewing region in a
thumbnail view.

Fig. 4. Web interface using WlzIIP showing two views of a 3D object. The Section
Plane selects pitch and yaw angles, the Locator control provides a thumbnail and

allows viewing zone selection, the Offset control sets the sectioning plane distance, and

the fourth control provides a zoom in the range of 0.25x–4x.
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The browser requests tiles only for the currently viewed regions at the nomi-
nal screen resolution, so no transmission bandwidth is lost for non-visible regions
or for unrepresentable details. When a user pans the object, new tiles are re-
quested and displayed. For an N ×N image, scrolling in one direction requires
at most N + 1 new tiles. By reducing the size of the transmitted data in this
way, the transmission throughput is increased by N2

N+1 . For N = 10, plausible
for biological images, this provides a performance increase factor of 9.09.

The caching mechanisms of the web browser and of the WlzIIP server reduce
the response time for tiles, sections and objects.

Tests were performed from a university network, a home ISP and free low-
bandwidth wireless access on a train, and all tests show fast response times and
great capability for interaction. Currently our application is compatible with
Firefox, Internet Explorer, Safari and Opera browsers on Microsoft Windows,
Linux and Mac OS X operating systems.

The WlzIIP project webpage1 provides demos and further information about
both WlzIIP server and viewer.

6 Evaluation

We have evaluated the WlzIIP server and compared it to NeuroTerrain [5]. Our
test requested 1056 consecutive sections of a 3D object imported from NeuroTer-
rain. Each grey level section of the default resolution image consists of 3×5 tiles
of 128× 128 pixels. The average retrieval time of 10 repeated tests provided the
results from the bottom five lines of Table 3.

The table includes NeuroTerrain high and low bandwidth results, full section
requests using the CVT command and four tiled retrievals on a local client
(1 Gbps LAN), on two remote clients on the JANET2 network (1 Gbps backbone)
and on a client with 2Mbps home broadband.

In NeuroTerrain, the full sized, uncompressed grey image is transmitted,
therefore real and browsing frame rates are equal. Also, the pixel throughput
equals the data throughput.

First, to compare WlzIIP with NeuroTerrain, full frame requests with CVT
were tested. This has a throughput 6.4 times lower than the highest throughput
of NeuroTerrain. However, for WlzIIP the pixel transfer rate is higher due to the
compressed image data, which results in a higher frame rate.

Tiled JTL requests have a lower real frame rate. However, the tiled approach
has the advantage of browser caching. Therefore, the browsing frame rate takes
into account an increase of 9.09 times (as estimated in Sect.5). Note that the
non-zoomed NeuroTerrain frames are too small to benefit from this directly.
However, the speed of the magnified image and of larger datasets improves con-
siderably. The browsing frame rate is superior to the full image based transmis-
sion even using the home broadband connection, i.e. equivalent to the DSL tests
on NeuroTerrain[5].
1 http://www.EMouseAtlas.org/Software/WlzIIP
2 JANET is the UK educational and research network.

http://www.EMouseAtlas.org/Software/WlzIIP
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Table 3. WlzIIP server evaluation. The throughput is the speed of the (compressed)

data transmission; the pixel throughput is the pixel transmission rate; the real frame

rate is the speed of transmission of full images; the browsing frame rate is the estimated

frame rate that users experience.

Through- Pixel through- Real frame Browsing frame

put [KB/s] put [Kpixel/s] rate [fps] rate [fps]

NeuroTerrain[5]

LAN 4060.00 4060.00 5.47 5.47

DSL 141.00 141.00 0.20 0.20

WlzIIP full (CVT)

LAN 634.10 6993.91 37.31 37.31

WlzIIP tiled (JTL)

LAN 107.49 929.61 4.96 45.08

JANET metropolitan 80.26 694.09 3.70 33.66

JANET remote 54.68 472.83 2.52 22.93

Home broadband 17.50 151.31 0.81 7.34

7 Discussion and Conclusions

The main contribution of this paper is the extension of the IIP protocol for 3D
objects that allows fast sectional data browsing over the Internet.

Compared to local image and object viewers, the WlzIIP server offers central
management of the image content and storage of the object at the provider,
thus it allows simple update and deployment of new content. Specification of
the details (e.g. zoom level and spatial localisation) of the region the user is
interested in permits a reduction in the size of the transmitted information, and
hence allows fast interactive access to large data objects.

The main disadvantage of our current WlzIIP server is the requirement of
sufficient memory to load 3D the object. However, this drawback is limited:
using WlzIIPProxy, large objects can be distributed over multiple servers for
which memory has become a low cost resource. Also, up to our largest dataset of
18.5GB we have not observed performance degradation after the initial object
disk read. With the underlying Woolz architecture, the extension to read partial
object is straightforward, although currently object sizes don’t require this.

Tiled images increase browsing frame rate whilst reducing the size of the
transmitted data. Compatibility with HTTP allows portability and simple in-
tegration into client applications. Being browser based, the WlzIIP client does
not need local installation for viewing nor does it need an additional IP port for
communication.

Other web based delivery systems, such as the original IIP specification and
Google Maps, are restricted to 2D. However, WlzIIP delivers sections from 3D
objects. Similar to IIP, WlzIIP is an open protocol and the server code is freely
available from us with a GPL licence.
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To summarise, our main achievement was to extend the standard IIP proto-
col to allow fast sectioning of 3D objects using different sectioning modes and
parameters, metadata and section-coordinate queries of the object. This has had
the effect of increasing the frame rate experienced by the user. Using WlzIIP-
Proxy, the method is scalable. The portable JavaScript browser does not require
special software or applets to run locally and provides a highly interactive brows-
ing environment. The WlzIIP server is currently being integrated in biological
atlases such as EMAP, EurExpress and EuReGene and we are looking forward
to further applications.

References

1. I3A: Internet imaging protocol, version 1.0.5 (1997)

2. Mea, V.D., Roberto, V., Beltrami, C.A.: Visualization issues in telepathology: The

role of the internet imaging protocol. In: 5th Int’l Conf. on Information Visualiza-

tion, pp. 717–722 (2001)

3. Glatz-Krieger, K., Glatz, D., Mihatsch, M.J.: Virtual slides: high-quality demand,

physical limitations, and affordability. Human Pathology 34(10), 968–974 (2003)

4. Stalling, D., Westerhoff, M., Christian Hege, H.: Amira: A highly interactive system

for visual data analysis. In: The Visualization Handbook, pp. 749–767. Elsevier,

Amsterdam (2005)

5. Gustafson, C., Bug, W.J., Nissanov, J.: Neuroterrain – a client-server system for

browsing 3D biomedical image data sets. BMC Bioinformatics 2007 8(40) (2007)

6. Heidger Jr., P.M., Dee, F., Consoer, D., Leaven, T., Duncan, J., Kreiter, C.: Inte-

grated approach to teaching and testing in histology with real and virtual imaging.

The Anatomical Record Part B: The New Anatomist 269(2), 107–112 (2002)

7. Bessaud, J.C., Hersch, R.D.: The visible human slice sequence animation web

server. In: 3rd Visible Human Project Conf. Proc. (2000)

8. Piper, J., Rutovitz, D.: Data structures for image processing in a c language and

unix environment. Pattern Recognition Letters 3, 119–129 (1985)

9. Goldstein, H.: Classical Mechanics, 2nd edn. Addison-Wesley, Reading (1950)

10. Whittaker, E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid

Bodies, 3rd edn. Cambridge University Press, London (1927)

11. Pillay, R., Pitzalis, D.: IIPSrv, v. 0.9.7 (1997),

http://prdownloads.sourceforge.net/iipimage/iipsrv-0.9.7.tar.bz2

12. Pillay, R.: IIPMooViewer, v. 1.0 (2007), http://iipimage.sourceforge.net

http://prdownloads.sourceforge.net/iipimage/iipsrv-0.9.7.tar.bz2
http://iipimage.sourceforge.net


New Scalar Measures for Diffusion-Weighted
MRI Visualization

Tim McGraw, Takamitsu Kawai, Inas Yassine, and Lierong Zhu

Department of Computer Science and Electrical Engineering,

West Virginia University

Abstract. We present new scalar measures for diffusion-weighted MRI

visualization which are based on operations of tensor calculus and have

a connection to topological visualization. These operators are general-

izations of the familiar divergence and curl operations in vector calculus.

We also present a method for computing the Helmholtz decomposition

of tensor fields which can make the new scalar measures more robust.

The methods we present are general with respect to tensor order, so they

apply to traditional 2nd order diffusion tensor MRI, as well as 4th and

high order models used in high angular resolution diffusion imaging. Re-

sults are shown for synthetic tensor fields of orders 2 and 4 and also real

diffusion tensor MRI data of orders 2 and 4.

1 Introduction

Random molecular motion (Brownian motion) causes transport of water at a
microscopic scale within biological systems. The properties of the surrounding
tissue can affect the magnitude of diffusion, as well as direction. Tissue can form
a barrier to diffusion, restricting molecular motion. Within an oriented struc-
ture, such as a bundle of axonal fibers within white matter of the brain, diffu-
sion can be highly anisotropic. MRI measurements have been developed which
are sensitive to diffusion. Diffusion-weighted MRI provides a characterization of
the restricted motion of water through tissue that can be used to infer tissue
structure. This behavior can be concisely characterized using a tensor.

Basser and others [1] have presented general methods of acquiring and pro-
cessing the diffusion tensor. In early studies the diffusion tensor was assumed
to be a 2nd-order tensor which can be represented by a 3 × 3 matrix. Inferring
the integrity and trajectory of white-matter pathways in the central nervous
system has long been a goal of diffusion MRI analysis. The tensor model makes
it possible to compute, in vivo, many useful quantities, including estimates of
structural connectivity within neural tissue [2].

1.1 Related Work

In diffusion tensor MRI (DT-MRI) indices of anisotropy include Fractional
anisotropy (FA) [3], relative anisotropy [3], volume ratio [4] and lattice anisotropy

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 934–943, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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[4]. These measures have found success in clinical applications because they are
useful because many neurological disorders are characterized by changes in brain
white-matter anisotropy, for example stroke, trauma, and multiple sclerosis. Re-
cently higher order tensors have been proposed as a model for diffusion in the
context of diffusion-weighted MRI [5]. New measures of anisotropy based on
variance and entropy have been propose [6]. In this paper we propose new scalar
measures based on differential quantities computed from tensor fields of arbi-
trary order. The quantities we study are generalizations of those which have
proven useful in vector field analysis - namely the divergence and curl.

The Helmholtz decomposition separates a flow field into divergence-free
(solenoidal) and curl-free (irrotational) components. These parts may be ana-
lyzed separately to robustly identify different types of critical points in the field.
To date, however, there has been no previous work employing the Helmholtz de-
composition of tensor fields. The Helmholtz decomposition has recently proved
to be useful in the topological analysis of vector fields. Polthier and Preuss [7]
use a discrete Helmholtz decomposition to robustly locate singularities in vector
fields. Li et al. [8] used the Helmholtz decomposition to segment 2D discrete
vector fields. Tong et al. [9] describe vector fields in a multiscale framework by
defining a vector field scale space in terms of the separate scale spaces of the
solenoidal and irrotational parts of the field. We apply a similar principal, and
decompose the high order tensor field into multiple components, and visualize
each separately.

Topological methods for analyzing and visualizing tensor fields hold promise
for simplifying these rich and complex datasets. Some developments in topo-
logical tensor field visualization have proceeded by generalizing the concepts of
vector field topology. Degenerate points (in 2D tensor fields) and degenerate
lines (in 3D tensor fields) have commonly been defined in terms of eigenvectors
of the tensors. Separatrices in the tensor case are hyperstreamlines, or inte-
gral curves of the eigenvector field. Local maxima of our scalar measures can
be interpreted as topological features since they serve to identify generalized
sources, sinks and vortices of the field. Several approaches to topological tensor
field visualization have been described in previous literature. Many consider the
topology of the dominant eigenvector field [10,11] and define degenerate points
as locations where two or more eigenvalues are equal to each other. Zheng et al.
[12] described categories of feature points and numerically stable methods for
extracting them and then joining them to form feature lines.

Approaches specific to diffusion tensor MRI have considered the topology of
scalar fields of tensor invariants as defined by crease lines. Tricoche et al. [13]
use this framework applied to tensor mode (which is related to the skewness
of eigenvalues), and Kindlmann et al. [14] used fractional anisotropy (which is
related to the variance of eigenvalues). Another approach based on degener-
ate lines derived from probabilistic tractography has been described by Schultz
et al. [15]. We hope to mitigate some of the concerns expressed in their work by
not relying on eigenvectors or streamlines at all.



936 T. McGraw et al.

2 Background

In this section we will describe the divergence, curl and gradient of Cartesian
tensors as given by Heinbockel [16], and then define the generalized Helmholtz
decomposition for tensor fields.

2.1 Tensor Notation

The order of the tensor (referred to as rank in some literature) is the number
of indices into it. Tensors of order 0, 1, and 2 are represented by scalars, vectors
and matrices respectively. If d is the dimension of the tensor, then each index
can take one of d different values. In 3 dimensions a rank-� tensor then has 3�

components. A tensor may also have two different types of indices, covariant and
contravariant, usually denoted using subscripts and superscripts. For Cartesian
tensors these are equivalent, so will denote indices using only subscripts.

In writing an expression containing tensors, we will use the Einstein summa-
tion convention. This means that repeated indices are to be multiplied pairwise,
and summed over all possible values,

Ai1i2...i�
Bi1i2...i�

=
d∑

i1=1

d∑
i2=1

...

d∑
i�=1

Ai1i2...i�
Bi1i2...i�

. (1)

Partial derivatives will be denoted by the ∂ symbol where ∂i ≡ ∂
∂xi

. This
notation permits tensor equations to be expressed in a very compact manner.

2.2 Tensor Field Differential Operators

Tensor field divergence. In general, the divergence of an order n tensor field
is an order (n − 1) tensor field. For n = 2 the divergence is given in Einstein
notation as div(Dij) = ∂iDij . This notation indicates that for all possible values
of index i, the tensor components are differentiated with respect to that index
and summed over. Expressions for the divergence of higher order tensors can be
obtained by placing free indices on the right, for example, div(Dijkl) = ∂iDijkl .

The divergence often appears in conservation laws (such as Fick’s second
law governing diffusion) which impose conservation of mass. In the context of
diffusion-weighted MRI, we expect divergence to predict the presence of fanning,
bifurcating and crossing fiber tracts.

Tensor field curl. The curl of an order n tensor field is an order (n + d − 3)
tensor field in d dimensions. For the order 4 case in 3 dimensions it is defined as

curlD = εijk(∂jDklmn) (2)

where εijk is the permutation tensor

εijk =

⎧⎨⎩+1 (i, j, k) is an even permutation of indices
−1 (i, j, k) is an odd permutation of indices
0 otherwise.

(3)
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The permutation tensor is often used to define the vector cross product u× v =
εijkujvk. The curl is commonly used to characterize vortices and shear in flows.
In the context of diffusion-weighted MRI, we expect curl to predict the presence
of bending fiber tracts.

Tensor field gradient. The gradient of an order n tensor field is an order
(n+ 1) tensor field. For n = 4 the gradient is given by

gradD = ∂iDjklm. (4)

2.3 Helmholtz Decomposition of Tensor Fields

The Helmholtz decomposition [17] of a vector field, v, is given by

v = ∇φ+ ∇ × ψ + h (5)

where ∇φ is the gradient of a scalar potential field φ, ∇×ψ is the curl of a vector
stream field ψ and h is a harmonic vector field. Note that ∇φ is irrotational, so it
is useful for identifying features such as local maxima and minima of divergence
(foci of sources and sinks) in v without interference from curl-based features.
Likewise, ∇ × ψ is solenoidal, and is useful for isolating centers of vortices in v.
The harmonic vector field, h, is both solenoidal and irrotational and typically is
of small magnitude.

Using the previously defined operators we extend the Helmholtz decomposi-
tion to 2nd and 4th order tensor fields as

Dij = ∂iφj + εimn(∂mψnj) +Hij (6)
Dijkl = ∂iφjkl + εimn(∂mψnjkl) +Hijkl (7)

Just as in the vector field case, we have div(curlψ) = 0 and curl(gradφ) = 0.
The formulation can be made for tensors of arbitrary order, but we present the
order 2 and 4 decompositions since those are the basis for the experiments in
Section 4.

3 Methods

For computational purposes we will be reshaping tensor fields into column
vectors. For each tensor component, the elements of the field are vectorized
in lexical order of the spatial coordinates (x, y, z). The components are or-
dered within the vector according to lexical order of indices. An input 2nd-
order tensor field, D, with spatial dimensions n × m × p is then vectorized as
[DxxDxyDxzDyxDyyDyzDzxDzyDzz]T which has 9mnp rows.

We will represent the discretized operators as block matrices where the blocks
correspond to finite difference operators applied to a single tensor component.
For 3D fields the multidimensional difference matrices are given by

∆x = Ip×p ⊗ Im×m ⊗∆n×n

∆y = Ip×p ⊗∆m×m ⊗ In×n

∆z = ∆p×p ⊗ Im×m ⊗ In×n (8)
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where In×n is an n× n identity matrix, ⊗ is the Kronecker product and ∆n×n

is an n×n finite difference matrix. We use central differences for approximating
derivatives, in which case ∆ is given by

∆ =
1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 +1 0 · · · 0

−1 0 +1
. . .

...

0 −1 0
. . . 0

...
. . . . . . . . . +1

0 · · · 0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

This definition of this matrix may be modified as needed to impose boundary
conditions on the tensor field.

We can approximate the curl of the second order tensor field ψij as Cψ, where

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −∆z 0 0 ∆y 0 0
0 0 0 0 −∆z 0 0 ∆y 0
0 0 0 0 0 −∆z 0 0 ∆y

∆z 0 0 0 0 0 −∆x 0 0
0 ∆z 0 0 0 0 0 −∆x 0
0 0 ∆z 0 0 0 0 0 −∆x

−∆y 0 0 ∆x 0 0 0 0 0
0 −∆y 0 0 ∆x 0 0 0 0
0 0 −∆y 0 0 ∆x 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψxx

ψxy

ψxz

ψyx

ψyy

ψyz

ψzx

ψzy

ψzz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10)

Similarly, the gradient of the first order tensor field φi is given by Gφ where

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆x 0 0
0 ∆x 0
0 0 ∆x

∆y 0 0
0 ∆y 0
0 0 ∆y

∆z 0 0
0 ∆z 0
0 0 ∆z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, φ =

⎡⎣φx

φy

φz

⎤⎦ . (11)

The discretized operators for 4th order tensors are not given here since they
contain 81 rows each, but they are easily generated from the equations in the
previous sections.

To perform the generalized Helmholtz decomposition we solve the least squares
problem

min
ψ,φ

||D − Cψ − Gφ||2F (12)

where || · ||F denotes the Frobenius norm of the tensor ||Xik||F = trace(XijXjk).
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Using the fact that CT G = GTC = 0 we implement this numerically by
alternately solving the normal equations

CTCψ = CTD (13)
GTGφ = GTD

using a stabilized biconjugate gradients method until convergence is reached.
Although the matrices on the left-hand sides of Equation (13) are symmetric,
they are not positive-definite, so the standard conjugate gradients method cannot
be used. The derivatives of all tensor components are constrained to be zero
across each boundary. We do not explicitly solve for H , the harmonic part of
the field, but instead let H = D − gradφ− curlψ.

4 Results

The generalized Helmholtz decomposition was implemented in Matlab and run
on a system with Intel Quad Core QX6700 2.66 GHz CPU and 4 GB RAM. The
algorithm was applied to the synthetic and real datasets as described below.

A synthetic second order tensor field was generated from the sources and
vortices shown in Figure (1) by computing D = (D1 + D2 + D3 + D4)2. The
tensor fields in Figures (1,2) are visualized by plotting the radial surfaces r(x) =
Dijxixj for unit vectors x. The surface is colored blue when r is positive and
red when r is negative. The results of the generalized Helmholtz decomposition
are shown in Figure (2).

(a) D1 (b) D2 (c) D3 (d) D4

Fig. 1. Vortices and sources used to construct the synthetic field

Another synthetic tensor field was generated from sources and vortices similar
to those shown in Figure (1), but modeled as fourth order tensors. The results of
the generalized Helmholtz decomposition of this field are shown in Figure(3). The
tensor fields are visualized by plotting the radial surfaces r(x) = Dijklxixjxkxl

for unit vectors x. The surface is colored blue when r is positive and red when
r is negative. Several interesting observations can be made from these results.
The critical points in the original field Figure (2a) are not clearly visible, but
in the decomposed fields they are quite evident. In the decomposed fields there
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(a) D (b) Curl ψ (c) Grad φ (d) H

Fig. 2. Helmholtz decomposition results for 2nd order synthetic tensor field

seems to be a correspondence between sources of positive-definite tensors and
vortices of negative-definite tensors. The harmonic field, which is typically of
small magnitude for vector field decompositions, can be substantial in terms
of the tensor trace, but it is extremely smooth - nearly constant in all of our
synthetic field experiments.

(a) D (b) Curl ψ (c) Grad φ (d) H

Fig. 3. Helmholtz decomposition results for 4th order synthetic tensor field

The decomposition was also applied to diffusion tensor MRI of the human
brain. The data were acquired at the Center for Advanced Imaging at WVU
on a 3.0 Tesla General Electric Medical Systems Horizon LX imaging system
with a diffusion weighted spin echo pulse sequence. Imaging parameters were :
effective TR = 9000 ms, TE = 78 ms, NEX = 1. Diffusion-weighted images were
acquired with 25 different gradient directions with b = 1000 s

mm2 and a single
image was acquired with b ≈ 0. The image field of view was 24 × 24cm and the
acquisition matrix was 256×256×30. Order 2 and 4 tensors were computed from
the diffusion weighted images by performing a least squares fit to the logarithm
of the signal attenuation.

Denoting the irrotational part of the field as Dφ = gradφ and the solenoidal
part as Dψ = curlψ, we show images of || divDφ|| and || curlDψ|| in Figure (5).
Images of fractional anisotropy [18] are also presented for comparison. Note,
however, that our new scalar measures are based on differential operators applied
to tensor fields generated by a global optimization procedure, unlike FA which
is simply computed on a voxel-by-voxel basis. As such, these new measures are
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Fig. 4. Real data, order 2. Curl ψ (left), Grad φ (right).

Fig. 5. A comparison of scalar measures of white-matter structure. ILF: interior longi-

tudinal fasciculus, SFO: superior fronto-occipital fasciculus, SCC: splenium of corpus

callosum, RCB/LCB: right/left cingulum bundle, ATR: Anterior thalamic radiation.

sensitive to the large changes in diffusivity which occur at the cortical surface
and the boundaries of the ventricles. Away from these boundaries it is clear that
the critical points do form coherent linear and curved regions in the field, as
predicted by previous work.
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Compared to FA, our measures seem to be more discriminative, often revealing
thinned structures. This can be understood in relation to vector field topological
visualization technique which use divergence and curl to locate centers of features
such as vortices, sources and sinks. These form line structures in 3D flows, and
we see analogous behavior from the generalized measures in 3D tensor fields.
In the bottom image of Figure (5b) the left and right cingulum bundles are
visible as a pair of bright horizontal regions. We note that the curl image seems
to convey much more structural information than the divergence image. This
may be due to the incompressibility of water resulting in smaller fluctuations in
divergence.

Results for 4th order tensors computed from the same diffusion weighted data
as above are presented in Figure (6). The displayed slice is the same as the second
column from the left in Figure (5).

(a) || curl Dψ|| (b) ||div Dφ||

Fig. 6. Scalar measures of the 4th order tensor field

5 Conclusions and Future Work

The generalized Helmholtz decomposition can provide intuitive and useful infor-
mation about the structure of tensor fields. Based on this decomposition, new
scalar measures for DT-MRI can be formulated which convey topological infor-
mation. Specifically, local peaks in magnitude of divergence and curl correspond
to critical lines in the tensor field. The formulations we presented are general
with respect to tensor order and do not require eigenvalues to be computed. The
decomposition and the new scalar measures are easy to compute. In the future
we wish to develop a more complete topological characterization of high order
tensor fields, including more types of critical points and separatrices. We also
wish to explore the potential field φ and stream field ψ to see if useful information
can be extracted directly from them.
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Abstract. Intensity-invariant local phase-based feature extraction techniques 
have been previously proposed for both soft tissue and bone surface localization 
in ultrasound. A key challenge with such techniques is optimizing the selection 
of appropriate filter parameters whose values are typically chosen empirically 
and kept fixed for a given image. In this paper we present a novel method for 
contextual parameter selection that is adaptive to image content. Our technique 
automatically selects the scale, bandwidth and orientation parameters of Log-
Gabor filters for optimizing the local phase symmetry in ultrasound images. 
The proposed approach incorporates principle curvature computed from the 
Hessian matrix and directional filter banks in a phase scale-space framework. 
Evaluations performed on in vivo and in vitro data demonstrate the improve-
ment in accuracy of bone surface localization compared to empirically set 
parameterization results.   

Keywords: Ultrasound, local phase features, principle curvature, automatic pa-
rameter selection, phase symmetry, bone localization, Log Gabor filters. 

1   Introduction 

Extraction of tissue and bone boundaries from ultrasound (US) images is particularly 
challenging due to the typically low signal-to-noise ratio and the presence of artifacts 
which significantly complicate image interpretation and automatic processing. Image 
intensity and gradient based methods have shown some promise but still remain 
highly influenced by the image intensity variations and imaging artifacts [1,2]. Inten-
sity invariant local phase based feature extraction has attracted some attention and has 
been shown to be very promising for processing US images of soft tissue [3] and, 
more recently, bone surfaces [4]. 

Although local phase measures can be quite successful in extracting important im-
age features, they remain somewhat sensitive to the underlying filter parameters used. 
Previous approaches using local phase relied on empirical selection of appropriate 
filter parameters, which was typically performed by trial and error and ad hoc investi-
gation of filter outputs on samples of US images depicting a certain anatomical area 
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of interest [3-5]. Once acceptable filter parameters are found, they are typically fixed 
for subsequent application to new data. The difficulty in relating correct parameter 
choices to the properties of the image and image-processing task has inhibited more 
widespread use of phase-based techniques. 

In this work, we present a novel method for automatically selecting the scale, 
bandwidth, orientation and angular bandwidth parameters of the Log-Gabor filter for 
calculating phase symmetry (PS) measures in US images, specifically in the context 
of bone surface localization. The proposed approach incorporates the use of principal 
curvature computed from the Hessian matrix and directional filter banks in a phase 
scale-space framework. To the best of our knowledge, this is the first study that inves-
tigates the automatic selection of these different parameters for ultrasound images. 
Our technique relies on contextual information obtained solely from the image con-
tent. Qualitative and quantitative evaluations performed on in vivo and in vitro scans 
demonstrate the utility of the our parameter selection approach, its insensitivity to 
artifacts when detecting bone boundaries, and the improvements achieved in terms of 
surface localization accuracy. 

2   Methods 

We address the problem of filter parameter selection within the context of localization 
of bone surfaces in US images, which is one of the emerging imaging modalities in 
computer assisted orthopaedic surgery (CAOS) applications [1,2,4,5]. Hacihaliloglu 
et al recently presented a local phase-based method for extracting ridge-like features 
similar to those that occur at soft tissue/bone interfaces using a PS measure [4]. We 
propose an improvement to such an approach by proposing a complete automation of 
the parameter selection process.  The current paper focuses on extraction of ridge-like 
features but could be extended to other feature types.  

Local phase information is computed by convolving the image with a quadrature 
pair of band pass filters. In this work, we use the Log-Gabor filter [3-5]. This orienta-
tion-dependent 2D Log-Gabor filter is defined in the frequency domain (ω) by multi-
plying a one dimensional Log Gabor function that controls the frequencies to which 
the filter responds with an angular Gaussian function that controls the orientation se-
lectivity of the filter (1):  

2 2
0 0

0

(log( / )) ( )
( , ) exp( ) exp( )

2(log( / )) 2
G

φ

ω ω φ φω φ
κ ω σ

−= ×      (1) 

where κ is the standard deviation of the filter in the radial direction and ω0 is the filter’s 
center spatial frequency. The term κ/ω0 is related to the bandwidth (β) of the filter with 
β= -2 (2/ln2)(-0.5)ln(κ/ω0). The scaling of the radial Log Gabor function is achieved by 
using different wavelengths which are based on multiples of a minimum wavelength, 
λmin. Angular bandwidth σø is the standard deviation of the Gaussian spreading func-
tion in the angular direction that describes the filter’s angular selectivity. To obtain 
higher orientation selectivity, the angular function must become narrower. Steering of 
the filter is achieved by changing its angle (φ0). In the following sections, we analyze 
the Log-Gabor filter response in detail and present a data-driven approach for contex-
tual selection of the main filter parameters: bandwidth, orientation, scale and angular 
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bandwidth. We first demonstrate how to select the optimal filter bandwidth based on 
image acquisition parameters, and then proceed to select the filter orientations, scale 
and angular bandwidth.  

2.1   Filter Bandwidth Selection 

The proper filter bandwidth (β= -2 (2/ln2)(-0.5)ln(κ/ω0)) in the radial direction is related 
to both the spatial extents of the speckle and boundary responses in the image.  There-
fore, we first estimate the image speckle size by selecting a set of images covering a 
range of depths and acquired by the same US transducer (center ultrasound frequency 
= 7.5 MHz, image sizes ranged between 1.9cm-7.2cm), isolating a region with fully 
developed speckle from each image, computing the autocorrelation of each region, 
and extracting the full-width at half-maximum (FWHM) of these autocorrelations as a 
measure of the speckle size [6]. We compute the ratio, κ/ω0, for each image using (2): 

0

1
/ exp( 2 (2) )

4
ln FWHM rκ ω = − × × ×      (2) 

where r is the pixel size in mm, and average the κ/ω0 ratio over the set of 25 different 
B-mode US test images; the resulting average is chosen as the filter bandwidth. Se-
lecting a bandwidth significantly greater than this (ie, selecting a smaller value for 
κ/ω0) will result in a filter that fails to separate small scale speckle features from lar-
ger scale boundary responses. Selecting a significantly lower bandwidth will reduce 
the accuracy of the boundary detection and cause blurring of the detected bone 
boundary (Fig.1).  
 

    
(a) (b) (c) (d) 

Fig. 1. Effect of filter bandwidth on local phase based bone detection. (a)  in vivo B-mode US 
image of human distal radius, (b) – (d) PS images obtained using κ/ω0 values of 0.05, 0.24, 
and 0.55 respectively. (b) illustrates unintended speckle detection at high bandwidths and (d) 
illustrates bone boundary blurring at low bandwidths. 

2.2   Filter Scale Selection 

Local image PS is computed by convolving the image with a number of scaled Log-
Gabor filters. Each scaling is designed to pick out particular features of the image 
being analyzed with results typically integrated over multiple scales (in addition to 
multiple orientations) [4]. Since boundaries are extracted by analyzing the PS meas-
ure over a range of scales, correct scale selection is of major importance.  

When using very small scales, the filters become highly sensitive to speckle. Select-
ing larger scales blurs the extracted bone features. Simply integrating  different  filter 
scales for PS calculations is insufficient resulting in PS images that extract speckle or 
blurring the detected features (in our case bone boundaries), as demonstrated in Fig. 2.  
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           (a)                              (b)                               (c)                             (d) 

Fig. 2. Effects of filter scale selection. (a) Original B-mode US image of in vivo distal radius, 
(b) PS obtained using a scale value of λmin =2, (c) PS obtained using a scale value of λmin =88, 
(d) PS obtained by combining the results of both scales (2 and 88).  

Line enhancing filters based on multiscale eigenvalue analysis of the Hessian ma-
trix have been commonly used to extract vessel-like structures in 2D and 3D medical 
images [7]. The scale selection approach we present in this paper is inspired by these 
studies where we use the Log-Gabor filter response as the input to the Hessian matrix 
defined as in (2): 

,xx xy

yx yy

L L
H

L L

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

with 
2

ab

L
L

a b

∂=
∂ ∂

     (2) 

L is an image obtained convolving the US image with a Log-Gabor filter at a particu-
lar scale. Here, the subscripts x and y represent spatial derivatives in the x and y direc-
tions. At this stage, the orientation of the Log-Gabor filter during the scale setting step 
is set to the initial filter angle calculated from the B-mode US image as explained 
below in the filter orientation selection step We calculate a ridge strength measure as 
Aγ=t2γ((Lxx-Lyy)

2+4Lxy
2), which is the square of the γ normalized eigenvalue differ-

ence, and t is the scale of the filter (t= λmin) [8]; see Fig. 3. This metric in our context 
measures the ‘ridgeness content’ of an image, since our main interest here is in local-
izing bone contours, which generally appear as ridges in US images. The optimal 
scale is then defined as the one corresponding to the maximal ridgeness content in the 
Gabor filtered image. In order to define the optimum global filter scale, which gives 
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Fig. 3. Effects of filter bandwidth selection. Aγ ridge strength obtained from B-mode US image 
in Fig.1 (a) for a fixed filter orientation (140°) and scale (a) λmin=10, (b) λmin=35, (c) 
λmin=140.  Investigating (a)-(c) we see that the bone ridge content in (b) is the strongest and the 
most continuous. (d) Filter scale versus sum of intensity values of Aγ. 
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the most significant ridge content in the image, we analyze the intensity distribution 
of Aγ over all possible scales (e.g. ranging from 2-150) and select the scale where the 
sum of the intensities reaches a maximum value as our optimal filter scale (Fig.3 (d)). 
This is based on the observation that at the optimal scale the response of the filter will 
produce a sharp ridge feature aligned with the bone surface, whereas significantly 
different scales will result either in detection of speckle or blurred bone surfaces 
which will give a smaller intensity sum (Fig. 3 (a)–(c)). This analysis is repeated for 
each orientation separately.  

2.3   Filter Orientation Selection 

The orientation of the Log Gabor filter is controlled by the angular Gaussian function 
used in (1). During the calculation of the PS metric, the filter is directed at a number 
of orientations. Commonly, six orientations are employed to cover the entire angular 
range (0°-180° with 30° increments) with the responses subsequently averaged [3-5].   

 

    
(a) (b) (c) (d) 

Fig. 4. Effects of filter orientation selection. (a) B-mode US of in vivo distal radius, (b) filter 
response at φ=60°, (c) filter response at φ=120°, (d) filter response at φ=0°. All images were 
produced at a fixed filter scale of λmin =25  and κ/ω0 =0.25. 

However, given the highly directional nature of ultrasound bone image data, inte-
gration of the responses at all of these different filter orientations in fact largely de-
grades the PS response due to the inclusion of many non-relevant filter orientations. 
Noting that the strongest ridge features appear when the filter orientation is perpen-
dicular to the bone surface (Fig. 4), identifying and combining filter angles which 
produce strong responses will therefore likely enhance feature extraction (Fig. 5). 

Bone surfaces in US images typically appear as elongated line-like objects with a 
higher intensity compared to the other features. The same analysis is true for the PS 
images. Therefore, integration along a bony feature produces a higher intensity value 
than doing the integration along a non-bony feature. We thus make use of a simple ra-
don transform (RT) in order to detect the orientation of such line-like structures. In or-
der to automatically define meaningful starting angles for our filter, we initially cluster 
the RT (obtained from the B-mode US image) image using k-means clustering (Fig. 6).  

The projection angles corresponding to the peak values of the RT reflect the angles 
that are perpendicular to the high intensity features, such as bone surfaces. Those an-
gles are therefore used for initializing the orientations of the Log-Gabor filter. In or-
der to obtain three initial filter angles, we chose the cluster that corresponds to the 
peak values of  the RT (Fig. 6. (c)) and calculated the mean value of the projection 
angles corresponding to the RT values in that chosen cluster. This calculated mean 
value is used as the initial angle, and we add two additional angles set at ±1 standard 
deviation within the thresholded region. These three initial angles are used as the filter 
angles during the calculation of the filter scale as explained in section 2.2.  
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(a) (b) 

(c) (d) 

Fig. 5. Effect of varying the number of orientations used. (a) B-mode US image of in vivo hu-
man distal radius. (b) PS image using 3 orientations (58° 74° 89°), (b) PS image using 6 orien-
tations (0°-150° with 30° increments), (c) PS image using 10 orientations (0°-270° with 30° 
increments). White arrows point out the extracted phase features which are not bone surfaces 
obtained by combining orientations which are not perpendicular to the bone surface during the 
calculation of PS. The white circle points to a location of a degraded bone surface due to the 
inclusion of less informative orientations with weaker bone responses.   
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(a) (b) (c) 

Fig. 6. Filter orientation selection. (a) RT of B-mode US image in Fig.1 (a), (b) clustered RT 
of (a), (c) the cluster corresponding to the highest RT values. The three initial angles deduced 
from this cluster are 66°, 88° and 106° (refer to text for details about the calculation of these 
three angles).  

In order to obtain the final filter orientations, the RT is re-calculated for the ridge 
strength image Aγ as obtained using the scale calculated in section 2.2. Figure 7 shows 
the calculated RT of the Aγ for the initial angles of 66° and 106°. Investigating the 
figures, we note that the RT has high intensity locations indicating the presence of 
line-like structures in the image. The maximum value of the RT indicates the main 
orientation of the bone, since it has the strongest filter response, and is thus used to set 
the filter orientation. Figure 7 (c) and (d) show an example where the angles corre-
sponding to the peak occur at 62° and 115°, hence the initial angles will be corrected 
based on these new calculated angles. 
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(a) (b) (c) (d) 

Fig. 7. Filter orientation selection. (a) & (b): Aγ obtained using the initial filter angle φ=66° (a) 
and φ=106° (b) which are calculated from the RT of the B-mode image, (c) & (d) RT of (a) & 
(b) showing new peaks at 62° and  115°, respectively. 
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2.4   Filter Angular Bandwidth Selection 

The angular bandwidth σø parameter corresponds to the standard deviation of the 
Gaussian spreading function in the angular direction and describes the filter’s angular 
selectivity. Investigating the example in Fig. 7, we can see that at large angular band-
widths the Log-Gabor filter acts as a smoothing filter without being sensitive to any 
orientation. On the other hand, for small angular bandwidths, the filter acts like a line 
detector degrading the curvature of the bone surface as it becomes less sensitive to 
curvature making the extracted features look like short line segments. Therefore,  
using the same analysis we used in our filter scale selection process would not be 
suitable to set σø since the intensity distribution of Aγ over all possible angular band-
widths will give a peak for very large angular bandwidths (Fig. 9 (a)) which would 
correspond to a filter response shown in Fig.8 (a).  
 

   
(a) (b) (c) 

Fig. 8. Effect of varying angular bandwidth on the Log-Gabor filter output for filter orientation 
115°. (a) σø=120°, (b) σø =30°, (c) σø =7.5°.  

 

Based on the above observations, we analyze the kurtosis of the RT of Aγ over dif-
ferent angular bandwidth values. We select the bandwidth corresponding to the peak 
kurtosis value (Fig.8 (b)). During this stage, the Aγ images used are obtained using the 
optimum filter scale as calculated in section 2.2.  
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Fig. 9. Angular bandwidth selection. (a) Filter angular bandwidth versus sum of intensity val-
ues of Aγ. (b) filter angular bandwidth versus kurtosis of RT obtained from calculating the RT 
of Aγ.  

2.5   Experimental Setup for Quantitative Validation 

We constructed a phantom comprised of an ex vivo bovine femur specimen inside an 
open-topped plexiglass cylindrical tube (Fig. 10). Twenty-eight markers (1mm diame-
ter steel balls) were added to the construct with fourteen beads placed on each side of 
the bone (longitudinally) and spaced at equal axial intervals over a distance of 75 mm. 
We obtained US scans of this specimen where the volumes containing 16 fiducials (8 
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on each side) spanning a region of 37.8mm. To hold the specimen and fiducials in 
place during the scanning procedures, the tube was filled with a firm gel (Super Soft 
Plastic, M-F Manufacturing, Texas, USA). We note that we did compensate for the 
difference in the speed of sound in soft tissue and gel during the image reconstruction 
process.  

The constructed phantom was scanned in an Xtreme CT machine with isometric 
0.25 mm voxels. US scanning was performed using a 3D GE Voluson 730 Expert 
system (GE Healthcare, Waukesha, WI) with a 3D RSP5-12 probe. The US data was 
subsequently rescaled to match the resolution of the CT image. Also, a fiducial-based 
rigid-body registration was applied to align the CT and US volumes. Following regis-
tration, bone surfaces were extracted from CT scan using a simple thresholding opera-
tion to establish a gold standard bone surface. Bone surfaces were then extracted from 
the US data using the discussed PS features, both with and without the parameters 
optimized. 

 

 
 

(a) (b) 

Fig. 10. Quantitative validation experiment. (a) Picture of the constructed phantom, (b) Axial 
view schematic sketch of the phantom. 

