Chapter 11

Supporting Expertise Communication

in Developer-Centered Collaborative Software
Development Environments

Kumiyo Nakakoji, Yunwen Ye, and Yasuhiro Yamamoto

Abstract Looking at software development as a collective knowledge activity has
changed the view of the role of communication in software development from some-
thing to be eliminated to something to be nurtured. Developer-centered collaborative
software development environments (CSDEs) should facilitate software develop-
ment in such a way, as individual software developers collaboratively develop
information artifacts through social interactions. In this chapter, we identify two
distinctive types of communication in software development, coordination com-
munication and expertise communication, and argue that different sets of design
guidelines are necessary in supporting each type of communication. We then
describe nine design guidelines to support expertise communication based on the
theories of social capital and models of supporting collective creativity.

11.1 Introduction

Software development is in essence information-intensive collaborative knowledge
activity. It is about using information, generating information, and making infor-
mation artifacts. The wide acceptance of agile processes and the success of many
open source projects provide strong evidence that human aspects do matter in soft-
ware development; cognitive and social processes play essential roles in successful
software projects in which individuals’ creative thinking in using and generating
information are nurtured. We argue that software engineering environments must
be designed to foster such individuals’ creative knowledge processes, and that col-
laboration must be supported in the context of individuals’ development activities.
Collaborative software development environments (CSDEs) should be designed
to facilitate and nurture individuals’ creative knowledge processes. We call this
approach developer-centered CSDEs.

K. Nakakoji ()

Research Centre for Advanced Science and Technology, University of Tokyo, Japan;
SRA Key Technology Laboratory Inc, Japan

e-mail: kumiyo@kid.rcast.u-tokyo.ac.jp

I. Mistrik et al. (eds.), Collaborative Software Engineering, 219
DOI 10.1007/978-3-642-10294-3_11, © Springer-Verlag Berlin Heidelberg 2010

220 K. Nakakoji et al.

Collaboration takes place with or without explicit communication. On the one
hand, software developers regularly engage in collaboration through artifacts with-
out explicit communication (e.g., by writing comments in code to be read by others).
On the other hand, explicit communication becomes necessary when developers
must ask their peers for information that is otherwise not obtainable. Existing studies
have provided ample evidence that both collocated and distributed software develop-
ment teams frequently engage in communication to acquire necessary information
from peer developers [24, 30, 32].

Such studies have made us aware that there are two distinctive types of situations
in which developers communicate with their peers: one is when they want to coor-
dinate development activities, and the other is when they want to acquire knowledge
and understanding of a particular aspect of the software artifact under investigation.
A developer engages in communication with peer developers in both situations by
using the same communication channels (such as face-to-face, email, or chat), but
the nature of the communication in each is quite different. Despite the quintessen-
tial differences in the nature of the goals, challenges, and concerns between these
situations, studies on supporting communication in software development have not
clearly separated the two.

We distinguish the two types of communication by calling the former coor-
dination communication and the latter expertise communication, and argue that
communication support must be tuned to each type of communication based on
their inherent differences. Different sets of design guidelines need to be developed
for supporting each type of communication in developer-centered CSDEs.

In this chapter, we first briefly describe the historical context for the developer-
centered CSDE approach in software engineering research and discuss why com-
munication must be supported as a first-class object in CSDEs. We then elaborate
the differences between coordination communication and expertise communication
and describe why different guidelines are necessary for supporting each type of
communication. We finally present nine design guidelines for supporting exper-
tise communication. We have derived these guidelines based on the theories of
social capital [17] and models of supporting collective creativity [37, 38] as well
as existing tools in the research fields of intelligent support, groupware, knowledge
management, and organizational memory. We outline each guideline with theoreti-
cal grounds and illustrate each with technical instruments introduced by the existing
tools and environments.

11.2 Historical Context: Three Schools of Research Toward
Developer-Centered CSDEs

Software engineering research has looked at humans and their collaborations from
its very beginning. During the last few decades, however, its emphases have shifted
several times. We identify three distinctive schools of research in this particular area.
Table 11.1 illustrates the differences among these three schools.

221

Supporting Expertise Communication

11

juowdofarap
QATIRIOQR[[09 PANQINSIP A[[eqO[D) —
s1odofoasp Suowre sarouspuadap [B100S —
puey-1e-yse)
9} 0} JUBAJ[I UOTBUWLIOJUT SUTYRIA —
S90IN0saI 93pa[mouy se srowrerdold 1904 —

Ayunuruod
‘UOIIBIOQR[[0D ‘UOnRATIOW ‘AIATIBAID)

MOSD—
Ayrunuwwiod a3pm[mous| —
SuIp[Ing [00L,—

asnIadxa Jo seare jo
SULIO) UT 90UQIOYIP JodO[oAdD [enpIAIpU]

SJUQWUOIIAUD PUE S[O0],

$9s59001d Juowdo[orap
QATIBIOQAB[[0D ATIERIO ININU 0) MOH

S} 9T Po[MOUY SATJBAIO B Sy

$9ss9001d [€100S puE 2ANTUZ0D)

