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Abstract. Balanceable clutters are clutters whose bipartite representa-
tion contains no odd wheel and no odd 3-path configuration as induced
subgraph (this is Truemper’s characterization of balanceable
matrices). In this paper we study a proper subclass of balanceable clut-
ters called quasi-graphical defined by forbidding one-sided even wheels
and one-sided even 3-path configurations. We characterize Mengerian
quasi-graphical clutters and, as a consequence, we show that a recent
conjecture in [5] is true for quasi-graphical clutters.
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1 Introduction

An unbalanced hole submatrix of a {−1, 0, 1} matrix A is a square submatrix of
A having exactly two nonzero entries per row and per columns whose sum of
the entries is not divisible by four and minimal with this property. A {−1, 0, 1}
matrix A is balanced if it does not contain any unbalanced hole submatrix. A
binary matrix is a matrix with 0, 1 entries. A binary matrix is balanceable if it
can be signed to become balanced, where signing a binary matrix A consists
of multiplying some of its entries by −1. A finite family of subsets of a finite
ground set is balanceable if so is its incidence matrix, i.e., the binary matrix
whose columns are the incidence vectors of the members of the family (taken
over the ground set). The bipartite graph of a finite family C = (Lj | j ∈
P ) of subsets of V is the bipartite graph B(C) with color classes V and P
in which v ∈ V and j ∈ P are connected by an edge if v ∈ Lj. Truemper
characterized balanceable families as those finite families whose bipartite graph
contains neither odd wheels nor odd 3-path-configuration as induced subgraphs
(see e.g., [6]). Recall that a (bipartite) uv-3-path configuration (3PC(u, v)) is
a bipartite graph consisting of three internally vertex-disjoint uv-paths P1, P2

and P3 such that V (Pi) ∪ V (Pj), i �= j, induces a chordless cycle and u and v
are not adjacent. A 3-path configuration (3PC) is a 3PC(u, v) for some u and
v. Since 3PC(u, v) is a bipartite graph, the length of each of the three uv-paths
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is odd or even accordingly to whether u and v belong to different color classes
or to the same color class, respectively. In the former case each path has length
at least three and the 3PC is said to be odd. In the latter case, if each path
has length at least four, we say that the 3PC is even1. A (bipartite) wheel is a
bipartite graph (C, v) consisting of a chordless cycle C and a vertex v �∈ V (C)
that has at least three neighbors on C; C and v are referred to as the rim and
the center of the wheel, respectively. Each edge of the wheel incident to the
center is called a spoke. The wheel is odd if it has an odd number of spokes. It
is even otherwise. A k-wheel is a bipartite wheel with k spokes. In this paper
we study a proper subclass of balanceable matrices, namely, the class of quasi-
graphical families defined as follows: a finite family C = (Lj | j ∈ P ) of subsets
of V is quasi-graphical if it is balanceable and its bipartite graph contain neither
even C-wheel nor even C-3PC as induced subgraph where an even C-wheel is an
even wheel whose center is in the color class P and an even C-3PC is an even
3PC whose vertices of degree three are both in the color class P . The choice of
the term quasi-graphical is explained in Remark 2. With any finite family C of
subsets of a common ground set V and a function w ∈ Z

V
+ we can associate the

following pair of dual linear programs:

minimize wy subject to∑
(y(v) : v ∈ L) ≥ 1 ∀L ∈ C

y ∈ R
V
+ ,

(1)

maximize 1x subject to∑
(x(L) : v ∈ L ∈ C) ≤ w(v) ∀v ∈ V

x ∈ R
C
+,

(2)

The main aim of this paper is to characterize Mengerian quasi-graphical families,
namely, those quasi-graphical families C for which problem (2) has an integral
optimal solution for any w ∈ Z

V
+ , i.e, the defining system of (1) is Totally Dual

Integral. Our result relies on the notion of pie introduced by Golumbic and Jami-
son in [8] in the context of Edge-Path-Tree graphs and closely follow a similar
characterization for Edge-Path-Tree families given in [1] to which it specializes.
Odd pies can be viewed as natural generalizations of odd circuits in graphs. A
pie is a collection of subsets of a common ground set whose members can be
cyclically ordered so that each member intersects exactly its two neighbors in
the order and each element of the ground set occurs in at most two members of
the collection. We base the characterizations of Mengerian quasi-graphical fam-
ilies on Lovász’s 2-matching characterization of Mengerianity (see Theorem 1)
and the additional observation (see Theorem 2) that if a quasi-graphical family
C does not contain any odd pie as minor either it contains the Q6 clutter as
minor or the members of certain 2-matchings in C can be chosen “as uncrossing
as possible”. Recall that the Q6 clutter is the clutter whose members are the

1 We stress here that if H is a 3PC(u, v), with u and v belonging to the same color
class, but u and v are linked by a path of length two, then H must not be considered
an even wheel.
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edge sets of the four triangles of the complete graph on four vertices. A Venn
representation of the Q6 is given in Figure 3 (a).