The accuracy of bone localization in US (PS filtered scans) was quantitatively as-
sessed by averaging the PS response at voxels corresponding to varying distances 
from the real bone surface (as obtained from the CT gold standard). To achieve this, 
we studied a set of (intensity, distance) pairs using the signed distance transform. 
High intensity values confined to a zone near zero distance would indicate an accu-
rately located surface. Our surface matching error was hence defined by the average 
signed distance values corresponding to the maximum phase intensity value along 
each vertical column of the 2D PS images.  

3   Results 

Implementation Details: The proposed method was implemented in MATLAB (The 
Mathworks Inc., Natick, MA, USA). The filter bandwidth was calculated as 0.24 by 
using the proposed method in section 2.1. During the scale selection process the γ 
value was set to 0.75 since this was reported to be optimal value for ridge feature de-
tection [8]. For filter orientation we chose to work with three angles since choosing 
greater than three orientations had an insignificant effect on the results.    

Quantitative Results: The surface matching mean error was 0.64 mm (std 1.34) with 
the best empirically-set parameters compared to 0.51mm (std 0.64) for our proposed 
automatically-set parameters. Choosing two scales for the empirical method decreases 
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the surface matching mean error to 0.54mm (std: 1.82) but introduces more outlier 
points away from the zero signed distance indicating an increase in the detection of 
US artifacts.   

Qualitative Results: Figure 11 shows a qualitative comparison of PS images of a in 
vivo human distal radius and pelvis obtained with the proposed optimized Gabor filter 
paramters and contrasted to the best values that could be empirically set. Note how 
the local phase images obtained empirically using 2 scales extracted more US artifacts 
and resulted in a thicker bone boundary due the unsuitable scale combination. More-
over, integrating the zero angle as one of the filter orientations caused the detection of 
unwanted features on the sides of the bone surface (Fig. 6.white arrows). Decreasing 
the filter scale to 1 in the empirical case caused gaps in the extracted bone surfaces 
(Fig. 6.white circles). Our surface results on the other hand, which used optimized 
filter parameters, were consistently sharper with reduced unwanted features on the  
 

    

    

    

    

    
(a) (b) (c) (d) 

Fig. 11. Qualitative results. (a) B-mode US image of in vivo distal radius (rows1-4) and pelvis 
(row 5) areas. Imaging depth of the US machine was 3.5, 3.5, 1.9, 4.5 and 4.9cm, respectively. 
(b) Non-optimized PS images using two different filter scales (25 and 75), (c) Non-optimized 
PS images using one scale only (25)(d) PS images obtained using the proposed optimized pa-
rameters. White arrows point out the extracted phase features which are not bone surfaces ob-
tained by combining orientations which are not perpendicular to the bone surface during the 
calculation of PS. The white circles points to a location of a degraded bone surface due to the 
inclusion of less informative orientations with weaker bone responses.   
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(a) (b) (c) (d) 

Fig. 12. Qualitative results on fractured ex vivo porcine tibia fibula specimen. (a) B-mode US 
image, (b) Non-optimized PS images using two filter scales (25 and 75), (c) Non-optimized PS 
images using one scale only (25), (d) PS images obtained using the proposed optimized pa-
rameters. The white circles point out the extracted phase features which are not bone surfaces 
obtained by combining orientations which are not perpendicular to the bone surface during the 
calculation of PS. 

bone sides and with no gaps in the detected surfaces. Figure 12 shows other qualita-
tive examples where scans of a fractured ex-vivo porcine tibia fibula specimen were 
acquired. Note how the proposed method produced a cleaner identification of the 
bone fracture. 

4   Discussion and Conclusions 

Though local image phase information has been successfully applied for extracting 
US image features, none of the prior studies has investigated the effects of parameter 
selection on the extracted features nor provided guidelines on how this could be 
achieved. In this paper, we proposed a novel approach for automatic selection of the 
scale, bandwidth and orientation of Log-Gabor filters for calculating phase symmetry 
responses in bone US. For scale selection, we used a ridgeness content measure ob-
tained from the Hessian matrix eigenvalues to investigate the information content 
extracted at different scales. For orientation selection, the appearance of bone surfaces 
was incorporated within our framework where the RT obtained from the image rid-
geness content measure was used to deduce the optimal angles of the directional filter. 
We analyzed US images with fully developed speckle and measured the image 
speckle size by calculating the autocorrelation function to determine the filter band-
width. Finally the angular bandwidth was calculated by investigating the kurtosis of 
the RT obtained from the image ridgness content measure.  We presented qualitative 
results obtained from in vivo and ex vivo scans and demonstrated the critical impor-
tance of selecting the correct scales and orientations in local phase based US process-
ing. Quantitative results were also presented on a specially constructed bone phantom 
where the gold standard surface of the bone was established through CT imaging. An 
improvement of close to 0.2mm in bone localization accuracy was observed. Future 
work will include the extension of this automatic parameter selection method to 3D 
and a clinical study where the proposed method will be tested on scans obtained from 
patients with distal radius and pelvis fractures.   
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Abstract. Modeling, characterization and analysis of biological shapes

and forms are important in many computational biology studies. Shape

representation challenges span the spectrum from small scales (e.g., mi-

croarray imaging and protein structure) to the macro scale (e.g., neu-

roimaging of human brains). In this paper, we present a new approach

to represent and analyze biological shapes using wavelets. We apply the

new technique to multi-spectral shape decomposition and study shape

variability between populations using brain cortical and subcortical sur-

faces. The wavelet-space-induced shape representation allows us to study

the multi-spectral nature of the shape’s geometry, topology and features.

Our results are very promising and, comparing to the spherical-wavelets

method, our approach is more compact and allows utilization of diverse

wavelet bases.

1 Literature Reviews

Imaging, representation, geometric modelling and topological characterization
of shape and form are important components of Computational Biology. They
apply across the vast length scales between genotypes to phenotypes, from the
small scale of microarray imaging for genomic, to the larger scale of neuroimaging
of human brains. Here we review the existing techniques and algorithms and
present a new approach for representation and analysis of biological shapes using
wavelets. We apply the new method to multi-spectral shape decomposition and
study shape variability between populations using brain cortical and subcortical
surfaces.

Recently, N. Hacker et al. used conformal mapping and spherical wavelets to
analyze biological shapes (see [1,2,3]). Their idea is first mapping the original
shape onto a unit 2-sphere using a certain conformal mapping so that one obtains
a R3-valued function f defined on the sphere; and then interpolate the function
onto the regular triangular mesh on the sphere (which is generated by recursively
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c© Springer-Verlag Berlin Heidelberg 2009



956 B. Dong et al.

subdividing an icosahedron); and then finally, apply spherical wavelet transform
to the interpolated function. The spherical wavelets they used were introduced
by P. Schröder and W. Sweldens in [4], which were constructed using lifting
scheme (see W. Sweldens [5] and F. Arandiga et. al. [6]).

In this section, we also start from a R3-valued function f determined by a
certain mapping from R3 to S2. After that, we linearly interpolate the function
onto a triangular mesh, which is generated by recursively subdividing an octahe-
dron in R3 (not restricted on the sphere) and then transforming the mesh onto
the sphere. This method was first introduced by E. Praun and H. Hoppe (see
[7]) in the context of computer graphics. The major advantage of it is that we
can transform the subdivided octahedron to a unit square so that we obtain an
image with R3-valued entries (which were called geometric image in [7]), and
then we can apply traditional X-lets (e.g. wavelets, framelets, curvelets etc.) de-
composition. In this way we have plenty of good bases and frames (redundant
systems) to choose according the application we have.

Understanding the relationship between the structure and function of the hu-
man brain in vivo has been the driving motivation for many neurosciences research
for centuries. The research efforts not only focus on studying normal development
but also understanding alterations in various clinical populations including schizo-
phrenia, Huntington’s disease, Alzheimer’s disease, Williams Syndrome, autism,
stroke, chronic drug abuse, as well as pharmacological interventions. For instance,
there are multiple studies underway to quantify the differences between the brain
structure of schizophrenic patients and healthy individuals in different stages of
this disease. Detection of these significant differences via neuroimaging studies is
not only useful to elucidate the link between change in cognitive profile and change
in brain structure, but also to improve diagnosis particularly in early stages of the
disease. With the increasing interest in carrying out such studies with large num-
bers of subjects, there is a need for a unified framework for image segmentation to
identify the structure of interest (e.g. caudate, ventricles, cerebral cortex, sulcal re-
gions) (see Z. Tu et. al. [8]), and morphometric analysis which requires methods for
shape representation, shape comparison, and change in shape measurement (see P.
Thompson and A. Toga [9]).

2 Method

In this section we describe our test data and the specific approach we took to
represent shape using wavelets, as well as the statistical analysis we carry on
the wavelet-based shape decomposition to identify group, population, time or
variation differences. Throughout this paper, all shapes are assumed to be close
surfaces in R3 with genus zero.

2.1 Data

Cortical Models: Surface objects of normal subjects and Williams syndrome pa-
tients were used to explore the power of our method to synthesize the energy of
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the shape content in a few wavelet coefficients. The demographics of the popu-
lation included age (29.2 9.0), genders (approximately 50/50) and IQ scores, P.
Thompson et. al. [10]. Non-brain tissue (i.e., scalp, orbits) was removed from the
images, and each image volume was re-sliced into a standard orientation who
“tagged” 20 standardized anatomical landmarks in each subject’s image data set
that corresponded to the same 20 anatomical landmarks defined on the ICBM53
average brain (see Mazziotta et al. [11], Thompson et. al. [12]). Automated tis-
sue segmentation was conducted for each volume data set to classify voxels as
most representative of gray matter, white matter, CSF, or a background class
(representing extra cerebral voxels in the image) on the basis of signal inten-
sity. The procedure fits a mixture of Gaussian distributions to the intensities in
each image before assigning each voxel to the class with the highest probability,
Shattuck et. al. [13]. Then each individual’s cortical surface was extracted and
three-dimensionally rendered using automated software, MacDonald [14]. Each
resulting cortical surface was represented as a high-resolution mesh of 131,072
surface triangles spanning 65,536 surface points.

Hippocampal surfaces: High-resolution MRI scans were acquired from 12 AD
patients ages 68.4 1.9 and 14 matched controls 71.4 0.9, each scanned twice, 2.1
0.4 years apart. 3D parametric mesh models of the left and right hippocampi
and temporal horns were manually, Thompson et. al. [15]. For each scan, a
radio frequency bias field correction algorithm eliminated intensity drifts due
to scanner field inhomogeneity, using a histogram spline sharpening method,
Sled et. al. [16]. Images were then normalized by transforming them to ICBM53
stereotaxic space, Evens et. al. [17], with automated image registration software,
Collins et. al. [18]. To equalize image intensities across subjects, registered scans
were histogram-equalized.

Each 3D surface is mapped to a unit sphere in R3 with 1-to-1 correspondence.
For cortical surfaces, the conformal mapping method of Shi et. al. [19,20], is
used for hippocampal surfaces and that of Gu et. al. [21] for cortical surfaces.
For hippocampal surfaces, harmonic maps to the sphere are computed under
the constraints of a set of automatically detected landmark curves (see [19,20]).
Figures (a) and (b) in Figure 1 shows a hippocampal shape and the mapping
of it on a unit sphere respectively, where in the latter, (x, y, z) values on each
vertex of the sphere are color-coded by RGB.

Fig. 1. Figure (a) is the given shape; (b) is the spherical function obtained by surface

mapping; (c) is the geometric image



958 B. Dong et al.

2.2 Wavelet-Based Representation for Shapes

From the previous section, we got a function f defined on the unit sphere S2,
which has vector values in R3. However, the values of the function were only
given on an irregular grid on the sphere. To apply the wavelet transform, we
need to get the value of the function on a much more regular spherical grid.
There are many approaches to get such kind of grids. The construction of the
spherical mesh grid, sometimes called spherical triangular map, is an interesting
subject itself (see e.g. Buss and Fillmore [22], and Praun and Hoppe [7]). The
basic idea is to start from a polyhedral base, which gives a simple but perfect
grid on sphere, and then use some appropriate scheme to subdivide the mesh. A
comparison of such techniques can be found in [7].

In our approach, we start from a recursive subdivision of the octahedral base.
By mapping the subdivision grid onto the unit sphere, we get a regular grid
structure on the sphere, and the function values on such a spherical grid can
be obtained by linear interpolation. The reason we choose octahedron is that
it can be unfolded to a plain image easily. Therefore, we can build a 1-1 map
between a sphere and an image without too much distortion, and the data of a
shape is transformed to a R3-valued function defined on a plain image, which
gives a geometric image (as shown in (c) Figure 1). Since the mesh on the plain
image is nothing but a Cartesian grid, a huge family of X-lets can be used to
analyze properties of the geometric image. The wavelets that we shall use in the
following experiments are Daubechies’ Biorthogonal Wavelets [23]. We note that
the boundary condition is a little complicated in this case. Topological saying,
the two halves of each side of the image must be identified with each other (see
[7] for more details). Thus, we need to setup corresponding boundary rules for
the wavelet filters.

We now summarize the entire multiscale representation process in the follow-
ing Algorithm 1. Figure 2 shows how the decomposition is carried out to the

Fig. 2. Two-levels wavelet decomposition: (a) and (e) are the low frequency coefficients

of level one and two; (b)-(d) are wavelet coefficients of level 1 and band 1-3; (f)-(h) are

wavelet coefficients of level 2 and band 1-3
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geometric image we have. Since all low frequency and wavelet coefficients has x,
y, and z three components, all coefficients are visualized as color images.

Algorithm 1. Wavelet-Based Representation for Shapes
Given some triangulated biological shape (V, T ), where V ∈ R3 is the vertex set and

T is triangulation.

1. Find the mapping M : V �→ S2, which also induces a triangulation on S2 denoted

as (VS, TS) =: MS . Define f0 = M−1 : S2 �→ V (Figure 1(b)).

2. Recursively subdivide an octahedron uniformly in R3 up to certain level N . Then

project the mesh on to S2 and obtain a mesh on S2 denoted as (VN , TN ) =: MN .

3. Interpolate f0 from MS to MN and obtain a new spherical function f , which, by

construction, can be easily transformed to a geometric image (Figure 1(c)).

4. Perform regular X-let decomposition and reconstruction (with proper boundary

conditions).

2.3 Multiscale Curvature-Like Characterization

As shown in Figure 2 above, for each level and band of the wavelet coefficients,
we have x, y, and z three components. The coefficient vectors reflect details of
the shape at each position and scale. Indeed, the wavelet vectors can be treated
as the displacement between the observed position and the predicted position
calculated from the convolution of the wavelet filter and the scale coefficients of
the neighboring vertices. Therefore, the direction of the wavelet vector gives us
some information of the local geometric properties. For example, if we consider
the wavelet vector at a local sunken area, then the approximated position inter-
polated from the neighboring vertices should be outer than the observed vertex,
which means that the wavelet vector is pointing outwards.

However, we cannot tell the geometric property of the shape from the wavelet
coefficients directly, and a single wavelet coefficient itself is geometrically mean-
ingless, so we combine the three components by calculating the inner product
of the wavelet vector and the normal vector of the shape. As what we explained
above, these inner products reflect geometric property at the corresponding po-
sition. In this way, a so called multiscale curvature-like characterization of the
shape is obtained: For given scale (or level), we compute normal of the shape

Fig. 3. Red regions in figure (a) and (b) are the sulcal and gyral regions respectively
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at all positions under that scale and take the inner product of the normal with
the wavelet coefficient vector. We then obtain a set of curvature-like coefficients
within each level and band. The statistical analysis given in the following section
is based on this representation. Figure 3 shows how this representation can be
used to find cortical sulci and gyri.

3 Numerical Experiments

3.1 Sparsity of the Representation

One of the most important properties of traditional wavelet transform is that
it gives a MSR of the underlying function and the representation is sparse. We
now show that our method as discussed in the previous section also gives a
sparse MSR for the biological shapes we have. Figure 4 and 5 shows the MSR
provided by the wavelet transform, and Figure 6 and 7 shows the sparsity of
the representation, where one can see that even with only 2500 coefficients, the
reconstructed shapes preserve most of the features of the original shapes.

Fig. 4. Figures left to right present a MSR of the hippocampus from courser approxi-

mation to finer approximation. The last figure is the original hippocampus.

Fig. 5. Figures from left to right present a MSR of the cortex from courser approxi-

mation to finer approximation. The last figure is the original cortex.

Fig. 6. Figures (a)-(c) are the reconstructed hippocampus using 1000, 2500 and 5000

coefficients, and the relative errors of them from the original shape are 1.171871e-004,

6.172233e-005 and 3.915038e-005 respectively. Figure (d) is the original hippocampus.
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Fig. 7. Figures (a)-(c) are the reconstructed cortices using 1000, 2500 and 5000 co-

efficients, and the relative errors of them from the original shape are 6.449351e-004,

3.154665e-004 and 1.664914e-004 respectively. Figure (d) is the original cortex.

One advantage of our method over spherical wavelet transform in analyzing
biological shapes is that we have a much more flexible choice of wavelets. In
particular, we can choose one wavelet with very high vanishing moments so that
the representation is very sparse. Figure 8 below shows a comparison of our
method to spherical wavelets as used in [1,2,3].

Fig. 8. Figures (a) and (b) are the decay of relative �2 error verse number of coefficients

used, where the underline shapes are the hippocampus and cortex as shown in Figure

6 and 7

The multiscale sparse representation provided by the wavelet transform has
many applications. For example, one can do shape compression, or in other
words, feature dimension reduction for shapes. One can also do shape denois-
ing via thresholding or shrinkage of wavelet coefficients. Since these kinds of
applications are not of our main interest, we shall not explore them in further
details.

3.2 Non-parametric Tests

For given two groups of hippocampus, one from healthy population, the other
from the one with Alzheimer’s disease, we apply Wilcoxon’s rank sum test (see
e.g. [24]) to the multiscale curvature-like representation of shapes to find regions
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on the shape where the two groups are different. The -value we choose in the
results below is 0.05. We note that the tests are more reliable in higher levels
than those in lower levels. This is because the shape corresponding to a higher
level is a smoothed version of the original shape, which means we have more
statistical inference of the object. As one can see from below that the higher the
level is, the larger each area of significance will be. In Figure 9 below, we used
the mean hippocampus as the reference shape, which is calculated by simply
taking an average of all the vector values of hippocampus at every position.

Fig. 9. Figures (a) and (b) show regions of significance of level 5 and 4 respectively.

Here, each pair of hippocampus is viewed from the bottom.

4 Discussion

The wavelet-based shape representation technique proposed here allows one to
study the geometry, topology and features of general biological shapes using any
of the standard wavelet-bases on real-valued Euclidean spaces. The results we
obtained are robust and consistent across individuals and populations. In addi-
tion to direct representation and shape characterization, this technique allows
us to compute mean shapes and improve the shape-analysis statistical power by
concentrating the energy of the shapecharacteristics in few significant wavelet
coefficients, Dinov et. al. [5]. We are in the process of validating the new method-
ology using larger number of subjects, different types of applications (e.g., study-
ing the population-specific differences in the proportion of gyri to sulcal area)
and quantitative comparison with spherical-harmonics, spherical wavelets and
tensor-based morphometry techniques.

The computational complexity of the algorithm is O(N logN) relative to the
volume size N. We have a Matlab implementation that we are in the process of
converting to stand-alone C++ code. We tested the actual computation time of
the wavelet decomposition and reconstruction on a PC with Inter(R) Core(TM)
2, 2.13 GHz and 1G physical memory. For a given shape with 65,536 surface
points, the computation time is 2-20 seconds, depending on the choice of basis
and level of decomposition.
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Abstract. In this paper we show that by using a modification of our

previously developed probabilistic method for finding the most unusual

part of a 3D digital image, we can detect the temporal intervals and areas

of interest in the signals/video and mark the corresponding objects that

behave in an unusual way.

Due to the different dynamics along the temporal and the spatial

axes, namely the prevalence of the cylinder-like objects in the video and

the pseudo-periodic slowly changing spectral characteristics of the bio-

electrical signals, an additional step is needed to treat the temporal axis.

One of the possible practical applications of the method can be in

Intensive Care hospital Units (ICU), where EEG video recording is a

standard practice to ensure that a potentially life-threatening event can

be detected even if its indications are present only in a fraction of the

observed signals.

Keywords: EEG, video, novelty detection, epilepsy.

1 Introduction

Increased availability of simultaneous bio-electric and video recordings in hos-
pitals prompts for their automatic processing. There are various algorithms for
extracting information from single modality recordings although integral sys-
tems that simultaneously observe sets of different measurements are quite rare.
Recordings are often monitored and processed by hignly trained professionals
but such experts are difficult to secure on 24-hours shift teams. Automated
monitoring of recordings and the reliable detection of seizures with no obvious
manifestations in the ICU is therefore very important and could save many lives.

The goal of the current method is to detect all temporal interval and spatial
segments of the EEG video (Fig. 1) that are not similar to the rest of the
recording and eventually make them available to skilled personnel and/or raise
automatic alarm.
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Fig. 1. Example of EEG Video. The EEG as well as another bio-electrical signals are

registered synchronously with a video.

As a final practical goal we are interested in detection of epileptic and non-
epileptic seizures, particularly the silent ones without apparent manifestations.

Let us first construct a 3D geometric figure from the video by stacking the
frames one on top of the other. The goal of the algorithm is to find 3D ob-
jects VS(t, x, y) with shape x, y ∈ S that are rare in the sense that the distance
between VS(t, x, y) and any other translated object VS(t + t′, x + x′, y + y′) is
the largest or close to the largest possible. The exact solution of this problem is
computationally hard, because it requires comparison between the translated ob-
jects. Therefore we follow our previous method designed to solve probabilistically
that problem. We give a summary of the methods in the following paragraphs.

As we have previously stated [1,2], we need first of all a mathematical defi-
nition of the term ”most unusual part”. For doing this, we chose some shape S
within the image A, that could contain that part and we denote the cut of the
figure A with shape S and origin r by BS(ρ; r), i.e.

BS(ρ; r) ≡ S(ρ)A(ρ + r),

where ρ is the in-shape coordinate vector, r is the origin of the cut BS and S(.)
is the characteristic function of the shape S. Further in this paper we will omit
the arguments of BS when not necessary. We can suppose that the most unusual
part is the one that has the largest distance with the rest of the cuts with the
same shape. Strictly mathematically, we can suppose that the most unusual part
is located at the point r, defined by:

r = argmax
r

min
r′:|r′−r|>diam(S)

||BS(r) −BS(r′)||. (1)

Here we assume that the shifts do not cross the border of the image. We use L2
norm. As the parts of an image that intersect significantly are similar, we do not
allow the shapes located at r′ and r to intersect, avoiding this by the restriction
on r′ : |r′ − r| > diam(S).
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2 The Method

The minima estimation of Eq. (1) is complicated because the blocks are multi-
dimensional. However one can simplify it by projecting the blocks B ≡ BS(r)
and B1 ≡ BS(r1) in one dimension using some projection operator X . For this
aim, we consider the following quantity:

b = |X.B1 −X.B| = |X.(B1 −B)|, |X | = 1. (2)

The dot product in the above equation is the sum over all ρ-s:

X.B ≡
∑

ρ

X(ρ)B(ρ; r). (3)

If X is random, and uniformly distributed on the sphere of the corresponding
dimension, then the mean value of b is proportional to |B1 −B|; 〈b〉 = c|B1 −B|
and the coefficient c depends only on the number of points of the block, that
can be treated as being its dimensionality, considering the projection operator.
However, when the size of the block, e.g. its dimensionality increases, the two
random vectors (B1−B and X) are almost orthogonal and the typical projection
is small. If some block is far away from all the other blocks, then with some
probability, the projection will be large.

We will regard only projections orthogonal to the vector with components
proportional to X0(ρ) = 1, ∀ρ. The projection on the direction of X0 is propor-
tional to the mean brightness of the area and thus can be considered as not so
important characteristics of the image.

Mathematically the projections orthogonal to X0 have the property∑
ρX(ρ) = 0. The distribution of the values of the projections satisfying this

property is well known and universal [3] for the 2D natural images and video
cuts. The same distribution seems to be valid for a vast majority of the images.

Further we quantize the projections. If B(r) and B(r′) have similar projec-
tions, then they will belong to one and the same or to adjacent bins. As a first
approximation, we can just consider the projections and score the points ac-
cording to the bin they belong to. The distribution can be described by a single
parameter that, for convenience, can be chosen to be the standard deviation σX

of the distribution of X.B.
The notion of ”large value of the projection” will be different for different

projections but will always be proportional to the standard deviation. Therefore
we can define a parameter a and score the blocks with |X.B| > aσX .

Based on the above scheme, in order to find the most unusual blocks of shape
S in an image A, we propose the following algorithm:

0. Initialize: Construct a figure B with the same shape as A and with all pixels
equal to zero. The result of the algorithm will be saved in B.

1. Generate a random projection operator X , with carrier with shape S, zero
mean and norm one.

2. Project all blocks, convoluting the image.
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3. Calculate the standard derivation σX of the result of the convolution.
4. For all points of C with absolute values greater than aσX , increment the

corresponding pixel in B.
Repeat steps 1 to 4 M times.
5. Select the maximal values of B as the most singular part of the image.

2.1 Video Signal

Let us first consider the video signal, which is a video recording of the patient
in two plans and is different from medical imaging such as X-Ray, magnetic
resonance, etc.

We are trying to extract the most unusual parts of the video and our first
attempt would be to regard the video as a stack of two dimensional images and
use the algorithm described in [2] as it is. Unfortunately this approach does not
work and there are at least three problems with it.

The first one is that the objects in the video are more or less constant and
therefore they form in the so constructed 3D image elongated cylinders with
finite dimensions along the spatial axes and very huge extension along the time
axis (Fig.2). The size of the area we choose ought to be larger than the size of
the objects we detect and this requirement cannot be fulfilled in the temporal
direction.

The second problem is rather specific for the type of video we use. Namely,
the infrared camera is very noisy in absence of artificial light source. This gives
a speckle noise comparable with the signal. The high frequency temporal com-
ponent will actually mask off the signal.

The third problem is the scan frequency of the images. Having some 24-30
frames per second we need to process a huge amount of information in near
real time mode. Therefore even if the method could be theoretically feasible, in
practice it will not work because of the lack of productivity – in a typical ICU
we have about 40 patients each one with his own video. One will need almost
the full power of a modern PC in order to process even few of the video signals.

Fig. 2. Time-axes elongated cylinders as predominant elements in the video (left). The

filtered video with non-zero low-cut frequency limit (right). The extend of the volumes

is finite. The zero frequency component is just 2D still image.
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These three problems make the method of random projections not useful in its
original form. We need to modify the method in order to: (1) limit objects in the
temporal dimension, (2) decrease high frequency noise and (3) reduce temporal
data flow. As will be shown below, we can actually achieve the three objectives
using a single technique.

In the video records we consider the objects that move to be the parts of
the patient body. They do not move constantly. There are some limited time
intervals in which the objects move. We can extract only the parts of the frames
that are not constant and consider only these parts. Representing this as a 3D
stack of frames, the duration of the movement is limited and therefore the non-
constant parts have a limited size in the time dimension. However, the analysis
of the scene, the segmentation and the extraction of moving areas cannot be
performed very fast. A much easier technique that can be applied is to filter
each pixel value using some high-pass filter along the time axis.

Analogously the high frequency speckle noise, due to the poor light conditions,
can be filtered by low pass filter, which combined with the previous one can be
implemented as band-pass filter. In this way we have the signal filtered with a
frequency spectrum between say F0 and F1. According to the Nyquist theorem,
if the signal is limited into the band [F0, F1], we can sub-sample it with no loss
of information for any frequency above 2|F1 − F0|. Thus for 3 Hz bands we can
sub-sample the signal with 6 Hz, which drops the frame rate of 24 fps video four
times.

If we are particularly interested in epileptic and non-epileptic seizures, we can
use the fact that most of the movements during the ictus are temblor movements
with typical frequency of 3-5 Hz.

In a typical EEG video the rapid movements are rare. Most frequently in EEG
video rapid temporal changes can be considered as a noise. The movements of the
objects, mainly limbs, are usually smooth in the video and can be decomposed
as few sinusoidal waves. Therefore among the time axes we can assume that the
speed of change is relatively slow and smooth.

An additional argument in this direction is the performance of the video
compression algorithms. Namely for still images the wavelets provide one of
the best known compression methods, but concerning video, the digital cosine
transform seems to give better results. Using this observation we introduce a
temporal filter that restricts the video frequencies to the 2-5 Hz range. The filter
effectively removes most of the artifacts from the video, for example the snow
like noise from the infra-red (IR) videos. We found that no further enhancement
of the video is required.

2.2 One Dimensional Signals

Something similar occurs with the one-dimensional bio-electrical signals. In this
case it is the temporal development of the signal what we are interested partic-
ularly. However, because of the nature of the bio-electrical activity we consider
(EEG, Electrocardiogram (ECG), Electromyogram (EMG)), the spectrum of
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the signals is slowly changing in time, with exception to the artifacts and the
temporal patterns (spikes, spindles, K-waves) in the signals.

Surprisingly the video and the one-dimensional signal processing seem very
similar. At the first stage we filter all signals and the video in 3 Hz bands, then
sub-sample the signal above the Nyquist frequency and finally process the results
using the algorithm described in [2].

There are many methods that are suitable for analyzing EEG signals, (see [4]
and the citations therein). Practically all procedures described in the literature
concern the detection of specific events in the signal, building a model for these
events. The method we describe in this paper, on the contrary, searches for the
parts of the signal that are unusual compared to the rest of the signal. A similar
approach but applicable only to 1D signals is presented in [5]. The random
projections are used as a tool to find nearest neighbors in [6].

3 Results

3.1 Data Collection

We use records of the sleep unit of the La Paz University Hospital, Madrid, Spain
as well as EEG recordings from epileptic patients at pre-operation observation
from the same Hospital. We use 33 channels recoding of bio-monitoring signals.
20 channels of them have been used for EEG and the rest of the channels have
been used to collect other biometric monitoring data. Most of the measurements
are performed with a scan frequency 256Hz. The video signal is an infrared
video with resolution 352 x 288 pixels and 24 fps. We only use the intensity
component of the image. In low-light conditions and with an infrared camera,
the color components carry little information. The recording time varies from 20
minutes to 8 hours. A typical screen capture of an observation is given in Fig.1.
The EEG recording device is the Oxford One(TM). As far as we know there are
no EEG video records of sufficient lengths that are public domain. To simplify
the interpretation and the reproducibility of the results in this article we have
used only the video, 10 EEG differential recordings and the EMG recordings.

In the case of EEG data recording without a video, we have also used the
public domain data in the collection of epilepsy studies [7].

3.2 Data Processing

Historically 20 seconds windows were used to analyze the EEG records. However,
the main reason for the 20 seconds intervals is the fact that the paper EEG
recordings were folded in pages of 20 seconds. We found that the use of 15
second windows, starting each 5-th second of the signal, is more suitable for the
analysis. Thus we can give the result of the analysis every 5 seconds. We used
the first 5 seconds of each window only for padding in order to eliminate the
transitional period of the filters. The maximal delay of the result of 15 seconds
seems reasonable from the medical point of view.
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The records were processed using the methods described earlier. It was ob-
served that there were two types of bio-electrical signals. On the one side, the
periodic signals as ECG, SaO2 and similar, that are produced as a result of the
activity of some autonomous system. The histogram of the projection density of
a typical signal of that type is shown in Fig. 3 (left). One can observe a typical
Gaussian density. Because of a rapid fall of the tail in that case, it is relatively
difficult to use these signals with the method described.

The second types of signals are produced by non-periodic complex system. As
an example, a single channel EEG projection is shown in Fig. 3(right). In this
article we used only this type of signals.

We de-composed all the inputs to narrow frequency bands (0.5-2.5Hz, 2.5-
4.5Hz, 4-7 Hz, 7-11Hz) and subsequently sub-sampled the resulting signals at
6.4 Hz. Thus we obtained more signals with lower scan frequency, which as a set
are equivalent to the original ones. Regarding seizures, the most informative band
is 2.5-4.5 Hz. Using only this band gives practically the same results as using
all four frequency bands. The filter we used was the Chebyshev Type I Infinite
Impulse Response (IIR) filter. The pass/stop frequency band was assumed to
belong to the interval from -0.5 to +0.5 Hz of the all frequency band limits
with an attenuation of -40dB. The allowed pass band ripple was set to 1dB.
The original scan frequency for the video was 24 fps and for the EEG and EMG
signals it was fixed to 256 Hz. The filters were designed using Matlab fdatool.
The number of filter stages given the bands was from 3 to 4 so the computational
effort was very modest.

We tried also to use a 154 tap finite impulse response filter and a non causal
IIR filter (re-passing the filter data with time axes inverted). These filters gave
the same results obtained in all the previous cases. That is why we used only
Chebyshev Type I causal filters.

We used 10 random projection matrices. The use of 30 random projection
matrices, as in the case of 3D medical images, did not give significant advantages
in that case. This is probably due to the rejection of the very low frequencies
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and the fact that we have used one dimensional band limited signals. For these
signals the standard deviation is smaller than for the case of video.

3.3 Experimental Results and Interpretation

We analyzed the following cases:

A. Extracting the intervals with unusual events only from the one dimensional
signals (principally EEG).

In this case we have also used the data from the collection of epilepsy studies
[7], and the epileptic records were detected with 99% probability (only one case
not detected) with one false alarm (artifacts in the record). Having in mind that
the detector was not specifically designed to detect epilepsy, the results seem very
good. However, although the data set [7] is good to compare different methods
for epilepsy detection, we do not consider the results representative, because the
records are pre-selected not to contain artifact and more importantly, they are
post-selected regarding the results of the surgery – if the results were poor, the
corresponding records were not included in the collection. Both conditions are
artificial and not realistic in the medical practice.

The result is shown in Fig. 4. After an inspection by human specialist and an-
notating the EEG using different EEG records we can observe that the intervals
marked as ”unusual” by the algorithm are:

1) Epileptic seizures. Detected virtually 100% of the events.
2) Short arousals and artifact produced by electrode problems.
3) Snoring. Detected more than 70% of the events.
4) REM. Detected more than 50% of the events.
5) Phase II morphological elements (K-complex, spindles) when they occupy

more than 30% of the 10 seconds interval. Detected about 50% of the events.

Changing the parameter a of the algorithm we can select the level of sensitivity
of the system. With a = 4 only the first two categories are detected. With a = 3
all 5 categories are detected.

B. Extracting intervals and areas that correspond to unusual events from the
video recording only.
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Fig. 4. Events extracted only from EEG data (a = 3, M = 1). The main features are

well detected even with only one projection.
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Evidently, the unusual events during the sleep or unconscious state are the
movements of the person. In this sense if one is really interested of the events, the
technique detects all significant movements of the parts of the body (hands, legs,
head) with virtually 100% precision. The best detected is the motor reaction of
the epileptic seizure, detectable at level a = 4. For a = 3 all significant limb
and corporal movement can be detected. Note that by using different size of the
shape of the area of interest, we can selectively detect the movement of the parts
of the body without detecting the global movements. In some of the cases snoring
is detectable too. We are aware that there exist many methods for video novelty
interpretation (for review see [8,9]), but the computational cost of most of them
exceeds the practical limits. Most of them require significant image processing,
that is not plausible in the clinical setting where we intend to use our approach.

C. Mixed use of the EEG and video records.
The main problem is to give a relative weight to the projections correspond-

ing to the video and to the bio-electrical records respectively. We choose equal
weight of all EEG signals and the video. The resulting system can be tuned to
capture any epileptoform motion and brain activity even in presense of electrode
problems and when there is no apparent movement (Fig.5). The system has ab-
solutely no a priori knowledge of what could be regarded as ”normal” and what
is ”abnormal” activity. Therefore detecting seizure periods, REM activity and
snoring can be considered as very good result.

Performance: Using Double Core Intel Pentium D 2.8 GHz processor, e.g.
normal PC, we can process 6.4 s record in less than 5 sec. By optimizing the
algorithm it is possible to achieve better performance. The method does not
require memory for more than 2 frames (the result of filtering and the current
frame). The time required to find the unusual parts is insignificant compared
to the rest of the processing. The memory and the memory requirements for
the one-dimensional signals are significantly less than that corresponding to the
video. This gives us confidence that the algorithm can be used in real time.
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Fig. 5. Events extracted from EEG and Video (a = 3 M = 20). At level 30 (30% of

the proections) only seizures and electrode problems are observed. At lower level one

can also see the sleep patterns (REM etc).
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4 Discussion

We presented a method that finds unusual intervals and areas in mixed one di-
mensional signals and video recording. The method uses random projections in
order to represent the signal and it is probabilistic. The temporal evolution of
the signal must be treated differently than the spatial one, due to the different
dynamics involved. Namely, all signals ought to be filtered in narrow frequency
bands. This is a significant change in respect to the algorithm for 3D images,
because it is not previously clear that the band-limited projections can extract
the unusual parts of the signal. Without having any knowledge about the differ-
ent EEG events and human sleep development, the method extracts most of the
important events deserving consideration. The analysis approximates the human
specialist performance and therefore, although the results are preliminary, they
seem rather promising. The method can be used to present to the neurologist
solely the parts detected as unusual. Another possible application of the method
is to add an automatic analysis on the extracted parts and to set off an alarm
in the case of life treating conditions in ICU.
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Abstract. The available rendering performance on current computers

increases constantly, primarily by employing parallel algorithms using

the newest many-core hardware, as for example multi-core CPUs or

GPUs. This development enables faster rasterization, as well as conspicu-

ously faster software-based real-time ray tracing. Despite the tremendous

progress in rendering power, there are and always will be applications

in classical computer graphics and Virtual Reality, which require dis-

tributed configurations employing multiple machines for both rendering

and display.

In this paper we address this problem and use NMM, a distributed

multimedia middleware, to build a powerful and flexible rendering frame-

work. Our framework is highly modular, and can be easily reconfigured

– even at runtime – to meet the changing demands of applications built

on top of it. We show that the flexibility of our approach comes at

a negligible cost in comparison to a specialized and highly-optimized

implementation of distributed rendering.

1 Introduction

Even though the performance available for rendering on today’s hardware in-
creases continuously, there will always be demanding applications for which a
single computer is not enough, and the workload has to be distributed in a
network to accomplish the desired tasks. This demand for distribution is not
restricted to the rendering end, but also the display of rendered images fre-
quently requires distribution: be it for a multi-wall projection-based Virtual Re-
ality setup, or server-based rendering where rendering cluster and thin display
client are connected across the Internet.

All these scenarios have something in common: they require a foundation
that is able to provide access to a maximum of available hardware resources
for their particular rendering implementation, be that in the form of processing
on a single machine, or by distribution onto several machines. There are strong
requirements for timing and synchronization as well, since the distribution of
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rendering tasks and the display of their results are highly dependent on each
other and have to be done in due time and often synchronized across different
physical devices. In this paper, we present the DRONE (Distributed Rendering
Object Network) architecture as a framework solution that addresses all these
requirements. DRONE is based on NMM, a distributed multimedia middleware.
Together, DRONE supports all of the above scenarios to meet the requirements
of current and future applications.

This paper is structured as follows: in Section 2, we present related work
and derive requirements for our framework. Section 3 then provides an overview
of the basic technology of DRONE, before Section 4 explains and discusses its
architecture in more detail. Section 5 describes the versatile command language
we use for an easy setup of render graphs. Section 6 evaluates the performance
of the framework and shows that the overhead of the framework is negligible in
comparison to a highly optimized implementation. We conclude our paper and
highlight future work in Section 7.

2 Related Work

Molnar et al. [1] presented a classification scheme for distributed rendering. The
authors subdivide techniques that distribute geometry according to screen-space
tiles (sort-first), distribute geometry arbitrarily while doing a final z-compositing
(sort-last), or distribute primitives arbitrarily, but do per-fragment processing in
screen-space after sorting them during rasterization (sort-middle). This separa-
tion of techniques is based on rasterization, and where the rasterization pipeline
distributes the workload across multiple processors. It is difficult to apply the
scheme for a generic rendering and visualization architecture supporting other
techniques besides rasterization, as for example ray tracing. Here, Molnar’s clas-
sification approach is no longer applicable, as geometry processing and screen-
space projection are combined in the single operation of sampling the scene
with rays. Instead, we will discuss several typical application scenarios that our
framework should support and discuss available solution strategies.

The first application scenario (AS1), we call it single-screen rendering, com-
prises presenting rendered images on a single screen while using multiple systems
for rendering. The major demand of flexibility for (AS1) is the possibility of us-
ing available systems in the network both for rendering and displaying a scene,
while being independent of the network infrastructure connecting them. A dis-
tributed middleware like NMM provides network transparency, which in turn
allows transparent access to distributed objects, and aids in achieving this high
degree of flexibility. Another desired aspect of (AS1) is the possibility to use
different rendering techniques such as ray tracing or rasterization, all working
on the same scenes.

Previously presented frameworks for distributed rendering like WireGL [2],
and Chromium [3] are limited to the rasterization approach. The Real-Time
Scene Graph (RTSG) [4], on the other hand, provides a strict separation of
the scene graph and a specific implementation of a renderer, thus making it
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applicable to use both rasterization and ray tracing. Equalizer [5] concentrates
on rasterization as well, but also supports ray tracing as shown in RTT’s Scale
software [6]. However, a drawback of Equalizer as well as the other rendering
frameworks is that they have fixed pipelines and do not allow flexible post-
processing of rendered images.

