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Abstract. The Longest Common Subsequence (LCS) of two strings A
and B is a well studied problem having a wide range of applications.
When each symbol of the input strings is assigned a positive weight the
problem becomes the Heaviest Common Subsequence (HCS) problem. In
this paper we consider a different version of weighted LCS on Position
Weight Matrices (PWM). The Position Weight Matrix was introduced as
a tool to handle a set of sequences that are not identical, yet, have many
local similarities. Such a weighted sequence is a ‘statistical image’ of
this set where we are given the probability of every symbol’s occurrence
at every text location. We consider two possible definitions of LCS on
PWM. For the first, we solve the weighted LCS problem of z sequences
in time O(znz+1). For the second, we prove NP-hardness and provide
an approximation algorithm.

1 Introduction

The Longest Common Subsequence problem, whose first famous dynamic pro-
gramming solution appeared in 1974 [14], is one of the classical problems in
Computer Science. The widely known string version appears in Definition 1.

Definition 1. The String Longest Common Subsequence (LCS) Problem:
Input: Two strings A, B of length n over alphabet Σ.
Output: The length of the longest subsequence common to both strings.

The LCS problem has been very well studied. For a survey, see [5]. The problem
is mainly motivated in measuring the similarity over the input strings. An imme-
diate example from computational biology is measuring the commonality of two
DNA molecules or proteins, which may yield functional similarity between them.
The well known dynamic programming solution [7] requires a running time of
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O(n2), for two input strings of length n. The LCS problem had also been in-
vestigated on more general structures such as trees and matrices [2], run-length
encoded strings [4], and more.

Another structure, useful in molecular biology, is the weighted sequence. This
is defined as a sequence S = s1, .., s|S| where a value is associated to every si,
i = 1..|S|. While comparing two weighted sequences we define a weight function,
W , assigning a value to every possible match between two characters one from
the first sequence and the other from the second sequence. The LCS variant
for these weighted sequences aims at maximizing the weight of the common
subsequence, instead of its length as hereafter defined:

Definition 2. The Heaviest Common Subsequence (HCS) Problem:
Input: Two strings A = a1..an, B = b1..bn of length n over alphabet Σ and a

weight function W : ai × bj → N .
Output: A common subsequence of length l ai1 ..ail

= bj1 ..bjl
maximizing the sum

∑l
k=1 W (aik

, bjk
)

Note that in contrast to sequence alignment problem, where we have a single
weight for the matching of two characters, in the HCS problem the weight of the
match depends on the position of the symbols in the input sequences as well as
on the characters themselves.

Recently, another model of weighted sequences was introduced in which, at
each position of the sequence, any symbol of the alphabet can occur with a cer-
tain probability. To prevent ambiguity, we refer to such sequences as p-weighted
sequences, though in the literature they are both named weighted sequences.

Definition 3. ([9]) A p-weighted sequence A = a1..an over alphabet Σ, is a
sequence of sets ai, 1 ≤ i ≤ n. Every ai is a set of pairs (sj , πi(sj)), where
sj ∈ Σ and πi(sj) is the probability of having symbol sj at location i.

Formally, ai = {(sj , πi(sj)) | sj �= sl for j �= l, and
∑

j πi(sj) = 1}.
The concept of p-weighted sequences was introduced as a tool for motif discovery
and local alignment. A weighted sequence is called in the biological literature a
“Position Weight Matrix” (PWM) [12]. A p-weighted sequence of length m is a
|Σ| × m matrix that reports the frequency of each symbol in a finite alphabet
Σ for every possible location.

The first usage of PWM sequences was for relative short sequences, for exam-
ple binding sites, sequences resulting from multiple alignment etc. Iliopoulos et.
al. [9] considered building very large Position Weight Matrices that correspond,
for example, to complete chromosome sequences that have been obtained using
a whole-genome shotgun strategy [13]. By keeping all the information the whole-
genome shotgun produces, it is possible to ferret out information that has been
previously undetected after being faded during the consensus step. This concept
is true for other applications where local similarities are thus encoded. There-
fore, the necessity of developing adequate algorithms for p-weighted sequences
increases.