Terminology. Throughout the rest of the paper C = (Lj | j ∈ P ) denotes a finite
family of subsets of a finite ground set V . We also denote ∪(L | L ∈ C) by V (C)
and we say that C is a family on V if V = V (C). We use the term collection
for families with no repeated members. A clutter is a collection whose elements
are inclusionwise incomparable. For X, Y ⊆ V and X ∩ Y = ∅ the family of the
(inclusionwise) minimal members in {L − Y | L ∩ X = ∅, L ∈ C} is denoted by
C \ X/Y and is referred to as a minor of C. If C is a clutter so is C \ X/Y . It is
well known that C \X/Y = C/Y \X . When X = ∅ or Y = ∅ the notation will be
abridged to C\X (deletion minor) and C/X (contraction minor), respectively. In
a graph, a chordless cycle on four or more vertices is called a hole. In a bipartite
graph, a hole is odd if its length is not divisible by four. Throughout the rest
of the paper we use the following concrete coloring for the bipartite graph B(C)
of C = (Lj | j ∈ P ): the vertices in the color class P are represented by solid
circles; those in the color class V are represented by empty circles.

In a graph every odd cycle contains an odd circuit, i.e., a subgraph where each
vertex occurs in two edges. The natural generalization to families of the notion
of circuit in a graph, is the notion of pie introduced in [8]. A pie is a collection
P = (Lj | j ∈ N) on some finite ground set V such that n := |N | ≥ 3 and

– for some permutation (j1, . . . , jn) of N one has Lji∩Lji+1 �= ∅ and Ljh
∩Lji =

∅ if |i − h| �∈ {1, n− 1}, (addition over indices is modulo n);
– if n = 3 then ∩j∈NLj = ∅.

Two members Lh and Li of a pie are consecutive if Lh ∩ Li �= ∅. The number
n is the size of the pie; a pie of size n is a n-pie. The pie is odd if n is odd and
even otherwise. We set Bji = Lji ∩Lji+1 , i = 1, . . . , n (addition over the indices
is taken modulo n) and we call Bji , the i-th branch of the pie. Observe that by
the definition of pie one has Bi ∩Bj = ∅, for i �= j, i, j ∈ N . If P is a pie in C we
say that C contains a pie. Notice that a family might contain odd pies without
containing odd pies as minor: in a Q6 the collection formed by any three of its
members is a 3-pie though no minor of the Q6 is an odd pie.

Organization. The rest of the paper goes as follows. In the next section we
give the characterization of Mengerian quasi-graphical families and discuss some
consequences—mainly the fact that the Conjecture in [5] asserting that every
minimal non-packing clutter has a transversal of size 2 holds true within quasi-
graphical families–. The characterization uses Theorem 2 which is technical and
hence proved in Section 2.1.

2 Mengerian Quasi-graphical Families

In this section we characterize Mengerian quasi-graphical clutters. The charac-
terization closely follows the characterization of Mengerian Edge-Path-Tree fam-
ilies given in [1]. We need the following two results. Recall that a w-matching x
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Fig. 1. An odd wheel, an even C-wheel, an odd 3PC(u, v) and an even C-3PC(u, v).
Solid lines represent edges and dotted lines represent paths.

of C is any integral point in the polyhedron of (2). The number
∑

(x(L) | L ∈ C)
is called the size of x and the maximum size of a w-matching of C is denoted by
νw(C).

Theorem 1 (Lovász). A family C of subsets of a given ground set V is Men-
gerian if and only if ν2w(C) = 2νw(C) for each w ∈ Z

V
+.

Theorem 2. Let C be a quasi-graphical family. Assume that C is a clutter with-
out any odd pie as minor and let P be an odd pie in C. Then either C contains
the Q6 clutter as minor or F0 ∪ F1 ⊆ LΔL′ for some two members L and L′ of
C which are consecutive in P and some two disjoint members F0 and F1 of C.