The second application scenario (AS2), multi-screen rendering, extends (AS1)
by splitting the resulting frame and presenting it on multiple displays simultane-
ously and fully synchronized. This is required for display walls, for example for
large-scale terrain or industrial visualization. The major desired aspect of (AS2)
is the flexibility of combining multiple displays as if they were a single one. This
also includes presenting of multiple views of the same scene at the same point
in time. For example, this is required for stereo imagery required for Virtual
Reality installations like the CAVE.

For (AS2), we need distributed synchronization to present an image simulta-
neously on all displays: hardware-based solutions, e.g., using the genlock signal of
the video output of special graphics cards [7] allow for exact frame synchroniza-
tion, while software-based solutions like NTP, are able to synchronize PCs over
the Internet with a few milliseconds of variance. We believe a flexible rendering
framework should be able to support arbitrary synchronization mechanisms.

The third application scenario (AS3) is remote rendering. It covers situations
where rendered images have to be transmitted through a network connection
with limited bandwidth, often because the original data sets have to stay at a
controlled and secure location. The main demand for of (AS3) is the ability to
add different post processing steps, e.g., the encoding of rendered images before
a network transmission. Here, the application of a distributed flow graph within
our rendering shows its full potential by providing the means to transparently
insert new processing elements in the data processing pipeline. FlowVR [8] is also
based on a flow graph but neither provides the same capability of video post-
processing nor the possibility to select transmission protocols (e.g., RTP) that
are more suitable for sending multimedia data through an Internet connection.

The last application scenario (AS4) is collaborative rendering, an arbitrary
number of combinations of the previously described scenarios. An ideal sys-
tem scenario should allow, for example, a large control center with tiled display
walls, and simultaneously thin clients only receiving some important aspects
of large rendered images. This is especially interesting for collaborative work
where people on different locations have to work with the same view of a scene.
This requires that the application is able to share the same rendered images
between multiple users while each user may be able to interact with the scene.
A similar solution to a collaborative rendering scenario is provided by the CO-
VISE [9] system. It does not transfer images but renderer-specific data making
it renderer-dependent. Also, multiplexed views for displaying are not possible.

In summary, to our knowledge, there exists no rendering framework that is
able to support all the described application scenarios.
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3 Overview

The DRONE framework is build on the Network-Integrated Multimedia Mid-
dleware (NMM) [10]. NMM uses the concept of a distributed flow graph for
distributed media processing, which perfectly fits the requirement of flexibility
we defined for the framework. This approach provides a strict separation be-
tween media processing and media transmission as well as a transparent access
to local and remote components. The nodes of a distributed flow graph represent
specific operations (e.g., rendering, or compressing images), whereas edges rep-
resent the transmission between those nodes (e.g., pointer forwarding for local
connections, or TCP for a network connection). Nodes can be connected to each
other via their input jacks and output jacks ; depending on the type of operation
a node implements, their numbers may vary. Nodes and edges allow the applica-
tion to configure and control media processing and transmission transparently,
for instance by choosing a certain transport protocol from the application layer.
Prerequisite for the successful connection of two nodes is a common format,
which must be identical for the output jack of the predecessor node and the
input jack of the successor node to be connected. NMM incorporates a unified
messaging system, which allows to send control events together with multimedia
data from sources to sinks, being processed by each node in-between.

3.1 The DRONE Flow Graph

The DRONE framework builds on top of an NMM flow graph consisting of
custom processing nodes supplemented by existing nodes of core NMM. The
ability of NMM to distribute nodes arbitrarily in the network, but still access
them transparently from within an application allows the placement of applica-
tion sub-tasks on arbitrary hosts, enabling high flexibility and efficient use of a
cluster.

Fig. 1. This flow graph shows the general idea of distributed and parallel rendering in

DRONE using n rendering nodes to render to a single output device

RenderNode: A render node performs the actual rendering of a scene description
to a 2D image. Key principle of DRONE is rendering a single frame dis-
tributed on multiple render nodes in the flow graph. All render nodes have
access to an identical copy of the scene graph. This node renders the assigned
scene to a memory buffer for further processing. Since NMM transparently
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supports many-core architectures, e.g., GPUs and Cell [11], rendering engines
using many-core architectures can also be integrated into DRONE. Require-
ments for integrating a rendering engine into DRONE are (1) the possibility
of rendering tile frames and (2) extending a buffer into the rendering engine
that is used for rendering.

ManagerNode: The single source node of the DRONE flow graph is called man-
ager node; its job is to distribute the workload of rendering an image to the
available render nodes. The manager node distributes the workload between
render nodes by splitting the frame to be rendered into many frame tiles and
assigning them dynamically to render nodes.

DisplayNode: A display node constitutes a sink of the flow graph, and simply
presents any incoming image buffer synchronized according to its timestamp.
Display nodes are part of core NMM and usually platform-dependent: for
example, an XDisplayNode would be used on a Unix platform running the
X window system.

TileAssemblyNode: A tile assembly node in general can receive frame tiles from
all rendering nodes, and assembles them to a composite image buffer. As
there is one dedicated tile assembly node for each downstream display node,
the nodes receive only those tiles of the rendered image stream that are
relevant for the particular display node they precede.

4 Architecture

Based on the NMM flow graph components presented in Section 3.1, DRONE
provides its functionality to the application in the form of processing blocks,
which bundle their underlying modules and provide high-level access to an ap-
plication developer. Furthermore, composite blocks allow the application to group
different processing blocks that can be treated in the same way as a single pro-
cessing block afterwards. Below, we will use the application scenarios presented
in Section 2 as a guide through the specific design decisions of the framework,
and explain how the different processing and composite blocks fit together.

4.1 Single-Screen Rendering (AS1)

The primary processing block, which occurs in every DRONE application, is
the rendering block. It contains those NMM components that are responsible for
rendering a two-dimensional image from a 3D scene: In particular, it consists of
a single manager node and at least one render node. Together, all render nodes
take care of rendering a frame. The distribution among nodes is done by tiling
the frame, and assigning single frame tiles to separate render nodes.

The rendering block is connected to at least one presentation block, which
combines the tiles and displays the frame on an actual physical display device.
A presentation block is a composite block that can be extended by additional
nodes for post processing but contains at least two NMM nodes: a tile assembly
node, and a display node. All those tiles of the rendered frame that are sent from
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the render nodes to the corresponding assembly node have to be displayed by
the succeeding display node. Since information about the specific view is part
of the connection format between a render and tile assembly node, each render
node knows which frame tiles have to be sent to which tile assembly node. In the
trivial case of having just one display (depicted in Figure 2), the tile assembly
node receives all tiles of each frame.

DRONE also allows user interaction with the rendered scene. Because all
render nodes render the scene, each one has to be informed about user events,
such as changes to the viewpoint. In our setup, interaction events, key presses or
mouse movements, first are sent as events from the application to the manager
node. The manager node in turn forwards all incoming events to all connected
render nodes. The key point in doing so is that input events are propagated only
between tiles of different successive frames to avoid changes of viewpoint before
the processing of a single frame is fully completed.

Load Balancing. The manager node is responsible for load balancing because
it sends information about the next tile to be rendered as so called tile events
to its successive render nodes. If the manager node and render nodes run in the
same address space, the manager node is directly informed by a render node
about processed tile events and the corresponding render node receives a new
one as soon as its current tile event was processed. In case of a TCP connection
between manager and a render node, DRONE configures the underlying TCP
connection such that it stores exactly one tile event in the network stack on the
side of the manager and renderer, respectively. This is possible because NMM
provides access to the underlying network connection between two nodes. As
soon as the render node starts rendering a tile event, NMM reads the next tile
event from the network stack on the side of the render node and forwards it to
the node for processing. The tile event stored in the network stack on the side of
the manager node is automatically requested by the flow control mechanism of
TCP and transmitted to the network stack on the render side. Furthermore, the
manager node is informed by NMM that this connection is no longer blocked

Fig. 2. DRONE encapsulates the flow graph in different basic processing and com-

posite blocks. The rendering block includes the manager node as well as all rendering

nodes. The presentation block includes all remaining nodes required to present ren-

dered images. GUI events received from a display node are forwarded to the render

nodes through the manager node.
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and new data can be sent through this connection. The manager node in turn
sends a new tile event to the corresponding render node such that a network
connection acts as queue of exactly three tile events. This allows DRONE to reuse
the flow control mechanism of TCP for load balancing without any additional
communication between manager node and distributed render nodes.

This simple scheduling approach leads to an efficient dynamic load balancing
between the render nodes, because render nodes that finish rendering tiles ear-
lier, do receive new rendering event earlier as well. This approach automatically
considers differences in rendering time that can be caused by different scene com-
plexity, or different processing power of different rendering machines. Moreover,
NMM informs the manager node about a failed network connection to a render
node, so that the manager node no longer tries to send tile events to this node.
All this is only possible due to the scalable transparency approach of NMM.

4.2 Multi-screen Rendering (AS2)

The general idea to support applications that need to present rendered images
on multiple screens can be seen in Figure 3. The application specifies multiple
presentation blocks as well as the partial frame configuration to be displayed
by each block. All these presentation blocks are then connected to the same
rendering block by the framework. To support rendering multi-view images for
stereo or Virtual Reality scenarios, each eye is conceptually represented as a
separate presentation block. Those independent images are then treated as a
single frame and have to be presented at the identical point in time.

Synchronized presentation of rendered images is achieved by adding presenta-
tion blocks to a specialized composite block, called synchronization block. This
block connects a synchronizer component to all display nodes of child presenta-
tion blocks. The synchronization block is then connected to the rendering block,
while the framework automatically connects all presentation blocks to the ren-
dering block, and in doing so adds the information about the partial frame to
be presented as part of the connection format between render nodes and tile

Fig. 3. DRONE allows combining multiple independent presentation blocks (e.g., for

realizing video walls). The synchronized presentation of rendered images is achieved

by adding these presentation blocks into a synchronization block which then connects

a synchronizer to these presentation blocks.
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assembly nodes. In summary, any rendered frame can be presented on any of
the screens simultaneously; either in full or in part for realizing a video wall
setup. For scenarios where blending between adjacent projectors is required, the
overlap between presentation blocks can be freely adjusted. Since our specific
synchronization component is encapsulated into a composite block, it is not
coupled with the framework itself, so that arbitrary synchronization techniques
can be integrated into DRONE by implementing a new synchronization block.
The synchronizer realized in the DRONE framework is described in [12] and
allows for synchronizing the presentation of partial or full frames in multiple
display configurations.

4.3 Remote Rendering (AS3)

To enable sending a stream of rendered images across a high-latency network like
the Internet and still enable an interactive manipulation of the rendered scene
as described in Section 4.1, the bandwidth of the rendered raw video stream has
to be reduced drastically. The necessary reduction of the data rate is typically
done by means of encoding the image stream before sending; for example using an
MPEG-4 or H.263 video codec. Besides encoding of the stream, one can imagine
many more potential operations to be performed on the rendered images. For
instance, a color correction of neighboring projections of a video wall setup [13],
tone mapping or arbitrary other operations in pixel space.

To enable all these scenarios, we allow the insertion of one or more post-
processing blocks into a presentation block. This is automatically supported
by the framework because the presentation block is a composite block itself.
Figure 4 shows a presentation block enhanced by two postprocessing blocks: one
for brightness adjustment, and one for encoding and decoding of the stream.
A postprocessing block with all its internal nodes is either inserted in front of
the tile assembly node or between the tile assembly and the display node of
any presentation block. Here, the application of a multimedia middleware like
NMM, shows its full potential by providing the means to transparently insert
new processing elements in the data processing pipeline.

Fig. 4. Extended presentation block: DRONE allows to add an arbitrary number of

postprocessing blocks to a presentation block. In this example, we first adjust brightness

and then encode rendered images before sending them through an Internet connection.
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Fig. 5. Real-time ray tracing simultaneously displayed on three presentation hosts, all

of which are fully interactive and synchronized. The rendered images are displayed in

a single window on one computer (left) and a display-wall via two split video streams

on two additional machines (right).

4.4 Collaborative Rendering (AS4)

The final application scenario to be covered by DRONE is the situation of mul-
tiple parties working on and interacting with one and the same rendering block,
realizing a collaborative environment, as for example industrial collaborations
in which 3D models are synchronously displayed to engineers in distinct offices
around the globe. In terms of the DRONE framework, this scenario represents
an arbitrary combination of (AS1) to (AS3) as presented above.

As before, the framework configuration for (AS4) includes a single rendering
block with potentially multiple presentation blocks attached. The flexible archi-
tecture of DRONE allows, for example, to realize different encoded streams for
each one of the presentation blocks, and arbitrary display setups for the partic-
ipating parties. Moreover, different applications can access and share the same
rendering block while adding their specific presentation blocks. For example, this
could be used for application scenarios where users permanently enter or leave
a collaborative virtual 3D environment. Since this scenario may incorporate ar-
bitrary rules of interaction with the scene viewpoint for different applications
written against the framework, DRONE can not define access control scenar-
ios that are appropriate purposes. Instead, we only provide access to exclusive
manipulation of the virtual camera of a single viewpoint for one presentation
block at a time. The access right to manipulate the scene is requested from
the corresponding presentation block itself. As soon as an application has re-
quested this access right, it can change the viewpoint through the interface of
the presentation block.

The possibility to realize this application scenario by combining and grouping
previously presented results again shows the high degree of flexibility of our
framework as well as the benefit for applications build on top of it.

5 A Simple Command Language

To be able to easily specify and manipulate the components of a DRONE render
graph, we defined the command line application renderclic, able to play back
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render graph descriptions (RGDs) defined in respective RGD files. Both appli-
cation and descriptions are inspired by the graph description format used to
specify NMM flow graphs. The RGD syntax is built upon the following context-
free grammar:
<render_graph > ::= <rendering_block > "|" <composite_block >
<rendering_block > ::= <identifier > [ <method >+ ]
<composite_block > ::= <identifier > [ <method >+ ] "{" <composite_block >+ "}"

| <presentation_block>
<presentation_block> ::= <identifier > [ <method >+ ] [ <presentation_body> ]
<presentation_body> ::= "{" <postprocessing_graph> "}"
<postproc_graph > ::= <postprocessing_block> [ "|" <postprocessing_block> ]
<postproc_block > ::= <identifier > [ <method >+ ] [ "[" <nmm_graph > "]" ]
<method> ::= "$" <identifier > "(" <arguments > ")" <state >
<state > ::= " CONSTRUCTED" | "INITIALIZED" | "STARTED "

It defines the basic DRONE render graph (render graph) components, namely
a rendering block (rendering block), a composite block and its specialization
presentation block (composite block, presentation block). All blocks have
interfaces enabling a definition of methods (method) in an interface definition
language, as well as of the internal state (state) the block should be in upon their
execution. The RGD command language also features a direct specification of
post-processing blocks, which may contain inline NMM flow graphs (nmm graph).
Here, we omit their specification and the further resolution of identifier and
argument symbols (identifier, arguments) for brevity, though.

With the RGD language, we can define the example depicted in Figure 5,
which is real-time ray tracing rendered on two hosts and synchronously displayed
on three hosts, two of which configured in a video-wall setup. We can directly
run it with the renderclic application afterwards:
RenderingBlock $addHost (" render1 ") INITIALIZED # more render hosts optional

$setSceneURL("~/box.wrl") INITIALIZED |
SyncBlock $setResolution(1200, 768) INITIALIZED # used for all children
{

PresentationBlock $setHost (" display1 ") INITIALIZED # full frame
PresentationBlock $setHost (" display2 ") INITIALIZED # half frame 1

$setViewport(600, 768) INITIALIZED # no offset here
PresentationBlock $setHost (" display3 ") INITIALIZED # half frame 2

$setViewport(600, 768) INITIALIZED
$setOffset(600, 0) INITIALIZED # viewport offset

}

6 Performance Measurements

In order to measure the overhead of our framework, we developed a rendering
node on top of RTSG and integrated OpenRT as ray tracer into RTSG which
also provides support for distributed ray tracing. As OpenRT is able to distribute
rendering in itself, our test environment allows for measuring the overhead when
DRONE is used for local or distributed rendering compared to the highly spe-
cialized implementation OpenRT.

The test scene we use contains more than 1.3 million triangles and uses reflec-
tive and refractive surfaces. Each frame is rendered in a resolution of 1024x512
pixels using a fixed tile size of 64x64 pixel. Our hardware setup consists of 4 ren-
dering PCs, each equipped with two quad core Intel(R) Xeon(R) CPU 3GHz,
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64GB RAM and are connected over Infiniband. In Test (1), we measure the
overhead of our flexible render graph in comparison to the monolithic rendering
application like OpenRT by rendering on a single core without any DRONE-
specific distribution. As can be seen in Table 1, DRONE achieves a frame rate
that is 0.9% lower than the frame rate of standalone OpenRT. In order to
measure the overhead of the DRONE network communication, we gradually in-
creased in Test (2)-(5) the used cores by eight while presenting images on a
different PC. In this case, DRONE achieves a frame rate that is 1.3% lower
than the frame rate of OpenRT. Since an overhead of 0.9% is caused by using a
flow graph, the overhead caused by the network communication has an influence
of 0.4% on the frame rate. We then perform the same tests but with a second
presentation block in DRONE in order to show the overhead of the synchroniza-
tion mechanism. However, when using two presentation blocks, presenting half
of each frame, no additional overhead of the synchronization is introduced.

From our point of view, both performance and memory overhead introduced
by DRONE are negligible, because applications greatly benefit when using
DRONE due to the flexibility of the framework.

Table 1. Performance results using standalone OpenRT vs. OpenRT integrated in

DRONE. Frame rate is measured when presenting images on a single display as well

as on two displays, each presenting half of the frame.

Test Cores OpenRT DRONE

1 Display 1 Display 2 Displays

(1) 1 0.434 fps 0.43 fps 0.43 fps

(2) 8 3.14 fps 3.10 fps 3.10 fps

(3) 16 6.05 fps 5.93 fps 5.93 fps

(4) 24 9.08 fps 8.97 fps 8.97 fps

(5) 32 12.12 fps 12.00 fps 12.00 fps

7 Conclusion and Future Work

In this paper we presented the DRONE architecture, an application development
framework for distributed rendering and display. Using NMM as an underlying
communication architecture provides an unprecedented flexibility in parallelizing
and distributing all aspects of a rendering system: user input, load-balancing,
rendering, post-processing, display, and synchronization. By designing a small
set of modules that can be combined easily, an application can flexibly configure
distributed rendering and display – even dynamically during runtime. As shown
in Section 6, this flexibility comes at a negligible cost over specialized and highly
optimized implementations of the same functionality.
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In the future, we want to explore ways to even further make use of all hardware
resources available for rendering in the network. We plan to integrate next-
generation multi-core technologies such as the CUDA and Cell architectures in
our rendering pipelines.
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13. Kresse, W., Reiners, D., Knöpfle, C.: Color Consistency for Digital Multi-Projector

Stereo Display Systems: the HEyeWall and the Digital CAVE. In: EGVE 2003:

Proceedings of the workshop on Virtual environments 2003, pp. 271–279 (2003)

http://www.realtime-technology.com/
http://www.nvidia.com/page/quadrofx_gsync.html


Efficient Strategies for Acceleration Structure
Updates in Interactive Ray Tracing Applications

on the Cell Processor

Martin Weier, Thorsten Roth, and André Hinkenjann
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Abstract. We present fast complete rebuild strategies, as well as

adapted intelligent local update strategies for acceleration data struc-

tures for interactive ray tracing environments. Both approaches can be

combined. Although the proposed strategies could be used with other

data structures and architectures as well, they are currently tailored to

the Bounding Interval Hierarchy on the Cell chip.

1 Introduction

Recent hardware and software developments in the field of fast ray tracing allow
for the use of these renderers in interactive environments. While the focus of
research of the last two decades was mainly on efficient ray tracing of static
scenes, current research focuses on dynamic, interactive scenes. Recently, many
approaches came up that deal with ray tracing of dynamic deformable scenes.
Current approaches use kd-trees [1,2], grids [3] or Bounding Volume Hierarchies
(BVHs) on commodity CPUs or GPUs [4,5,6]. These either do a complete rebuild
of the scene’s acceleration structure or provide methods to perform an intelligent
dynamic update. However, there is always a trade-off between the tree’s quality
and the time that is needed to perform the rebuild or update operations.

Recent publications [7,8] on using kd-trees for deformable scenes always pro-
pose trying to perform a complete rebuild from scratch. However, these ap-
proaches do not seem to scale well in parallel [7]. Another approach is [9], a
GPU based construction of kd-trees in breadth first manner. In order to use the
fine-grained parallelism of GPUs, a novel strategy for processing large nodes and
schemes for fast evaluation of the nodes’ split costs is introduced. A disadvan-
tage of this approach is that its memory overhead is very high. Grids, on the
other hand can be constructed very fast and in parallel [3]. Although grids are
usually not as efficient as adaptive structures when it comes to complex scenes,
coherence can be exploited here as well [10].

In recent years, BVHs seem to have become the first choice for ray trac-
ing of deformable scenes. BVHs are well suited for dynamic updates. However,
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this often leads to increasing render times since the trees degenerate over time.
To decide whether it makes sense to perform a complete rebuild, Lauterbach
et al. [4] developed a metric to determine the tree’s quality. Another approach
was proposed by Wald et al. [11]. They use an asynchronous construction that
runs in parallel during vertex update and rendering. A novel approach is [12],
performing a BVH construction on GPUs. There, the upper tree levels are par-
allelized using Morton curves. This idea is based on [13] and [14], where surface
reconstruction on GPUs using space filling curves is performed. We have cho-
sen the Bounding Interval Hierarchy (BIH) [15] for interactive ray tracing of
dynamic scenes on the Cell Broadband Engine Architecture [16]. The Bounding
Interval Hierarchy has some advantages compared to kd-trees and BVHs. A BIH
node describes one axis aligned split plane like a kd-tree node. However, the
split planes in the BIH represent axis aligned bounding boxes (AABBs). Start-
ing from the scene’s BB the intervals are always fitted to the right’s leftmost
and the left’s rightmost values of the resulting partitions. Thus, the BIH can
be seen as a hybrid of kd-trees and BVHs. One advantage of BIHs compared
to kd-trees and BVHs is their easy and fast construction. In addition the BIH’s
representation of the nodes is very compact since no complete AABBs need to
be stored. Due to the growing parallelism in modern architectures, effectively
utilizing many cores and vector units is crucial. In fact the BIH construction has
many similarities with quicksort which is a well studied algorithm in the field
of parallel computing. Modern architectures like the Cell processor or GPUs all
have a memory access model (memory coherence model) where data from main
memory must be explicitly loaded from or distributed to the threads. For most
of these memory models bandwidth is high, but latency as well. This makes it
especially important to place memory calls wisely. In the following section, we
describe fast methods for completely rebuilding the acceleration data structure
each frame. In section 3 we present intelligent local updates of the data struc-
ture. Note that both methods can be combined: The intelligent update method
finds the subtree that has to be rebuilt after scene changes. This update can
then be done by using the methods from the following section. After that we
show the results of some benchmarks and evaluate both approaches.

2 Fast Complete Rebuild of Acceleration Data Structures

The most important step in BIH construction is the sorting routine which sorts
primitives to the right or left of the split plane. The Cell’s SPEs only have a
limited amount of local storage. To do sorting on all primitives, which usually
exceed the 256kB local store on the SPE, data has to be explicitly requested
and written back to main memory. Peak performance for these DMA calls is
reached for blocks of size 16kB, which is the maximum that can be obtained
by one DMA call. Since all of these DMA operations are executed non-blocking
(asynchronously), it is important to do as much work as possible in between
consecutive calls. Common approaches for doing an in-place quicksort like in [17]
usually distribute the array in blocks of fixed size to the threads. The threads
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then do a local in-place sort and write their split values to a common new
allocated array. Then prefix sums over these values are calculated and the results
are distributed back to the threads. By doing so, each thread knows the position
where it can write its values back to. Using this algorithm on the Cell, each
SPE would have to load one 16kB block, sort it and write the split values and
the sorted array back to main memory. After that, the prefix sum operation on
the split values of the 16kB blocks would need to be performed. Since this is a
relatively cheap operation, parallelizing it using the SPEs leads to new overhead.
Additionally, each SPE needs to read the 16kB blocks again to write them back
to main memory in correct order. For this reason this method should be avoided.
In our algorithm we only use one SPE to perform the sorting of one region. Each
region refers to one interval of arbitrary size. To avoid any kind of recombination
and reordering after one block is sorted, the values need to be written back to
their correct location right away.

If the size of the interval to be sorted is smaller than 16kB, sorting is easy. The
SPE can load it, sort it in-place and write it back to where it was read from. Sorting
intervals larger than 16kB is a bit more complicated. Values of a block smaller than
the split plane value are written to the beginning of the interval to be sorted and
the ones larger to the end. To make sure that no values are overwritten that were
not already in the SPE’s local store, the values from the end of the interval also
need to be loaded by the SPE. In order to maximize the computation during the
MFC calls five buffers are needed. Figure 1 shows the use of the five buffers.

In the beginning, four buffers are filled. Buffers A and C load values from
the end of the triangle array, B and D load values from the beginning (Step
1). After that, values in D are sorted (Step 2). Then the pointer from buffer D
and the OUT buffer are swapped and the OUT buffer is written back to main

Fig. 1. SPE in-place sorting. Elements larger than the pivot in red (dark grey) and

elements smaller in green (light grey).
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memory (Step 3). The elements in the OUT buffer smaller than the split plane
are written to the beginning of the interval. The elements larger are written
back to the end of the interval.After this the buffers need to be swapped again.
This can be accomplished by swapping the pointers, i.e. buffer D becomes buffer
C, buffer C becomes buffer B and buffer B becomes buffer A respectively (Step
4). Finally it is determined if more values that have not already been processed
were read from the beginning or from the end. This information is then used to
decide whether the next block needs to be loaded from the beginning or the end.
This ensures that no values are overwritten that were not already loaded in the
SPE’s local store. The newly loaded block is then again stored in buffer A which
was the former and thus already processed buffer OUT. One possible extension
that is used for blocks smaller than 16kB is job agglomeration. Since the peak
performance is achieved for 16kB blocks, jobs can be agglomerated so that the
interval of triangles to be sorted fits into one 16kB DMA call (see breadth first
construction).

Depth first construction. One naive approach to perform BIH construction
is depth first. In this approach only sorting is done on the SPE, the recursion
and creation of nodes is still entirely done on the PPE. The algorithm starts on
the PPE by choosing a global pivot, i.e. the split plane to divide the current BB.
The split plane and the intervals are then submitted to the SPE. By signaling,
the SPE now begins with the in-place sorting as described above. When the SPE
has finished, it writes the split index and the right’s leftmost and left’s rightmost
values back to main memory and signals this to the PPE. With these values the
PPE is now able to create the new node and to make a recursive call on the new
intervals.

Breadth first construction. The breadth first construction of data structures
on architectures like the Cell B. E. is advantageous for two main reasons:

1. The primitive array is traversed per tree level entirely from the beginning to
the end ⇒ memory access is very efficient

2. Many small jobs with primitive counts smaller 16kB can be agglomerated
⇒ reduction of DMA calls

We propose a method to do a breadth first construction on the Cell B. E. where
the SPE can run construction of the BIH almost entirely independent from the
PPE. The PPE is only responsible for allocating new memory since these op-
erations cannot be performed from the SPEs. Efficient memory management is
a particularly important aspect. The naive construction of the BIH allocates
memory for each created node. These memory allocation calls are costly. Even
though there are various publications like [18] and [19] stating that own im-
plementations of memory management usually do not increase the application
performance, memory management on today’s architectures still remains a bot-
tleneck. One way of avoiding a large number of memory allocation calls is using
an ObjectArena, as proposed in PBRT [20]. There, memory is allocated as mul-
tiple arrays of fixed size where each pointer to the beginning of an array is stored
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in a list. Freeing the allocated memory can easily be done by iterating over the
list and freeing the referenced arrays. One advantage is, that many threads can
be assigned to different lists. Thus, it is possible for them to compute the ad-
dress where to write back to without the need of any synchronization between
the different SPEs. This is particularly important for an implementation to do
the BIH construction independently of the PPE. Being able to compute the
new node’s address, build-up can run more independent of the PPE since the
frequency of new allocations is reduced. Unfortunately, such an implementation
also has disadvantages as memory can be wasted because the last arrays can
only be partially filled. In addition, intelligent updates and the need of deleting
single nodes leads to fragmentation of the arrays. To implement a construction
in BFS manner, jobs, i.e. the intervals to be sorted on the next tree level, need
to be managed by an additional job queue. At the beginning the PPE allocates
two additional buffers of sizes as the primitives count. These buffers are denoted
in the following as WorkAPPE and WorkBPPE. This can be seen as a definite up-
per bound of jobs that could be created while processing one tree level. The
actual construction is divided into two phases. In each phase, the WorkAPPE and
WorkBPPE switch roles, i.e. in the first phase jobs are read from WorkAPPE and
newly created ones are stored in WorkBPPE, while this is done vice versa in the
second phase. Figure 2 clarifies the two-phase execution.

To do so, two additional buffers are allocated in the SPE’s local store as well.
We denote these buffers as WorkA and WorkB. In WorkA the jobs from the current
tree level, in the beginning that is the job for the root node, are stored. From
each job in WorkA at most two new jobs are created which are then stored in

Fig. 2. Two-phase management of the job queue
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WorkB. If there are no more jobs in WorkA and the current job is not the last one
and if there are no more jobs in main memory, the current tree level is entirely
processed.

Should there be no more space left in WorkB, it is written back to the PPE. To
keep track of how many blocks were written back in the last phase, an additional
counter is used. This counter can also be used to determine if there are jobs left in
main memory that have not already been processed. In addition, this approach
can be further optimized. While processing the first tree levels, the jobs can
be entirely stored on the SPE, so there is no need to write them back to main
memory after the tree level was processed. Therefore, to avoid these unnecessary
DMA calls, the buffers on the SPE can be swapped as well if there is no need to
provide further storage for the newly created jobs. Our method also has some
disadvantages. While requesting new jobs from main memory can be handled
asynchronously this is not the case when WorkB needs to be written back to
main memory. Therefore a double buffering scheme for WorkA and WorkB could
be used.

3 Intelligent Local Update

To accelerate object transformations, an algorithm for performing dynamic up-
dates of the data structure is needed. The basic idea is to search the BIH region
affected by given transformations and avoid the complete rebuild if possible. This
is adapted from [6], where a similar approach for Bounding Volume Hierarchies
based on [21] was presented. Results of our algorithm as well as information
on potential future optimizations are also stated in sections 4.2 and 5. The al-
gorithm uses the PPE (a traditional CPU core on the Cell chip), so it could
be easily ported to other architectures. The traversal method used during the
update procedure is shown in algorithm 1.

Finding the affected interval of the underlying triangle array is of importance.
To achieve this, states of geometry before and after transformation have to be con-
sidered, as transformations may obviously result in an object being moved to an-
other region of the scene. Geometry is always represented as complete objects in
the current implementation. For being able to search for affected regions, a bound-
ing box is constructed which encloses the old and new geometry states. We call this
the Enclosing Bounding Box (EBB). To avoid quality degradation or degeneration
of the data structure, a complete rebuild is performed if the scene bounding box
changes due to the transformation. Using the EBB, the algorithm is able to find
the subtree which contains all modified geometry. Thus, it also encloses the ac-
cording array interval when traversing down to the leftmost and rightmost leafs
of this subtree, as this yields the starting and ending indices of the corresponding
interval. As shown in the algorithm, traversal is stopped as soon as both intervals
overlap the EBB. This is necessary because there is no information whether the
geometry belongs to the lower or upper interval. An alternative approach is ex-
plained in section 5. Finding the primitives to be overwritten in the triangle array
is now done by iterating over the array and replacing all triangles with the corre-
sponding geometry ID. This is stored in each triangle for material and texturing
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purposes. Subsequently, all nodes below the enclosing node are deleted recursively
and the usual construction algorithm is performed for the subset of triangles given
by the array interval. Note that it is necessary to keep track of the bounding box
for the tree level reached, which is at this point used as if it was the actual scene
bounding box. This is the case because we make use of the global heuristic in [15].
The resulting BIH can then simply be added to the existing tree. The new sub-
tree may need adjustment of the pointer to its root, as the split axis may have
changed. Results of this approach as well as some advantages and shortcomings
are presented in section 4.2.

Algorithm 1. BIH traversal algorithm used to find the smallest enclosing
interval for EBB

while traverse do1

if leaf reached ∨ both intervals overlap EBB then2

traverse ← false;3

end4

else if Only one interval overlaps EBB then5

if Interval does not contain EBB completely then6

if EBB overlaps splitting plane then7

Abort traversal;8

end9

else10

Set clipping plane for interval to corresponding value of EBB;11

end12

end13

Set traversal data to successive node;14

if Child is not a leaf then15

Set split axis;16

end17

end18

else19

traverse ← false;20

end21

end22

4 Results and Evaluation

All measurements of this section were obtained by running the reported algo-
rithms on a Sony Playstation 3.

4.1 Complete Rebuild

Table 1 gives an overview of the different construction times and the resulting
speedups. We tested four different versions. Two were PPE based, i.e. the naive
and the approximate sorting approach proposed in [15]. The other two were SPE
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Table 1. Construction times for four different models in ms averaged from 10 runs

PPE

Model #Triangles Naive Approximate sorting Speedup

ISS 17,633 106 ms 63 ms 1.68

Bunny 69,451 340 ms 201 ms 1.69

Fairy Forest 174,117 1,478 ms 781 ms 1.89

Dragon 871,414 5,956 ms Out of Memory

SPE

Model #Triangles Depth first Speedup Breadth first Speedup

ISS 17,633 47 ms 2.26 24 ms 4.42

Bunny 69,451 133 ms 2.56 68 ms 5.00

Fairy Forest 174,117 385 ms 3.84 195 ms 7.58

Dragon 871,414 1,828 ms 3.26 897 ms 6.64

based, one in DFS and the other one in BFS manner. All speedups relate to the
naive approach on the PPE.

The naive approach was the fastest available algorithm on the PPE. This
approach already includes vectorization. However, construction times even for
the small models like the ISS or the Stanford Bunny are far from interactive.
Even though the speedups from the approximate sorting are stated by [15] to be
about 3-4, in our implementation speedups of about 1.8 can be achieved. This is
due to the maximum primitives per node constraint in our ray tracing system.
Nodes with more than 12 triangles need to be further subdivided. For this the
naive approach is used.

By looking at the two SPE based approaches it is apparent that the construc-
tion times for the breadth first approach are always better than the depth first
approach. This is because the breadth first approach uses fewer synchronization
calls between the SPE and the PPE. Table 1 shows that speedups of about 5 to
7 can be expected. Increasing speedups with different larger models cannot be
concluded from the table, because they are not only dependent on the model’s
size but also on layout of the overall scene. Since all of the benchmarks are
made using only one SPE utilizing more SPEs should lead to another significant
performance gain. This is the topic of future work.

4.2 Partial Rebuild

When multiple, arbitrarily distributed objects are transformed, the result might
be a very large EBB. This will in turn result in rebuilding large parts of the
scene, gaining almost no performance boost (or none at all). A similar effect is
caused by large triangles, as they induce an overlapping of intervals. As shown
before, this will lead to an early termination of the traversal algorithm. Having
large empty parts in a scene and otherwise small geometry, a huge performance
boost can be expected. Though, performance may suffer due to counterintuitive
reasons, e.g. moving an object through a huge empty region of the scene, but
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overlapping the root split axis. This would virtually result in a complete rebuild
of the data structure. Nevertheless, good performance gains can be obtained, as
is shown in the following.

Figure 3 illustrates results for the scene rtPerf, which consists of spheres
pseudorandomly distributed across the scene. Tests were run for triangle counts
from 10k to 100k and moving a number of spheres in a predefined scheme. This
has been performed several times and results were averaged. Figure 3a shows
the correlation between the total number of triangles and triangles used for
rebuilds. While the number of transformed triangles stays constant, there is
in most cases an increase in triangle numbers used for rebuilds. This does not
simply increase by the number of triangles added to the scene, but just by a
fraction of that (which may vary depending on geometry distribution). It can
also be seen that only a fraction of data structure updates results in a complete
rebuild, thus yielding a huge difference between average and maximum update
time, as shown in figure 3b. Here, the correspondence between times needed for
complete rebuilds and times achieved with the implemented update strategies
is shown. While having an almost linear increase for both, the performance is
vastly better than with just using brute force rebuild.

Table 2 shows results for other testing scenes. Note that these scenes have
fixed triangle numbers. carVis is a car model which can be decomposed into its
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Fig. 3. Measurements for the scene “rtPerf” with triangle counts from 10k to 100k

Table 2. Results for the scenes carVis and cupVis; from left to right: Number of

triangles; number of updates; number of complete rebuilds; ratio updates/rebuilds;

min, max and averaged update/rebuild times; average number of transformed triangles;

average number of triangles used for rebuild; average difference of these values; average

traversal depth

scene tris updates rebuilds ratio tmin tmax t trans rec ∆ trav

carVis 22,106 383 112 3.42 0.48 154.09 69.71 468.47 7,549.25 7,080.78 2.22

cupVis 7,040 6 148 0.04 26.89 35.43 29.1 7,040 7,040 2,181.66 0
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parts, while cupVis is just a simple model of a glass without any surrounding
geometry. A result from that is that in cupVis a complete rebuild is performed
each time the geometry is moved. The small fraction of rebuilds in the table
results from the object being marked for transformation, but not performing a
transformation at all. Thus the scene bounding box as well as all the triangles
remain the same and an update (without anything happening at all) can be
performed.

5 Conclusion and Future Work

In the current implementation of the ray tracer there was only the possibility to
utilize one SPE for tree construction since the others were used for rendering.
However, since rendering only takes place in between the data structure updates
in principle all SPEs could be utilized. Even though an implementation for more
SPEs has not been done yet, we want to introduce some ideas for a reasonable
parallel construction.

One way of utilizing more threads could be realized in the depth first based
construction. Here, the recursive call could be delegated to different SPEs. How-
ever, this is not very efficient because on the upper tree levels many SPEs would
be idle. The same problem arises when such a parallelization would be done
using the breadth first construction and allowing all threads to have access to
one common job queue. Additionally, this would make further synchronization
between the SPEs and the PPEs necessary since the access to the job queue must
be synchronized. In order to get the best performance out of the SPEs, synchro-
nization must be reduced and the execution should be entirely independent from
the PPE.

One method that could be used in the context of BIH parallelization was pro-
posed in [12] for BVH construction on GPUs. There a pre-processing step using
Morton curves is performed to find regions of primitives that then could be built-
up totally independent. The construction of the Morton curve can be efficiently
parallelized since Morton code construction of a primitive can be done totally
independent from the others. After the Morton code construction a radix sort
needs to be performed. Radix sort is advantageous because it does not involve
comparisons. Fortunately there are methods for Radix Sort on the Cell B. E.,
like [22] or [23]. By doing such a pre-computation step, better load balancing
while using the SPEs in parallel can be achieved. Other possible improvements
regard the job queue. One improvement could be made using a double buffering
scheme for the two buffers on the SPE to avoid synchronous memory access.
The necessary DMA calls might benefit from the usage of DMA-lists. Another
possible way of dealing with the management of the job queue is the use of Cell’s
software managed cache whereas some improvements have been made recently
[24].

To achieve a better performance concerning the update strategy, e.g. an ap-
proach for further traversal of the data structure could be beneficial. This way,
much less triangles could be involved in the update step by keeping subtrees
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which are not affected by transformations. Though, it has to be analyzed how
deep the tree should be traversed, as keeping subtrees will often lead to index
problems with the underlying triangle array. A metric for estimation of needed
time for reorganization steps is needed to cope with that, as further traversal
potentially leads to more reorganization overhead due tue memcopy operations.
Also, more leafs’ indices might have to be adjusted accordingly.
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Abstract. This paper presents an Augmented Reality system for aiding
a pump assembling process at Grundfos, one of the leading pump produc-
ers. Stable pose estimation of the pump is required in order to augment
the graphics correctly. This is achieved by matching image edges with
synthesized edges from CAD models. To ensure a system which operates
at interactive-time the CAD models are pruned off-line and a two-step
matching strategy is introduced. On-line the visual edges of the current
synthesized model are extracted and compared with the image edges us-
ing chamfer matching together with a truncated L2 norm. A dynamic
visualization of the augmented graphics provides the user with guidance.
Usability tests show that the accuracy of the system is sufficient for as-
sembling the pump.