It is natural to extend the LCS definition to p-weighted strings as a means
of measuring their similarity. However the PWM model deals with probabilities,
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thus values smaller than 1 are multiplied as a subsequence is extended. The
heaviest common p-weighted subsequence will always be of length 1, since every
added symbol reduces the total weight. Therefore, we define a new but related
problem named Longest Common Weighted Subsequence, in which the weight is
allowed to decrease till a certain bound, and under this restriction the longest
common subsequence is sought.

The bound is set according to the certainty level required in the applica-
tion. Since we consider two p-weighted sequences, we differentiate between their
probabilities by denoting πA

i the probability of occurring at the ith location of
sequence A. The formal definition appears below.

Definition 4. The Longest Common Weighted Subsequence (LCWS)
Problem:
Input: Two p-weighted strings A, B of length n over alphabet Σ,

and a constant α, 0 < α ≤ 1.
Output: The maximal l such that there is a common subsequence of length l,

ai1 ..ail
= bj1 ..bjl

, where
∏l

y=1(π
A
iy

(aiy ) · πB
jy

(bjy )) ≥ α.

Though the LCWS problem seems natural for the position weighted matrices
input, in case the probabilities of the characters of one input sequence are far
from being uniformly distributed, the results may be biased and not reflect a
real relation between the weighted sequences. In order to prevent this effect,
and obtain informative results we suggest an additional definition to the LCWS
problem, Longest Common Weighted Subsequence with two thresholds, referred
to as LCWS2. In the LCWS2 problem, a separate probability bound is set for
each of the p-weighted sequences.

Definition 5. The Longest Common Weighted Subsequence 2 (LCWS2)
Problem:
Input: Two p-weighted strings A, B of length n over alphabet Σ,

and constants α1, α2, 0 < αi ≤ 1.
Output: The maximal l such that there is a common subsequence of length l,

ai1 ..ail
= bj1 ..bjl

, where
∏l

y=1 πA
iy

(aiy ) ≥ α1 AND
∏l

y=1 πB
jy

(bjy) ≥ α2.

In real-world applications it is rarely the case that one needs to compare only two
data instances. Rather, it is important to be able to compare multiple sequences.
Consequently, we generalize the LCWS problems to multiple sequences and show
that our algorithm generalizes in the natural way.

This paper is organized as follows: Section 2 describes related work. The
LCWS problem solution and its extension appear in Section 3. We consider the
LCWS2 problem and its hardness in Section 4. Section 5 concludes the paper
and poses some open questions.

2 Related Work

Jacobson and Vo [10] solved the Heaviest Common Subsequence problem by
reducing it to the Heaviest Increasing Subsequence problem (HIS). Their algo-
rithm for the Heaviest Common Subsequence runs in O((r+n) log n) time, where
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r is the number of matches between A and B and n is the length of the input
sequences. For small alphabets with a uniform distribution, the time may be
O(n2 log n). Recently Li [11] gave a linear space algorithm for the HCS problem.

Regarding the p-weighted sequences, Iliopoulos et al. [8] defined the problem
of longest common substring of p-weighted sequences, where the common se-
quence is consecutive. They suggested solving the problem using a p-weighted
generalized suffix tree, in which the longest branch common to both strings is
the answer. Their problem is a special case of the LCWS problem.

Amir et. al. [1] showed some conditions where p-weighted matching problems
can be reduced to ordinary pattern matching problems. In their model, the
probability is fixed, and the text is p-weighted while the pattern is an ordinary
string. Both these assumptions are not valid for the LCWS problem.

Finally, Amir et. al. [3] have defined weighted Hamming and edit distances.
Although edit distance and LCS are known to be related, our model and that of
[3] are different in that they consider a p-weighted text and a regular pattern.
The case of Amir et. al. [3] is the special case in our model where all probabilities
of the sequences equal one.

3 Longest Common Weighted Subsequence (LCWS)

The resemblance between the HCS and LCWS problems lies in the weight de-
mands on the common subsequence. However, there is a substantial difference
between the problems. The HCS maximizes a single parameter – the weight –
whereas the LCWS maximizes the length under a weight restriction.

The weight bound does force the algorithm to maximize the weight at every
step, yet not as a goal but rather as a byproduct. Consider the example in Fig. 1.
Let the associated weight function of the HCS be multiplying the probabilities
of the symbols, as given in the third table. The HCS result will be a common
subsequence of length one, obtained from matching a1 to b3, with weight 56/81.
Nevertheless, the LCWS for α = 1/9 will return length 2 obtained from matching
a2 to b1 and a3 to b2, which has a lower probability (weight) yet respects the
threshold and yields a longer subsequence.As a consequence, a new method for
solving the Longest Common Weighted Subsequence problem is required.

