
Chapter 5
Collaboration, Communication
and Co-ordination in Agile Software
Development Practice

Hugh Robinson and Helen Sharp

Abstract This chapter analyses the results of a series of observational studies of
agile software development teams, identifying commonalities in collaboration, co-
ordination and communication activities. Pairing and customer collaboration are
focussed on to illustrate the nature of collaboration and communication, as are two
simple physical artefacts that emerged through analysis as being an information-
rich focal point for the co-ordination of collaboration and communication activities.
The analysis shows that pairing has common characteristics across all teams, while
customer collaboration differs between the teams depending on the application and
organisational context of development.

5.1 Introduction

Agile software development is a group of software engineering methodologies, e.g.,
eXtreme programming (XP) [4] Scrum [26] Crystal [11] that became popular in the
early 2000s. Agile advocates claim to increase overall software developer produc-
tivity, deliver working software on time, and minimise the risk of failure in software
projects. Whilst its effectiveness and applicability remain uncertain, (e.g., [1, 19])
it is attracting increasing interest from the software engineering community, (e.g.,
[6, 24]). A summary of what is involved in agile software development is given in
this description by Cockburn [10: 29].

It calls for all the developers to sit in one large room, for there to be a usage expert or
“customer” on the development staff full time, for the programmers to work in pairs and
develop extensive unit tests for their code that can be run automatically at any time, for
those tests always to run at 100% of all code that is checked in, and for code to be developed

H. Robinson (B)
Centre for Research in Computing, The Open University, Milton Keynes, MK7 6AA, UK
e-mail: h.m.robinson@open.ac.uk

93I. Mistrík et al. (eds.), Collaborative Software Engineering,
DOI 10.1007/978-3-642-10294-3_5, C© Springer-Verlag Berlin Heidelberg 2010

94 H. Robinson and H. Sharp

in nano-increments, checked in and integrated several times a day. The result is delivered to
real users every 2–4 weeks.1

In exchange for all this rigor in the development process, the team is excused from pro-
ducing any extraneous documentation. The requirements live as an outline on collections of
index cards, and the running project plan is on the whiteboard. The design lives in the oral
tradition among the programmers, in the unit tests, and in the oft-tidied-up code itself.

Agile software development produces working software by technical practice
that also creates, and depends upon, intimate social activity which emphasises close
collaboration, co-ordination and communication within the development team. This
chapter explores the detailed nature of this social activity and its relationship to
and embodiment in the technical practice. The analysis is based on the results of
empirical studies we have carried out with six co-located mature XP software devel-
opment teams, covering a range of organisational settings, application domains
and development environments. Our approach to both data collection and analy-
sis is ethnographically-informed [25] which results in a validated account of the
detailed collaboration, co-ordination and communication mechanisms employed
and their relationships to each other and to technical practice. The approach is not
hypothesis-driven, but data-driven.

The analysis is in two parts. First, in section 5.3, we discuss and demonstrate
how the reality of agile technical practice involves collaborative and communica-
tive social activity. This is illustrated with consideration of two aspects of technical
activity which have key social characteristics: pairing and customer collaboration.
Second, in section 5.4, we analyse the critical work of co-ordination of collabora-
tive and communicative activity via the mechanisms associated with key physical
artefacts: story cards and the Wall. As background to this analysis, we introduce XP
as a social activity (section 5.1.1), and describe the fieldwork on which the analysis
is based (section 5.2). Following on from the analysis, we discuss the significance
of our findings in Section 5.5, and end with our conclusions in Section 5.6.

5.1.1 XP as a Social Activity

XP is commonly perceived in terms of technical practice. XP articulates its technical
practice as a set of mutually supportive components – practices – that include, for
example, small releases, simple design, testing, refactoring, pair programming and
continuous integration. In [3] 12 practices are listed, which are refined and extended
into 13 primary practices and 11 corollary practices in [4]. Beck states that the prac-
tices interact to mutually support one other: “Any one practice doesn’t stand well on
its own (with the possible exception of testing). They require the other practices to
keep them in balance.” [3: 69]. Consequently, any analysis and evaluation of one of

1 Time-boxed units of development lasting 1–4 weeks are called “iteration’s” in XP; time-boxed
units of development around four weeks are called “sprints” in Scrum.

5 Collaboration, Communication and Coordination 95

the XP practices has to take into account the manner in which it works in concert
with other practices.