1 Introduction

With more than 16 million pumps sold annually Grundfos is one of the major
players within its field. Most of the pumps produced are standard pumps where
most of production and assembling are done automatically. This is however not
the case for the so-called CR pumps, which are larger pumps made individu-
ally to fit the needs of the customers. In 2008 around 160,000 CR pumps were
produced at Grundfos. Of these pumps only an average of three pumps with iden-
tical configurations were produced at a time. Due to this diversity the assembly
process is done manually and can pose difficulties for especially new employees.
Currently the assembly process is guided by a sequence of parts appearing on a
screen. In [1] it has been shown that such an assembly process can be optimized
by enhancing the guidance with relevant information. In this paper we follow
this idea and present the technical aspects of an augmented reality system for
doing just this.

1.1 Augmented Reality

Augmented Reality (AR) is somewhere on the continuum spanned by a real
environment and a virtual environment [2]. In the last decade AR has been
seen in more and more applications, where the most well known is perhaps
during TV news transmission, where graphics is added to provide some type of
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information, e.g., who the interviewed person is. In TV sports transmissions AR
is also becoming more and more popular, e.g., in football/soccer to illustrate
different aspects of the game like distance from the ball to the goal during a free
kick [3]. Inspired by the head-up displays used by fighter pilots, the automotive
industry recently included AR in vehicles to provide the driver with additional
(or important) information projected on the front window, e.g., night vision. AR
is also seen in for example computer games [4] and mobile social events [5]. Lastly
AR is also seen in assembly, inspection, and maintenance, where the overlayed
graphics ease the task of the operator by providing supporting information [6].

The pose of the object to be augmented needs to be known. This is often es-
timated by locating and clustering a number of features extracted for the image
of the object [7]. Due to perspective transform of the features, non-unique fea-
tures, a non-rigid object, and in general a non-perfect feature extraction process,
the estimated pose (and hence the overlayed graphics) is likely to be contami-
nated with both jitter and off-sets. This is especially problematic when AR is
used on see-though displays and the result ranges from mere irritation to actual
motion sickness [8]. To avoid these problems different systems use alternative
ways to estimate the pose of the object: GPS [9], known transformation between
the camera and the real environment as seen in AR sport applications [6], or
pre-made patterns are attached to the object to be pose estimated, like seen in
ARToolKit [10].

1.2 The Approach

In our case we cannot place markers on the different parts of the pump to be
assembled and are therefore faced with the general pose estimation problem.
However, we only have rigid parts and have very detailed models of each part
(CAD models) and know how they are connected. We therefore apply an ap-
proach where the models are synthesized into the image domain and compared
with the image data directly. For this purpose different features can be uti-
lized, e.g., appearance, circular features, depth data, or edges [11,12,13,14,15].
We choose edges since they are relatively simple to obtain and less variant with
respect to changes in the lighting. In figure 1 the block diagram of our approach
is illustrated.

The different blocks correspond to the remaining sections in this paper. In
section 2 and 3 the image features and synthesized features are extracted, respec-
tively. In section 4 the matching of the two different feature sets are described.
In section 5 it is explained how the synthesized poses are chosen. In section 6 the
actual pose is estimated and in section 7 this pose is used to augment graphics.
Finally section 8 evaluates the system and section 9 concludes the work.

It should be mentioned that AR systems are not only affected negatively by
jitter and offsets, but also by delays when superimposing the graphics. Such de-
lays can render a totally unusable AR system and the different methods applied
in the rest of the paper are chosen with the computational complexity in mind.
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Fig. 1. A block diagram of the approach

2 Feature Extraction

Before the synthesized model can be compared with the image data, the relevant
information needs to be extracted from each incoming image. To this end we first
find a ROI containing the partly assembled pump and then extract the relevant
type of information, i.e., edges.

Since the system is to be operating in a controlled environment, the charac-
teristics of the surface on which the pumps are assembled can be decided before
hand. This allows for the opportunity of creating a good contrast between the
object (pump) and the surroundings. From this follows that a simple background
subtraction can segment the pump in the image. Other objects present in the
field-of-view of the camera are sometimes also detected. These, together with
pixel noise, are removed using blob-analysis. A small margin is added to the
extracted ROI to increase flexibility in the forthcoming matching process, see
figure 2.a.

The system uses edge data to represent the synthesized model, so edges need
to be extracted in the image. Since the synthesized edges are 1-pixel thin, the

(a) (b)

Fig. 2. a) The ROI estimated from background subtracting and blob-analysis. b) The
detected edges.
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same should be the case for the image edges. We therefore apply the Canny edge
detector [16], see figure 2.b.

3 Feature Synthesis

In order to extract the edges of a hypothesized model we must consider two
issues. First, the 3D model can not be too complicated, due to the inherent
computational complexity, and second the extracted edges must be similar to
the ones extracted in the image. Both issues lead to the conclusion that the highly
detailed 3D models provided by Grundfos need to be simplified. We therefore
prune the models to only include the major components. In figure 3 the original
high resolution model and the simplified low resolution model are shown. The
edges in the low resolution model are now similar to those that can be found
in the image. Furthermore, by significantly lowering the amount of polygons we
have reduced the computational complexity.

Two types of edges need to be extracted from the polygons and evaluated
whether they will be visible or not when synthesized into the image. These
are the sharp edges and the contour edges. A sharp edge is defined as an edge
between two polygons having significantly different normal vectors, see
figure 3.d. These edges are independent of the viewpoint and can therefore be
found off-line. A contour edge is defined as an edge between a polygon (the ob-
ject) and the background, see figure 3.e. Contour edges clearly depend on the
viewpoint and can therefore not be determined off-line. However, what we can
do off-line is to divide all (non-sharp) edges into either inner-edges or outer-edges
using the expressions below, see also figure 4. If a ≤ b then it is an inner edge
(or coplanar), which can never become a contour edge no matter the viewpoint.
If on the other hand a > b then the edge is an outer edge and a candidate for a
contour edge.

a =
∣∣(v2 + n2) − (v1 + n1)

∣∣ b =
∣∣(v2 + n1) − (v1 + n2)

∣∣ (1)

The potential contour edges are further pruned using the current viewpoint.
Since the camera applied in the setup is calibrated we know the viewpoint, i.e.,

(a) (b) (c) (d) (e)

Fig. 3. a) High resolution model. b) Low resolution model. c) Polygons in b). d) Sharp
edges. e) Outer edges.
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(a) (b)

Fig. 4. a) Outer edge. b) Inner edge. v1 and v2 are 3D vertices and n1 and n2 are
normal vectors.

the direction in which the model will be projected. If the angle between this
directional vector and the normal of a polygon is bigger than 90 degrees then
the polygon is not facing the camera and opposite for angles below 90 degrees.
From this follows a definition of a polygon either being front-face or back-face
with respect to the camera. A contour edge is now characterized as being shared
by a front-face and a back-face.

In order to assess which of the candidate edges in the model that are actually
visible and should be compared with the image data we do the following. First
all the sharp edges and contour edges (or rather their vertices) are projected into
the camera frame using the projective matrix from the camera calibration. Next
we apply standard methods from computer graphics to determine which edges
are occluded and which are visible (intersection in the projected image plane and
depth ordering). Edges may be partially occluded by faces in the model, making
it necessary to split edges into multiple segments. This operation requires more
computation, but it is not necessary because missing edges in the edge map do
not result in a penalty in the matching cost - as explained in the next section.

4 Feature Matching

For each hypothesis an edge image is generated as explained above. In order to
measure the fitness of this hypothesis the edges are compared with the edges
extracted in the image. In figure 5 an example of the two different edge images
are shown.

A fitness function is required, which can measure the difference between the
two edge images. The straight forward approach is to either AND or XOR the
two images. If, however, the best hypothesis is just one pixel off, the result of
the logic operation will be erroneous. We therefore apply a Chamfer matching
approach, where the edge image is replaced by a distance image where each
pixel holds a value depending on its distance to the nearest edge pixel in the
edge image. The distance image is found using the Distance transform [17], see
figure 5.

The fitness function is now a matter of comparing each non-zero pixel in
the synthesized edge image with the corresponding pixel in the edge image and
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(a) (b) (c)

Fig. 5. a) Detected edges. b) Synthesized edges. c). Distance transform with the de-
tected edges superimposed.

summing the result. We experimented with different measures for the actual
comparison and found that the truncated L2 norm performs best.

5 Pose Hypothesis Generation

The object model has six degrees of freedom leading to a very high number of
hypotheses - depending on the resolution, of course. To lower the computational
complexity the number of possible hypotheses needs to be pruned. First of all
we know the 2D ROI of the object, which significantly prunes the translational
parameters. Second, since the pump is being assembled on a heavy base (see
figure 2.a) we can reduce the three rotational degrees of freedom to just one,
namely the rotation around the normal of the table. Furthermore, to speed up
the system we follow a two-step (coarser-to-finer) hypothesis testing strategy.

At the first level the position of the object is approximated by projecting the
2D center of the ROI onto the table (known from calibration) as a 3D point. This
approximation of the 3D position of the object is rather good in the horizontal
direction, but more uncertain in the vertical direction. A small improvement
is introduced by correcting the vertical position with one third of the ROI’s
height measured from the bottom. This 3D position may not be correct, but the
perspective of the hypothesized model will be nearly correct. The errors in the
position and the size of the pump can after the feature synthesis of the pump
be compensated by centering and scaling the synthesized edge image according
to the ROI. This gives an approximation of a synthesized edge map from the
"correct" position.

To determine both if the rough position is good enough, and which rotation
step size is required in stage one, a plot of the cost of matching poses with the
rough position is seen in figure 6.a together with the cost of the poses based
on a refined ("true") position. This plot suggests that it is possible to find the
approximate global minimum using the position approximated from the ROI.
Furthermore, the step should be less than 20 degrees to avoid local minima.
Other plots with different configurations and poses give similar results, and thus
the roughly estimated position and a rotation with 10 degree steps is concluded
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to be sufficient for finding the global minimum. This gives a total of 180/10=18
generated hypotheses in stage one. The best matching pose from the plot is seen
in figure 6.B.

(a) (b)

Fig. 6. a) Cost of matching hypothesized poses with varying orientations with the
image to the right. The plot is made with two different positions (a rough estimate
and a refined estimate); both with an angle resolution of 1 degree. Note that since the
object is self-symmetric only 180 degrees are required. b) The best fit from the plot
superimposed.

In step two the "correct" pose is located somewhere around the best pose of
stage one, but to be sure we use the two best poses from the first step. A more
precise position of the origin is found by examining the 2D location of the origin
in the synthesized edge image. Hereafter the rotation is refined to a resolution
of two degrees within a range of ±5 degrees. In total 18 + 2 × 5 = 28 different
poses are synthesized and compared with the edge image.

6 Pose Estimation

The synthesized pose which best matches the current edge image defines the
current pose. In the following frames there is no need to repeat the above process
since the result will be more or less the same unless the object is moved. We
therefore define a band around the ROI and watch for changes in this band
using image differencing. If no difference is detected, no further processing is
preformed. If on the other hand motion is detected, then a new pose estimation
is performed. This strategy both saves processing time, but also stabilizes the
overlayed graphics by ignoring slight changes.

7 Visualization

Recall that the purpose of estimating the pose of the object in the first place is
to be able to overlay assembly information (to aid the user) no matter the pose
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of the object. The layout and type of information to be visualized is determined
through a couple of design and user-test iterations where both lo-fi and hi-fi
prototypes are applied. In figure 7 the final result is shown. We can identify
three regions:

AR-region. In this region live video from the camera is shown together with
graphics illustrating the next part to be mounted. In order to emphasize,
where and how the next part is to be mounted a small animation is shown,
see figure 7 and [18].

Info-region. In this region the next part to be mounted is shown together with
the name of the part. To draw attention and to make the user familiar with
the part, it slowly rotates in 3D. Furthermore, this region also holds useful
information for the user, e.g., "Force may be required for mounting". Such
information is also accommodated by a suitable icon. An example is shown
in figure 7.

State-region. To provide an overview, this region contains a number of images
each illustrating a certain state (past, current, future) of the object. By
"object state" is meant how many parts are assembled. The next state is
enhanced by a surrounding square and in each illustration the new part is
highlighted, see figure 7.

(a) (b)

Fig. 7. Two screen shots of the AR interface shown to the user during assembly. The
screen shots are separated by approximately 0.5 second. Note the movement of the
virtual object in both the AR-region and Info-region.

8 Evaluation

The system is implemented on a 2 GHz dual core computer. One thread runs the
graphics in order to ensure smooth visualization. Another thread runs the pose
estimation at around 5 fps for the largest models. User tests have confirmed
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that this is a sufficient response time. Regarding the accuracy of the system,
qualitative results are presented below. Usability tests showed that the accuracy
of the system is sufficient for assembling the pump. A video example can be
found here [18].

(a) (b) (c)

(d) (e) (f)

Fig. 8. Different poses of the partly assembled pump together with graphics overlay
with the next part. a,b,c) Main champer (the grey object). d) Flanges (two round black
objects). e,f) Snap rings (two silver rings).

9 Conclusion

We have presented a robust system for estimating the pose of a pump at differ-
ent stages in an assembly process. The pose estimation is based on a two-step
matching strategy, where different CAD model poses are synthesized into the
image and compared with the extracted edges in the image. To this end chamfer
matching together with a truncated L2 norm is applied. Significant work has
been put into synthesizing visual edges in a less computational manner. This
is indeed needed in AR systems, where a smooth visualization is a must. The
layout of the user interface and the augmented graphics is developed though a
number of usability tests and the final result presents the relevant information
to the user. Especially the introduction of small animations to visualize where
and how to mount a part has resulted in positive feedback.
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Future work will include a fine tuning of the system followed by a large field
test where the effects of the system need to be compared with current practise
regarding assembly time and errors made. If this is successful and the system is
to be including in the assembly process, three issues need to be dealt with: i) inte-
gration the system with the existing production planning systems, ii) automatic
generation of simplified CAD models. The simplified model used in this work,
see for example figure 3.b has been handcrafted, and iii) automatic generation
of the guiding animations based on the above data.
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Abstract. Research in teaching and learning about Earth Sciences indi-

cates that first year geology students not only lack knowledge about basic

concepts, but that they may also have developed their own potentially

incorrect explanations of those phenomena. Understanding volcanic con-

cepts is one of the areas in which noticeable misconceptions occur, as

a significant number of students seem to acquire their knowledge from

non-traditional sources such as sensationalist media and catastrophic

films. This paper presents V-Volcano, a virtual reality volcano activity

learning environment that immerses students in a scientifically-accurate

simulation of volcanic systems. Students are able to generate and manip-

ulate volcanic eruptions in real-time with data monitoring to explore the

effects of changing conditions. The goal is to provide a geoscience tool

that can be used to correct student misunderstandings about volcanic

phenomena.

1 Introduction

In recent years, movies, such as Dante’s Peak or Volcano, and popular media
have glamorized volcanoes. The general public has been charmed to the point
that many incoming college students take introductory geology classes wanting
to learn about volcanic phenomena. However, these students bring with them
many misconceptions and misunderstandings about where and how volcanoes
are formed, the underlying mechanisms that cause eruptions, and the effects of
volcanoes on human endeavors in the area.

Prior to V-Volcano, a group from Iowa State University [1] [2], developed the
Interactive Virtual Earth Science Teaching (InVEST) Volcanic Concept Survey
to look into the prevalence and nature of the misunderstandings and alternate
conceptions about volcanoes among first year geoscience students. Five univer-
sities were included in the study: Iowa State University, University of Texas El
Paso, University of Georgia, Western Washington University, and Fort Valley
State University.

The results from these surveys were analyzed, with the goal of identifying
areas where introductory geology students were lacking or mistaken in their

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 1009–1018, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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knowledge of volcanoes [1] [2]. The following four main misconceptions about
volcanic formation were identified:

1. Volcanoes only form near bodies of water
2. Volcanoes are common only in areas near the equator or other warm areas
3. Volcanoes appear in areas of rocky terrain
4. There is no pattern to volcano formation

In addition, several concepts were very poorly understood. These include the
inner workings of a volcano, what controls explosive activity, the role of silica
in explosive activity, and the effects of volcanic activity on the surrounding
environment and human civilization.

These results led us to the design of V-Volcano, a virtual reality volcano ac-
tivity learning environment that immerses students in a scientifically-accurate
simulation of volcanic systems. Using V-Volcano, students are able to generate
and manipulate volcanic eruptions in real-time with data monitoring to explore
the effects of changing conditions. Furthermore, teachers can define specific as-
signments for the students to perform in V-Volcano and review the assignment
results with the class in a large-scale virtual reality space, such as a CAVE or
large tiled walls. The goal of V-Volcano is to provide a geoscience tool that can
be used to correct student misunderstandings about volcanic phenomena.

1.1 Previous Work

Many simulations and visualizations exist that explain various aspects of volcanic
activity. First, many animations exist that are Flash-based and offer a simplis-
tic overview of volcanic activity. These include interactive Flash programs such
as one provided on the Discovery Channel website [3] and one provided by the
Alaska Museum of Natural History [4]. These provide simple controls of silica
(SiO2) and water vapor which effect an animation of a volcanic eruption. Some
visualizations exist to supplement the geological research of an institute. For
example, the New Millennium Observatory (NeMO) [5] offers a few panoramic
views of an underwater volcano and simple animations of an underwater ex-
ploration craft used by the geological researchers. Another application called
Eruption! is a role playing, low-graphics, scenario simulator that puts students
in the role of volcanologists, political leaders, journalists, and village farmers [6].

High fidelity mathematical models of the geological phenomena are another
category of visualization. These approaches seek to find approximations to the
actual chemical and physical processes of a certain feature such as a lava flow.
Stora et al [7] conducted such a lava flow simulation. High fidelity to the natural
process in a simulation inevitably requires more computational complexity and
thus makes these simulations far too slow to provide students with an interactive
experience. Stora et al reported computation time between 20 sec. to 2 minutes
per frame for varying numbers of particles used to simulate the lava.

All these tools are designed for informal science education, presenting basic
but critical concepts about volcanoes using traditional multimedia techniques,
such as videos and Flash animations. Interaction with the volcano is minimal,
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limited to setting one or two initial constraints and viewing the resulting 2D
animation. However, none of these directly addresses the misconceptions people
have about volcanic activity, nor do they provide a three-dimensional space to
explore the effects of volcanic eruptions in a realistic setting.

Prior to V-Volcano, our group carried out a feasibility study for the develop-
ment of a virtual reality tool to assist in atmospheric science education. Specifi-
cally, the project focused on the exploration of a tornadic supercell thunderstorm,
allowing students to perform weather measurements while the storm was taking
place as shown in Fig. 1. The Virtual Storm was deployed in several entry-level
meteorology classes and a three-year study [8] showed improved learning through
its use. It is currently being used in multiple universities as a companion teach-
ing tool in earth sciences curricula. These results encouraged us to move forward
with the work presented in this paper.

(a) Immersive Environment (b) Desktop Environment

Fig. 1. The Virtual Storm running in an immersive environment 1(a) and on the desk-

top 1(b)

2 Design of Interactive Educational Simulation

The results of the Volcanic Concept Survey combined with the experience gained
through the deployment of the Virtual Storm have guided the design of the V-
Volcano educational tool. For the Virtual Storm activity, the most interesting
features that kept the students engaged were the extensive range of parameter
manipulation and the ability to perform 3D exploration of the entire storm space.
These two features made the application similar to a video game. The player’s
choices determine the experience and rewards gained.

Taking the approach of an educational game, the design of V-Volcano focuses
on keeping the student engaged in the learning activity by providing exciting
and rewarding interactions with the different types of volcanic eruptions. We
focused on scientific accuracy and high quality physical representations.

3 Design Approach

Here is a typical scenario for V-Volcano: Students using V-Volcano manipulate
the formation of their own volcano in a broad tectonic setting, ideally minimizing
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any reinforcement of hydrological and climatic misconceptions about volcano for-
mation.Once the volcano is formed, students can travel (by flying and by driving
at ground level) through the terrain. In addition, they can explore the interior
structure of their volcano and probe the mechanisms controlling its eruption
over time.There are three aspects that are key to the design of V-Volcano to cre-
ate scenarios as described above: interaction flexibility, monitoring, and multiple
display settings.

3.1 Interaction Flexibility

The diagram and table shown in Fig. 2 below summarizes the different conditions
that that students can manipulate through their interactions with V-Volcano.
The boxes with bold borders in the diagram indicate the parameters that define
the eruption style. The lighter columns in the table are parameters the students
can set and the darker columns indicate the resulting effect of those parameters.
Based on this table, we have designed a set of visual simulations representing
the different effects, such as ash plumes, fire fountains, volcanic bombs, and py-
roclastic flows. We have also created three-dimensional models of representative
volcanoes for the different geological types: strato, shield, and dome. V-Volcano
can interactively match the visual effects with the type of volcano based on user
manipulation of the parameters. This design approach gives us a great deal of
flexibility as nothing in the experience is preset. It is truly an explorative expe-
rience. Furthermore, as part of the interaction we incorporate the ability to fly

Fig. 2. Diagram of parameters controlling eruption style
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and travel through the terrain, even into the volcano and down to the magma
chamber. This way, students also learn about the structural details of volcanoes
and can grasp the size and spread of their eruption activities.

3.2 Monitoring

As students are interacting with V-Volcano, additional information about the
phenomena being explored is presented to the student. For example, if the stu-
dent interactions generate an Hawaiian eruption in a shield volcano, most likely
they will apply their misconception and immediately think of the volcanoes in
Hawaii and those along Japan. To address this, V-Volcano will present the stu-
dent with several other volcanoes, such as the Erta Ale volcano in Ethiopia,
which is of the same type but does not conform to the misconception that shield
volcanoes are found only in islands or by the ocean. We anticipate that this ap-
proach will help to clear some misconceptions and provide a stronger scientific
understanding of the geology and dynamics of volcanoes.

3.3 Multiple Display Settings

Multiple displays and interaction modalities are a key feature of V-Volcano. At
the basic level, V-Volcano operates like any other conventional desktop graph-
ics application. It presents the user with a graphics window to visualize the
volcano environment and a traditional Graphics User Interface (GUI) to input
the different parameters, as shown in Fig. 3(a). For game-oriented students, V-
Volcano can incorporate a game pad for interaction, adding an extra “thrill” to
the experience of exploring the space (see Fig. 3(b)).

Part of the previous work with the Virtual Storm showed that group discus-
sions and teacher involvement in the interactive exploration are important to
understanding the more complex concepts. To address this finding, V-Volcano
can also be operated in high-end virtual environments such as tiled walls and
CAVEs, as shown in Fig. 4. In these settings a group of people can participate
in the activity, sharing their knowledge and asking questions as they explore a
volcano.

(a) Keyboard Control (b) Controller Control

Fig. 3. V-Volcano in use on a desktop. Both keyboard 3(a) and controller 3(b) controls

are provided.
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Fig. 4. V-Volcano running on a rear-projection wall

V-Volcano also incorporates information about subsurface features, allowing
for exploration of the magma chamber and the magma conduit to the surface.
This component of the project presented a challenge, as the subsurface is solid
and it is hard to find a way to peel off subsurface components to see the inter-
esting features. The solution to this problem was inspired by the traditional
cut-away diagram shown in most geology textbooks. We developed a three-
dimensional model of this, which, as seen in Fig. 5 has worked out very nicely
to show the subsurface features of volcanoes.

Fig. 5. A 3D representation of a traditional subsurface cutout showing the magma

chamber with shader effect

4 Technical Design

Because V-Volcano was designed to improve pedagogy on large scales and
widespread dissemination to academic institutions was desired, we decided to de-
velop it utilizing Open Source tools. Specifically, the simulation uses the virtual
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environment development framework VR Juggler [9], the scene graph manager
OpenSG [10] for the three-dimensional interactive environment, and Java for the
GUI. These three very popular tools give us an easy-to-distribute framework to
develop V-Volcano, as well as a very powerful environment to integrate all the
functionality described in the previous sections.

We used an object-oriented approach to design the activity features for the
volcanoes. Physical simulations of fire fountains, ash plumes, volcanic bombs,
pyroclastic flows, and other features are built using real-time computer graphics
techniques such as particle systems and shaders, as seen in Fig. 5 above. The
models were designed to be representative of volcanoes in general, and not spe-
cific to any volcano used in the application. Fig. 6 shows a fire fountain and an
ash plume. Each one of these features is encapsulated in a software module and
then, through the external run-time configuration available through VR Juggler,
the valid combinations of volcano types and eruption features can be specified.
This software design approach was used to facilitate future expansion of the
project, which may require additional features such as impacts on urban areas,
air traffic, etc.

(a) Fire Fountain (b) Ash Plume

Fig. 6. The fire fountain 6(a) and ash plume 6(b)

5 Interaction with the Simulation

The GUI, implemented in Java, allows students to interact with the simulation
in the traditional manner of interactive desktop applications. However, through
VR Juggler, the same GUI can be launched on a tablet PC or PDA without loss
of functionality and gaining mobility in an immersive space. Fig. 7 shows the
user on the left manipulating parameters via the tablet PC in front of a high
resolution stereoscopic wall.

The interface, as seen in Fig. 8, provides three sliders that control silica, water
vapor, and temperature. These are the main eruptive controls that dictate the
type and caliber of eruption. Students can modify these values and observe the
changes in the visual environment. In addition to these controls, a point-and-
click compass allows modification of the wind direction at runtime. The GUI also
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Fig. 7. Using a Tablet PC to control eruption parameters

Fig. 8. Depiction of the Graphical User Interface

provides dependent variable information such as eruptive volume and nucleation
depth. A full list of these variables can be found in Fig. 2. Perhaps the most
important non-control feature of the GUI is a map that indicates the location of
the volcano with respect to tectonic plates. This feature imparts to the students
the role of plate tectonics in inciting volcanic activity, which, as identified in the
Volcanic Concept Survey, is one of the concepts not well understood.

6 Discussion

The main goal of the application is to clear up the misunderstandings and mis-
conceptions students have about volcanoes. The InVEST survey highlights a
serious lack of understanding of many basic concepts related to volcanoes and
the fact that students are making their own, often incorrect, assumptions about
those basic concepts. Though popular films have generated interest about volca-
noes, the survey indicates that these same films could be responsible for fostering
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some of the misconceptions identified by the survey. The students’ inability to
identify plate tectonics as dictating the placement of volcanoes, for example,
illustrates a significant gap in science literacy. Plate tectonics is an overarch-
ing geological theory that explains volcanoes and earthquakes, two of the most
destructive natural disasters. Knowledge of volcanoes is becoming increasingly
important due to the role they can play in global climate change.

The V-Volcano application addresses these misconceptions in a number of
ways. First, it provides a good platform to demonstrate the role of plate tectonics
in the formation and activity of volcanoes by use of the GUI’s map. Another
conceptual gap exists where eruptive controls are concerned. According to the
Volcanic Concept Survey, no student demonstrated mastery of this concept. To
address this deficiency, we designed the GUI’s interaction around silica, water
vapor, and temperature. Thus, these variables are the first that the students must
understand to interact with the simulation. Students will have to explore exactly
what combination of values will cause an eruption to occur. Integrating these
variables with the tectonic setting of a particular volcano will add to the students’
understanding because some combinations of values will work for one setting but
not for another. Additionally, V-Volcano also includes monitoring capabilities to
present users with additional information developed by the teacher and targeted
towards the clarification of misunderstood concepts and assumptions.

The first volcano chosen to be implemented was Mount St. Helens. Our geo-
science collaborators believed this volcano addresses the most basic misconcep-
tions as discovered by the Volcanic Concept Survey. Students will more easily
relate to this volcano because it is still active, located in North America, and an
abundance of eruption footage is available.

7 Conclusion

The V-Volcano application provides many opportunities for students and teach-
ers to engage in teaching and learning activities. The application can be used
in the classroom along with other information on plate tectonics and volca-
noes in the curriculum. The ability to move freely and manipulate variables to
change the simulation will encourage students to ask important questions such
as “What will happen if I max-out a variable?” Cross-platform compatibility in
the design will allow students to answer these questions outside of the classroom
on their own computers. V-Volcano will be an effective teaching tool because of
its entertaining nature and conceptual depth. Use of the application in a virtual
reality environment has more potential to be memorable and capable of holding
students’ interest.

8 Future Work

After undergoing a semester of testing by introductory level geology students
and their professors, the suggestions made by the users will be considered when
making improvements to the application. Thanks to the modularized nature
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of the environment’s design, adding functionality for additional volcanoes will
proceed rapidly. Eventually a scene annotation program could provide teachers
with the ability to place volcanic features in the desired place on new volcano
models developed in the future.

Furthermore, the technical flexibility of the software framework makes it pos-
sible for V-Volcano to be played in informal science locations, such as science
museums, planetariums, and digital cinemas, opening a new form of science dis-
semination to the general public.

References

1. Parham, T., Cervato, C., Gallus, W., Larsen, M., Stelling, P., Hobbs, J., Green-

bowe, T., Gupta, T., Knox, J., Thomas, E.: The InVEST Volcanic Concept Survey:

Exploring Student Understanding About Volcanoes

2. Gallus, W., Cervato, C., Parham, T., Larsen, M., Cruz-Neira, C., Boudreaux, H.:

The Interactive Virtual Earth Science Teaching (InVEST) project: preliminary

results. In: European Geosciences Union General Assembly (May 2009)

3. Riggs, N.: Virtual Volcano: Discovery Channel. US Geological Survey. Discovery

Communications Inc. copyright 2004 (2004),

http://dsc.discovery.com/convergence/pompeii/interactive/

interactive.html

4. Stage 2 Studios LLC. Volcano Simulation. CG Science copyright 2006 (2006),

http://www.alaskamuseum.org/features/volcano/

5. New Millennium Observatory. Oregon State University,

http://www.pmel.noaa.gov/vents/nemo/explorer.html

6. Bursik, M.: Eruption! University at Buffalo, The State University of New York

Department of Geology, Interactive Models for Geological Education Online (IM-

GEO), http://www.glyfac.buffalo.edu/gerp/eruption.html

7. Stora, D., Agliati, P., Cani, M., Neyret, F., Gascuel, J.: Animating Lava Flows.

iMAGIS-GRAVIR/ IMAG BP 53, F-38041 Grenoble codex 09, France

8. Gallus Jr., W.A., Cervato, C., Cruz-Neira, C., Faidley, G.: A virtual tornadic

thunderstorm enabling students to construct knowledge about storm dynamics

through data collection and analysis. Advances in Geoscience, 27–32, SRef-ID:

1680-7359/adgeo/2006-8-27

9. VR Juggler, http://www.vrjuggler.org

10. OpenSG, http://www.opensg.org

http://dsc.discovery.com/convergence/pompeii/interactive/interactive.html
http://dsc.discovery.com/convergence/pompeii/interactive/interactive.html
http://www.alaskamuseum.org/features/volcano/
http://www.pmel.noaa.gov/vents/nemo/explorer.html
http://www.glyfac.buffalo.edu/gerp/eruption.html
http://www.vrjuggler.org
http://www.opensg.org


A Framework for Object-Oriented Shader Design
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Abstract. Shaders offer a wide range of possibilities, but at the same

time limit the flexibility of an application as combining shader components

is difficult. We present a novel object model for writing shaders for mod-

ern graphics hardware. These objects are defined and instantiated within

an application. They are then propagated to the different programmable

pipeline stages using a well-defined concept of copy-construction. Objects

can reference each other and thus offer a flexible way to configure the shad-

ing set-up at run-time.

Our framework is built on top of the object model for the standard

illumination situation of surfaces and light sources. We show that many

modern shading models can be expressed in this framework in a uniform

and integrated way. Both, the object model and the framework, make

the reuse of components practical and allow object-oriented design to be

applied to the development of shaders.

1 Introduction

Modern graphics hardware replaced the fixed-function implementation of graph-
ics algorithms with programmable processors. While this does offer a wide range
of new possibilities, it also removes the orthogonal design of the fixed-function
units. Light sources, materials, and transformations could be modified sepa-
rately from each other. Shaders replace all functionality and have to perform all
required tasks.

Applications however require the orthogonal behavior. The number of possible
combinations of different settings leads either to a complex super shader or to a
large number of individual shaders that are difficult to maintain.

Reusable components of shader code are a solution to this problem, but they
are difficult to design. One major problem is the pipelined structure of graphics
hardware. It consists of multiple stages, each responsible for different kinds of
primitives. Components often require information in later stages that has to be
properly transferred from earlier stages while at the same time has to remain
properly encapsulated.

Object-oriented design provides solutions to this problem but this methodol-
ogy cannot be directly applied to writing shader code. Where should objects be
stored and defined? And how does the graphics hardware with its massively par-
allel pipeline stages access objects concurrently? This paper gives the answers.

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 1019–1030, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. A teapot with different combinations of materials. From left to right: a simple

plastic material, a bump-mapped plastic, and a geometry shader that tessellates and

displaces the teapot.

The main contributions of this paper are:

– An object model designed to be used with modern and future graphics
pipelines addressing the combination problem of shader components.

– A framework built on top of the object model for the standard illumina-
tion situation of surfaces and light sources. This framework allows different
shading and rendering techniques to be combined.

Both contributions together enable a flexible way to configure the rendering
state. Objects can be combined to define materials or lighting set-ups. These
objects are completely and directly exposed to the application and the connection
of objects can be changed at run-time.

We discuss related work in section 2. We then explain the concepts and defi-
nitions of our object model in section 3 and the shading framework in section 4.
After describing the implementation aspects in section 5, we evaluate several ex-
amples in section 6 demonstrating the feasibility of our approach and we review
its performance.

2 Related Work

Our object model is based on [1]. We extend it to remove two major shortcom-
ings: the support for only a subset of available pipeline stages and the need for
explicit set-up methods, requiring the root object to act as a controller object
that knows all other objects. We describe the new mechanisms in section 3.1.
Furthermore, we extend the collection of patterns described in [1] to build a flex-
ible framework that allows us to model a wide range of rendering and shading
techniques, as shown in section 6.1.

Cg [2] is a low-level shading language. It allows structures to contain functions
and it uses interfaces to provide a limited way of polymorphism. Structures
cannot contain types with different qualifiers. As shown in section 4, this is
often required due to the multi-stage design of the graphics pipeline. A light
source usually performs some internal computations in the vertex shader from
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uniform values, like e.g. the position of the light source, and it uses the result in
the fragment shader. This is not possible to encapsulate using structures in Cg.

Sh [3] uses meta-programming techniques to generate shader code. Due to its
design, it can directly use objects from the C++ language. While a C++ class
can store read-only attributes for all pipeline stages (called parameters in Sh),
other storage types called attributes in Sh are only available as input and output
data from functions and are not object data. No implicit connections between
them exist. In [4] a complete algebra is defined that uses these functions in Sh
as components to build an execution pipeline. Different operators in the algebra
allow inputs and outputs of functions to be connected. Complete knowledge of
data passed between objects and stages has to be available to an application
to build the connection between components. Therefore changes to the internal
implementation of a shader require a modification of the application.

The SuperShader [5] is a complex shader that allows different predefined mate-
rials and effects to be selected at run-time. A more extensible system is described
in [6], but it is still limited to a simple concatenation of shader code. Our object
model allows complex interactions of components. This is used extensively in
our shading framework.

The shading framework in section 4 is based on the Renderman Shading
Language [7] with its clear separation of light, displacement and surface shaders
as first class objects. A recent addition was the introduction of messages between
the light and the surface shader [8]. Instead of making this a special case, we
can take advantage of our object model (see section 4.2).

The Stanford shading language [9] provides a similar high-level abstraction
using light and surface shaders. Pipeline stages are not differentiated in this
language. Instead, qualifiers are used to denote the primitive that should be
associated with the variable, like a vertex or a fragment. The compiler then
automatically splits the compiled and linked shaders into different portions of
code to run on the pipeline stages. While it provides a framework similar to ours,
we provide a clear separation between the object model and a possible framework
implemented on top. Our framework can simply be extended by providing new
classes.

Brook [10] and CUDA [11] are extensions to the C programming language that
allow writing kernel functions to run on the GPU. However, relevant parts of the
graphics pipeline, like the rasterizer, are not accessible. Future GPUs will likely
support these interfaces more directly, while at the same time processors will
continue to contain more cores and can be programmed similarly. These flexible
new capabilities might eventually lead to new implementations and variations of
the graphics pipeline for real-time rendering tasks since this abstraction provides
a good performance compared to other algorithms [12], potentially integrating
fixed-function pipeline stages where these provide better performance [13]. Our
object model and shading framework relies on a graphics pipeline abstraction
and not on a particular hardware model. Therefore it can be layered on top of
these new interfaces. In particular it can be directly mapped to the example
pipelines from [13].
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3 Object Model

We summarize the key ideas of our object model, which is an extension of the
work described in [1]. The object model forms a thin layer on top of OpenGL and
uses the OpenGL Shading Language (GLSL; see e.g. [14]). As usual we define
objects as instances of classes that itself define methods and attributes. The
pipeline structure of OpenGL is fully exposed by requiring each method and
attribute to have a qualifier indicating in which stage it can be accessed. For
each instanced object its attributes are declared as global variables using the
given type and qualifier.

The following code declares a C++ class. It declares the color attribute and
the illuminance() method. Note that void is a special class used to transport
information about which GLSL function implements the method:

class Diffuse : public ShaderBase<Diffuse, IlluminatedMaterial>
{
public:
void_<> illuminance(vec3<>, vec3<>)
{ return invoke< void_<> >("Diffuse_illum_impl"); }

ValueReference<vec4, uniform> color;
private:
DERIVED_DECL(Diffuse, IlluminatedMaterial)

};

CLASS_INIT(Diffuse, "Diffuse.glsl", NONE, DEFS((color)) )

The class derives from IlluminatedMaterial. This base class is used by ma-
terials that receive light from light sources. It requires an implementation of
the illuminance() method. The C++ implementation only provides a name that
references the implementation in GLSL as follows. It uses methods of the base
class to retrieve the normal and to return the final color:

void Diffuse_illum_impl
(Diffuse_SELF, vec3 light_color, vec3 light_direction)

{
vec3 normal = IlluminatedMaterial_get_normal(self);
float intensity = max(0., dot(light_direction, normal));
vec4 color = intensity * vec4(light_color, 1.)

* Diffuse_get_color(self);
IlluminatedMaterial_accum_color(self, color);

}

Objects are referenced using a type called OBJREF. Objects are instanced
only in the application to simplify resource allocation on the GPU. One root
object provides the entry point for all stages and invokes methods on other
referenced objects. The entry points are defined in the Enterable interface, which
a root object has to implement.
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3.1 Extension of the Object Model

We introduce a conceptual deep copy of objects between each stage, i.e. all ob-
jects including objects they reference are copied. This behavior is well known
and directly maps to the copying of values between stages in GLSL. Note that
sharing object data between multiple stages would require synchronization mech-
anisms that have high runtime costs and are not available in GLSL (opposed to
e.g. CUDA).

Extending the idea of a copy operation between the stages we also introduce an
initialization phase after each copy operation. This allows an object to perform
operations in a stage where it is not called by another object. Consider e.g. an
object wrapping the access to texture coordinates for later access in the fragment
stage by a material object. This wrapper will be only called in the fragment stage
but has to copy the texture coordinates in the vertex stage.

Figure 2 depicts the current OpenGL pipeline as used in our object model.
We assume data are only copied between stages and that data amplification, like
rasterization, is happening within one stage. Our qualifiers can be classified by
the stage where they can be read and written. The varying attribute e.g. copies
data from the vertex stage to the fragment stage, i.e. between two stages that
are not directly connected.

Amplifying stages thus need to define how these values are interpolated. As
different values have different requirements, qualifiers can additionally be used to
define behavior, again mirroring GLSL. If a framework allows using the geometry
stage, it has to define its interpolation behavior. This is realized using framework-
defined types on top of raw qualifiers that provide only GLSL semantics. See
section 4.4 for an example.

We also introduce a new stage after a primitive has been emitted in the
geometry stage with the same copy semantic as every other stage. This allows
dependent values in other objects to be calculated before the rasterization starts.

Another difference of the geometry stage is that it can access multiple prim-
itives, e.g. the vertices of a triangle. In our object model a separate copy of all
objects exists for each accessible primitive and is accessible via a unique refer-
ence. Utility functions are provided that take an index n and a reference as input
and return a reference to the n-th copy. This design allows access to all available

Fig. 2. The graphics pipeline in our object model. The Application stage is the appli-

cation running on the CPU; the Vertex, Geometry, and Fragment stages are running

on the GPU. The Post Geometry stage is invoked when a vertex is emitted in the ge-

ometry shader. The Input Assembly and Rasterize stages are not (yet) programmable.

The root object is deep-copied between all stages.
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objects, while at the same time it offers a consistent way to access objects and
their attributes across all stages.

4 Framework and Patterns

The object model can be used to formulate a framework for a normal shading
set-up, i.e. the shading of surfaces that are illuminated by light sources. The
framework is designed to ease the reuse of individual components. Note that all
objects and types from the framework, like e.g. Surface and Varying, are imple-
mented on top of the object model. This allows the framework to be extended
or replaced if required without changing the underlying object model.

4.1 Value References

One important design pattern used in the following is composition [15]. We use
it in a special scenario where we will refer to it as value reference. The idea is
simple: instead of storing an attribute directly in a class (i.e. an aggregation), we
only store a reference to an object holding this value (i.e. an association). This
object implements a simple interface (called Gettable) that allows the value to
be retrieved.

