
Challenges in Content Based, Semantically

Decoupled Communication on
Neighbor-Relations

Henry Ristau

University of Rostock, Faculty of Computer Science and Electrical Engineering,
Institute of Computer Science, Information and Communication Services Group,

18051 Rostock, Germany
henry.ristau@uni-rostock.de

Abstract. Announcement/Subscription/Publication (ASP) is an ap-
proach for content-based communication, decoupled in time, space,
threads and semantics. The idea behind ASP is to rely only on neighbor-
relations and does not involve any communication infrastructure above
the link-layer. This makes the ASP approach perfectly suitable for ap-
plication communication in smart and ubiquitous environments. In this
paper we analyze the process of implementing scenarios using the ASP
approach. After specifying the necessary requirements for application in-
terfaces and the behaviour of the middleware we identify circumstances
where problems could arise and present our solutions to these problems.

1 Introduction

Future smart and ubiquitous environments emerge from the ad-hoc cooperation
of different devices surrounding the user in her everyday life. The goal of such
cooperation is to support the users in what they are doing e.g. by enriching her
environment with information, controlling parts of her environment to suit her
needs or providing her with services to support her daily routine.

A main requirement for this kind of cooperation is the ability of applications
on these devices to exchange information. The aforementioned ubiquitous envi-
ronments however often have a very heterogeneous nature in terms of devices
and communication techniques. Furthermore their ad-hoc generated topology
can not be expected to provide compatible communication protocols or even
unique addresses. This results in the strong need for a middleware to support
decoupled communication in space, time and threads [1][2][3].

Publish/Subscribe has emerged as a paradigm to support the distribution of
information in a decoupled way. However especially in ad-hoc generated smart
environment very heterogeneous applications are to be expected. Applications
provide and seek for information in different formats and levels of aggregation.
This often requires information to be aggregated and processed while it is deliv-
ered from source to sink and results in the need for decoupling in semantics as
well.

D. Tavangarian et al. (Eds.): IMC 2009, CCIS 53, pp. 189–200, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

190 H. Ristau

Announcement/Subscription/Publication (ASP) [4] is an approach to provide
content based communication decoupled in space, time, threads and semantics.
It is based only on neighbor relations between adjacent brokers and thus can
perfectly adapt to heterogeneous environments even with a rather high degree
of mobility resulting in a dynamic topology. ASP as a communication approach
only provides a system architecture and a routing algorithm with some optional
enhancements. In the task of implementing a scenario using the ASP approach
a number of problems and challengers arise that need to be overcome to result
in efficient communication. In this paper we will outline the most important
problems and provide solutions to overcome them.

Therefore the paper is structured as follows. In the following section we present
related work. In section 3 we outline the application interfaces and the routing re-
quirements that provide the framework for an ASP implementation. Afterwards
we analyze the three phases of ASP and the associated problems and explain,
how we solved them. In section 5 we conclude our work and present ideas for
future work.

2 Related Work

Publish/subscribe (pub/sub) provides the basis for decoupled communication
between an information source and an information sink in time, space and
threads [2]. Content-based routing (CBR) [5] implements the pub/sub paradigm
in a fully distributed fashion by introducing a network of brokers. Between these
brokers subscriptions are distributed in the form of filters that either match a
publication or not. Using these filters each broker keeps a local routing table
to allow for content-based routing of publications. CBR was enabled to work in
mobile ad-hoc networks (MANETs) e.g. by [6][7].

Pub/sub especially for smart environments is provided by MundoCore [8],
a modular middleware for the requirements of pervasive computing based on a
microkernel design. It supports structured, hierarchical and single-hop strategies
for routing resulting in high scalability and adaptability. It allows for channel
and content-based subscriptions.

