Chapter 4

Softwares Product Lines, Global Development
and Ecosystems: Collaboration

in Software Engineering

Jan Bosch and Petra M. Bosch-Sijtsema

Abstract Effective collaboration in software engineering is very important and
yet increasingly complicated by trends that increase complexity of dependencies
between software development teams and organizations. These trends include the
increasing adoption of software product lines, the globalization of software engi-
neering and the increasing use of and reliance on 3rd party developers in the context
of software ecosystems. Based on action research, the paper discusses problems of
in effective collaboration and success-factors of five approaches to collaboration in
large-scale software engineering.

4.1 Introduction

Collaboration is perhaps the most important lever for achieving high quality, effi-
cient and effective software engineering practices and results in virtually any
software developing organization.! Achieving effective collaboration, however, has
proven to be a major challenge in many organizations, resulting in failed or late
projects, products or systems not aligned to customer requirements, clashes between
the research and development (R and D) organization and the rest of the company,
etc. Although significant progress has been made over time, through, among oth-
ers, CMMI (Capability Maturity Model Integration), agile and iterative processes,
explicit software architecture management, and effective collaboration in large-scale
software development remain a challenge. For purposes in this paper we consider
collaboration effective if it generates minimal overhead for the organization while
avoiding the aforementioned problems.

J. Bosch (=)
Intuit Inc, Mountain View, CA 94043, USA
e-mail: jan@janbosch.com

I Collaboration is defined as a recursive process where two or more people or organizations work
together toward an intersection of common goals.

I. Mistrik et al. (eds.), Collaborative Software Engineering, 77
DOI 10.1007/978-3-642-10294-3_4, © Springer-Verlag Berlin Heidelberg 2010

78 J. Bosch and P.M. Bosch-Sijtsema

One can observe three trends that have surfaced over recent years that cause col-
laboration in software engineering to become significantly more complicated. The
first trend is the increasingly broad adoption of software product lines [1, 2, 6, 21].
Software product lines have proven to be perhaps the most successful approach
to improving productivity in software engineering; see, e.g., the product line hall
of fame [10]. However, transitioning an organization that has traditionally worked
in a product-centric fashion to a product line-centric way of working is a very
complicated change process. The primary reason for the difficulty in changing the
organization is because the product-line approach causes dependencies to be cre-
ated between software assets, and between teams responsible for those assets, that
did not exist earlier. In other words, an additional level of collaboration between
software engineering teams and organizational units is required.

The second trend is the globalization of software development [4, 9, 19]. More
and more global companies have either introduced several software development
sites or engaged in strategic partnerships with remote companies, especially in
India and China, due to several reasons; e.g., reduction of cycle time, reduction
of travel cost, use of expertise when needed, entering new markets, and respon-
siveness to markets and customers [5]. Global development has many advantages
but brings along its own set of challenges due to differences in culture, time zone,
software engineering maturity and technical skills between teams in different parts
of the world. Again, significant additional demands are placed on the collaboration
between teams in the organization. When teams need to closely cooperate during
iteration planning and have a need to exchange intermediate developer releases
between teams during iterations in order to guarantee interoperability, the coordi-
nation cost starts to significantly affect the benefits normally associated with global
development (cf. [11]).

A third important trend seen is the increasing adoption of ecosystems approaches
[15]. We define software ecosystem as follows: a software ecosystem consists of a
software platform, a set of internal and external developers and a community of
domain experts in service to a community of users that compose relevant solution
elements to satisfy their needs. Once a product or family of products has become
successful in the market, a significant business opportunity appears in the form
of third party developer and customer contributions to the product (family). This
requires that the internal product (line) software is converted into a platform that
is opened up to developers and development teams external to the organization. In
addition, this requires that customers buying a product that is part of the software
product line want to extend the functionality of the product with solutions available
in the community or developed by 3rd party developers after the product has been
deployed at the customer. Again, a significant additional demand is placed on the
ability of the organization and the ecosystem as a whole to collaborate effectively
as part of the software engineering process.

The trends discussed above have one important aspect in common: all increase
the amount of coupling between software assets as well as between organizational
unites. Below, we analyze the concept of decoupling in more detail. At the top
level, coupling (defined as the absence of decoupling) can be broken into two main

4 Softwares Product Lines, Global Development and Ecosystems 79

categories, i.e., software asset coupling and organizational coupling. The former
category is concerned with the dependencies that exist between technology assets,
complicating their composition in planned and unplanned configurations. During
the 1970s, this was already studied in the context of structured design [23] and
during the last decade the research around software architecture has continued that
tradition. Organizational coupling is a reflection of the dependencies between soft-
ware assets in that the ability of teams to work independently is constrained because
of dependencies between the software assets that the teams are responsible for.