juowageuew 309(01g —
(suewny)
sassaooid pue (s3uryy) syonpoid —

Surwerdord ssooo1g

SIUOUWIQINSBITA —
yoressar uoperodp —
Q0UQIOS [euOnRZIuESI) —

QOURIRJJIP douruLIOIad-wea],
suonoe doys-£q-doys

ySnoy) s3oejIIe pue SIUSWNIO

100(o1d ® oSeurW 0) MOY

yse} Surssaoo1d uoreUWLIOUI UL Sy

$9559001d FUIA[OAQ SIOBRJIIIY

Kyanonpoid pue doueWLIONO] —
Surwwerdord jo A30[oydAsq
IHD—

(paseq-a3pajmousy) [V —
K3oroyoAsd aanmugo) —

SOOURIRYJIP d1A0U-11adXT

o3en3ue| Surrwerdord

s[rys Surwwessord dojoaap 03 Moy

3se) (]IS [enpIAIPUL UE SV

s[ys Surwwessord uewny

‘S[BLIQJEW YOIEaSoy

:soseayd Aoy

:sourfdiosip paje[oy

Je SO0

s
joeIaur sradofoad(g

1UI20U0D
[OIeasal ATewrig
POMIIA
st Juowdoroaap
JI1em)jos

‘U0 S3asSnNd0q

pa1uao-1adofead
€ [00Yd3S

PRIANUID-SSA301d
[ACTUEN

poaI1ajuad-A30[0ydAsq
1 [00yd>8

0189521 SULIOAUISUD 2IBM)JOS PAIJUSLIO-UBUNY JO S[OOYDS 921Y], T'IT dqeL

K. Nakakoji et al.

asiyadxa jo seale
Juaiayip yim siadojanap

¥ 4

\
;w me
uonoesouL*
[e100S
"300foxd

B UM SUOTIORIIUI [RID0S JYSnoIy)
1913030) pan} A[esoo] are pue asnradxa
JO BaIR UMO JAU/STY Sey Jodo[oAap
[oeH "S[ENPIAIPUT SUOWIE SOOUIIIP
110dX9-901A0U URY) QIOW dIe dIAY],

‘Ajunjewr [euoneZIue3Io
9y uo Surpuadap Apuazayrp
swrojrod o[oym e se wed) oY)
nq (sour] A[quuasse aYI]) s10ssad01d
uorjewIojur se A[renba ssof 10

Q10w syse) wrojrad srowwerdord [y

A

sonou Medxe

oourwIofad

100foxd oy 03 eourAQ(aI

9[NI] JO AT SUONORIUI JIAY],
*(seo1A0U) sy1adxo-uou pue syradxo

s1owwrerdord jo sad£) omy aye a1y,

sjorg

paIduad-19dofarag
€ [ooyaos

PRIANUII-SSAD0IJ
T 100408

paIouad-A30]0ydAsq
1 [100Yy28

222

(ponunuod) T°IT dqEL

11 Supporting Expertise Communication 223

The first school of research, which we call the psychology-centered approach,
has investigated the inner cognitive process of programming by focusing on the
differences between expert and novice (non-expert) programmers through a num-
ber of psychological studies. That was the time right after the 1975 publication
of Frederick Brook’s The Mythical Man-Months, which basically says that the
man-month is not an appropriate measure of software development project per-
formance. It was realized that there is a huge performance difference between
good programmers and not-so-good programmers. This had motivated a large
number of studies to explore what psychological/cognitive factors in program-
ming distinguish experts from novices. The psychology of programming is a
research area that primarily looks at the differences of programming productivity
and efficiency between experts and novices, while studying the benefits as well
as difficulties of mastering programming features (e.g., the if statement design),
methods (e.g., object orientation), and usage (e.g., mnemonic variable names)
[48, 49].

The second school of research, which we call the process-centered approach,
has its focus on the collaborative and managerial aspects of a software develop-
ment project. It views software development as a group activity, or teamwork, and
studies how to improve the capability of a software development organization, such
as process traceability and repeatability [26]. Interestingly, this second school of
research is less concerned with the programming skills of individual developers.
Instead, it focuses more on the skills of organization. This school advocates that a
software development process is programmable, and software development should
be treated as assembly lines in which developers produce software by following
predefined process instructions [39]. Developers take specification documents and
then test specifications as input and produce source code and test cases as output.
Researchers in this second school have primarily focused on how to help project
management in orchestrating and coordinating a number of work pieces that have
been produced by a large number of developers.

The third school of research, which we call the developer-centered approach,
is the focus of our research. It looks at both the cognitive and social aspects of
software development as well as their mutual interactions. The focus has returned
to an individual developer, who is now viewed as having his or her own area of
expertise in terms of a specific context, such as, the expertise on a piece of source
code, the expertise on a certain feature of the program, the expertise on a certain
aspect of the application domain, or the expertise on a certain programming lan-
guage. Thus, symmetry of ignorance, or asymmetry of knowledge, exists among
project members. They often have to collaborate with peer developers to accom-
plish their own programming tasks, and the success of the whole team depends on
such collaborations.

Researchers in the third school explore how to support developers in such a way
that they collectively develop information artifacts. Project managers are expected
to be concerned with how to ensure the creativity and productivity of individual
developers by providing physically, organizationally, culturally, and computation-
ally right environments, rather than to worry only about how to quantify project

224 K. Nakakoji et al.

performances and how to keep an eye on the project milestones with regard to the
produced artifacts.

Two major factors have fueled the third school of research: open source com-
munities and agile development methods. Both demonstrate the great importance of
an individual developer’s motivation, engagement, and communication in software
development.

Since a large number of open source software development projects have
emerged — making openly available their source code, related documents, devel-
opment history data, and mailing list archives — a number of field studies have
examined how software artifacts evolve through intensive communicative activi-
ties. As Augustin et al. who operated SourceForge, noted, such data have revealed
that successful open source community projects “employed a number of practices
that were not well characterized by traditional software engineering methodologies”
[4]. Their paper lists mobility of resources, culture of sharing, and peer review and
peer glory as examples of such practices, and labels the practices as “collaborative
software development, or CSD.”

Many of the twelve practices of XP [5], a representative agile method, are con-
cerned with human and social aspects. By embracing individuals and interactions
over processes and tools in their manifesto, agile software development methods
aim to achieve successful software development by nurturing developer’s collective
creative processes [52].