As well as being technical practice, XP is also fundamentally a social activity,
with explicit values, such as communication and respect, and explicit principles,
such as humanity and reflection [4]. Interviewing Beck, Highsmith observes that
his “vision is about changing social contracts, changing the way people treat each
other and are treated in organizations” and quotes Beck’s response to an article that
attempted to revise XP: “I was furious that someone would strip out all of the social
change and still call it XP.” [16: 53]. Beck states that: “Just as values bring purpose
to practices, practices bring accountability to values.” [4: 14]. Such claims by XP
advocates as to the importance of social activity are sustained by several researchers,
(e.g., [9, 20, 31]), and practitioners, (e.g., [11, 21]).

The reliance of software engineering practice on purposeful social activity has
been recognised elsewhere, (e.g., [14, 30]), and so XP is not unique in this respect.
However the detailed nature of this social activity and its relationship to and embod-
iment in technical practice has not been investigated and analysed. In this chapter
we focus specifically on exploring and analysing XP’s collaborative, communicative
and co-ordinating dimensions. Our account of social activity will meet two impor-
tant requirements. First, it will be an account that attends to the technical as well as
the social. Second, it will be rooted in the reality of what practitioners do – XP in
the wild,2 so to speak – and that demands empirical fieldwork.

5.2 Fieldwork

Our findings represent a synthesis of results from a series of six empirical studies of
software practice. Our empirical studies were all fieldwork studies of teams based
in industry, engaged in software development, and using XP. Each team was mature
at the time of the fieldwork; that is, they had successfully transitioned to XP3 and
had been using all of Beck’s original 12 practices [3] for at least a year. Each team
consisted of software developers and other team members carrying out various roles
providing business, project management and specialist technical skills. The number
of developers in the team varied from 23 to 5 and the overall team size varied from
7 to 26 (see Table 5.1).

For example, Team C had two business development staff and a project manager;
another – Team E – had a project manager, two business analysts, a database admin-
istrator and a technical database user. The business settings of the six teams varied

2 cf. Edwin Hutchins’ Cognition in the Wild, MIT Press, Cambridge, MA, 1995.
3 Transitioning to XP is a process that can take place over a weekend or can require several months,
depending on a range of factors such as team size, organizational culture and team member attitude,
for example.

96 H. Robinson and H. Sharp

Table 5.1 Team composition and business setting

Team Overall team size Number of developers Business setting

A 12 8 Web-based intelligent adverts
B 23 16 Document use in multi-author

work environments
C 26 23 Travel information web pages

& alerts
D 15 12 Large international bank
E 10 5 Large international bank
F 7 5 Large telecommunications

company

(see Table 5.1). Each team was physically co-located, essentially in a large,
open room.

Each team was studied for a period of a week (sometimes with additional spells of
observation, so that, in effect, iterations of more than a week were accommodated),
with further follow-up meetings to discuss findings. An ethnographically-informed
approach [25] was taken with the researcher immersing themselves in the day-to-
day business of XP development, documenting practice by a variety of means that
included contemporaneous field notes, photographs/sketches of the physical layout,
copies of various documents and artefacts, and records of meetings, discussions
and informal interviews with practitioners. Data was analysed ethnographically
and thematically, emphasising validation through the seeking of confirming and
disconfirming instances. The thematic, ethnographic analysis of the data was com-
plemented with an analysis from a cognitive dimensions [15] theoretical perspective
for some of the data [28]. An analysis informed by a distributed cognition theoret-
ical perspective, based on DiCOT (Distributed Cognition for Teamwork) [5] was
also employed for the data collected with three of the teams [27].

5.3 The Social in the Technical: Collaboration
and Communication

The Agile Manifesto [2] emphasises collaboration and interactions, and the reality
of XP software development offers evidence that this emphasis is borne out in prac-
tice. Observing practice makes it clear to the researcher that the work of an XP team
visibly and continually involves collaboration and communication – and that collab-
oration and communication are part of the technical business of creating working
software. In this section we explore and analyse this intimate relationship between
the social and technical via two key XP practices which illustrate this relationship:
pairing and customer collaboration. We find that pairing has considerable com-
monalities across the six teams, while the detail of customer collaboration varies,
dependent on the team’s specific situation.

5 Collaboration, Communication and Coordination 97

5.3.1 Pairing

By pairing we refer to the social activity of two team members (usually developers4)
sitting together and working. Pairing work encompasses several of the mutually
supportive components of technical practice: pair programming, test-first coding,
refactoring, simple design and continuous integration. That is, pairing does not just
involve two programmers together writing production code: it also involves test-
driven development, the refining of code structure, the removal of complexity as
soon as it is discovered, and the integration of new, or changed, code into the existing
code base via the 100% passing of automated tests.