Theorem 1 is Lovász’s 2-matching characterization of Mengerian families. The-
orem 2 is technical and its proof will be postponed after the characterization.
Recall that a family C is balanced if B(C) does not contain any induced odd hole.
Balanced families are Mengerian (see, e.g., [9]).

Theorem 3. Let P be a quasi-graphical family. Then P is Mengerian if and
only if P contains neither odd pies nor the Q6 clutter as minors.

Proof. Neither odd pies nor the Q6 clutter are Mengerian—in particular odd
pies are not even ideal: if P ′ = {L′

1, . . . , L
′
k} is an odd pie minor of P , then P ′

can be contracted to the edge set of an odd polygon—hence necessity follows.
To prove sufficiency we need the following fact whose proof can be found in [3].

Claim. Let E = (Ej | j ∈ P ) be a quasi-graphical family on V . If E does not
contain any odd pie then E is balanced.

Without loss of generality C is a clutter on V . Suppose that C contains neither
odd pies nor the Q6 clutter as minors but it is not Mengerian. By Theorem 1
one has ν2w(C) > 2νw(C) for some w ∈ Z

V
+ . Let w be chosen so as to minimize∑

v∈V w(v) and let V ∗ := {v ∈ E | w(v) ≥ 1} be its support. Therefore, for



52 N. Apollonio and M. Caramia

v ∈ V ∗, ν2(w−χv)(C) = 2νw−χv (C), χv ∈ Z
V
+ , being the incidence vector of

edge v over V . Let x ∈ Z
C
+ be a 2w-matching of size ν2w(C) and let M =

{L ∈ C | x(L) ≥ 1} be its support. The clutter M must contain some odd pie
otherwise, by Claim 2, we would have ν2w(C) = ν2w(M) = 2νw(M) ≤ 2νw(C).
Let P = {L1, . . . Ln} ⊆ M ⊆ C be any odd pie in M. Clearly P is a an odd
pie in C. Notice that V (P) ⊆ V ∗. Possibly after renumbering we may suppose
that Li and Lj are consecutive in P if and only if |i− j| ∈ {1, n− 1}. Therefore,
by Theorem 2, there are disjoint members F0 and F1 of C such that, for some
j = 1, . . . , n, one has Fi ⊆ LjΔLj+1, i = 0, 1. Define x as follows:

x(L) =

⎧
⎨

⎩

x(L) − 1 if L ∈ {Lj, Lj+1}
x(L) + 1 if L ∈ {F0, F1}
x(L) otherwise.

By construction,

∑

L�v

x(L) =

⎧
⎨

⎩

∑
L�v x(L) − 1 if v ∈ (LjΔLj+1) − (F0 ∪ F1)∑
L�v x(L) − 2 if v ∈ Lj ∩ Lj+1∑
L�v x(L) otherwise.

Let vj ∈ Pj ∩ Lj+1. It follows that x is a 2(w − χvj )-matching of size

∑

L∈M∪{F0,F1}
x(L) =

∑

L∈M
x(L),

contradicting the minimality of w. ��

Corollary 1. An ideal quasi-graphical family is Mengerian if and only if it does
not contain the Q6 clutter as minor.

Remark 1. A clutter has the packing property if Problem (1) has an integral
optimal dual solution for all w ∈ {0, 1, +∞}V (see [6]). In [5] the authors conjec-
ture that every minimally non packing clutter has a transversal of size 2. In the
same paper the authors show that the conjecture implies the replication conjec-
ture of Conforti and Cornuejols for packing clutters which is in turn equivalent
to the conjecture that a clutter is Mengerian if and only if it is packing [6]. By
corollary 1 all these conjectures hold true for quasi-graphical families.

Corollary 1 can be specialized to Edge-Path-Tree families. A family E = (Ei | i ∈
P ) is an Edge-Path-Tree family if there exists a tree T = (V, E) such that Ei is
the edge set of some path in T . To see this we need to recall some well known pre-
liminary notion. With every binary matrix A with m rows one can associate the
binary matroid M(A) generated by the columns of [Im, A], Im being the identity
matrix of order m. Such a matroid is defined as the matroid whose circuits are
the minimal supports of the vectors in the nullspace of [Im, A], [Im, A] being a
viewed as a matrix over GF (2). Two binary matrices are GF (2)-equivalent if one
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arises from the other by a sequence of GF (2)-pivoting2. Any binary matrix A is
GF (2)-equivalent to itself. GF (2)-equivalent matrices generate the same binary
matroid and, conversely, if A and A′ have the same order and M(A) = M(A′)
then A and A′ are GF (2)-equivalent. A minor in M(A) is a matroid of the form
M(C) where C is a submatrix of some matrix A′ which is GF (2)-equivalent to
A. The operation of GF (2)-pivoting a matrix A ∈ {0, 1}I×J can be described in
terms of the bipartite graph B(A) as follows: if A′ is the result of GF (2)-pivoting
on a nonzero entry ai,j of A, then B(A′) results from B(A) by complementing
the edges between N(i) − {j} and N(j) − {i}, where, for a vertex h of B(A),
N(h) denotes the set of neighbors of h (see [4,6]). Let W4 denote the wheel with
four spokes and whose rim has eight vertices. The proof of the following lemma,
which is similar to an analogous result in [4] about odd wheels and odd 3PC’s,
can be found in [3].