Communication has long been regarded as an important activity in software
development. A software engineering textbook published in 1985 by Fairley, for
instance, shows that 37% of developers’ time is spent in job communication and
email [16]. However, communication was then regarded as an overhead rather than
a part of the fundamental activities in software development. The trend of open
source and agile methods has strongly hinted that communication needs to be treated
as a first-class activity to be supported. The third school of research now views
communication as something to be nurtured, not to be avoided.

It is very important to note that communication costs in software development
remain very expensive, even in the eyes of the third school of research. We argue that
although supporting communication is important, encouraging more communica-
tion in general should not be the research goal. Communication problems are caused
not only by the lack of communicative acts, but sometimes by too many communica-
tive acts. For example, one case study reported that overwhelming incoming mail
messages resulted in a significant coordination problem [11]. Studies have shown
that programmers in general prefer to work in a solitary environment with long
periods of uninterrupted time during which they can concentrate [13]. By engag-
ing in creative knowledge work, developers embrace flow experience, which is a
situation “in which attention can be freely invested to achieve a person’s goals,
because there is no disorder to straighten out, no threat for the self to defend
against” [10].

A developer-centered CSDE should first ensure that a developer can focus on his
or her own task itself, and then facilitate easy communication with peer developers
only when it becomes necessary. An important and often overlooked aspect is that

11 Supporting Expertise Communication 225

when a developer wants to have communication, the person who is the recipient of
this communication is also a developer. Supporting communication must carefully
balance one developer’s needs for communication and the other developer’s needs
for a concentrated flow experience.

11.3 Coordination Communication and Expertise
Communication in Software Development

Many studies have observed how and about what developers communicate with
one another during software development. For instance, through a study on three
well-known open source projects, Gutwin et al. have found that text-based commu-
nications (mailing lists and chat systems) are the developers’ primary sources of
acquiring both general awareness of the entire team and more detailed information
about people’s expertise and activities [21]. In an ethnographic study on an indus-
trial project, Ko et al. have analyzed what information needs developers face during
software development [30]. The findings of this study indicate that coworkers were
the most frequent source of information for software developers, and they were most
frequently sought for the questions, “What have my coworkers been doing?”” and “In
what situations does this failure occur?”

Such studies demonstrate that two distinctive types of communication are
involved in software development. One is what we call coordination communi-
cation, in which a developer communicates with his or her peers to discuss and
negotiate in order to resolve conflicts or to avoid possible conflicts among the
software components on which they are working. The structural dependency of soft-
ware components may reflect “social dependency” among the developers who work
on the components in the sense that they have to coordinate their tasks through
social interactions when it is necessary to resolve perceived conflicts [28, 56]. Tools
for supporting coordination communication have been primarily studied in such
research areas as coordinating programmers and programming tasks, through mak-
ing developers aware of what other developers are doing; for instance, Ariadne [14],
Palantir [47] or FastDASH [6].

The other type of communication is what we call expertise communication, in
which a developer communicates with his or her peers to ask for information that
is essential for performing his or her own task at hand [32, 33, 58]. This is usually
for obtaining knowledge and understanding about the design and/or behavior of
a particular part of the system under development. Tools for supporting expertise
communication have been primarily studied in such research areas as knowledge
sharing and expert finding, helping developers ask questions of other developers;
for instance, Expertise Recommender [34], Expert Browser [35] and STeP_IN [58].

The rather obvious separation of the two research areas reflects the fact that these
two types of communication have quintessential differences in nature: in their goals,
challenges and concerns. However, existing studies have not clearly separated and
compared the two types of communication in designing communication support

226 K. Nakakoji et al.

for CSDEs. One of the reasons for this might have been the fact that developers
engage in both types of communication through the same communication channels:
by sending email messages, by starting a chat, or by walking to a coworker’s desk.
However, different types of computational support mechanisms are necessary for
the two types of communication due to their different natures.

For instance, a mechanism to find communication partners must be different
in coordination communication and expertise communication because the relation
between the developer who starts the communication and those with whom he or
she communicates is different. In coordination communication, there is a symmet-
ric or reciprocal relation between those who initiate communication and those who
are sought for communication, with roughly equal amounts of interest and expected
benefit. Coordination communication is a part of impact management, which is “the
work performed by software developers to minimize the impact of one’s effort on
others and at the same time, the impact of others into one’s own effort” [15].

In contrast, expertise communication is characterized by an asymmetric and uni-
directional relation between the one who asks a question and the one who is asked to
help [58]. The benefit is primarily for the information-seeking developer, while the
costs are primarily paid by the information-provider. Such costs include the cost of
paying attention to the information request, that of stopping his or her own ongoing
development task, that of composing an answer for the information-seeking devel-
oper while collecting relevant information when necessary, and that of then going
back to the original task.

We argue that different types of communication demand different sets of guide-
lines in designing communication support in developer-centered CSDEs. Redmiles
et al. presented the continuous coordination paradigm for supporting software
development [42]. The paradigm contains four principles: (1) to have multiple per-
spectives on activities and information; (2) to have nonintrusive integration through
synchronous messages or through the representation of links between different
sites and artifacts; (3) to combine socio-technical factors by considering relations
between artifacts and authorship so that distributed developers can infer impor-
tant context information; and (4) to integrate formal configuration management and
informal change notification via the use of visualizations embedded in integrated
software development environments [42]. Part of this paradigm supports coordi-
nation communication, and some, but not all, of its principles may also apply to
support expertise communication.