We present a dynamic programming algorithm for the LCWS problem. We
construct a two dimensional table, where the columns represent the characters of
the A sequence, and the rows refer to the characters of sequence B. A character in
a p-weighted sequence is a table containing all symbols of Σ and the probability
of appearing at that location.

As above mentioned, the core of the LCWS problem is maximizing the LCS
length under a weight restriction. Consequentially, we cannot save at every entry
merely the highest probability achieved so far as it may, in the future, degrade
below α and would have to be discarded. We therefore save at entry i, j, for
every possible length, the highest probability of a common subsequences that
can be obtained from A[1..j] and B[1..i]. We denote the variables containing
this information by lki,j , where k represents the length of the common subse-
quence. Saving these probabilities, when some lki,j is too small, we still have the
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A
ΠA

1 (0) = 1/9 ΠA
2 (0) = 2/3 ΠA

3 (0) = 2/3
ΠA

1 (1) = 8/9 ΠA
2 (1) = 1/3 ΠA

3 (1) = 1/3

a1 a2 a3

B

b1 b2 b3

ΠB
1 (0) = 1/2 ΠB

2 (0) = 2/3 ΠB
3 (0) = 2/9

ΠB
1 (1) = 1/2 ΠB

2 (1) = 1/3 ΠB
3 (1) = 7/9

prob(ai, bj) a1 a2 a3

b1 4/9 1/3 1/3
b2 8/27 4/9 4/9
b3 56/81 7/27 7/27

Fig. 1. An example of two p-weighted sequences

information regarding lk−1
i,j , which may increase its length in future steps and

still exceed α in weight.
As each position in a p-weighted sequence consists of |Σ| symbols and their

probabilities, when considering the matching of ai and bj we compute for each
symbol σ ∈ Σ the product πA

i (σ)πB
j (σ) and select the highest value. We de-

note the selected value of entry i, j as besti,j and save the symbol yielding this
probability.

We can fill the dynamic programming table in row-major order. Computing an
entry i, j implies computing the most probable common subsequence of A[1..j]
and B[1..i] of length k, 1 ≤ k ≤ min{i, j}. Considering lki,j , the correlated
subsequence can be constructed by matching the aj and bi, selecting their best
symbol, and by this extending a smaller subsequence, or by matching one of bi

and aj to a previous character from the counterpart sequence. Lemma 1 formally
defines the computation required for filling an entry in the dynamic programming
table.
Lemma 1

LCWS(B[1..i], A[1...j])={lki,j}min{i,j}
k=1 =max{lki,j−1, lki−1,j , besti,j ·lk−1

i−1,j−1}.
Proof: An LCWS entry contains probabilities of most probable common sub-
sequences of length k. k must start from 1, which means that only a single
element was used for the common subsequence, and is bounded by the length
of the longest possible common subsequence of A[1..j] and B[1..i], implying it
cannot exceed min{i, j} .

Computing a certain lki,j = x we will prove the optimality of x inductively
on i, j. The base case is l11,1 when the common subsequence consists of a single
symbol obtained by matching b1 to a character from a1. Obviously best1,1, yields
the proper value.

Consider now lki,j . Suppose to the contrary, that the values of lki′,j′ , i′ < i, or
j′ < j are optimal, but x is not the optimal probability of a common subsequence
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of length k of A[1..j] and B[1..i], implying there exists another common subse-
quence of length k with probability x′ such that x < x′. The x′ subsequence can
be either obtained by a previous computed subsequence not including a match of
A[j] and B[i], or by adding the current match to a k−1 common subsequence of
B[1..f ] and A[1..h]. In the former case, the x′ subsequence can include a match
of B[i], a matching of A[j] or neither of them. Since lki,j maximizes the values
of lki−1,j , lki,j−1, the assumption implies that there exists another subsequence of
length k with probability x′ where max{lki−1,j , lki,j−1} < x′ contradicting the in-
duction hypothesis of optimal value of lki′,j′ , i′ < i, or j′ < j. Note, that lki−1,j−1

needs no separate discussion, as it is considered when computing both lki−1,j ,
lki,j−1.

