
Chapter 19
Collaborative Software Engineering: Challenges
and Prospects

Ivan Mistrík, John Grundy, André van der Hoek, and Jim Whitehead

Abstract Much work is presently ongoing in collaborative software engineering
research. This work is beginning to make serious inroads into our ability to more
effectively practice collaborative software engineering, with best practices, pro-
cesses, tools, metrics, and other techniques becoming available for day-to-day use.
However, we have not yet reached the point where the practice of collaborative soft-
ware engineering is routine, without surprises, and generally as optimal as possible.
This chapter summarizes the main findings of this book, draws some conclusions on
these findings and looks at the prospects for software engineers in dealing with the
challenges of collaborative software development. The chapter ends with prospects
for collaborative software engineering.

19.1 Introduction

19.1.1 What We Know About Collaborative Software Engineering

Software engineering is naturally a team activity. Software engineers need to collab-
orate effectively in order to deliver a project on time, on budget and to an appropriate
quality level [2]. Traditional software engineering projects have used primarily top-
down approaches to team organization and project management, a homogeneous
software process and toolset, are co-located enabling regular and proactive face-to-
face meetings, and team members usually have the same language and work culture
[2, 3, 8].

These projects still face daunting challenges around collaboration. Teams have
to be formed and work appropriately delegated, tracked and managed. Specialists
within teams or whole specialist teams need to exchange knowledge among them-
selves and across team boundaries. Evolving requirements and customer needs

I. Mistrík (B)
Independent Consultant, 69120 Heidelberg, Germany
e-mail: i.j.mistrik@t-online.de

389I. Mistrík et al. (eds.), Collaborative Software Engineering,
DOI 10.1007/978-3-642-10294-3_19, C© Springer-Verlag Berlin Heidelberg 2010

390 I. Mistrík et al.

require processes and collaboration support to enable these to be effectively man-
aged [5, 26]. Traditional software tools usually provided limited collaboration
support features. A toolset needs mechanisms to support collaboration (e.g., shared
workspaces, file repositories, differencing and merging support, configuration, test-
ing, design, process management), communication (email, messages, annotations,
video/audio), and co-ordination (locking, versioning, hand-over, auditing) [20, 6].
Many studies of teams, processes, tools and real-world projects [5, 19, 27] have
shown the value of appropriate process, project management, technique and tool
selection and usage to enable effective and efficient collaboration.

Several recent trends in software engineering have greatly increased the chal-
lenges around collaboration on software projects. Agile processes enabling rapid
requirements evolution and emergent architectures and documentation demand
vastly different team organization, project management and communication strate-
gies [19, 18, 8, 2]. Virtual software organizations with distributed teams, contrac-
tual obligations between constituent organizations, and highly distributed teams
demand greater support for knowledge sharing, co-ordination and collaboration
[13]. Communication may be complicated by time zone, culture and even lan-
guage differences. Open source software projects exhibit similar challenges but are
often characterized by a very wide range of participants, organizations and contri-
butions from teams and individuals with very different motivations and needs. A
trend to “global software development” similarly leads us to teams that span coun-
try, language, culture, organization, technical tool platform and ultimately software
process [18].

In order to address many of these known issues – and discover new issues – in
collaborative software engineering, a large number of research and practice projects
are taking place. New software processes are being studied to gauge their impact
on distributed software projects including open source, global software develop-
ment and outsourcing projects [2, 8, 17, 24]. These aim to help organizations better
understand such contexts for collaboration and formulate the most effective and
complementary teams, processes, toolsets and techniques. Communication patterns
in open source projects, requirements engineering, coding and testing projects, and
projects in agile process, open source and virtual software development organiza-
tions, are being analyzed to enhance understanding of needs in these domains [24, 5,
2]. Many face challenges of distance including language, culture and work practice,
as well as traditional communication and knowledge management issues. A wide
range of new tool support approaches are being developed, deployed and evaluated
in various domains. These include but are not limited to improved awareness sup-
port, software analysis, configuration management, co-ordination, communication
and knowledge management [6, 9, 11, 19].

Sharing knowledge about software engineering projects continues to be a major
challenge and best practices for knowledge management in many areas are still
unclear [9, 11, 26]. Studies have shown benefits to collaboration of improved
knowledge repositories and management practices in requirements, architecture,
project management, and software process domains. Communicating rationale
about decisions is critical at all levels of software engineering [12, 15, 16].

19 Collaborative Software Engineering 391

19.1.2 Objectives of This Chapter

This book makes a case for CoSE as a crucial part of research in software engineer-
ing (SE) and as an essential part of future software development and maintenance.
In previous chapters, the book has explained what CoSE is, what its potential value
is for SE, what its research challenges are and how these challenges might be met.
The intention of this concluding chapter is to provide a summary of the previous
chapters and a look at prospects meeting the challenges of future CoSE practice.

