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Abstract. This paper studies the following question: given an instance of the
propositional satisfiability problem, a randomized satisfiability solver, and a clus-
ter of n computers, what is the best way to use the computers to solve the in-
stance? Two approaches, simple distribution and search space partitioning as
well as their combinations are investigated both analytically and empirically. It is
shown that the results depend heavily on the type of the problem (unsatisfiable,
satisfiable with few solutions, and satisfiable with many solutions) as well as on
how good the search space partitioning function is. In addition, the behavior of a
real search space partitioning function is evaluated in the same framework. The
results suggest that in practice one should combine the simple distribution and
search space partitioning approaches.

1 Introduction

In this paper we develop distributed techniques for solving challenging instances of the
propositional satisfiability problem (SAT). We are interested in using the best available
SAT solvers as black-box subroutines or with little modification and in this way take
advantage of the rapid development of SAT solver technology.

One of the interesting features in current state-of-the-art SAT solvers is that they use
randomization and that their run times can vary significantly for a given instance. This
opens up new opportunities for developing distributed solving techniques. The most
straightforward idea is to employ a simple distribution approach where one just per-
forms a number of independent runs using a randomized solver. This leads to surprising
good speed-ups even when used in a grid environment with substantial communication
and other delays [1]. The approach could be extended by applying particular restart
strategies [2,3] or using an algorithm portfolio scheme [4,5]. Another key feature in
modern SAT solvers is the use of conflict driven clause learning techniques. This fea-
ture can be exploited in the simple distribution approach and it has been shown that
combining parallel learning schemes with a simple restart strategy leads to a powerful
distributed SAT solving technique [6].

Another approach to developing parallel SAT solving techniques is based on parti-
tioning the search space to multiple parts which can be handled in parallel. This can
be achieved by constraint-based partitioning where the search space for a SAT instance
F is split to n derived instances F1, . . . ,Fn by including additional constraints to F .
Typical implementation techniques include guiding paths [7,8,9] and scattering [10].

Both simple distribution and partitioning have their strengths. The former has led to
surprisingly good performance but for really challenging SAT instances it provides no
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mechanism for splitting the search to more manageable portions to be treated in parallel.
Search space partitioning techniques offer an approach to achieving this. However, the
interaction between partitioning and randomized SAT solvers is poorly understood and
the paper aims to shed new light on this problem. It studies in detail combination of
constraint-based partitioning and randomized SAT solvers, and provides an analysis on
how an efficient and robust implementation can be achieved.

The rest of the paper is structured as follows. Section 2 reviews briefly relevant key
characteristics of modern randomized SAT solvers and the simple distribution approach.
Section 3 studies analytically the expected run time of a plain partitioning approach
where a SAT instance is partitioned and then a randomized SAT solver is used to solve
the resulting instances. The section provides fundamental results for two limiting cases,
for ideal and void partitioning functions. Section 4 extends the study to a setting where
simple distribution and partitioning are mixed. Section 5 provides an implementation
of a randomized partitioning function and Section 6 verifies the results briefly using
experiments, and conclusions are given in Section 7. An extended version of this work
with more experiments and proofs for the propositions is available through the first
author’s home pages (http://www.tcs.hut.fi/˜aehyvari/).

2 Randomization and Simple Distribution

Most modern SAT solvers apply search restarts and some form of randomization to
avoid getting stuck at hard subproblems [11]. For instance, MiniSat [12] version
1.14 restarts the search periodically and makes two percent of its branching decisions
pseudo-randomly. Despite restarts and randomness, the run times of a SAT solver on
an instance F can vary significantly between some minimum tmin and maximum tmax

(we assume that tmin > 0 and tmax is finite). Thus, we treat the run time of the solver
on the instance as a random variable T and study the associated cumulative run-time
distribution qT (t) = Pr(T ≤ t) (i.e. qT (t) is the probability that the instance is solved
within t seconds) and its expected value E(T ) =

∫ tmax

tmin
tq′(t)dt. As an example, ob-

serve the run-time distribution q(t) (approximated by one hundred sample runs) of an
instance given in the left hand side plot of Fig. 1. Depending on the seed given to the
pseudo-random number generator of MiniSat v1.14, the run time varies from less than
a second to thousands of seconds.