The collaborative activity of pairing is dominated by communication: talk
between the two programmers, as they discuss, investigate, reason, understand and
develop the task at hand. Understanding is shared and affirmed (“So, are you saying
there’s an AddAllocation? Yes.”)5 and action is negotiated and carried out (“Why
don’t we do the simplest thing and put in a test... that’s easy to test.”, “It’s the
simplest thing and it’s compatible with refactoring.”), lack of progress is acknowl-
edged (“So, detecting everything else wasn’t a very good idea”) and completion
signalled (“I’ll commit that!”). Silence is also an accepted feature of the talk, as
code is being run through a series of tests, when an unexpected “red bar” (failing
test) is encountered or simply when thought is required.

In our fieldwork, the talks, and the talkers’ roles, were fluid depending on the
nature of the task, the developers involved and the progress being made. For exam-
ple, an experienced developer would pair with a less-experienced colleague so that
the experienced developer could gain familiarity with portions of the code base
that the less-experienced colleague had been working on. Alternatively, experienced
developers may pair where the portion of the code base being modified is particu-
larly complex or the required change is tricky. In particular, contrary to claims by XP
advocates, (e.g., Beck [3: 58]), there was no evidence of any clear split in roles, with
one developer controlling the keyboard and mouse to produce code while the other
was thinking more strategically. Rather, both developers would adopt these roles
interchangeably as the talk progressed and the possession and use of the keyboard
and mouse oriented to the talk (and not the other way around); this is confirmed
by others and a more detailed study of this phenomenon is reported in [7]. The talk
sometimes involved more than the two developers who were pairing, when someone
in another pair would overhear the talk and offer their clarification or understanding
(if it were part of the code base in which they had expertise). Indeed, the ability of
pairs to peripherally overhear each other was taken for granted as desirable and was
exploited to make progress for the team.

As well as involving developers, the talk also actively involved the code and its
various manifestations in terms of the windows and panes of the many development

4 We have observed pairings of a developer with a graphic designer, and a developer with a business
analyst.
5 Such italicized, bracketed material, in quotes, is an illustrative extract from our field notes.

98 H. Robinson and H. Sharp

tools employed by the developers. The conversational turns of this third partner were
orchestrated by the developers as they summoned and dismissed panes, launched
tools, etc. The response of the third partner could – and would – shape the talk of
the developers, demanding close attention to what the code was expecting of them.
The code was a central focus in the talk.

Pairing is intimate and intense at both the social and technical level and this was
reflected in the developers’ organisation and management of their working environ-
ment in terms of time, relationships between individuals and space. The organisation
of the working day ensured that pairing did not take up much more than 5–6 hours
in the day – more than this was regarded as stressful and not sustainable. Similarly,
the period of pairing itself was actively managed, with recognition of the need for
breaks. In all our teams, pairs would swap around regularly – anything from half a
day to several days may be spent in one pair, depending on the functionality being
worked on. However, framed by this organisation and management, pairing was vis-
ibly a period where developers both expected and displayed great concentration and
focus.

Whilst pairing sessions themselves are intense and intimate, pairing as an ongo-
ing activity – on a daily, week-in, week-out basis – has its own intensity that
requires a level of maturity and social management from developers to accom-
modate inevitable clashes of programming style, attitude and personality. The
development teams studied recognised this in a variety of ways. The leader of one
team monitored and adjusted pairing to ensure active and effective engagement.
Another team likened the individual relationships of pairing to those of marriage
and sought to display all the skills of compromise, sensitivity and negotiation that
this required. And another team made use of a qualified social worker to help the
team understand the overall social health of its relationships. On a daily basis, many
of our teams kept a record of pairings, e.g. a pairing ladder that highlighted common
and uncommon pairings to make sure that rotation was evenly spread among team
members.

The organisation of the space of the working environment oriented to the nature
of pairing. This orientation ranged from the reconfiguration of desks for pairing to
the separation of space into an area for pairing, as well as areas for activities that
did not involve pairing, such as meetings, email and phone use.