The simplest class that implements this interface is the Value class, which
stores a single value with a given qualifier. The Texture class provides access
to a texture map using itself the Gettable interface for the texture coordinates.
Other possible implementations include procedurally generated values.

4.2 Surfaces and Lights

The root object in our framework is a Surface. A Surface references objects of
the following classes:

– Material is the base class for all materials. It provides a shade() method. Most
materials derive from the sub-class IlluminatedMaterial, which provides the
typical code for interactions with light sources. Materials then implement
the illuminance() method to receive light.

– Light is the base class for light sources. A light source should provide an
implementation for illuminate() to emit light and transform light() in case
it needs to transform positional data into the used coordinate system.

– CoordinateSystem: this class knows about the coordinate system the lighting
calculation is performed in and provides a transform() method to transform
positional data from world space into the used coordinate system. It also
transforms and stores the position and the normal of the point being shaded.
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4.3 Calling Sequence

The interaction of these objects is shown in figure 3. In the vertex stage the
CoordinateSystem is initialized and it transforms the viewing direction into the
coordinate system where the lighting calculations are performed. It is required
to store this information, which can be used in later stages to retrieve the trans-
formed value.

The material then invokes the transform lights() method on the Coordinate-
System, providing the list of light sources of the surface as parameters. The
CoordinateSystem invokes the transform light() method on the light sources,
again passing a reference to itself. Each light source then uses its reference to
transform its position and stores the result in its attributes to be used later in
the fragment stage.

In the fragment stage, the surface object invokes the shade() method of the
material object. If the material wants to receive light, it calls the illuminate()
method for each light source, passing along the position of the fragment to be
shaded and a reference to itself. Each light source then calculates the amount of
energy the fragment receives and the direction of light and calls the illuminance()

Fig. 3. Calling sequence in shading framework. The shader consists of two light sources,

one material, and a coordinate system. The surface holding the material is not shown.

One light source is emitting ultraviolet (UV) light.
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method of the given material object. This indirection of calls is called double
dispatch and allows us to use the visitor pattern [15] to implement different
shading behavior for special combinations of light sources and materials.

4.4 Subdivision and Displacements

The shading framework supports subdivision of triangles in the geometry shader.
It requires that all positions of the new primitives are linear combinations of
the positions of the input primitives followed by an arbitrary transformation.
Subdivision surfaces and displacement-mapping (see e.g. [16] for a combination
of both) fulfill this requirement. An example is shown in figure 1.

A concrete subclass of the Displacement class specifies how geometry is gen-
erated. It has to provide the framework with the factors of the combination and
the transformation. These values are used to correctly interpolate and propagate
values stored in the Varying type. This type has to be used with all values that
always need to be copied from the vertex stage to the fragment stage. It is given
an Interpolator class as a template parameter to specify the semantics of the value.

We have currently implemented three different interpolators: the PositionIn-
terpolator is used for values that represent positions or directions. It interpolates
its input values using the given factor and then applies the transformation.
The NormalInterpolator is similar, but uses the appropriate transformation for
normal vectors. The DefaultInterpolator is used e.g. for color values, and only
interpolates its input values.

5 Implementation

In other non object-oriented languages objects are usually represented by a data
structure that is passed as a reference to functions. As GLSL lacks the support for
references, we enumerate all objects and identify the objects with their number.
To access an attribute a dispatch function is used. These dispatch functions are
also used for method invocations in general to allow for polymorphic behavior.
If a dispatch function is called with a reference that is not matched by any
branch, a default value is returned instead. A simple introspection layer is used
to retrieve the method signature from the supplied C++ definition.

A dispatch function in GLSL follows (taken from the example above). At-
tributes are stored in global variables. The color attribute is a value reference
and does not store the value itself but defers to another object:

vec4 obj_0x5_value;
vec4 obj_0x7_value;

vec4 Gettable_vec4_get(OBJREF self) {
if (self == 5) return obj_0x5_value;
else if (self == 7) return obj_0x7_value;
return vec4(0, 0, 0, 0);

}
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vec4 Diffuse_get_color(OBJREF self) {
if (self == 1) return Gettable_vec4_get(5);
else if (self == 2) return Gettable_vec4_get(7);
return vec4(0, 0, 0, 0);

}

The generation is split into two steps: for each known object we iterate its
attributes and ask each for further references. Special types like Varying use this
for state dependent behavior: if no Displacement is active the qualifier instances
a Value object to use direct hardware support to copy data between the vertex
and the fragment stage. Otherwise, an Interpolator is instanced that connects
two Value objects which copy data from the vertex to the geometry stage and
from the geometry to the fragment stage. These Value objects are accessed using
the getter and setter function of the Varying type.

For each given unique class and each of its methods and attributes a dispatcher
function is generated. Together with the implementation of the methods these
form the complete (and valid GLSL) shader code.

The use of generic interfaces can lead to static recursion of the dispatch func-
tions. As an example consider a pattern generator implementing the Gettable
interface which uses a texture object via the same interface. We therefore have
to allow recursion for the same method called on different objects. We follow the
call graph of the shader in a second processing step and replace all calls to dis-
patch functions with a constant self reference with a simple forwarding function
call. This also ensures that no overhead is introduced by the object model.

If the self reference is non-constant, we have to leave the dispatcher as is, but
call renamed copies of the functions. This ensures that all recursions are removed
from the resulting code. We also remember which dispatch functions were called
with which self reference and will never call this pair in the subgraph again. The
number of objects is bounded and thus also the number of copied functions.

6 Evaluation

Given the above framework, we will now evaluate how it can be used to imple-
ment different shading techniques. We will also analyze the costs of the object
model and the shading framework.

6.1 Applications

Simple materials, like the Phong material [17], only require the re-implementa-
tion of the illuminance() method, which contains the shading calculation. Simple
light sources have to provide two methods to ensure that their own position and
directions are properly converted in the vertex stage and to provide the amount
of energy the light receives in the fragment stage.

Light sources can cast shadows using shadow mapping [18]. The point being
shaded has to be transformed into the coordinate system of the light source to
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perform the required perspective projection and texture lookup. This transfor-
mation can be performed in the transform light() method, using the provided
CoordinateSystem.

Bump mapping is a simple but effective method to add details to an ob-
ject. In [19] an efficient implementation is described that uses the tangent space
for lighting. To use a tangent space normal map in our framework one simply
implements a CoordinateSystem, which builds the tangent space transformation
from attribute data associated with each vertex.

The geometry shader in modern graphics hardware can be used to generate a
complete cubic environment-map in a single-pass. Each triangle of the input
mesh is output six times. Each face is reprojected to fit onto one of the faces of
the cube. The faces should still be rendered as usual and thus all information
from the vertex stage has to be correctly propagated to the fragment shader. As
described above our framework handles this transparently so that this technique
can be used without modifications to any components.

Environment maps are normally used for mirror reflections but they can
also be used together with other BRDFs [20] or for pre-computed radiance trans-
fer (PRT) [21]. The framework supports environment maps as light sources
when used with specific materials.

An environment map light invokes illuminance envmap() on the material pro-
viding a reference to the environment map. This reference can be used by the
material to query the energy received from a given area of the illumination
sphere. Similarly a PRT light invokes illuminate PRT() and provides the illumi-
nation sphere directly encoded in an appropriate base.

Each new illuminate() method is defined in an interface. Only the special ma-
terials need to provide an implementation, as the default handler of the dispatch
functions properly handles unimplemented methods (see section 5).

Using deferred shading (see e.g. [22]) is straightforward: in the geometry
pass, we use materials with no light interaction that output data such as position,
normal, color, specularity etc. The following light passes render geometry for
each light source that covers its area of influence. A special material is used
that retrieves the information from the geometry pass and is illuminated by the
current light source.

6.2 Run-Time Costs

Our framework results in additional costs. We provide measurements for the
examples of figure 1 in table 1. Note that the application controls the compilation
and that a re-compilation is only required if objects are removed or added or
if other constant values are changed. Also note that we did not optimize for
compilation speed. All processing steps run in linear time in relation to the
number of classes and the number of method invocations.

As can be seen, the rendering costs that occur due to the generated shader
source code, i.e. the number of shader instructions, are negligible. They are also
bounded and predictable:
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Table 1. Ratio of measurements of our framework compared to hand-written code.

The time to Assemble, Traverse, and Compile are each compared to the compilation

time of the hand-written code. Source Code uses the number of source code lines and

Instructions uses the number of instructions in the optimized assembler code.

Example Assemble Traverse Compile Source Code Instructions

Plastic 41.4% 609.9% 187.5% 1180.3% 100%

Bump-Mapping 49.5% 777.7% 210.1% 1081.6% 100%

Displacement 25.5% 669.5% 1598.9% 1238.8% 103.8%

– The GLSL code provided for the implementation of methods is not modified.
– Method invocations with a constant reference have no costs compared to a

normal function invocation (see section 5).
– Method invocations with non-constant references have bounded costs. The

dispatch function will remain in the code and thus conditional code is run
in the shader. Note that code that performs the same dispatching without
objects will probably be implemented the same way and thus incur the same
costs. As the dispatcher uses a constant self reference to invoke the delegated
function, all further calls to methods on itself have no additional costs.

7 Conclusion and Future Work

We presented an object model for current and future graphics hardware that uses
well-known object-oriented mechanisms. A framework is layered on top of the
object model using well-known design patterns. The framework allows libraries
of light sources and materials to be written independently and combined with
different shading or rendering models. The components can be connected at run-
time. This makes it possible to dynamically import data models with complex
materials.

Other scenarios with different rendering models can be easily integrated as
shown above. Some models require direct support for different combinations, i.e.
special code handling the exact combination of a material and a light source.
Based on our framework, these cases can be handled in an easy and transparent
way.

We want to continue to integrate different shading and rendering techniques
in our framework. Multi-pass techniques are of special interest as they could
require extensions to the object model.
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Abstract. One of the goals of Virtual Reality (VR) has always been the

pursuit of more realistic display of virtual worlds. Many algorithms have

been developed to add effects to rasterization-based rendering systems,

but for many effects ray tracing is still the only method that can accu-

rately simulate them. Algorithmic advances and the power of computer

systems in recent years has made ray tracing a feasible alternative to

rasterization.

This work describes the integration of the real-time ray tracing system

Manta into the VR framework system VR Juggler. The results show that

it is possible to create ray traced Virtual Environments (VE) running at

interactive rates with latencies around 100 msec. This is made possible

by using compute clusters, parallelization, high-speed image compression

and dynamic scaling of image quality to the desired update rates.

1 Introduction

Rendering quality is an important component of realistic, high-quality, immer-
sive VE. High-quality rendering methods cannot deliver images at the frame
rates needed in a VE. To achieve interactivity and immersion, image quality is
sacrificed for speed.

High-end VE’s now routinely use lighting and shading models using shader-
based technologies as well as global effects like shadows and reflections. But all
those high-level effects have limitations stemming from the fact that they are
driven by a rasterization engine: shadows have limited resolution and exhibit
discretization artifacts, reflections assume an infinitely large environment, not
to talk about self-reflections and reflections on concave surfaces. While hard
to impossible to implement using a rasterizer approach, all these problems are
trivially solved by ray tracing.

Ray tracing has been the method of choice for high-quality rendering and
effects since its inception in 1980 [18]. The basic algorithm is simple and easy to
understand. Although it is computationally expensive, there are no alternatives
to ray tracing that enable the creation of images at the same level of quality
and geometric flexibility. These qualities and the ability of modern day ray trac-
ing algorithms to reach interactive frame rates is the motivation for the work
described in this paper.

The paper is structured as follows. After describing previous work in VE’s
and real-time ray tracing, two systems that form the basis of this work, Manta

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 1031–1042, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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and VRJuggler are introduced. The next section describes the architecture and
development details necessary to integrate them into MantaJuggler, followed by
a description of the approaches taken to enhance performance and interactivity.
The final chapters present the results and open areas for future work.

2 Previous Work

2.1 High-Quality VE’s and Real-Time Ray Tracing

Many applications depend on high-quality images for VE’s to be a viable alterna-
tive to real life. Design applications have a very high demand for realistic display
and high quality in all respects. [4] employs global illumination approximations
to an interior design problem in a CAVE system, that is rendered using stan-
dard rasterization renderer. [10] uses a fast approximative radiosity algorithm for
interactive interreflection updates in a VE in interior design-style applications.

[11] tries to use ray tracing for displaying a VE. The work focuses on using
optical flow methods to approximate the actual ray traced image, whith varying
degrees of success.

Using a very large supercomputer, the authors of [8] were the first to reach
interactive frame rates for large-scale models. Interactive ray tracing got a large
push by Wald et al in [14] and again in [17] when they distributed the work
across a cluster, eventually producing comfortably interactive frame rates. An
overview of the basic concepts and current developments in ray tracing is given
in [9] and its use in the review of large CAD models in [3][16].

2.2 Limitations of Previous Work

Most of the efforts in the cited work have been focused on conventional inter-
action, which is focused on interactive rates for the desktop (or a large screen
projection [16]). When applying ray tracing to VE’s, the complexity of the inter-
active problem is much higher. First we need to generate multiple stereo image
pairs, increasing the number of needed pixels.

Second, the camera parameters in VE’s are defined through 6-degree of free-
dom trackers typically sending those parameters at speeds of 30 Hz or higher.
Finally, the resolution required for the stereo pairs is fairly high compared to
typical lower resolution windows used in most real-time ray tracing research.

3 Framework Components

Our approach is to leverage existing Open Source systems that have most of the
base capabilities for VR and ray tracing. After evaluating the different available
systems the decision was to use Manta [1],the only available real-time ray tracer
that would run on linux IA64 machines , as the ray tracing engine and VRJuggler
[6] for the VR framework.
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3.1 Manta

Manta is an Open Source ray tracing system developed at the Scientific Com-
puting and Imaging (SCI) Institute’s Center for Interactive Ray Tracing and
Photorealistic Visualization at the University of Utah.

It is based on earlier work [8] and has been in active development since 2004.
It is used in a variety of projects for large scale interactive ray tracing [15,13] and
features methods for asynchronous updates and overlapping calculation/display
operation to reduce latency. See [1] for further details.

One shortcoming of freely available ray tracers (including Manta) is that it
does not support distributed operation on clusters, instead it depends on a shared
memory system.

3.2 VR Juggler

VRJuggler [5] is an Open Source VR framework developed by a team from the
Virtual Reality Applications Center at Iowa State University. VRJuggler takes
care of opening windows, setting up OpenGL contexts and viewing parameters,
and it will create and synchronize multiple threads to drive multiple graphics
cards in a system.

4 Integrating Manta and VRJuggler

4.1 Basic Design and Networked Operation

MantaJuggler follows a Client-Server architecture. The client, VRJuggler, is the
user interface of the system. It connects to multiple render servers, Manta in-
stances, which provide the images over the network.

VRJuggler subdivides the whole of the displayed surface into separate view-
ports. Each viewport is rendered individually, i.e. the application’s ::draw()
method is called for each one of them. In addition to that it might be called
twice, once for left and right eye in stereo setups.

These VRJuggler viewports form a natural subdivision of the workload into
separate pieces. Each viewport is connected and serviced by a separate Manta
server. This allows us to overcome Manta’s shortcoming, which is the inability
to distribute the workload to multiple computers.

The principal operation sequence is as follows: whenever VRJuggler asks the
application to redraw a viewport the current view information (detailed in sec-
tion 4.3) is sent over the network to the corresponding Manta server, which
generates the ray traced image and sends it back to the MantaJuggler applica-
tion, which then takes it and displays it on the screen.

4.2 Asynchronous Operation and Forced Synchronicity

The basic pipeline as described in sec. 4.1 is fully functional, but highly inef-
ficient. The main reason for this inefficiency is its sequential and synchronized
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nature of the receiver. To improve performance, we decouple the the receiving
side by creating a separate receiver thread for each connection to a Manta server.

VRJuggler streams the latest camera information to the Manta on every
frame. The multi-threaded pipeline model in Manta sends the rendered images
to VRJuggler receiver threads, all while the next image is simultaneously being
calculated. This avoids adding the transfer time to the latency of the next frame.

One shortcoming of the described system is that it is totally asynchronous.
Each viewport is updated and displayed as quickly as possible and totally inde-
pendently. This can lead to very noticeable differences in update rate for each
viewport. Furthermore, the left and right eye images are calculated indepen-
dently. Given that the load imbalance between the left and right eye images is
fairly small, as that they are normally very close together, this is not as unac-
ceptable as it may sound. Nonetheless, in critical applications this asynchronicity
might be unacceptable.

Adding synchronization to the described system could be solved by using tra-
ditional swaplock mechanisms, but this would not allow us to process user inter-
action at an acceptable refresh rate. We solved the problem through a relatively
simple modification. Instead of constantly sending new camera information, only
one camera set is sent to the Manta servers. Then, instead of displaying incoming
images as soon as they arrive, they are uploaded to a double-buffered texture and
kept until all viewports have received their respective image for the same camera
settings. At this point, the buffers get swapped, the new images are displayed,
and new camera information is sent to Manta.

This change enforces full synchronicity, at the cost of increased communica-
tions overhead and added latency. As described in sec. 5.3 the main impact of
this change is reduced image quality, the actual system latency stays at inter-
active rates. Given that the basic system remains unchanged, it is possible to
switch between synchronized and asynchronous mode at runtime easily to gain
the benefit of both modes if needed.

4.3 Arbitrary Viewing Parameters

Most standard rendering engines are designed for standard viewing and projec-
tion transformations. VR systems have very different requirements. The viewing
frustums are often asymmetric and fairly arbitrary compared to standard ren-
dering engines.

Ultimately, they all provide enough information to render the virtual world
with OpenGL (or Direct3D). OpenGL specifies the viewing/projection informa-
tion in the form of two matrices, the GL MODELVIEW and GL PROJECTIONmatrices.
Given this commonality, we could use these matrices to calculate the necessary
rays.

The basic task is to calculate a ray from the viewer position into the scene,
based on a parametrization of the image, usually a normalized system with x
and y coordinates from 0 to 1 or from -1 to 1. This is the exact inverse of what
OpenGL does using the GL MODELVIEW and GL PROJECTION matrices.
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Based on this observation it is simple to calculate a ray for a given -1 to 1 x and
y position on the screen. Calculate a matrix M as the inverse of the product of
the GL PROJECTION and GL MODELVIEW matrices. Given this, the viewer position
can be calculated by multiplying a constant (0, 0, 0, 1) vector with this M , while
a point on the ray through pixel is given my multiplying (x, y, 1, 1) by the same
matrix.

Thus the network protocol between MantaJuggler and Manta itself consists
of the (GL PROJECTION ∗ GL MODELVIEW)−1 matrix. The image created by those
rays is a perfect match to the OpenGL rendering, making it possible to replace
OpenGL objects with ray traced counterparts and vice versa (see also sec. 7.1).

5 Performance

VR systems are always performance critical, and our system is no exception. On
the contrary, using a ray tracing engine running on a cluster adds a number of
performance considerations beyond those of a ”normal” VR setup.

5.1 Bottlenecks

Compared to a standard VR system the potential bottlenecks are somewhat
shifted. The core rendering loop is very tight as all it has to do is render a
single, screen-filling polygon with the current image textured on it. This will run
at full refresh rate at all times. The obvious bottleneck is the calculation time of
the ray traced images on the Manta servers. Because of the scaling characteristics
of ray tracing this time will generally linearly depend on the image resolution. So
for a given image resolution, this time is fixed. The only way to change the time
spent in here is putting more processors in the servers or reducing the number
of pixels to be calculated (see sec. 5.3).

The final potential bottleneck is the network between the Manta servers and
the display machine(s). A single image can range from 2.3 to 6.2 MB, given
stereo and multi-screen systems like CAVEs, the maximum required bandwidth
can even exceed the capacity of high-speed commercially available network in-
frastructure like Infiniband.

5.2 Compression

A fairly obvious approach to reduce the network bandwidth for image transfer
is compression. There are a large number of image compression algorithms that
can reduce image sizes by orders of magnitude. However, even if the algorithms
can reach great compression ratios on the images, it might not make sense to use
them, as they have to be faster than just transfering the image (at 30 Mpixels/sec
for GBit Ethernet). Only very fast and simple algorithms can reach this level of
performance (see sec 6.3 for results).
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5.3 Dynamic Image Scaling

An alternative approach to help reduce the needed network bandwidth as well
as the needed calculation time is scaling the calculated image. Both ray tracing
and network transfer are impacted linearly by the number of pixels in an image,
so reducing the size of the image will have a positive impact on both ends.

To achieve this, a Dynamic Image Scaling approach was implemented. The
approach is similar to Dynamic Video Resolution (DVR) developed by SGI for
the infiniteReality systems. The resolution, for each frame, is adjusted depending
on the difference between the targeted and reached latency. As an exact match
cannot be expected, a tolerance band was added to avoid oscillation.

However in practice the tolerance band alone was not enough to prevent oscil-
lation. While both tracing and transfer depend linearly on the number of pixels,
the assumption of linear scaling with respect to time assumes the same image,
as the calculation is based on last frame’s timing. In general the image content
will change from frame to frame, which will offset the real time requirements.
To avoid oscillation the controller was dampened (the impact of the adjustment
was scaled down), which resulted in smoother frame rates.

6 Results

All described approaches have been implemented based on Manta and VRJug-
gler. The implementation was tested on a common test object from Stanford 3D
Scanning Repository and the results analyzed.

6.1 System Environment

Display Systems. The tests were done on a 3 channel head-tracked active
stereo system driven by a SGI Prism with 3 graphics pipes (see fig. 1). Each
screen is run using active stereo (left eye/right eye on one pipe) and has a
resolution of 1400x1050 pixels. The system was connected to the house network
that connects to the compute engines by a single GBit Ethernet connection.

Fig. 1. Raytraced VE on a 3-pipe Curved Stereo Screen System
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Compute Systems. The ray tracer was run on a cluster of 6 SGI Altix 350
machines. This choice was more a matter of availability than preference. Each
one of them has 32 Itanium 2 processors (31 of which were used for ray cal-
culation) running at 1.5 GHz, and is connected to the house network by GBit
Ethernet. Measuring the bandwidth between compute and display systems shows
a maximum data transfer rate of ∼ 100 MB/sec.

Since SSE compiler does not work on our architecture, we were forced to use
Manta without it. As a result, the Itanium processors reached a performance that
is only ∼ 1

16 th of a current 4-core AMD or Intel Core Duo processor, making
the 32 processor Itanium system comparable to a current 2 CPU system. This
however does not impact our results because of the inclusion of dynamic image
scaling.

Test Scenario. The test scenario contains a single object (the Stanford dragon
containing 202,520 triangles) using a refractive glass material, to show ray tracing-
specific capabilities, and lit by two point light sources while being situated on top
of a marble-textured plane. This object does stress the capabilities of the compute
machines, at the full resolution of 1400x1050with a dragon covering somewhat less
than half the image the pure ray tracing engine without any display only achieves
about .7 fps.

To achieve repeatable test results the tests were done using a predefined ani-
mation path that simulates a user moving left to right in front of the test object.
All tests are time-controlled to last 45 seconds. The more efficient scenarios
render more frames, achieving lower average frame latencies.

Note that the measurements here are based primarily on latency. Due to the
pipelined nature of the system the achieved framerate is higher than 1

latency , on
average ∼ 30% higher.

6.2 Latency

The latency is measured starting at the time when the camera information was
put on the network until the calculated image was sent to OpenGL for display.
For a total system latency the time from the tracker to the VRJuggler application
and the time from finishing the OpenGL commands until the image is shown on
the screen should be added. These additional times apply to all VR applications
and therefore are not characteristic of the ray traced display approach described
here, the focus lies on the additional latency introduced by the distributed ray
tracing.

Figure 2 shows the results of running a test with full resolution and with-
out synchronization, compression or scaling. The graph represents the average
latency for the 6 different viewports.

The average latency over all viewports and frames is 488.60 msec (standard
deviation: 330.64 msec). The average latency difference between viewports is
1595.53 msec (standard deviation: 441.40 msec), i.e. on average the views of the
three screens and the left and right eyes are 1595.53 msec apart! The results
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Fig. 2. Average frame latency without synchronization, compression or scaling

are clearly much too slow and much too unsynchronized to be usable for an
immersive or even interactive experience.

The two main bottlenecks are the network transfer and ray tracing times. The
average time spent in network transfer is 105.41 msec (standard deviation: 66.80
msec), the average time spent in tracing rays is 222.82 msec (standard deviation:
367.46 msec), with the respective maxima significantly higher.

Two approaches were realized to alleviate these bottlenecks: image compres-
sion and dynamic image scaling.

6.3 Image Compression

Image compression was implemented based on the Lempel-Ziv-Oberhumer (LZO)
[7] library. This library achieves an average compression speed of 103.67 MByte/
sec and an average decompression speed of 153.50 MByte/sec. The achieved com-
pression ratio was 8.35 on average, with the compressed images having an average
size of 527285 bytes compared the to 4410000 bytes without. Compression re-
duces the average network transfer time from 105.41 to 36.82 msec, resulting in
an average frame latency of 335.08 msec compared to 399.20 msec without.

The result is slightly better than without compression, but unable to reach
≤ 100 ms needed for immersion. The main bottleneck is the core ray tracing
calculations. This bottleneck is alleviated by using dynamic image scaling.

6.4 Dynamic Image Scaling

Dynamic image scaling tries to adjust the image size (i.e. number of pixels) to
reach a given target framerate or latency, by adjusting a factor between 0 and
1 that is used to the scale the image. The basic reasoning for the control logic
is that the needed time is linearly dependent on the number of pixels that need
to be calculated and sent over the network. Given that the control is reactive
and therefore always at least one frame behind the actual computational load a
tolerance zone was added to reduce oscillation. Figure 3 shows the results for a
100 msec target latency with a 2 fps tolerance band.

The latency curve is much smoother than fig. 2 (note the different scales), with
an average latency of 98.79 msec (standard deviation: 80.07 msec), resulting in
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Fig. 3. Latency & Scale factors with dynamic image scaling for 100 msec target latency

an average frame rate of 13.20 fps. This is achieved by scaling the images by an
average factor of 0.50 (standard deviation: 0.30), i.e. about half of the screen
resolution is used on average.

The result is a faster, lower latency experience but at the cost of having larger
variations in latency due to strong over/undershoots. This is especially critical for
the variations between viewports/eyes, which can lead to visual tearing betwen
screens. The average maximum difference between viewports/eyes is 180.45 msec
(standard deviation: 98.50 msec).

This wide spread of latencies and the fairly significant overshoot and under-
shoot times are a problem that needs to be solved. One way to reduce these
over/undershoots is adding a dampening step in the control.

Dampening. The basic dampening approach used is based on not using the
corrected scale factor completely, but instead using a weighted average between
the old and the new scale factor. This slows down the adoption of the new factors,
but at the same time reduces over- and undershoots and leads to a more stable
latency (see fig. 4).
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Fig. 4. Latency and scaling needed with dampening
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The most effective dampening weights were determined through running a
large number of tests to be 1 for the old and 1 for the new scale factor, i.e use
the average of both. These values change the average latency from 98.79 msec
to 103.32 msec, which is just a small difference. The main effect is reducing the
average maximum difference between viewports/eyes from 180.45 msec to 64.99
msec, resulting in significantly more consistent image update rates. 15.03 fps.

6.5 Synchronization

Even with all the above mentioned mechanisms, there is still a noticeable latency
difference between different viewports and even between different eyes. The im-
pact of this difference depends on the tolerance of the user, but for a generally ac-
ceptable perfect experience it needs to be eliminated. As the synchronized mode
tends to oscillate more, 2:1 dampening was used here. The latency difference
between viewports is nearly eliminated (average difference between viewports
1.40 msec). As the system is still run at a target latency of 100 msec, the latency
itself changes little (Avg: 102.83 msec, standard deviation: 33.35 msec), but the
scale factors have to go down to an average of 0.06 (from 0.50 for non-synced
operation) to counter the increased time requirements and lost parallelism due
to synchronization, resulting in significantly lower quality images.

The results are in sync and consistent, but at the cost of image quality.

7 Conclusions

The presented work demonstrates that it is possible to use real-time ray tracing
to drive large-scale immersive projection displays. This can be done by integrat-
ing available Open Source components like VRJuggler and Manta using simple
message passing and a specialized camera that can bridge the OpenGL-based
viewing and projection specification and the ray-based ray tracing one.

Typically available computing power is not capable of generating and trans-
mitting full-resolution low-latency images generated using ray tracing. By using
fast compression and decompression in conjunction with dynamically scaling the
number of pixels that need to be computed and transmitted it is possible to reach
interactive latencies in the 100 msec or less range with somewhat reduced image
quality.

The described results were achieved based on a single GBit Ethernet net-
work between compute and display systems. Given the availability of high-speed
networks like LambdaRail, the described work opens the door for wide-area dis-
tributed interactive ray tracing.

7.1 Future Work

The availability of a cluster based realtime raytracer along with a non-outdated
cluster should provide better perfomance measurements. This change will al-
low us to compare N-1 to N-N communication schemes and the associated load
balancing effects of each.
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An interesting alternative to scaling the image is using a frameless rendering
approach [19,2], replacing the reduced resolution with a noisier image, which
might be a more acceptable compromise for certain situations.

Currently interaction is not possible with the rendered scene. Two approaches
are possible to alleviate this shortcoming. One would be to extend the communi-
cation protocol to allow sending interaction rays to identify objects and to allow
manipulation of the ray tracing scene. The second approach is more focused on
optical integration and is based in transferring a depth image in addition to the
visual image. This depth image can then be used to preset the OpenGL depth
buffer to match the ray traced visuals. This would allow hybrid display systems
that use ray tracing for the high-quality, relatively slowly updated parts while
using OpenGL to display e.g. interaction components or selected objects, using
a similar approach to the Multi-Frame Rate Display introduced by [12].
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Abstract. In this paper we propose a new method for pairwise rigid

point set registration. We pay special attention to noise robustness, out-

lier resistance and global optimal alignment. The problem of registering

two point clouds in space is converted to a minimization of a nonlinear

cost function. We propose a cost function that aims to reduce the impact

of noise and outliers. Its definition is based on the input point sets and is

directly related to the quality of a concrete rigid transform between them.

In order to achieve a global optimal registration, without the need of a

good initial alignment, we develop a new stochastic approach for global

minimization. Tests on a variety of point sets show that the proposed

registration algorithm performs very well on noisy, outlier corrupted and

incomplete data.

1 Introduction and Related Work

Point set registration is a fundamental problem in computational geometry with
applications in the fields of computer vision, computer graphics, image processing
and many others. The problem can be formulated as follows. Given two finite
point sets M = {x1, . . . ,xm} ⊂ R3 and D = {y1, . . . ,yn} ⊂ R3 find a mapping
T : R3 → R3 such that the point set T (D) = {T (y1), . . . , T (yn)} is optimally
aligned in some sense to M. M is referred to as the model point set (or just
the model) and D is termed the data point set. Points from M and D are
called model points and data points respectively. If T is a rigid transform, i.e.,
T (x) = R(x) + t for a rotation R and a translation t, we have the problem of
rigid point set registration. The problem is especially hard when no initial pose
estimation is available and the data point set is noisy, outlier corrupted and
incomplete.

Point Set Registration. Algorithms for the rigid registration problem belong
to two general classes. One class consists of methods designed to solve the initial
pose estimation problem. These methods compute a (more or less) coarse align-
ment between the point sets without making any assumptions about their initial
position and orientation in space. Johnson and Hebert introduce in their work
[1] local geometric descriptors, called spin images, and use them for pose estima-
tion and object recognition. The presented results are impressive, but no tests
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with noisy or outlier corrupted data are performed. Gelfand et al. [2] develop a
local descriptor which performs well under noisy conditions, but still, defining
robust local descriptors in the presence of significant noise and a great amount
of outliers remains a difficult task. A more recent approach to the initial pose
estimation problem is the 4PCS algorithm introduced by Aiger et al. [3]. It is an
efficient randomized generate-and-test approach: For an appropriate quadruple
B (called a basis) of nearly coplanar points from the model set M, compute
the optimal rigid transform between B and each of the potential bases in the
data set D and choose the optimal one. In order to achieve high probability for
finding the global optimal transform, the procedure is repeated several times for
different bases B ⊂ M. Note, however, that the rigid transform, found by the
algorithm, is optimal only for the two bases (i.e., for eight points). In contrast to
this, the rigid transform we compute is optimal for all points of the input sets,
and thus we expect to achieve higher accuracy than the 4PCS algorithm. This
is further supported by the experimental results in Section 4 of our paper.

Since the accuracy of the pose computed by the above mentioned methods is
insufficient for many applications, an additional pose refinement step needs to
be performed. The pose refining algorithms build the second class of registration
approaches. The most popular one is the Iterative Closest Point (ICP) algorithm.
Since its introduction by Chen and Medioni [4], and Besl and McKay [5], a
variety of improvements have been proposed in the literature. A good summary
as well as new results on acceleration of ICP algorithms has been given by
Rusinkiewicz and Levoy [6]. A major drawback of these ICP variants is that they
assume a good initial guess for the orientation of the data point set (with respect
to the model point set). This orientation is improved in an iterative fashion
until an optimal rigid transform is found. The quality of the solution depends
heavily on the initial guess. Another disadvantage of the methods compared by
Rusinkiewicz and Levoy [6] is that they use local surface features like surface
normals which cannot be computed very reliably in the presence of noise.

The approach we develop is most related to the ones proposed by Mitra et al.
[7] and Pottmann et al. [8]. They also express the registration problem as a
minimization of a cost function. Its definition is based on the distance of the data
points to the surface defined by the model points. For its minimization, however,
a local optimization method is used. This results in the already mentioned strong
dependence on a good initial transform estimation.

Stochastic Optimization. Stochastic optimization has received considerable
attention in the literature over the last three decades. Much of the work has
been devoted to the theory and applications of simulated annealing (SA) as a
minimization technique [9], [10], [11]. A comprehensive overview of this field is
given in [12]. A major property of SA algorithms is their “willingness” to ex-
plore regions around points in search space at which the objective function takes
values greater than the current minimum. This is what makes SA algorithms
able to escape from local minima and makes them suitable for the task of global
minimization. A known drawback of SA algorithms is the fact that they waste
a lot of iterations generating candidate points, evaluating the objective function
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at these points, and finally rejecting them [12]. In order to reduce the number
of rejections, Bilbro and Snyder [13] select candidate points from “promising”
regions of the search space, i.e., from regions in which the objective function is
likely to have low values. They achieve this by adapting a spatial data struc-
ture (an n-dimensional binary tree) to the objective function each time a new
candidate point is accepted. If, however, the current point is not accepted, the
tree remains unchanged. This is—in the case of candidate rejection—a consider-
able waste of computation time, since the information gained by the (expensive)
evaluation of the objective function is not used at all. In contrast to that, our
algorithm adapts the n-dimensional tree at every iteration and thus uses all the
information collected during the minimization.

Contributions and Overview. Our registration algorithm aims to solve the
initial pose estimation problem with a sufficient accuracy, so that no additional
refinement is necessary. Our main contributions are (i) the introduction of a new
noise and outlier resistant cost function and (ii) a new stochastic approach for
its global minimization.

The rest of the paper is organized as follows. In Section 2, we define the task
of aligning two point sets as a nonlinear minimization problem and define our
cost function. In Section 3, we introduce a stochastic approach for global min-
imization. Section 4 presents experimental results obtained by our registration
algorithm. Conclusions are drawn in the final Section 5 of this paper.

2 Registration as a Minimization Problem

Consider we are given a model point set M = {x1, . . . ,xm} ⊂ R3 and a data
point set D = {y1, . . . ,yn} ⊂ R3. Suppose we have a continuous function S :
R3 → R, called the model scalar field, which takes small values when evaluated
at (or near) the model points xj , j ∈ {1, . . . ,m} and increases with increasing
distance between the evaluation point and the closest model point. The model
scalar field S will be precisely defined in Section 2.1. Consider for now it is given
and it has the above mentioned property. Our aim is to find a rigid transform
T : R3 → R3 of the form T (x) = R · x + t for a rotation matrix R ∈ R3×3 and a
translation vector t ∈ R3 such that the functional

F(T ) =
n∑

i=1

S(T (yi)), yi ∈ D. (1)

gets minimized. This definition of F is based on the following quite natural idea
common for most registration algorithms: We seek a rigid transform that brings
the data points as close as possible to the model points.

2.1 Definition of the Model Scalar Field

Given the model point set M = {x1, . . . ,xm}, we want to have a function S :
R3 → R which takes its minimal value at the model points, i.e.,

S(xj) = smin ∈ R, ∀j ∈ {1, . . . ,m}, (2)
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and takes greater values for all other points in R3, i.e.,

S(x) > smin, ∀x ∈ R3 \ {x1, . . . ,xm}. (3)

Define
dM(x) := min

xj∈M
‖x − xj‖ (4)

to be the distance between a point x ∈ R3 and the set M, where ‖ · ‖ is the
Euclidean norm in Rn. If we set

S(x) := dM(x), (5)

we get an unsigned distance field which is implicitly used by ICP. It is obvious
that this choice for S fulfills both criteria (2) and (3).

Mitra et al. [7] and Pottmann et al. [8] consider in their work more sophisti-
cated scalar fields. They assume that the model point set M consists of points
sampled from some underlying surface Φ. The scalar field S at a point x ∈ R3

is defined to be the squared distance from x to Φ. In this context, S is called
the squared distance function to the surface Φ. We refer to [7] for details on
computing the squared distance function and its approximation for point sets.

The version of S given in (5) and the one used by Mitra et al. [7] are both
essentially distance fields. This means that lim‖x‖→∞ S(x) = ∞, i.e., S(x) ap-
proaches to infinity as the point x gets infinitely far from the point set. This has
the practical consequence that a registration technique based on an unbounded
scalar field S will be sensitive to outliers in the data set, because data points
lying far away from the model point set will have great impact on the func-
tional value in Eq. (1) and thus will prevent the minimization algorithm from
converging towards the global optimal alignment.

To avoid this problem we propose to use a bounded scalar field satisfying (2)
and (3) and having the additional property

lim
‖x‖→∞

S(x) = 0. (6)

We set
S(x) := −ϕ (dM(x)) , (7)

where ϕ : R+ → R+, for R+ := {x ∈ R : x ≥ 0}, is a strictly monotonically
decreasing continuous function with

max
x∈R+

ϕ(x) = ϕ(0) and (8)

lim
x→∞ϕ(x) = 0. (9)

In our implementation we use a rational function of the form 1/(1+αx2) because
it is computationally efficient to evaluate and can be controlled by a single
parameter α. This results in the following scalar field:

SM
α (x) = − 1

1 + α (dM(x))2
, α > 0. (10)
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It is easy to see that (2), (3) and (6) hold. Different α’s in Eq. (10) lead to
different scalar fields. The greater the value the faster SM

α (x) convergences to
zero as ‖x‖ → ∞. In the next Section, we will discuss how to choose a suitable
value for α.

2.2 Cost Function Definition

At the beginning of Section 2, we formulated the rigid point set registration
problem as a functional minimization problem: Minimize F (see Eq. (1)) over
the set of rigid transforms. We convert F to a real-valued scalar field F : R6 → R
of the form

F (θ, φ, ψ, x, y, z) =
n∑

i=1

SM
α (Rθ,φ,ψ · yi + (x, y, z)), (11)

for the data points y1, . . . ,yn and for SM
α defined in Eq. (10). Rθ,φ,ψ is a rotation

matrix describing a rotation by θ about the x-axis, followed by a rotation by
φ about the y-axis and a rotation by ψ about the z-axis. A global minimizer
x∗ ∈ R6 of F defines a rigid transform that brings the data points as close as
possible to the model points.

What makes the proposed cost function robust to outliers is the fact, that
outlier data points have a marginal contribution to the sum in Eq. (11). More
precisely, given a positive real number d, we can compute a value for α, such
that |SM

α (x)| is less than an arbitrary δ > 0, if dM(x) > d holds. In this way the
contribution of an outlier point to the sum in Eq. (11) can be made arbitrary
close to zero, hence F behaves like an outlier rejector. Too large values for
α, however, will lead to the rejection of data points which do not have exact
counterparts in the model set, but still are not outliers. In our implementation we
set d = 1

5diag(BB(M)) and δ = 0.1, where diag(BB(M)) denotes the diagonal
length of the axis-aligned minimum bounding box of the model point set. Using
the absolute value of the right side of Eq. (10) and solving for α yields

α =
1 − δ

δd2 . (12)

The cost function given in (11) is nonlinear and nonconvex. This results in a great
number of local minima of F over the search space. Using a local optimization
procedure—common for the most registration methods in the literature—will
lead in most cases to a local minimizer of F and thus will not give the best
alignment between model and data.