This non-constant run time phenomenon can be exploited in a parallel environment
by simply running n SAT solvers on the same instance F in parallel and terminating
the search when one of the solvers reports the solution. We call this approach Simple
Distributed SAT solving (SDSAT) and denote its run time by the random variable T n

sdsat.
The cumulative run time distribution is now improved from qT (t) of the sequential case
to qT n

sdsat
(t) = 1 − (1 − qT (t))n. This approach can be surprisingly efficient. As an

example, for the instance in the left hand side plot of Fig. 1 the expected run-time in the
sequential case is E(T ) ≈ 623s while for eight solvers E(T 8

sdsat) ≈ 31s (that is, around
20 times less). For a more detailed analysis of running SDSAT in a parallel, distributed
environment involving communication and other delays, see [1].

Although the SDSAT approach can reduce the expected time to solve an instance,
it cannot reduce it below the minimum run time tmin. For an example, observe the se-
quential run time distribution q(t) of another instance given in the right hand side plot

http://www.tcs.hut.fi/~aehyvari/


Partitioning Search Spaces of a Randomized Search 245

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100 1000 10000

pr
ob

ab
ili

ty

t(s)

q(t)
q8(t)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100 1000 10000

pr
ob

ab
ili

ty

t(s)

q(t)
q8(t)

Fig. 1. The run time distributions of two instances for single (the q(t) plots) and eight (the q8(t)
plots) randomized SAT solvers

of Fig. 1; the variation of the run time is significantly smaller and the instance seems to
have no short run times. Consequently, running eight SAT solvers in parallel does not
reduce the expected run time significantly; in numbers, E(T ) ≈ 2, 065s while for eight
solvers E(T 8

sdsat) ≈ 1, 334s (i.e., only less than two times faster). Even more impor-
tantly, the minimum run time stays the same irrespective of how many parallel solvers
are employed. As a summary, we can establish the following properties for the expected
run time of the SDSAT approach:

Proposition 1. tmin ≤ E(T n
sdsat) ≤ E(T ) for each n ≥ 1. Furthermore, E(T n

sdsat) →
tmin when n → ∞.

As we have seen, SDSAT can allow super-linear speedup (meaning E(T n
sdsat) < E(T )/n)

for instances with strongly varying run time. However, as the maximum speedup obtain-
able with SDSAT is E(T )/tmin, this can only happen for “smallish” values of n and for
more than E(T )/tmin solvers the speedup is guaranteed to be sub-linear.

3 Partitioning

The basic idea in the form of partitioning we use in this paper is quite simple: given a
SAT instance F and a positive integer n, use a partitioning function to compute a set
F1, . . . ,Fn of derived SAT instances such that

F ≡ F1 ∨ · · · ∨ Fn. (1)

Now, in order to find whether F is satisfiable, we solve, in parallel, all F1, . . . ,Fn and
deduce that F is satisfiable if at least one of F1, . . . ,Fn is. This method is called the
plain partitioning approach in order to distinguish it from the composite approaches
in Sect. 4. One way to implement partitioning functions is described in [10] (also see
Sect. 5), where each Fi is obtained from F by conjoining it with a set of additional
partitioning constraints.1 In addition to the requirement (1), partitioning functions often
ensure that the models of F1, . . . ,Fn are mutually disjoint.

1 As explained in [13], guiding paths [7,8] can also be interpreted as partitioning constraints.
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Intuitively, the ideal case is that the partitioning function can partition the instance F
into n new instances F1, . . . ,Fn so that each new instance Fi is n times easier to solve
than the original. That is, if the original instance F has the cumulative run time distribu-
tion qT (t), then the distribution of each Fi is qTi(t) = qT (nt). In this case we say that
the partition function is ideal for the instance. As obtaining ideal partitioning functions
can be difficult, we also consider the case of a void partitioning function where the parti-
tioning fails totally, resulting in new instances which are as hard to solve as the original,
i.e. have the same distribution qTi(t) = qT (t). This is a realistic scenario because mod-
ern, clause-learning SAT solvers, such as MiniSat, use sophisticated heuristics in the
search: it is possible that values of certain variables are practically never considered.
If the partition function constrains only these irrelevant variables, the difficulty of the
instance does not decrease, and thus such a function is void.

