
Chapter 1
Collaborative Software Engineering:
Concepts and Techniques

Jim Whitehead, Ivan Mistrík, John Grundy, and André van der Hoek

Abstract Collaboration is a central activity in software engineering, as all but the
most trivial projects involve multiple engineers working together. Hence, under-
standing software engineering collaboration is important for both engineers and
researchers. This chapter presents a framework for understanding software engi-
neering collaboration, focused on three key insights: (1) software engineering
collaboration is model-based, centered on the creation and negotiation of shared
meaning within the project artifacts that contain the models that describe the final
working system; (2) software project management is a cross-cutting concern that
creates the organizational structures under which collaboration is fostered (or damp-
ened); and (3) global software engineering introduces many forms of distance –
spatial, temporal, socio-cultural – into existing pathways of collaboration. Analysis
of future trends highlight several ways engineers will be able to improve project
collaboration, specifically, software development environments will shift to being
totally Web-based, thereby opening the potential for social network site integration,
greater participation by end-users in project development, and greater ease in global
software engineering. Just as collaboration is inherent in software engineering, so
are the fundamental tensions inherent in fostering collaboration; the chapter ends
with these.

1.1 Introduction

Software projects are inherently co-operative, requiring many software engineers to
co-ordinate their efforts to produce a large software system. Integral to this effort
is developing shared understanding surrounding multiple artifacts, each artifact
embodying its own model, over the entire development process [97].

J. Whitehead (B)
Department of Computer Science, Jack Baskin School of Engineering, University of California,
Santa Cruz, CA 95064, USA
e-mail: ejw@soe.ucsc.edu

1I. Mistrík et al. (eds.), Collaborative Software Engineering,
DOI 10.1007/978-3-642-10294-3_1, C© Springer-Verlag Berlin Heidelberg 2010

2 J. Whitehead et al.

Software engineers have adopted a wide range of communication and collabora-
tion technologies to assist in the co-ordination of project work. Every mainstream
communication technology has been adopted by software engineers for project
use, including telephone, teleconferences, email, voice mail, discussion lists, the
Web, instant messaging, voice over IP, and videoconferences. These communica-
tion paths are useful at every stage in a project’s lifecycle, and support a wide range
of unstructured natural language communication. Additionally, software engineers
hold meetings in conference rooms, and conduct informal conversations in hall-
ways, doorways, and offices. While these discussions concern the development of
a formal system, a piece of software, the conversations themselves are not formally
structured (exceptions being automated email messages generated by SCM systems
and bug tracking systems).

In contrast to the unstructured nature of conversation, much collaboration in soft-
ware engineering is relative to various formal and semi-formal artifacts. Software
engineers collaborate on requirements specifications, architecture diagrams, UML
diagrams, source code, and bug reports. Each is a different model of the ongoing
project. Software engineering collaboration can thus be understood as artifact-based
or model-based collaboration, where the focus of activity is on the production of new
models, the creation of shared meaning around the models, and elimination of error
and ambiguity within the models.

This model orientation to software engineering collaboration is important due to
its structuring effect. The models provide a shared meaning that engineers use when
co-ordinating their work, as when engineers working together consult a require-
ments specification to determine how to design a portion of the system. Engineers
also use the models to create new shared meaning, as when engineers discuss a UML
diagram, and thereby better understand its meaning and implications for ongoing
work. The models also surface ambiguity by making it possible for one engineer to
clearly describe their understanding of the system; when this is confusing or unclear
to others, ambiguity is present. Without the structure and semantics provided by
models, it would be more difficult to recognize differences in understanding among
collaborators.

These twin threads – the appropriation of novel communications technologies
for project work, and the model-centric nature of collaboration – are what give the
study of software engineering collaboration its unique character. Focusing just on
communication, the low cost and global reach of email, web, and instant messaging
technologies created the potential for global, multi-site software engineering teams.
This made it less expensive to globally distribute closed source projects, and cre-
ated the technological conditions that supported the emergence of open sourceopen
source software. In turn, understanding how best to structure and support this
communication-afforded collaboration within distributed software engineering has
been the focus of sustained study. Much traditional collaborative work research
has focused on the use of novel communication technologies in a variety of work
settings, viewing them as artifact-neutral co-ordination technologies. What dis-
tinguishes the study of collaboration within software engineering from this more
general study of collaboration is its focus on model creation. Software engineers are

1 Collaborative Software Engineering 3

not just collaborating in the abstract – they are collaborating over the creation of a
series of artifacts that, together, provide a multi-faceted view of the behavior of a
complex system.

1.2 Defining Collaborative Software Engineering

Collaboration is pervasive throughout software engineering. Almost all non-trivial
software projects require the effort and talent of multiple people to bring it to con-
clusion. Once there are two or more people on a software project, they must work
together, that is, they must collaborate. Thus, a simple ground truth is that any soft-
ware project with more than one person is created through a process of collaborative
software engineering.

There is an old story, running through many cultures, about six blind men and
an elephant. One man touches the elephant’s trunk, and says the elephant is a rope.
Another touches a leg, and says the elephant is a tree trunk. The remaining four
describe the elephant as a snake (tail), spear (tusk), wall (body), or brush (end of
tail). A large software system is like the elephant in the story, with each software
engineer having their own view and understanding of the overall system. Unlike the
story, a software system under development lacks the physical fixedness of the ele-
phant; one cannot simply step back and see the shape of the entire software system.
Instead, a software system is shaped by the intersecting activities and perspectives
of the engineers working on it. Software is thought-stuff, the highly malleable con-
version of abstractions, algorithms, and ideas into tangible running code. Hence
software engineers shape the system under construction while developing their
understanding of it.

Human minds are enormously flexible, approaching problems from unique
experiential, cultural, educational, and biochemical conditions; developers have
widely varying backgrounds and experiences, come from different cultures, have
different types of educational backgrounds, and have varying body chemistry.
Somehow, through the imperfect instrument of language, the vast pool of vari-
able outcomes inherent in any software system needs to be reduced to a single
coherent system. In this view, software engineering collaboration is the media-
tion of the multiple conflicting mental conceptions of the system held by human
developers.

Collaboration takes the form of tools to structure communication and lead to
consensus, as in the case of requirements elicitation tools. Other tools mediate
conflicts among differing views of the system, as in the case of configuration
management tools both preventing conflicting viewpoints from being realized as
incompatible code changes, and providing a process for handling conflicts when
they occur (merge tools). Tools for representing design and architecture diagrams
also help to mediate conflicts by making internal mental models explicit, thereby
allowing other actors to identify points of departure from their own views of the
system.

4 J. Whitehead et al.

Since software is so abstract and malleable, and is created via a process of nego-
tiating multiple viewpoints on the system, it is inevitable that software will have
errors. Consequently, software engineering collaboration also involves the joint
identification and removal of error. This can be seen in software inspections, where
multiple engineers bring their unique perspectives to the task of finding latent errors.
It is also visible in test teams, where many engineers work together to write system
test suites, and use bug tracking software to co-ordinate bug fixing effort.

People have a hard time working together effectively. To work well together,
engineers need to understand near-term and long-term goals, be clustered into teams,
and understand their personal responsibilities. Engineers also need to be motivated,
and receive appropriate reward for their work. Hence, software engineering collab-
oration is about creating the organizational structures, reward structures, and work
breakdown structures that afford effective work towards goal. As a consequence,
software engineering management and leadership is an integral part of software
engineering collaboration.

1.3 Historical Trends in Collaborative Software Engineering

Software engineers have developed a wide range of model-oriented technologies
to support collaborative work on their projects. These technologies span the entire
lifecycle, including collaborative requirements tools [5, 39], collaborative UML
diagram creation, software configuration management systems and bug tracking
systems [11]. Process modeling and enactment systems have been created to help
manage the entire lifecycle, supporting managers and developers in assignment of
work, monitoring current progress, and improving processes [7, 57]. In the commer-
cial sphere, there are many examples of project management software, including
Microsoft Project [69] and Rational Method Composer [42]. Several efforts have
created standard interfaces or repositories for software project artifacts, including
WebDAV/DeltaV [24, 98] and PCTE [96]. Web-based integrated development envi-
ronments serve to integrate a range of model-based (SCM, bug tracking systems)
and unstructured (discussion list, web pages) collaboration technologies.

Tool support developed specifically to support collaboration in software engi-
neering falls into four broad categories. Model-based collaboration tools allow
engineers to collaborate in the context of a specific representation of the software,
such as a UML diagram. Process support tools represent all or part of a software
development process. Systems using explicit process representations permit soft-
ware process modelling and enactment. In contrast, tools using an implicit represen-
tation of software process embed a specific tool-centric work process, such as the
checkout, edit, checking process of most SCM tools. Awareness tools do not sup-
port a specific task, and instead aim to inform developers about the ongoing work of
others, in part to avoid conflicts. Collaboration infrastructure has been developed to
improve interoperability among collaboration tools, and focuses primarily on their
data and control integration. Below, we give a brief overview of previous work in

1 Collaborative Software Engineering 5

these areas, to provide context for our recommendations for future areas of research
on software collaboration technologies.

1.3.1 Model-Based Collaboration Tools

Software engineering involves the creation of multiple artifacts. These artifacts
include the end product, code, but also incorporate requirements specifications,
architecture description, design models, testing plans, and so on. Each type of
artifact has its own semantics, ranging from free form natural language, to the semi-
formal semantics of UML, or the formal semantics of a programming language.
Hence, the creation of these artifacts is the creation of models.