Section 19.1 summarizes a current status of CoSE. Section 19.2 presents a sum-
mary of the book. Section 19.3 reviews some of the present challenges facing
collaborative software development and prospects for meeting them.

19.2 Summary of the Book

Software engineering collaboration has multiple goals and means spanning the
entire lifecycle of development [27]. Chapters in this book are reporting on advances
in achieving some of these goals by presenting their particular means and specific
solutions.

Chapter 1 of the book introduces the concepts and tools for CoSE. Part I con-
tains chapters that characterize CoSE. Part II contains chapters that examine various
techniques and tool support issues in CoSE. Part III contains chapters addressing
organizational issues in CoSE. Part IV contains chapters looking at a variety of
related issues in CoSE. Finally, Chapter 19 concludes the book with a summary of
the book, current challenges and prospects in CoSE.

As many organizations have discovered to their cost, implementing a global soft-
ware engineering strategy is a complex and difficult task. Extensive research in this
area has identified that this is due to a number of factors which include the nature
and impact of geographical, temporal, cultural and linguistic distance. In addition,
whether undertaken in a collocated or geographically distributed environment, team
based software development is not simply a technical activity. It also has important
human, social and cultural implications which need to be specifically addressed.
While the technical aspects of software development cannot be underestimated, nei-
ther can the importance of establishing and facilitating the effective operation of
these teams [18].

Requirements engineering (RE) is an area filled with challenges of a non-
technical nature. RE involves activities such as negotiation, analysis and require-
ments management in subsequent phases of development. RE requires communica-
tion from the elicitation phase down to the analysis, implementation and test phases.
As such, it involves collaboration among large, often geographically distributed
cross-functional teams comprised of requirements analysts, software architects,
developers, and testers. This collaboration is driven by coordination needs in soft-
ware development and relies on communication and awareness. Coordination is a
critical aspect in every activity related to a requirement’s analysis, implementation
or testing. Effective coordination, knowledge management and information sharing

392 I. Mistrík et al.

among team members with diverse organizational and functional backgrounds is
crucial. Collaboration across geographical distance (i.e., different time zones) and
socio-cultural distance (i.e., language and culture) creates additional challenges in
project members’ communication and awareness in the development project [5].

Collaboration can be viewed as the most important lever for achieving high qual-
ity, efficient and effective software engineering practices and results in virtually
any software developing organization. Although collaboration has been compli-
cated, several trends increase the complexity of managing dependencies between
software development teams and organizations. These trends include the increasing
adoption of software product lines, the globalization of software engineering and
the increasing use of and reliance on 3rd party developers in the context of soft-
ware ecosystems. The trends share as a common characteristic that the coupling
between the software assets as well as between the organizational units is increased.
Consequently, decoupling mechanisms need to be introduced to address the increase
in coupling [3].

Agile software development is a group of software engineering methodologies,
e.g., eXtreme programming (XP), Scrum, Crystal, that became popular in the early
2000s. Agile advocates claim to increase overall software developer productivity,
deliver working software on time, and minimise the risk of failure in software
projects. While its effectiveness and applicability remain uncertain, it is attracting
increasing interest from the software engineering community. The Agile Manifesto
emphasises collaboration and interactions, and the reality of XP software develop-
ment offers evidence that this emphasis is borne out in practice. Observing practice
makes it clear to the researcher that the work of an XP team visibly and continually
involves collaboration and communication – and that collaboration and communi-
cation are part of the technical business of creating working software. There are two
key XP practices which illustrate the relationship between the social and technical:
pairing and customer collaboration [19].

Ontology captures a shared understanding of a problem domain and is usually
specified in a logical language by describing concepts, relationships and additional
logical axioms. Knowledge included in ontology is designed for both humans and
machines. It can be integrated in development infrastructures and in developed soft-
ware to support various software project activities. Although ontologies have been
around for many years, several factors promote their increasing adoption. First, with
a number of W3C standards such as RDF and OWL issued in recent times, tools
and methodologies for creating and managing ontologies have matured. Second, the
success of the Web enables developers to collaborate in a richer and more dynamic
way, instead of working in de facto isolation. Both factors contribute to a slow but
growing number of semantic approaches addressing CSD issues. Applications of
ontologies in software development can be manifold and so the resulting ontologies
will differ in expressivity, scope and purpose [9].

A variety of novel tools have been created to allow software developers to col-
laborate with each other. There are many approaches how to classify them. One
approach classifies them on whether they try to (a) make software developers feel
they are co-located, or (b) provide features not found in co-located collaboration.