The second possible case where the common subsequence has probability x′,
includes matching A[j] and B[i]. The fact that x < x′ yields besti,j · lk−1

i−1,j−1 <

besti,j· lk−1
f,h , f < 1, h < j, contradicting the optimality of lk−1

i−1,j−1, therefore this
possibility is impossible as well.

We can fill the whole table and then go over {lkn,n} in decreasing order of k, and
check whether lkn,n ≥ α. The first value satisfying the inequality, the relevant
k is returned, as the length of the longest common subsequence under the α
demands.

An example of a LCWS table where α = 0.002 appears in Fig. 2.
Filling the table in this fashion implies computing every entry of the table

requires O(n + |Σ|) time for finding the best symbol and all O(n) relevant prob-
abilities, using Lemma 1. So the time complexity is O(n3 + |Σ|n2).

πA
1 (a) = 0.5 πA

2 (a) = 0.3 πA
3 (a) = 0.1 πA

4 (a) = 0.4 πA
5 (a) = 0.3

πA
1 (b) = 0.4 πA

2 (b) = 0.2 πA
3 (b) = 0.1 πA

4 (b) = 0.3 πA
5 (b) = 0.7

πA
1 (c) = 0.1 πA

2 (c) = 0.5 πA
3 (c) = 0.8 πA

4 (c) = 0.3 πA
5 (c) = 0

πB
1 (a) = 0.2 (best - 0.16) (best - 0.2) (best - 0.32) (best - 0.12) (best - 0.28)

πB
1 (b) = 0.4 l1 ↘[b].16 l1 ↘[c].2 l1 ↘[c].32 l1 →[c] .32 l1 →[c] .32

πB
1 (c) = 0.4

πB
2 (a) = 0.5 (best - 0.25) (best - 0.2) (best - 0.32) (best - 0.2) (best - 0.15)

πB
2 (b) = 0.1 l1 ↘ [a].25 l1 → [a].25 l1 ↘[c].32 l1 →[c].32 l1 →[c].32

πB
2 (c) = 0.4 l2 ↘[bc].032 l2 ↘[cc].064 l2 ↘[ca].064 l2 →[ca].064

(best - 0.36) (best - 0.18) (best - 0.09) (best - 0.27) (best - 0.63)
πB

3 (a) = 0 l1 ↘[b].36 l1 →[b].36 l1 →[b].36 l1 →[b].36 l1 ↘[b].63
πB

3 (b) = 0.9 l2 ↘[ab]0.045 l2 ↓[cc].064 l2 →[cc].064 l2 ↘[cb].2016
πB

3 (c) = 0.1 l3 ↘[bcb].0029 l3 ↘[ccb].0173 l3 ↘[cab].0403

(best - 0.3) (best - 0.18) (best - 0.24) (best - 0.24) (best - 0.18)
πB

4 (a) = 0.6 l1 ↓[b].36 l1 →[b].36 l1 →[b].36 l1 ↓[b]0.36 l1 ↓[b].63
πB

4 (b) = 0.1 l2 ↘[ba].0648 l2 →[ba].0648 l2 ↘[ba].0864 l2 ↓[cb].2016
πB

4 (c) = 0.3 l3 ↘[abc].0108 l3 ↓[ccb].0173 l3 ↓[cab].0403
l4 ↘ —— l4 ↘[ccba].0031

Fig. 2. A LCWS Table
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The space required is O(n2). Though each of the n2 entries contains O(n)
probabilities and their origin. Nevertheless, due to Lemma 1, during the com-
putation of lki,j we need only the cells adjacent to the current. Therefore when
filling the hth row we keep only rows h, h− 1 in the memory. As a consequence,
at each step we save only O(n) activated entries implying the space requirement
is O(n2).

The time complexity can be improved if we note that the dependency on adja-
cent entries holds for each of the lki,js separately. In other words, we do not have
to compute lki,j for all possible ks in the same iteration. We suggest improving
the algorithm, by filling the table layer after layer. After the initialization of l1i,j
with besti,j values, at every step, we will have lki,j , for a single k, computed for
the entire table, and we will compute lk+1

i,j , as these computation will be possible,
according to Lemma 1.