Lemma 1. Let G be a bipartite graph such that G is either an even 3-path
configuration 3PC(u, v) or an even wheel (C, v). Then G can be pivoted into a
bipartite graph containing a W4 whose center is in the same color class of u and
v, if G = 3PC(u, v) and in the same color class of v if G = (C, v).

Corollary 2 ([1]). An Edge-Path-Tree family is Mengerian if and only if it
does not contain any odd pie as minor. Consequently, every ideal Edge-Path-
Tree family is Mengerian.

Proof. Let E = (Ei | i ∈ P ) be an edge-path-tree family on E and let A(E) be
its incidence matrix. Let |E| = m. Recall that a binary matrix is regular if it can
be signed to become totally unimodular (see e.g. [6,9]). Since E is an Edge-Path-
Family it follows that A(E) is the unsigned pattern of a network matrix and
any such matrix is a totally unimodular matrix [9]. Therefore A(E) is regular
and, consequently, E is balanceable, [6]. In [7], Fournier observed that E is an
Edge-Path-Tree family if and only if the binary matroid M(E) generated by the
columns of [Im, A(E)] is a graphic matroid. By Tutte’s deep characterizations of
regular and graphic matroids (see e.g., [9]) M(E) is graphic if and only if A(E)
is regular and M(E) contains neither M∗(K3,3) nor M∗(K5) as matroid-minors
(the co-graphic matroid of the K3,3 and K5, respectively). Let W4 be a family on
F with five members such that B(W4) ∼= W4. We show that M(W4) = M∗(K3,3);
let W∗

4 be the dual of W4, i.e., the family ({L ∈ W4 | f ∈ L} | f ∈ F ); W∗
4

is an Edge-Path-Tree family obtained as follows: let G be a copy of the K3,3

and T let be spanning tree of G whose degree sequence is (1, 1, 1, 1, 3, 3). Let
F = E(G) − E(T ) and for each f in F let P (f) be the unique path of T con-
necting the endpoints of f . Thus W∗

4 = (P (f) | f ∈ F ) and M(W∗
4 ) = M(K3,3)

2 Recall that pivoting A over GF (2) on a nonzero entry (the pivot element) means
replacing

A =

(
1 a
b D

)

by Ã =

(
1 a
b D + ba

)

where the rows and columns of A have been permutated so that the pivot element
is a1,1 ([6], p. 69, [9], p. 280).
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hence M(W4) = M∗(K3,3). Therefore A(E) contains neither even E-wheels nor
even E-3PC’s because, by Lemma 1, these graphs could be pivoted into graphs
containing a W4 as induced subgraph. Accordingly, M(E) would contain an
M∗(K3,3) minor contradicting that M(E) is a graphic matroid. Therefore every
Edge-Path-Tree family is a quasi-graphical family. Moreover, no Edge-Path-Tree
family can contain the Q6 clutter as minor. Indeed every minor of an Edge-Path-
Tree family is an Edge-Path-Tree family but the binary matroid generated by
[I6, AQ6 ], AQ6 being the incidence matrix of the Q6 clutter, is the co-graphic
matroid of the K5. ��
Remark 2. In view of the proof of Corollary 2 the term quasi-graphical is due
to the fact that quasi graphical families contain families which generate regular
matroids with no M∗(K3,3) minor, that is almost graphic matroids.