19 Collaborative Software Engineering 393

The result is an overview that relates concepts not linked together earlier, which
include not only research tools but also studies that motivate/evaluate them. Each of
the surveyed works is described by showing how it builds on or overcomes prob-
lems of other research addressed in this chapter. By focusing only on the differences
among these works, the chapter covers a large variety of concepts, from over fifty
papers. It is targeted mainly at the practitioner familiar with the state of the art,
rather than the researcher working on improving current practices. Nonetheless, the
interrelationships among the referenced works should be of interest to everyone.
In particular, a new researcher in this area should be able to find holes in existing
designs and evaluations [6].

In software development the need for coordination among developers gener-
ally arises because of the underlying technical dependencies among work artifacts;
as well as the structure of the development process. Researchers in the software
engineering as well as computer-supported cooperative work communities have rec-
ognized this problem and created a host of tools to improve team coordination.
However, evaluating the usability and usefulness of such tools has proven to be
extremely difficult. One possibility is to focus on different evaluation approaches
that are applicable for coordination tools. There exists a diverse range of approaches
to evaluating collaborative tools. Adopting a combination of empirical evaluation
approaches is perceived as means to meet the challenges typically encountered. The
diversity of existing tools and evaluation approaches reflect the many challenges of
facilitating coordination in teams. Further, several evaluation frameworks have been
proposed to support software tool evaluation [20].

Configuration Management is a discipline responsible for controlling the evolu-
tion of products. Since late 1960s, configuration management is considered to be
one of the core supporting process to software development and a research field of
software engineering. According to IEEE, there are five main functions of configura-
tion management: configuration identification, configuration control, configuration
status accounting, configuration evaluations and reviews, and release management
and delivery. However, these five functions are traditionally supported by three main
subsystems: issue tracking system, version control system, and build management
system. Because the primary focus of configuration management is keeping the
consistency of products, it is concerned with how people interact to develop and
maintain these products. The complexity of software products led to the need of
geographically distributed teams composed of a large number of developers with
different background. These teams collaborate during software engineering activ-
ities, and configuration management can be considered as an enabling technology
to allow this collaboration. Collaboration in the context of software engineering
encloses different aspects, such as: implicit and explicit communication among
developers, awareness regarding other developers’ actions, coordination of devel-
opment tasks to avoid rework and to achieve the project goals, keeping a shared
memory with previous development actions history, and providing a shared space
where the work made by a developer is available to other developers [15].

The advantages of using explicit software architecture include early interaction
with stakeholders, its basis for establishing work breakdown structure and early

394 I. Mistrík et al.

assessment of quality attributes. Although considerable progress has been made,
we still lack techniques for capturing, representing, and maintaining knowledge
about software architectures. While much attention has been given to document-
ing architectural solutions, the rationale for these solutions often remains implicit
and is often exchanged in interpersonal, informal communication. The incomplete
representation of the needed architectural knowledge leads to several problems that
are generally recognized in any software engineering project, and that become just
worse in distributed and global software development. When software engineering
projects are distributed or global, the problems above are aggravated. Knowledge
transfer is a communication process requiring strict interaction and agile informa-
tion exchange. In local software development, it is already difficult to rationalize the
type and amount of knowledge we need to exchange. If in addition exchanges occur
remotely and via a technological infrastructure, we have to make this knowledge
explicit, and we need to identify agile means to render this process as dynamic and
powerful as possible [11].

Software development is in essence information-intensive collaborative knowl-
edge activity. It is about using information, generating information, and making
information artifacts. The wide acceptance of agile processes and the success of
many open source projects provide strong evidence that human aspects do matter in
software development; cognitive and social processes play essential roles in success-
ful software projects in which individuals’ creative thinking in using and generating
information are nurtured. There is an argument that software engineering environ-
ments must be designed to foster such individuals’ creative knowledge processes,
and that collaboration must be supported in the context of individuals’ development
activities. Collaborative software development environments should be designed
to facilitate and nurture individuals’ creative knowledge processes. Collaboration
takes place with or without explicit communication. On the one hand, software
developers regularly engage in collaboration through artifacts without explicit com-
munication (e.g., by writing comments in code to be read by others). On the other
hand, explicit communication becomes necessary when developers must ask their
peers for information that is otherwise not obtainable. Existing studies have pro-
vided ample evidence that both collocated and distributed software development
teams frequently engage in communication to acquire necessary information from
peer developers [16].