In this section, we give an analytic study of the efficiency of the plain partitioning
approach, under both ideal and void functions, when the fact that the SAT solver is ran-
domized is taken into account. As the efficiency depends heavily on the satisfiability
of the instance, we consider three cases: unsatisfiable instance, a satisfiable instance
with many solutions, and a satisfiable instance with a unique solution. We have also
simulated the plain partitioning approach on run time distributions of some real SAT
instances; some results are given later in Sect. 4 after some composite approaches mix-
ing simple distribution and plain partitioning have been described. A real partitioning
function is considered in Sect. 5.

3.1 Unsatisfiable Instances

Assume that an unsatisfiable instance F is partitioned into n new instances F1, . . . ,Fn

fulfilling Eq. (1). All new instances need to be shown unsatisfiable to deduce that F is
unsatisfiable. When performed in parallel, this corresponds to waiting for the termina-
tion of the “unluckiest” run.

In the case of ideal partitioning function, each new instance Fi is n times easier to
solve than the original F , having run time distributions qTi(t) = qT (nt). We denote
the random variable capturing the run time of the resulting plain partitioning approach
under an ideal partitioning function by T n

part(ideal). As all the new instances have to be
solved (in parallel), the corresponding run time distribution is qT n

part(ideal)
(t) = q(nt)n.

Based on this, we have the following interesting results. First, ideal partitioning func-
tions can provide at most linear expected speed-up on unsatisfiable instances:

Proposition 2. E(T n
part(ideal)) ≥ E(T )/n for each n ≥ 1.

In fact, it can be shown that linear speed-up can only be obtained on instances that have
a constant run time distribution, i.e. when tmin = tmax. However, the expected run time
is never worse than that of solving the original instance with one solver:

Proposition 3. E(T n
part(ideal)) ≤ E(T ) for each n ≥ 1.

When the number n of SAT solvers run in parallel is increased, the expected run time
E(T n

part(ideal)) approaches tmax/n, i.e., linear speed-up w.r.t. the maximum run time. Plain
partitioning with ideal partitioning functions and simple distribution cannot be totally
ordered; there are distributions for which E(T n

sdsat) < E(T n
part(ideal)) and others for which
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E(T n
part(ideal)) < E(T n

sdsat) when n is smallish. However, as E(T n
part(ideal)) ≤ tmax/n and

E(T n
sdsat) ≥ tmin, we have that E(T n

part(ideal)) < E(T n
sdsat) for sufficiently large n.

Let us next consider the case of a void partitioning function, i.e. the case when the
partitioning fails so that the run time distribution qTi(t) of each new instance Fi is equal
to qT (t) of the original instance F . We denote by T n

part(void) the run time of the resulting
plain partitioning approach. As all Fi have to be solved, the run time distribution of
T n

part(void) is qT n
part(void)

(t) = qTi(t)n = qT (t)n. From this it follows that for unsatisfiable
instances it is not possible to obtain any speedup with void functions:

Proposition 4. E(T n
part(void)) ≥ E(T ) for each n ≥ 1.

In fact, the more resources one uses, the closer to the maximum run time one gets:
E(T n

part(void)) → tmax when n → ∞.

3.2 Satisfiable Instances with Many Solutions

We next consider the case when a satisfiable SAT instance F is partitioned into n new
instances F1, . . . ,Fn fulfilling Eq. (1). In order to deduce that F is satisfiable, it is
enough to show that any of the new instances is satisfiable. In this section we assume
that each new instance Fi is satisfiable, postponing the case where only one is satisfiable
to the next section.

Let us consider the case of ideal partitioning function first. Again, we denote the
random variable describing the run time of the resulting plain partitioning approach by
T n

part(ideal). As the probability that none of the n solvers has solved the associated new
instance within time t is (1−qT (nt))n, run time distribution of T n

part(ideal) is qT n
part(ideal)

(t) =
1− (1− qT (nt))n. Several interesting properties follow from this. First, with n parallel
solvers, the expected run time is n times smaller than that of the Simple Distributed
SAT: E(T n

part(ideal)) = E(T n
sdsat)/n. Therefore, when compared to solving the original

instance, we notice that on satisfiable instances with many solutions we may expect at
least linear speed-up:

Proposition 5. E(T n
part(ideal)) ≤ E(T )/n for each n ≥ 1.