Creating each of these artifacts is an inherently collaborative activity. Multiple
software engineers contribute to each of these artifacts, working to understand what
each other has done, eliminate errors, and add their contributions. Especially with
requirements and testing, engineers work with customers to ensure the artifacts
accurately reflect their needs. Hence, the collaborative work to create software arti-
facts is the collaborative work to create models of the software system. Systems
designed to support the collaborative creation and editing of specific artifacts are
really supporting the creation of specific models, and hence support model-based
collaboration. Collaboration tools exist to support the creation of every kind of
model found in typical software engineering practice.

Figure 1.1 provides an overview of model-oriented collaboration across a soft-
ware project lifecycle. In the figure, rows represent different types of actors or
models, while columns represent different phases in the development of a soft-
ware system. Overlaps between bubbles for types of people represent collaboration.
So, for example, the overlap of stakeholders and requirements engineers in the
requirements column represents their collaboration to create the requirements doc-
umentation for the system to be built. Project management cuts across all project
phases and impacts all types of software engineer, hence it is represented as a hor-
izontal bar. Remote collaboration occurs when the set of people within a bubble
is distributed across multiple sites, or when each bubble in a collaboration is at a
different site.

Overlap between model type bubbles indicates dependencies between the mod-
els. For example, determining a system’s software architecture often requires
negotiation with the customer over the implications of requirements, and may
require an understanding of the fine-grained design of certain system functions. For
simplicity, the figure is drawn using a waterfall-type process model. Other process
models modify this picture. Spiral development would involve additional negotia-
tion around the importance of various types of risk, and what constitutes acceptable
levels of risk. An evolutionary prototyping model would add collaboration between
stakeholders and developers in the coding phase, representing the negotiation that
takes place after a demonstration of the evolving system prototype to the customer.

In the sections below, we provide an overview of the collaboration that takes
place during each project phase, and active areas of research within these phases.

6 J. Whitehead et al.

Stakeholders/
Users/Customers

Software
Engineers

Models
Requirements

Use cases,
scenarios,
requirements
statements

Requirements
Engineer

Stakeholders

Software
Architecture

Feature model,
arch. diagrams,
tradeoff
analyses, arch.
document

System
Architect

Design

UML, design
documents

Developer

Code
Unit Test
Inspection

Source code,
test code,
build scripts,
test harness

Bug
reporting,
tracking, &
fixing

Bug reports,
code patches

Users
Customers

Project management

Collaboration
Goals

- Develop shared
mental model of
system
- Negotiate scope
and capabilities
- Elicit requirements
from stakeholders

- Drive convergence
to single architecture
- Negotiate modular
decomposition
- Reduce
dependencies
among org. units

- Resolve
inconsistencies
- Negotiate
interfaces and
use protocols
- Record design
rationale

- Negotiate
dependencies
among classes
and methods
- Identify and
eliminate bugs
- Resolve edit
conflicts

- Identify and
confirm bugs
- Verify and apply
code patches
- Identify new
feature requests

Fig. 1.1 Overview of model driven collaboration

1.3.1.1 Requirement Centered Collaboration

In the requirements phase, there are many existing commercial tools that sup-
port collaborative development of requirements, including Rational’s RequisitePro
[43] and DOORS [41] products, and Borland’s CaliberRM [8] (a more exhaus-
tive list can be found at [60]). These tools allow multiple engineers to describe
project use cases and requirements using natural language text, record dependen-
cies among and between requirements and use cases, and perform change impact
analyses. Integration with design and testing tools permits dependencies between
requirements, UML models, and test cases to be explicitly represented.

Collaboration features vary across tools. Within RequisitePro, requirements are
stored in a per-project requirements database, and can be edited via a Web-based
interface by editing a Word document that interacts with the database via a plu-
gin, or by direct entry using the RequisitePro user interface. Multiple engineers can
edit the requirements simultaneously via these interfaces. While cross-organization
interaction is possible via the Web-based interface, the tool is primarily designed
for within-organization use. RAVEN [79] supports collaboration via a built-in
checkout/checkin process on individual requirements. While most requirements
tools are desktop applications, Gatherspace [29] and eRequirements [29] are web-
based collaborative requirements tools, with capabilities only accessible via a Web
browser.

Research on collaborative requirements tools has focused on supporting nego-
tiation among stakeholders, use of new requirements engineering processes, and

1 Collaborative Software Engineering 7

exploration of new media and platforms. Win-Win was designed to support a
requirements engineering process that made negotiation processes explicit in the
interface of the tool, with an underlying structure that encouraged resolution of con-
flicts, creating “win–win” conditions for involved stakeholders [5]. ART-SCENE
supports a requirements elicitation approach in which a potentially distributed team
writes use cases using a series of structured templates accessible via a Web-based
interface. These are then used to automatically generate scenarios that describe nor-
mal and alternative situations, which can then be evaluated by requirements analysts
[63]. Follow-on work has examined the use of a mobile, PDA-based interface for
ART-SCENE, taking advantage of the mobility of the interface to show use cases to
customer stakeholder in-situ [64]. The Software Cinema project examined the use
of video for recording dialog between engineers and stakeholders, allowing these
conversations to be recorded and analyzed in depth [17].

1.3.1.2 Architecture Centered Collaboration

Though the creation of final software architecture for a project is a collaborative
and political activity, much of this collaboration takes place outside architecture-
focused tools. Rational Software Architect is an UML modelling tool focused on
software architecture. Engineers can browse an existing component library and
work collaboratively on diagrams with other engineers, with collaboration mediated
via the configuration management system. Research systems, such as ArchStudio
[18, 95] and ACMEStudio [53] typically support collaborative authoring by ver-
sioning architecture description files, allowing a turn-taking authoring model. The
MolhadoArch system is more tightly integrated with an underlying fine-grain ver-
sion control system, and hence affords collaboration at the level of individual
model elements [73]. Supporting an explicitly web-based style of collaboration,
Maheshwari and Teoh [62], describes a web-based tool that supports the ATAM
architecture evaluation methodology.

1.3.1.3 Design Centered Collaboration

Today, due to the strong adoption of the Unified Modelling Language (UML),
mainstream software design tools are synonymous with UML editors, and include
Rational Rose [44], ArgoUML [78], Borland Together [9], and Altova UModel [2]
(a more complete list is at [102]). Collaboration features of UML authoring tools
mostly depend on the capabilities of the underlying software configuration manage-
ment system. For example, ArgoUML provides no built-in collaboration features,
instead relying on the user to subdivide their UML models into multiple files, which
are then individually managed by the SCM system. The Rosetta UML editor [32]
was the first to explore Web-based collaborative editing of UML diagrams, using a
Java applet diagram editor. Recently, Gliffy [30] and iDungu [45] have web-based
diagram editors that support UML diagrams. Gliffy uses linear versioning to record
document changes, and can inform other collaborators via email when a diagram has

8 J. Whitehead et al.

changed. SUMLOW supports same-time, same-place collaborative UML diagram
creation via a shared electronic whiteboard [16].

1.3.1.4 Collaboration Around Testing and Inspections

Like requirements, testing often involves substantial collaboration between an engi-
neering team and customers. Testing interactions vary substantially across projects
and organizations. Application software developers often make use of public beta
tests in which potential users gain advance access to software, and report bugs
back to the development team. As well, best practices for usability testing involves
multiple people performing specific tasks under observation, another form of test-
ing based collaboration. Adversarial interactions are also possible, as is the case
with a formal acceptance test, where the customer is actively looking for lack of
conformance to a requirements specification.

Within an engineering organization, testing typically involves collaboration
between a testing group and a development team. The key collaborative tool used to
manage the interface between testers (including public beta testers) and developers
is the bug tracking (or issue management) tool [90]. Long a staple of software devel-
opment projects, bug tracking tools permit the recording of an initial error report,
prioritization, addition of follow-on comments and error data, linking together sim-
ilar reports, and assignment to a developer who will repair the software. Once a bug
has been fixed, this can be recorded in the bug tracking system. Search facilities
permit a wide range of error reporting. A comparison of multiple issue tracking and
bug tracking systems can be found at [101].

Software inspections involve multiple engineers reviewing a specific software
artifact. As a result, software inspection tools have a long history of being collab-
orative. Hedberg [34] divides this history into early tools, distributed tools, asyn-
chronous tools, and web-based tools. Early tools (circa 1990) were designed to sup-
port engineers holding a face-to-face meeting, while distributed tools (1992–1993)
permitted remote engineers to participate in an inspection meeting. Asynchronous
tools (1994–1997) relaxed the requirement for the inspection participants to all meet
at the same time, and Web-based tools supported inspection processes on the Web
(1997–onwards). MacDonald and Miller [61] also survey software inspection sup-
port systems as of 1999. More recently, Meyer describes a distributed software
inspection process using only off-the-shelf communication technologies, includ-
ing voice over IP, Google Docs (web-based collaborative document authoring), and
Wiki. These technologies were found to be sufficient to conduct effective reviews;
no specialized review software was necessary [68].

1.3.1.5 Traceability and Consistency

While ensuring traceability from requirements to code and tests is not inherently
a collaborative activity, once a project has multiple engineers, creating traceability
links and ensuring their consistency is a major task. XLinkit performs automated

1 Collaborative Software Engineering 9

consistency checks across a project [71], while [65] describes an approach for auto-
matically inferring documentation to source code links using information retrieval
techniques. Inconsistencies identified by these approaches can then form the start-
ing point for examining whether there are mismatches between the artifacts created
by different collaborators.