A common feature of many software analysis tools is that they focus on just
a particular kind of analysis to produce the results wanted. If different analyses
are required, an engineer needs to run several tools, each one specialized on a
particular aspect, ranging from pure source code analysis, duplication analysis, co-
change analysis, bug prediction, to bug fixing patterns and visualization. All these
techniques have their own explicit or implicit meta-model which dictates how to
represent the input and the output data. Thus the sharing of information between
tools is only possible by means of a cumbersome export towards files complying
with a specified exchange format. Also, if there are several analyses of the same
kind (e.g., code duplication analysis) there is hardly any way to compare the results
or integrate them other than manual investigation. Tool interoperability is hampered

19 Collaborative Software Engineering 395

even more by their stand-alone nature as well as their platform and language depen-
dence. As a consequence, distributed and collaborative software analysis scenarios
are severely limited. The combination and integration of different software analysis
tools is a challenging problem when we need to gain a deeper insight into a soft-
ware system’s evolution. For every required analysis a specialized tool, with its own
explicit or implicit meta-model dictating how to represent the input and output, has
to be installed, configured and executed. Even if different analyses of the same kind
exist, the only way to compare them is to do it manually [8].

Communication and collaboration among team members are key success fac-
tors for large, complex software projects. In addition to industry, examples of such
projects can be found in the Open Source Software (OSS) community, for exam-
ple, the Mozilla, Apache, Eclipse projects. OSS projects are of particular interest
for communication and collaboration research because their developers rarely or
never meet face-to-face. Findings of previous research showed that OSS developers
coordinate their work almost exclusively by three information spaces: the imple-
mentation space, the documentation space, and the discussion space. Typically, in
OSS projects a versioning system, such as the concurrent versions system, provides
the backend of the implementation space. It keeps track of changes made to pro-
jected related files and corresponding versions. The World Wide Web is used as
the primary documentation space. Because of the distributed and informal nature of
OSS projects, discussions between project members, project associates, and users
are done and tracked in mailing lists and bug reporting systems. This results in a
representative data set that enables communication and collaboration analysis [17].

For the past few years, Siemens has been experimenting with software develop-
ment processes and practices for globally distributed projects using student-based
development teams located at different universities around the world. The students
who make up the Global Studio Project (GSP) simulate an industrial software devel-
opment project using common practices for collaboration among distributed sites.
Experiences with this project have been reported in a number of papers, and it has
been documented as a case study (GSP 2005). The motivation for studying multi-
site software development processes is driven by the business needs. A number of
questions were raised, and they are still being investigated [2].

Free/open source software development (FOSSD) is a way for building, deploy-
ing, and sustaining large software systems on a global basis, and differs in many
interesting ways from the principles and practices traditionally advocated for
software engineering. Hundreds of FOSS systems are now in use by thousands
to millions of end-users, and some of these FOSS systems entail hundreds-of-
thousands to millions of lines of source code. So what’s going on here, and how are
collaborative FOSSD processes used to build and sustain these projects, and how
might differences with SE be employed to explain what’s going on with FOSSD?
One of the more significant features of FOSSD is the formation and enactment of
collaborative software development practices and processes performed by loosely
coordinated software developers and contributors. These people may volunteer their
time and skill to such effort, and may only work at their personal discretion rather
than as assigned and scheduled. Further, FOSS developers are generally expected

396 I. Mistrík et al.

(or prefer) to provide their own computing resources (e.g., laptop computers on the
go, or desktop computers at home), and bring their own software tools with them.
FOSS developers often work on global software projects that do not typically have a
corporate owner or management staff to organize, direct, monitor, and improve the
software development processes being put into practice on such projects [24].

The outsourcing of software development implies that an organization wholly
or partially contracts out software development to another organisation. If the
partner organization is located abroad, this might be termed “an offshore out-
sourcing of software development”. If the development takes place in physically
far-flung locations, it is called “global software development” or “distributed soft-
ware development”. Whether domestic or foreign, outsourcing can be an uncertain
undertaking. Nonetheless many companies use offshore outsourcing to reduce time-
to-market, to tap global resources, to profit from round-the-clock development, and
to reduce costs. The goal of “offshore outsourcing software development” is to
uphold competitiveness in the global market. This goal should be promoted by
the concise and purposeful employment of every resource – information technol-
ogy, talent and competence to assure a thriving offshore outsourcing project. All of
which helps the company maintain ongoing global penetration. However, global
distribution of the development raises a number of knotty questions concerning
accomplishment and implementation. Often there is a huge disparity between targets
and the results attained [13].