Collaboration and communication occurs between pairs as well as within pairs.
Apart from the exploitation of peripheral awareness mentioned above, collaboration
and communication also occurs between pairs in the “stand up.” The stand up is
a daily meeting, taking place early in the day, before pairing begins. All develop-
ers attend and the meeting is short (no more than 15 min) – and people stand for
the duration. The meeting uncovers the collaboration and communication that must
take place across the developers in the coming day and initiates its co-ordination.
This is achieved by each developer quickly reporting in a three-part fashion: what
they’ve done since the last stand up that others need to know about, what they will
be doing next that others need to know about, and what if any obstacles are holding
them back (and that others can help with). The stand up emphasises reporting, and
prolonged discussion does not take place. As a result of what is reported, various

5 Collaboration, Communication and Coordination 99

discussions will take place during the day, although rarely in the setting of another
meeting.

5.3.2 Customer Collaboration

By “customer collaboration” we refer to the activity associated with the on-
site customer component of XP technical practice, where the customer generates
requirements, answers developers’ queries and provides understanding, sets priori-
ties, and provides feedback on iterations. Beck describes the on-site customer thus:
“A real customer must sit with the team, available to answer questions, resolve dis-
putes, and set small-scale priorities. By ‘real customer’ I mean someone who will
really use the system when it is in production.” [3: 60]. That is, in the ideal XP
world of Beck’s advocacy, the people filling the on-site customer role would be
co-located with the developers; would “speak with one voice”; would be potential
users of the system; and would be collaborative, representative, authorised, commit-
ted and knowledgeable. It is an accepted fact of XP practice that this ideal is rarely
realised for a variety of reasons: client organisations may be unwilling or unable to
spare people to become part of the development team; different customers may have
conflicting requirements; potential users of the system may not have the authority
to identify and prioritise system features, whereas decision makers may not under-
stand the needs of users; and so on. XP practitioners have recognised this fact and
devised approaches and methods to deal with the gaps between the ideal and the
reality, (e.g., [22, 23, 29]). These approaches and methods are contingent upon, and
are shaped by, the specific context and circumstances of the development team and
who is taking the role of the “customer.”

To demonstrate the nature of customer collaboration we briefly describe the
collaborative and communicative activity of each of our six teams, focussing on
interactions between the customer and developers.

The first setting involved a team where the on-site customer role was carried
out by marketing personnel who dealt directly with individual paying clients on
a regular basis. This direct involvement with the client brought great clarity and
authority to the development process. However, the role of marketing personnel
demanded that they respond quickly (minutes rather than hours) to requests from
clients. Usually, such requests necessitated consultation (and hence considerable
interaction) with developers. Much as the developers valued customer collaboration,
the frequency of such interruptions proved too distracting given the demands for
focus and concentration from the intensity of pairing. The solution explored was
that of an “exposed pair”: each day a pair of developers was identified who could
be interrupted if a client had an urgent request. Such a solution could only work
because of the shared understanding and responsibility created by other XP practices
including pairing.

In the second of our settings, the on-site customer role was carried out by project
managers who worked with marketing but were firmly part of the development
team. As such, they understood both the market requirements and positioning of

100 H. Robinson and H. Sharp

the company’s various products and the needs of the software development that
would create those products. Project managers organised a considerable amount of
the detail of software development, as well as orchestrating and managing requests
from marketing. They therefore managed a complex set of interactions between
various groups and individuals. It was noticeable that pairing was more “interrupt-
ible” here: ad hoc discussions involving pairs and a project manager would naturally
occur and often would involve individuals from another pair, or testers, or the team
coach. Once the particular issue was resolved, pairing would resume and there was
no sense that what had occurred was an “interruption.” A variation of this occurred
with our third setting where the team were the basis of a small software company
with a flat organisational structure. Here, the on-site customer role was carried
out by the handful of individuals who were management with collaboration and
communication activities that were similar to those described above.

Our fourth setting concerns a team working in a large international bank, devel-
oping the software that would support the institution’s management of operational
risk. The management of operational risk was a new regulatory body requirement
and hence the details of the institution’s methodology were taking time to emerge.
The on-site customer role was carried out by two individuals with expertise in
the institution’s methodology but it was a new area and there were sponsors and
stakeholders, senior to the two individuals, who needed to finalise and agree the
methodology. As a consequence, requirements were often subject to change. In addi-
tion, the on-site customer was not the intended user of the various applications, and
the institution had a strong tradition of conventional, plan-driven software devel-
opment with all its expectations of how sponsors, stakeholders and users interact
with software developers. The on-site customer was also not co-located with the
developers although relatively close and in the same building. Importantly, the on-
site customer had significant responsibility for the overall success of the applications
under development. All of these factors made collaboration and communication par-
ticularly demanding for both the on-site customer and the developers. Both worked
actively to manage the relationship and overcome problems, and reported positively
on this aspect at a retrospective. Developers proactively involved the customer at a
range of opportunities, including planning meetings, seeking them out after a stand-
up, and ensuring their involvement in the team’s coffee breaks. Considerable effort
was expended in developing a shared understanding of the risk methodology via
adhoc meetings.