1.3.2 Process Centered Collaboration

Engineers working together to develop a large software project can benefit from
having a predefined structure for the sequence of steps to be performed, the roles
engineers must fulfill, and the artifacts that must be created. This predefined struc-
ture takes the form of a software process model, and serves to reduce the amount of
co-ordination required to initiate a project. By having the typical sequence of steps,
roles, and artifacts defined, engineers can more quickly tackle the project at hand,
rather than renegotiating the entire project structure. Over time, engineers within an
organization develop experience with a specific process structure. The net effect is
to reduce the amount of co-ordination work required within a project by regularizing
points of collaboration, as well as to increase predictability of future activity.

To the extent that software processes are predictable, software environments can
mediate the collaborative work within a project. Process centered software develop-
ment environments have facilities for writing software process models in a process
modelling language (see [74] for a retrospective on this literature), then executing
these models in the context of the environment. While a process model lies at the
core of process centered environments, this process guides the collaborative activity
of engineers working on other artifacts, and is not itself the focus of their collab-
oration. Hence, for example, the environment can manage the assignment of tasks
to engineers, monitor their completion, and automatically invoke appropriate tools.
A far-from-exhaustive list of such systems includes Arcadia [49], Oz [3], Marvel
[4], Conversation Builder [51], and Endeavors [7]. One challenge faced by such
systems is the need to handle exceptions to an ongoing process, an issue addressed
by [50].

1.3.3 Collaboration Awareness

Software configuration management systems are the primary technology co-
ordinating file-based collaboration among software engineers. The primary collab-
orative mechanism supported by SCM systems is the workspace. Typically each
developer has their own workspace, and uses a checkout, edit, checkin cycle to
modify a project artifact. Workspaces provide isolation from the work of other
developers, and hence while an artifact is checked out, no other engineer can
see its current state. Many SCM systems permit parallel work on artifacts, in
which multiple engineers edit the same artifact at the same time, using merge
tools to resolve inconsistencies [67]. Workspaces allow engineers to work more

10 J. Whitehead et al.

efficiently by reducing the co-ordination burden among engineers, and avoiding
turn-taking for editing artifacts. They raise several issues, however, including the
inability to know which developers are working on a specific artifact. Palantir
addresses this problem by providing engineers with workspace awareness, infor-
mation about the current activities of other engineers [85]. By increasing awareness
of the activities of other engineers, they are able to perform co-ordination activ-
ities sooner, and potentially avoid conflicts. Augur is another example of an
awareness tool [28]. It provides a visualization of several aspects of the devel-
opment history of a project, extracted from an SCM repository, thereby allowing
members of a distributed project to be more aware of ongoing and historical
activity.

1.3.4 Collaboration Infrastructure

Various infrastructure technologies make it possible for engineers to work collabo-
ratively. Software tool integration technologies make it possible for software tools
(and the engineers operating them) to co-ordinate their work. Major forms of tool
integration include data integration, ensuring that tools can exchange data, and con-
trol integration, ensuring that tools are aware of the activities of other tools, and can
take action based on that knowledge. For example, in the Marvel environment, once
an engineer finished editing their source code, it was stored in a central repository
(data integration), and then a compiler was automatically called by Marvel (control
integration) [4].

The Portable Common Tool Environment (PCTE) was developed from 1983
to 1989 to create a broad range of interoperability standards for tool integration
spanning data, control, and user interface integration [96]. Its greatest success was
in defining a data model and interface for data integration. The WebDAV effort
(1996–2006) aimed to give the Web open interfaces for writing content, thereby
affording data integration among software engineering tools, as well as a range of
other content authoring tools [24, 98]. Today, the data integration needs of software
environments are predominantly met by SCM systems managing files via isolated
workspaces. However, the world of data integration standards and SCM meet in
tools like Subversion [75] that use WebDAV as the data integration technology in
their implementation.

For control integration there are two main approaches, direct tool invocation,
and event notification services. In direct tool integration, a primary tool in an
environment (e.g., an integrated development environment, like Eclipse) directly
calls another tool to perform some work. When multiple tools need to be coordi-
nated, a message passing approach works better. In this case, tools exchange event
notification messages via some form of event transport. The Field environment
introduced the notion of a message bus (an event notification middleware service) in
development environments [81], with the Sienna system exemplifying more recent
work in this space [13].

1 Collaborative Software Engineering 11

Ahmadi et al. suggest that future collaboration support for software projects
should build upon a foundation of technologies that can be used to create social
networking web sites, what they term Social Network Services [1].

1.3.5 Project Management

Software project management is intimately concerned with collaboration, since it
structures the effort of the project via the creation of teams, subdivision of work to
teams, schedules, and budget. These organizational, task, and cost structures drive
the co-ordination and collaboration needs of a project.

Software project management is a subdiscipline of project management, and
emerged as a separate concern within software engineering in the 1970s. During this
decade, organizations made increasing use of computer-based information technol-
ogy, leading to a demand for more, and larger software systems. The most influential
early project management book is Brook’s Mythical Man Month (1975) [10]. In
1981 Boehm defined the entire field of software economics in his landmark book
of the same name [6] introducing COCOMO, the Constructive Cost Model for
software. A January, 1984 edition of IEEE Trans. on Software Engineering [93]
portrayed the state of the practice in software project management, and looked into
its future. The year 1987 saw the release of DeMarco and Lister’s Peopleware:
Productive Projects and Teams, which emphasizes the importance of team collab-
oration [19]. A recent book in a similar vein was written in 1997 by McConnell,
who proposed a list of Ten Essentials for software projects, based on “hard-won
experience” [66].

The past 20 years have seen multiple efforts to capture and codify the knowl-
edge and key practices required to perform effective project management. Watts
Humphrey wrote Managing the Software Process in 1989, which first introduced
the capability maturity model (fully completed in 1993) [38]. This model is signifi-
cant for providing a multi-stage evolutionary roadmap by which an organization can
improve its ability to manage and construct software systems. The IEEE Software
Engineering Standards [47] capture many of the fundamental “best practices” of
the software engineering project management. The Project Management Book of
Knowledge (PMBOK), (1987, with four revisions since) documents and standard-
izes well-known project management knowledge and practices across a wide range
of project types, including software projects [76]. The second edition of Thayer’s
Software Engineering Project Management [92] provides a framework for project
management activities based on the planning, organizing, staffing, directing, and
controlling model. The ISO 10006 “Quality management – Guidelines to quality to
project management” [48], claims to provide “guidance on quality system elements,
concepts and practices for which the implementation is important to, and has an
impact on, the achievement of quality in project management”.

In 2005 Pyster and Thayer decided to revisit software project management and
assemble a set of articles that reflect how it has advanced over the past 20 years [77].

12 J. Whitehead et al.

1.4 Global and Multi-Site Collaboration

In today’s global economy, increasing numbers of software engineers are expected
to work in a distributed environment. For many organizations, globally-distributed
projects are rapidly becoming the norm [35]. Organizations construct global teams
so as to leverage highly skilled engineers and site-specific expertise, better address
the needs of users and other stakeholders, spread project knowledge throughout the
organization, exploit advantages of specific labor markets, accommodate workers
who wish to telecommute, and reduce costs. Mergers and alliances among organi-
zations also create the need for distributed projects. While providing many advan-
tages, global distribution also makes it harder for project members to collaborate
effectively.

Global teams find it much harder to develop shared understanding around
the evolving software artifact, as the distribution involved makes every aspect
of communication more difficult. Team members at different sites lose the abil-
ity to have ad-hoc, informal communication due to spontaneous face-to-face
interactions. Different sites often involve different national and organizational
cultures, creating what Holmstrom et al. call socio-cultural distance [36]. As
this distance increases, there is an increase in the challenge of interpreting the
meaning of project communication. Engineers spread across many time zones
reduce communication windows [33]. In reaction to these challenges, a core
set of developers tends to emerge that acts as the key liaisons, or gatekeepers,
between teams in different geographical locations. This team not only performs
key co-ordination activities, but also contains the most technically productive team
members [14].

Research on globally distributed software projects tends to focus on either char-
acterizing their behavior (e.g. [33, 36]), or developing tools and techniques to
mitigate the negative aspects of global distribution, so as to leverage its bene-
fits. An example of the latter is the global software development handbook, which
documents a wide range of issues and techniques for managing a global software
project [82]. Lanubile provides a recent overview of tools for communication and
co-ordination in distributed software projects [56]. In a hopeful sign that advanced
tool support can overcome some of the drawbacks of global distribution, Wolf
et al. report on a study of the development of the IBM’s Jazz project [103]. This
study shows that the Jazz team did not experience a significant decrease in project
communication due to the distance between project sites.

Herbsleb presents a thorough survey of research on distributed software engi-
neering in [35], along with thoughts on future research challenges. Herbsleb views
the main challenge of distributed software engineering as the management of
dependencies (that is, co-ordination) over a distance. We share this view, though
this chapter also emphasizes the challenges inherent in creating shared meaning
around (and identifying defects in) the many model-oriented artifacts in a software
project.

1 Collaborative Software Engineering 13

1.5 Social Considerations

1.5.1 Software Teams

All engineering domains have a mix of technical and social aspects. For software
engineering, such technical aspects include: software processes used to organise the
life-cycle of software development; project management to co-ordinate teams work-
ing on software projects; requirements engineering, to capture key user needs of
software systems and to specify – formally and/or informally – these needs; design,
to identify the approaches via which the software systems will be realised; imple-
mentation, constructing executable systems; quality assurance, ensuring developed
systems meet user requirements to acceptable thresholds; and deployment, making
and keeping software systems available In addition, software very often must be
modified over time and “maintained”.