For both types of coupling, in many contexts the term decoupling is used as
the term of choice as it indicates that explicit steps have been taken to decrease
dependencies between software assets that naturally are tightly connected. Based
on our research, however, we take the position that the amount of coupling between
software assets is a consequence of the beliefs of the software architects designing
the system. Typically, the perceptions by the architects about what functionality is
expected to vary versus which functionality is not, causes certain dependencies to
be created without inhibitions whereas in other areas explicit decoupling techniques
are applied.

Architects often are a product of the development organization they grew up
in and, consequently, tend to assume a certain approach to large-scale software
development. This approach assumes certain operating mechanisms to be present
between different software development teams in order to govern their collabora-
tion. The challenge, however, is that due to the three trends discussed above, the,
often implicitly defined, approach to software development becomes increasingly
inefficient.

We address that concern, by explicitly defining five approaches to inter-team col-
laboration, which are based on action research of several companies. We focus on
which different collaborative approaches large-scale software development compa-
nies apply, when these approaches are most applicable and discuss some of their
challenges we found in the case companies. The different models show how compa-
nies organize large-scale software development, ranging from a highly integrated to
a fully decoupled, inter-organizational approach, i.e., integration-centric approach,
release groupings, release trains, independent deployment and open (eco-) system
development.

In the remainder of the paper we discuss these five approaches for collab-
oration in large-scale software as well as specific problems that arose within
these approaches. We conclude the paper with discussing in which context these
approaches would be most applicable.

4.2 Architecture, Process, Organization

Collaboration in software engineering is challenging and, as we discussed in the
introduction, there are several trends that are complicating collaboration even fur-
ther. In this section, we discuss the key challenges or problems that we have

80 J. Bosch and P.M. Bosch-Sijtsema

identified in our research. The problem statement is organized according to three
areas: (1) software architecture; (2) engineering processes and (3) the organization
(mainly research and development). This is related to Herbsleb et al. [8] who per-
ceives software architecture, plans (in our case organization) and processes as vital
coordination mechanisms in software projects in order to have effective communi-
cation between software development teams. In the industrial reality, these areas are
deeply interconnected, but we use this structure intentionally. Ideally, architecture
and technology choices are derived from the business strategy and should drive pro-
cess and tools choices. These, in turn, should drive the organizational structure of
the R and D organization [13, 14]. In industry however, the three areas mentioned
above are not always aligned. Often, the current organizational structure defines the
processes and through that the architectural structure for the product or platforms
and consequently constrains the set of business strategies that the company can
aspire to implement. When companies define new growth strategies, the business
strategy often collides with the existing organizational structure and consequently
the process and architecture choices. The paradox is that the software development
department still is responsible for releasing existing products and platforms while at
the same time, needs to embark on new business strategy implementation. Typically,
the architecture, process and organization approaches allow for too tight coupling
and the problems discussed later can almost always be addressed by increasing the
decoupling between architecture or organization elements.

Perhaps the key area for enabling effective collaboration in software engineer-
ing is software architecture. Collaboration often breaks down due to too many
unnecessary dependencies between components and the teams responsible for those
components. The dependencies not only need to be individually managed, but
the overall system complexity grows exponentially with a growing number of
dependencies.

The software architecture has a significant impact on the collaboration in the
software development organization responsible for a system or platform. However,
software architecture is only an enabler of effective collaboration; it does not define
the collaboration itself. The engineering processes, both formal and informal, define
the actual collaboration between teams and between individuals.

Next to the software architecture and processes, the organizational context
and structure are important for effective collaboration in large-scale software
development projects. Several aspects mentioned in literature are globalization
[9, 19] co-ordination of interdependencies, knowledge management (transferring
tacit knowledge into explicit knowledge for example [17]), and alignment of the
architecture, processes and the organization. In the next section, we discuss five
approaches found in industry according to the dimensions of architecture, process
and organization.

The research and approach presented in this paper is based on an action research
methodology applied by the authors in numerous software-intensive system com-
panies as well as in other industries. The action research method seeks to bring
together action and reflection, theory and practice, in participation with others, in
the pursuit of practical solutions to issues of pressing concern to people, and more
generally the flourishing of individual persons and their communities [20, 1].

