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Abstract. A vertex subset D of a graph G is a dominating set if every
vertex of G is either in D or is adjacent to a vertex in D. The paired-
domination problem on G asks for a minimum-cardinality dominating
set S of G such that the subgraph induced by S contains a perfect match-
ing; motivation for this problem comes from the interest in finding a small
number of locations to place pairs of mutually visible guards so that the
entire set of guards monitors a given area. The paired-domination prob-
lem on general graphs is known to be NP-complete.

In this paper, we consider the paired-domination problem on permu-
tation graphs. We define an embedding of permutation graphs in the
plane which enables us to obtain an equivalent version of the problem
involving points in the plane, and we describe a sweeping algorithm for
this problem; if the permutation over the set Nn = {1, 2, . . . , n} defining
a permutation graph G on n vertices is given, our algorithm computes a
paired-dominating set of G in O(n) time, and is therefore optimal.

Keywords: permutation graphs, paired-domination, domination,
algorithms, complexity.

1 Introduction

A subset D of vertices of a graph G is a dominating set if every vertex of G
either belongs to D or is adjacent to a vertex in D; the minimum cardinality
of a dominating set of G is called the domination number of G and is denoted
by γ(G). The problem of computing the domination number of a graph has
received and keeps receiving considerable attention by many researchers (see [11]
for a long bibliography on domination). The problem finds many applications,
most notably in relation to area monitoring problems by the minimum number
of guards: the potential guard locations are vertices of a graph in which two
locations are adjacent if a guard in one of them monitors the other; then, the
minimum dominating set of the graph determines the locations to place the
guards.

The domination problem admits many variants; the most basic ones include:
domination, edge domination, weighted domination, independent domination,
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connected domination, total/open domination, locating domination, and paired-
domination [11,12,13,14,18,30]. Among these, we will focus on paired-domination:
a vertex subset S of a graph G is a paired-dominating set if it is a dominating set
and the subgraph induced by the set S has a perfect matching; the minimum cardi-
nality of a paired-dominating set in G is called the paired-domination number and
is denoted by γp(G). Paired-dominationwas introduced by Haynes and Slater [13];
their motivation came from the variant of the area monitoring problem in which
each guard has another guard as a backup (i.e., we have pairs of guards protecting
each other). Haynes and Slater noted that every graph with no isolated vertices
has a paired-dominating set (on the other hand, it easily follows from the defini-
tion that a graph with isolated vertices does not have a paired-dominating set).
Additionally, they showed that the paired-domination problem is NP-complete on
arbitrary graphs; thus, it is of theoretical and practical importance to find classes
of graphs for which this problem can be solved in polynomial time and to describe
efficient algorithms for its solution.

Trees have been one of the first targets of researchers working on paired-
domination: Qiao et al. [23] presented a linear-time algorithm for computing
the paired-domination number of a tree and characterized the trees with equal
domination and paired-domination number; Henning and Plummer [16] charac-
terized the set of vertices of a tree that are contained in all, or in no minimum
paired-dominating sets of the tree. Kang et al. [17] considered “inflated” graphs
(for a graph G, its inflated version is obtained from G by replacing each vertex
of degree d in G by a clique on d vertices), gave an upper and lower bound for
the paired-domination number of the inflated version of a graph, and described
a linear-time algorithm for computing a minimum paired-dominating set of an
inflated tree. Bounds for the paired-domination number have been established
also for claw-free cubic graphs [9], for Cartesian products of graphs [3], and for
generalized claw-free graphs [7]. An O(n + m)-time algorithm for computing a
paired-dominating set of an interval graph on n vertices and m edges, when an
interval model for the graph with endpoints sorted is available has been given
by Cheng et al. [5]; they also extended their result to circular-arc graphs giving
an algorithm running in O(m(m + n)) time in this case. Very recently, Cheng
et al. [6] gave an O(mn)-time algorithm for the paired domination problem on
permutation graphs.