We employ a new stochastic approach for global minimization, described in
the next Section of this paper. We seek the global minimum of F over the search
space

X := [−π/2, π/2] × [−π, π] × [−π, π] ×BB(M), (13)

where BB(M) denotes the axis-aligned minimum bounding box of the model
point set. The first three intervals in (13) build the search space for the rotational
part and the bounding box for the translational part of the rigid transform.
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3 Adaptive Search for Global Minimization

Our stochastic minimization approach is inspired by the work of Bilbro and
Snyder [13]. The algorithm shares two properties with the one presented in [13]:
(i) we use the same data structure (an n-dimensional binary tree) to represent
the search space and (ii) we adapt the tree during the minimization process to
the objective function. In contrast to [13], where the tree is updated only when a
new candidate point is accepted, we update it at every iteration, so we use all the
information gained by the evaluation of the objective function. This apparently
minor modification leads to a rather different algorithm (than [13]) and enables
a faster rejection of regions in which the objective function is likely to have high
(i.e., poor) values and thus speeds up the convergence.

3.1 Problem Definition

We call a set X ⊂ Rn an n-dimensional (or n-d) box if there are n intervals
[ai, bi] ⊂ R such that

X = [a0, b0] × . . .× [an−1, bn−1]. (14)

Given an n-dimensional box X and a bounded continuous function f : X → R
our aim is to find an x∗ ∈ X with f(x∗) ≤ f(x) for all x ∈ X.

3.2 Overall Algorithm Description

We use an n-dimensional binary tree to represent the search space X. The root
η0
0 is at the 0th level of the tree and represents the whole box X0 := X. η0

0 has
two children η1

00 and η1
01, which are at the next level of the tree. They represent

the n-d boxes X00 respectively X01 resulting from bisecting the 0th interval (this
is [a0, b0] in (14)) of X0 and assigning the first half to X01 and the second half to
X11. In general, a node ηk

s (where k ≥ 0 and s is a binary string of length k+1)
is at the kth level of the tree and has two children ηk+1

s0 and ηk+1
s1 which are at

the next, (k+1)th, level. The child nodes represent the same n-d box as the one
represented by ηk

s (this is Xs) except for that the (k mod n)th interval of Xs is
bisected and the first and second half is assigned to ηk+1

s0 and ηk+1
s1 respectively.

During the minimization the tree is built in an iterative fashion beginning
with the root. The algorithm adds more resolution to promising regions in the
search space, i.e., the tree is built with greater detail in the vicinity of points in
X at which the objective function has low values. The overall procedure can be
outlined as follows:

1. Initialize the tree (see Section 3.3) and set an iteration counter j := 0.

2. Select a “promising” leaf according to a probabilistic selection scheme (see Sec-

tion 3.4).

3. Expand the tree by bisecting the selected leaf. This results in the creation of two

new child nodes. Evaluate the objective function at a point which is uniformly

sampled within the n-d box of one of the two children (see Section 3.5).

4. If a stopping criterion is not met, increment the iteration counter j and go to step

2, otherwise terminate the algorithm (see Section 3.6).
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3.3 Initializing the Tree

For every tree node ηk
s the following items are stored: (i) an n-d box Xs ⊂ X

and (ii) a pair (xs, f(xs)) consisting of a point xs, randomly selected from Xs,
and the corresponding function value f(xs). The tree is initialized by storing the
bounds of the whole search space X and a pair (x0, f(x0)) in the root.

3.4 Selecting a Leaf

At every iteration the search for a global minimum begins at the root and pro-
ceeds down the tree until a leaf (node without children) is reached. In order to
reach a leaf, we have to choose a concrete path from the root down to this leaf.
At each node, we have to decide, whether to take its left or right child as the
next station. This decision is made probabilistically. For every node two numbers
p0, p1 ∈ (0, 1) are computed in a way that p0 + p1 = 1. Arriving at a node, we
choose to descend via either its left or right child with probability p0 respectively
p1. We make these left/right decisions until we encounter a leaf.

Computing the Probabilities. The idea is to compute the probabilities in
a way, that the “better” child, i.e., the one with the lower function value, has
greater chance to be selected. We compute p0 and p1 for each node ηk

s based
on the function values associated with its children ηk+1

s0 and ηk+1
s1 . Let fs0 and

fs1 be the function values associated with ηk+1
s0 respectively ηk+1

s1 . The following
criterion should be fulfilled:

fs0 < fs1 ⇔ p0 > p1. (15)

For fs0 < fs1 we set

p0 = (t+ 1)/(1 + 2t), p1 = t/(1 + 2t), (16)

for a parameter t ≥ 0. For t → ∞ we get p0 = p1 = 1
2 and our minimization

algorithm becomes a pure random search. Setting t = 0 results in p0 = 1 and
p1 = 0 and makes the algorithm deterministically choosing the “better” child
of every node, which leads to the exclusion of a great portion of the search
space and in general prevents the algorithm from finding a global minimum. For
fs1 < fs0 we set

p0 = t/(1 + 2t), p1 = (t+ 1)/(1 + 2t). (17)

Updating the Probabilities. From the discussion above it becomes evident
that t should be chosen from the interval (0,∞). For our algorithm the parame-
ter t plays a similar role as the temperature parameter for a simulated annealing
algorithm [9], so we will refer to t as temperature as well. Like in simulated an-
nealing, the search begins on a high temperature level (large t), so the algorithm
samples the cost function quite uniformly. The temperature is decreased gradu-
ally during the search process, so that promising regions of the search space are
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explored in greater detail. More precisely, we update t according to the following
cooling schedule:

t = tmax exp(−vj). (18)

j ∈ N is the current iteration number, tmax > 0 is the temperature at the begin-
ning of the search (for j = 0) and v > 0 is the cooling speed which determines
how fast the temperature decreases.

3.5 Expanding the Tree

After reaching a leaf ηk
s , the n-d box Xs associated with it gets bisected in the

way described at the beginning of Section 3.2. This results in the creation of
two n-d boxes Xs0 and Xs1 associated with two new children ηk+1

s0 and ηk+1
s1

respectively. In this way, we add more resolution in this region of the search
space. Next, we evaluate the new children, i.e., we assign to the left and right
one a pair (xs0, f(xs0)) and (xs1, f(xs1)) respectively.

Note that the parent node ηk
s stores a pair (xs, f(xs)). Since we have Xs =

Xs0 ∪ Xs1 and Xs0 ∩ Xs1 = ∅ it follows that xs is contained either in Xs0 or in
Xs1. Thus we set

(xs0, f(xs0)) := (xs, f(xs)) if xs ∈ Xs0 or (19)
(xs1, f(xs1)) := (xs, f(xs)) if xs ∈ Xs1. (20)

To compute the other pair we sample a point uniformly over the appropriate n-d
box (Xs0 or Xs1) and evaluate the function at this point.

Updating the Tree. During the search we want to compute the random paths
from the root down to a certain leaf such that promising regions—leafs with low
function values—are visited more often than non-promising ones. Thus, after
evaluating a new created leaf, we propagate its (possibly very low) function value
as close as possible to the root. This is done by the following updating procedure.
Suppose that the parent point xs is contained in the set Xs1 belonging to the
new created child ηk+1

s1 . Therefore, we randomly generate xs0 ∈ Xs0, compute
f(xs0) and assign the pair (xs0, f(xs0)) to the other child ηk+1

s0 . Updating the tree
consists of ascending from ηk+1

s0 (via its ancestors) to the root and comparing
at every parent node ηj

u the function value f(xs0) with the function value of
ηj

u, i.e., with f(xu). If f(xs0) < f(xu) we update the current node by setting
(xu, f(xu)) := (xs0, f(xs0)) and proceed to the parent of ηj

u. The updating
procedure terminates if we reach the root or no improvement for the current
node is possible, i.e., if f(xs0) ≥ f(xu).

Note that if f(xs0) is the lowest function value found so far, it will be prop-
agated to the root, otherwise it will be propagated only to a certain level
l ∈ {1, . . . , k + 1}. This means, that every node contains the minimum func-
tion value (and the point at which f takes this value) found in the n-d box
associated with this node. Since the root represents the whole search space, it
contains the point we are interested in, namely the point at which f takes the
lowest value found up to the current iteration.
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3.6 Stopping Rule

We break the search, if for the last N iterations the absolute difference between
the last sample of the objective function and the sample before is less than a
predefined ε > 0.

4 Experimental Results

In this Section, we test our registration method on several point sets. Since the
algorithm is a probabilistic one, it computes each time a (slightly) different result.
In order to make a statistical meaningful statement about its performance, we
run 100 registration trials for every pair of inputs. We measure the success rate
and the accuracy of the algorithm under varying amount of noise and outliers in
the data point sets. The success rate gives the percentage of registration trials in
which a transform which is close to the global optimal one is found. The accuracy
is measured using the RMS error between the point sets after alignment [2]. The
type of noise added to some of the data sets is Gaussian and the outliers are
simulated by drawing points from a uniform distribution within the bounding
box of the corresponding data set. We also measure the number of cost function
evaluations and the computation time for varying cooling speed v (defined in
(18)). In the following, we describe each test scenario in detail.

First, we use our algorithm to register four data point sets to a noiseless model
of the Stanford bunny. The data sets are at a lower level of detail (compared to
the model), contain only parts of the bunny and three of them are contaminated
by a significant amount of outliers (see Fig. 1). We examine each of the 100
registration results. The upper row in Fig. 3 shows exemplary one result for
each data point set.

In the second test case, we register several versions of the Stanford dragon
under varying noisy conditions. We use a noiseless point set as the model. The

Fig. 1. (a) The bunny model point set. Although it is shown as a mesh, no surface

information is used for registration. (b) The data point set without outliers. Note that

the data set is incomplete and very sparsely sampled (compared to the model). (c)–(e)

Contaminated data point sets. The number of outliers as percentage of the original

number of points are shown below each figure. Note that local descriptors, like spin

images [1] or integral invariants [2], are very difficult to compute for such sparsely

sampled and outlier corrupted point sets.
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Fig. 2. The dragon model and data sets. Although all of them are shown as meshes,

only points are used for registration. (a) The dragon model. (b) Noiseless data set.

Note that it has a lower level of detail compared to the model and parts of the dragon

are missing. (c)–(e) Data point sets corrupted by zero-mean additive Gaussian noise

with variance σ which is expressed in percentage of the bounding box diagonal length

of the noiseless data set. Again, computing reliable local descriptors for the point sets

(d) and (e) is a very challenging task.

Fig. 3. (Upper row) Typical registration results for the incomplete and outlier cor-

rupted data point sets shown in Fig. 1. The amount of outliers is indicated below the

corresponding figure. (Lower row) Typical registration results for the incomplete and

noise contaminated data point sets shown in Fig. 2. The value for σ of the Gaussian

noise added to the data point sets is shown below each figure.

data sets have lower resolution, do not contain all parts of the dragon and three
of them are corrupted by Gaussian noise (see Fig. 2). As in the bunny test case,
we inspect all registration results. Four of them are shown in the lower row in
Fig. 3.

We compute the success rate and the mean RMS error based on all 800 reg-
istration results in the bunny and in the dragon test cases. For comparison, we
show how the newly proposed 4PCS registration algorithm [3] performs under
similar conditions. Note that 4PCS has been tested on different point sets, so an
exact comparison is not possible. In Fig. 4, we plot our results together with the
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Fig. 4. Success rate and mean RMS error computed from the registration results in

the bunny test case (a), (b) and in the dragon test case (c), (d). In (a) and (b) the

success rate and the mean RMS error are shown as a function of the number of outliers,

whereas in (c) and (d) they are a function of σ of Gaussian noise. In (b) and (d), we

compare the accuracy of our method with the accuracy of the 4PCS algorithm [3]. One

RMS error unit equals 1% of the bounding box diagonal length of the data point set.

Fig. 5. Success rate (a), mean RMS error (b), mean number of cost function evaluations

(c) and mean computation time (d) of our registration algorithm as a function of the

cooling speed v. All tests presented in this paper run on a low-cost computer with a

2.2 GHz CPU. For all registration trials we set tmax = 40 (see Eq. (18)). Model and

data set are copies of the point set shown in Fig. 1(b). One RMS error unit equals 1%

of the bounding box diagonal length of the point set.

ones reported in [3]. Observe that the success rate of our algorithm is immune
against outliers and shows low sensitivity to noise. For outlier corrupted point
sets, the 4PCS algorithm is apparently more accurate than ours (see Fig. 4(b)).
Note, however, that Aiger et al. [3] add outliers to both data and model set.
Thus, outliers from both point sets are close to each other and contribute little
to the RMS error. In contrast to this, we corrupt only the data point set, so its
outliers do not have close counterparts in the model point set, hence we get a
greater RMS error. According to Fig. 4(d), our method is far more accurate on
noisy point sets than the 4PCS algorithm.

Finally, we measure the performance of our algorithm for varying cooling
speed v. We report the results in Fig. 5. Our algorithm achieves a success rate of
100% and a mean RMS error less than 0.5 for 6.5 seconds. For comparison, the
best success rate (for similar point sets) achieved by the registration algorithms
studied in [8] is 15.951% (see last column of Table 3 in [8]).
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5 Conclusions

In this paper we introduced a new technique for pairwise rigid registration of
point sets. Our method is based on a noise robust and outlier resistant cost func-
tion and on a new stochastic approach for global minimization. Characteristic
to the proposed algorithm is (i) that it does not rely on an initial estimation of
the globally optimal rigid transform and (ii) that it has low sensitivity to out-
liers, noise and missing data. Both claims were further supported by a variety
of experiments on noisy, outlier corrupted and incomplete point sets.

Acknowledgement. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme FP7/2007-
2013 under grant agreement 215821 (GRASP project).
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Multi-label MRF Optimization
via a Least Squares s − t Cut

Ghassan Hamarneh

School of Computing Science, Simon Fraser University, Canada

Abstract. We approximate the k-label Markov random field optimiza-

tion by a single binary (s−t) graph cut. Each vertex in the original graph

is replaced by only ceil(log2(k)) new vertices and the new edge weights

are obtained via a novel least squares solution approximating the origi-

nal data and label interaction penalties. The s− t cut produces a binary

“Gray” encoding that is unambiguously decoded into any of the original

k labels. We analyze the properties of the approximation and present

quantitative and qualitative image segmentation results, one of the sev-

eral computer vision applications of multi label-MRF optimization.

1 Introduction

Many visual computing tasks can be formulated as graph labeling problems,
e.g. segmentation and stereo-reconstruction [1], in which one out of k labels is
assigned to each graph vertex. This may be formulated as a k-way cut problem:
Given graph G(V,E) with |V | vertices vj ∈ V and |E| edges evi,vj = eij ∈ E ⊆
V × V with weights w(eij) = wij > 0, find an optimal k-cut C∗ ⊂ E with min-
imal cost |C∗| = argminC |C|, where |C| =

∑
eij∈C wij , such that E\C breaks

the graph into k groups of labelled vertices. This k-cut formulation encodes the
semantics of the problem at hand (e.g. segmentation) into wij . However, if the
optimal label assigned to a vertex depends on the labels assigned to other vertices
(e.g. to regularize the label field), setting wij ∀i, j becomes less straightforward.
The Markov random field (MRF) formulation captures this desired label inter-
action via an energy ξ(l) to be minimized with respect to the vertex labels l.

ξ(l) =
∑

vi∈V

Di(li) + λ
∑

(vi,vj)∈E

Vij(li, lj , di, dj) (1)

where Di(li) penalizes labeling vi with li, and Vij , aka prior, penalizes assigning
labels (li, lj) to neighboring vertices1. Vij may be influenced by the data value
di at vi (e.g. image intensity). λ controls the relative importance of Di and Vij .

For labeling a P -pixel image, typically a graph G is constructed with |V | = P .
To encode Di(li), G may be augmented with k new terminal vertices {tj}k

j=1;
each representing one of the k labels (Figure 2(a)) and wvi,tj set inversely pro-
portional to Di(lj). When Vij = Vij(di, dj), i.e. independent of li and lj , Vij

may be encoded by wvi,vj ∝ Vij (di, dj). The random walker [2] globally solves a

1 Higher order priors, e.g. 3rd order Vijk(li, lj , lk), are also possible.

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 1055–1066, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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labeling problem of this type, i.e. disregarding label interaction. Solving multi-
label MRF optimization for any interaction penalty remains an active research
area. In [3], the globally optimal binary (k=2) labeling is found using min-cut
max-flow. For k > 2 with convex prior, the global minimizer is attained by
replacing each single k-label variable with k [4] or by using k − 1 [5] boolean
variables. However, convex priors tend to over-smooth the label field. For k > 2
with metric or semi-metric priors, Boykov et al. performed range moves using
binary cuts to expand or swap labels [1]. Other range moves were proposed in
[6,7]. More recent approaches to multi-label MRF optimization were proposed
based on linear programming relaxation using primal-dual [8], message passing
or belief propagation [9], and partial optimality [10] (see [11] for a recent survey).

In this paper, we focus on optimal encoding of the k-label MRF energy solely
into the edge weights of a graph. We impose no restrictions on k, or on the order
(2nd or higher) or type (e.g. non-convex, non-metric, or spatially varying) of the
label interaction penalty. The calculated edge weights are optimal in the sense
that they minimize the least squares (LS) error when solving a linear system of
equations capturing the original MRF penalties. Further, we transform the multi-
labelling problem to a binary s−t cut, in which each vertex in the original graph is
replaced by the most compact boolean representation; only ceil(log2(k)) vertices
represent each k-label variable. In [12], a general framework for converting multi-
label problems to binary ones is presented. In contrast to our work, [12] solved a
system of equations to find the boolean encoding function (not the edge weights),
they did not use LS, and their resulting binary problem can still include label
interaction. We perform a single (non-iterative and initialization-independent)
s − t cut to obtain a “Gray” binary encoding, which is then unambiguously
decoded into the k labels. Besides its optimality features, LS enables offline pre-
computation of pseudoinverse matrices that can be re-used for different graphs.

2 Method

2.1 Reformulating the Multi-label MRF as an s − t Cut

Given a graph G(V,E), the objective is to label each vertex vi ∈ V with a label
li ∈ Lk = {l0, l1, ..., lk−1}. Rather than labeling vi with li ∈ Lk, we replace vi

with b vertices (vij)b
j=1, and binary-label them with (lij)b

j=1, i.e. lij ∈ L2 =
{l0, l1}. b is chosen such that 2b ≥ k or b = ceil(log2(k)), i.e. a long enough
sequence of bits to be decoded into li ∈ Lk

2. To this end, we transform G(V,E)
into a new graph G2(V2, E2) with additional source s and sink t nodes, i.e.|V2| =
b|V | + 2. E2 includes terminal links Etlinks

2 = Et
2 ∪Es

2 where |Et
2| = |Es

2 | = |V2|;
neighborhood links Enlinks

2 = Ens
2 ∪ Enf

2 where |Enlinks
2 | = b2|E|, |Ens

2 | = b|E|,
and |Enf

2 | = (b2 − b)|E|; and intra-links Eintra
2 where |Eintra

2 | =
(

b
2

)
|V |. Figure

1 shows these different types of edges. Following an s− t cut on G2, vertices vij

that remain connected to s are assigned label 0, and the remaining are connected
2 We distinguish between the decimal (base 10) and binary (base 2) encoding of the

labels using the notation (li)10 and (li)2 = (li1, li2, · · · , lib)2, respectively.
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Fig. 2. Reformulating the multi-label problem as an s − t cut. (a) Labeling vertices

{vi}5
i=1 with labels {lj}3

j=0 (only t-links are shown). (b) New graph with 2 terminal

nodes {s, t}, b = 2 new vertices (vi1 and vi2 inside the dashed circles) replacing each

vi in (a), and 2 terminal edges for each vij . An s− t cut on (b) is depicted as the green

curve. (c) Labeling vi in (a) is based on the s− t cut in (b): Pairs of (vi1, vi2) assigned

to (s, s) are labeled with binary string 00, (s, t) with 01, (t, s) with 10, and (t, t) with

11. The binary encodings {00,01,10,11} in turn reflect the original 4 labels {lj}3
j=0.

to t and assigned label 1. The string of b binary labels lij ∈ L2 assigned to vij are
then decoded back into a decimal number indicating the label li ∈ Lk assigned
to vi (Figure 2).

It is important to set the edge weights of E2 in such a way that decoding the
binary labels resulting from the s − t cut of G2 results in optimal (or close to
optimal) labels for the original multi-label problem. To achieve this, we derive a
system of linear equations capturing the relation between the original multi-label
MRF penalties and the s − t cut cost incurred when generating different label
configurations. We then calculate the weights of E2 as the LS error solution to
these equations. The next sections expose the details.

2.2 Data Term Penalty: Severing T-Links and Intra-Links

The 1st order penalty Di(li) in (1) is the cost of assigning li to vi in G, which
entails assigning a corresponding sequence of binary labels (lij)b

j=1 to (vij)b
j=1

in G2. To assign (li)2 to a string of b vertices, appropriate terminal links must
be cut. To assign a 0 (resp. 1) label to vij , the edge connecting vij to t (resp.
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s) must be severed (Figure 3). Therefore, the cost of severing t-links in G2 to
assign li to vertex vi in G is calculated as

Dtlinks
i (li) =

b∑
j=1

lijwvij ,s + l̄ijwvij ,t (2)

where l̄ij denotes the unary complement (NOT) of lij . The G2 s− t cut severing
the t-links, as per (2), will also result in severing edges in Eintra

2 (Figure 1). In
particular, eim,in ∈ Eintra

2 will be severed iff the s−t cut leaves vim connected to
one terminal, say s (resp. t), while vin remains connected to the other terminal
t (resp. s). If this condition holds, then wvim,vin will contribute to the cost.
Therefore, the cost of severing intra-links in G2 to assign li to vertex vi in G is

Dintra
i (li) =

b∑
m=1

b∑
n=m+1

(lim ⊕ lin) wvim,vin (3)

where ⊕ denotes binary XOR. The total data penalty is the sum of (2) and (3),

Di(li) = Dtlinks
i (li) + Dintra

i (li). (4)

2.3 Prior Term Penalty: Severing N-Links

The interaction penalty Vij(li, lj, di, dj) for assigning li to vi and lj to neighboring
vj in G must equal the cost of assigning a sequence of binary labels (lim)b

m=1 to
(vim)b

m=1 and (ljn)b
n=1 to (vin)b

n=1 in G2. The cost of this cut can be calculated
as (Figure 4)

Vij(li, lj, di, dj) =
b∑

m=1

b∑
n=1

(lim ⊕ ljn)wvim,vjn . (5)

This effectively adds the edge weight between vim and vjn to the cut cost iff the
cut results in one vertex of the edge connected to one terminal (s or t) while
the other vertex connected to the other terminal (t or s). Note that we impose
no restrictions on the left hand side of (5), e.g. it could reflect non-convex or
non-metric priors, spatially-varying, or even higher order label interaction.
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Fig. 4. Severing n-links between neighboring vertices vi and vj for b = 2 (four examples

are shown in the top row) and b = 3 (three examples in the bottom row). The cut is

depicted as a red curve. In the last two examples for b = 3, the colored vertices are

translated while maintaining the n-links in order to clearly show that the severed n-links

for each case follow (5).

2.4 Edge Weight Approximation with Least Squares

Equations (4) and (5) dictate the relationship between the penalty terms (Di

and Vij) of the original multi-label problem and the severed edge weights wij,mn;
∀eij,mn ∈ E2 of the s − t graph G2. What remains missing before applying the
s − t cut, however, is to find these edge weights.

Edge weights of t-links and intra-links. For b = 1 (i.e. binary labelling),
(3) simplifies to Dintra

i (li) = 0 and (4) simplifies to Di(li) = li1wvi1,s + l̄i1wvi1,t.
With li = li1 for b = 1, substituting the two possible values for li = {l0, l1}, we
obtain

li = l0 ⇒ Di(l0) = l0wvi1,s + l̄0wvi1,t = 0wvi1,s + 1wvi1,t

li = l1 ⇒ Di(l1) = l1wvi1,s + l̄1wvi1,t = 1wvi1,s + 0wvi1,t
(6)

which can be written in matrix form A1X
i
1 = Bi

1 as
(

0 1
1 0

) (
wvi1,s
wvi1,t

)
=

(
Di(l0)
Di(l1)

)
where X i

1 is the vector of unknown edge weights connecting vertex vi1 to s and t,
Bi

1 is the data penalty for vi, and A1 is the matrix of coefficients. The subscript
1 in A1, X

i
1, and Bi

1 indicates that this matrix equation is for b = 1. Clearly, the
solution is trivial and expected: wvi1,s = Di(l1) and wvi1,t = Di(l0)

For b = 2, we address multi-label problems of k = {3, 4}, or 2b−1 = 2 < k ≤
2b = 4 labels. Substituting the 2b = 4 possible label values, ((0,0),(0,1),(1,0),
and (1,1)), of (li)2 = (li1, li2) in (4) we obtain

(0, 0) ⇒ Di(l0) = 0wvi1,s + 1wvi1,t + 0wvi2,s + 1wvi2,t + 0wvi1,vi2

(0, 1) ⇒ Di(l1) = 0wvi1,s + 1wvi1,t + 1wvi2,s + 0wvi2,t + 1wvi1,vi2

(1, 0) ⇒ Di(l2) = 1wvi1,s + 0wvi1,t + 0wvi2,s + 1wvi2,t + 1wvi1,vi2

(1, 1) ⇒ Di(l3) = 1wvi1,s + 0wvi1,t + 1wvi2,s + 0wvi2,t + 0wvi1,vi2

(7)

which can be written in matrix form A2X
i
2 = Bi

2 as
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⎛⎜⎜⎝
0 1 0 1 0

0 1 1 0 1

1 0 0 1 1

1 0 1 0 0

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎝

wvi1,s

wvi1,t

wvi2,s

wvi2,t

wvi1,vi2

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎝
Di(l0)
Di(l1)
Di(l2)
Di(l3)

⎞⎟⎟⎠ . (8)

In general, for any b, we have
AbX

i
b = Bi

b (9)

where X i
b is a column vector of length 2b+

(
b
2

)
(superscript t denotes transpose),

Xi
b = (wvi1,s, wvi1,t, wvi2,s, wvi2,t, · · · , wvib,s, wvib,t,

wvi1,vi2 , wvi1,vi3 , · · · , wvi1,vib , wvi2,vi3 , · · · , wvi2,vib , · · · , wvi,b−1,vib)
t (10)

Ab is a 2b × (2b+
(

b
2

)
) matrix whose jth row Ab(j, :) is given by

Ab(dec(li1li2 · · · lib), :) = (li1, l̄i1, li2, l̄i2, · · · , lib, l̄ib,
li1 ⊕ li2, li1 ⊕ li3, · · · , li1 ⊕ lib, li2 ⊕ li3, li2 ⊕ lib, · · · , li,b−1 ⊕ lib)

(11)

where dec(.) is the decimal equivalent of its binary argument. Bi
b is a 2b-long

column vector given by Bi
b = (Di(l0), Di(l1), Di(l2), · · · , Di(l2b−1))

t.
We now solve the linear system of equations in (9) to find the optimal, in a

LS sense, t-links and intra-links edge weights X̂ i
b related to every vertex vi using

X̂ i
b = A+

b B
i
b (12)

where A+ is the (Moore-Penrose) pseudoinverse of A calculated using singular
value decomposition (SVD)[13].

Edge weights of n-links. For b = 1 (i.e. binary labelling), (5) simplifies to
(li ⊕ lj)wij = Vij (li, lj, di, dj), where wvi1,vj1 has been replaced by wi,j and li1
and lj1 have been replaced by li and lj , since they are equivalent for b = 1.
If Vij(li, lj , di, dj) = Vij(di, dj), i.e. label-independent, we can simply ignore
the outcome of li ⊕ lj by setting it to a constant. Then, the solution is trivial
and as expected (Section 1): wi,j ∝ Vij(di, dj). However, in the general case
when Vij depends on the labels li and lj of the neighboring vertices vi and vj ,
a single edge weight is insufficient to capture such elaborate label interactions,
intuitively, because wi,j needs to take on a different value for every pair of labels.
To address this problem, we substitute in (5) each of the 2b2b = 22b = 22 = 4
possible combinations of pairs of labels (li, lj) ∈ {l0, l1}×{l0, l1} = {0, 1}×{0, 1},
and obtain the following system of linear equations:

(l0, l0) = (0, 0) ⇒ Vij(l0, l0, di, dj) = (0 ⊕ 0) wi,j = 0

(l0, l1) = (0, 1) ⇒ Vij(l0, l1, di, dj) = (0 ⊕ 1) wi,j = wi,j

(l1, l0) = (1, 0) ⇒ Vij(l1, l0, di, dj) = (1 ⊕ 0) wi,j = wi,j

(l1, l1) = (1, 1) ⇒ Vij(l1, l1, di, dj) = (1 ⊕ 1) wi,j = 0

(13)

which is written in matrix form S1Y
ij
1 = T ij

1 as⎛⎜⎝0

1

1

0

⎞⎟⎠ (wi,j) =

⎛⎜⎝Vij(l0, l0, di, dj)

Vij(l0, l1, di, dj)

Vij(l1, l0, di, dj)

Vij(l1, l1, di, dj)

⎞⎟⎠ (14)
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where Y ij
1 is the unknown n-link weight wi,j connecting vi to neighboring vj . The

1st and 4th equations capture the condition that in order to guarantee the same
label for neighboring vertices then the edge weight connecting them should be in-
finite (0/Vij) and, hence, never severed. Solving for wij using pseudoinverse gives
wij = S+

1 T
i
1 = 1

2 (Vij(l0, l1, di, dj) + Vij(l1, l0, di, dj)) since S+
1 = (0, 0.5, 0.5, 0),

i.e. wij is equal to the average between the interaction penalties of the two cases
when the labels are different.

For b = 2, (5) simplifies to

Vij(li, lj , di, dj) = (li1 ⊕ lj1)wvi1,vj1 + (li1 ⊕ lj2)wvi1,vj2+

(li2 ⊕ lj1)wvi2,vj1 + (li2 ⊕ lj2)wvi2,vj2

(15)

We can now substitute all possible 2b2b = 22b = 16 combinations of the pairs of
interacting labels (li, lj)∈{l0, l1, l2, l3}×{l0, l1, l2, l3}, or equivalently, ((li)2, (lj)2)
∈ {00, 01, 10, 11} × {00, 01, 10, 11}. Here are a few examples,

(l0, l0) = (00, 00) ⇒ Vij(l0, l0, di, dj) = 0wvi1,vj1 + 0wvi1,vj2 + 0wvi2,vj1 + 0wvi2,vj2
(l1, l2) = (01, 10) ⇒ Vij(l1, l2, di, dj) = 1wvi1,vj1 + 0wvi1,vj2 + 0wvi2,vj1 + 1wvi2,vj2
(l3, l3) = (11, 11) ⇒ Vij(l3, l3, di, dj) = 0wvi1,vj1 + 0wvi1,vj2 + 0wvi2,vj1 + 0wvi2,vj2

(16)

Writing all the 16 equations, we obtain the system of linear equations in matrix
format as S2Y

ij
2 = T ij

2 , where Y ij
2 = (wvi1,vj1 , wvi1,vj2 , wvi2,vj1 , wvi2,vj2)t is the

4× 1 vector of unknown n-link edge weights, T ij
2 is a 16× 1 vector whose entries

are the different possible interaction penalties ((Vij(li, lj, di, dj))3i=0)
3
j=0, and S2

is a 16 × 4 matrix with 0 or 1 entires resulting from ⊕.
In general, for any b, we obtain the following linear system of equations

SbY
ij
b = T ij

b (17)

where Y ij
b is the b2 × 1 vector of unknown n-link edge weights, Sb is 22b × b2

matrix of 0s and 1s, and T ij
b is a 22b × 1 vector of interaction penalties.

We now solve the linear system of equations in (17) to find the optimal, in a
LS sense, n-links edge weights Ŷ ij

b related to a pair of vertices vi and vj using

Ŷ ij
b = S+

b T
ij
b . (18)

Solving (18) for every pair of neighboring vertices vi and vj , we obtain the
weights of all edges in Einter

2 , and solving (12) for every vertex vi, we obtain the
weights of all edges in Etlinks

2 ∪Eintra
2 , i.e. wij,mn, ∀eij,mn ∈ E2 are now known.

It is important to note that some of these resulting edge weights may turn out
negative. In order to guarantee positive weights and hence guarantee a globally
optimal cut of G2 in polynomial time, we simply add the same constant to all
the edge weights in G2 to translate all the values to become larger than zero.
We now calculate the minimal s − t cut of G2 to obtain the binary labeling of
every vertex in V2 = {{vij}|V |

i=1}b
j=1. Finally, every sequence of b binary labels

(vij)b
j=1 is decoded to a decimal label li ∈ Lk = {l0, l1, ..., lk−1}, ∀vi ∈ V , i.e. the

solution to the original multi-label MRF problem.
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2.5 Gray Encoding of Extra Labels

When k < 2b, an s − t cut may generate extra labels (the nth label ln−1 is
extra iff k < n ≤ 2b), which must be replaced or merged with a non-extra
label (the mth label lm−1 is non-extra iff 2b−1 < m ≤ k). To replace ln with
lm, we replace Di(ln) with Di(lm) in (4), Vij(ln, lj , di, dj) with Vij(lm, lj , di, dj),
and Vij(li, ln, di, dj) with Vij(li, lm, di, dj) in (5). Rather than merging arbitrary
labels, we adopt a Gray encoding scheme that minimizes the Hamming distance
between the binary codes of merged labels. We first note that the most significant
bit of any extra label ln will always be 1. Then, ln is merged with the non-
extra label whose binary code is identical to ln except for having 0 as its most
significant bit: i.e. (ln)2 = (1, l2, · · · , lb)2 is merged with (lm)2 = (0, l2, · · · , lb)2.

3 Results

3.1 LS Error and Rank Deficiency Analysis

LS approximation error is a well studied topic (e.g. [13]). Table 1 summarizes
the main properties (number of equations, unknowns, and rank) when solving
for the weights of t-links and intra-links (Ab in (9)) and for inter-links (Sb in
(17)) for increasing bits b. We note that, not surprisingly, the only full-rank
case is A1 (i.e. binary segmentation). Ab is underdetermined for b = 2, 3 and
overdetermined for b ≥ 4. All cases of Sb are rank deficient and overdetermined.

In Figure 5, we present empirical results of LS error eb = |Bi
b − B̂i

b|/|Bi
b| =

|(I − AbA
+
b )Bi

b|/|Bi
b| (when solving for t-links and intra-links) and et = |T ij

b −
T̂ ij

b |/|T ij
b | = |(I − SbS

+
b )T ij

b |/|T ij
b | (for n-links), for increasing number of labels

k, where I is the identity matrix and |.| is the l2-norm. The plots are the result of
a Monte Carlo simulation of 500 random realizations of Bi

b and T ij
b for every k.

Note how eb starts at exactly zero for binary segmentation (b = 1), as expected.
As k increases, the average of eb increases with an (empirical) upper bound of
0.5, while its variance decreases. et is non-zero even for b = 1 (Section 2.4) and
converges to 0.5 with increasing k.

Table 1. Properties of the systems of linear equations (9) and (17). For increasing

b, the number of equations e, number of unknowns u, and ranks r of Ab and Sb are

shown. For Ab, u0 is when intra-links are not used (Eintra
2 = ∅) and, for Sb, u0 is when

only sparse n-links are used (Enf
2 = ∅).

b Ab in (9) Sb in (17)

bits e = 2b u = 2b +
(

b
2

)
r u0 = 2b r0 e = 22b u = b2 r u0 = b r0

1 2 2 2 2 2 4 1 1 1 1
2 4 5 4 4 3 16 4 4 2 2
3 8 9 7 6 4 64 9 9 3 3
4 16 14 11 8 5 256 16 16 4 4
5 32 20 16 10 6 1024 25 25 5 5
6 64 27 22 12 7 4096 36 36 6 6
7 128 35 29 14 8 16384 49 49 7 7
8 256 44 37 16 9 65536 64 64 8 8
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Fig. 5. LS error for increasing number of labels. (top) Error eb in estimating the weights

of Etlinks
2 ∪Eintra

2 . (bottom) Error et in estimating the weights of Enlinks
2 . The general

behavior of the error is clear from the figure. The reader may refer to the electronic

copy of this paper for color and scalable graphics.

3.2 Effect of LS Error in Edge Weights on the s − t Cut

The LS error in edge weights induces error in the s − t cut or binary labeling,
which is decoded into a suboptimal solution to the multi-label problem. To
quantify the cut cost error �|C| and the labeling accuracy ACC due to edge
weight error, we create a graph G with a proper topology (i.e. reflecting the
4-connectedness of 2D image pixels) and edge weights sampled from a uniform
probability distribution function (PDF) with support [0, 1]. We then construct
GLSE , a noisy version of G, by adding uniformly distributed noise with support
[0, noise level] to the edge weights. Figure 6 shows the results of �|C| = ||C| −
|CLSE ||/|C| and ACC = (TP+TN)/|V |, where |C| =

∑
eij∈C wij is the cut cost

of G, |CLSE | is the cut cost of GLSE , and TP + TN is the number of correctly
labelled vertices (i.e. true positive and true negatives), and |V | is the number
of vertices in G. The plots are the results of a Monte Carlo simulation of 20
realizations of G and GLSE each with 10,000 vertices.

3.3 Image Segmentation Results

We evaluated our method’s segmentation accuracy by calculating the average
(over all labels) Dice similarity coefficient DSC [14](Figure 7(left)) on synthetic
(with known ground truth) images: I(x, y) : R2 → [0, 1], containing ellipses with
random major and minor axes and varying pixel intensities (Figure 7(right)). We
tested increasing levels of Gaussian noise ∼ N (0, σ ∈ {0, 0.05, 0.10, · · · , 0.40}),
labels k = {2, 3, · · · , 16}, and with non-convex Pott’s label interaction weighted
by a spatially varying Gaussian image intensity penalty [3]. We ran 10 realization
for each test case. For pixel i with intensity di, Di(li) = (pl(µ) − pl(xi))/pl(µ),
where pl(d) ∼ N (µl, σl) is a Gaussian PDF learned from 50% of the pixels of
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Fig. 6. Cut cost error �|C| and labeling accuracy ACC as we corrupt the edge weights

with increasing levels of noise
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Fig. 7. Segmentation results on images of ellipses. (left) DSC between the ground

truth and our method’s segmentation with increasing number of labels and noise levels

(different colors). (right) Sample qualitative results with k labels (k − 1 ellipses plus

background) and noise level σ. (top row) sample intensity images; (remaining rows)

labeling results.

Fig. 8. Brain MRI segmentation on coronal (top) and transversal (bottom) slices for

increasing noise σ

each region (or label) l of the noisy image (mimicking seeding). Note that DSC
gradually decreases from unity with increasing σ or k, e.g. the topmost curve
(blue, σ = 0.05) shows almost perfect segmentation; DSC = 1 ∀k, whereas DSC
drops below 1 for k ≥ 9 for the second-from-top curve (green, σ = 0.1), and for
k ≥ 5 for third curve (red, σ = 0.15).
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We present qualitative segmentation results on synthetic data (Figure 7(right))
and on magnetic resonance brain images (Figure 8) from BrainWeb [15].

4 Conclusions

Multi-label MRF optimization with non-trivial priors is a challenging problem
with several computer vision applications. In our proposed approach, rather than
labeling a vertex with one of k labels, the vertex is replaced by b = ceil(log2(k))
new vertices that are binary-labelled to encode the original k labels; effectively
approximating the multi-label problem with a globally and non-iteratively solv-
able s− t cut. The new s− t graph is optimal in a least squares sense because its
edge weights are the LS error solution of a system of linear equations capturing
the original multi-label MRF energy, without any restrictions on the interac-
tion priors. To the best of our knowledge, this is the first work to use LS to
approximate the multi-label MRF with any order of label interaction solely via
the edge wights of a graph (with no label interaction). Offline pre-computation
of A+

b and S+
b in (12) and (18) is performed only once for each b value then

re-used for different vertices and graphs. We quantitatively evaluated different
properties of the proposed approximation and demonstrated its application to
image segmentation (with qualitative and quantitative results on synthetic and
brain images). More elaborate analysis of the algorithm (e.g. error bounds, value
of the minimized energy, computational complexity, running times) and compar-
ison with state-of-the-art approaches on standard benchmarks is left for future
work. Further, we are exploring the use of non-negative least squares (e.g. Chap-
ter 23 in [16]) to guarantee non-negative edge weights as well as quantifying the
benefits of the Gray encoding.
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Abstract. Linear systems and eigen-calculations on symmetric diagonally dom-
inant matrices (SDDs) occur ubiquitously in computer vision, computer graphics,
and machine learning. In the past decade a multitude of specialized solvers have
been developed to tackle restricted instances of SDD systems for a diverse collec-
tion of problems including segmentation, gradient inpainting and total variation.
In this paper we explain and apply the support theory of graphs, a set of of tech-
niques developed by the computer science theory community, to construct SDD
solvers with provable properties. To demonstrate the power of these techniques,
we describe an efficient multigrid-like solver which is based on support theory
principles. The solver tackles problems in fairly general and arbitrarily weighted
topologies not supported by prior solvers. It achieves state of the art empirical re-
sults while providing robust guarantees on the speed of convergence. The method
is evaluated on a variety of vision applications.