4 Softwares Product Lines, Global Development and Ecosystems 81

Table 4.1 Overview of case studies

Cases Company A Company B Company C
Product Embedded systems Consumer electronics ~ Software products
Market Global Global North America, Asia
Type and size of Component teams Division platform team Product platform
teams (between 10-30 (150+ members) team (200+
team member) Product platform members)
Global teams team (200+ Product team (25+
(between 10-30 members) members)
team member) Product team (50+
Platform members)
organization (500+ Global teams (30+
members) members)
Method and duration Participant observer, Participant observer, Participant observer,
of study 3 years 3 years 2 years
Data collection Interviews, workshops Interviews Participant
methods observation

We studied several R and D (Research and Development) units and software
development departments in three global companies (Fortune 100 and 500 com-
panies), who developed embedded products and software and service products for
different markets (European, US and Asian markets). In Table 4.1 we present an
overview of the cases investigated. Data was collected with help of semi-structured
and unstructured interviews (which were coded) and participant observatory meth-
ods. We applied a two-phase analysis method of first within-case analysis and later
on cross-case analysis method.

4.3 Five Collaborative Approaches

From all the units and teams we studied, at least two cases reported one of the five
approaches being applied for large-scale software development. These approaches
are discussed below. We organize the discussion around three dimensions: architec-
tural, process and organizational aspects of large scale software development and
conclude with success factors of the different approaches. In Table 4.2 we present a
summary of the five collaborative approaches.

4.3.1 Integration-Centric Development

Description: We found several firms applying an integration-centric approach, in
which the organization relies on the integration phase of the software development
lifecycle. During the early stages of the lifecycle, there is allocation of requirements
to the components. During the development phase, teams associated with each
component implement the requirements allocated to the component. When the
development of the components making up the system is finalized, the development

82

J. Bosch and P.M. Bosch-Sijtsema

Table 4.2 Collaboration models for large global software development

Open (eco-)
Integration- Release Independent system
Approach centric grouping Release trains deployment development
Description Deep Loosely coupled System System Platform and
interconnections subsystems components components 3rd part
between with decoupled, but decoupled, solutions
the elements high internal deployment deployment decoupled and
of the system. dependency coordinated independent deployed
independently
Architecture Strongly High integration High decoupling High decoupling Highly
challenge interconnected within release between com- between decoupled
architecture grouping, high ponents components with
— Tight decoupling — Teams — Coordination sand boxes for
interdependency between develop and execution third party
and complexity ~ groupings independently, complicated functionality
challenge — Management while — Security
challenge of maintaining models in
decoupling backward platform
interfaces compatibility architecture
challenge
Process Continuous Continuous Short iteration Each team Each team
challenge coordination coordination cycles; only selects length, selects length
between teams within coordination at frequency and of iteration
— Lockstep grouping start/end time of iteration cycle
evolution — Variation of cycle cycle — Certification
challenge challenge — Teams — Challenge process
between and independent, for high degree possible
inside release but all teams of automation
groupings need to release and coverage of
as same testing
point in time
Organization High Teams Distributed Distributed teams Distributed
challenge interdependency responsible teams within within organi- teams across
between teams for different organization zation organizational
— Mismatch release — Reduction of - Coordination ~ boundaries
architecture groupings can coordination performed by — Challenge of
and be distributed costs software misalignment
organization — Coordination architecture business case
structure costs and of provider
completion and external
time challenge developers
Success 1. Release cycle 1. Geographical 1. Frequent 1. Different 1. Market
factors long. distribution of releases benefi- iteration cycles approach
2. Deep integra- teams aligned cial for firm. for different 2. Teams
tion of compo- with release 2. High level layers of the highly
nents groupings of maturity stack. dispersed.
3. Co-location of 2. High integra- needed 2. High level of 3. High level
team tion within maturity needed of maturity
application needed

domain

4 Softwares Product Lines, Global Development and Ecosystems 83

enters the integration phase in which the components are integrated into the over-
all system and system level testing takes place. During this stage, typically, many
integration problems are found that need to be resolved by the component teams.

If the component teams have not tested their components together during the
development phase, this phase may also uncover large numbers of problems that
require analysis, allocation to component teams, co-ordination between teams and
requiring continuous retesting of all functionality as fixing one problem may
introduce others.

In response to the challenges discussed above, component teams often resort to
sharing versions of their software even though it is under development. Although
this offers a means of simplifying the integration phase, the challenge is that the
untested nature of the components being shared between component teams causes
significant inefficiency that could have been avoided if only more mature software
assets would be shared. One approach discussed frequently in this context is contin-
uous integration [12], but in our experience this often addresses the symptoms but
not the root causes of decoupling.