2.1 Proof of Theorem 2

Throughout the rest of the section we set N = {1, . . . , n} and P = {1, . . . , p};
moreover, P = {L1, . . . , Ln} is an odd pie in C = {L1, . . . , Ln, Ln+1, . . . , Lp},
C being a clutter on V (C) = V . Possibly after renumbering, Li and Lj are
consecutive in P if and only if |i − j| ∈ {1, n − 1}. For i ∈ N we denote by Si

the set of elements of V (P) occurring in Li and in no other member of P . By
the definition of branch it follows that

– Si ∩ Sj = ∅, i �= j, i, j ∈ N and Si ∩ Bj = ∅, i, j ∈ N ;
– ∪j∈NLj = (∪j∈JSj) ∪ (∪j∈NBj).
– Sj ∪ Sj+1 ⊆ LjΔLj+1 (addition over indices is modulo n) and ∪j∈NSj =

Δj∈NLj,

where Bj is the j-th branch of P , j ∈ N . We also observe explicitly that if v ∈ Bi

for some i ∈ N then v ∈ Pj for some j �= i if and only if |i − j| ∈ {1, n− 1}. We
denote by [P ] the clutter P \ (V − V (P)) and by N∗ the set of indices of [P ].
Thus N ⊆ N∗ ⊆ P , [P ] = {Lj | j ∈ N∗} and [P ] is the set of members of C
contained in V (P). Finally, for s ∈ N∗ let

κN (s) = |{j ∈ N | Pt ∩ Bj �= ∅}|.

Lemma 2. If C is a quasi-graphical clutter then κN (s) is either zero or two for
each s ∈ N∗.

Proof. For j = 1, . . . n, if Ls ∩Bj �= ∅ let vj be an element in Ls ∩Bj , otherwise
let vj be an element arbitrarily chosen in Bj . Thus {v1, . . . vn} ∪ N induces an
odd hole C in B(C). Now κN(s) ≤ 2 otherwise V (C) ∪ {s} would induce a C-
wheel in B(C) with at least three spokes contradicting the assumption that C is
quasi-graphical. Thus κN (s) ≤ 2. Suppose κN(s) = 1; hence for some h ∈ N ,
vh ∈ Ls ∩ Bh �= ∅ and vj �∈ Ls, for j �= h. As [P ] is a clutter Ls intersects
∪j∈NSj . Suppose first that there is v ∈ Ls ∩Sl for some l �∈ {h, h + 1} (addition
is taken modulo n). Thus V (C) ∪ {v} ∪ {s} induces a 3PC(vh, l), contradicting
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that C is quasi-graphical. Hence Ls ∩Sl = ∅ for every l �∈ {h, h + 1}. Necessarily
there are u ∈ Ls ∩ Sh and z ∈ Ls ∩ Sh+1 (for if not Ls would be included either
in Lh or in Lh+1). Possibly after renumbering, we may suppose that h = 1. Let
us consider the graph G induced by V (C) ∪ {s} ∪ {u, z} (see Figure 2 (a)). the
set (V (C) − {v1}) ∪ {s} ∪ {u, z} induces a hole C′ in G and the neighbors of v1

on C′ are 1, 2 and s. Therefore V (C′) ∪ {v1} induces the odd wheel (C′, v1) in
B(C) contradicting that C is quasi-graphical. We conclude that κN (s) �= 1 and
hence κN (s) ∈ {0, 2} as stated. ��
Let N∗

0 = {s ∈ N∗ | κN (s) = 0 andLs ∩ Lj �= ∅ ∀j ∈ N}.
Lemma 3. Let C be a quasi-graphical clutter. If κN (t) = 0 for some t ∈ N∗

then either Lt ⊆ LjΔLj+1 for some j ∈ N , or |N | = 3 and N∗
0 = {t}.

Proof. Since κN (t) = 0, Lt does not intersect any branch of P . Hence Lt ⊆
∪j∈NSj = Δj∈NLj. Suppose that Lt intersects two nonconsecutive members
of the pie. Then |N | = n ≥ 5. Let Lj and Ll be such members and let C be
the hole induced in B(C) by {v1, . . . , vn} ∪ N where vi ∈ Bi (i = 1, . . . , n).
Pick uj ∈ Lt ∩ Lj and ul ∈ Lt ∩ Ll. Notice that uj, ul �∈ V (C) because uj ∈
Sj and ul ∈ Sl. Moreover, j and l are at distance at least four on C. Thus
V (C) ∪ {t} ∪ {uj, ul} induces an even 3PC(j, l), that is, an even C-3PC. This
contradicts that C is quasi-graphical. Therefore for n ≥ 5, if κN (t) = 0 then
Lt ⊆ Sj ∪ Sj+1 ⊆ LjΔLj+1 for some j ∈ N . It follows that, if κN (t) = 0 but
Lt �⊆ LjΔLj+1 for all j ∈ N , then necessarily |N | = 3 and Lt ∩ Sj �= ∅ for all
j ∈ N . Hence t ∈ N∗

0 . To prove the rest of the lemma we need the following
fact whose proof can be found in [2]. A chain is a family of inclusionwise nested
members.