When the number n of parallel SAT solvers is increased, E(Tn
part(ideal)) approaches tmin/n.

Thus, one can in principle obtain almost linear speed-up w.r.t. the minimum run time.
In the case of a void partitioning function the run time of each new instance is the

same as that of the original. As each new instance is assumed to be satisfiable, solving
any of them is enough to deduce the satisfiability of the original instance. Therefore, for
satisfiable instances with many solutions, the plain partitioning approach with a void
partitioning function effectively reduces to Simple Distributed SAT:

Proposition 6. E(T n
part(void)) = E(T n

sdsat).

3.3 Satisfiable Instances with One Solution

When a satisfiable instance F with only one satisfying truth assignment is partitioned
into n new instances F1, . . . ,Fn, it is likely that only one of the new instances is sat-
isfiable while the others are unsatisfiable. Therefore, the satisfiable new instance has to
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be solved to deduce that F is satisfiable. The problem is that it is not known which of
the new instances this is.

In the case of ideal partitioning function, the run time of the satisfiable new instance
is n times smaller than that of the original instance. Therefore, if all the n new instances
are solved in parallel and the solving is terminated as soon as the satisfiable new instance
is solved, linear speed-up is obtained with an ideal partitioning function:

Proposition 7. E(T n
part(ideal)) = E(T )/n.

In the case of a void partitioning function, the run time of the satisfiable new instance is
the same as that of the original instance. Thus, using a void partitioning function results
neither in speed-up nor in loss of efficiency:

Proposition 8. E(T n
part(void)) = E(T ).

4 Composite Approaches

The analysis of the previous section shows that the plain partitioning approach can po-
tentially obtain even super-linear speed-ups, whereas an improper, void implementation
can by Prop. 4 result in worse expected run time than that of one solver. The two ap-
proaches presented here aim at being at least as efficient as solving the instance with
one solver. Assume that we have resources to run n SAT solvers in parallel and consider
the following approaches that mix simple distribution and plain partitioning.

– Repeated Partitioning. In this approach, we run in parallel k = 	√n� copies of
the plain partitioning approach, each copy splitting the instance F into k new in-
stances Fi,1, . . . ,Fi,k and solving each Fi,j once. We denote the random variable
describing the run time of this approach by T n

rep-part.
– Safe Partitioning. This approach reverses the order of SDSAT and partitioning com-

pared to repeated partitioning: the instance F is partitioned into k = 	√n� new
instances F1, . . . ,Fk and each new instances Fi is solved with k SAT solvers in
parallel. The run time of this is denoted by the random variable T n

safe-part.

Unfortunately, when using repeated partitioning on an unsatisfiable instance and the
partitioning function is void, the experiments show that E(T ) ≤ E(T n

rep-part) and that
E(T n

rep-part) → tmax when n → ∞. However, safe partitioning (i) is as good as repeated
partitioning (i.e. E(T n

safe-part) = E(T n
rep-part)) on satisfiable instances and we conjecture

that it is at least as good (i.e. E(T n
safe-part) ≤ E(T n

rep-part)) on unsatisfiable ones when the
same partition function is applied; (ii) is equal to SDSAT on satisfiable instances with
many solutions when the partition function is void; and (iii) seems experimentally at
least as fast as solving the original instance with one solver, i.e., E(T n

safe-part) ≤ E(T )
even when the instance is unsatisfiable and the partitioning function is void.

To illustrate the approaches and results presented in Sects. 2, 3, and 4, Fig. 2 shows
the expected run times of different approaches when applied to the same instances as
in Fig. 1. As the left hand side instance is satisfiable with many solutions, the “sd-
sat+others” line depicts the behavior of the SDSAT approach as well as all the consid-
ered partitioning approaches when a void partitioning function is applied. The instance
at the right hand side is unsatisfiable.
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Fig. 2. Expected run times (in seconds) of different approaches on the instances in Fig. 1 when
the number n of SAT solvers run in parallel is varied

5 Implementing a Randomized Partitioning Function

This section briefly describes how we implemented a partitioning function called scat-
tering [10]. The implementation is based on MiniSat 1.14, constructs partitions having
pairwise disjoint models, and is randomized so that the partitions differ depending on
the random seed given as input to the function.