All of these technical activities must be carried out – in almost all cases – by a
team of software engineers and related personnel. Such a “software team” is respon-
sible for all of these technical aspects of engineering the software system and must
be formed, organized, managed, evolved and ultimately disbanded. Team forma-
tion may be top-down or bottom-up [12, 99]. Recently team formation has had to
take into account a trend to global software engineering including outsourcing, open
sourcing and virtual teams [82].

1.5.2 Team Organization

Teams may be organised in a variety of ways [99]. “Tayloristic” teams have spe-
cialists filling specific roles, such as a requirements team, design team, testing
team, coding team etc. These tend to be specialized, role-specific, task-focused and
top-down directed units. “Agile” teams adopt a very different approach [88]. In
these teams members tend to be generalists, the team people-focused rather than
task-focused, and management bottom-up. Each of these teams brings very dif-
ferent social interaction protocols to bear on software development. Traditional,
Tayloristic teams tend to be hierarchical and more centralized which suits some
development projects and personalities. Agile teams tend to be more customer-
driven, democratic and flexible. While this suits some developer personalities and
problem domains it can be problematic. Each style of team organizationteam orga-
nization tends to utilize different collaboration approaches, project management
strategies and sometimes tool support.

More recent trends have seen the rise of virtual software teams, outsourced soft-
ware and open source communities. From a social perspective virtual teams need to
overcome the challenges of distance, cultural and language differences and often dif-
ferent time zones [12]. Language barriers can mean it is difficult for team members
to exchange information, co-ordinate work and communicate without mediation.

14 J. Whitehead et al.

Cultural barriers can impact team dynamics in terms of co-ordination strategies,
timeliness of work, and task allocation and monitoring. Different time zones delay
communication sometimes leading to incorrect actions or incorrect assumptions
about software artefacts and processes.

Outsourcing usually requires strong contractual relationships between teams
[22]. Two common approaches are to divide an overall team into units of spe-
cialisation e.g. requirements, code, test etc., or to divide up the team vertically
according to software function, e.g., the payments team, the on-line transaction
processing team, the integration team. Collaboration challenges arise on the team
boundaries, within teams as per other co-located models as well as for overall
project management.

A very interesting set of social dynamics occur in the open source/voluntary
software arena [21]. Often effort is either donated or contributed out of a sense of
community belonging or mutual interest, in contrast to most other software develop-
ment endeavours. This can lead to issues of ownership, or lack thereof, co-ordination
challenges when available time of “team members” is unknown or opaque, and usu-
ally voluntary team membership for most or all members. Opt-in and opt-out to
particular parts of a development project or software can often occur.

1.5.3 Team Composition

Team composition has a strong bearing on the social dynamics of both a single team
and others its members may need to interact with. Some teams may be composed of
a set of specialists while others mainly generalists. Traditional approaches to soft-
ware team organisation often assume teams of specialists [99] and many outsourcing
and virtual team models have also adopted this approach [12, 22]. Specialisation has
advantages of clearer division of responsibility among members and ability to lever-
age particular skill bases. However it has major disadvantages when particular skills
are rare or become unavailable for a time; and can lead to team conflict around divi-
sions of work. Generalist teams are often favoured in agile projects [88] and are
often a characteristic of many open source “teams” [21] by virtue of opt-in/opt-out
driven by particular areas of interest or need.

Some teams include end users, or “customers”, of the software product as a mat-
ter of course [88] whereas others isolate many team members from these customers
[99]. Each has advantages and disadvantages in terms of collaboration support and
project co-ordination from a social perspective. Customers generally have a very
different perspective on the software project to developers and co-location greatly
enhances communication and collaboration. However customers are often driven by
self-interest and localised perspectives which may result in limited communication
in particular areas.

Team membership can be whole-of-project, short-lived, or periodic. Some teams
are created for the lifetime of a project in order to ensure available skill base and
to enable deep understanding not only of the project but other team member’s
skills, abilities and awareness of work. Outsourced projects will typically leverage

1 Collaborative Software Engineering 15

a remote team for the lifetime of the outsourced activity. Traditional teams may be
sensitive to particular skill loss and agile teams try to mitigate this by a stronger
emphasis on generalists [88].

Many teams are shared across projects. This is particularly common in virtual and
out-sourced domains where specialised teams may be working on several projects at
once. This greatly complicates inter-team communication and collaboration. Open
source projects are often characterised by some team members participating for
the whole duration of a project; some leaving early or joining later; and some
participating on and off as their interest and time allows. Sometimes a team or
members of a team may be contributing simultaneously to software development
in different organisations. Again, virtual teams and particularly open source and
outsourced projects may show this characteristic. These situations make building up
a “corporate memory” around software a real challenge.

1.5.4 Knowledge Sharing

Knowledge sharing in software development has always been a challenge. The trend
to global software engineering – common in virtual teams, outsourcing projects
and open source projects – exacerbates this. Working in different time zones means
that co-ordination of activities will typically be coarser-grained than possible with
co-located teams.

Information may be written in different languages or from very different per-
spectives. Different emphases may be put on information depending on the cultural
background of team members. Approaches to managerial aspects of teams, task
division and reporting may need to take careful account and respect of cultural dif-
ferences to ensure team harmony and effectiveness [55]. Language difference is
probably the most obvious – and most challenging – issue when sharing knowl-
edge across teams. However, cultural differences and the impact of different time
zones and lack of face-to-face collaboration and co-ordination can also be significant
issues [35, 55].

It is common to encounter significant differences in work culture, habits,
approach to management and self-organization in cross-cultural teams. Again,
open source projects, outsourcing projects and distributed software teams com-
monly exhibit the need to manage software engineering knowledge in cross-cultural,
cross-language and cross-time zone environments.

1.6 Managerial Considerations

Software project management (SPM) includes the knowledge, techniques, and tools
necessary to manage the development of software products. In more detail, SPM
includes the inception, estimation, and planning of software projects along with
tracking, controlling, and co-ordinating the execution of the software project. The
goal of SPM is to tackle an optimal balance between planning and execution.

16 J. Whitehead et al.

1.6.1 Software Project Management

The Project Management Institute defines project management as “the application
of knowledge, skills, tools, and techniques to project activities in order to meet or
exceed stakeholder’s needs and expectations from a project” [76].

The intent of project management is to drive a project forward through a series
of periods, phases and stages tailored to the specific project and its particular
development and implementation strategy. These time intervals should be reflec-
tive of the product and its environment. Driving a project forward means steering
it through these intervals separated by “gates” as a means of ensuring control and
continued support by all of the partners involved [100].

Software engineering management can be defined as application of management
activities – planning, co-ordinating, measuring, monitoring, controlling, and report-
ing – to ensure that the development and maintenance of software is systematic,
disciplined, and quantified [46].

The key issue in Software Project Management (SPM) is decision making. Many
of the decisions that drive software engineering are about how the software engi-
neering process should take place, not just what software supposed to do or how it
will do it, i.e., the project management has to be viewed in relation with product
development and engineering processes.

1.6.2 SPM for Collaborative Software Engineering

There are four management areas that are particularly important in collaborative
software engineering: (1) supporting communications in the project; (2) recon-
ciling different stakeholder’s viewpoints; (3) improving the process; (4) rapidly
constructing the knowledge [25].

1.6.2.1 Supporting Communications in the Project

It is known that large organizations are associated with large communication
overhead [6, 10, 54, 86]. For example, it is typical for an engineer in mid to
large organizations to spend between half and three quarters of their time on
communication, leaving only a fraction of their time for engineering work [86].

While the cost of communication has been noted for a long time, it is becom-
ing increasingly worse. Communication overhead has a broad number of causes:
number of counterparts; differences in backgrounds, notations, and conventions;
effectiveness of communication tools; distribution of organizations. In general, the
worse the communication overhead associated with the transmission of information,
the less effective and responsive an organization becomes.

1.6.2.2 To Reconcile Conflicting Success Criteria in the Project

One of the problems in software development is to elicit and satisfy the success crite-
ria of multiple stakeholders. Users, clients, developers, and maintainers are involved
in different aspects of the development and operating of the software system, and

1 Collaborative Software Engineering 17

have different and conflicting views on the system [26]. The role of the project
manager is to elicit, negotiate, satisfy, and trade-off multiple criteria originating
from the key stakeholders so that each stakeholder “wins” to ensure the success and
sustainability of the product.

Often, the issue of dealing with conflicting success criteria is not only to rec-
oncile conflicting views, but to identify the key stakeholders of the system and to
clarify their success criteria. Once these criteria are known to all, it is much easier
to identify conflicts and to resolve them by negotiating compromise alternatives.

To address these issues, there is a need for negotiation techniques and support
early in system development, while changes in requirements and technology are
possible and cost effective.

1.6.2.3 Improving the Process in the Project

Software engineering literature has provided many models, called life cycle models,
of how software development occurs. In practice, software engineering tends to fol-
low a more complex pattern, similar to problem solving in other human activities,
which creative, opportunistic, involving, incremental building is followed by radi-
cal reorganizations sparked by sudden insights [72]. Moreover, the occurrence and
frequency of the radical reorganization depend on the organization and the project
context.

The field of software process improvements has gained ground in recent years, in
supporting managers and organization in modelling and measuring software devel-
opment processes. While software process improvement practices lead to more
repeatable and more predictable processes, they usually do not deal with creative
processes such as requirements engineering and do not support managers in dealing
with radical reorganizations.