Claim. Let C = (Lj | j ∈ P ) be a quasi-graphical family (not necessarily a
clutter) and let P = {L1, L2, L3} be a 3-pie in C. Moreover, let N0(C,P) ⊆ P be
the set of indices of those members of C which intersect each member of P but
no branch of P . Then the family (Lj | j ∈ N0(C,P)) is a chain.

Since in a clutter nonempty members of nontrivial chains are singletons the last
part of the lemma is a straightforward consequence of the claim after noticing
that N0(C,P) = N∗

0 . ��
Let P be a 3-pie in C. For s ∈ N∗ we say that Ls wraps L1 if Ls ∩ B1 and
Ls ∩ B3 are both nonempty. Similarly, Ls wraps L2 if Ls ∩ B1 and Ls ∩ B2 are
both nonempty and Ls wraps L3 if Ls ∩ B2 and Ls ∩ B3 are both nonempty.

Lemma 4. Let C be a quasi-graphical clutter and P be a 3-pie in C with N∗
0 =

{t}. If for s ∈ N∗−{t} and i ∈ N , Ls wraps Li and meets Lt then Ls∩Lt∩Li+1

and Ls ∩ Lt ∩ Li+2 are both empty, addition over indices being modulo 3.

Proof. Since s �= t it follows that κN(s) = 2 (by Lemma 2). Possibly after
renumbering, Ls wraps L1. Hence Ls intersects B1 and B3. Let v1 ∈ Ls ∩ B1,
v3 ∈ Ls ∩B3. Moreover, let u ∈ Lt ∩L2 if Ls ∩Lt ∩L3 = ∅ and u ∈ Ls ∩Lt ∩L2

otherwise (see Figure 3 (b)). Analogously, let v ∈ Lt ∩L3 if Ls ∩Lt∩L3 = ∅ and
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v ∈ Ls ∩Lt ∩L3 otherwise. Observe that |Lj ∩ {v1, v3, u, v}| = 2 for j ∈ N ∪ {t}
and that |Ls∩{v1, v3, u, v}| = 2 if and only if Ls∩Lt∩L2 and Ls∩Lt∩L3 are both
empty. Therefore if at least one among Ls∩Lt∩L2 and Ls∩Lt∩L3 is nonempty
then |Ls ∩{v1, v3, u, v}| ≥ 3 and N ∪{s, t}∪{v1, v3, u, v} induces a C-wheel with
at least three spokes in B(C) contradicting that C is quasi-graphical. ��
Lemma 5. Let C be a quasi-graphical clutter and let P be a pie in C. For j ∈ N
and v ∈ Bj let δ(v) = {t ∈ N∗ | v ∈ Lt}. Then (δ(v) | v ∈ Bj) is a chain for
each j ∈ N .

Proof. Suppose not. Hence, for some i ∈ N there are u(r), u(s) ∈ Bi and r, s ∈
N∗ such that Lr ∈ δ(u(r)) − δ(u(s)) and Ls ∈ δ(u(s)) − δ(u(r)). By Lemma 2,
κN (r), κN (s) ∈ {0, 2}. Hence there are (not necessarily distinct) indices h, j ∈
N−{i} such that Lr∩Bh �= ∅ and Ls∩Bj �= ∅. For l �∈ {h, i, j}, let vl ∈ Bl. Since
κN (r) = κN (s) = 2 and the branches of a pie are pairwise disjoint it follows that
vl �∈ Lr and vl �∈ Ls for l ∈ N − {h, i, j}. Also observe that by the definition
of branch u(r), u(s) ∈ Li+1. Possibly after renumbering, we may suppose that
h = 1 and i �= n. Hence i + 1 �= 1 (modulo n). Let us distinguish three cases.

Case (a): h = j = 1 and there is some z ∈ Lr ∩ Ls ∩ B1. The assumptions
on the indices guarantee that B1 �= Bi and B1 �= Bi+1. Thus {1, z, r, u(r), i +
1, vi+1, . . . , n, vn} induces a hole C in B(C). The unique neighbor of s on C is
z; the unique neighbor of u(s) on C is i + 1; and since u(s) ∈ Ls, u(s) and s
induce an edge in B(C). Thus V (C) ∪ {u(s), s} induces a 3PC(z, i + 1) in B(C),
contradicting that C is quasi-graphical.