The function works in two phases. First, the function simply runs MiniSat as is to ob-
tain heuristic values for the Boolean variables in the instance. The first phase ends when
the instance is solved or a fixed time limit (currently 300 seconds) is reached. If the in-
stance was not solved, the function enters the second phase, where the derived instances
F1, . . . ,Fn are constructed from F by adding constraints. For each 1 ≤ i ≤ n− 1, the
scattering function uses the obtained heuristic values to select a conjunction of di liter-
als, Ci = li,1∧. . .∧li,di , and conjoins it to the derived instanceFi. The function ensures
that no derived instances share models by inserting the negation (¬li,1 ∨ . . . ∨ ¬li,di)
of the conjunction Ci in Fi to each derived instance Fj with i < j ≤ n. Scattering is
a partition function, since the last instance contains only the negations of the conjunc-
tions corresponding to the “remaining” search space. Finally, the randomization of the
scattering function follows naturally from that of MiniSat: the derived instances depend
on the random seed passed to MiniSat.

6 Experimental Results on Partitioning

The following experiments study the behavior of the presented approaches both un-
der ideal and real (scattering) partitioning functions on some real-world SAT instances.
A summary of the results is presented in Table 1. The instances represent hard SAT
formulas in the sense that their randomized run times often exceed one hour. Further-
more, cube-11-h14-sat is a satisfiable instance where the scattering function al-
ways resulted in a unique satisfiable derived instance, dated-10-13-s is a satisfiable
instance where the scattering function always resulted in several satisfiable derived in-
stances (unless solved by the function), andAProVE07-09 is an unsatisfiable instance.
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The first column, labeled T , reports the sequential run-time distribution of the instances.
The next two columns, labeled ”simple distribution” in the table, report the results for
Simple Distributed SAT solving for eight and 64 resources. The next four columns, la-
beled “ideal partitioning”, report run-time distributions when an ideal partitioning func-
tion is used: first for the plain partitioning approach with eight and 64 resources, and
then for safe and repeated partitioning approaches. The last four columns, labeled “scat-
tering”, report the run time distributions obtained when scattering (recall Sect. 5) is used
as the partitioning function; first for plain partitioning with eight and 64 resources, and
then for safe and repeated partitioning approaches with 64 resources. The rows of the
table report the expected, minimum, median and maximum run times together with the
first and third quartile (the values of t such that q(t) ≤ 0.25 and q(t) ≤ 0.75).

The run-time distributions for SDSAT and “ideal partitioning” approaches were ob-
tained by solving the instance one hundred times with MiniSat 1.14. The resulting dis-
tributions were then used to compute the results analytically. None of the results include
delays associated with parallel environments.

The distributions in columns T 8
scatter and T 64

scatter are obtained by running the plain par-
titioning approach with the scattering function fifty times using different random seeds.
The resulting distribution was directly used to compute the values for the repeated par-
titioning approach (T 64

rep-part) under “scattering”. To compute the results for the column
T 64

safe-part under “scattering”, each derived instance was solved seven more times, thereby
directly simulating an implementation of safe partitioning with scattering. The run times
do not include the time required to run the scattering function. If the instance was solved
while scattering, the run time is reported as zero.

The results in “simple distribution” columns show good scalability for dated-10-
-13-s and moderate scalability for other instances, as predicted by analytical results
when tmin is close to E(T ). The columns under “ideal partitioning” show that partition-
ing can in theory result in even better speed-up for these instances. Surprisingly, in the
actual implementation (T 8

scatter, T
64
scatter) we see that plain scattering results in higher ex-

pected run-times than simple distribution for these instances. This reflects the difficulty
of obtaining ideal partitioning functions.