The other team in this same bank (our fifth team) were migrating a range of exist-
ing independent databases, each with their own, different schema, to one integrated
database, with its own, new schema. For them, the customer role was taken by a
technical database user who had many years’ experience with the existing databases.
He was co-located with the team, but not always available. Communication and col-
laboration here were complicated by the inclusion of business analysts who were
creating the new database schema, and hence needed to communicate with both
the customer and the developers. This required three-way communication and co-
ordination and a double stand-up meeting each morning – one only for developers
and one with developers, customer and business analysts. All of this was overseen

5 Collaboration, Communication and Coordination 101

by a project manager who was responsible for liaising with the offshore database
administrators and the team’s immediate line management.

Our final setting concerns that of a team working in a large telecommunications
company. The customer (a representative of a large department who were the main
stakeholder in the work) was not on-site and was located several hundreds of miles
from the developers. Interaction between the customer and the developers routinely
took place once a week via a telephone conference, with other calls during the week
as and when queries arose. A wiki was also used to share information. Despite the
customer and developers rarely meeting each other, developers reported that this
arrangement worked effectively because they had worked with the system under
development for several years and believed that they had a good understanding of
what was likely to be acceptable to the customer and what was not.

In summary, collaboration and communication with the customer is rich and var-
ied but also is highly situated. As such, and unlike pairing, it is difficult to identify
recurring collaboration activities and communication patterns. For example, it is
highly unlikely that the approach taken in our final setting would work so effectively
in the situation of our fourth setting.

5.4 The Social in the Technical: Co-ordination

We now consider how these collaborative and communicative activities in XP
practice are co-ordinated. Specifically, we analyse the co-ordinating role of two
key physical artefacts identified through our analysis: the Wall and story cards.
Figure 5.1 is an example of the Wall and two story cards from our fieldwork. The
“Wall” is our term but it is a term, and a role, that practitioners readily recognised
and agreed with in feedback sessions with them on our fieldwork. The Wall is an
example of the Informative workspace primary practice of Beck & Andres [4].
However, Beck & Andres describe the primary practice simply in terms of “An
interested observer should be able to walk into the team space and get a general idea
of how the project is going in 15 seconds”. They neither explicate nor advocate the
key, detailed co-ordinating role of the Wall.

5.4.1 Story Cards

Stories are the key unit of communication between the customer and developers and
are small units of functionality for which working code can be developed after a day
or maybe two days’ effort. Such fine granularity is facilitated by the identification
and refinement of “epic stories” and larger chunks of functionality [12, 13]. Jeffries
[18] suggests that there are three parts (the three “C”s’) to a story: the Card, the
Conversation and the Confirmation.

The Card: Stories are usually written on... index cards. Cards are small, physically indepen-
dent entities. Their size constrains the amount of information that can be written on it, while

102 H. Robinson and H. Sharp

Fig. 5.1 An example of the wall and story cards from one fieldwork site

its independent nature means that it can be annotated and manipulated during meetings or
discussions.

The Conversation: Because the card can only hold a limited amount of information, the
development team has to talk to others in order to explore the detail of the story and to refine
their understanding of it.

The Confirmation: Testable and measurable user acceptance tests are agreed between the
customer and the development team, so that everyone concerned understands when a story
has been implemented successfully.

Each of these three parts has strong social characteristics that are significant in
co-ordination: the card’s independent, almost ubiquitous, nature; its role as a sum-
mons for shared understanding; and its insistence on an operational definition of
completion and closure.

Stories are usually thought of as being customer-initiated and as being about
customer-visible functionality. Our fieldwork revealed that stories can also be
developer-initiated and be about developer-required technical change such as refac-
toring. Furthermore, a story is often broken down into smaller units, known as tasks.
For example, in Fig. 5.1, the top card is a story card (“Show travel news headlines
and details for London”) and the bottom card is a task card (“Create WML travel
news pages”) which is one of the tasks of the story. Figure 5.1 does not show that,
in fact, the top story card is green and the bottom task card is white, so that the
use of different coloured cards indicates the level of granularity. The use of differ-
ent coloured cards here is deliberate and a common practice amongst teams. All of
the teams we studied made use of stories and all, with one exception, made use of
story (index) cards. The exception was a team which had moved from the use of

5 Collaboration, Communication and Coordination 103

index cards to an electronic, Word document. This Word document permitted con-
siderably more detail about what was required than would have been possible on an
index card and also included full details of the acceptance test.