Architecture: The architecture of the system or system family is typically not
specified and if documentation exists, the documentation is often outdated and plays
no role except for introducing new staff to the course grain design of the system.
Because of this, the de-facto architecture often contains inappropriate dependen-
cies between the components that increase the coupling in the system and cause
unexpected problems during development.

In our cases, we found a typical architectural challenge that seems to be prevalent
with this approach: the system architects failed to keep it simple. The key role of the
software architect is to take the key software architecture design decisions [3] that
decompose the system into consistent parts that can continue to evolve in relative
independence. However, as has been studied by several researchers, (e.g., [22]) no
architectural decomposition is perfect and each has crosscutting concerns as a con-
sequence. These concerns cause additional dependencies between the components
that, as discussed above, need to be managed and add to the complexity of the sys-
tem. Techniques exist to decrease the “tightness” of dependencies, such as factoring
out the crosscutting concerns and assigning them to a separate component or by
introducing a level of indirection that allows for run-time management of version
incompatibilities. In the initial design of the system, but especially during its evo-
lution, achieving and maintaining the absolutely simplest architecture is frequently
not sufficiently prioritized. In addition, although complexity can never be avoided
completely for any non-trivial system, it can easily be exacerbated by architects and
engineers in response to addressing symptoms rather than root causes, e.g., through
overly elaborate version management solutions, heavy processes around interfaces
or too effort consuming continuous integration approaches.

Process: Although most organizations employing this approach utilize tech-
niques like continuous integration and inter-team sharing of code that is under
development, the process tends to be organized around the integration phase. This
often means a significant peak in terms of work hours and overtime during the weeks
or sometimes months leading up to the next release of the product.

84 J. Bosch and P.M. Bosch-Sijtsema

A challenge we found was lockstep evolution. When the system or platform can
only evolve in a lockstep fashion, this is often caused by evolution of one asset
having unpredictable effects on other, dependent assets. In the worst case, with
the increasing amount of functionality in the assets, the cycle time at which the
whole system is able to iterate may easily lengthen to the point where the product
or platform turns from a competitive advantage to a liability. The root cause of the
problem is the selection of interface techniques that do not sufficiently decouple
components from each other. APIs may expose the internal design of the com-
ponent or be too detailed that many change scenarios require changes to the API
as well.

Organization: The development organization has a strong tendency to concen-
trate all-important work to one location. Even if the organization is distributed, there
is often a constant push to concentrate development and the team members in remote
locations tend to travel extensively.

One problem we found was a mismatch between architectural and organizational
structure. In one of the organizations, we were involved in transitioning the company
from a product-centric to a product-line centric approach to software development.
This requires a shared platform that is used by all business units. The organization,
however, was unwilling to adjust the organizational structure and instead asked each
business unit to contribute a part of the platform. Each business unit had to prioritize
between its own products and contributing to the shared platform and as a conse-
quence the platform effort suffered greatly. Although the importance of aligning
the organization with the architecture has been known for decades [7] in our case
studies the organizations violate this principle frequently.

Success factors: Although the integration-oriented approach has its disadvan-
tages, as discussed above, it is the approach of choice when two preconditions are
met. First, if conditions exist that require a very deep integration between the com-
ponents of a system or a family of systems, e.g., due to severe resource constraints
or challenging quality requirements, the integration-oriented approach is, de-facto,
the only viable option. Second, if the release cycle of a system or family of sys-
tems is long, e.g., 12—18 months, the amount of calendar time associated with the
integration phase is acceptable.

4.3.2 Release Groupings

Description: In this approach, the development organization aims to break the sys-
tem into groups of components that are pre-integrated, i.e., a release group, whereas
the composition of the release groups is performed using high decoupling tech-
niques such as SOA-style (Service-Oriented-Architecture) interfaces [16]. At the
level of a release group, the integration-centric approach is applied; whereas at the
inter-release group level coordination of development is achieved using periodic
releases of all release groups in the stack.

Architecture: In this approach, the architecture has been decomposed into its
top-level components, which are aligned with the release groupings. Often, the

4 Softwares Product Lines, Global Development and Ecosystems 85

organization has run into the limits of the previously discussed approach and has
taken the action to decouple the top-level parts of the system.

In the typical scenario, the organization evolves from an integration-centric to a
release groupings approach. As the organization has allowed for many dependen-
cies between components, the management of interfaces between release groupings
often is insufficient. The definition of the APIs does not sufficiently decouple release
groupings from each other. APIs may expose the internal design of the release
grouping or are too detailed causing many change scenarios to require changes to
the APIs.