In the remainder of this chapter, we present design guidelines for supporting
expertise communication in software development. By “expertise communication,”
we do not mean knowledge exchange or knowledge transfer in a general sense. We
use the phrase to refer to activities of a software developer who seeks, from his or
her peer software developers, information that is essential yet not readily available
in existing artifacts to accomplish his or her task, right in the middle of software
development. The developer communicates with coworkers and asks for information
not for the sake of increasing general knowledge in the abstract but to perform his
or her own immediate task.

11 Supporting Expertise Communication 227

11.4 Nine Design Guidelines for Supporting
Expertise Communication

This section presents nine design guidelines for supporting expertise communica-
tion.

Guideline #1: Expertise communication must be seamlessly integrated with other
development activities.

A need for expertise communication emerges during the development activity when
a software developer finds his or her task in need of information that is available
only through other developers. The developer must be able to acquire the necessary
information in a timely fashion so that he or she can carry out the current task more
effectively and productively in a fluid manner [57]. Communication with peer devel-
opers to seek expertise should be supported as a continuum of information search
tasks from an information-seeking software developer’s point of view. It needs to
be integrated with the software development environment to minimize the cognitive
cost of conscientiously switching to a different application that supports expertise
communication.

Not many existing tools supporting expertise communication consider this
guideline. One of few tools that follow this guideline is STeP_IN_Java [58].
STeP_IN_Java has the “Ask Expert” feature embedded within the Java document-
browsing interface. Each Java method is accompanied with the “Ask Expert” button;
by pressing the button, the user is connected to a message-composing interface to
write a question about the Java method, which is then delivered to those devel-
opers who have expertise about the method. The system thus makes expertise
communication a natural extension of browsing Java documents.

Guideline #2: Expertise communication mechanisms should be personalized and
contextualized for the information-seeking developer.

Information seeking in software development is an in situ and highly individualized
action. A developer’s needs for acquiring information from his or her coworkers
arise when he or she is dealing with a specific task in a development environment.
Integration with the development environment provides the context of the prob-
lem with which a developer is dealing. Such a context should be utilized by an
expertise communication mechanism to customize its support to the context and the
background knowledge of the developer [12, 57].

Identification of experts should be tuned for who is looking for what. Expertise
is not an absolute attribute but a relative attribute of a developer, and it changes
over time. Answer Garden [2] is an early attempt to identify UNIX experts based
on predefined expertise profiles. The Expertise Recommender system [34] mines
configuration management logs to identify experts based on organizational relations
to support software maintainers. The developmental histories of developers (such
as activities recorded in Concurrent Versions System (CVS) repositories, mailing
archives, and written programs) should be used to identify who has the needed
expertise about a particular problem at the particular moment [35, 55]. Having

228 K. Nakakoji et al.

temporal information of the socio-technical context allows the information-seeker
to understand whether a developer has the expertise being sought, and how he or she
has gained it. Such information is not only useful for identifying the expertise being
sought, but also valuable for understanding the information-seeker’s background so
that the system can locate those who have mental models similar to those of the
information-seeking developer [55].

Guideline #3: Expertise communication should be minimized when other types of
information artifacts are available.

Resorting to peers as information resources involves not only the information-
seeking developer but also those developers who are asked to provide information
[27]. Expertise communication is therefore an expensive means to get a devel-
oper’s work done. It should not be promoted as the first choice; rather, it should
be avoided when code, documents, development history records, archived previ-
ous communications, and/or other artifacts that satisfy the information needs are
available.

Two mechanisms have been explored to consider this guideline in existing
research: (1) initially leading users to artifacts before providing the means of exper-
tise communication; and (2) archiving communication results to avoid unnecessarily
repeated communications.

One example is Answer Garden and Answer Garden 2 [1, 2] which first allow a
user to browse a database of commonly asked questions; if the sought answer is not
present, the system “automatically sends the question to the appropriate expert, and
the answer is returned to the user as well as inserted into the branching network,
thus evolving the organizational memory [1].”

STeP_IN_Java [58] takes a similar approach by first guiding a developer in
attending to the search and browsing interface of Java source code, documents, and
communication archives. Only from the browsing interface does the system allow
the developer to compose a question and ask other developers for information about
the browsed artifact. The communication is again archived and associated with the
artifact.

Other mechanisms, such as TagSEA, which is a shared waypoints mechanism
to mark specific locations in Java source code elements or documents by using
social tagging [50], are also useful in guiding developers to access previously
communicated information.

Guideline #4: Expertise communication mechanisms should take into account the
balance between the cost and benefit of an information-seeking developer and the
group productivity.

From the project team’s perspective, expertise communication is a two-edged sword
in solving collaboration problems in software development. Broadcasting a ques-
tion allows a developer to find the right people by letting other developers decide
for themselves whether to respond [21]. However, if developers are frequently inter-
rupted to offer help, their productivity is significantly reduced, resulting in lower
group productivity for them [59].

11 Supporting Expertise Communication 229

Attention has been rapidly becoming the scarcest resource in our society [20].
Attention economy is concerned with the use or the patterns of allocation of atten-
tion for the best possible benefits. Following this thread of thought, the concept
of collective attention economy has been proposed and used as an instrument to
analyze the effective use of the sum of the attentions of the members in a group
[59].

Our rough estimate of how much attention (in terms of time) is collectively spent
in expertise communication in the mailing list of the open source project Lucerne
is that more than 60,000 min (more than 1,000 h) were collectively spent every
month [59]. In an organizational setting, this collective cost might even outweigh the
benefits of knowledge collaboration; it certainly decreases the overall productivity
of the whole project [41].

Some studies have looked into this problem. Both the Answer Garden approach
[2] and the STeP_IN approach [58] try to reduce the cost incurred by expertise
providers by limiting the recipients of the question only to those who are both able
(through the expert identification process) and very likely to be willing (through the
expert selection process) to answer the question.