At the start of an iteration, an iteration planning meeting is held to determine
which stories will be developed in the coming iteration. The cards that are being
considered for the iteration6 are often physically dealt on to the meeting table. The
planning meeting is collaborative with all team members and the on-site customer
being involved. Customers are asked to prioritise stories for the coming iteration,
and developers ensure that they have estimated how long each story will take and
that the cards are annotated with this information (such an estimate appears in the
bottom left corner of the (top) story card in Fig. 5.1). Working together, the team
determines how many and which stories will be included in the coming iteration.
Frequently, the physical space of the meeting table and the independent nature of
the cards are used to group and arrange cards to aid this process.

5.4.2 The Wall

Once the stories for the coming iteration have been determined they are taken and
arranged on the Wall. The Wall may be a convenient physical wall, as in the case
of Fig. 5.1, or it may be whatever is to hand. Examples from our fieldwork include
the vertical front surface of a collection of filing cabinets (see Fig. 5.2), a flip chart,
and a large (foldable and highly portable) piece of cardboard. That is, it matters to
teams that they have a Wall and they will create one in the most difficult of settings.
Even the team who held stories electronically had a cut-down version of the Wall.

The exact way in which each team arranged, and manipulated, story cards on
the Wall varied and we give here a simplified, but nevertheless, essential description
where the team worked in iterations of 3 weeks. The Wall is divided into three main
sections, one for each week of the iteration. The section for a week is sub-divided
into a “to do” area and a “done” area (see Fig. 5.3). At the start of the iteration, the
team considers how the cards need to be distributed across each of the 3 weeks and
carefully construct the Wall accordingly. Initially, only the “to do” area within the
Wall section for each week has any cards and the “done” area is empty. Within the
“to do” areas, cards are arranged so that task cards are with their associated story
card.

Following the first stand up of the iteration, some cards are removed from the “to
do” area of the first week – each card being taken by a pair of developers. The Wall
is annotated to indicate that a card has been moved (e.g., in Fig. 5.3 by the dotted
rectangle). In the case of the Wall of Fig. 5.1, a ghost of the moved card would be
drawn on the glass so that the card’s position on the Wall was preserved. The pair

6 Software is released after a series of iterations, typically every few months. There is a layer of
release planning, which helps scope out the functionality of an iteration that we have not touched
on here.

104 H. Robinson and H. Sharp

Fig. 5.2 Filing cabinets used as the wall

Week 1 Week 2 Week 3

To do To do To do

Done
Done Done

Fig. 5.3 A schematic of the wall shown in Fig. 5.1

5 Collaboration, Communication and Coordination 105

takes the card to a workstation, stick the card to the monitor, and engage in pairing.
Once they have produced tested, integrated working software, they annotate the card
with their initials, the actual time taken, and a large tick to indicate that it has been
completed and return the card to the Wall,7 placing it in the “done” area for the
week, erasing the annotation in the “to do” area that indicated the card was being
worked on by a pair.

Daily stand ups are conducted around the Wall, with individuals often pointing at
the Wall or taking cards from the Wall. By taking a card from the Wall, a developer
signals that they want to speak about the card and that they are exercising a form of
ownership8 over the work it represents. During the day, developers often look at the
Wall when considering progress, or the work left to be done.

At the start of the next week, the Wall is carefully studied by the team and rear-
ranged appropriately if the team has not completed all the stories initially allocated
to the week that has just finished.

This essential account makes it clear that the Wall and its associated cards are
not just visible signs of progress for visitors, managers and team members, as the
advocacy literature of Beck [3] or Cockburn [11] would suggest. Rather, they are
an information-rich focal point for the co-ordination of collaboration and commu-
nication. The Wall and its associated story cards work in a complementary manner.
The card is annotated in strict ways as it progresses through the development cycle,
but the card itself represents too small a chunk of development to stand alone – it is
important to see the wider overall picture of progress and activity. The Wall provides
this overview, and is designed spatially to carry extra information which comple-
ments the detail shown on each card. Much of the mechanics we have described –
card annotation, displaying stories on a wall, taking cards to a workstation when
implementation has started, etc – are focussed on co-ordination of the team mem-
bers’ efforts. However the way in which this co-ordination is achieved underpins the
collaborative and communicative nature of the team’s work and makes it possible
for such close collaboration and communication to be successful.