Process: Similar to the architecture, the process is now also different between
the release groupings, but the same as the previously discussed approach within
the release grouping. The decoupling allows the release groupings to be composed,
with relatively few issues. This is often achieved by more upfront work to design
and publish the interface of each release group before the start of the development
cycle.

In several of the cases that we studied, the organization failed to realize
that processes needed to vary between and inside release groupings. This lead
to several consequences, including features that cross release groupings tend to
be underspecified before the start of development and need to be “worked out”
during the development by close interaction between the involved teams. This
defeats the purpose of release groupings and causes significant inefficiency in
development.

Organization: As discussed in the description, the allocation of release group-
ings often mirrors the geographical location of teams and the definition of release
grouping interfaces the level of the geographical boundaries significantly decreases
the amount of communication and co-ordination that needs to take place and,
consequently, efficiency is improved.

In our cases, we found that working geographically distributed increases the
amount of time required to accomplish tasks due to cultural differences, time zone
differences and engineers need to spend more time in co-ordinating their work
across the globe. Engineers have to allocate more of their time for global coor-
dination, which makes development less efficient. Although the release groupings
approach addresses this concern to some extent, we found that the coordination cost
still is quite significant.

Success factors: The release grouping approach is particularly useful in situations
where teams responsible for different subsets of components are geographically
dispersed . Aligning release groupings with location is, in that case, an effective
approach to decreasing the inefficiencies associated with co-ordination over sites
and time zones. A second context is where the architecture covers a number of
application domains that require high integration within the application domain, but
much less integration between application domains. For instance, a system consist-
ing of video processing and video storage functionality may require high integration
between the video processing components, but a relatively simple interface between
the storage on processing parts of the system. In this case, making each domain a
release grouping is a good design decision.

86 J. Bosch and P.M. Bosch-Sijtsema

4.3.3 Release Trains

Description: In the third approach, the decoupling is extended from groups of com-
ponents to every component in the system. All interfaces between components are
decoupled to the extent possible and each component team can by and large work
independently during each iteration. The key coordination mechanism between the
teams is an engineering heartbeat that is common for the whole R and D organi-
zation. With each iteration, e.g., every month, a release train leaves with the latest
releases of all production-quality components on the train. If a team is not able to
finalize development and validation of its component, the release management team
does not accept the component. Once the release team has collected all components
that passed the component quality gates, the next step is to build all the integrations
for the software product line. For those components that did not pass the component
quality gates, the last validated version is used. The integration validation phase has
two stages. During the first stage, each new release of each component is validated
in a configuration consisting of the last verified versions of all other components.
Component that do not pass this stage are excluded from the train. During the second
stage, the new versions of all components that passed the first stage are integrated
with the last verified versions of all other components and integration testing is per-
formed for each of the configurations that are part of the product family. In the case
where integration problems are found during this stage, the components at fault are
removed from the release train. The release train approach concludes each iteration
with a validated configuration of components, even though in the process a subset
of the planned features may have been withdrawn due to integration issues between
components. The release trains approach provides an excellent mechanism for orga-
nizational decoupling by providing a heartbeat to the engineering system that allows
teams to synchronize on a frequent basis while working independently during the
iterations.

Architecture: The architecture now needs to be fully specified at the com-
ponent level, including its provided, required and configuration interfaces. No
dependencies between components may exist outside the interfaces of the
components.

In a web service-centric architecture inside an organization, the teams associated
with components develop independently while maintaining backward compatibility
for their provided interfaces. This allows each team to release at the end of the devel-
opment cycle and, after a, typically automated, testing effort the new component
versions are released at the same time.

Process: The key process challenges, as discussed above, are the pre-
development cycle work around interface specification and content commitment
and the process around the acceptance or rejection of components at the end of
the cycle. In addition, especially when the organization uses agile development
approaches, sequencing the development of new features such that dependent,
higher level features are developed in the cycle following the release of lower
level features allows for significantly fewer ripple effects when components are
rejected.

4 Softwares Product Lines, Global Development and Ecosystems 87

The release train approach allows team to work independently from each other
during the development of the next release, but it still requires all teams to release
at the same point in time. The process of testing the new version of compo-
nents consists of two stages. First, each new version of a component is tested
in the context of the released versions of all other components. This verifies
backward compatibility. In the second stage, the new versions of all components
are brought together to verify the newly released functionality across component
boundaries.

Organization: As the need for co-ordination and communication between the
teams has been reduced and is much more structured in terms of time and con-
tent, the organization can be distributed without many of the negative consequences
found in the earlier approaches.

In one of the companies that we studied, this approach reduced the coordina-
tion cost quite considerably. Teams co-ordinated around the release of new versions
of components to plan for the next release. However, limited centralized plan-
ning was necessary. Instead, teams co-ordinated with each other at the interface
boundaries.