We too consider the paired domination problem on the class of permuta-
tion graphs, a well-known subclass of perfect graphs. Given a permutation π =
(π1, π2, . . . , πn) over the set Nn = {1, 2, . . . , n}, we define the n-vertex graph
G[π] with vertex set V (G[π]) = Nn and edge set E(G[π]) such that ij ∈ E(G[π])
if and only if (i − j)(π−1

i − π−1
j ) < 0, for all i, j ∈ V (G[π]), where π−1

i is the
index of the element i in π. A graph G on n vertices is a permutation graph
if there exists a permutation π on Nn such that G is isomorphic to G[π] (the
graph G[π] is also known as the inversion graph of G [10]). Therefore, in this
paper, we assume that a permutation graph G[π] is represented by the corre-
sponding permutation π. A lot of research work has been devoted to the study of
permutation graphs, and several algorithms have been proposed for recognizing
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permutation graphs and for solving combinatorial and optimization problems on
them both for sequential computation (see for example [22,26,19,28,21]) as well
as for parallel (see [15,20,24]). Moreover, in addition to the above mentioned re-
sult of Cheng et al. [6] on paired domination, several variants of the domination
problem have been considered on permutation graphs; see [8,2,1,29,25,4,27].

In this paper, we study the paired-domination problem on permutation graphs
following an approach different from that of Cheng et al. [6]. We define an
embedding of permutation graphs in the plane and show that every permu-
tation graph G with no isolated vertices admits a minimum-cardinality paired-
dominating set of a particular form in the embedding of G. We take advantage of
this property to describe an algorithm which “sweeps” the vertices of the embed-
ding from left to right and computes a minimum cardinality paired-dominating
set if such a set exists; if the permutation over the set Nn = {1, 2, . . . , n} defin-
ing a permutation graph on n vertices is given, our algorithm runs in O(n) time
using O(n) space. Since for a permutation graph, a defining permutation can be
computed in O(n + m) time [19], our algorithm is optimal.

2 Theoretical Framework

We consider finite undirected graphs with no loops or multiple edges; for a
graph G, we denote its vertex and edge set by V (G) and E(G), respectively.

Let π = (π1, π2, . . . , πn) be a permutation over the set Nn = {1, 2, . . . , n}. A
subsequence of π is a sequence α = (πi1 , πi2 , . . . , πik

) such that i1 < i2 < · · · < ik.
If, in addition, πi1 < πi2 < · · · < πik

, then we say that α is an increasing
subsequence of π.

A left-to-right maximum of π is an element πi, 1 ≤ i ≤ n, such that πi > πj for
all j < i. The first element in every permutation is a left-to-right maximum. If the
largest element is the first, then it is the only left-to-right maximum; otherwise
there are at least two (the first and the largest). The increasing subsequence
α = (πi1 , πi2 , . . . , πik

) is called a left-to-right maxima subsequence if it consists
of all the left-to-right maxima of π; clearly, πi1 = π1. For example, the left-to-
right maxima subsequence of the permutation (4, 2, 6, 1, 9, 3, 7, 5, 11, 12, 8, 10) is
(4, 6, 9, 11, 12).

The right-to-left minima subsequence of π is defined analogously: α′ = (πj1 ,
πj2 , . . . , πjk′ ) is called a right-to-left minima subsequence if it is an increasing
subsequence and consists of all the right-to-left minima of π, where an element
πi, 1 ≤ i ≤ n, is a right-to-left minimum if πi < πj for all j > i. The last element
in every permutation is a right-to-left minimum, and thus πjk′ = πn. For the per-
mutation (4, 2, 6, 1, 9, 3, 7, 5, 11, 12, 8, 10), the right-to-left minima subsequence is
(1, 3, 5, 8, 10).

We will also be considering points in the plane. For such a point p, we denote
by x(p) and y(p) the x- and y-coordinate of p, respectively.