According to a recent paradigm shift in the field of software architecture, the
product of the architecting process is no longer only the models in the various
architecture views, but the broader notion of Architectural Knowledge (AK): the
architecture design as well as the design decisions, rationale, assumptions, con-
text, and other factors that together determine architecture solutions. Architectural
(design) decisions are an important type of AK, as they form the basis underly-
ing software architecture. Other types of AK include concepts from architectural
design (e.g., components, connectors), requirements engineering (e.g., risks, con-
cerns, requirements), people (e.g., stakeholders, organization structures, roles), and
the development process (e.g., activities). The entire set of AK needs to be itera-
tively produced, shared, and consumed during the whole architecture lifecycle by
a number of different stakeholders as effectively as possible. The stakeholders in
architecture may belong to the same or different organization and include roles such
as: architects, requirements engineers, developers, maintainers, testers, end users,
and managers etc. Each of the stakeholders has his/her own area of expertise and a
set of concerns in a system being developed, maintained or evolved. The architect
needs to facilitate the collaboration between the stakeholders, provide AK through
a common language for communication and negotiation, and eventually make the
necessary design decisions and trade-offs. However, in practice, there are several
issues that hinder the effective stakeholder collaboration during the architecting pro-
cess, which diminishes the quality of the resulting product. One of these problems is
the lack of integration of the various architectural activities and their corresponding
artifacts across the architecture lifecycle. The different stakeholders typically have
different backgrounds, perform discrete architectural activities in a rather isolated

19 Collaborative Software Engineering 397

manner, and use their own AK domain models and suite of preferred tools. The
result is a mosaic of activities and artifacts rather than a uniform process and a solid
product [12].

Software product line engineering enables customization of products for vari-
ous market-segments from an abstraction called a product line platform. The set of
products are developed from a product line platform is termed as a software prod-
uct line. Software product line engineering provides several advantages based on
reuse; quicker time-to market, improved cost savings and defect rates. Using soft-
ware product lines several companies have recorded success stories. A product line
platform is made up of several assets. An asset could be a system model element
(artifacts that are used in software development such as use cases, classes, test cases
etc) or a variability model element, an abstraction for variability. Variability is intro-
duced in a product line platform as an abstraction to allow customization and reuse
of artifacts to address the needs of different market segments. Variability manage-
ment involves several activities. Variability identification covers identification and
representation of variability; product instantiation which deals with the resolution
of variability for individual products of a product line; and variability evolution,
which addresses the change of variability itself. Product line evolution includes the
evolution of system model elements and variability model elements. Software prod-
uct line engineering involves two activities, domain engineering and application
engineering. Domain engineering is an activity in which assets of a product line
platform are identified, implemented and maintained. Another activity, application
engineering is responsible for instantiating products from a product line platform.
In product line requirements engineering, the activities of variability management
are to be performed based on collaboration of domain and application engineering.
Therefore, supporting collaboration between domain and application engineering is
critical. The communication problem between conflicting views exists from the level
of single system requirements engineering. To address the collaboration between
domain and application engineering, in this contribution, variability management
is extended using rationale management in order to enable issue-based collabora-
tion between domain and application engineers. The collaboration supported by a
rhetorical model is termed as issue-based collaboration. Rationale is defined as the
reasoning that leads to a system model. Rationale management is viewed as a special
branch of collaborative software engineering [26].

19.3 Today’s Challenges

As should be clear from the collected chapters in this book, much work is presently
ongoing in collaborative software engineering research, work of a broad variety
and often great amount of depth. This work is beginning to make serious inroads
into our ability to more effectively practice collaborative software engineering, with
best practices, processes, tools, metrics, and other techniques becoming available
for day-to-day use. However, we have not yet reached the point where the practice

398 I. Mistrík et al.

of collaborative software engineering is routine, without surprises, and generally
as optimal as possible. Partly, this is unavoidable, as the fundamental tensions dis-
cussed in Section 1.7 make achieving the optimum very difficult, if not impossible.
At the same time, we should acknowledge that, while the research has advanced
greatly over the past decade, many difficult challenges still exist when it comes to
understanding and practicing collaborative software engineering. In the below, we
highlight several key such challenges that we believe are among the most pressing
and at the same time most promising to address at this moment in time.

Building a theoretical understanding of COSE. In any research field, one of the
keys to advancement is to build an understanding of its underlying truths and phe-
nomena. So it is in software engineering, and in the case of this book, collaborative
software engineering. We need to build an understanding of what factors influence
collaborative work and how those factors together determine the overall effective-
ness of a given collaborative effort. This not only requires identifying each of the
factors at play, but also how those factors influence one another. As one example,
the role of awareness has been recognized for some time now [6]. As another exam-
ple, trust has recently come forward as a crucial factor in distributed projects [1].
While each of these factors must be studied in depth, they cannot be studied in
isolation; they are closely interrelated and must be understood as a collective. The
notion of congruence is appealing in this regard, having recently been proposed as
foundational and theoretical approach to contextualizing coordination needs versus
coordination capabilities [4, 21]. It remains to be seen whether all necessary data
can be gathered, but the concept represents an intriguing look at collaborative work.