Success factors: The release train approach is particularly suited for organizations
that are required to deliver a continuous stream of new functionality in their prod-
ucts or platform; either because new products are released with a high frequency or
because existing products are released or upgraded frequently with new functional-
ity. The organization has a business benefit from frequent releases of new functional-
ity. Companies that provide web services provide a typical example of the latter cat-
egory. Customers expect a continuous introduction of new functionality in their web
services and expect a rapid turnaround on requests for new functionality. The release
train approach does require a relatively mature development organization and
infrastructure. For instance, the amount and complexity of validation and testing
that is required demands a high degree of test automation. In addition, interface man-
agement and requirements allocation processes need to be mature in order to achieve
sufficient decoupling, backward compatibility and independent deployment of
components.

4.3.4 Independent Deployment

Description: The independent deployment approach assumes an organizational
maturity that does not require an engineering heartbeat (a heartbeat in the engi-
neering system allows teams to synchronize on a frequent basis while working
independently during iterations) including all the processes surrounding a release
train [18]. In this approach, each team is free to release new versions of their
component at their own iteration speed. The only requirement is that the com-
ponent provides backward compatibility for all components dependent on it. In
addition, the teams develop and commit to roadmaps and plans. The lack of an
organization-wide heartbeat does not free any team from the obligation to keep

88 J. Bosch and P.M. Bosch-Sijtsema

their promises. However, the validation of a component before being released is
more complicated in this model as any component team, at any point in time, may
decide to release its latest version.

Architecture: Similar to the release trains approach, the architecture needs to
be fully specified at the component level. Architecture refactoring and evolution
is becoming more complicated to co-ordinate and execute on.

In one of the cases, the business realities forced some fundamental architectural
design decisions to be revoked and replaced with alternative solutions. This required
the independent teams to resort to significantly more coordinated ways of working
until the architecture had stabilized after several release iterations.

Process: The perception in the organization easily becomes that there no longer
is an inter-team process for development as any team can develop and release at their
leisure. In practice, this is caused because the process is no longer a straightjacket
but more provides guardrails within which development takes place. The cultural
aspects of the software development organization, especially commitment culture
and never allowing deviations from backward compatibility requirements, needs to
be deeply engrained and enforced appropriately.

As the process does not enforce joint releasing of components, any component
team can release at their own frequency and time. This requires an even higher
degree of automation and coverage of the testing framework in order to guarantee
the continued functioning of the overall system.

Organization: Similar to the release trains approach, the organization can take
many shapes and forms as long as the development teams associated with a
component are not distributed themselves.

As the process and geographic co-location of the development organization
is not longer something that one can rely on, the key organization principle is
now centered on the software architecture. Co-ordination is no longer process
and human-driven, but instead is performed via the software architecture. As a
consequence, where as team leads and engineers talk very little to other teams,
the architects in the organization typically increase their interaction to guide the
evolution of the architecture.

Success factors: The independent deployment approach is particularly useful in
cases where different layers of the stack have very different “natural” iteration
frequencies . Typically, lower layers of the stack that are abstracting external infras-
tructure iterate at a significantly lower frequency. This is both because the release
frequency of the external components typically is low, e.g. one or two releases per
year, and because the functionality captured in those lower layers often is quite sta-
ble and evolves more slowly. The higher layers of the software stack, including the
product-specific software, tend to iterate much more.

The key factor in the successful application of the independent deployment
approach is the maturity of the development organization. The processes surround-
ing road mapping, planning, interface management and, especially, verification and
validation, need to be mature and well supported by tools in order for the model to
be effective.

4 Softwares Product Lines, Global Development and Ecosystems 89
4.3.5 Open Ecosystem

Description: The final approach discussed is an approach in which inter-
organizational collaboration is strived after. Successful software product lines are
likely to become platforms for external parties that aim to build their own solutions
on top of the platform provided by the organization. Although this can, and should,
be considered as a sign of success, the software product line typically has not been
designed as a development platform and providing access to external parties with-
out jeopardizing the qualities of the products in the product line is typically less than
trivial. Even if the product line architecture has been well prepared for acting as a
platform, the problem is that external developers often demand deeper access to the
platform than the product line organization feels comfortable to provide.

The typical approach to address this is often twofold. First, external parties that
require deep access to the platform are certified before access is given. Second,
any software developed by the certified external parties needs to get validated in
the context of the current version of the platform before being deployed and made
accessible to customers.