Case (b): h = j = 1 and Lr∩Ls∩B1 = ∅. Let z(r) ∈ Lr∩B1 and z(s) ∈ Ls∩B1.
Possibly after renumbering, we may suppose that π := |{1, i+ 1, i+ 2, . . . , n}| ≥
|{2, 3, . . . , i}|. Thus if n = 3 then π = 2 and if n ≥ 5 then π ≥ 3. Let C be the
hole induced in B(C) by {1, z(r), r, u(r), i+1, u(s), s, z(s)} and let Q be the path
induced in B(C) by {1, vn, n, vn−1, . . . , vi+1, i + 1}. The length of Q is 2(π − 1).
Thus if n ≥ 5 then 2(π−1) ≥ 4 and V (C)∪V (Q) induces an even 3PC(1, i+1) in
B(C). If n = 3 then i = 2. Hence B1 ∪B2 ⊆ L2 and {u(r), u(s), z(r), z(s)} ⊆ L2.
It follows that V (C)∪{2} induces a C-wheel with four spokes in B(C). In either
case the fact that C is quasi-graphical is contradicted.

Case (c): h = 1 �= j. Let z(r) ∈ Lr∩B1 and z(s) ∈ Ls∩Bj . As i �= j and i �= n,
possibly after renumbering, we may suppose that i < j. Let (see Figure 2(b))

D1 = {z(s), j + 1, vj+1, . . . , vn, 1, z(r)}, D2 = {2, v2, . . . , vi−1, i},

D3 = {i + 1, vi+1, . . . , vj−1, j}.
We claim that j = i+1. For, if not, D1∪{r, u(r)}∪D3 induces a hole C in B(C)
and V (C)∪{s, u(s)} is a 3PC(i+1, z(s)), contradicting that C is quasi-graphical.
Hence D3 = {i + 1}. Next we claim that i = 2. For, if not, z(r) �∈ Li because
z(r) ∈ B1 and L1 and Li are not consecutive. Hence z(r) and i are not adjacent in
B(C). Thus D1∪{r, u(r), i, u(s), s} induces a hole C in B(C) and i+1 has exactly
three neighbors on C, namely, u(r), u(s) and z(s) (Figure 2(c)). Therefore (C, i+
1) is an odd wheel in C contradicting that C is quasi-graphical. We conclude that
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i = 2 and, consequently, that D2 = {2} and D3 = {3}. Let now C be the hole
induced by {1, z(r), 2, u(r), 3, z(s), . . . , n, vn} (Figure 2(d)). Since Lr intersects
B1 and B2 it follows that Lr must intersects some Sj with j �= 2. For, if not,
Lr would be included in L2 and [P ] would not be a clutter contradicting that
[P ] is a deletion minor of the clutter C. Thus there is some q ∈ Lr ∩ Sj for some
j ∈ N−{2}. Suppose first that j �= 3 and let D = {z(s), . . . j, q, r, u(r), 2, u(s), s}.
Clearly D induces a hole C′ in B(C). Since 3 has exactly three neighbors on C′,
namely, z(s), u(s) and u(r) it follows that (C′, 3) is an induced odd wheel in B(C)
(Figure 2(e)). Thus j = 3. Let now D = D1 ∪ {r, q, 3}. The graph C′ induced
by D is still a hole. Moreover, 2 and u(s) have each exactly one neighbor on C,
namely, z(r) and 3, respectively. Since u(s) and 2 are adjacent in B(C) it follows
that V (C′) ∪ {2, s} induces a 3PC(z(s), 3) in B(C) (Figure 2(f)). We conclude
that case (c) cannot occur and this completes the proof of the lemma. ��

Proof of the Theorem. Let P = (Lj j ∈ N) be a pie in the quasi-graphical clutter
C = (LJ | j ∈ P ) where, N = {1 . . . , n} ⊆ P = {1, . . . , p} and, possibly after
renumbering, Li and Lj are consecutive in P if and only if |i − j| ∈ {1, n − 1}.
Observe first that κN (t) must be zero for some t ∈ N∗ otherwise C would
contain an odd pie as minor contradicting the hypotheses of the Theorem. To
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Fig. 2. (a): the odd wheel in Lemma 2; (b)÷(f): the various cases occurring in part (c)
of Lemma 5. Solid lines represent edges and dotted lines represent paths.
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Fig. 3. (a): a Venn-representation of the Q6 clutter; (b): Lemma 4, (red) boxes are
(possibly) elements of Ls; (c): the factorization on the r.h.s of (3)

see this let us argue as follows. By Lemma 2 if κN (s) > 0 for each s ∈ N∗ then
κN (s) = 2 for each s ∈ N∗. For j = 1, . . . , n let vj be such that δ(v) ⊆ δ(vj)
for each v ∈ Bj . Thus |Ls ∩ {v1, . . . , vk}| = 2 for each s ∈ N∗. It follows that
[P ]/(V (P) − {v1, . . . , vn}) is an n-pie. A contradiction. Hence κN(t) = 0, for
some t ∈ N∗. By Lemma 3 either