Designing assessment methods for specific situations. Having an overall under-
standing of the factors at work in collaborative software engineering is not sufficient.
We should also be able to assess specific situations and circumstances in which
collaborative individuals, teams, and organizations find themselves. Are there any
coordination problems presently? Are there latent issues that may lead to future
coordination problems? If there are issues, what are some potential solutions to
them? How will those solutions affect other collaborative factors in the organi-
zation? These are key questions for which we do not have good answers at this
time. Social-technical network analysis with respect to the presence or absence of
communication with respect to pieces of code that depend on one another is an
example of a promising direction of research in this regard [22], though even there
it is still unproven whether it is actually the presence or absence of communication
that indicates good collaboration. Advocates of “presence” argue that such com-
munication indicates that people talk and presumably resolve issues. Advocates of
“absence” argue that if every technical dependency had to give rise to communica-
tion between developers, excess communication would take place. Moreover, they
argue that other strategies, such as properly partitioning and scheduling the work,
should actually prevent communication from being needed. At this time, there is no
clear answer, other than that both sides of the argument are right at different times,
but that we have no way of distinguishing yet when those times are. Similarly open-
ended question pertain to assessing given situations with respect to a whole host of
different factors – the field has not matured sufficiently yet in this regard.

19 Collaborative Software Engineering 399

Implementing tool support. Many recent advances in collaborative software
engineering have to do with the creation of new tools in support of particularly
collaborative practices. A host of tools has emerged, with various purposes behind
them. Mylyn focuses on providing task context [10], CollabVS [7] and Palantír [23]
on mitigating risks of parallel work, and Expertise Browser [14] on finding experts
on particular areas of the code base. Many others exist, as the survey by Dewan in
Chapter 7 shows [6]. Some tools are designed to help the researchers themselves, in
efforts to understand collaborative practices and situations. Social-technical network
analysis tools such as Ariadne [25], for instance, serve this purpose. But today’s
tools have only brought us “so far”; as new situations are investigated and hypothe-
ses formed, new tools can be developed. One could think of tools that explicitly
represent and work with trust, tools that prevent to just direct conflicts but also indi-
rect conflicts, tools that better help identify necessary communications across team
or organizational boundaries, awareness tools that cross phases of the life cycle, and
so on. Much work remains to be done.

Beyond these three overarching categories, several challenges of “smaller” scale
are presently at the forefront of the community. That is, within and across the above
three categories in-depth investigations are needed regarding a variety of subjects.
We mention such questions as: How could closed-source development benefit from
open-source practices, and vice versa? How can knowledge better be preserved as
it arises from and spreads to various teams in a collaborative environment? How
can wikis be streamlined to more effectively support collaborative work? How can
cultural barriers be bridged more smoothly? What other forms of awareness can be
supported with tools? How can we better predict future coordination needs, and bot-
tlenecks? Answers to these and other questions like it stand to improve the practice
of collaborative software engineering, but will require a broad and deep research
effort for years to come.

19.4 Prospects

This book has emphasized how collaboration is an integral part of software engi-
neering project work, making it seem that the problems of collaboration are eternal,
a form of status quo. This couldn’t be further from the truth, as software engineering
collaboration is a clear example of tangible forward progress. Technologies such as
wikis, software forges, discussion lists, web sites, social network sites, email, instant
messaging, mobile phones (and many others) combined with improved conceptual
understanding of the collaborative goals and practice have created a golden age for
project collaboration.

Consider the difference between collaboration practice today and 20 years ago,
just prior to the widespread adoption of the Internet. Today, open source projects
routinely gather project participants from around the world, use project forges for
project collaboration (including mailing lists, SCM repositories, bug tracking sys-
tems, project web pages, etc.) and gather bug reports from users of their software.

400 I. Mistrík et al.

Twenty years ago there were open source projects, but it was very challenging to
create the collaboration infrastructure needed (you typically needed to be in an aca-
demic environment), the number of people on the Internet was much smaller than
today, and knowledge of how to use tools such as CVS was thinly spread.

Today, commercial projects often involve multiple groups, located at different
geographic sites. Collaboration technologies, combined with an improving con-
ceptual understanding of how to manage and foster collaboration across wide
geographic and cultural distance make these wide-area collaborations work, with
comparatively little impact on project speed and quality. Twenty years ago, such
wide-area collaboration was rare, modularized at the level of system-components,
and extremely expensive. It is unclear whether it was even possible to perform the
kind of fine-grain global software engineering that is commonplace today.

Today, a project web site is a common tool for collecting project documents
such as requirements, designs, test plans, user interface sketches, and so on. While
simple, such web sites are a huge improvement in recording and finding project
knowledge over 20 years ago, when finding and copying project documents was
major challenge.