1.6.2.4 Rapidly Construct the Knowledge in the Project

A knowledge management approach should focus on the informal communi-
cation helping navigate and update digital repositories and digital repositories
helping to identify key experts and stakeholders. Such a knowledge management
approach would also enable stakeholders to create, organize, and capture infor-
mal or formal knowledge, in real time. This approach is called rapid knowledge
construction [89].

Rapid knowledge construction is often needed when common knowledge needs
to be elicited and merged from a number of groups, possibly distributed in the
organization. Rapid knowledge construction includes the following challenges:
adaptable to context; real-time capture; enable reuse.

Knowledge management and rapid knowledge construction are not manage-
ment activities in the traditional sense (organizing work and resources). However,
knowledge management is essentially cross-functional, and hence, requires the
participation and facilitation of many levels, including project and program
management.

18 J. Whitehead et al.

1.7 Future Trends

As our understanding of software engineering collaboration deepens and the range
of easily adoptable collaboration technologies expands, opportunities are created for
improving collaborative project work. This section outlines several future trends in
software collaboration research.

1.7.1 IDEs Shift to the Web

One clear trend in collaboration tools is the existence of web-based tools in every
phase of software development. This mirrors the broader trend of many applications
moving to the web, afforded by the greater interactivity of AJAX (asynchronous
JavaScript and XML), more uniformity in JavaScript capabilities across browsers,
and increasing processing power in the browser. Web-based applications have the
benefit of centralized tool administration, and straightforward deployment of new
system capabilities. They also make it possible to collect highly detailed usage met-
rics, allowing rapid identification and repair of observed problems. Web application
variants can also be evaluated quickly by giving a small percentage of the users a
slightly modified version, then comparing results with the baseline. The advantages
of web-based applications are compelling, and create substantial motivation to move
capability off of desktops and into the web.

Traditionally, the most significant drawback to web-based applications has been
the lack of user interface interactivity, and so graphics or editing intensive applica-
tions were traditionally not viewed as being suitable for the web. In the realm of
software engineering, this meant that UML diagram editing and source code editing
were relegated to desktop only applications. Google Maps smashed the low inter-
activity stereotype in early 2005, and is now viewed as the vanguard of the loosely
defined “Web 2.0” movement that began in 2004. Web 2.0 applications tend to have
desktop-like user interface interactivity within a web browser, as well as facilities
for other sites to integrate their data into the application, or integrate the site’s data
into another application.

The pathway is now clear for the creation of a completely web-based integrated
development environment. The Bespin code editor supports highly interactive,
feature-rich source code editing within a browser [70], with direct back-end integra-
tion with source code management systems. Due to the high degree of interactivity
required, source code editing is the most thorny problem of moving to a totally web-
based environment. Bespin demonstrates that completely web-based code editing is
possible. With the source code editor in place, editors for other models in the soft-
ware engineering lifecycle can be integrated. For example, the Gliffy drawing tool
supports browser-based UML diagram editing [30]. Web-based requirements and
bug tracking tools can also be tied in, along with web-based word processing and
spreadsheets, such as Google Docs [31], Zoho Writer [104], and the Glide suite
[94]. Web-based project build technologies such as Hudson [37] make it possible to
remotely build and unit test software, removing the last threads that bind software
development to the desktop.

1 Collaborative Software Engineering 19

The technical hurdle of bolting together multiple existing web-based tools into
a single environment should be straightforward to overcome. What comes next are
the fundamental research questions. To achieve close integration among tools, some
form of data integration will be necessary. This then leads to the hard problem of
developing data interchange standards among pluggable tools in various parts of the
development lifecycle.

The ability to gather finely detailed information about the work practices
of software engineers can allow rapid tuning and improvement of web-based
environments. It also opens the possibility of a flowering of research in empirical
software engineering, as large amounts of software project activity data are gath-
ered across many open source software projects. This, in turn, raises the issue of
just what degree of project monitoring is acceptable to developers, and who should
have access to collected data.

A web-based environment opens the possibility for integration with other web-
based collaboration technologies, such as social networking sites. This leads to our
next future direction.

1.7.2 Social Networking

Social networking sites such as MySpace, Facebook, and LinkedIn have, in the
space of a few short years, emerged as major hubs of social interaction. By pro-
viding awareness of the actions of friends and the ability to build closer social ties,
these sites act as a kind of social glue, knitting together communities. These sites
are also becoming major software development platforms, leading to the rapid rise
of social gaming companies such as Zynga and Playdom.

It is an open question how best to integrate social networking sites into soft-
ware development teams. The simplest approach is to have all team members use a
single social networking site, and use it for non-project oriented socializing. Sites
like Advogato [58] and Github [59] provide developer profiles. Advogato provides
the ability for developers to rate each others’ technical proficiency, creating a trust
network. Each user also has a weblog. Github provides automated status update
messages shown on a developer’s profile page based on activity in Github managed
software projects, and project-specific news feeds.

At present, sites like Advogato and Github only have affordances for the iden-
tity of each participant as a software engineer. This can be contrasted with sites like
Facebook and MySpace, where a broader range of tools make possible the integra-
tion and presentation of multiple identities for each participant, though with a bias
towards non-work identities. LinkedIn is another choice, clearly focused on busi-
ness networking and job seeking. Clearly there is a potential for tight integration
of software development activities with social networking sites. But how? One pos-
sibility is integration with Facebook. However, it seems a bit counter to the site’s
focus to have successful build and code checkin messages appearing in someone’s
wall. On the other hand, since sites like Github and Advogato have fewer social
affordances, they feel less interesting than Facebook. Even for the most hardcore
developers, there is more to life than code alone.

20 J. Whitehead et al.

1.7.3 Broader Participation in Design

Many forms of software have high costs for acquiring and learning the software,
leading to lock-in for its users. This is especially true for enterprise software
applications, where there can be substantial customization of the software for each
location. This leads to customer organizations having a need to deeply understand
product architecture and design, and to have some influence over specific aspects
of software evolution to accommodate their evolving needs. In current practice,
customers are consulted about requirements needs, which are then integrated into
a final set of requirements that drive the development of the next version of the
software. Customers are also usually participants in the testing process via the
preliminary use and examination of various beta releases. In the current model, cus-
tomers are engaged during requirements elicitation, but then become disengaged for
the requirements analysis, design, and coding phases, only to reconnect again for the
final phase of testing. This can be seen in Fig. 1.1 (earlier in this chapter), where the
stakeholders/users/customers row has engagement in requirements, and then again
in test.

Broadened participation by customers in the requirements, design, coding and
early testing phases would keep customers engaged during these middle stages,
allowing them to more actively ensure their direct needs are met. While open
source software development can be viewed as an extreme of what is being sug-
gested here, in many contexts broadening participation need not mean going all the
way to open source. Development organizations can have proprietary closed-source
models in which they still have substantial fine-grain engagement with customers
in which customers are directly engaged in the requirements, design, coding, and
testing process. Additionally, broadening participation does not necessarily mean
that customers would be given access to all source code, or input on all decisions.
Nevertheless, by increasing the participation of the direct end users of software
in its development, software engineers can reduce the risk that the final software
does not meet the needs of customer organizations. As in open source software, a
more broadly participative model can allow customers to fix those bugs that mostly
directly affect them, even if, from a global perspective, they are of low priority, and
hence unlikely to be fixed in traditional development. A participatory development
model could also permits customers to add new features, thereby better tailoring the
software to their needs.

A completely web-based software development environment would make it eas-
ier to broaden participation. In such an environment, it would be possible to give out-
siders direct access to limited parts of the source code (and other project artifacts).
With direct web-based access, external sites would not need to take source code off-
site in order to build and test it, reducing the risk of proprietary information release.

1.7.4 Capturing Rationale Argumentation

An important part of a software project’s documentation is a record of the ratio-
nale behind major decisions concerning its architecture and design. As new team

1 Collaborative Software Engineering 21

members join a project over its multi-year evolution, an understanding of project
rationale makes it less likely that design assumptions and choices will be acci-
dentally violated. This, in turn, should result in less code decay. A recent study
[91] shows that engineers recognize the utility of documenting design rationale,
but that better tool support is needed to capture design choices and the reasons for
making them.

Technical design choices are often portrayed as being the outcome of a rational
decision making process in which an engineer carefully teases out the variables of
interest, gathers information, and then makes a reasoned tradeoff. What this model
does not reflect is the potential for disagreement among many experienced software
engineers on how to assess the importance of factors affecting a given design. One
of the strongest design criteria used in software engineering is design for change,
which inherently involves making predictions about the future. Clearly we do not yet
have a perfect crystal ball for peering into the future, and hence experienced engi-
neers naturally have differing opinions on which changes are likely to occur, and
how to accommodate them. As well, architectural choices often involve decisions
concerning which technical platform to choose (e.g., J2EE, Ruby on Rails, PHP,
etc.), requiring assessments about their present and future qualities. As a result, the
design process is not just an engineer making rational decisions from a set of facts,
but instead is a predictive process in which multiple engineers argue over current
facts and future potentials. Architecture and design are argumentative processes in
which engineers resolve differences of prediction and interpretation to develop mod-
els of the software system’s structure. Since only one vision of a system’s structure
will prevail, the process of architecture and design is simultaneously cooperative
and competitive.