Guideline #5: Expertise communication support mechanisms should consider social
and organizational relationships when selecting developers for communication.
Favorable interpersonal relationships help in communicating expertise due to pre-
existing trust and mutual understanding [1]. An arduous relationship between an
information seeker and an information provider often leads to the failure of exper-
tise sharing [9]. People have very nuanced preferences concerning how and with
whom they like to share expertise and how they like to maintain control of their
social interactions [22].

The theory of social capital provides an analytic framework to understand this
decision-making process [17]. Social capital is the “sum of the actual and potential
resources embedded within, available through and derived from the network of rela-
tionships possessed by an individual or social unit” [36]. Social capital manifests
itself in forms of obligations, expectations, trust, norms of generalized reciprocity,
and reputations.

The feelings of expectation and obligation play important roles during the
process of deciding whether and when to help. Researchers see obligations and
expectations as complementary features [8] incurred during prior interactions that
create value for the community in the future [44]. In other words, when B helps A,
B would have a reasonable expectation that A will do something for B sometime
down the road, and that A would feel obliged to help B [8].

Answer Garden 2 [1] uses organizational and physical proximities in the selec-
tion process. STeP_IN [58] uses social relationships and nuanced perception of
individual relationships. Table 11.2 illustrates the different strategies used in the
selection steps.

Similar to STeP_IN, some tools give high priority to the individual preferences
for expertise communication. For instance, ReachOut [45] takes into considera-
tion factors such as the helper’s motivation to answer questions on the topic or

230

Table 11.2 Selection strategies reported in Answer Garden 2 [1],

strategies

K. Nakakoji et al.

STeP_IN [58] and other

Answer Garden 2 strategy

STeP_IN strategy

Other strategies

1. Organizational criteria
1-1 Keeping it local
1-2 Cross department
1-3 Last resort

2. Load on the sources
2-1 Selection based on

regular workload
2-2 Selection based on
workload over time
3. Performance
3-1 Problem
comprehension

3-2 Providing a suitable
explanation

3-3 Attitude

1. Inter-personal preferences of an

individual
1-1 Exclude
1-2 Include

. Obligation

2-1 Inter-personal obligation
(has been helped by the
information seeking
developer)

2-2 Total-social obligation (has
been helped by others in the
group)

3. External communication

history (has previously

communicated via email)

— Communication
regency

— Organizational
hierarchy (relative
significance and
impact of the
information-seeking
developer to potential
helpers)

— Institutional secrecy

— Eager helper (very
motivated to help
others) [54]

4. Random selection

to participate at this very moment, as well as the helper’s history of participation.
The availability of choices and options helps the development of favorable atti-
tudes toward expertise communication [46] and this favorable attitude is critical
for expertise communication.

Guideline #6: Expertise communication support mechanisms should minimize the
interruption when approaching those who are selected for communication.

When being approached to provide information for the benefit of another developer,
developers are likely to feel interrupted. Answering or providing help consumes the
time and attention of the helping developers and distracts them from their own tasks.

An interruption is regarded as an unexpected encounter initiated by another per-
son, which disturbs “the flow and continuity of an individual’s work and brings that
work to a temporary halt to the one who is interrupted” [51]. The cost of interruption
includes not only the attention spent on the interrupting event, but also the disrup-
tion of flow and continuity of the ongoing work [29] and the accompanied work
resumption efforts [28].

Expertise communication support tools, therefore, need to feature mechanisms
that would minimize interruption when approaching potential helping developers.
ReachOut [45], for instance, a chat-based tool for peer support, collaboration, and
community building, invites potential helpers to join a conference chat by pushing
the question to a nonintrusive client on their computer screens. Incoming questions
fade in and out until the user decides to answer.

The field of human-computer interaction has long been studying how to model
interruption between humans and computer agents [25]. Some parts of the models
and findings of such studies should be taken into account to achieve more effective,
less disruptive communication channels in support of expertise communication in
software development.

11 Supporting Expertise Communication 231

In an attempt to minimize interruption for other developers by reducing the
number of those who are asked to help, one may not be able to get the needed
information. To address this issue, Answer Garden 2 has proposed the idea of
escalation of support [1]. When no answers are provided from the selected group
for a predefined period of time, the system automatically expands the recipi-
ents of the question to involve more people, larger groups, and a wider range
of areas.

Guideline #7: Expertise communication support mechanisms should provide ways
to make it easier for developers to ask for help.

Developers feel different levels of difficulty and ease, depending on to whom they
ask and through what communication channels. It is easy for developers to ask
peers for information through face-to-face communication because they know each
other, know how to approach each other, and have a good sense of how impor-
tant their question is in relation to what the experts seem to be doing at the
moment [23].

As Gerstberger and Allen report, “engineers, in selecting among information
channels, act in a manner which is intended not to maximize gain, but rather to
minimize loss. The loss to be minimized is the cost in terms of effort” [19]. Thus,
developers tend to choose face-to-face communication because it would be less
likely to be turned down, and to ask for help from coworkers whom they feel are
easy to access rather than from the most appropriate person in some cases. This
might end up in the wasteful use of a small set of “nice” people who keep helping
others even if they do not have the appropriate expertise.

Developers may immediately get the necessary information or may never get
any useful information, depending on how they ask. Rhetorical strategies, linguistic
complexity, and wording choice all influence the likelihood of others responding
[31] and replying to a question [3, 9].

Studies show that information-seekers demonstrate different asking behaviors,
depending on whether they are in public, in private, communicating with a stranger,
or communicating with a friend, due to the different levels of perceived psycho-
logical safety in admitting a lack of knowledge [9]. If every question asked would
always go to all members of the mailing list, the information-seeker would risk giv-
ing colleagues the impression that he or she is rather ignorant and incompetent [18].