1 Introduction

The Laplacian operator ∇2 has played a central role in computer vision for nearly 40
years. In Horn’s early work, he employed finite element methods for elliptical oper-
ators in shape from shading [1], to produce albedo maps [2], and flow estimates [3].
In Witkin’s seminal work [4] he studied the diffusion properties of matrix equations
derived from ∇2 for linear filtering, later generalized by Perona and Malik [5] to the
anisotropic case.

In recent years, combinatorial Laplacians of graphs have formed the algorithmic
core of spectral methods [6,7,8,9,10,11,12,13], random walks segmentation [11], in-
painting [14,15,16], and matting methods [12]. Given the power of modern iterative
solvers, we believe that reducing traditional image processing problems, such as Grady
et al.’s work [17] on Mumford-Shah segmentation, to SDD systems at the inner loop
is a critical endeavor. To this end, we note that non-linear filtering operations such as
�2, �1 Total Variation [18,19] and Non-Local Means [20,21] can also be formulated
as optimizations with these linear systems at their core. Further, we provide timing and
modern complexity bounds for computer vision methods in §4 that require the solutions
to SDD systems at their core.

� This work was partially supported by the National Science Foundation under grant num-
ber CCF-0635257 and the University of Pittsburgh Medical Center under award number A-
006461.
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From a practical standpoint, modern photos and videos, and medical images de-
rived NMR and CT scanners provide enormously detailed portraits of a scene. As the
resolution of imaging hardware has pushed at the limits of computational feasibility,
researchers inevitably arrived at the study of iterative and hybrid solvers. Recently,
vision and graphics researchers have developed specialized solvers [14,22,16,15], and
heuristic solvers with impressive empirical performance [23,15,24,25]. In either case,
the methods place strict requirements on the system, such as unit weight edges or 4-
connectivity. For the methods that handle general weights, including Algebraic Multi-
grid (AMG) [26,27], the solvers are based on heuristics and offer no guarantees on the
speed of convergence. Indeed many applications, such as the spectral segmentation and
convex programming, require wildly varying weights and often employ randomly sam-
pled and loosely localized topologies. Furthermore, the heuristic nature of the solvers
is generally undesirable in certain commercial applications, e.g. medical, where robust
and timely behavior is a critical issue.

Given modern data volumes and reliability requirements it is clear that a SDD solver
with provable convergence properties and sound theoretical machinery is important for
the advancement and real-world success of methods based on linear system solutions.
In this work we introduce the Combinatorial Multigrid Solver (CMG), a state of the
art solver with provable properties. The CMG solver is based on principles of support
theory for graphs, a set of techniques developed for the construction of combinatorial
preconditioners, i.e. graphs that are simpler than a given graph and approximate it well
in a precisely defined sense. An ancillary goal of this paper is to review certain useful
fragments of support theory and apply them to analyze solvers.

2 Support Theory for Graphs

Support Theory was developed for the study of Combinatorial subgraph precondition-
ers, introduced by Vaidya [28,29]. It has been at the heart of impressive theoretical
results which culminated in the work of Spielman and Teng [30] who demonstrated
that SDD systems can be solved in nearly-optimal Õ(n logO(1) n) time and later in the
work of Koutis and Miller [31] who formally proved that SDD matrices with planar
connection topologies (e.g. 4-connectivity in the image plane) can be solved asymptoti-
cally optimally, in O(n) time. We dub these solvers hybrid solvers since they combine
algorithms and ideas from direct solvers, preconditioned Conjugate Gradient, and re-
cursion.

2.1 Reduction of SDDs to Laplacians

A matrix A is SDD if it is real symmetric and Aii ≥
∑

j �=i |Aij | for 1 ≤ i ≤ n. The
Laplacian A of a graph G = (V, E, w), where w is a non-negative weight function
on the edges, is defined by Ai,j = A(j, i) = −wi,j and Ai,i =

∑
i�=j wi,j . Thus

Laplacians are SDD matrices having non-positive off diagonals and zero row sums. We
briefly describe how any SDD system can be reduced to a Laplacian. SDD systems with
positive off-diagonals can be reduced to the case of non-positive off diagonals using a
very light-weight reduction known as the double-cover construction [32]. Assuming
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now negative off-diagonals, nodes with positive row sums can be viewed as nodes that
have an implicit edge to a new “grounded node”. In general they do not cause any
significant changes in the Laplacian solver [33,34].

2.2 Preconditioners — Motivating Support Theory

Iterative algorithms, such as the Chebyshev iteration or the Conjugate Gradient, con-
verge to a solution using only matrix-vector products with A. It is well known that
iterative algorithms suffer from slow convergence properties when the conditioning of
A, κ(A), - defined as the ratio of the largest over the minimum eigenvalue of A - is
large [35].

Preconditioned iterative methods attempt to remedy the problem by changing the
linear system to B−1Ax = B−1b. In this case, the algorithms use matrix-vector prod-
ucts with A, and solve linear systems of the form By = z. The speed of convergence
now depends on the condition number κ(A, B), defined as

κ(A, B) = max
x

xT Ax

xT Bx
· max

x

xT Bx

xT Ax
(1)

where x is taken to be outside the null space of A. In constructing a preconditioner B,
one has to deal with two contradictory goals: (i) Linear systems in B must be easier than
those in A to solve, (ii) The condition number must be small to minimize the number
of iterations.

Historically, preconditioners were natural parts of the matrix A. For example, if B
is taken as the diagonal of A we get the Jacobi Iteration, and when B is the upper
triangular part of A, we get the Gauss-Seidel iteration.

The cornerstone of combinatorial preconditioners is the following intuitive yet
paradigm-shifting idea explicitly proposed by Vaidya: A preconditioner for the Lapla-
cian of a graph A should be the Laplacian of a simpler graph B, derived in a principled
fashion from A.

2.3 Graphs as Electric Networks – Support Basics

There is a fairly well known analogy between graph Laplacians and resistive networks
[36]. If G is seen as an electrical network with the resistance between nodes i and j
being 1/wi,j , then in the equation Av = i, if v is the vector of voltages at the node, i is
the vector of currents. Also, the quadratic form vT Av =

∑
i,j wi,j(vi − vj)2 expresses

the power dissipation on G, given the node voltages v. In view of this, the construction
of a good preconditioner B amounts to the construction of a simpler resistive network
(for example by deleting some resistances) with an energy profile close to that of A.

The support of A by B, defined as σ(A/B) = maxv vT Av/vT Bv is the number
of copies of B that are needed to support the power dissipation in A, for all settings
of voltages. The principal reason behind the introduction of the notion of support, is to
express its local nature, captured by the Splitting Lemma.

Lemma 1 (Splitting Lemma). If A =
∑m

i=1 Ai and B =
∑m

i=1 Bi, where Ai, Bi are
Laplacians, then σ(A, B) ≤ maxiσ(Ai, Bi).
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The Splitting Lemma allows us to bound the support of A by B, by splitting the power
dissipation in A into small local pieces, and “supporting” them by also local pieces
in B.

For example, in his work Vaidya proposed to take B as the maximal weight spanning
tree of A. Then, it is easy to show that σ(B, A) ≤ 1, intuitively because more resis-
tances always dissipate more power. In order to bound σ(A, B), the basic idea to let the
Ai be edges on A (the ones not existing in B), and let Bi be the unique path in the tree
that connects the two end-points of Ai. Then one can bound separately each σ(Ai, Bi).
In fact, it can be shown that any edge in A that doesn’t exist in B, can be supported only
by the path Bi.

As a toy example, consider the example in Figure 1(a) of the two (dashed) edges
A1, A2 and their two paths in the spanning tree (solid) that share one edge e.

In this example, the dilation of the mapping is equal to 3, i.e. the length of the longest
of two paths. Also, as e is uses two times, we say that the congestion of the mapping is
equal to 2. A core Lemma in Support Theory [37,33] is that the support can be upper
bounded by the product congestion∗dilation.

2.4 Steiner Preconditioners

Steiner preconditioners, introduced in [32] and extended in [38] introduce external
nodes into preconditioners. The proposed preconditioner is based on a partitioning of
the n vertices in V into m vertex-disjoint clusters Vi. For each Vi, the preconditioner
contains a star graph Si with leaves corresponding to the vertices in Vi rooted at a vertex
ri. The roots ri are connected and form the quotient graph Q. This general setting is
illustrated in Figure 1(b), consisting of good clusters.

Let D′ be the total degree of the leaves in the Steiner preconditioner S. Let the
restriction R be an n × m matrix, where R(i, j) = 1 if vertex i is in cluster j and 0
otherwise. Then, the Laplacian of S has n + m vertices, and the algebraic form

A2
e A1

(a) A graph and its spanning tree
- obtained by deleting the dashed
edges.

v7

r1 r2

V1 V2

v2

v3

v4

v5
v6

v7

v1

v1

v2

v3

v4

v5
v6

(b) A graph and its Steiner pre-
conditioner

Fig. 1.
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S =
(

D′ −D′R
−RT D′ Q + RT D′R

)
. (2)

A worrying feature of the Steiner preconditioner S is the extra number of vertices. So
how do we even use it? Gremban and Miller [32] proposed that every time a system of

the form Bz = y is solved in an usual preconditioned method, the system S

(
z
z′

)
=(

y
0

)
should be solved instead, for a set of don’t care variables z′. They also showed

that the operation is equivalent to preconditioning with the dense matrix

B = D′ − V (Q + DQ)−1V T (3)

where V = D′R, and DQ = RT D′R. The matrix B is called the Schur complement
of S with respect to the elimination of the roots ri, further it is a well known that B is
also a Laplacian.

The analysis of the support σ(A/S), is identical to that for the case of subgraph
preconditioners. For example, going back to Figure 1(b), the edge (v1, v4) can only be
supported by the path (v1, r1, v4), and the edge (v4, v7) only by the path (v4, r1, r2, v7).
Similarly we can see the mappings from edges in A to paths in S for every edge in A.
In the example, the dilation of the mapping is 3, and it can be seen that to minimize the
congestion on every edge of S (i.e. make it equal to 1), we need to take D′ = D, where
D are the total degrees of the nodes in A, and w(r1, r2) = w(v3, v5)+w(v4, v7). More
generally, for two roots ri, rj we should have w(ri, rj) =

∑
i′∈Vi,j′∈Vj

wi,j . Under this

construction, the algebraic form of the quotient Q can be seen to be Q = RT AR.
So far no special properties of the clustering have been used. Those come into play

in bounding the support of S by A, σ(S/A). In [38] it was shown that the support
σ(S/A) reduces to bounding the support σ(Si, A[Vi]), for all i, where A[Vi] denotes
the graph induced in A by the vertices Vi. When are these bounded? Before we answer
this question, let us recall the definition of conductance.

Definition 1. The conductance φ(A) of a graph A = (V, E, w) is defined as

φ(A) = min
S⊆V

w(S, V − S)
min(w(S), w(V − S))

where w(S, V −S) denotes the total weight connecting the sets S and V −S, and where
w(S) denotes the total weight incident to the vertices in S.

The main result of [38] is captured by the following Theorem.

Theorem 1. The support σ(S/A) is bounded by a constant c independent from n, if and
only for all i the conductance of the graph Ao[Vi] induced by the nodes in Vi augmented
by the edges leaving Vi is bounded by a constant c′.

Although Theorem 1 doesn’t give a way to pick to clusters, it does provide a way to
avoid bad clusterings.
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2.5 Support Theory and Grady’s Clusterings

In recent work [25], Grady proposed a multigrid method where the construction of the
“coarse” grid follows exactly the construction of the quotient graph in the previous sec-
tion. Specifically, Grady proposes a clustering such that every cluster contains exactly
one of certain pre-specified “coarse” nodes. He then defines the restriction matrix R and
he lets the coarse grid be Q = RT AR, identically to the construction of the previous
Section. The question then is whether the proposed clustering provides the guarantees
that by Theorem 1 are necessary to construct a good Steiner preconditioner. In the fol-
lowing Figure, we replicate Figure 2 of [25], with a choice of weights that force the
depicted clustering.

1

M M

1 1

2 1

1

2

1

Fig. 2. A bad clustering

Every cluster in Figure 2 contains exactly one black/coarse node. The problem with
the clustering is that the top left cluster, has a very low conductance when M >> 1.
In general, in order to satisfy the requirement of Theorem 1, there are cases where the
clustering has to contain clusters with no coarse nodes in them.

It is interesting that the Maximally Connected Neighbor (MCN) algorithm proposed
in [25] comes very close to the clustering algorithm proposed in [38]. Of course, it
is imaginable that there are instances where MCN may not induce bad clusterings. On
such instances, Grady’s clustering has provable properties. Grady’s solver is a multigrid
solver, but as we will see in Section 3, multigrid solvers and Steiner preconditioners are
closely related.

3 The Combinatorial Multigrid Solver

In this section we describe the Combinatorial Multigrid Solver. As we will see, the
CMG solver matches the simple form of AMG, but with two distinguishing features:
(i) The “coarsening” strategy is markedly different; it is in fact easier to implement and
faster than the various AMG coarsening strategies. (ii) The algorithm is truly “black-
box”, in stark contrast which AMG which employs an extensive list of algorithmic
knobs.
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3.1 A Graph Decomposition Algorithm

According to the discussion of §2.4, the crucial step for the construction of a good
Steiner preconditioner is the computation of a group decomposition that satisfies, as best
as possible, the requirements of Theorem 1. Before the presentation of the Decompose-
Graph algorithm, that extends the ideas of [38], we need to introduce a couple of defi-
nitions. Let volG(v) denote the total weight incident to node v in graph G. The weighted
degree of a vertex v is defined as the ratio

wd(v) =
vol(v)

maxu∈N(v) w(u, v)
.

The average weighted degree of the graph is defined as awd(G) = (1/n)
∑

v∈V wd(v).

Algorithm Decompose-Graph

Input: Graph A = (V, E, w)

Output: Disjoint Clusters Vi with V =
⋃

i Vi

1. Let W ⊆ V be the set of nodes satisfying wd(v) > κ · awd(A), for some constant
κ > 4.
2. Form a forest graph F , by keeping the heaviest incident edge of v for each vertex
v ∈ V in A.
3. For every vertex w ∈ W such that volT (w) < volG(w)/awd(A) remove from F the
edge contributed by w in Step 2.
4. Decompose each tree T in F into vertex-disjoint trees of constant conductance.

It is not very difficult to prove that the algorithm Decompose-Graph produces a
partitioning where the conductance of each cluster depends only on awd(A) and the
constant κ. In fairly general topologies that allow high degree nodes, awd(A) is con-
stant and the number of clusters m returned by the algorithm is such that n/m > 2
(and in practice larger than 3 or 4). There are many easy ways to implement Step 3. Our
current implementation makes about three passes of A. Of course, one can imagine vari-
ations of the algorithm (i.e. a correction step, etc) that may make the clustering phase
a little more expensive with the goal of getting a better conductance and an improved
condition number, if the application at hand requires many iterations of the solver.

3.2 From Steiner Preconditioners to Multigrid

Multigrid algorithms have been a very active research area for nearly three decades.
There are many expository article and books, among which [39]. In order to describe
the reasoning that leads to our Combinatorial Multigrid Algorithm, we will need to
shortly review the basic principles behind the generic two-level iteration.

Algebraically, any of the classic preconditioned iterative methods, such as the Jacobi
and Gauss-Seidel iteration, is nothing but a matrix S, which gets applied implicitly to
the current error vector e, to produce a new error vector e′ = Se. For example, in the
Jacobi iteration we have S = (I −D−1A). This has the effect that it reduces effectively
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only part of the error in a given iterate, namely the components that lie in the low
eigenspaces of S (usually referred to as high frequencies of A). The main idea behind
a two-level multigrid is that the current smooth residual error r = b − Ax, can be used
to calculate a correction PT Q−1Pr, where Q is a smaller graph and P is an m × n
restriction operator. The correction is then added to the iterate x. The hope here is that
for smooth residuals, the low-rank matrix PT Q−1P is a good approximation of A−1.
Algebraically, this correction is the application of the operator T = (I − PT Q−1PA)
to the error vector e. The choice of P and Q is such that T is a projection operator with
respect to the A-inner product, a construction known as the Galerkin condition. Two-
level convergece proofs are then based on bounds on the angle between the subspace
Null(P ) and the high frequency subspace of S.

At a high level, the key idea behind CMG is that the provably small condition num-
ber κ(A, B) where B is given in expression 3, is equal to the condition number κ(Â, B̂)
where Â = D−1/2AD−1/2 and B̂ = D−1/2BD−1/2. This in turn implies a bound on
the angle between the low frequency of Â and the high frequency of B̂ [38]. The latter
subspace includes Null(RTD1/2). This fact suggests to choose RT D1/2 as the projec-
tion operator while performing relaxation with (I − Â) on the system Ây = D−1/2b,
with y = D1/2x. Combining everything, we get the following two-level algorithm.

Two-level Combinatorial Multigrid

Input: Laplacian A = (V, E, w), vector b, approximate solution x, n × m
restriction matrix R
Output: Updated solution x for Ax = b

1. D := diag(A); Â := D−1/2AD−1/2;
2. z := (I − Â)D1/2x + D−1/2b;
3. r := D−1/2b − Âz; w := RT D1/2r;
4. Q := RT AR; Solve Qy = w;
5. z := z + D1/2Ry
5. x := D−1/2((I − Â)z + D−1/2b)z

The two-level algorithm can naturally be extended into a full multigrid algorithm, by
recursively calling the algorithm when the solution to the system with Q is requested.

4 Experiments

Many computer vision problems naturally suggest a graph structure - for example the
vertices often correspond to samples (e.g. pixels, patches, images), the edge set estab-
lishes pairwise comparisons or constraints encoded in the graph and the weights are
either data driven (for clustering) or the result of an ongoing optimization procedure
(weights in the tth iteration of Newton’s method).

In this section we demonstrate our general case combinatorial multigrid precondi-
tioner (CMG) solver on a suite of applications taken from computer vision. The data is
presented relative to the timing of a direct methods, found in MATLAB and LAPACK,
for reference. We emphasize that our goal is not to perform numerical comparisons
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with any of the previous solvers, but rather to demonstrate that fast solvers with prov-
able properties (such as CMG) are within the realm of practical implementation. The
presented solver was written in a combination of C and MATLAB with modest attention
paid to code optimization.

Notation. The weighted laplacian matrix A can be factored as A = Γ T WΓ where Γ is
a edge-node incidence matrix, and W is a nonnegative diagonal weight matrix over the
edges. The normalized Laplacian is defined Â = D−1/2AD−1/2 = I−D−1/2GD−1/2

where D is the weighted degree matrix and G the weighted adjacency matrix. Recall
that quadratic form xT Ax can be written in several forms xT Dx−xT Gx =

∑
i dix

2
i −

2
∑

ij wijxixj =
∑

ij wij(xi − xj)2.

4.1 SDD Linear Systems

Sparse, unit weight, SDD linear systems arise in non-local means[20,21], gradient in-
painting [14,15,16], segmentation [40], regression and classification [41] and related
data interpolation optimizations. For example, the in-painting functional f(x) = minx :
(Γx − ∆)T W (Γx − ∆), where ∆ is a vector of target gradient values to be exhib-
ited in the image x and Γ is a generalized gradient operator, requires the solution to
Γ T WΓx = Γ T W∆. When W is the identity and Γ embodies a 4-connected topology
these systems can be efficiently solved (provably) by geometric multigrid methods in-
cluding the method described herein. For unit and weighted general planar systems the
asymptotic complexity of solving Ax = b is O(n) [38].

When W is a more general nonnegative diagonal matrix and Γ encodes non-planar
connectivity many multigrid methods will fail. Figure 3 shows such a class of problems
in a log-log plot for weighted 3D graphs derived from a 3D CT Study of an oncology
phantom – with the edge weighting: wuv = exp

(
−(Iu − Iv)2/σ2

)
between neigh-

boring voxels u and v, where Iu denotes the intensity of voxel u. Solving such 3D
lattice SDDs, and general topologies, requires only O(nlogo(1)n) [30] work, however
we observe linear work empirically.

Eigencalculations: Calculating a minimal, say k−dimensional, eigenspace of an SDD
matrix forms the computational core of the spectral relaxation for NCuts [6], spectral
clustering [7], Laplacian eigenmaps [8], diffusion maps [10], and the typical case for
Levin et. al.’s image matting algorithm [12]. Recall that eigensystems satisfy the fol-
lowing equations for a Laplacian Azi = φizi and generalize to Axi = λiDxi where
we assume D is positive definite diagonal in general, and typically D is the weighted
degree matrix (see §2.4).

For the generalized problem, efficient computation of the k eigenpairs (xi, λi), such
that λ1 ≤ λi ≤ λk+1, depends upon the relationship to a normalized Laplacian, Â. Â is
possessed of the same eigenvalues {λi} as the generalized problem, with eigenvectors
yi that map to generalized vectors under the operator D1/2: xi = D1/2yi.

We find the set of eigenvalues and vectors by inverse powering, i.e. repeated solves of
the problem Âqt+1 = qt, coupled with a Krylov space method such as the Lanczos algo-
rithm. In [30] the number of inverse powers required was shown to be O(log n) to calcu-
late a vector with a Rayleigh quotient arbitrarily close to that of the minimal eigenspace.
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Thus the general case complexity of an eigencalculation remains O(n logo(1) n). In
essence by employing the CMG solver we achieve approximate NCuts solutions in time
roughly proportional to sorting the vertices (pixels) by intensity. Timing results for esti-
mating (x2, λ2) on three panoramic landscape image derived graphs is shown in column
4 of Table 1 (edge weightings as in above).

Convex Programming and Reweighted Problems: The optimization of convex func-
tionals such as “�2 − �1 Total Variation”[18], given by: f(x) = minx : ||x − s||2 +
λ|∇x|1 for an input signal s, and related problems can be accomplished using Newton’s
method with log-barriers in O(n1.5 logo(1)(n)) time with modern solvers. For TV, the
computational crux of each iteration is the solution of a SDD system with iteration de-
pendent edge weights for the Laplacian modeling the �1 penalty on spatial gradients
|∇x|1. As the program iterates, the weights on edges between regions of different in-
tensity approach zero; such weightings radically violate the conditions required by most
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Fig. 3. Relative speeds of the CMG solver (black) and MATLAB’s “\” operator (grey) on
weighted graphs with 6 connected 3D lattices derived from a CT study. The X-axis is shown
in log scale over |V |, the number of variables in the system. For reference, the execution time for
the CMG solver on a problem with 27 million variables is ≈ 50 seconds.

Table 1. Two dimensional comparison with MATLAB for solutions on weighted 2D problems
(with O(|V |) super-lattice topology) at 2, 10, and 50 megapixels

Size in Mega-pixels “\” CMG “\”+eigs CMG+eigs �2, �1 w “\” �2, �1 w CMG

2M 45s 8s 1.6m 59s 5.1m 31s
10M 4.9m 22s 7.6m 2.7m 49.4m 3.7m
50M NA 1.1m NA 7.1m NA 14.6m
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multi-grid methods. CMG is suitable for such weightings, and further, the required clus-
terings (see §3) are linearly updated in the preconditioner, unlike direct methods that
must recompute a factorization from scratch with each weighted instance (incurring a
large computational cost). This property is also useful for other iterative methods such
as robust least squares. Timing results on the panoramic image problems can be found
in columns 5 and 6 of Table 1.

5 Discussion

Finally, by segregating the code for solvers (and eigen-calculations) from that of the
applications we harvest improved modularity, reliability and factorizations of the sys-
tem. Thus, 1) errors can be isolated to either the solver or the application, 2) as new
solvers become available they can be easily adopted and perhaps most importantly 3)
it relieves the application designer of the burden of implementing the state-of-the-art in
solver technology.

We feel that significant improvements are still to be made in the solver and eigen-
solver technology. We envision major new applications for these solvers in scientific
computing, image processing, data-mining, and machine learning. Finally, to ease adop-
tion of hybrid solvers, an implementation of the CMG solver will be made available in
the near future.
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Abstract. Energy functional minimization is a popular technique for

medical image segmentation.The segmentationmust be initialized,weights

for competing terms of an energy functional must be tuned, and the func-

tional minimized. There is a substantial amount of guesswork involved.

We reduce this guesswork by analytically determining the optimal weights

and minimizing a convex energy functional independent of the initializa-

tion. We demonstrate improved results over state of the art on a set of 470

clinical examples.

1 Introduction

Image segmentation is a key task in visual computing. For medical image anal-
ysis, segmentation is important for quantifying the progression of diseases and
quantifying anatomical variation. In such applications, a high degree of accuracy
is sought, as the anatomical variation itself can be small and thus consumed by
segmentation error. For this and other reasons, the automatic segmentation of
medical images remains a daunting task. Many segmentation approaches rely on
the minimization of objective functions, including several landmark papers: from
the seminal paper of Snakes for 2D segmentation [1] and other explicit models
[2] to implicit models [3,4], graph approaches [5,6], and variants thereof.

Objective function-based methods are commonly built using five essential
building blocks: (i) an objective function whose minima provide good segmen-
tations; (ii) an appropriate shape representation; (iii) a set of parameters in-
cluding weights to balance the competing terms of the energy functional; (iv) an
initialization; and (v) a method for minimization, whether it be local or global,
continuous or combinatorial.

Each of these common blocks is known to have certain challenges. In par-
ticular, the parameter setting, initialization, and minimization phases are well
known to be problematic. Often there are unanswered questions: what if a dif-
ferent initialization was used, what about a different minimizer, what if different
weights were used between competing terms of the energy functional? Hence,
erroneous segmentations cannot be directly attributed to the energy functional
or one of the many unknowns of the segmentation process. The goal is to reduce
and ultimately remove these points of uncertainty.

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 1079–1088, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Uncertainty with initializations and minimizers can be addressed by formulat-
ing problems as convex energy functionals over convex domains, or submodular
in the case of combinatorial approaches. Papers dealing with this issue are now
common ground for both continuous [7,8] and discrete [5,6] optimization, but
they all have uncertainty stemming from the free weights in their energy func-
tionals.

Uncertainty with energy functional weights can be addressed by determining
the optimal weights for each image to be segmented, else another set of weights
may exist that provides better results. Recently, we developed an analytical
expression describing the optimal functional weights [9]. Our method solves for
the optimal functional weights for a training set of image-segmentation pairs, and
then infers the optimal parameters for a novel image via geodesic interpolation
over the training set. Our results demonstrated the importance of not only using
the optimal weights for a functional, but how those weights vary from image to
image. However, the method was not without its drawbacks.

We build upon and extend our earlier work by addressing two key issues.
First, our previous work was done using non-convex functionals. There is un-
certainty that a different initialization or optimization process may have yielded
improved results. Instead, in this work, we focus on convex functionals, ensuring
global optima and thus removing uncertainty related to local minima and ini-
tializations. Second, our analytical expression for optimal parameters included
an implicit weighting between its two competing terms; a weighting which we
seek to address here. We remove the implicit weighting using a convex quadratic
formulation under a linear constraint, and thus remove the uncertainty implied
by it. Our lastest results show significantly improved accuracy.

Though we are focusing on continuous functionals, a related field of ap-
proaches has come up in the study of combinatorial problems. The first set
is based on recent advances in maximum margin estimation, wherein the param-
eters of the objective function are sought such that the highest scoring struc-
tures (in our case segmentations) are as close as possible to the ground truth
[10,11,12,13]. However, in addition to being limited to combinatorial objective
functions rather than continuous ones, these methods propose a fixed set of pa-
rameters for novel samples (in our case images), whereas we follow the direction
of [9] using geodesic interpolation to infer the optimal parameters on a per-image
basis. In other words, these works assume that a single set of parameters works
for an entire test set. As shown in [9], this is often not the case in image segmen-
tation, and greatly improved results can be obtained by adapting the parameters
to the individual images (as we do). The second related direction, was introduced
recently in [14]. Though this work is also restricted to combinatorial objective
functions, an optimal parameter is indeed sought on a per-image basis. Given a
parameter range, the method simultaneously solves the objective function for a
set of parameters that bound how the parameters influence the solution. Each
solution is then treated as a potential segmentation. They propose a number of
heuristics, including user intervention, to select the best segmentation from a set
of potential ones.
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In what follows we describe the theory behind our method (Sec. 2), how we
build convex functionals (Sec. refsec:energy), and how to analyticaly describe
the optimal weights of a functional (Sec. 2.2). We then detail how to apply our
method to novel images (Sec. refsec:methods) and validate our improvements
over [9] (Sec. 4). Finally, we discuss our results and future work (Sec. 4).

2 Theory: Notations and Uncertainty in Segmentation

In order to more formally explain where the uncertainty lies, and how it needs to
be addressed, we first give a more detailed view on the energy minimization based
segmentation process. We define a gray-level image I, and its corresponding
segmentation S. Then I= {I1, I2, ..., IN} and S= {S1, S2, ..., SN} are training
sets of images and their corresponding, correct segmentations.

The first step is the identification of the form of the energy functional. It may
be convex or non-convex, as can the shape space over which it is minimized. A
common general form is E(S, I,w) = w1 × internal(S) + w2 × external(S, I).
Notice the free parameter w = [w1, w2]. Depending on its value, minima of E
favor the internal energy, or the external energy.

The segmentation problem is to solve S∗ = arg min
S

E(S|I,w), which involves

choosing a w and, depending on the nature of the energy functional, may also
require training appearance and/or shape priors, and setting an initialization.
A gradient descent-based solver is typically used but combinatorial approaches
have also been explored for discretized versions of the problem [5]. Here we focus
on continuous problems, and thus assume a gradient descent solver.

When using gradient descent, non-convexity can be quite problematic. There
is no guarantee that another solution does not exist which better minimizes the
energy, and thus is potentially a better segmentation. Ideally both functional
and shape space are convex; guaranteeing globally optimal solutions.

Simply obtaining a global optima does not, however, guarantee a correct seg-
mentation in the general case. If not appropriately set, the weights w can cause
significant error. Optimizing the weights has been shown to have dramatic effects;
reducing error in large data sets by as much as 30% [9]. However, optimizing the
weights by hand for even a single image can be a long and tedious task, with no
real guarantee of obtaining the correct segmentation.

Instead of guessing the optimal weights, suppose we write a function γ(w|Ij , Sj)
evaluating how well weight w works for a given image-segmentation pair (Ij , Sj);
such that a parameter is deemed better when it causes S∗ to approach Sj , i.e. the
minimum of E to be the correct segmentation. Given Sj , we could then calculate
the ideal weights for a particular image Ij by solving w∗ = arg min

w
γ(w|Ij , Sj). It

is important that γ itself be convex or globally solvable in w. If γ was not glob-
ally solvable, uncertainty would remain in that another w∗ may better minimize
γ, and thus better segment the image. Similarly, γ can not contain free param-
eters, else those parameters would themselves introduce uncertainty; as was the
case in [9].
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2.1 Convex Energy Functionals

We make use of recent research into convex functionals for image segmenta-
tion, specifically that of Cremers et al. where a convex energy functional E
is minimized over a convex shape space represented as probability maps, i.e.
S(x) ∈ [0, 1] for all points x in the image domain Ω, to yield a convex segmen-
tation problem [15]. A shape model is then constructed via principal component
analysis (PCA) on a set of training shapes forming a k-dimensional approxima-
tion to the shape space, with α1, ..., αk eigen coefficients, a mean shape S̄, and

eigenvectors ψ1, ..., ψk. Shapes can now be reconstructed as S = S̄ +
k∑

i=1
αiψi.

Writing S in terms of the vector of shape parameters α = {αi}k
i=1, convex E

can be written as a sum of convex energy terms:

E(α|I = Ij ,w = ŵ) =
∫

Ω

ŵ1J1(α|Ij) + ... + ŵnJn(α|Ij)dx (1)

for a fixed image Ij and arbitrary, fixed weights ŵ, where Ji is a convex energy
term and w = [w1, ..., wn] with wi ∈ [0, 1] are weights. Consequently, E is a
convex functional since the positively weighted sum of a set of convex terms is
itself convex. For proofs of convexity and more details see [15].

Minimizing E optimally can then be performed via gradient descent on α
using derivative: Eα(α|I = Ij ,w = ŵ) = ŵ1T1(α|Ij) + ... + ŵnTn(α|Ij) where
Eα denotes the derivative of E with respect to α, and Ti is the derivative of Jith
term. However, since ŵ is arbitrary nothing can be said about its optimality for
the particular image Ij .

2.2 Optimal Energy Functional Weights

For each (Ij , Sj), Ij ∈ I and Sj ∈ S, the task is to find the optimal values for
the free weights w(Ij). This section explores the notion of ‘optimal’.

One computationally intractable approach for finding w∗ is to try all possible
weight combinations and run the segmentation method then select the weights
with the least segmentation error. A better approach, as outlined in [9], is to find
the weights w∗ that minimize the magnitude of the derivative, in our case Eα, of
the energy functional at the correct segmentation αj (i.e. αj = [ψ1ψ2...ψk]+(Sj−
S̄))1. Doing so encourages αj to be a minimum of E (i.e. Eα(αj |Ij ,w∗) = 0).
Since Eα is in our case a vector of length k and wi(Ij) a scalar function, we
measure its magnitude as

∣∣Eα(w|αj , Ij)
∣∣2. McIntosh and Hamarneh go further

to minimize |Eα(w|α, Ij)|2 for α = αj while maximizing it for all other possible
shapes (in a direction toward the optimal solution). Adopting their approach,
for the time being, but with the new convex setup, we proceed as follows.

For a given shape αi, a vector (αi − αj) in Rk represents the direction towards
αj . Since Eα(w|αi, Ij) is the vector in Rk dictating in what direction, and
1 We assume the chosen eigenvectors explain 99% of the variance and thus the error

incured by representing S as α is negligible.
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Fig. 1. Varying the shape of energy functionals. Left: Various functionals that show

an increasing extent to which the gradient at neighboring shapes points towards the

correct segmentation, represented by S = 0. Right: Various functionals that show how

a set of neighboring shapes can also become minima, a degenerate case.

by what amount, the solution will change at the point αi, a normalized dot-
product (projection-like approach) will measure how much in the right direction
Eα(w|αi, Ij) points.

So for an energy functional with a form like those in (1), and following [9], for
now, we define γ(w|Ij , Sj) as

γ(w) =

(∣∣Eα(w|αj , Ij)
∣∣2 − λ

∑
i∈NS

FNS(αj , αi)
Eα(w|αi, Ij) · (αi − αj)

|αi − αj |

)
(2)

where NS denotes a set of nearby (or similar) shapes in the domain of E, and
FNS is used to weight closer segmentations according to their proximity. The
neighborhood NS is used instead of the entire shape space to reduce computa-
tional complexity. The second term, dubbed the neighborhood term, is negative
and |Eα(w|αi, Ij)| is omitted from the normalized dot-product to reward large
steps in the correct direction. Solving w∗(Ij) = arg min

w
γ(w|Ij , Sj), yields the

optimal weights for image Ij .
However, notice that there is a weighting λ between competing terms of (2),

which was implicit in [9], i.e. was assumed equal to unity and not addressed.
With two competing terms, a balance must be struck between: (i) the degree
by which αj is a minimum of E; and (ii) the degree by which the derivative at
neighboring points in the shape space points towards αj (Fig. 1-left). Make λ
too small and αj might be a minimum, but so might the entire neighborhood
(Fig. 1-right). Make λ too large and the neighborhood will point in the right
direction, but αj might no longer be a minimum.

To rectify this problem, we make the following observation: when the energy
functional E is convex our only concern is making αj as much a minimum as
possible, while avoiding the degenerate case that the neighboring points are
minima (Fig. 1-right). As a result we can replace the neighborhood term by a
constraint rather than a cost term since the degree to which the neighbors point
towards αj does not change whether or not Eα(w|αj , Ij) = 0 (i.e. we must avoid
forcing the gradient in the neighborhood to point at αj at the cost of making
Eα(w|αj , Ij) �= 0). Thus instead of (2) we re-define w∗(Ij) as
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Fig. 2. Overview of our proposed method

w∗ = argmin
w

γ(w) = argmin
w

∣∣Eα(w|αj , Ij)
∣∣2

s.t.
∑

i∈NS

FNS(αj , αi)Eα(w|αi, Ij) · (αj−αi)
|αj−αi| ≥ 0

(3)

The result is a convex function in w under a linear constraint, since the first
term in (2) has been shown to be a convex quadratic [9] and the second term
linear. A convex function under a linear constraint can be solved via convex
optimization, and thus the optimal w(Ij) is guaranteed.

3 Method: Segmenting Novel Images

Given our set of training image-segmentation pairs we will have N samples of
w∗(I), from which we can interpolate to find values at new points (i.e. novel
images). In order to interpolate, we need a metric for measuring distances be-
tween images2. The set of images with the shortest distances constitutes the
neighboring images, NI , and NS are their corresponding correct segmentations.

We assume I is smooth over its domain, the space of a particular class of
images (e.g. MRI brain scans of normal adults), and that the mapping from im-
ages to segmentations is smooth. In other words, we assume that similar images
have similar parameters, and similar segmentations. As such, we use a normal-
ized Gaussian kernel, defined over the image distances, to interpolate both the
parameters and initializations. For shape and appearance priors, we limit the
training data to NI and NS, since we are more confident that the correct shape
and appearance information is similar to the training data lying in those neigh-
borhoods. The process is summarized in figure 2.

Manifold learning methods are a special class of nonlinear dimensionality re-
duction techniques that enable the calculation of geodesic distances between
data points. We make use of these techniques to calculate distances between
both images and segmentations. Distances between neighboring segmentations
allow us to define
2 The choice of metric is beyond the scope of this paper (Sec. 5).
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FNS(Sj , Si) = 1 − g (Si, Sj)∑
t∈NS

g (St, Sj)
(4)

where g(Si, Sj) is the learned geodesic distance between shape Si and shape Sj .
The function FNS(Sj , Si) then acts as a weighting for the given neighborhood
NS, normalized to sum to one (i.e. the weight decreases as a function of distance
from the center of the neighborhood). Here we use the geodesic distance between
shapes, as opposed to their linear distance in the PCA subspace, for greater
accuracy. The linear shape space is well suited for our shape representation
because it forms the basis for a convex optimization problem (as previously
noted). In essence, we assume an underlying non-linear shape space exists, but
use a higher dimensional linear space to represent it. This of course, allows
non-valid shapes to be represented, but it brings the benefit a convex energy
functional, and with a good energy functional those non-valid shapes will not be
minima anyway (as our results show).

Though numerous points of uncertainty have been addressed by our method,
there are a few remaining free parameters: (i) k, the dimensionality of the PCA
shape space used for our shape representation; (ii) the dimensionality of the
shape manifold; (iii) the dimensionality of the image manifold; (iv) the input
image-distance metric used as input to the manifold learning algorithm; (v) the
manifold learning algorithm to be used; and finally (vi) the interpolation function
used to determine parameters for novel images, as a function of their distance
to similar images. As these choices are somewhat application dependent, we
include a specification of their values in the experiment section. We also include
a discussion of the implications of these parameters in section 5.

4 Experiments

We validate our method on a set of 470 256 × 256 affine registered mid-sagittal
MR images, with corresponding expert-segmented corpora callosa (CC). Our
energy functional takes the form:

E(α) =
∫
Ω

(w1(I)f(x)S(x) + w2(I)g(x)(1 − S(x))

+w3(I)h(x) |∇S(x)|) dx + w4(I)αT Σ−1α
(5)

where f = −log(Pobj(I)), g = −log(Pbk(I)), for object and background his-
tograms Pobj , Pbk, h = 1

1+|∇I| , and Σ−1 characterizes the allowable shape distri-
bution (see [15] for details).

To learn the distances, we used a MATLAB implementation of K-ISOMAP
[16] from http://isomap.stanford.edu/, with Euclidean distance between images
as the input distance matrix. As this paper is about the application of optimal
parameters to segmentation, issues related to learning the manifold will not be
addressed in this work. For K-ISOMAP we set K = 10, and reduce the image
space to a 5-manifold; chosen as the elbow of the scree plot. One caveat with
using ISOMAP is that it does not directly extend to novel samples. Though
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Fig. 3. CC segmentation results. (Left) Error plot where Mx1 is the maximum mea-

sured value for ε. (Right) Segmentations demonstrating the full range of error.

out-of-sample extensions for ISOMAP have been published, for simplicity we
choose to simply re-run ISOMAP to include the novel image, as this only takes
a few seconds. For PCA on the shape space we set k = 10; the elbow of the
corresponding scree plot.

Firstly, to show that eq. (3) can balance an ideal energy functional (one for
which the minimum can be positioned exactly at the correct segmentation using
the optimal weights) we calculate the error of energy functional (5) plus a fifth
term whose unique global minimum is always the correct segmentation for the
given image (i.e. we gave the functional weights w the power to achieve 100%
accuracy by adding a rigged, strictly convex term). We measure the error using a
modified Dice metric: ε = Area(A∪G−A∩G)/Area(G), where A and G are the
binary automatic segmentation and the ground truth, respectively. Using this
rigged term, we obtained ε = 0 for all 470 images, validating that our method
can achieve the full potential of a given functional.