There are many algorithms for on demand routing in MANETs most common
probably ad hoc on demand distance vector routing (AODV) [9]. The basic idea
of such routing protocols is for a node N1 to find a communication partner N2

in a MANET on demand by sending a route request (RREQ). This request is
flooded through the MANET until it eventually reaches N2 which replies with
a route reply (RREP). The RREP is send back on the shortest path to N1 and
a communication path is established. The main advantage of on demand rout-
ing is that a path is created only on demand and thus, no traffic is induced by
nodes that do not communicate. Furthermore through the availability of unique
(IP-)addresses and a homogeneous communication protocol (IP) throughout the
MANET, these routing algorithms can be highly optimized. If such conditions
can not be guaranteed as in heterogeneous ubiquitous environments, these algo-
rithms are not applicable.

Challenges in Content Based, Semantically Decoupled Communication 191

3 Requirements

Fig. 1. The interface between source and
broker

In this section we outline the require-
ments for the ASP approach induced
by its adjacent components which are
the applications and the network.

3.1 Source

A source application (source) provides
information to other applications by
message publication. The availability
of these messages is to be distributed
by the middleware and the messages
have to be communicated towards in-
terested applications.

A source’s interface consists of four
methods as shown in figure 1. Regis-
tration is done stating the communi-
cation class1. Afterwards an announce-
ment is provided by the source. This is
optional if the size of messages is < MTU. At this time the source starts to send
messages to the middleware. From that moment on the announcement can be
updated anytime by the source. If the source does not send further messages, it
closes its registration at the middleware.

3.2 Sink

Fig. 2. The interface between sink and broker

A sink application
(sink) consumes in-
formation from other
applications by re-
ceiving messages from
the middleware. There-
fore it registers at
the middleware with
an optional filter to
narrow the amount
of received announce-
ments. Based on the
contents of received
announcements it can

1 The taxonomy given in [4] divides scenarios in four communication classes by message
size (one packet (< MTU) vs. fragmentation) and message frequency (one message
vs. message stream).

192 H. Ristau

Fig. 3. The interface between processor and broker

subscribe to associated messages. The middleware then delivers all associated
messages to this sink. The registration of the sink can be closed completely by the
sink itself or partially by the middleware if no more messages are to be expected
for the current announcements. The respective interface is shown in figure 2.

3.3 Processor

Processor applications (processors) are needed for message aggregation or pro-
cessing on the path between source and sink if semantic decoupling is required.
Since message processing can be one way in many scenarios, a processor is only
required to transform announcements into new announcements and messages
into new messages.

A processor’s interface is shown in figure 3. A processor registers at the middle-
ware with an optional filter and receives announcements afterwards. If it is able
to transform a number of announcements into a new announcement, it sends the
new announcement back to the middleware. Additionally, the processor has to
provide information about the source announcements and the processing metric.
This information is needed by the middleware to optimize paths from source to
sink and to avoid communication loops. Later on, if needed, the processor has to
transform messages associated to its source announcements into new messages
and send these to the middleware. The processor’s registration can be closed
fully by the processor itself or partially by the middleware if no more messages
are to be expected for the current source announcements.

3.4 Efficient Routing

In respect to the network the middleware has to distribute announcements among
all brokers and find efficient paths between source brokers and sink brokers for

Challenges in Content Based, Semantically Decoupled Communication 193

message delivery. These paths need to involve the right processors if message
aggregation or processing is necessary for the communication. The choice of
processors needs to be optimized according to the following criteria.

If multiple processing steps are needed, the most efficient combination is to be
selected. Efficiency thereby depends on the metric provided by the processors.
If multiple equal processors are available, a single one needs to be selected for
every path between a source and a sink to avoid unnecessary double processing
of messages. If multiple aggregating processors are available, aggregation has to
be done as early as possible to optimize network utilization. In the contrary, if
processing enlarges the message size, late processing might be useful to again
optimize network utilization.

4 ASP-Algorithm

As ASP works in three phases, we analyze each phase for its specific challenges
to fulfill the aforementioned requirements.

4.1 Announcement Phase

An announcement is generated by the ASP middleware from the information
provided by a source or processor. If generated or received, an announcement is
to be distributed to all neighbors except the one this announcement has been
received from and to all processors and sinks except for those that provided a
filter that does not match the announcement.