The perceived social burden on a potential information-provider may affect how
easy it is for an information-seeker to ask a question. A field study of Answer
Garden reports that because the information-seeker’s identity was not revealed in
Answer Garden, the information-seeker felt less pressure in asking questions and
bothering experts [2]. It might also become easier for an information-seeking devel-
oper to ask a question when he or she knows that the recipients have the option and
freedom to ignore the request.

Reder and Shwab have noted that tactical skill in selecting communication chan-
nels “often determines an individual’s ability to influence and sometimes control the
course and direction of group tasks and impact the success of particular projects”
[41]. Expertise communication support mechanisms, therefore, need to consider
social factors that affect expertise-seeking behaviors and help software developers

232 K. Nakakoji et al.

in their expertise communication if they do not have the tactical skill to select the
right communication channel.

Guideline #8: Expertise communication support mechanisms should provide ways
to make it easier for developers to answer or not to answer the information request.
Developers who receive the request for help in expertise communication need
to decide whether to answer. They may feel different levels of social pressure,
depending on from whom and through which communication channel the request is
coming. For instance, in direct emails, the receiver bears the interruption cost of the
reply or the social burden of taking no action [53].

The success of expertise communication should not come at the price of devel-
opers’ reluctance for further participation in future collaboration. Some developers
might get bored by answering repeatedly asked questions that they deem too simple
to be worth their time and expertise, and some might want to guard their unique
expertise to retain their “market value” in the organization [43]. The goodwill and
limited attention of developers should be economically utilized to achieve sustain-
able and long-term success. They should not be forced into helping just for fear
of causing unnecessary disruptions to the social cohesion and norms of the project
team, which is unlikely to be sustainable.

Unwillingness also leads to lower quality of communication. When workers are
forced into sharing expertise without much willingness, they often use “verbal and
intellectual skills as a defense to keep a person with a problem from consuming
too much of their time,” and their answers are often “impressive-sounding” but not
helpful [9] resulting in a waste of time for both parties.

Developers may respond to a question not because they want to answer it, but
because they do not want to ignore it. Even though helping is costly, taking no
action may incur a social cost. Saying “no” untactful to an information-seeking
developer deteriorates the expert’s relation with the seeker and negatively affects
the expert’s social reputation among other peers because such behavior deviates
from social norms [40].

The STeP_IN framework provides a communication mechanism called a
dynamic mailing list; a temporal mailing list is created every time an information-
seeking developer posts a question, with the recipients decided dynamically [58].
Whereas the sender’s identity is shown to the recipients, the recipients’ identi-
ties are not revealed unless they reply to the request. If some of the recipients
do not answer, for whatever reasons, nobody will know it; therefore, refusing to
help becomes socially acceptable, similar to “hiding out to get some work done”
[13]. If one of the recipients answers the question, his or her identity is revealed
to all members of the dynamic mailing list. This asymmetrical information dis-
closure is meant to reinforce positive social behaviors without forcing others into
collaboration.

Guideline #9: Expertise communication channels must be socially aware.
Socially aware communication [40] refers to the transmission of information or sig-
nals that does not violate social norms. Existing communication channels include

11 Supporting Expertise Communication 233

face-to-face, direct email, mailing lists, wikis, bulletin boards, Internet relay chat
(IRC), telephone, or video conferences.

Different communication channels give various degrees of control to either the
information-seeking developer or those who are asked to provide information.
Decisions need to be made, depending on the goals and social context, about who
should gain the social control of communication.

One prime example of such control is the disclosure of identities of information-
seekers and information-providers. Different tools take different approaches in
designing such disclosure of identities. In a field study of Answer Garden that
had an information-seeker’s identity hidden and an information-provider’s iden-
tity revealed, the seekers felt easier asking and the information-providers felt
more “obliged” and tended to “show off” their expertise [2]. STeP_IN [58] in
contrast, makes a seeker’s identity revealed to those who receive the question,
whereas the receivers’ identities remain hidden unless they answer in a dynam-
ically formulated temporal mailing list. This design decision is based on the
viewpoint that the information-provider should be granted more control because
the information-seeker is the main beneficiary and the information-provider is the
benefactor.

Cohen et al. have investigated, through field studies of a legal firm, the phe-
nomena of adversarial collaboration, in which peers who are adversaries having
opposing goals nonetheless have to collaborate to get their tasks done [7]. They
argue that adversarial collaborations are “the sine qua non of situations that call
for the selective dissemination of information.” Although software developers in a
project are by no means adversaries and have no opposing goals, they may have
different interests and motivations in their own specific contexts, especially when a
project is inter-organizational or involves subcontracted members. Mechanisms for
supporting asymmetric disclosure of information may need to be designed within
expertise communication channels.

11.5 Concluding Remarks

This chapter has argued for a developer-centered CSDE where communication
is considered as a first-class activity in software development. We identified
two distinctive types of communication in software development, coordination
communication and expertise communication, and elaborated on their differences.
Communication support mechanisms have features that imply suitable communi-
cation genres [41]. Such features include whether the communication is one-to-one
or one-to-many; whether the communication happens synchronously or asyn-
chronously; whether the sender and the recipients are anonymous or identified;
whether all the relevant information is disclosed symmetrically or asymmetrically
among the sender, recipients, and others; whether the social control of communi-
cation is granted to the sender or to the recipient; whether the mechanism makes it
easier for the information-seeker or the recipient; and what media should be used,

234 K. Nakakoji et al.

such as text, voice, video, or other types of multimedia, each of which demonstrates
different degrees of achievability and searchability.