5.5 Discussion

In order to make technical progress, code must be implemented, and in order to
make that code useful, requirements must be understood through interaction with
customers. In XP, pairing supports the creation of code, and customer collabora-
tion supports understanding requirements. These two activities are clearly technical
practices, but our accounts also show the key facilitating role played by social
activity.

7 All actions that involve a card are carried out with a care that transcends its deceptive simplicity
and informality. Indeed, one team studied had an internal wiki entry entitled “The care and feeding
of story cards.”
8 Collective ownership is part of the technical practice of XP: “Anybody who sees an opportunity
to add value to any portion of the code is required to do so at any time.” [3: 59].

106 H. Robinson and H. Sharp

A striking difference between pairing and customer collaboration is that pairing
involves repeatable patterns of collaborative and communicative activity that tran-
scends teams and their contexts, while interaction with the customer is very rich
and highly situated. In order for regular communication to take place between cus-
tomers and developers, the activity of pairing needs to be interrupted, and different
teams handle such interruptions differently. Teams also vary in terms of whether
and how often the customer attends the daily stand-up. As others have noted, the
role of customer is rarely (in our six teams – never) taken by the ideal individual
and the individual circumstances of that person affects the nature of collabora-
tion and communication. For example, how much authority the customer has in
making decisions; how much knowledge of the domain the customer has; where
the customer is located relative to the developers; and so on. All of these impact
the nature of the collaborative and communication activities required to support
technical development.

Much of the co-ordination activity supported by the Wall and the cards cap-
tures progress information rather than functional information. The Wall, supported
by annotations on the story cards, is good at showing an overview of the team’s
progress, but it is not good at showing an overview of the structure of the code, or
the functionality being offered. Instead, the functional attributes and structure of the
software is communicated, evolved and kept safe through social activities such as
pairing and customer collaboration as described above.

One consequence of this is that project management tools, commonly in use
within the software industry, need to link into the Wall and its mechanisms for cap-
turing progress. A tempting solution may be to digitise story cards and the Wall to
enable this linkage, but software tools based around the Wall and the cards must
support the facilitation, management and visibility of working activity offered by
their physical counterparts rather than just produce electronic versions of these arte-
facts, however sophisticated (see [8] for a compelling example of such an approach
to the computerisation of a workflow system in the print industry). Developments
such as that of Iterex [17] are promising. The Iterex system supports the creation of
story cards in accordance with Jeffries’ three “C”s’, the breaking down of a story
into tasks, the colour coding of stories/tasks and their arrangement and their printing
for use “as technology in their own right.” Importantly, the system links support for
story cards into the other activities of tracking iteration and release progress, visu-
alising project velocity, scope and burn down/up and planning future releases based
on past performance.

Another consequence of the Wall’s focus on progress and not functionality is
that the social activity underpinning the discussion, evolution and agreement of
functional development and progress is crucial to effective code development.

5.6 Conclusion

The social activity we have described and analysed – the collaboration and com-
munication of pairing and customer collaboration, and the co-ordination of the
Wall and its associated story cards – brings purpose and meaning to the technical

5 Collaboration, Communication and Coordination 107

practice of XP: to pair programming, test-driven development, refactoring, simple
design, continuous integration, and the on-site customer. Similarly, the technical
practice makes the activities of collaboration, communication and co-ordination
accountable: it is not just any (“warm and fuzzy”) collaborative, communicative and
co-ordinating activity that is acceptable but the detailed work, intimately connected
to the technical that our analysis has revealed. The creation of working software is
a socio-technical enterprise.

References

1. Abrahamsson P, Warsta J, Siponen MT, Ronkainen J (2003) New directions on agile methods:
A comparative analysis. Proceeding of ICSE’03, ACM, New York, pp. 244–254.

2. Agile Manifesto http://agilemanifesto.org/, accessed 7th October 2008.
3. Beck K (2000) eXtreme Programming Explained: Embrace Change. San Francisco: Addison-

Wesley.
4. Beck K, Andres C (2004) eXtreme Programming Explained: Embrace Change. San Francisco:

Addison-Wesley.
5. Blandford A, Furniss D (2005) DiCoT: A methodology for applying distributed cognition to

the design of team working systems. Proceedings of DSVIS’05, Springer, Berlin, Heidelberg,
New York.