Comparison of the “ideal partitioning” approaches confirms the discussion in Sect. 4.
In particular, safe partitioning results in lower expected run time than repeated parti-
tioning for unsatisfiable instances. However, the results under “scattering” show the
opposite; repeated partitioning has consistently lower expected run time than safe par-
titioning. For example, observe the expected run times for safe and repeated partition-
ing approaches for the instance cube-11-h14-sat with unique satisfiable derived
instance: in “ideal partitioning” they are equal, whereas the scattering-based safe parti-
tioning is significantly worse than the scattering-based repeated partitioning approach.
To study this, we computed run-time distributions for some of the satisfiable derived
instances (not shown in the table), and it turns out that their expected run times varied
between 109.1 and 4,773 seconds. Thus the hardness (expected run time) of a derived
instance produced by scattering is also a random variable with possibly a very large
range, and running the scattering function independently several times increases the
probability of finding derived instances with low expected run times. This explains the
good speed-up obtained by repeated partitioning when compared to safe partitioning.
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Table 1. Comparing approaches for parallel search

simple distrib. ideal partitioning scattering

T T 8
sdsat T 64

sdsat T 8
part(ideal) T 64

part(ideal) T 64
safe-part T 64

rep-part T 8
scatter T 64

scatter T 64
safe-part T 64

rep-part

cube-11-h14-sat

Exp 4,832 3,110 2,685 604,0 75.50 388.7 388.7 3,537 3,378 2,265 839.6
Min 2,629 2,629 2,629 328.6 41.07 328.6 328.6 117.5 69.49 13.93 117.5
Q1 3,641 2,748 2,629 455.1 56.89 343.5 343.5 2,291 1,193 1,665 141.7
Med 4,661 3,009 2,640 572.7 72.83 376.1 376.1 3,459 3,473 2,381 338.2
Q3 5,730 3,362 2,741 716.3 89.53 420.2 420.2 4,662 5,288 3,182 1,719
Max 10,050 10,050 10,050 1,256 157.0 1,256 1,256 11,500 7,199 4,405 11,500

dated-10-13-s

Exp 2,266 128.2 16.45 16.02 0.2570 2.056 2.056 261.2 317.3 21.22 0.2566
Min 10.09 10.09 10.09 1.262 0.1577 1.262 1.262 0 0 0 0
Q1 283.2 28.00 10.09 3.499 0.1577 1.262 1.262 0 0 0 0
Med 784.7 109.4 10.58 13.67 0.1653 1.322 1.322 19.86 9.858 7.037 0
Q3 2,093 181.4 17.63 22.68 0.2755 2.204 2.204 227.7 84.70 17.77 0
Max 37,930 37,930 37,930 4,741 529.6 4,741 4,741 6,449 10,095 172.0 6,449

AProVE07-09

Exp 4,016 2,361 1,685 759.7 117.7 392.5 586.7 2,598 1,719 1,632 1,559
Min 1,552 1,552 1,552 194.1 24.26 194.1 194.1 1,261 486.3 723.9 1,261
Q1 3,086 2,033 1,552 668.0 106.2 352.3 554.2 1,757 1,122 1,271 1,466
Med 3,905 2,389 1,563 770.6 110.3 396.4 581.4 2,267 1,437 1,637 1,567
Q3 4,732 2,666 1,736 843.7 129.8 414.3 606.4 3,550 1,894 1,912 1,694
Max 9,302 9,302 9,302 1,163 145.3 1,163 1,163 4,539 6,617 2,968 4,539

7 Conclusions

The paper investigates distributed techniques for solving challenging SAT instances
and focuses on combining constraint-based search space partitioning with randomized
SAT solving techniques. The paper studies first analytically the expected run time of a
plain partitioning approach where a SAT instance is partitioned and then a randomized
SAT solver is used to solve the resulting instances. Analytical results are derived for
two limiting cases, for ideal and void partitioning functions. The investigation is then
extended to a setting where simple distribution and partitioning are mixed. Finally the
paper proposes a randomized partitioning function and compares the function against
the ideal case.

The analytical results show that partitioning can potentially lead to catastrophic fail-
ures where an increase in computing resources leads to a decrease in solving efficiency
for unsatisfiable instances. The empirical results show in part that a good implementa-
tion is usually able to avoid this failure, but plain partitioning can nevertheless be worse
than an approach based on simple distributed SAT solving (SDSAT). Both problems are
avoided in practice with safe and repeated partitioning. The experimental and analytical
comparisons show an interesting relationship between the safe and repeated partitioning
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approaches, suggesting that an ideal partitioning function would profit from safe par-
titioning whereas randomness in the partitioning function can be better exploited with
repeated partitioning.
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