At the end of iteration k+1, we check whether lk+1
n,n ≥ α. In case the inequality

is valid we consider k + 1 as a possible answer, as we have just found that
there exists a common subsequence of this length with a proper probability. We
continue to compute lk+2

i,j s and discard all lki,js, as their information is useless
from now on.

If the contrary holds and lk+1
n,n < α we return k as the length of the longest

common weight subsequence, as lk+1
n,n contains the highest probability of a com-

mon subsequence of length k + 1, due to Lemma 1. In case its probability is less
than expected, there would be no other common subsequence of length k + 1 or
more respecting the weight demand.

Theorem 1. The LCWS problem is solvable in O(Ln2) time and O(n2) space,
where L is the length of the longest common weighted subsequence of the input.

Proof: The Algorithm stops after an iteration in which the weight bound is not
respected. Therefore the number of iterations performed is L + 1. In each of
them lki,j is computed for all n2 entries of the table. This computation involves
a constant number of operation, as detailed in Lemma 1. In a addition, besti,j
is determined once in time O(|Σ|n2).

All in all we have O((L + |Σ|)n2) time requirements. Since in most usages
of the Position Weight Matrix, |Σ| is rather small, and actually a constant, the
time complexity is converted to O(Ln2).

Regarding space, at each iteration we consider two probabilities lki,j and lk+1
i,j .

As the table consists of n2 entries, we get space requirement of O(n2).

4 Longest Common Weighted Subsequence with Two
Thresholds (LCWS2)

The LCWS2 problem, defined in Section 1, in which the probability of the com-
mon subsequence in each of the sequences, must exceed its αi threshold cannot
be solved in the same manner as the LCWS is solved. This is due the difference
between the problems that can be intuitively summarized by the following two
observations.
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Observation 1. The LCWS problem allows its optimal solution to consider at
every step increasing prefixes of the input strings.

Proof: The dynamic programming solution has a single possible direction of
enlarging the substrings to which it computes their LCWS, since all probabili-
ties are associatively multiplied together. Therefore, computing LCWS(A[1, i],
B[1, j]) depends merely on the LCS of prefixes of A and B shorter by one or
zero symbols.

Observation 2. It does not seem sufficient to consider at every step increas-
ing prefixes of the input strings in order to obtain an optimal solution for the
LCWS2 problem.

Intuition: In this problem we execute two distinct probability multiplications
and want to obtain the longest common subsequence satisfying the thresholds
demand. Consequentially, we would like to multiply high probabilities in both
sides. In case the current characters A[i], B[j] agree, i.e., a single symbol, σ ∈ Σ,
whose probability is highest for both positions, then adding this symbol as the
match of the characters does not change the invariant of optimal solution so far.

However, when A[i], B[j] do not agree, where there is a σ1 whose probabil-
ity is maximal in A[i] but σ2 �= σ1 has maximal probability in B[j], it is not
clear which symbol one should choose for the common subsequence. It may be
more profitable to choose σ1, even causing the B probability to decrease a lot,
since later on a reversed case will occur and balance the probabilities. It, there-
fore, seems intuitive that local considerations do not suffice for computing the
LCWS2 problem. This intuition is proven in the next subsection.

4.1 LCWS2 Is NP-Hard

We prove that the LCWS2 problem is NP-hard for unbounded alphabets. To
this aim we define the CWS2 decision version:

Definition 6. The Common Weighted Substructure with 2 thresholds
(CWS2):
Input: Two p-weighted strings A, B of length n over alphabet Σ,

and constants L, α1, α2, 0 < αi ≤ 1.
Output: Does there exists a common weighted subsequence of length L, where

ai1 ..aiL=bj1 ..bjL , where (
∏L

y=1 πiy (aiy ))≥α1 AND (
∏L

y=1 πiy (bjy ))≥α2.

Theorem 2. The LCWS2 problem is NP-hard.

Proof: We prove the hardness using a Turing reduction from the Partition
problem.

Definition 7. The Partition problem: [6]
Input: A finite set S and a “value” v(s) ∈ Z+ for each s ∈ S.
Output: Is there a subset S′ ⊆ S such that

∑
s∈S′ v(s) =

∑
s∈S−S′ v(s) ?
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Lemma 2. Partition ≤p
T CWS2.

Given set S = s1, s2, ..., sn of integers, we construct two weighted sequences
A = A1..An, B = B1..Bn both over alphabet of size n + 2. In addition we need
to set a pair of thresholds α1, α2 and L.