An Embedding of Permutation Graphs. Given a permutation π over the
set Nn = {1, 2, . . . , n}, we define and use an embedding of the vertices of the
permutation graph G[π] in the plane based on the mapping:
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Fig. 1. (a) The embedding of the permutation graph corresponding to the per-mutation
(4, 2, 6, 1, 9, 3, 7, 5, 11, 12, 8, 10); (b) A minimum paired-dominating set

vertex corresponding to integer i −→ point pi = (i, n + 1− π−1
i ). (1)

We note that similar representations have been used by other authors as well; see
[1,21]. In our representation, all the points pi, 1 ≤ i ≤ n, are located in the first
quadrant of the Cartesian coordinate system and no two such points have the
same x- or the same y-coordinate (see Figure 1(a)). Let Pπ = {p1, p2, . . . , pn}.
The adjacency condition ij ∈ E(G[π]) iff (i−j)(π−1

i −π−1
j ) < 0 (for all i, j ∈ Nn)

for the permutation graph G[π] implies that two points pi and pj are adjacent
iff

(
x(pi)−x(pj)

) · (y(pi)− y(pj)
)

> 0, i.e., the one of the points is below and to
the left of the other. Thus, all the edges have a down-left to up-right direction
(Figure 1(a)).

Due to the bijection between the vertices of the permutation graph and the
points pi, with a slight abuse of notation, in the following, we will regard the
points pi as the vertices of the permutation graph.

In terms of the above embedding, a point pi dominates all points p ∈ Pπ such
that

(
x(p)− x(pi)

) · (y(p)− y(pi)
) ≥ 0, i.e., p is either below and to the left or

above and to the right of pi (the shaded area in Figure 2 (left)). Then,

Definition 1. For any edge e = pipj, where pi, pj ∈ Pπ, the portion of the plane
covered by e is the portion of the plane

{ q ∈ R
2 | (x(q)−x(pi)

) ·(y(q)−y(pi)
) ≥ 0 or

(
x(q)−x(pj)

) ·(y(q)−y(pj)
) ≥ 0 }

dominated by pi or pj.

The part of the plane not covered by e consists of two disjoint open quadrants,
one occupying the upper left corner and the other the bottom right corner.
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To simplify our description, we introduce the following notation (see Figure 2
(right)):

Notation 1. We denote by
C(e) the portion of the plane covered by the edge e and
Q(e) the bottom right quadrant not covered by e.

Moreover, a left-to-right maximum of a permutation π defining a permutation
graph is mapped to a point p ∈ Pπ that is a vertex of the upper envelope of
the point set Pπ

(
i.e., there does not exist a point q ∈ Pπ − {p} for which

x(p) ≤ x(q) and y(p) ≤ y(q)
)
1. For example, the 5 left-to-right maxima of the

permutation defining the graph of Figure 1(a) correspond to the points (4, 12),
(6, 10), (9, 8), (11, 4), and (12, 3). Similarly, a right-to-left minimum is mapped to
a point p ∈ Pπ that is a vertex of the lower envelope of the point set Pπ (i.e., there
does not exist a point q ∈ Pπ−{p} for which x(p) ≥ x(q) and y(p) ≥ y(q)); the 5
right-to-left minima of the graph of Figure 1(a) correspond to the points (1, 9),
(3, 7), (5, 5), (8, 2), and (10, 1) of the lower envelope of Pπ . For convenience, each
point in Pπ corresponding to a left-to-right-maximum (right-to-left minimum,
resp.) of a permutation π will be called a left-to-right-maximum (right-to-left
minimum, resp.) as well.

Finally, the following result helps us focus on solutions to the paired-domina-
tion problem on permutation graphs which are of a particular form, thus enabling
us to obtain an efficient algorithm.

Lemma 1. Let G be an embedded permutation graph with no isolated vertices,
Pπ = {p1, p2, . . . , pn} the corresponding point set (determined by the mapping
in Eq. (1)), and u1, u2, . . . , u� (v1, v2, . . . , v�′ , resp.) be the left-to-right maxima
(right-to-left minima, resp.) of Pπ in order from left to right. Then, for any set A
of edges of G whose endpoints dominate the entire point set Pπ, there exists a
matching M of edges of G such that

1 When such inequalities hold for the coordinates of two points p and q, it is often
said that q dominates p; however, we will avoid using this term so that there is no
confusion with the notion of vertex domination which is central to our work.
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• the endpoints of the edges in M dominate the entire Pπ,
• |M | ≤ |A|, and
• M = {vs1ut1 , vs2ut2 , . . . , vs|M|ut|M|} where s1 < s2 < . . . < s|M| ≤ �′ and

t1 < t2 < . . . < t|M| ≤ �
(i.e., M is a matching which dominates Pπ and consists of at most |A| non-
crossing edges each of which connects a left-to-right maximum to a right-to-left
minimum of Pπ).