To compare to the original weight optimization equation (eq. (2)), as originally
presented in [9], we performed validation on the set of 470 images using energy
functional (5). For each image, the optimal parameters are learned directly, using
the ground truth segmentation, rather than interpolation from the manifold.
Doing so isolates the error induced by the weights, not the interpolation method
or the ability to locate the position of novel images on the manifold. Using eq.
(2) we obtained an error of 0.1201 vs 0.1099 with eq. (3), a clear improvement.

To validate our segmentation method as it pertains to novel data, we perform
leave-one-out validation on the set of 470 images using energy functional (5).
Under error metric ε, we found the average error to be 0.13, improving over the
average error of 0.16 reported in [9]. Our results are summarized in Fig. 3. The
figure shows the percentage of images with ε ≤ the specified value on the x-axis.
So, for example, with our proposed method approximately 65% of the images
have ε ≤ 0.2 as opposed to only 44% using the method proposed in [9]. If an
error of 0.2 was the cut off for the segmentation method to be clincially useful,
our method would have succesfully segmented an additional 21% of the data, or
about 100 images more than [9].
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5 Discussion

Our results demonstrate our method’s ability to optimize the weights for convex
energy functionals. In doing so, we have addressed a few key areas of uncertainty
typically found in objective function based segmentation methods. Specifically,
our method does not suffer from uncertainty with local minima, initializations,
or hand-tuned parameters. However, new questions remain: Was the optimal
manifold learned? Is this the best way to describe the optimal weights? And
is this the best interpolation function for novel images? As already shown in
[9], even with the inherit manifold uncertainty, this technique of analytically
describing the optimal weights is better than the alternative (hand-tuning the
weights, and/or fixing the weights as constant values over the set of application
images).

The difference δε = 0.02 between what our method achieved in practice (ε =
0.13) and the error using weights calculated directly from the ground truth
segmentations, (ε = 0.1099), is due to our localization of novel images on the
manifold and the interpolation over w∗(I). An important area of future work
is thus to lower this difference by using better manifold learning techniques.
Improved image distance metrics [17] may also work, as they can simplify the
learning problem.

Finally, we have provided two improvements over [9]: we removed the un-
certainty with local minima and initializations; and we improved their weight
optimization equation by removing its implicit weight. We demonstrated how
our proposed weight optimization equation yields improved weights, and that
our method has a significantly lower error overall. In the end, we were able to
segment an additional 100 images under a reasonable cutoff, which is an impor-
tant improvement in a clinical setting.
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Abstract. Image segmentation techniques are predominately based on

parameter-laden optimization processes.The segmentation objective func-

tion traditionally involves parameters (i.e. weights) that need to be tuned

in order to balance the underlying competing cost terms of image data fi-

delity and contour regularization. In this paper, we propose a novel ap-

proach for automatic adaptive energy parameterization. In particular, our

contributions are three-fold; 1) We spatially adapt fidelity and regulariza-

tion weights to local image content in an autonomous manner. 2) We mod-

ulate the weight using a novel contextual measure of image quality based

on the concept of spectral flatness. 3) We incorporate our proposed pa-

rameterization into a general segmentation framework anddemonstrate its

superiority to two alternative approaches: the best possible spatially-fixed

parameterization and the globally optimal spatially-varying, but non-

contextual, parameters. Our segmentation results are evaluated on real

and synthetic data and produce a reduction in mean segmentation error

when compared to alternative approaches.

Keywords: Adaptive regularization, contextual weights, image segmen-

tation, energy minimization, adapting energy functional, spectral flat-

ness, noise estimation.

1 Introduction

Robust automated image segmentation is a highly sought after goal that contin-
ues to defy solution. In medical images, for example, natural and pathological
variability as well as noise often result in unpredictable image and shape fea-
tures that significantly complicate segmentation tasks. Furthermore, spatially
nonuniform noise can result from numerous reconstruction and postprocessing
techniques on MR images to correct for intensity inhomogeneity effects and from
images obtained with decreased acquisition times and high speedup factors [1].
Current state-of-the-art segmentation methods are predominantly based on op-
timization procedures that produce so called ‘optimal’ segmentations at their
minimum. The optimization methods typically incorporate a tradeoff between
two classes of cost terms: data fidelity and contour regularization. This is the case
not only in image segmentation, but also in image registration, shape matching,

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 1089–1100, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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and other computer vision tasks. This basic tradeoff scheme is ubiquitous, relat-
ing to Occam’s razor and Akaike/Bayesian information criteria [2], and is seen
in many forms, such as likelihood versus prior in Bayesian methods [3] and loss
versus penalty in machine learning [4]. Making progress toward determining how
to best control such balancing between competing cost terms within the opti-
mization process is therefore of great importance to many related algorithmic
formulations in computer vision as well as numerous applications most notably in
medical image analysis. Examples of optimization-based segmentation methods
that are fragile and highly sensitive to the aforementioned tradeoffs are plenti-
ful, including active contours techniques [5][6][7][8], graph cut methods [9], and
optimal path approaches [10].

For simplifying the exposition of the ideas in this paper, we will adopt the
simplified but general form of the cost or energy function:

E(S|I, α, β) = αEint(S) + βEext(S|I) (1)

where S is the segmentation and I is the image. Eint is the internal cost term
contributing to the regularization of the segmentation, most often by enforc-
ing some smoothness constraints, in order to counteract the effects of imaging
artifacts. Eext is the external cost term contributing to the contour’s confor-
mity to desired image features, e.g. edges. The weights α and β are typically
set empirically by the users based on their judgment of how to best balance the
requirements for regularization and adherence to image content. In most cases,
this is a very difficult task and the parameters may be unintuitive for a typical
non-technical end user, e.g. a clinician, who lacks knowledge of the underlying
algorithm’s inner working. Also the resultant segmentations can vary drastically
based on how this balance is set. Avoiding the practice of ad-hoc setting of such
weights is the driving motivation for our work here.

To the best of our knowledge, regularization weights have traditionally been
determined empirically and are fixed across the image domain (i.e. do not vary
spatially). In Pluempitiwiriyawej et al. [8], the weights are changed as the opti-
mization progresses, albeit in an ad-hoc predetermined manner. McIntosh and
Hamarneh [11] demonstrated that adapting the regularization weights across
a set of images is necessary in addressing the variability in real clinical image
data. However, neither approach varies the weights spatially across the image
and hence are not responsive or adaptive to local features within a single image.

Image regions with noise, weak or missing boundaries, and/or occlusions are
commonly encountered in real image data. For example, degradation in medi-
cal images can occur due to tissue heterogeneity (“graded decomposition” [12]),
patient motion, or imaging artifacts, e.g. echo dropouts in ultrasound or non-
uniformity in magnetic resonance. In such cases and in order to increase seg-
mentation robustness and accuracy, more regularization is needed in less reliable
image regions which suffer from greater deterioration. Although an optimal reg-
ularization weight can be found for a single image in a set [11], the same weight
may not be optimal for all regions of that image. Spatially adapting the regular-
ization weights provides greater control over the segmentation result, allowing it
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to adapt not only to images with spatially varying noise levels and edge strength,
but also to objects with spatially-varying shape characteristics, e.g. smooth in
some parts and jagged in others.

Some form of spatially adaptive regularization over a single image appeared
in a recent work by Dong et al. [13]. For segmenting an aneurysm, they varied
the amount of regularization based on the surface curvature of a pre-segmented
vessel. The results demonstrated improvements due to adaptive regularization.
However, the regularization weights did not rely on the properties of the image
itself, which limited the generality of the method. Kokkinos et al. [14] inves-
tigated the use of adaptive weights for the task of separating edge areas from
textured regions using a probabilistic framework, where the posterior proba-
bilities of edge, texture, and smoothness cues were used as weights for curve
evolution. Similarly, Malik et al. [15] and, very recently, Erdem and Tari [16]
tackled the problem of texture separation and selected weights based on data
cues. However, while these methods focused on curve evolution frameworks, our
current work focuses on graph-based segmentation. Additionally, we emphasize
balancing the cost terms by adapting the regularization for images plagued by
nonuniform noise and weak or diffused edges rather than textured patterns in
natural images.

In this paper, we advocate the strong need for spatially-adaptive balancing of
cost terms in an automated, robust, data-driven manner to relax the requirement
on the user to painstakingly tweak these parameters. We also demonstrate how
existing fixed-weight approaches (even if globally optimized) are often inadequate
for achieving accurate segmentation. To address the problem, we propose a novel
data-driven method for spatial adaptation of optimization weights. We develop
a new spectral flatness measure of local image noise to balance the energy cost
terms at every pixel, without any prior knowledge or fine-tuning.

We validate our method on synthetic, medical, and natural images and com-
pare its performance against two alternative approaches for regularization: us-
ing the best possible spatially-fixed weight, and using the globally optimal set of
spatially-varying weights as found automatically through dynamic programming.

2 Methods

2.1 Energy-Minimizing Segmentation

Our formulation employs energy-minimizing boundary-based segmentation,where
the objective is to find a contour that correctly separates an object from back-
ground. We embed a parametric contour C(q) = C(x(q), y(q)) : [0, 1] → Ω ⊂ R2

in image I : Ω → R. We use a single adaptive weight w(q) ∈ [0, 1] that varies over
the length of the contour and re-write (1) as:

E(C(q), w(q)) =
∫ 1

0
(w(q)Eint(C(q)) + (1 − w(q))Eext(C(q))) dq (2)

where
Eext(C(q)) = 1 − |∇I(C(q))| / max

Ω
|∇I(C(q))| (3)
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penalizes weak boundaries and

Eint(C(q)) = |dC(q)/dq| (4)

penalizes longer and more jagged contours. Sec. 2.4 discusses the discrete for-
mulation to minimize E with respect to C(q) in (2).

2.2 Spatially Adaptive Energy Parameterization

Our approach for balancing the cost terms is to gauge the levels of signal vs.
noise in local image regions. We estimate the edge evidence G(x, y) and noise
level N(x, y) in each region of the image and set w(x, y) in (2) such that regions
with high noise and low boundary evidence (i.e. low reliability) have greater
regularization, and vice versa. Hence, image reliability R(x, y) ∈ [0, 1] is mapped
to w(x, y) as

w(x, y) = 1 − R(x, y) (5)

where
R(x, y) = (1 − N(x, y)) G(x, y). (6)

Assuming additive white noise, uncorrelated between pixels, we propose to es-
timate spatially-varying noise levels N(x, y) using a local image spectral flat-
ness (SF) measure. SF is a well-known Fourier-domain measure that has been
employed in audio signal processing and compression applications [17][18]. SF
exploits the property that white noise exhibits similar power levels in all spectral
bands and thus results in a flat power spectrum, whereas uncorrupted signals
have power concentrated in certain spectral bands and thus result in a more
impulse-like power spectrum. In this paper, we extend the SF measure to 2D
and measure N(x, y) as

N(x, y) =
exp

(
1

4π2

∫ π

−π

∫ π

−π
ln S (ωx, ωy) dωxdωy

)
1

4π2

∫ π

−π

∫ π

−π S (ωx, ωy) dωxdωy

(7)

where S(ωx, ωy) = |F (ωx, ωy)|2 is the 2D power spectrum of the image, F (ωx, ωy)
is the Fourier spectrum of the image and (ωx, ωy) are spatial radian frequencies.
Note that (7) can be easily extended to 3D images via a triple integral. We
use G(x, y) = max (|∇Ix(x, y)| , |∇Iy(x, y)|), where ∇Ix(x, y) and ∇Iy(x, y) rep-
resent the x and y components of the image gradient. We chose this measure
rather than the standard gradient magnitude for its rotational invariance in the
discrete domain.

2.3 Non-contextual Globally Optimal Weights

A theoretically appealing and intuitive approach for setting the regularization
weight is to optimize E in (2) for the weight w(q) itself in addition to opti-
mizing the contour. In our discrete setting, this involves a ‘three dimensional’
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graph search that computes the globally optimal, spatially-adaptive regulariza-
tion weight w(q), in conjunction with the contour’s spatial coordinates, i.e. we
optimize1 C̃(q) = (x(q), y(q), w(q)). Sec. 2.4 discusses the method for imple-
menting the graph search.

As we demonstrate later in Sec. 3, there are three main drawbacks to this
globally optimum (in (x, y, w)) method: (i) it does not explicitly encode image
reliability, even though regularization is essential in regions with low reliability;
(ii) it encourages a bimodal behavior of the regularization weight (this is easy
to observe as the weight will be allocated to whichever cost is smaller):

w (q) =
{

0, Eint (q) > Eext (q)
1, otherwise

}
, (8)

and (iii) it combines the weight and segmentation optimization into one process,
thus reducing the generality of the method as finding globally-optimal weights for
other segmentation frameworks would require significant changes to the energy
minimization process. In short, even though optimal with respect to E in (2),
the solution is incorrect and, as we later demonstrate, inferior to the spatially
adaptive balancing of energy cost terms proposed in Sec. 2.2.

2.4 Implementation Details

To minimize E with respect to C(q) in (2), we model the image as a graph where
each pixel is represented by a vertex vi in the graph, and graph edges eij =
〈vi, vj〉 capture the pixel’s connectedness (e.g. 8-connectedness in 2D images).
A local cost cij = wEint (vi, vj) + (1 − w) Eext(vi) is assigned to each edge eij ,
where Eint (vi, vj) is the Euclidean distances between vi and vj (e.g. 1 for 4-
connected neighbors and

√
2 for diagonal neighbors in 2D). The contour that

minimizes the total energy E =
∑

eij∈C

cij represents the optimal solution for the

segmentation and is found by solving a minimal path problem, e.g. the global
snake minimization method between two end points presented in [21] which does
not require any initialization other than specifying the end points.

The non-contextual globally optimal weight (Sec. 2.3) is determined through
dynamic programming. In our formulation, each vertex in the original graph is
now replaced by K vertices representing the different choices of the weight value
at each pixel. In addition, graph edges now connect vertices corresponding to
neighboring image pixels for all possible weights. Note that the optimal path
C̃(q) = (x(q), y(q), w(q)) cannot pass through the same (x(q), y(q)) for different
w, i.e. only a single weight can be assigned per pixel. Our graph search abides
by this simple and logical constraint. The optimal C(q) and w(q) that globally
minimize (2) are again calculated using dynamic programming but now on this
new (x, y, w) graph.

1 This is similar in spirit to [19] and [20] where they also optimize for a non-spatial

variable: vessel radius or scale, in addition to the spatial coordinates of the segmen-

tation contour.
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To further demonstrate the global utility of our proposed contextual param-
eterization approach, we tested incorporating our adaptive weights into a tradi-
tional graph cuts (GC) segmentation framework [22][23], where the segmentation
energy is

E(f) =
∑

p,q∈N

Vp,q(fp, fq) +
∑
p∈P

Dp(fp). (9)

f ∈ L is the labeling for all pixels p ∈ P where L is the label space and P is the
set of pixels in image I. Vp,q is the pairwise interaction penalty between pixel
pairs (i.e. the penalty of assigning labels fp and fq to pixels p and q), N is the set
of interacting pairs of pixels, and Dp measures how well label fp fits pixel p given
the observed data. Dp is calculated as the difference in intensity between pixel
p and the mean intensity of seeds within label fp, and the interaction penalty is
calculated as Vp,q = e−|∇I(x,y)|2 such that low gradient magnitude regions have
a high interaction penalty. We modified this standard GC optimization process
by replacing Vp,q by our proposed spatially adaptive weight in (5).

3 Results and Discussion

We first performed quantitative tests on 16 synthetic images carefully designed
to cover extreme shape and appearance variations (two examples are shown in
Fig. 1). We created the test data by modeling an object boundary as a sinusoidal
function with spatially-varying frequency to simulate varying contour smooth-
ness conditions, and we added spatially-varying (non-stationary) additive white
Gaussian noise patterns of increasing variance. We also spatially varied the gra-
dient magnitude of the object boundary across each image by applying Gaussian
blurring kernels at different scales in different locations. Computationally, the
proposed method required less than 5 minutes for a 768 × 576 image when run
on a Pentium 4 (3.6GHz) machine using MATLAB code.

Our resulting image reliability measure is exemplified in Fig. 1 for two syn-
thetic images with the resulting segmentations shown in Fig. 2. The contour
obtained using the globally-optimal weights method (Sec. 2.3) is also shown,
along with the contour obtained using a spatially-fixed regularization weight, set
to the value producing the smallest (via brute force search) segmentation error.

We quantitatively examined our method’s performance using ANOVA test-
ing on 25 noise realizations of each image in the dataset, where the error was
determined by the Hausdorff distance to the ground truth contour. Our method
resulted in a mean error (in pixels) of 6.33 ± 1.36, whereas the best fixed-weight
method had a mean error of 12.05 ± 1.61, and the globally-optimum weight
method had a mean error of 33.06 ± 3.66. Furthermore, for each image, we
found our method to be significantly more accurate with all p-values << 0.05.

We also tested our method on clinical MR images of the corpus callosum
(CC), which exhibits the known problem of a weak boundary where the CC
meets the fornix (Fig. 3(a)). Note how the contour obtained using globally opti-
mal weights exhibits an optimal, yet undesirable, bimodal behavior (either blue
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(a) Synthetic sinusoidal image I(x, y) (b) Synthetic sinusoidal image I(x, y)

(c) Edge evidence measure G(x, y) (d) Edge evidence measure G(x, y)

(e) Noise level estimate N(x, y) (f) Noise level estimate N(x, y)

(g) Total reliability measure R(x, y) (h) Total reliability measure R(x, y)

Fig. 1. Two sample synthetic images used in our validation tests. The left column

image has spatially varying noise and blurring (increasing from right to left) and with

changing boundary smoothness (smooth on the left and jagged on the right). The right

column image has higher curvature and noise levels. Black intensities corresponds to 0

and white to 1. The result confirms the desired behavior of the reliability measure.

(a) Segmentation of image in Fig. 1(a)

(b) Segmentation of image in Fig. 1(b)

Fig. 2. Color is essential for proper viewing, please refer to the e-copy. Contours ob-

tained from: (blue) proposed adaptive weights, (red) best fixed weight, and (cyan)

globally optimum weight.
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or red in Fig. 3(a)) completely favoring only one of the terms at a time. In com-
parison, our method automatically boosts up the regularization (stronger red in
Fig. 3(b)) at the CC-fornix boundary producing a better delineation, as seen in
the segmentation results (Fig. 3(c)).

In addition, we tested our method on MR data from BrainWeb [24]. Fig. 4
shows the segmentation of the cortical surface in a proton density (PD) image
with a noise level of 5%. This example is a difficult scenario due to the high
level of noise and low resolution of the image. The proposed method provided a
smoother contour while conforming to the cortical boundary when compared to
the other methods (although the difference was not too large).

To demonstrate the general applicability of our method, we also used natural
images in our testing, such as the tree leaf on a complicated background shown in
Fig. 5(a). The resulting reliability measure (Fig. 5(b)) has lower image reliability

(a) (b) (c)

Fig. 3. (Color figure, refer to e-copy). Results of (a) globally-optimum weight method

and (b) proposed adaptive-weight method for a corpus callosum MR image. The color-

ing of the contours reflects the value of the spatially-adaptive weight. The same color

map is used for both figures, with pure blue corresponding to w = 0 and pure red to

w = 1. The proposed method results in greater regularization in the difficult fornix

region and has smoother transition between weights. (c) Contours produced by using

the proposed adaptive weight (blue), best fixed-weight (red), and the globally-optimum

weight (cyan).

(a) (b) (c)

Fig. 4. (Color figure, refer to e-copy). Segmentation results on BrainWeb data of cor-

tical surface in a proton density image with noise level of 5%. Contours produced by

using (a) the proposed adaptive weight (blue), (b) best fixed-weight (red), and (c) the

globally-optimum weight (cyan). Improved regularization resulted from our method.
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(a) (b) (c) (d) (e) (f)

Fig. 5. (Color figure, refer to e-copy). Segmenting a natural image. (a) Original leaf

image. (b) Reliability calculated by our proposed method. Contours produced by using

(c) our method (blue), (d) fixed-weight of 1 (black), (e) 0.5 (green), and (f) 0 (red).

(a) (b)

(c) (d)

Fig. 6. (Color figure, refer to e-copy). Segmentation of a synthetic image using GC

with adaptive regularization. (a) Synthetic image of 14 ellipses with image contrast

increasing from left to right. (b) Reliability calculated by our proposed method. (c)

Segmentation using standard GC, where each color represents a separate label. (d)

Segmentation using adaptive regularization GC.

and, hence, higher regularization at the regions of the leaf obscured by snow,
whereas reliable boundaries light up (bright white boundary segments). The
resulting segmentations are shown in Figs. 5(c) to 5(f) (note that no best-fixed
weight was determined since a true segmentation of the image is not known).

We validated Graph Cuts with our proposed method on simulated noisy im-
ages of variably-sized ellipses with complicated background patterns, e.g. with
image contrast decreasing from right to left, as in Fig. 6(a). The leftmost el-
lipses with lower contrast have a lower SNR than the rightmost ellipses and thus
require greater regularization. Note how our resulting reliability measure (Fig.
6(b)) indicates lower image reliability for low contrast ellipses. When comparing
our segmentation results to those of standard GC (Sec. 2.4), as shown in Fig.
6(c), 6 ellipses out of 14 were mislabeled, whereas GC with adaptive regulariza-
tion correctly labeled 12 ellipses (Fig. 6(d)). To quantify the advantage of our
approach, we tested a synthetic dataset of images containing 2 to 40 ellipses at
various noise levels. We calculated the Dice similarity coefficient (DSC) of the
segmentation to the ground truth for each ellipse and averaged over all the el-
lipses in the image. Fig. 7 plots the difference in average DSC between adaptive
regularization GC and standard GC for images of increasing ellipse numbers.
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Fig. 7. (Color figure, refer to e-copy). Difference in average DSC between adaptive

regularization GC and standard GC for images with increasing numbers of ellipses. Dif-

ferent curves represent different noise standard deviations as shown in legend. Positive

DSC difference indicates adaptive regularization GC is more successful than standard

GC at labeling ellipses with low image quality.

(a) (b) (c) (d)

Fig. 8. Segmentation of MR data from BrainWeb using GC with adaptive regular-

ization. (a) Original T2 slice with 3% noise level and 40% intensity non-uniformity.

(b) Reliability calculated by our proposed method. Note increased reliability along the

ventricular boundary. (c) Segmentation from standard GC. (d) Segmentation from GC

with adaptive regularization.

The same images were also tested at various noise levels. Note that a positive
difference in the DSC indicates that our proposed regularization method with
GC had greater success detecting low contrast ellipses.

Finally, we tested Graph Cuts with our proposed method on MR data from
BrainWeb [24] using a low number of seeds (0.1% of image pixels for each label).
Fig. 8(a) shows a T2 image with a noise level of 3% and an intensity non-
uniformity of 40%. Increased reliability along the ventricle boundary (Fig. 8(b))
results in lower regularization and greater accuracy in the adaptive regularization
GC result (Fig. 8(d)) when compared to the standard GC result (Fig. 8(c)) for
a segmentation of the ventricles and cortical surface.



Adaptive Contextual Energy Parameterization for Image Segmentation 1099

4 Conclusion

We proposed a novel approach for addressing a ubiquitous problem that plagues
most energy minimization based segmentation techniques; how to properly bal-
ance the weights of competing data fidelity and regularization energy terms. Our
technique spatially adapts the regularization weight based on a novel measure of
image data reliability. The proposed spectral flatness metric reflects the spatially-
varying evidence of signal versus noise and is automatically derived without any
tuning. We incorporated our proposed contextual parameterization technique
into a general segmentation framework and demonstrated its superiority to non-
contextual parameterization even when the latter employed globally optimized
values of the objective function parameters. Using quantitative and qualitative
tests, we demonstrated that regularization needs to vary spatially and must in-
crease where image evidence is less reliable. Our simple approach is powerful
and was shown to be capable of handling varying image data ranging from MRI
scans to natural images. Additionally, we demonstrated our approach’s general
applicability in that it can be extended to state-of-the-art energy-minimization
segmentation frameworks such as Graph Cuts.

We are currently extending our approach to other variational and graph-based
segmentation approaches such as [5][25]. Additionally, we intend to expand our
technique to handle energy functionals where multiple weights balance the dif-
ferent energy terms and to explore alternative image reliability metrics. Another
important conclusion of our findings is that globally optimal weights do not nec-
essarily reflect correct segmentations. We intend to further explore this issue and
its implications in more detail.
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Abstract. Labeling of discrete Markov Random Fields (MRFs) has be-

come an attractive approach for solving the problem of non-rigid image

registration. Here, regularization plays an important role in order to ob-

tain smooth deformations for the inherent ill-posed problem. Smoothness

is achieved by penalizing the derivatives of the displacement field. How-

ever, efficient optimization strategies (based on iterative graph-cuts) are

only available for second-order MRFs which contain cliques of size up

to two. Higher-order cliques require graph modifications and insertion of

auxiliary nodes, while pairwise interactions actually allow only regular-

ization based on the first-order derivatives. In this paper, we propose an

approximated curvature penalty using second-order derivatives defined

on the MRF pairwise potentials. In our experiments, we demonstrate

that our approximated term has similar properties as higher-order ap-

proaches (invariance to linear transformations), while the computational

efficiency of pairwise models is preserved.

1 Introduction

Non-rigid image registration is an important problem in computer vision and
medical imaging. Given two images I and J , one seeks a transformation T which
aligns the corresponding objects visible in the images. This is commonly solved
by posing an energy minimization problem where the objective function is a sum
of a matching criteria S and a regularization term R,

T̂ = arg min
T

S(I, J ◦ T ) + α R(T ) . (1)

Here, α is a weighting factor controlling the influence of the regularization term.
In the case of non-rigid registration, the transformation is often defined as the
identity transformation plus a dense displacement field D. The new location of
an image point x is then computed by

T (x) = x + D(x) . (2)
� This work is partially supported by Siemens Healthcare, Erlangen, Germany.

G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 1101–1109, 2009.
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Regularization plays an important role due to the inherent ill-posedness of the
problem [1]. A natural approach for regularization is to penalize the derivatives
of the displacement field. Smoothness terms based on the first-order derivatives
penalize high gradients and thus, piecewise constant deformations are favored.
Such smoothness models require a proper pre-alignment by linear registration
prior to the non-linear one, since penalizing the gradients is only invariant to
global translation. If still some linear transformation (such as rotation or scaling)
is present, penalizing the gradients might prohibit a proper non-rigid alignment.
Since a perfect linear alignment is not trivial to achieve when deformations are
present, one can consider to define a penalty term based on the second-order
derivatives [2,3]. Such a term penalizes high curvature in the displacement field,
is invariant to linear transformations, and thus, favors deformations which are
piecewise linear.

Recently, labeling of discrete Markov Random Fields has become an attractive
approach for solving the problem of non-rigid image registration [4,5,6]. We
will give a short introduction into the general framework in Section 2. Most
of the methods share a similar model for the registration which is based on a
pairwise MRF, i.e. is an MRF with cliques of size up to two. Then, the unary
terms1 (cliques of size one) play the role of the matching criteria, while pairwise
terms are used to encode the regularization of the displacement field. In [6],
the regularization is based on the norm of the displacement vector differences
between neighboring control points which is an approximation of penalizing the
gradients of the displacement field. The assumption is that neighboring nodes
should follow a similar motion. A more robust measure is used in [4,5] which
allows more freedom on the deformation. However, this measure is still based on
the gradient approximation. As remarked in [7], all these approaches penalize
linear transformations such as rotation and scaling which in practice is often
not desired. To this end, in [7] a regularization term based on the second-order
derivatives is introduced by adding triple cliques of collinear neighboring control
points to the MRF model. Each triple clique is in charge of penalizing the local
curvature of the displacement field. The main problem of this approach are in
fact the triple cliques, which require complex graph modifications in order to
use efficient optimization techniques based on message-passing. In [7], the third-
order MRF is converted to a pairwise one and then the TRW-S algorithm [8] is
utilized to infer the MRF variables. Unfortunately, no running time is provided,
but it is assumed to be much higher [9] than for the method proposed in [6]
which uses the FastPD algorithm [10,11] (based on iterative graph-cuts).

One may ask if it is possible to define a regularization term which has similar
properties as the curvature penalty based on triple cliques while keeping the
efficiency of a pairwise model.

In this paper, we investigate the use of an approximated curvature penalty
term in a pairwise MRF. Our experiments demonstrate the practicability of
such a regularization for non-rigid registration when the optimal transformation

1 Please note, that in [4,5] a decomposition of the unary terms is used but the general

model is similar to [6].
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contains a linear part. Compared to prior work, no higher-order cliques have to
be employed for our curvature term and thus, our approach is efficient in terms
of computational speed.

The remainder of the paper is organized as follows: the general framework for
non-rigid registration using MRFs is described in Section 2. The proposed ap-
proximated curvature penalty is introduced in Section 3. Section 4 demonstrates
the practicability of our regularization through a set of experiments, while Sec-
tion 5 concludes our paper.

2 Non-rigid Registration Using MRFs

Markov Random Field inference is a popular approach for parameter estimation.
Given a set of parameters, one can define a graph G = (V , C) consisting of a set
of nodes V (one node per parameter) and a set of cliques C (where each clique
is a subset of V). Assuming that each node i takes a label li from a discrete set
L, the task becomes to find the optimal labeling l which minimizes

Emrf(l) =
∑
c∈C

ψc(lc) , (3)

which is a sum of clique potentials ψc determining the costs of certain label
assignments and lc is the vector of labels assigned to the parameter subset c.

The most common MRF model used in computer vision tasks (e.g. segmenta-
tion) is the second-order (pairwise) model containing at most cliques of size two.
Many efficient algorithms have been proposed [12,8,10,13] to solve the inference
problem for this special case. For the second-order MRF the energy becomes the
sum of unary and pairwise potentials

Emrf(l) =
∑
i∈G

ψi(li) +
∑
i∈G

∑
j∈Ni

ψij(li, lj) , (4)

where Ni ⊂ G defines the neighborhood system of the graph.
In case of non-rigid registration, the MRF variables correspond to locations in

the image domain at which we want to estimate the motion (i.e. a displacement
vector). Each discrete label is mapped to a displacement from a discretized
version of the search space. For simplicity, we will denote the displacement vector
associated with label l as dl. A simple approach would be to introduce an MRF
variable for each pixel [14]. Then, the unary terms play the role of the data term
or matching cost. Exemplary, we can define the costs for the sum of absolute
differences (SAD) criteria based on image intensities as

ψi(li) = |(I(xi) − J(xi + Dt−1(xi) + dli)| , (5)

where Dt−1 is the dense field from the previous iteration and dli the potential
displacement corresponding to label li. The pairwise terms encode the regular-
ization. A simple smoothness term penalizing high gradients can be defined as

ψij(li, lj) = α ‖(Dt−1(xi) + dli) − (Dt−1(xj) + dlj )‖ . (6)
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The optimization problem for dense registration in (1) is now completely defined
as a discrete labeling of an MRF. The main problem for such an approach is
the number of variables. One variable per pixel becomes computationally very
expensive and is not feasible for large volumes in case of 3D registration. To
this end, we can reduce the dimensionality of the problem by introducing a
transformation model based on a sparse set of control points and an interpolation
strategy. The dense displacement field in (2) is then defined as

D(x) =
M∑
i

ηi(x)di , (7)

where M is the number of control points and ηi is a weighting function (e.g.
based on cubic B-splines) determining the contribution of the control point dis-
placement di to the displacement of an image point x. In this paper, we consider
free form deformations (FFDs) [15] as the transformation model, where the con-
trol points are defined on a regular lattice and each control point has only local
influence on the deformation. Let us now reformulate the matching cost (5) w.r.t.
to the control points

ψi(li) =
∑
x∈Ωi

|I(x) − J(x + Dt−1(x) + dli)| , (8)

where Ωi is a local image patch centered at the control point i. Intuitively,
(8) can be understood as a block matching cost where the whole block Ωi is
potentially moved by dli . The size of the blocks is automatically defined by
the distance between control points of the deformation grid. Additionally, [6]
proposes a weighted block matching by incorporating the weighting functions ηi

into the matching cost. The idea is that the influence of an image point to the
matching criteria of a control point should be proportional to the contribution
of that control point to the displacement of the image point. In other words,
image points far away from a control point should have less influence on its
cost than points in the immediate vicinity. Besides the reduction of the number
of MRF variables, the block matching has additional advantages. For instance,
it is straightforward to encode more sophisticated matching criteria such as
correlation or mutual information which often provide more reliable matches
than intensity differences. A comparison of different measures can be found in
[6]. The regularization term (6) is similar as before, but now evaluated only on
the control points instead of all image points

ψij(li, lj) = α ‖(dt−1
i + dli) − (dt−1

j + dlj )‖ , (9)

where dt−1
i is the displacement of control point i from the previous iteration.

The final pairwise MRF energy for the non-rigid registration in (1) based on a
deformation grid is then defined as
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Emrf(l) =
M∑
i

ψi(li) +
M∑
i

∑
j∈Ni

ψij

=
M∑
i

∑
x∈Ωi

|I(x) − J(x + Dt−1(x) + dli)|︸ ︷︷ ︸
≈S(I,J◦T )

+
M∑
i

∑
j∈Ni

α ‖(dt−1
i + dli) − (dt−1

j + dlj )‖︸ ︷︷ ︸
≈α R(T )

(10)

3 Approximated Curvature Penalty

The main limitation of the registration framework based on pairwise MRFs
are the constraints for regularization. The second-order cliques can only model
interactions between two variables. The smoothness terms proposed so far, which
all penalize high gradients on the displacement field, have the disadvantage of not
being invariant to linear transformations such as rotation and scaling. Therefore,
in [7] regularization is employed by introducing triple cliques which are able to
encode a smoothness prior based on the discrete approximation of the second-
order derivatives. The potential functions can be defined as

ψijk(li, lj, lk) = c(dt−1
i + dli , dt−1

j + dlj , dt−1
k + dlk) , (11)

c(a,b, c) =
1
δ2

n∑
d

(−ad + 2bd − cd)
2 , (12)

where c approximates the local curvature at location b, bd denotes the d-th
component of the n-dimensional vector space, and δ is the control point distance.
Such a smoothness term is invariant to linear transformations. The drawback of
this approach is the complex handling of triple cliques. Graph modifications and
insertion of auxiliary nodes are necessary in order to use efficient message-passing
optimization techniques [16,7]. The performance of message-passing algorithms
in terms of computational speed is much lower than methods based on iterative
graph-cuts [9,11].

Therefore, we propose a regularization term based on second-order deriva-
tives which works on pairwise potential functions and which we call approxi-
mated curvature penalty (ACP). Since in pairwise terms only the potential label
assignment of two variables is known, we approximate the local curvature by as-
suming the other variables to stay fixed. In detail, for two neighboring variables
i and j, we compute the approximated curvature at both locations and average
them. To this end, we define different pairwise potentials depending on the axis
on which the two variables are neighboring. In 2D, we have a set of potential
functions for the horizontal and vertical axis
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ψH
i,j(li, lj) =

1
2
(
c(dt−1

i−1 , dt−1
i + dli , dt−1

j + dlj )

+c(dt−1
i + dli , dt−1

j + dlj , dt−1
j+1)

)
,

ψV
i,j(li, lj) =

1
2
(
c(dt−1

i−Mx
, dt−1

i + dli , dt−1
j + dlj )

+c(dt−1
i + dli , dt−1

j + dlj , dt−1
j+Mx

)
)

,

(13)

where Mx is the number of control points on the deformation grid in horizontal
direction. The definition of an additional term for the third axis in 3D registration
is straightforward. In each evaluation of the ACP we determine the average of
the two local curvatures by considering the displacements of four variables: i
and j which are the variables with potential movement dli and dlj and the two
surrounding variables with the displacements from the previous iteration.

Considering the properties of such a smoothness prior, we claim that it al-
lows much more flexibility on the deformation w.r.t. to linear transformations
compared to other terms based on pairwise potentials. In the beginning of every
registration process, the matching criteria is usually the driving force towards
the correct alignment, while the regularization increases its importance on the
global energy in later iterations. The incremental deformation at the end of
the process is getting smaller and the ACP will favor deformations which are
piecewise linear instead of piecewise constant as for the gradient penalty. The
practicability of our proposed regularization is demonstrated in the following
experiments.

4 Experiments

We perform several experiments which hopefully illustrate the advantages of
the proposed ACP as regularization. Throughout the tests we use the FastPD
algorithm for MRF inference. In the first two experiments, we generate synthetic
target images by warping a source image with different linear transformations.
The first one is a 60◦ rotation and the second one an anisotropic scaling (see
Fig. 1(a) and 1(e)). For each target, four point correspondences are distributed
around the image center which exactly define these linear transformations. Please
note, that in these two experiments our aim is to investigate the properties of
the regularization only. Therefore, we choose a geometric matching term based
on perfect point correspondences. Thus, the data term is reliable and will guide
the registration towards an optimal alignment of the correspondences which
allows us to study the behavior of the regularization. We use a simple Euclidean
distance measure as the matching criteria w.r.t the correspondences. The unary
potentials are therefore defined as

ψi(li) =
K∑
k

‖pk − (qk + Dt−1(qk) + dli)‖ , (14)

where pk and qk are the corresponding points in the target and source image, re-
spectively. Now we compare the behavior of three different regularization terms,
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 1. First two rows: Target images on the left generated from the source image

by a 60◦ rotation (a) and anisotropic scaling (e). The registration results are shown for

the absolute difference (b,f), quadratic difference (c,g), and the approximated curvature

penalty (d,h). The Euclidean distance on four point correspondences is used to define

the registration data term. Last two rows: Target images on the left generated by

a 25◦ rotation (i). For the last row, additional random deformation is added (m).

From left to right the registration results (j-l,n-p) in the same order as shown in the

upper rows. This time, no information about point correspondences is used and the

registration is purely based on image intensities. Please note, that we use backward

warping why the actual transformations visualized as grids appear to point in the

opposite direction as the warped images.
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namely the absolute vector difference (cp. (9)), the quadratic vector difference
(i.e. the squared version of (9)), and our ACP defined in (13). For all registra-
tions, we use a 7 × 7 deformation grid. The results for the registration with the
different regularization terms are shown in Fig. 1(b-d) and (f-h). We should note,
that in all cases the final mean distance for the correspondences is less than one
pixel, which indicates a very good minimization of the matching costs. However,
the ACP is the only method which is able to correctly regularize the deformation
field towards the linear transformations.

The second part of the experiments is investigating the performance of the
ACP in intensity-based registration. In fact, large rotations such as 60◦ are very
unlikely to be present if a proper pre-alignment via rigid registration has been
performed prior to the non-rigid one. Additionally, a block matching strategy
which is mainly based on a translational search most likely fails to recover large
rotations or scaling. However, in practice it is likely that a certain amount of
linear transformation is still present when starting the non-rigid alignment [17].
Again, we generate two target images from a source image, both with a 25◦

rotation (cp. Fig. 1(i)). To one of the images we also add random deformation
using a thin-plate spline warping [2] (cp. Fig. 1(m)). The registrations are then
performed purely based on intensities using the matching criteria defined in (8).
The results for the different regularization terms are shown in Fig. 1(j-l) and
(n-p). Again, the ACP outperforms the gradient penalty terms in the ability
of regularization towards linear transformations. In the last case of random de-
formation combined with rotation, the resulting transformation using ACP is
very close to the ground truth. This is remarkable since only intensities are used
in the matching criteria and outer control points obtain their positions solely
by regularization. Additionally, when we visually inspect the warped images af-
ter registration the results for the ACP are almost perfect, while the gradient
penalty terms prohibit a proper alignment due to the increasing costs for linear
transformations. This is consistent with the observations in [7].

5 Conclusion

We propose a novel regularization term based on an approximated curvature
penalty for pairwise MRFs. Our results demonstrate the superior performance of
this approach compared to previous smoothness terms based on gradient penal-
ties. Our regularization can successfully recover linear transformations and thus,
has similar properties as a curvature penalty using triple cliques, while the com-
putational efficiency of a pairwise MRFs is preserved. In fact, the running time
using ACP increases only very little compared to the gradient penalty terms.
All shown registrations are performed within a few seconds. We believe that
the proposed regularization is an important extension to the MRF registration
framework. Furthermore, we could show that introducing approximated terms
in pairwise MRFs can lead to very promising results. Future work includes the
comparison to recent advances in optimization of higher-order MRFs [18].
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Fröhlich, Bernd I-644, II-104

Fuchs, Thomas J. I-367

Fuentes, Olac I-762

Galata, Aphrodite I-89

Gallus, William I-1009

Gambardella, Luca Maria I-576

Gao, Yan II-293

Garćıa, Narciso II-150
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Krämer, P. II-1041
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Rosenhahn, Bodo I-391, II-196

Roth, Thorsten I-987

Royer, Eric I-201

Rubinstein, Dmitri I-975

Safari, Saeed I-808

Sagraloff, Michael I-608

Saito, Hideo II-641, II-651

Sakai, Tomoya I-403, II-807, II-1109

Sandberg, Kristian I-564

Sankaran, Shvetha I-531

Santos-Victor, José I-223
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