Effective recording of a project’s rationale requires capturing the argumentation
structure used by engineers in their debates concerning the final system structure.
Outside of software engineering, there is growing interest in visual languages and
software systems that model the structure of arguments [52]. While models vary,
argumentation support systems generally record the question or point that is being
contested (argued about), statements that support or contest the main point, as well
as evidence that substantiates a particular statement. Argumentation structures are
generally hierarchical, permitting pro and con arguments to be made about indi-
vidual supporting statements under the main point. For example, a “con” argument
concerning the use of solar panels as the energy source for a project might state
that solar electric power is currently not competitive with existing coal-fired power
plants. A counter to that argument might state that while this is true of wholesale
costs, solar energy is competitive with peak retail electric costs in many markets.

Providing collaborative tools to support software engineers in the recording and
visualization of architecture and design argumentation structures would do a bet-
ter job of capturing the nuances and tradeoffs involved in creating large systems.
They would also better convey the assumptions that went into a particular decision,
making it easier for succeeding engineers to know when they can safely change a
system’s design. A persistent challenge in rationale management in software engi-
neering is keeping arguments consistently linked with the artifacts the affect (a form
of traceability management). A completely web-based development environment,

22 J. Whitehead et al.

by providing centralized control over development artifacts, can ease this problem
by making it possible to reliably perform link fix-up actions when an argument, or
linked artifact, are changed.

1.7.5 Using 3D Virtual Worlds

Software engineers have a long track record of integrating new communication
technologies into their development processes. Email, instant messaging, and web-
based applications are very commonly used in today’s projects to coordinate work
and be aware of whether other developers are currently active (present). As a
result, engineers would be expected to adopt emerging communication and presence
technologies if they offer advantages over current tools.

Networked collaborative 3D game worlds are one such emerging technology.
The past few years have witnessed the emergence of massively-multiplayer online
(MMO) games, the most popular being World of Warcraft (WoW). These games
support thousands of simultaneous players who interact in a shared virtual world.
Each player controls an avatar, a graphic representation of the player in the world.
Communication features supported by games include instant messaging, voice
chat, email-like message services, and presence information (seeing another active
player’s avatar).

Steve Dossick’s PhD dissertation [23] describes early work on the use of 3D
game environments to create a “Software Immersion Environment” in which project
artifacts are arranged in a physical 3D space, a form of virtual memory palace.
Only recently have MMOs like Second Life emerged that are not explicitly role-
playing game worlds, and hence are framed in a way that makes them potentially
usable for professional work. While Second Life’s focus on leisure activities makes
it unpalatable for all but the most adventurous of early adopters, these environ-
ments still hint at their potential for engineering collaboration. IBM’s Bluegrass
project [40] is a 3D virtual world explicitly designed to support software project
work. Goals of the work include improved awareness of the current status and
ongoing work of a project, and project brainstorming. The work exposes many
research issues in use of 3D virtual worlds for software project collaboration.
Representation of software artifacts in the 3D world is a thorny problem, as there
is no canonical way of spatially representing software. One possibility is to have
the virtual space represent the organization of the various software project arti-
facts including requirements, designs, code, test cases, and so on. Alternately, the
virtual space could be a form of idealized work environment, where everyone
has a nice, large office with window. Combinations of the two are also possible,
given the lack of real-world constraints. Virtual worlds typically have avatars that
walk about in the world, a slower way of navigating project artifacts than a tradi-
tional directory hierarchy. The explicit representation of a developer avatar raises
issues of appropriate representation of identity in the virtual space, an issue not
nearly so prevalent in email, instant messaging, and other text-based communication
technologies.

1 Collaborative Software Engineering 23

The utility of adopting a 3D virtual world needs careful examination, as the bene-
fits of the technology need to clearly exceed the costs. It is currently unclear whether
this is true.

1.8 Fundamental Tensions

Underneath many of the situations present and advances made in collaborative soft-
ware engineering lie fundamental tensions that must be acknowledged. Optimizing
towards one aspect of collaboration support often involves tradeoffs with respect to
other aspects [84]. It is currently an open question as to where the theoretically opti-
mal level of support lies for a given situation, a state some have labeled congruence
[15]. Below, we identify some of the key tensions that exist.

What is good for the group may not be good for the individual. For an organi-
zation to effectively operate, certain individuals may be required to perform work
that is not optimal from their personal perspective. Ultimately, of course, collabora-
tive work must be optimized from an organization’s perspective. However, if such
optimization goes at the expense of the individuals, it is unlikely that a productive
process is achieved. Some kind of balance must be found in which individuals’ sat-
isfaction with their work is respected, yet at the same time organizational needs
are met. An example of when both can be achieved in parallel lies in the use of
awareness technologies with configuration management workspaces [20, 83], where
individuals are spared the merge problem, and organizations benefit from a higher
quality code base.

What is good in the long term may not be good right now. Ultimately, the goal
is to optimize the collaborative process as it plays out over time. This means that,
at times, work performed right now is suboptimal in the short term, but crucial to
later efficiencies. For instance, it is well-known that it is important to leave suffi-
cient information along with the artifacts produced for later re-interpretation and
re-consideration. However, such documentation is not always produced because it
is seen as superfluous work, and even when it is produced, keeping it in sync with
an ever-evolving code base is a tedious and arduous job.

Co-ordination needs are highly dynamic, but processes and tools in use tend to
be largely static. Because of the ever changing nature of software and its under-
lying requirements, exactly what co-ordination needs exist that give rise to actual
collaborations fluctuate [15]. But the processes and tools in use tend to be static in
nature, chosen once at the beginning of the project and rarely adjusted after. Some
tools have recognized this and provide different modes of collaboration e.g. [87],
but in general serious mismatches can emerge between co-ordination needs and
affordances.

Tools can, and should, only automate or support so much of collaborative prac-
tice. Ultimately, tools formalize and standardize work. Developers rely on tools
every day, but it has been observed that they also establish informal practices sur-
rounding the formally supported processes [80]. These informal practices are a

24 J. Whitehead et al.

crucial part of any effective development project. The tension, then, is how much
to automate of the “standard” practices and how much to leave in the developers
hands to enable them to own part of the process and flexibly be able to perform their
work.

Sharing is good, but too much sharing is not. Much work must be performed in
isolated workspaces of sorts to protect ongoing efforts from other ongoing efforts.
The canonical example is each developer making their own changes in their own
workspace, so they can test their changes in isolation and without interference by
changes from other developers that may still be partial in nature. To overcome the
issue of insulation becoming isolation, information about work must be shared with
others. Such sharing can be beneficial, but must be carefully weighted with the fact
that too much sharing leads to information overload, causing developers to ignore
the information brought to them. Once again, a balance must be struck.

Record keeping is good, but it could be misused. The canonical example is the
manager judging performance via lines of code contributed to a code base; this is
a fundamentally flawed metric. With a broad set of new collaborative tools relying
on and visualizing key data regarding individuals’ practices, choices, and results,
misuse of such data could lead to serious problems.

The above represents some of the key considerations that must be kept in mind
when one attempts to interpret collaborative software engineering or provide novel
solutions. In this book, we will see these tensions come back repeatedly, some-
times explicitly recognized as such, at other times providing implicit motivations
and design constraints. These tensions will persist for the time and ages, and always
govern how we approach collaboration.

1.9 Conclusions

After 35 years of research and tool making to foster collaboration in software engi-
neering, we now have useful collections of tools, work practises, and understandings
to guide multi-person software development activity. Indeed, internet-based collab-
oration tools and practices directly led to the creation of a globally distributed, open
source software ecosystem over the past 20 years, accelerating in the last 10. Clearly,
progress has been made in supporting collaborative software development.

Despite this progress, our understanding of collaboration in software engineering
is still imperfect, and there is room for improvement in many arenas. A fundamental
stumbling block is the lack of established metrics for quantitatively assessing col-
laboration in software projects. This, in turn, makes it challenging to know when a
new collaboration tool has made an improvement, or when a new tool will make a
difference. For example, it was only in hindsight that SourceForge (and similar web-
based “forge” systems) was viewed as a major advance in software collaboration
infrastructure, and not simply the integration of several pre-existing tools.

There are many current challenges in collaborative software engineering
research. These include:

1 Collaborative Software Engineering 25

• Understanding how to adapt new communications media for collaboration. The
computer is a rich nursery for new types of media. Social networking sites and
3D virtual worlds are two kinds of computational media that show potential for
improving software project collaboration.

• Reducing the effects of distance on remote collaboration. Adding distance
between people makes it harder to collaborate – is it possible to remove the
negative effects of distance with superior tool support?

• Improve shared understanding of artifacts. Much work in software projects sur-
rounds the removal of ambiguity in natural language and semi-formal artifacts.
Improved collaboration support could assist this process of identifying ambigu-
ity and developing shared understanding. Additionally, there is still room for
improvement in the ways developers become aware of the work being performed
by others.

• Improved techniques for leveraging the expertise of others. A persistent challenge
in software engineering collaboration is identifying people within an organization
that have expertise relevant to a current problem or task [27].

• Improved ways of finding and removing errors. Improving the collaboration
between and among users and developers in identifying and fixing errors could
help reduce software bugs, and improve the experience of using software.

• Better understanding of how to motivate people to work together effectively. As
is mentioned in the previous section, there is a tension between individual and
group goals. Providing sufficient rewards to encourage project collaboration is
important, and not well understood.

• Improve and integrate software project management, software product devel-
opment, and software engineering processes. This goal is often hampered by a
great variety of methods and tools in the individual disciplines and limited inte-
gration methodologies between project management, product development, and
engineering processes. An effective collaborative environment must inject basic
elements of project management, including activity awareness, task allocation,
and risk management, directly into the software engineering process.