Taking the above features into total consideration as well as the distinctive nature
of expertise communication in software development, we have presented a list of
nine design guidelines for supporting expertise communication in software devel-
opment. These guidelines are interdependent: following one guideline may also lead
to following a few other guidelines, or following one guideline may conflict with fol-
lowing another guideline. Each guideline is important in some particular context. In
designing expertise communication support mechanisms, one needs to understand
what corporate and organizational culture exists and what types of collaboration
their software projects want to nurture.

Although this chapter has argued to distinguish coordination communication
from expertise communication for supporting communication in developer-centered
CSDEzs, it has not been our intention here to develop two different communica-
tion interfaces for developers. Developers presently do not and probably will not
want to distinguish the two; they simply want to communicate with their peers for
a variety of reasons. After identifying different sets of design guidelines in support
of coordination and expertise communications, the forthcoming research agenda
would involve how to integrate the two mechanisms so that developers would be
able to seamlessly engage in different types of communications without consciously
switching between the two.

References

1. Ackerman MS, McDonald DW (1996) Answer Garden 2: Merging organizational memory
with collaborative help. Proceedings of CSCW’96, ACM Press, New York, pp. 97-105.

2. Ackerman MS (1998) Augmenting organizational memory: A field study of Answer Garden.
ACM Transactions on Information Systems 16(3): 203-224.

3. Arguello J, Butler BS, Joyce E, Kraut R, Ling KS, Rose C, Wang X (2006) Talk to me:
Foundations for successful individual-group interactions in online communities. In: Grinter R,
Rodden T, Aoki P, Cutrell E, Jeffries R, Olson G (Eds.) Proceedings of CHI’06, April 22-27,
ACM, New York, pp. 959-968.

4. Augustin L, Bressler D, Smith, G (2002) Accelerating software development through
collaboration. Proceedings of ICSE’02, ACM, New York, pp. 559-563.

5. Beck K (1999) Extreme Programming Explained: Embrace Change. Reading, MA: Addison-
Wesley.

6. Biehl JT, Czerwinski M, Smith G, Robertson GG (2007) FASTDash: A visual dashboard
for fostering awareness in software teams. Proceedings of CHI’07, ACM, New York, pp.
1313-1322.

7. Cohen AL, Cash D, Muller MJ (2000) Designing to support adversarial collaboration.
Proceedings of CSCW’00, ACM, New York, pp. 31-39.

8. Coleman JC (1988) Social capital in the creation of human capital. American Journal of
Sociology 94: S95-S120.

9. Cross R, Borgatti SP (2004) The ties that share: Relational characteristics that facilitate infor-
mation seeking. In: Huysman M, Wulf V (Eds.) Social Capital and Information Technology.
Cambridge, MA: The MIT Press, pp. 137-161.

10. Csikszentmihalyi M (1990) Flow: The Psychology of Optimal Experience. New York:
HarperCollins.

11

11.

12.

13.

14.

15.
16.
17.
18.

19.

20.
21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

35.

36.

Supporting Expertise Communication 235

Damian D, Izquierdo L, Singer J, Kwan I (2007) Awareness in the wild: Why communication
breakdowns occur. Proceedings of ICGSE’07, IEEE Computer Society, Washington, DC, pp.
81-90.

Davor Cubranic C, Murphy GC (2003) Hipikat: Recommending pertinent software develop-
ment artifacts. Proceedings of ICSE’03, Portland, OR, pp. 408—418.

DeMarco T, Lister T (1999) Peopleware: Productive Projects and Teams. New York: Dorset
Housing Publishing.

de Souza CRB, Quirk S, Trainer E, Redmiles D (2007) Supporting collaborative soft-
ware development through the visualization of socio-technical dependencies. Proceedings of
GROUP’07, Sanibel Island, FL, pp. 147-156.

de Souza CRB, Redmiles D (2008) An empirical study of software developers management
of dependencies and changes. Proceedings of ICSE’08, pp. 241-250.

Fairley R, (1985) Software Engineering Concepts. New York: McGraw-Hill College.

Fischer G, Scharff E, Ye Y (2004) Fostering social creativity by increasing social capital. In:
Huysman M, Wulf V (Eds.) Social Capital and Information Technology. Cambridge, MA: The
MIT Press, pp. 355-399.

Flammer A (1981) Towards a theory of question asking. Psychiatry Research 43: 407-420.
Gerstberger PG, Allen TJ (1968) Criteria used by research and development engineers in the
selection of an information source. Journal of Applied Psychology 52(4): 272-279.
Goldhaber MH (1997) The attention economy. First Monday 2(4).

Gutwin C, Penner R, Schneider K (2004) Group awareness in distributed software develop-
ment. Proceedings of CSCW’04, ACM, New York, pp. 72-81.

Halverson CA, Erickson T, Ackerman MS (2004) Behind the help desk: Evolution of a knowl-
edge management system in a large organization. Proceedings of CSCW’04, ACM, New York,
pp- 304-313.

Herbsleb J, Grinter RE (1999) Splitting the organization and integrating the code: Conway’s
law revisited. Proceedings of ICSE’99, pp. 85-95.

Herbsleb J, Mockus A (2003) An empirical study of speed and communication in globally-
distributed software development, IEEE Trans Software Engineering 29(3): 1-14.

Horvitz E, Apacible J (2003) Learning and reasoning about interruption. Proceedings
ICMI'03, ACM, New York, pp. 20-27.

Humphrey W (1989) Managing the Software Process. Reading, MA: Addison-Wesley
Professional.

Illich I (1971) Deschooling Society. New York: Harper and Row.

Igbal ST, Bailey BP (2006) Leveraging characteristics of task structure to predict the cost of
interruption. CHI’06, ACM, New York, pp. 741-750.

Jackson T, Dawson R, Wilson D (2001) The cost of email interruption, Journal of Systems
and Information Technology 5: 81-92.