Lemma 1 readily implies the following corollary.

Corollary 1. Let G be an embedded permutation graph with no isolated vertices,
and Pπ = {p1, p2, . . . , pn} the corresponding point set. Then, G has a paired-
dominating set of minimum cardinality whose induced subgraph admits a perfect
matching consisting of non-crossing edges of G each of which connects a left-to-
right maximum to a right-to-left minimum.

Such a matching is of the form shown in Figure 1(b). As the edges in such a
matching do not cross, they exhibit an ordering from up-left to bottom-right.

3 The Algorithm

Corollary 1 implies that for every permutation graph with no isolated vertices
there exists a minimum-cardinality paired-dominating set whose induced embed-
ded subgraph admits a perfect matching of the form shown in Figure 1(b); for a
permutation graph G, our algorithm precisely computes a minimum matching M
of (the embedded) G of this form whose endpoints dominate all the vertices of
G. As the edges in such a matching exhibit an ordering from left to right, our
algorithm works by identifying candidates for each edge in M in order from left
to right.

In particular, regarding the leftmost edge in M , we need to have that

• for each candidate e for the leftmost edge, every point in Pπ either is domi-
nated by the endpoints of e or lies in the bottom-right non-covered
quadrant Q(e) of e, i.e,

Pπ lies in C(e) ∪Q(e). (2)

Furthermore, in order to obtain a minimum-size set M ,

• we maintain only the “usefull” partial solutions.

In order to formalize the latter condition, we give the following definition of
redundant edges.

Definition 2. Let G be an embedded permutation graph, Q an open quadrant
(bounded only from above and left) which we wish to cover, and X = { e ∈
E(G) | Q ∩ Pπ =

(
C(e) ∪Q(e)

) ∩ Pπ } (i.e., all the points of Pπ belonging to Q
lie either in C(e) or in Q(e)). Then, we say that an edge d ∈ X is redundant if
there exists another edge d′ ∈ X such that Q(d′) ⊂ Q(d).
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For example, in Figure 3, the edges e1 and e2 are redundant in light of e3.
We note that we are interested in minimizing the non-covered part of the

plane rather than minimizing the number of points that are not dominated. In
light of Definition 2, the fact that we are interested in edges e that minimize
the non-covered part Q(e) of the plane is rephrased into that we are interested
in edges e that are not redundant. The following lemma enables us to identify
redundant edges among edges incident on a left-to-right maximum and a right-
to-left minimum (see Figure 3):

Lemma 2. Let G be an embedded permutation graph and let u1, u2, . . . , u� (v1,
v2, . . . , v�′ , resp.) be the left-to-right maxima (right-to-left minima, resp.) of G
in order from left to right. Moreover, let A be a subset of edges of G which cover
the plane except for an open quadrant Q (bounded only from above and left), and
X = { e ∈ E(G) − A | Q ∩ Pπ =

(
C(e) ∪Q(e)

) ∩ Pπ }. Then, if X contains an
edge d = viuj, any edge vi′uj′ ∈ X−{d} such that i′ ≤ i and j′ ≤ j is redundant.

Lemma 2 implies that for two edges viuj, vi′uj′ ∈ X to be non-redundant, it has
to be the case that (i′ − i) · (j′ − j) < 0, that is, the non-redundant edges form
a crossing pattern like the one shown in Figure 4.