Observation 3. The requirement that the product of the probabilities of the
common sequence be higher than αi is equivalent to demanding that the sum of
the logarithm of the probabilities will be higher than log αi.

Proof: The observation is a direct result of the fact that the logarithm of a
product equals the sum of logarithms. A special case is a zero probability that
is converted to infinity. Note that the logarithms of probabilities are all negative
numbers. We can simply invert the signs of all numbers, making them all positive,
and require adding as many numbers as possible without exceeding (the inverted)
log αi.

We are now ready to define the reduction. Given a set S = {s1, ..., sn}, we
set alphabet of the LCWS2 problem to be Σ = {σ1, ..., σn+2}. We define two
p-weighted sequences, A and B, of length n. By definition 3, location i in a
p-weighted sequence is the set of all pairs (σ, πi(σ)), where σ ∈ Σ and πi(σ) is
the probability of having symbol σ at location i. We define the probabilities of
the symbols of Σ in the following manner.

Let sum =
∑

s∈S s, the sum of all elements of S.

πA
i (σj) =

⎧
⎨

⎩

si j = i
xi j = n + 1
∞ otherwise

πB
i (σj) =

⎧
⎨

⎩

sum − si j = i
yi j = n + 2
∞ otherwise

The value of xi is such that 2−si + 2−xi = 1, and the value of yi is such that
2si−sum +2−yi = 1. They are necessary because in each location there is a single
element with probability non-zero, thus we need to add a probability that, with
it, will add up to 1.

Obviously the construction is done in polynomial time in the size of n, as
|Σ| = n+2. For an example of the construction for set S = {6, 3, 4, 7} see Fig. 3.

From the probabilities definition we get that the only possible symbols that
can potentially be chosen for any weighted LCS with finite threshold are choosing
σi of ai with σi of bi for 1 ≤ i ≤ n.

We proceed with the Turing reduction. we perform up to n/2 iterations. In
the ith iteration we set α1 = sum/2, α2 = sum · (i − 1/2), and L = i. We check
whether there is a CWS2 with these parameters. If the answer is negative we
increment i by one and start a new iteration. If no CWS2 was found after the
n/2 iteration we terminate the search. If there is a CWS2 in iteration i, we
declare a partition of S into sizes i and n − i.

Claim. A partition of S into size i and n − i exists iff a CWS2 of length i was
found on the ith iteration.
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A =

πA
1 (a) = 6 πA

2 (a) = ∞ πA
3 (a) = ∞ πA

4 (a) = ∞
πA

1 (b) = ∞ πA
2 (b) = 3 πA

3 (b) = ∞ πA
4 (b) = ∞

πA
1 (c) = ∞ πA

2 (c) = ∞ πA
3 (c) = 4 πA

4 (c) = ∞
πA

1 (d) = ∞ πA
2 (d) = ∞ πA

3 (d) = ∞ πA
4 (d) = 7

πA
1 (e) = x1 πA

2 (e) = x2 πA
3 (e) = x3 πA

4 (e) = x4

πA
1 (f) = ∞ πA

2 (f) = ∞ πA
3 (f) = ∞ πA

4 (f) = ∞

B =

πB
1 (a) = 14 πB

2 (a) = ∞ πB
3 (a) = ∞ πB

4 (a) = ∞
πB

1 (b) = ∞ πB
2 (b) = 17 πB

3 (b) = ∞ πB
4 (b) = ∞

πB
1 (c) = ∞ πB

2 (c) = ∞ πB
3 (c) = 16 πB

4 (c) = ∞
πB

1 (d) = ∞ πB
2 (d) = ∞ πB

3 (d) = ∞ πB
4 (d) = 13

πB
1 (e) = ∞ πB

2 (e) = ∞ πB
3 (e) = ∞ πB

4 (e) = ∞
πB

1 (f) = y1 πB
2 (f) = y2 πB

3 (f) = y3 πB
4 (f) = y4

Fig. 3. The constructed sequences, according to the set {6, 3, 4, 7}

Proof: (⇒) Suppose there is a partition of S into two subsets S1 =
{sg1 , sg2 , .., sgi} and S2. As S1 is a subset of the partition we know that
the

∑
sg∈S1

sg = sum/2. Consequently, considering the g1, g2, ...gi characters
of A and their corresponding symbol as the common subsequence, their log
probabilities will sum up to α1 = sum/2. Due to the probabilities alloca-
tion in our construction, we are bound to select the same indices g1, ...gi in
the counterpart sequence B. Note that adding their new probabilities we get,
sum−sg1+sum−sg2+...+sum−sgi = i·sum−∑

sg∈S1
sg = isum−1/2sum = α2.