It is commonplace today for software to report back to the manufacturer when
it experiences a crash. Web sites with end-user submitted questions, workarounds
for problems, and suggestions for future features are now typical. Even the most
obscure discussion forum can potentially be critically useful if it holds discussion
relevant to a specific user’s problem. Twenty years ago, users were able to exchange
this type of knowledge via Netnews, if they were lucky enough to be on the Internet.
Computer user groups, software magazines, and software retail outlets also helped,
but the knowledge could not be easily stored and searched.

Finally, today computer games such as Little Big Planet allow players to create
and contribute new game levels for others to play. . . over one million of them so
far. This type of user generated content was just not feasible before the internet,
combined with low-cost storage and servers.

Dramatic as the past 20 years have been, the future of collaboration in software
engineering promises to be even brighter. For starters, the widespread integration
of the internet into most facets of life is just beginning. Mobile internet access,
now very expensive, will become less expensive over time, promoting the spread
of networks out of the first world, making it possible to tap the potential of many
billions more people. There are many smart people in the world with time on their
hands. Some simply wish to find some way they can make a positive contribution,
and thereby generate meaning and create community in their lives.

Collaboration tools will become more sophisticated. Following the trend of desk-
top applications migrating to the web, software development environments will
increasingly be web-based, allowing all project documents to live in the cloud.
This, in turn, makes it possible to add social network site capabilities to projects,
which should make it easier to build collaborations. With project data in the cloud,
it should become easier to combine together various types of software project mod-
els, thereby finding errors and inconsistencies, but also recording richer networks of
interrelationships among the artifacts. Awareness of the work of others should also

19 Collaborative Software Engineering 401

be easier in web-based environments, where all work, down to the keystroke level,
is available.

As the amount of code available on the web continues to grow, so does the
potential for finding existing source code to use in an existing project. Once key
issues in the formation of searches and adoption of found code are resolved, this
kind of anonymous collaboration via code repositories could result in substantial
improvement in coding productivity.

During the first phase of internet adoption (c. 1990–2010) advances in soft-
ware project collaboration generally were the result of being able to communicate
cheaply with people at a distance, and having a universal viewer for documents (the
web). Future advances will be more sophisticated, explicitly modeling interpersonal
and project relationships, providing deeper integration of software project data,
leveraging deeper understanding of code structure and meaning, and combining
collaboration services in unique configurations.

The many chapters in this volume speak to the broad array of potential futures in
software engineering collaboration. Though not all of these ideas will be widely
adopted, together they make a compelling case that the future of collaboration
in software engineering is bright, with much potential for further unleashing the
potential of software engineers working in teams.

References

1. Al-Ani B, Redmiles D (2009). In strangers we trust? Findings of an empirical study of dis-
tributed development. IEEE International Conference on Global Software Engineering, 13–16
July, Limerick, Ireland, 2009.

2. Avritzer A, Paulish DJ (2009) A comparison of commonly used processes for multi-site soft-
ware development. In: Mistrík I, Grundy J, van der Hoek A, Whitehead J (eds.) Collaborative
Software Engineering. Springer.

3. Bosch J, Bosch-Sijtsema P (2009) Softwares product lines, global development and ecosys-
tems: collaboration in software engineering. In: Mistrík I, Grundy J, van der Hoek A,
Whitehead J (eds.) Collaborative Software Engineering. Springer.

4. Cataldo M et al. (2006) Identification of coordination requirements: Implications for the
design of collaboration and awareness tools. ACM Conference on Computer Supported
Cooperative Work, pp. 353–362.

5. Damian D, Kwan I, Marczak S (2009) Requirements-driven collaboration: Leveraging the
invisible relationships between requirements and people. In: Mistrík I, Grundy J, van der
Hoek A, Whitehead J (eds.) Collaborative Software Engineering. Springer.

6. Dewan P (2009) Towards and beyond being there in collaborative software development. In:
Mistrík I, Grundy J, van der Hoek A, Whitehead J (eds.) Collaborative Software Engineering.
Springer.

7. Dewan P, Hegde R (2007) Semi-synchronous conflict detection and resolution in asyn-
chronous software development. European Computer Supported Cooperative Work, pp.
159–178.

8. Ghezzi G, Gall HC (2009) Distributed and collaborative software analysis. In: Mistrík I,
Grundy J, van der Hoek A, Whitehead J (eds.) Collaborative Software Engineering. Springer.

9. Happel HJ, Maalej W, Seedorf S (2009) Applications of ontologies in collaborative software
development. In: Mistrík I, Grundy J, van der Hoek A, Whitehead J (eds.) Collaborative
Software Engineering. Springer.

402 I. Mistrík et al.

10. Kersten M, Murphy GC (2006) Using task context to improve programmer productiv-
ity. Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (Portland, OR, USA, 05–11 November 2006). SIGSOFT ’06/FSE-14.
ACM, New York, pp. 1–11.