Here is an outline of our algorithm for computing a minimum matching M
such that the edges in M are of the form shown in Figure 1(b) and their end-
points dominate all the vertices of the given permutation graph G: The algo-
rithm identifies the non-redundant candidates for the leftmost edge of M and
constructs a set E1 = {e1,1, e1,2, . . . , e1,h1} of all these candidates. In the general
step, we have a set Ei = {ei,1, ei,2, . . . , ei,hi} of candidates for the i-th edge of
the matching M . Then, the algorithm constructs the set Ei+1 of candidates for
the (i + 1)-st edge by selecting the non-redundant edges among the edges in
{ e ∈ (

E(G)−⋃i
r=1 Er

) | ∃ j such that Q(ei,j) ∩ Pπ =
(
C(e) ∪Q(e)

) ∩ Pπ }
(i.e., among the edges e such that each of the points that belong to the un-
covered quadrant Q(ei,j) of an edge ei,j ∈ Ei is either covered by e or lies in
the quadrant Q(e) of e). This is repeated until for some i′ and j′, the quad-
rant Q(ei′,j′) contains no points of Pπ . We also ensure that each collected can-
didate edge e ∈ Ei+1 (i > 1) has a pointer back which points to an edge e′ ∈ Ei

such that Q(e′) ∩ Pπ =
(
C(e) ∪ Q(e)

) ∩ Pπ; then, starting from ei′,j′ (whose
quadrant Q(ei′,j′) contains no points of Pπ), we follow back-pointers collecting
the edges we visit, thus constructing the matching M that we seek.

The correctness of the algorithm is established by induction on the size of any
solution to the paired-domination problem on the input permutation graph G
and follows from the correctness of the procedures to compute the set E1 of
candidate edges for the leftmost edge of a solution and to compute the set Ei+1

of candidates from the corresponding set Ei. We give details on these two pro-
cedures in the following paragraphs. For simplicity, we introduce the following
additional notation:

Notation 2. For a point p ∈ Pπ, we denote by
lrmax above[p] the lowest left-to-right maximum above p and
rlmin left[p] the rightmost right-to-left minimum to the left of p.
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3.1 Computing the Set E1

The goal in the construction of the set E1 is that each edge e ∈ E1 is incident
on a right-to-left-minimum and a left-to-right maximum, is not redundant, and
satisfies Eq. (2). Let vi be a right-to-left minimum. The other endpoint of an
edge in E1 incident on vi has to be adjacent to vi and to all the points in Pπ to
the left of vi (which are not dominated by vi); therefore, it needs to be above
and to the right of the highest point, say p, among vi and all the points to the
left of vi. Then, if uqi is the lowest left-to-right maximum above p, each of the
left-to-right maxima u1, . . . , uqi will do, whereas none other will do. Yet, among
the edges viu1, . . . , viuqi , all but the last one are redundant.

More formally, our observations are summarized in the following lemma:

Lemma 3. Let G be an embedded permutation graph with no isolated vertices,
Pπ = {p1, p2, . . . , pn} the corresponding point set, and let u1, u2, . . . , u� (v1, v2,
. . . , v�′ , resp.) be the left-to-right maxima (right-to-left minima, resp.) in Pπ in
order from left to right. If vr = rlmin left[u1], we have:

(i) For each vi, i = 1, 2, . . . , r, let p(vi) be the highest among the points in Pπ

with x-coordinate ≤ x(vi), and let uqi = lrmax above[p(vi)]. Then, for any
edge eq = viuq with 1 ≤ q ≤ qi, it holds that Pπ lies in C(eq) ∪Q(eq) (i.e.,
Eq. (2) holds); this does not hold for any edge eq = viuq with q > qi.

(ii) Among the edges referred to in the statement (i) of the lemma, the edges viuq

(where 1 ≤ q < qi) are all redundant in light of the existence of the
edge viuqi .

(iii) No edge e incident on a right-to-left minimum to the right of vr satisfies
Eq. (2).

In Figure 1(a), v1 = (1, 9), v2 = (3, 7), and vr = v2; so, the edges considered
are v1u1, v1u2, v2u1 (where u1 = (4, 12) and u2 = (6, 10)), among which v1u1

is redundant. We give below the outline of this procedure: in Step 1, we use
Lemma 3 to construct a list L of edges satisfying Eq. (2) where L contains
exactly the single non-redundant edge incident on each right-to-left minimum
to the left of u1 (see statement (ii) of Lemma 3); in Step 2, we obtain the final
set E1 by removing any redundant edges from L.