Announcement Identifiers. By processing respectively routing through a
processor, an announcement’s content is changed. To avoid loops where an an-
nouncement is processed back and forth again and again and to detect duplicates
after similar processing in different processors, announcements need to be com-
pared based on their content. Additionally, announcements need to be referable
by later subscriptions, publications and eventually other announcement. There-
fore we generate a content based identifier for each announcement upon its gen-
eration in a source’s or processor’s broker using a hash algorithm. Comparison
and recognition of an announcement therefore can easily be done by comparing
the announcement’s identifier.

Based on the implemented scenario, similar processing of an announcement in
different processors can lead to slightly different announcements actually repre-
senting the same content. One example are arithmetics on floating point values
that can lead to different results by rounding. Such announcements result in
very different identifiers owing to the hash algorithm. If this can be the case for
a scenario, we suggest to extend the source/processor-interface by providing a
mask to the ASP middleware to allow the application to unmask the parts of
the announcement that should not be used for hash generation.

Announcement Caching. A very efficient way of repairing broken paths in
a stream scenario is for the source’s broker to start a new announcement af-
ter it was informed of the path failure. Since this can happen before the initial

194 H. Ristau

announcement becomes invalid, multiple valid announcements for the same in-
formation can be circulating. In combination with announcement caching, where
each broker caches all current announcements and forwards them to newly dis-
covered neighbors, the number of announcements to cache and forward rises.
In a dynamic scenario path failures can thus increase the network traffic which
leads to more path failures and finally to parts of the network being overloaded.

In a scenario where the announcement for a given source and therefore its
identifier does not change, this behaviour can be avoided by introducing a se-
quence number that is incremented on every re-announcement. Thus invalid
announcements can be sorted out easily. If however the announcement changes
frequently, its identifier changes as well. To recognize invalid announcements
each re-announcement can be provided with a list of identifiers of invalidated
announcements. This allows receivers of the re-announcement to immediately re-
move announcements that became invalid. Even the attachment of only the most
current invalidated identifier to each re-announcement decreases the occurrence
of the aforementioned network overloads to a minimum.

Path Metrics. To evaluate different paths in the process of announcement
distribution a path metric is calculated from the link metrics on the announce-
ment’s path. These can be metrics of communication links or processing links.
This leads to a number of requirements for such a metric:

1. There must be a metric to reflect the transmission costs between two adjacent
brokers and a metric to reflect the costs of processing in a processor.

2. A path metric will most likely contain transmission costs and processing
costs. Thus, there must be a method to compare or even aggregate them.

3. If processing involves data aggregation, multiple path metrics need to be
aggregated as well. This process has to reflect the requirement, that aggre-
gation should be done as early as possible to optimize communication costs.

4. To generate useful path metrics for the publication phase they actually need
to reflect the costs of message transmission. Especially the size of a message
can be very different from the size of the associated announcement and can
largely influence the transmission costs.

In our experimental scenarios we identified time based metrics as very promis-
ing to fulfill the first two requirements. The basis for our metric is the expected
transmission time (ETT) like in [10]. The ETT is therefore calculated in the
network abstraction layer (NAL) [4] by monitoring the packet round-trip time
and the number of necessary (re-)transmissions as this approach can easily be
generalized for any kind of link layer communication and above. For announce-
ment processing the processing time replaces the ETT as basis for the metric.
Inspired by the parameter willingness in OLSR [11] we multiply the time with
an effort factor to reflect additional criteria like power consumption, monetary
costs or network respective CPU utilization. The effort for each connection is
dynamically determined by the brokers NAL and the effort for announcement
processing is provided by the processor itself.

Challenges in Content Based, Semantically Decoupled Communication 195

The path metric P for a path with m links of either announcement forwarding
or processing is generated from the connection respective processing metrics M
by summation: P =

∑m
r=0 Mr.