Although the aforementioned approach works fine in the traditional model, mod-
ern software platforms increasingly rely on their community of users to provide
solutions for market niches that the platform organization itself is unable to provide.
The traditional certification approach is infeasible in this context, especially as the
typical case will contain no financial incentive for the community contributor and
the hurdles for offering contributions should be as low as possible. Consequently,
a mechanism needs to be put in place that allows software to exist within the plat-
form but to be sandboxed to an extent that minimizes or removes the risk of the
community-offered software affecting the core problem to any significant extent.

The open ecosystem development model allows unconstrained releasing of com-
ponents in the ecosystem not only by the organization owning the platform but by
also by certified 3rd parties as well prosumers and other community members pro-
viding new functionality. Although few examples of this approach exist it is clear
that a successful application of this approach requires run-time, automated solu-
tions for maintaining system integrity for all different configurations in which the
ecosystem is used.

Architecture: The main architectural focus when adopting this approach is to
provide a platform interface that on the one hand opens up as much useful plat-
form functionality for external developers and on the other hand provides an even
higher level of quality and stability as the evolution of interfaces published to the
ecosystem is very time and effort consuming as well as constraining. In addi-
tion, security precautions have to be embedded in the interface to provide the
best defense mechanisms for accidental or intended harm to the customers in the
ecosystem.

Especially in the case where external developers can release directly to customers
without involvement of the platform company, the architecture has to be devel-
oped defensively at its external interfaces. In two of the cases that we studied, this

90 J. Bosch and P.M. Bosch-Sijtsema

translated into the implementation of an elaborate security model in the platform
architecture to control access of external code in the platform.

Process: As the ecosystem participants are independent organizations, no com-
mon process approach can be enforced, except for gateways, such as security
validation of external applications. However, each limitation put in place causes
hurdles for external developers that inhibit success of the ecosystem, so one has to
be very careful to rely on such mechanisms.

In one of the cases that we studied, the platform company felt obliged to intro-
duce a certification process for externally developed code as the risk for customers
was considered to be too great.

Organization: The organization in this approach is best described as a networked
organization, i.e., the platform providing organization has a rather central role, but
the external developers provide important parts, often the most differentiating and
valuable parts of the functionality.

The key difference that the two of the cases that we studied struggled with is
that the business case for the platform organization is not necessarily aligned with
the business case of external developers. Although the platform company should
strive to achieve this situation, there is a natural tension in terms of monetization:
the platform company has to leave sufficient value in the ecosystem for external
developers to have an acceptable return on investment.

Success factors: The open ecosystem model is a natural evolution from the
release train and independent deployment models when the organization decides to
open up the software product line to external parties, either in response to demands
by these parties or as a strategic direction taken by the company in order to drive
adoption by its customers.

The key in this model, however, is the ability to provide proper architectural
decoupling between the various parts of the ecosystem without losing integrity from
a customer perspective. In certain architectures and domains, the demand for deep
integration is such that, at this point in the evolution of the domain, achieving suf-
ficient decoupling is impossible, either because quality attributes cannot be met or
because the user experience becomes unacceptable in response to dynamic, run-time
composition of functionality.

Two areas where this approach is less desirable are concerned with the platform
maturity and the business model. Although the pull to open up any software product
line that enjoys its initial success in the market place, the product line architecture
typically goes through significant refactoring that can’t be hidden from the prod-
ucts in the product line or the external parties developing on top of the platform
defined by the architecture. Consequently, any dependents on the product line archi-
tecture are going to experience significant binary breaks and changes to the platform
interface. Finally, the transition from a product to a platform company easily causes
conflicts in the business models associated with both approaches. If the company is
not sufficiently financially established or the platform approach not deeply ingrained
in the business strategy, adopting the open ecosystem approach fail due to internal
organizational conflicts and mismatches.

4 Softwares Product Lines, Global Development and Ecosystems 91
4.4 Conclusion

Collaboration can be viewed as the most important lever for achieving high qual-
ity, efficient and effective software engineering practices and results in virtually
any software developing organization. Although collaboration has been compli-
cated, several trends increase the complexity of managing dependencies between
software development teams and organizations. These trends include the increasing
adoption of software product lines, the globalization of software engineering and
the increasing use of and reliance on 3rd party developers in the context of soft-
ware ecosystems. The trends share as a common characteristic that the coupling
between the software assets as well as between the organizational units is increased.
Consequently, decoupling mechanisms need to be introduced to address the increase
in coupling.