The chapters in this volume address these issues, and more. In so doing, they
deepen our understanding of collaboration in software engineering, and highlight
the potential for new tools, and new ways of working together to create software
projects, large and small.

References

1. Ahmadi N, Jazayeri M, Lelli F, Nesic S (2008) A survey on social software engineering.
First International Workshop on Social Software Engineering and Applications (ASE 2008
Workshops), L’Aquila, Italy.

2. Altova (2009) Altova UModel – UML Tool for Software Modeling and Application
Development.

26 J. Whitehead et al.

3. Ben-Shaul IZ (1994) Oz: A decentralized process centered environment. PhD Thesis,
Department of Computer Science, Columbia University.

4. Ben-Shaul IZ, Kaiser GE, Heineman GT (1992) An architecture for multi-user software
development environments. ACM SIGSOFT’92: 5th Symposium on Software Development
Environments, Tyson’s Corner, VA, USA, pp. 149–158.

5. Boehm B, Egyed A (1998) Software requirements neogotiation: Some lessons learned.
International Conference on Software Engineering (ICSE’98), Kyoto, Japan, pp. 503–507.

6. Boehm BW (1981) Software Engineering Economics. Englewood Cliffs, NJ: Prentice-Hall.
7. Bolcer GA, Taylor RN (1996) Endeavors: A process system integration architecture. 4th

International Conference on the Software Process (ICSP’96), Brighton, UK, pp. 76–89.
8. Borland (2009) CaliberRM – Enterprise Software Requirements Management System.

http://www.borland.com/us/products/caliber/index.html.
9. Borland Software Corp. (2009) Borland Together.

10. Brooks FP Jr. (1975) The Mythical Man-Month: Essays on Software Engineering. Reading,
MA: Addison-Wesley.

11. Bugzilla Team (2009) The Bugzilla Guide – 3.5 Development Release. http://www.bugzilla.
org/docs/tip/en/html/.

12. Carmel E (1999) Global Software Teams. Upper Saddle River, NJ: Prentice-Hall.
13. Carzaniga A, Rosenblum DS, Wolf AL (2001) Design and evaluation of a wide-area event

notification service. ACM Transactions on Computer Systems 19(3): 332–383.
14. Cataldo M, Herbsleb JD (2008) Communication networks in geographically distributed

software development. CSCW’08, San Diego, CA, USA.
15. Cataldo M, Wagstrom P, Herbsleb JD, Carley KM (2006) Identification of coordination

requirements: Implications for the design of collaboration and awareness tools. CSCW 2006,
Banff, Alberta, Canada, November, pp. 353–362.

16. Chen Q, Grundy J, Hosking J (2003) An e-whiteboard application to support early design-
stage sketching of UML diagrams. IEEE Symposium on Human Centric Computing
Languages and Environments, Auckland, New Zealand, pp. 219–226.

17. Creighton O, Ott M, Bruegge B (2006) Software cinema-video-based requirements engi-
neering. 14th International Requirements Engineering Conference (RE’06), pp. 106–115.

18. Dashofy EM (2007) Supporting stakeholder-driven, multi-view software architecture mod-
eling. PhD, Department of Informatics, School of Information and Computer Science,
University of California, Irvine.

19. Demarco T, Lister T (1987) Peopleware: Productive Projects and Teams. New York: Dorset
House Publishing.

20. Dewan P, Hegde R (2007) Semi-synchronous conflict detection and resolution in
asynchronous software development. European Computer Supported Cooperative Work
(ECSCW’07), pp. 159–178.

21. DiBona C, Ockman S (1999) Open Sources: Voices from the Open Source Revolution.
Sebastopol, CA: O’Reilly.

22. Dominguez L (2006) The Manager’s Step-by-Step Guide to Outsourcing. New Delhi:
McGraw-Hill.

23. Dossick SE (2000) A virtual environment framework for software engineering. PhD,
Department of Computer Science, Columbia University.

24. Dusseault L (2003) WebDAV: Next Generation Collaborative Web Authoring. Indianapolis,
IN: Prentice Hall PTR.

25. Dutoit AH, McCall R, Mistrík I, Paech B (2006) Rationale management in software engi-
neering: Concepts and techniques. In: Dutoit AH, McCall R, Mistrík I, Paech B (Eds.)
Rationale Management in Software Engineering. Heidelberg: Springer-Verlag, 1–48.

26. Dutoit AH, Paech B (2001) Rationale management in software engineering. In: Chang SK
(Ed.) Handbook of Software Engineering and Knowledge Engineering, Vol. 1. Singapore:
World Scientific.

1 Collaborative Software Engineering 27

27. Ehrlich K, Shami NS (2008) Searching for Expertise. CHI 2008, pp. 1093–1096.
28. Froehlich J, Dourish P (2004) Unifying artifacts and activities in a visual tool for distributed

software development teams. 26th International Conference on Software Engineering
(ICSE’04), Edinburgh, Scotland, UK, pp. 387–396.

29. Gatherspace (2009) Agile Project Management, Requirements Management – Gatherspace.
com. http://www.gatherspace.com/.

30. Gliffy Inc. (2009) Gliffy. http://www.gliffy.com/.
31. Google (2009) Google Docs: Create and Share Your Work Online. http://docs.google.com/.
32. Graham TCN, Ryman AG, Rasouli R (1999) A world-wide-web architecture for collabora-

tive software design. Software Technology and Engineering Practice (STEP’99), Pittsburgh,
PA, pp. 22–29.

33. Grinter RE, Herbsleb JD, Perry DE (1999) The geography of co-ordination: Dealing with
distance in R&D work. GROUP 1999, Phoenix, AZ, USA, pp. 306–315.

34. Hedberg H (2004) Introducing the next generation of software inspection tools. Product
Focused Software Process Improvement (LNCS 3009), pp. 234–247.

35. Herbsleb JD (2007) Global software engineering: The future of socio-technical
co-ordination. Future of Software Engineering (FOSE’07), Minneapolis, MN, USA.

36. Holmstrom H, Conchúir EO, Ågerfalk PJ, Fitzgerald B (2006) Global software develop-
ment challenges: A case study on temporal, geographical and socio-cultural distance. IEEE
International Conference on Global Software Engineering (ICGSE’06), Princeton, NJ, USA,
August.

37. Hudson Team (2009) Hudson: An Extensible Continuous Integration Engine.
https://hudson.dev.java.net/.

38. Humphrey W (1989) Managing the Software Process. Reading, MA: Addison-Wesley.
39. IBM (2009) Getting Started with Rational DOORS. http://publib.boulder.ibm.com/infoceter/

rsdp/v1r0m0/topic/com.ibm.help.download.doors.doc/pdf92/doors_getting_started.pdf.
40. IBM (2009) Project Bluegrass: Virtual Worlds for Business. http://domino.watson.ibm.com/

cambridge/research.nsf/99751d8eb5a20c1f852568db004efc90/1b1ea54cac0c8af1852573d1
005dbd0c?OpenDocument.

41. IBM Rational (2009) Rational DOORS. http://www.ibm.com/software/awdtools/doors/.
42. IBM Rational (2009) Rational Method Composer. http://www.ibm.com/software/awdtools/

rmc/.
43. IBM Rational (2009) Rational RequisitePro. http://www.ibm.com/software/awdtools/reqpro/.
44. IBM Rational (2009) Rational Rose. http://www.ibm.com/software/awdtools/developer/rose/.
45. iDungu.com (2009) iDungu.com – Enterprise Architect Web-Based. http://www.idungu.

com/.
46. IEEE (1990). IEEE Std. 610.12-1990 (R2002), IEEE Standard Glossary of Software

Engineering Terminology.
47. IEEE (1998). IEEE Std 1058–1998, IEEE Standard for Software Project Management Plans.
48. International Standards Organization (ISO) (2003). Quality Management Systems:

Guidelines for Quality Management in Projects (ISO Std. 10006).
49. Kadia R (1992) Issues encountered in building a flexible software development environment.

ACM SIGSOFT’92: 5th Symposium on Software Development Environments, Tyson’s
Corner, VA, USA, pp. 169–180.

50. Kammer PJ, Bolcer GA, Taylor RN, Hitomi AS, Bergman M (2000) Techniques for sup-
porting dynamic and adaptive workflow. Computer Supported Cooperative Work (CSCW)
9(3/4): 269–292.

51. Kaplan SM, Tolone WJ, Carroll AM, Bogia DP, Bignoli C (1992) Supporting collaborative
software development with conversation builder. ACM SIGSOFT’92: 5th Symposium on
Software Development Environments, Tyson’s Corner, VA, USA, pp. 11–20.

52. Kirschner PA, Buckingham-Shum S, Carr CS (2003) Visualizing Argumentation: Software
Tools for Collaborative and Educational Sense-Making. London: Springer-Verlag.

28 J. Whitehead et al.

53. Kompanek A (1998) Modeling a System with ACME. http://www.cs.cmu.edu/~acme/
html/WORKING%20Modeling%20a%20System%20with%20Acme.html.

54. Kraut RE, Streeter LA (1995) Coordination in software development. Communications of
the ACM 38(3): 69–81.

55. Krishna S, Sahay S, Walsham G (2004) Managing cross-cultural issues in global software
outsourcing. Communications of the ACM 47(4): 62–66.

56. Lanubile F (2009) Collaboration in distributed software development. Software Engineering:
International Summer Schools, ISSSE 2006–2008 (LNCS 5413), Salerno, Italy.