This has two main advantages. Firstly an announcement only needs to carry
one value to reflect the overall path metric. To append a new step to the path
metric its connection or processing metric is added to the announcement’s path
metric before this step. Secondly, if n announcements Ai are aggregated some-
where on their path, the path metric of the announcement is summed up with the
processing metric of their aggregation M to generate the new announcement’s
(A′) path metric: PA′ = M +

∑n
i=1 PAi .

This procedure fulfills the third requirement. If possible, an earlier aggregation
of two announcements on the same path will automatically result in a lower
path metric for the resulting announcement given that the metric of the early
aggregation is about the same as for the later one.

The fourth requirement results in a fundamental problem because the actual
size of the message is not necessarily known at the time the announcement is
distributed. However, we assume that a processor can estimate the size s′ of
a message after processing in relation to the size si of all n messages before
processing by providing the growth factor G with G = s′

∑n
i=1 si

.
We propose to add a size factor S to each announcement. The initial value is

S = 1. On a processing step involving n source announcements, the size factor
of the resulting announcement A′ is calculated as: SA′ = G × ∑n

i=1 SAi .
This gives the following general equation for the path metric on each step.

PA′ =
n∑

i=1

PAi + M × SA′ (1)

=
n∑

i=1

PAi + M × G ×
n∑

i=1

SAi (2)

However, if a step only involves communication, there is only one source an-
nouncement (n = 1) and no change of size (F = 1) resulting in the following
very simple equation.

PA′ = PA + M × SA (3)

The path metric using the size and growth factors should result in a more realistic
path metric for the communication of the message afterwards because changes of
message size from processing are reflected in the overall path metric of received
announcements. Processing steps that enlarge (reduce) a messages size will result
in a better overall path metric if performed late (early) in the communication
path.

4.2 Subscription Phase

Based on the contents of a received announcement, a sink can decide to re-
ceive the associated message or message stream. The delivery of the message or

196 H. Ristau

message stream afterwards is channel based. We call this channel an active path.
A path is activated by the sink’s broker sending a subscription back to the
source’s broker.

Path Identifiers. The announcement’s identifier is used to identify the contents
to be delivered on an active path later. The active path itself needs another
unique identifier to allow for multiple active paths for the same content that
can be unsubscribed from or repaired independently of each other. Therefore we
use a path identifier that is generated randomly by the sink’s broker for each
subscription it initiates.

In the unlikely event of two sinks generating the same random path identifier
for the same contents, the second subscription will overwrite the first one. This
results in all further publications being received by the second sink only. However
this state will only last until the announcement becomes invalid and another one
is initiated. Thereafter new path identifiers are generated by both sink’s brokers
and another collision is extremely unlikely.

Empty Announcements. The standard flooding algorithm results in the first
announcement that is received being forwarded. This does not necessarily have
to be the announcement with the best path metric. To find the one path with
the best metric one can use an extension we called empty announcements [4].
An empty announcement contains only the announcement’s identifier and the
path metric and is used to inform a broker of a better path being available
after the announcement has already been delivered. The utilization of empty
announcements is only useful if very large messages or streams with a very large
amount of data are to be delivered. Otherwise the costs of delivering all the
empty announcements can easily outreach the gain of the best path.

Using empty announcements results in one announcement and eventually one
or more empty announcements for better overall paths being received by a sink’s
broker. Since that broker never knows if one more empty announcement is to
be expected, it would have to send a subscription for the first announcement.
For each empty announcement it would have to send a subscription for the new
path and afterwards unsubscribe from the old path. This can generate a large
amount of unnecessary network traffic.

Our solution to this problem is for the sink’s broker to react to the first
received announcement with a subscription to assure that one active path exists
as soon as possible. To optimize that path later on, the broker collects all empty
announcements it receives for a not too small amount of time. After this time has
passed it treats the last empty announcement with a better path metric than the
ones before as the best path. If such a best path is available, a subscription for
that path is initiated. Afterwards the broker unsubscribes from the initial path.
This procedure is illustrated in comparison to the trivial approach in figure 4.