11. Lago P, Farenhorst R, Avgeriou P, de Boer RC, Clerc V, Jansen A, van Vliet H (2009)
The GRIFFIN collaborative virtual community for architectural knowledge management. In:
Mistrík I, Grundy J, van der Hoek A, Whitehead J (eds.) Collaborative Software Engineering.
Springer.

12. Liang P, Jansen A, Avgeriou P (2009) Collaborative software architecting through knowledge
sharing. In: Mistrík I, Grundy J, van der Hoek, Whitehead J (eds.) Collaborative Software
Engineering. Springer.

13. Mäkio J, Betz S, Oberweis A (2009) OUTSHORE maturity model: Assistance for software
offshore outsourcing decisions. In: Mistrík I, Grundy J, van der Hoek A, Whitehead (eds.)
Collaborative Software Engineering. Springer.

14. Mockus A, Herbsleb J D (2002) Expertise browser: A quantitative approach to identify-
ing expertise. Proceedings of the 24th international Conference on Software Engineering
(Orlando, FL, 19–25 May 2002). ICSE ’02. ACM, New York, pp. 503–512.

15. Murta LGP, Werner CML, Estublier J (2009) The configuration management role in col-
laborative software engineering. In: Mistrík I, Grundy J, van der Hoek, Whitehead J (eds.)
Collaborative Software Engineering. Springer.

16. Nakakoji K, Ye Y, Yamamoto Y (2009) Supporting expertise communication in developer-
centered collaborative software development environments. In: Mistrík I, Grundy J, van der
Hoek A, Whitehead J (eds.) Collaborative Software Engineering. Springer.

17. Pinzger M, Gall HC (2009) Dynamic analysis of communication and collaboration in OSS
projects. In: Mistrík I, Grundy J, van der Hoek A, Whitehead J (eds.) Collaborative Software
Engineering. Springer.

18. Richardson I, Casey V, Burton J, McCaffery F (2009) Global software engineering: A software
process approach. In: Mistrík I, Grundy J, van der Hoek A, Whitehead J (eds.) Collaborative
Software Engineering. Springer.

19. Robinson H, Sharp H (2009) Collaboration, communication and coordination in agile soft-
ware development practice. In: Mistrík I, Grundy J, van der Hoek A, Whitehead J (eds.)
Collaborative Software Engineering. Springer.

20. Sarma A, Al-Ani B, Trainer E, Sila Filho RS, da Silva I, Redmiles D, van der Hoek A (2009)
Continuous coordination tools and their evaluation. In: Mistrík I, Grundy J, van der Hoek A,
Whitehead J (eds.) Collaborative Software Engineering. Springer.

21. Sarma A, Herbsleb J, van der Hoek A (2008) Challenges in measuring, understanding, and
achieving social-technical congruence. Technical Report CMU-ISR-08-106, Carnegie Mellon
University, Institute for Software Research International, Pittsburg.

22. Sarma A, Maccherone L, Wagstrom P, Herbsleb J (2009) Tesseract: Interactive Visual
Exploration of Socio-Technical Relationships in Software Development, Proceedings of the
Thirty-first International Conference on Software Engineering, Vancouver, Canada.

23. Sarma A, Bortis G, van der Hoek A (2007) Towards supporting awareness of indirect con-
flicts across software configuration management workspaces. Twenty-second IEEE/ACM
International Conference on Automated Software Engineering, November 2007, pp. 94–103.

24. Scacchi W (2009) Collaborative practices and affordances in free/open source software devel-
opment. In: Mistrík I, Grundy J, van der Hoek A, Whitehead J (eds.) Collaborative Software
Engineering. Springer.

25. de Souza C, Quirk S, Trainer E, Redmiles DF (2007) Supporting collaborative software devel-
opment through the visualization of socio-technical dependencies. 2007 International ACM
SIGGROUP Conference on Supporting Group Work (Sanibel Island, FL), November 2007,
pp. 147–156.

19 Collaborative Software Engineering 403

26. Thurimella AK (2009) Collaborative product line requirements engineering using ratio-
nale. In: Mistrík I, Grundy J, van der Hoek, Whitehead J (eds.) Collaborative. Software
Engineering. Springer.

27. Whitehead EJ (2007) Collaboration in software engineering: a roadmap. Future of Software
Engineering (FOSE 2007), 23–25 May 2007, Minneapolis, MN, pp. 214–225.

	19 Collaborative Software Engineering: Challenges and Prospects
	19.1 Introduction
	19.1.1 What We Know About Collaborative Software Engineering
	19.1.2 Objectives of This Chapter

	19.2 Summary of the Book
	19.3 Todays Challenges
	19.4 Prospects
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