In this paper, we have discussed the challenges of decoupling approaches for
large-scale software collaboration from an architecture, process and organization
perspective. From extensive action research involving several cases, we found five
different approaches on a continuum ranging from low to high decoupling. We illus-
trated the challenges of these approaches in specific instances from the case study
examples. Our experience shows that these challenges are caused due to the appli-
cation of a collaboration model that is not applicable for a specific situation. In most
cases that we studied, significant problems were caused by the application of a col-
laboration approach that did not provide sufficient decoupling and could or were
addressed by the introduction of a more decoupled approach to collaboration.

The contribution of the paper is that it presents a clear overview of possible
collaboration approaches for large-scale software development and their particu-
lar challenges where surprisingly little literature exists in this area. With this paper
we give an insight in different decoupling approaches, their specific challenges and
their success factors (applicability).

References

1. Bosch J (2000) Design and Use of Software Architectures: Adopting and Evolving a Product
Line Approach, Pearson Education. London: Addison-Wesley & ACM Press.

2. Bosch J (2002) Maturity and evolution in software product lines: Approaches, artifacts and
organization. Proceedings of the 2nd Software Product Line Conference (SPLC).

3. Bosch J (2004) Software architecture: The next step. Proceedings of the First European
Workshop on Software Architecture (EWSA 2004), Springer LNCS.

4. Carmel E, Agarwal R (2001) Tactical approaches for alleviating distance in global software
development. IEEE Software 1(2: 22-29.

5. Cascio F, Wayne S, Shurygailo S (2003) E-leadership and virtual teams. Organizational
Dynamics 31(4): 362-376.

6. Clements P, Northrop L (2001) Software Product Lines: Practices and Patterns. Reading, MA:
Addisson-Wesley.

7. Conway ME (1968) How do committees invent. Datamation 14(5): 28-31.

8. Herbsleb JD, Grinter RE (1999) Architectures, co-ordination and distance: Conway’s law and
beyond. IEEE Software 16(5): 63-70.

9. Herbsleb JD, Moitra D (2001) Global software development. IEEE Software 18(2): 16-20.

92

10.
11.

12.

13.

20.

21.
22.

23.

J. Bosch and P.M. Bosch-Sijtsema

HOF http://www.sei.cmu.edu/productlines/plp_hof.html.

Kraut R, Steinfield C, Chan AP, Butler B, Hoag A (1999) Co-ordination and virtualiza-
tion: The role of electronic networks and personal relationships. Organization Science 19(6):
722-740.

Larman C (2004) Agile and Iterative Development: A Manager’s Guide. Reading, MA:
Addison-Wesley.

Linden F van der, Bosch J, Kamsties E, Kansala K, Obbink H (2004) Software product family
evaluation. Proceedings of the Third Conference Software Product Line Conference (SPLC
2004), Springer Verlag LNCS 3154, pp. 110-129.

Linden F van der, Schmid K, Rommes E (2007) Software Product Lines in Action: The Best
Industrial Practice in Product Line Engineering. Berlin Heidelberg: Springer Verlag.

. Messerschmitt DG, Szyperski C (2003) Software Ecosystem: Understanding an Indispensable

Technology and Industry. Cambridge, MA: MIT press.
Newcomer E, Lomow G (2005) Understanding SOA with Web Services. Upper Saddle River,
NJ: Addison Wesley.

. Nonaka I (1994) The Knowledge Creating Company. How Japanese Companies Create the

Dynamics of Innovation. New York: Oxford University Press.

. Ommering R van (2001) Techniques for independent deployment to build product popula-

tions. Proceedings of WICSA 2001, pp. 55-64.

. Sanwan R, Bass M, Mullick N, Paulish DJ, Kazmeier J (2006) Global Software Development

Handbook. Boca Raton, FL: CRC Press.

Reason P, Bradbury H (2001) Handbook of Action Research. (Eds.) Thousand Oaks, CA:
Sage Publishing.

SPLC http://www.splc.net/.

Tarr P, Ossher H, Harrison W, Sutton SM Jr (1999) N degrees of separation: Multi-dimensional
separation of concerns. Proceedings 21st International Conference Software Engineering
(ICSE’1999), IEEE Computer Society Press, pp. 107-119.

Yourdon E, Constantine LL (1979) Structured Design. Englewood Cliffs, NJ: Prentice-Hall.

	4 Softwares Product Lines, Global Development and Ecosystems: Collaboration in Software Engineering
	4.1 Introduction
	4.2 Architecture, Process, Organization
	4.3 Five Collaborative Approaches
	4.3.1 Integration-Centric Development
	4.3.2 Release Groupings
	4.3.3 Release Trains
	4.3.4 Independent Deployment
	4.3.5 Open Ecosystem

	4.4 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