57. Lerner BS, Osterweil LJ, Sutton SM Jr., Wise A (1998) Programming process coordina-
tion in little-JIL toward the harmonious functioning of parts for effective results. European
Workshop on Software Process Technology.

58. Levien R (2009) Advogato. http://www.advogato.org/.
59. Logical Awesome (2009) Secure Source Code Hosting and Collaborative Development –

GitHub. http://github.com/.
60. Ludwig Consulting Services (2009) Requirements Management Tools. http://www.jiludwig.

com/Requirements_Management_Tools.html.
61. Macdonald F, Miller J (1999) A comparison of computer support systems for software

inspection. Automated Software Engineering 6(3): 291–313.
62. Maheshwari P, Teoh A (2005) Supporting ATAM with a collaborative web-based software

architecture evaluation tool. Science of Computer Programming 57(1): 109–128.
63. Maiden N (2004) Discovering requirements with scenarios: The ART-SCENE solution.

ERCIM News 58, July 2004.
64. Maiden N, Seyff N, Grunbacher P, Otojare O, Mitteregger K (2006) Making mobile require-

ments engineering tools usable and useful. 14th International Requirements Engineering
Conference (RE’06), pp. 26–35.

65. Marcus A, Maletic JI (2003) recovering documentation-to-source-code traceability links
using latent semantic indexing. 25th International Conference on Software Engineering
(ICSE’03), Portland, OR, USA, pp. 125–135.

66. McConnell S (1997) Software Project Survival Guide. Redmond, WA: Microsoft Press.
67. Mens T (2002) A state-of-the-art survey on software merging. IEEE Transactions on

Software Engineering 28(5): 449–462.
68. Meyer B (2008) Design and code reviews in the age of the internet. Communications of the

ACM 51(9): 67–71.
69. Microsoft Corporation (2009) Project Home Page – Microsoft Office Online. http://office.

microsoft.com/en-us/project/default.aspx.
70. Mozilla Labs (2009) Bespin: Code in the Cloud. https://bespin.mozilla.com/.
71. Nentwich C, Capra L, Emmerich W, Finkelstein A (2002) xlinkit: A consistency checking

and smart link generation service. ACM Transactions on Internet Technology (TOIT) 2(2):
151–185.

72. Nguyen L, Swatman PA (2001) Managing the requirements engineering process. 7th
International Workshop on Requirements Engineering: Foundation for Software Quality,
Interlaken, Switzerland.

73. Nguyen TN, Munson EV (2005) Object-oriented configuration management technology can
improve software architectural traceability. 3rd ACIS International Conference on Software
Engineering Research, Management and Applications (SERA’05), Mount Pleasant, MI,
USA, pp. 86–93.

74. Osterweil L (1987) Software Processes are Software Too. International Conference on
Software Engineering, Monterey, CA, USA, pp. 2–13.

75. Pilato CM, Collins-Sussman B, Fitzpatrick BW (2008) Version Control with Subversion
(2nd Ed). Sebastopol, CA: O’Reilly.

76. Project Management Institute Standards Committee (2003). A guide to the project manage-
ment body of knowledge (IEEE Std 1490–2003).

77. Pyster AB, Thayer RH (2005) software engineering project management 20 years later. IEEE
Software 22(5): 18–21.

1 Collaborative Software Engineering 29

78. Ramirez A, Vanpeperstraete P, Rueckert A, Odutola K, Bennett J, Tolke L, Wulp M
(2009) ArgoUML User Manual – A tutorial and reference description http://argouml-stats.
tigris.org/documentation/manual-0.28/.

79. Ravenflow (2009) RAVEN for Rapid Requirements Elicitation and Definition. http://www.
ravenflow.com/products/index.php.

80. Redmiles D, Hoek A, Al-Ani B (2007) Continuous coordination: A new paradigm to
support globally distributed software development projects. Wirtschaftsinformatik 49:
S28–S38.

81. Reiss SP (1995) The Field Programming Environment: A Friendly Integrated Environment
for Learning and Development. Norwell, MA: Kluwer.

82. Sangwan R, Bass M, Mullick N, Paulish D, Kazmeier J (2006) Global Software
Development Handbook. Boca Raton, FL: Auerbach Publications.

83. Sarma A, Bortis G, Hoek A (2007) Towards supporting awareness of indirect conflicts across
software configuration management workspaces. 22nd IEEE/ACM International Conference
on Automated Software Engineering (ASE’07), pp. 94–103.

84. Sarma A, Herbsleb J, Hoek A (2008). Challenges in measuring, understanding, and achiev-
ing social-technical congruence. Technical Report CMU-ISR-08-106, Carnegie Mellon
University, Institute for Software Research International, Pittsburgh, PA, USA.

85. Sarma A, Noroozi Z, Hoek A (2003) Palantir: Raising awareness among configuration man-
agement workspaces. 25th International Conference on Software Engineering, Portland, OR,
USA, May, pp. 444–454.

86. Scacchi W (1984) Managing software engineering projects: A social analysis. IEEE
Transactions on Software Engineering 10(1): 49–59.

87. Schümmer T, Haake JM (2001) Supporting distributed software development by modes
of collaboration. 7th European Computer Supported Cooperative Work (ECSCW’01),
pp. 79–98.

88. Schwaber K (2004) Agile Project Management with Scrum. Redmond, WA: Microsoft Press.
89. Selvin A, Buckingham-Shum SJ (2000) Rapid knowledge construction: A case study in

corporate contingency planning using collaborative hypermedia. KMAC 2000: Knowledge
Management Beyond the Hype, Birmingham, UK, July.

90. Shukla SV, Redmiles DF (1996) Collaborative learning in a software bug-tracking sce-
nario. Workshop on Approaches for Distributed Learning through Computer Supported
Collaborative Learning, Boston, MA.

91. Tang A, Babar MA, Gorton I, Han J (2005) A survey of the use and documentation of
architecture design rationale. 5th Working IEEE/IFIP Conference on Software Architecture
(WICSA’05), Pittsburgh, PA.

92. Thayer RH (2001) Software Engineering Project Management, 2nd edn. Los Alamitos, CA:
Wiley-IEEE Computer Society Press.

93. Thayer RH, Pyster AB (1984) Editorial: Software engineering project management. IEEE
Transactions on Software Engineering 10(1): 2–3.

94. Transmedia Corp. (2009) Glide OS 3.0 – The First Complete Online Operating System.
http://www.glidedigital.com/.

95. UCI Software Architecture Research Group (2009) ArchStudio 4 – Software and Systems
Architecture Development Environment. http://www.isr.uci.edu/projects/archstudio/.

96. Wakeman L, Jowett J (1993) PCTE: The Standard for Open Repositories. Englewood Cliffs,
NJ: Prentice-Hall.

97. Whitehead J (2007) Collaboration in software engineering: A roadmap. Future of Software
Engineering (FOSE 2007), Minneapolis, MN, USA.

98. Whitehead EJ Jr., Goland YY (1999) WebDAV: A Network Protocol for Remote
Collaborative Authoring on the Web. 6th European Conference on Computer Supported
Cooperative Work (ECSCW’99), Copenhagen, Denmark, pp. 291–310.

99. Whitehead R (2001) Leading Software Development Teams. London: Addison-Wesley.
100. Wideman RM (2009) Wideman Comparative Glossary of Project Management Terms

(v. 5.0).

30 J. Whitehead et al.

101. Wikimedia Foundation (2009) Wikipedia – Comparison of issue tracking systems.
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems.

102. Wikimedia Foundation (2009) Wikipedia – List of UML Tools. http://en.wikipedia.org/wiki/
List_of_UML_tools.

103. Wolf T, Nguyen T, Damien D (2008) Does distance still matter? Software Process
Improvement and Practice 13: 493–510.

104. Zoho Corp. (2009) Online Word Processor – Zoho Writer. http://writer.zoho.com/.

	1 Collaborative Software Engineering: Concepts and Techniques
	1.1 Introduction
	1.2 Defining Collaborative Software Engineering
	1.3 Historical Trends in Collaborative Software Engineering
	1.3.1 Model-Based Collaboration Tools
	1.3.1.1 Requirement Centered Collaboration
	1.3.1.2 Architecture Centered Collaboration
	1.3.1.3 Design Centered Collaboration
	1.3.1.4 Collaboration Around Testing and Inspections
	1.3.1.5 Traceability and Consistency

	1.3.2 Process Centered Collaboration
	1.3.3 Collaboration Awareness
	1.3.4 Collaboration Infrastructure
	1.3.5 Project Management

	1.4 Global and Multi-Site Collaboration
	1.5 Social Considerations
	1.5.1 Software Teams
	1.5.2 Team Organization
	1.5.3 Team Composition
	1.5.4 Knowledge Sharing

	1.6 Managerial Considerations
	1.6.1 Software Project Management
	1.6.2 SPM for Collaborative Software Engineering
	1.6.2.1 Supporting Communications in the Project
	1.6.2.2 To Reconcile Conflicting Success Criteria in the Project
	1.6.2.3 Improving the Process in the Project
	1.6.2.4 Rapidly Construct the Knowledge in the Project

	1.7 Future Trends
	1.7.1 IDEs Shift to the Web
	1.7.2 Social Networking
	1.7.3 Broader Participation in Design
	1.7.4 Capturing Rationale Argumentation
	1.7.5 Using 3D Virtual Worlds

	1.8 Fundamental Tensions
	1.9 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