This procedure guaranties fast delivery of the first publications to decrease
the initial latency. For the expected large amount of later publications the best
possible path is used to unload the communication and processing infrastructure.
The number of subscription rounds is limited to a maximum of two.

Challenges in Content Based, Semantically Decoupled Communication 197

(a) (b)

Fig. 4. Case where the sink’s broker receives three empty announcements: Instead of
adjusting the active path on every empty announcement (a), it waits to collect all
empty announcements and adjusts the active path once (b)

4.3 Publication Phase

The purpose of the publication phase is the delivery of messages on every active
path. Depending on the communication class, one message can be fragmented
into multiple publications. Additionally multiple messages can form a message
stream. If a message is fragmented into multiple publications, each publication
must be delivered reliably because loosing one fragment would render the whole
message useless. If multiple messages are to be transmitted as a stream, it is
desirable to deliver as many messages as possible but we assume loosing single
messages in a stream not as problematic. Developers of scenarios and applica-
tions for ASP have to choose their communication class carefully to reflect this
assumption.

Publication Caching. According to the aforementioned behaviour, all publi-
cations that belong to a single message, are cached in every broker on the active
path. This has two main advantages. On the one hand, this reduces network
and CPU utilization. If a new subscription is initiated by a broker that results
in an active path which overlaps with an existing active path the publications
that have been transmitted on the existing active path do not have to be trans-
mitted on that path again. Instead they can be forwarded immediately by the
broker where both active paths stop to overlap. This also reduces the message
transmission latency to the aforesaid subscribing broker.

On the other hand, publication caching is a major requirement for time decou-
pling. Especially if only one eventually fragmented message is to be transmitted

198 H. Ristau

the source might already be disconnected at the time when any subscriptions
arrive. Only by caching the publications they can still be delivered towards the
subscriber in this case.

5 Conclusions and Future Work

In this paper we analyzed the process of implementing scenarios using the ASP
approach for content based decoupled communication based on neighbor rela-
tions. After specifying the necessary requirements for application interfaces and
the behaviour of the middleware we identified six circumstances where the ASP
approach could lead to problems and presented solutions how to solve these
problems:

– different announcement identifiers for the same content,
– multiplication of invalid announcements through announcement caching,
– path metrics for optimal paths,
– path identifiers to keep active paths independent,
– a re-subscription algorithm to reduce subscription overhead if empty an-

nouncements are used, and
– publication caching to assure time decoupling.

In the following sections we present advantages and disadvantages of implement-
ing a scenario in heterogeneous ad-hoc environments using the ASP approach.

5.1 Advantages

The only precondition for the network topology of a scenario to be implemented
using ASP is that a bidirectional link-layer communication of any kind between
neighboring nodes is available in a way that the nodes and communication paths
form a connected graph. The degree of heterogeneity does not matter. Globally
unique network addresses are not necessary.

Because of its decoupled nature, the ASP approach is very flexible in dynamic
environments and therefore allows for mobility and ad-hoc topologies involving
mobile components.

If a scenario is implemented using ASP, all applications - sources, sinks and
processors - are fully decoupled from each other and the network in terms of
location, availability and semantics. This enables independent development of
applications. Another advantage is the resulting completely distributed infras-
tructure. Applications can be added, removed and even used in parallel at any
time.

5.2 Shortcomings

Even though using ASP has many advantages we do not want to forget to men-
tion its shortcomings. The most important one is probably that due to the uti-
lization of flooding algorithms, ASP does not scale to arbitrary large networks.
Boundaries for the distribution of announcements are necessary in a physical,

Challenges in Content Based, Semantically Decoupled Communication 199

an algorithmic and a logical way. Physical boundaries can be environments of
limited size like smart or ubiquitous environments. Algorithmic measures are e.g.
a time to live or context based means to limit the distribution of an announce-
ment. With logical boundaries we refer to the fact that especially if algorithmic
measures are taken the developer needs to understand that the availability of
information is not distributed and thus known everywhere anymore.