–case (a) Lt ⊆ LjΔLj+1 for some t ∈ N∗ and some j ∈ N ; or
–case (b) n = 3, N∗

0 = {t} and κN (s) = 2 for each s ∈ N∗ − {t}.

In case (a), since Lt ⊆ LjΔLj+1 ⊆ Lj ∪Lj+1 and [P ] is a clutter, it follows that
Lt meets both Lj and Lj+1. Thus Q = {Lj, Lj+1, Lt} is a 3-pie with index set
{j, j + 1, t}. Possibly after relabelling the members of C we may suppose that
j = 1, and t = 3. Hence Q is a 3-pie in C whose index set is M = {1, 2, 3} and
where M∗ is the index set of [Q]. By Lemma 2 one has κM (s) = 0 for some
s ∈ M∗ otherwise, as above, [Q] (and hence C) would contain an odd pie minor.
Therefore Ls ⊆ L1ΔL2ΔL3 for some s ∈ M∗. Thus Ls ⊆ (L1ΔL2)−L3 (because
Lt ⊆ LjΔLj+1). Hence Ls ∩ Lt = ∅ and the theorem is proved in case (a) with
F0 = Ls and F1 = Lt.

Suppose we are in case (b). We show that [P ] contains the Q6 clutter as minor.
Let A1 = Lt ∩ L1, A2 = Lt ∩ L2 and A3 = Lt ∩ L3 (see Figure 3 (c)). We claim
that

Ls ⊆ A1 ∪ A2 ∪ A3 ∪ B1 ∪ B2 ∪ B3 for every s ∈ N∗ − {t}. (3)

To see (3) suppose that it does not hold. Thus there exists some v in Li ∩
Ls − (Li+1 ∪ Li+2 ∪ Lt) for some i ∈ N and some s ∈ N∗ − {t}. Observe
that Li+1, Li+2 and Lt are members of [P ] \ v. Since N∗

0 = {t}, it follows
that Q = {Li+1, Li+2, Lt} is a 3-pie in [P ] \ v and hence in [P ] and C. Let
M = {i + 1, i + 2, t}, be the index set of Q where i + 1 and i + 2 are modulo
3 and let M∗ be the index set of [Q]. Remark that [Q] is a minor of [P ]. For
no r ∈ P member Lr can be contained in Li+1ΔLi+2ΔLt otherwise any such
member either would be contained in one among S1 ∪ S2, S1 ∪ S3 and S2 ∪ S3

contradicting that we are in case (b) or r ∈ N∗
0 and r �= t contradicting Lemma 3.
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Hence κM (s) = 2 for each s ∈ M∗ and, as above, [Q] contains an odd pie as
minor contradicting the hypotheses of the theorem. Thus we conclude that (3)
holds. Next we claim that

N∗ = N ∪ {t}. (4)

To prove (4) let us argue as follows. Since κN(s) = 2 for all s ∈ N∗ − {t} it
follows that for each s ∈ N∗ − {t} there is i ∈ N such that Ls wraps i and
meets Lt (by (3)). By Lemma 4, Ls ∩Ai+1 and Ls ∩Ai+2 are both empty (i + 1
and i + 2 are modulo 3). Therefore (still by (3)) Ls ⊆ Ai ∪ Bi ∪ Bi+2 ⊆ Li.
Thus s = i (because [P ] is a clutter) and N∗ = {1, 2, 3, t}. Hence (4) holds and
[P ] = {L1, L2, L3, Lt}.

Let now ai and bi be arbitrarily chosen elements in Ai and Bi, respectively
(i = 1, 2, 3). Thus, for j ∈ N ∪ {t}, Lj ∩ {a1, a2, a3, b1, b2, b3} is one of the four
members of the Q6 clutter. Hence [P ]/(V (P) − {a1, a2, a3, b1, b2, b3}) is the Q6

clutter and the proof of part (b) is completed. ��
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