Procedure Compute E1

1. highest p← p1; {the highest point seen so far is the leftmost point}
L ← a list containing a single node storing the edge connecting p1 to
lrmax above[p1];
i← 2; {process the points by increasing x-coordinate}
while pi does not coincide with the leftmost left-to-right maximum u1 do

if y(pi) > y(highest p)
then highest p← pi; {update highest point seen so far}
if pi is a right-to-left minimum
then insert at the end of L the edge connecting pi to lrmax above

[highest p];
i← i + 1;
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2. E1 ← ∅;
let the list L contain the edges e1, e2, . . . , e|L| in order and suppose that
ei = vsiuti , where vsi is a right-to-left minimum and uti is a left-to-right
maximum;
i← 1; {i indicates position in L of edge checked for inclusion in E1}
while i < |L| do

j ← i + 1;
{ignore all edges incident on the same left-to-right maximum...}
{...except for the last one}
while j <= |L| and utj = uti do

j ← j + 1;
add the edge ej−1 in E1 with its back-pointer pointing to NIL;
i← j;

if i = |L|
then {i = |L| ⇐⇒ e|L|−1 is last edge included in E1 and ut|L|−1 �= ut|L|}

add the edge e|L| in E1 with its back-pointer pointing to NIL;

The correctness of Step 1 follows from Lemma 3, statement (ii): for each vi, we
consider only the edge viuqi where uqi = lrmax above[p(vi)]. The correctness
of Step 2 follows from Lemma 2; for the correctness of Step 2, it is important
to note that because the y-coordinate of point highest p never decreases during
the execution of Step 1, the edges vsiuti and vsj utj located in the i-th and j-th
node of the list L (for any i < j) have si < sj and ti ≥ tj . The edges in the
resulting set E1 form a crossing pattern like the one shown in Figure 4.

3.2 Computing the Set Ei+1 from Ei

Let Ei = {ei,1, ei,2, . . . , ei,h} be the set of candidate edges for the i-th edge in
a minimum matching M such that the edges in M are of the form shown in
Figure 1(b) and their endpoints dominate all the vertices of the given permuta-
tion graph G. As shown in Figure 4, the quadrants from left to right and from
bottom to top are Q(ei,h), Q(ei,h−1), . . . , Q(ei,1), respectively.

For the construction of Ei+1, we are interested in non-redundant edges e
incident on a right-to-left minimum and on a left-to-right maximum such that
there exists ei,j ∈ Ei for which all the points in Q(ei,j) ∩ Pπ are either covered
by e or lie in the bottom right uncovered quadrant Q(e), i.e.,

Q(ei,j) ∩ Pπ =
(
C(e) ∪Q(e)

) ∩ Pπ. (3)

This case is a generalization of the case for E1; this time, however, we are deal-
ing with a number of quadrants Q(ei,j). The following lemma gives a complete
coverage of all cases.

Lemma 4. Let G be an embedded permutation graph with no isolated vertices,
Pπ = {p1, p2, . . . , pn} the corresponding point set, and let u1, u2, . . . , u� (v1, v2,
. . . , v�′ , resp.) be the left-to-right maxima (right-to-left minima, resp.) in Pπ in
order from left to right. Suppose further that the set Ei contains the edges ei,1,
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ei,2, . . . , ei,h, each incident on a right-to-left minimum and a left-to-right max-
imum. If va = rlmin left[ut1], ua′ = lrmax above[vsh

], vb = rlmin left[ua′],
and vc = rlmin left[ua′+1] (see Figure 4), we have:

(i) The edge connecting va to lrmax above[va] satisfies Eq. (3) for j = 1.
(ii) Consider vk, where k = a+1, a+2, . . . , b. Let Q(ei,r) be the rightmost2 (i.e.,

its left side is to the right of the left sides of the other quadrants) among
the quadrants that do not contain points p ∈ Pπ such that x(p) < x(vk) and
y(p) > y(vsh

), and let uqk
= lrmax above[p(vk)] where p(vk) is the highest

point in Pπ which belongs to Q(ei,r) and is not to the right of vk. Then,
Eq. (3) is satisfied for Q(ei,j) = Q(ei,r) and the edge e = vkuqk

; this does
not hold for any edge e = vkuq with q > qk.