Another disadvantage owing to the nature of the pub/sub paradigm might be
that ASP is unidirectional. Content is delivered from the source to the sink only.
In most scenarios especially for content based communication this is not a prob-
lem. However there might be the necessity for bidirectional communication. If
bidirectionality is limited to a confirmation of reception the ASP approach could
probably be extended without much problems to provide such a confirmation.
But this would destroy the very idea of decoupled communication in time and
especially in threads. Therefore we did not propose such an extension ourselves.

5.3 Future Work

For future research we plan to investigate three open questions: Can the ASP
approach be extended to not only allow the implementation of single scenarios
but to provide a toolkit for ASP based application developing?

Can the ASP approach be extended to provide more quality of service features
for applications? Right now ASP allows for applications to provide a commu-
nication class to optimize communication which means it can select between
optimization for small vs. large messages and optimization for single messages
vs. a message stream. Features like reliability vs. load-efficiency or real time
demands for applications could be very interesting as well.

Can ASP be extended to provide efficient bidirectional communication in het-
erogeneous ad-hoc environments? The availability of such bidirectional commu-
nication could allow for e.g. content based service announcement with subsequent
channel based service utilization.

Acknowledgement

Henry Ristau is supported by a grant of the German National Research Foun-
dation (DFG), Graduate School 1324 (MuSAMA).

References

1. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)

2. Aldred, L., van der Aalst, W.M., Dumas, M., ter Hofstede, A.H.: On the notion
of coupling in communication middleware. In: Meersman, R., Tari, Z. (eds.) OTM
2005. LNCS, vol. 3761, pp. 1015–1033. Springer, Heidelberg (2005)

3. Aldred, L., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Dimensions of
coupling in middleware. Concurrency and Computation: Practice and Experience
(February 2009)

200 H. Ristau

4. Ristau, H.: Announcement/subscription/publication: Message based communica-
tion for heterogeneous mobile environments. In: Mobile Wireless Middleware, Op-
erating Systems, and Applications, Mobilware 2009, Berlin, Germany (2009)

5. Carzaniga, A., Wolf, A.L.: Content-based networking: A new communication in-
frastructure. In: König-Ries, B., et al. (eds.) IMWS 2001. LNCS, vol. 2538, pp.
59–68. Springer, Heidelberg (2002)

6. Baldoni, R., Beraldi, R., Cugola, G., Migliavacca, M., Querzoni, L.: Structure-less
content-based routing in mobile ad hoc networks. In: Proceedings of International
Conference on Pervasive Services, ICPS 2005, July 11-14, pp. 37–46 (2005)

7. Petrovic, M., Muthusamy, V., Jacobsen, H.A.: Content-based routing in mobile
ad hoc networks. In: Mobile and Ubiquitous Systems: Networking and Services,
MobiQuitous 2005, pp. 45–55 (2005)

8. Aitenbichler, E., Kangasharju, J., Muhlhauser, M.: Mundocore: A light-weight in-
frastructure for pervasive computing. Pervasive and Mobile Computing (2007)

9. Perkins, C., Belding-Royer, E., Das, S.: Request for Comments: 3561 - Ad hoc
On-Demand Distance Vector (AODV) Routing. RFC (July 2003)

10. Draves, R., Padhye, J., Zill, B.: Routing in multi-radio, multi-hop wireless mesh
networks. In: MobiCom 2004: Proceedings of the 10th annual international con-
ference on Mobile computing and networking, New York, NY, USA, pp. 114–128
(2004)

11. Clausen, T., Jacquet, P.: Request for Comments: 3626 - Optimized Link State
Routing Protocol (OLSR). RFC (October 2003)

	Challenges in Content Based, Semantically Decoupled Communication on Neighbor-Relations
	Introduction
	Related Work
	Requirements
	Source
	Sink
	Processor
	Efficient Routing

	ASP-Algorithm
	Announcement Phase
	Subscription Phase
	Publication Phase

	Conclusions and Future Work
	Advantages
	Shortcomings
	Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