Ko AJ, DeLine R, Venolia G (2007) Information needs in collocated software development
teams. International Conference on Software Engineering (ICSE), 20-26 May, pp. 344-353.
Kraut R, Kiesler S, Mukhopadhya T, Scherlis W, Patterson M (1998) Social impact of the
internet: What does it mean? Commun ACM 41(12): 21-22.

LaToza TD, Venolia G et al (2006) Maintaining mental models: A study of developer work
habits. Proceedings of ICSE’06, Shanghai, pp. 492-501.

McDonald DW, Ackerman MS (1998) Just talk to me: A field study of expertise location.
Proceedings of CSCW’98, Seattle, WA, pp. 315-324.

McDonald DW, Ackerman MS (2000) Expertise recommender: A flexible recommendation
system architecture. Proceedings of CSCW’00, pp. 101-120.

Mockus A, Herbsleb J (2002) Expertise browser: A quantitative approach to identifying
expertise. Proceedings of ICSE’02, Orlando, FL, pp. 503-512.

Nahapiet J, Ghoshal S (1998) Social capital, intellectual capital, and the organizational
advantage. Academy of Management Review 23: 242-266.

236 K. Nakakoji et al.

37. Nakakoji K (2006) Supporting software development as collective creative knowledge work.
Proceedings of KCSE2006, Tokyo, pp. 1-8.

38. Nakakoji K, Ohira M, Yamamoto Y (2000) Computational support for collective creativity.
Knowledge-Based Systems Journal, Elsevier Science 13(7-8): 451-458.

39. Osterweil L (1987) Software processes are software too. Proceedings of ICSE’87, pp. 2—-13.

40. Pentland A (2005) Socially aware computation and communication. Computer 38(3): 33—40.

41. Reder S, Schwab RG (1988) The communication economy of the workgroup: Multi-channel
genres of communication. Proceedings of CSCW’88, ACM, New York, pp. 354-368.

42. Redmiles D, Hoek Avd, Al-Ani B, Hildenbrand T, Quirk S, Sarma A, Filho RSS, de Souza
C, Trainer E (2007) Continuous coordination: A new paradigm to support globally distributed
software development projects. Wirtschaftsinformatik 49: S28-S38.

43. Reichling T, Veith M (2005) Expertise sharing in a heterogeneous organizational environment.
Proceedings of ECSCW’05, Springer-Verlag, New York, pp. 325-345.

44. Resnick P (2002) Beyond bowling together: Sociotechnical capital. In Carroll JM (Ed.) HCI
in the New Millennium. Reading, MA: Addison-Wesley, pp. 247-272.

45. Ribak A, Jacovi M, Soroka V (2002) Ask before you search: Peer support and community
building with Reach out. Proceedings of CSCW’02, ACM, New York, pp. 126-135.

46. Salancik GR, Pfeffer J (1978) A social information processing approach to job attitudes and
task design. Administrative Science Quarterly 23: 224-253.

47. Sarma A, Noroozi Z, Hoek Avd (2003) Palantir: Raising awareness among configuration
management workspaces. Proceedings of ICSE’03, pp. 444-454.

48. Shneiderman B (1980) Software Psychology: Human Factors in Computer and Information
Systems. Cambridge, MA: Winthrop.

49. Soloway E, Ehrlich K (1984) Empirical studies of programming knowledge. IEEE
Transactions on Software Engineering 10(5): 595-609.

50. Storey M, Cheng L, Bull I, Rigby P (2006) Shared waypoints and social tagging to sup-
port collaboration in software development. Proceedings of CSCW’06, ACM, New York, pp.
195-198.

51. Szoestek AM, Markopoulos, P (2006) Factors defining face-to-face interruptions in the office
environment. Proceedings of CHI’06, ACM, New York, pp. 1379-1384.

52. Tomayko JE, Hazzan O (2004) Human Aspects of Software Engineering (Electrical and
Computer Engineering Series). Rockland, MA: Charles River Media, Inc.

53. Tyler JR, Tang JC (2003) When can I expect an email response? A study of rhythms in email
usage. Proceedings of ECSCW’03, Helsinki, pp. 239-258.

54. Van den Hooff B, De Ridder JA, Aukema EJ (2004) Exploring the eagerness to share knowl-
edge: the role of social capital and ICT in knowledge sharing. In: Huysman M, Wulf V (Eds.)
Social Capital and Information Technology. Cambridge, MA: The MIT Press, pp. 163—186.

55. Vivacqua A, Lieberman H (2000) Agents to assist in finding help. Proceedings of CHI’00,
ACM, New York, pp. 65-72.

56. Wagstrom P, Herbsleb J (2006) Dependency forecasting. Communications of the ACM
49(10): 55-56.

57. Ye Y, Fischer, G (2002) Supporting reuse by delivering task-relevant and personalized
information. Proceedings of ICSE’02, Orlando, FL, pp. 513-523.

58. Ye'Y, Yamamoto Y, Nakakoji K (2007) A socio-technical framework for supporting program-
mers. Proceedings of ESEC/FSE’07, ACM, New York, pp. 351-360.

59. Ye Y, Yamamoto Y, Nakakoji K (2008) Understanding and improving collective attention
economy for expertise sharing. Proceedings of CAiSE’08, June, Lecture Notes in Computer
Science 5074, Springer, Berlin Heidelberg, pp. 167-181.

	11 Supporting Expertise Communication in Developer-Centered Collaborative Software Development Environments
	11.1 Introduction
	11.2 Historical Context: Three Schools of Research Toward Developer-Centered CSDEs
	11.3 Coordination Communication and Expertise Communication in Software Development
	11.4 Nine Design Guidelines for Supporting Expertise Communication
	11.5 Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