(iii) Consider vk, where k = b + 1, b + 2, . . . , c. Suppose that there exists a quad-
rant Q(ei,r) that contains no points p ∈ Pπ such that y(p) > y(ua′+1), and
let uqk

= lrmax above[p(vk)] where p(vk) is the highest point in Pπ which
belongs to Q(ei,r) and is not to the right of vk. Then, Eq. (3) is satisfied for
Q(ei,j) = Q(ei,r) and the edge e = vkuqk

; this does not hold for any edge
eq = vkuq with q > qk.

(iv) Each edge incident on a right-to-left minimum to the left of va is redundant.
Moreover, for any edge e incident on a right-to-left minimum to the right
of vc, there does not exist ei,j ∈ Ei that satisfies Eq. (3) with e; in fact, the
same holds for any edge e incident on a right-to-left minimum vk, where
k = b, b + 1, . . . , c, if every quadrant Q( ) contains points p ∈ Pπ such that
y(p) > y(ua′+1).

As an example for statement (ii), consider vk = va+2 in Figure 4: then all 4
quadrants Q(ei,1), . . . , Q(ei,4) contain no points p ∈ Pπ such that x(p) < x(vk)

2 The quadrant Q(ei,r) is well defined, since the quadrant Q(ei,h) does not contain
points p ∈ Pπ such that x(p) < x(vk) and y(p) > y(vsh).
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and y(p) > y(vsh
); the rightmost quadrant Q(ei,r) is Q(ei,1), p(vk) = q, and

uqk
= ua′+2. On the other hand, in the case of vk = vb, the quadrants Q(ei,1)

and Q(ei,2) contain a point p ∈ Pπ such that x(p) < x(vk) and y(p) > y(vsh
);

the rightmost quadrant Q(ei,r) is Q(ei,3), p(vk) = p, and uqk
= ua′+1. As an

example for statement (iii), we may consider vk = vb+1 or vc in Figure 4: in
either case, Q(ei,r) = Q(ei,4), p(vk) = p, and uqk

= ua′+1.
Our procedure for computing Ei+1 takes advantage of Lemma 4. Similarly to

Procedure Compute E1, it works in two steps: in the first step, it constructs a
list L containing at most one edge incident on each of the right-to-left minima
from va (inclusive) to vb (inclusive), and potentially to vc (inclusive) depending
on whether the conditions of statement (iii) of the lemma hold; next, in a 2nd
step, it selects only the non-redundant edges among the edges in L. In more
detail, the procedure processes the points in Pπ to the right of uth

up to vb

or vc from left to right, and maintains in a stack only the quadrants that do
not contain any point of Pπ above the line y = y(vsh

) and stores with each of
them its highest point so far. Then, for each right-to-left minimum encountered
starting with va, it applies statement (i), (ii) or (iii) of Lemma 4.

For the case shown in Figure 4, at the end of the first step, the list L con-
tains the edges vaua′+4, va+1ua′+4, va+2ua′+2, vbua′+1, vb+1ua′+1, and vcua′+1.
Among them, the edges vaua′+4, vbua′+1, and vb+1ua′+1 are redundant, so that
the final set is {va+1ua′+4, va+2ua′+2, vcua′+1}.

3.3 Time and Space Complexity of the Algorithm

Regarding the complexity of our algorithm, we can show the following theorem:

Theorem 1. Let G be a permutation graph with no isolated vertices determined
by a permutation π over the set Nn. Then, given π, our algorithm computes a
minimum-cardinality paired-dominating set of G in O(n) time using O(n) space.

References

1. Atallah, M.J., Manacher, G.K., Urrutia, J.: Finding a minimum independent dom-
inating set in a permutation graph. Discrete Appl. Math. 21, 177–183 (1988)

2. Brandstadt, A., Kratsch, D.: On domination problems for permutation and other
graphs. Theoret. Comput. Sci. 54, 181–198 (1987)
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