All in all, the existence of a partition of subsets i, n− i in the set, implies a com-
mon subsequence of length i respecting the thresholds.

Clearly, there cannot be a longer CWS2, as addition of a single character to
the common subsequence implies adding to the calculations of both sequences
altogether sum, which result in (i+1)sum while the sum of αis is merely i ·sum.

(⇐) We perform up to n/2 iterations. In the ith iteration we check whether
there is a CWS2 of length i. In case the answer is negative we increment i by
one and start a new iteration. If no CWS2 was found after the n/2 iteration we
terminate the search, as the largest size of the smaller subset of the partition is
n/2, so we have covered all relevant sizes.

Suppose we find a CWS2 of length i, where the common weighted subse-
quence is Ag1 , Ag2 , ..., Agi . Due to the construction, the common subsequence
will appear in B at the same indices as in A. Obtaining the CWS2 implies
that

∑i
k=1 πA

gk
(σgk

) ≤ sum/2 and due to the construction we get sg1 + ... +
sgi ≤ sum/2. In addition, the occurrence of the CWS2 in B implies that
∑i

k=1 πB
gk

(σgk
) ≤ sum(i − 1/2) which means that sum− sg1 + ... + sum− sgi =

i·sum−(sg1+...+sgi) ≤ sum(i−1/2). Since we have just claimed that the sum of
the chosen numbers from set S are less than or equal to sum/2, subtracting it from
i · sum we get a result greater or equal to sum(i−1/2), contradicting the require-
ment of not exceeding α2. Hence, it must be the case that sg1 + ...+ sgi = sum/2.
Thus, these numbers form a subset of the partition problem.

The above lemma concludes the proof of the theorem.
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4.2 Approximation Algorithm

Having proved that the LCWS2 problem for unbounded Σ is NP-hard, we
provide an approximation algorithm LCWS2A.

The approximation algorithm considers each symbol σ ∈ Σ separately. For a
fixed σ ∈ Σ, let i1, ..., ik be the indices of the longest possible sequence of σ’s
in A such that Πk

�=1π
A
i�

(σ) ≥ α1, and let j1, ..., jm be the indices of the longest
possible sequence of σ’s in B such that Πm

�=1π
B
j�

(σ) ≥ α2. Take the minimum of
k and m as counterσ.

Choose the symbol σ with the largest counterσ and output σcounterσ .

Observation 4. The approximation algorithm requires time O(|Σ|n log n).

Proof: The input is a p-weighted sequence of length n, where each character
contains Σ probabilities. We therefore construct Σ lists of length at most n and
we sort each list.

Theorem 3. The approximation ratio of LCWS2A is 1
|Σ| .

Proof: Suppose the optimal length of the LCWS2 is OPT , and that the LCWS2A

algorithm returned counteri. This implies that the symbol that can be repeated
most frequently, without decreasing beneath the thresholds is σi. The optimal so-
lution to the LCWS2 problem suggested by the OPT algorithm may include sev-
eral symbols. Let σj be the most frequent symbol in the optimal solution. Note that
counterσj ≤ counterσi . In addition, the number of σj ’s in the optimal solution is
at least 1

|Σ|OPT . We get 1
|Σ|OPT ≤ counterσj ≤ counterσi .

5 Conclusions and Open Problems

The main contribution of this paper is in applying the Longest Common Sub-
sequence to a new useful structure. We define the problem of Longest Common
Weighted Subsequence, considering the LCS problem applied to the important
structure of p-weighted sequences. We give two possible definitions to the prob-
lem. For the first, we present a simple dynamic programming algorithm that
generalizes to higher dimensions. For the second we proved NP-hardness for
unbounded alphabets, and described a proper approximation algorithm. It re-
mains unclear what is the actual complexity class of the LCWS2 problem over
unbounded alphabet, since we used a Turing reduction for the hardness proof.
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