6. Boehm B, Turner R (2004) Balancing Agility and Discipline. Boston, MA: Addison-Wesley.
7. Bryant S, Romero P, du Boulay B (2008) Pair programming and the mysterious role of the

navigator. IJHCS 66(7): 519–529.
8. Button G (2004) Changing ways of working, seminar given at the IBM Alamaden

Institute, presentation available at http://www.almaden.ibm.com/institute/2004/bio/2004/
index.shtml?button.

9. Chong J (2005) Social behaviours on XP and non-XP teams: A comparative study. Pro-
ceedings of Agile 2005, IEEE, Los Alamitos, pp. 39–48.

10. Cockburn A (2000) Balancing lightness with sufficiency. Cutter IT Journal 13(11): 26–33.
11. Cockburn A (2004) Crystal Clear: A Human-Powered Methodology for Small Teams.

San Francisco: Addison Wesley.
12. Cohn M (2004) User Stories Applied. San Francisco: Addison-Wesley.
13. Davies R, Sharp H (2006) Early and often: Elaborating agile requirements. Cutter IT Journal

19(7): 6–11.
14. Good J, Romero P (2008) Collaborative and social aspects of software development. IJHCS

66(7): 481–483.
15. Green TRG, Petre M (1996) Usability analysis of visual programming environments: A

‘cognitive dimensions’ framework. Journal of Visual Languages and Computing 7: 131–174.
16. Highsmith J (2002) Agile Software Development Ecosystems. San Francisco: Addison-

Wesley.
17. Iterex (2008) http://www.planningcards.com/site/, accessed 13th October 2008.
18. Jeffries R (2001) Essential XP: Card, Conversation, Confirmation, accessed 04.11.07 http://

www.xprogramming.com/xpmag/EXPCardConversationConfirmation.htm.
19. Kruchten P, Adolph S (2008) Scrutinizing agile practices or shoot-out at the agile corral.

Workshop at ICSE 2008, Leipzig, Germany.
20. MacKenzie A, Monk S (2004) From cards to code: How extreme programming re-embodies

programming as a collective practice. CSCW 13: 91–117.
21. Mackinnon T (2003) XP – call in the social workers. In: Marchesi M, Succi G, (Eds.)

Proceedings of XP2003, Lecture Notes in Computer Science, Vol. 2675. Berlin, Heidelberg,
New York: Springer, pp. 288–297.

108 H. Robinson and H. Sharp

22. Martin A, Biddle R, Noble J (2004) The XP customer role in practice: Three case studies.
Proceedings of the Second Agile Development Conference, Salt Lake City, Utah, June 22–26.
IEEE, Los Alamitos.

23. Martin A, Noble J, Biddle R (2003) Being Jane Malkovitch: A look into the world of an XP
customer. In: Marchesi M, Succi G (Eds.) Proceedings of XP2003, Lecture Notes in Computer
Science, Vol. 2675. Berlin, Heidelberg, New York: Springer, pp. 234–243.

24. Paulk MC (2001) Extreme programming from a CMM perspective. IEEE Software,
November/December 2001, pp. 19–26.

25. Robinson HM, Segal J, Sharp H (2007) Ethnographically-informed empirical studies of
software practice. Information and Software Technology 49(6): 540–551.

26. Schwaber K, Beedle M (2002) Agile Software Development with SCRUM. Englewood Cliffs,
NJ: Prentice Hall.

27. Sharp H, Robinson HM (2008) Collaboration and co-ordination in mature eXtreme program-
ming teams. IJHCS 66: 506–518.

28. Sharp H, Robinson HM, Petre M (2009) The role of physical artefacts in agile software
development: Two complementary perspectives. Interacting with Computers 21: 108–116.

29. Sharp H, Robinson HM, Segal J (2004) eXtreme programming and user-centered design:
Friend or foe? Proceeding of HCI2004, Leeds.

30. Weinberg G (1998) The Psychology of Computer Programming. New York: Dorset House.
31. Whitworth E, Biddle R (2007) The social nature of Agile teams. Proceedings of Agile 2007,

Washington, DC, August, IEEE, Los Alamitos, pp. 13–17.

	5 Collaboration, Communication and Co-ordination in Agile Software Development Practice
	5.1 Introduction
	5.1.1 XP as a Social Activity

	5.2 Fieldwork
	5.3 The Social in the Technical: Collaboration and Communication
	5.3.1 Pairing
	5.3.2 Customer Collaboration

	5.4 The Social in the Technical: Co-ordination
	5.4.1 Story Cards
	5.4.2 The Wall

	5.5 Discussion
	5.6 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

