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Abstract. The G-width of a class of graphs G is defined as follows. A
graph G has G-width k if there are k independent sets N1, . . . , Nk in G
such that G can be embedded into a graph H ∈ G with the property
that for every edge e in H which is not an edge in G, there exists an i
such that both endpoints of e are in Ni. For the class TP of trivially-
perfect graphs we show that TP-width is NP-complete and we present
fixed-parameter algorithms.

1 Introduction

The recognition problem of probe interval graphs was introduced by Zhang et
al. [8,14]. This problem stems from the physical mapping of chromosomal DNA
of humans and other species. Since then probe graphs of many other graph
classes have been investigated by various authors. We generalize the concept to
the graph-class-width parameters.

Definition 1. Let G be a class of graphs which contains all cliques. The G-width
of a graph G is the minimum number k of independent sets N1, . . . , Nk in G such
that there exists an embedding H ∈ G of G with the property that for every edge
e = (x, y) in H which is not an edge of G, there exists an i with x, y ∈ Ni.

In this paper we investigate the width-parameter for the class TP of trivially-
perfect graphs, henceforth called the trivially-perfect width, or TP-width. If a
graph G has TP-width k then we call G also a k-probe trivially-perfect graph.
This paper deals with the recognition problem of k-probe trivially-perfect graphs.
We refer to the partitioned case of the problem when a collection of, possibly
overlapping, independent sets Ni, i = 1, . . . , k is a part of the input. We call such
a collection of independent sets a witness .
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Trivially-perfect graphs were first studied by Wolk [13]. However, Golumbic
gave the class its name [4].

Definition 2 ([4]). A graph is trivially perfect if for each induced subgraph the
independence number is equal to the number of maximal cliques.

We use Wolk’s characterization of the class.

Theorem 1 ([13]). A graph is trivially perfect if and only if every connected
induced subgraph has a universal vertex.1

We denote the class of trivially-perfect graphs by TP. The class can also be
characterized by excluding the C4 and P4 as induced subgraphs; thus the class
of trivially-perfect graphs is exactly the class of chordal cographs . In this paper
we study the TP-width of graphs.

It follows from Theorem 1 that a connected graph G = (V, E) is trivially
perfect if and only if there exists a rooted tree T , with node-set V such that two
vertices x and y are adjacent in G if and only if one lies on the path from the
root to the other. Thus the set of vertices of any path from the root to a leaf in
T induces a maximal clique in G, and these are all the maximal cliques in G.

It can be seen that the class of partitioned k-probe trivially-perfect graphs can
be characterized by a finite set of forbidden induced, partitioned subgraphs, see,
e.g., [6,11,12]. We think that a similar statement holds also for the unpartitioned
case, but we have no proof of this yet.

In the following, we write some of our notational customs. For two sets A and
B we write A + B and A−B instead of A ∪B and A \B. We write A ⊆ B if A
is a subset of B with possible equality and we write A ⊂ B if A is a subset of B
and A �= B. For a set A and an element x we write A+x instead of A+{x} and
A− x instead of A−{x}. It will be clear from the context when x is an element
instead of a set.

A graph G is a pair G = (V, E) where V is a finite set, of which the elements
are called the vertices of G, and where E is a set of two-element subsets of V , of
which the elements are called the edges of G. We denote edges of a graph as (x, y)
and we call x and y the endvertices of the edge. For a vertex x we write N(x) for
its set of neighbors and we write N [x] = N(x)+x for the closed neighborhood of
x. For a subset W ⊆ V we write N(W ) =

⋃
x∈W N(x)−W for its neighborhood

and we write N [W ] = N(W ) + W for its closed neighborhood. Usually we use
n = |V | to denote the number of vertices of G and we use m = |E| to denote
the number of edges of G.

For a graph G = (V, E) and a subset S ⊆ V of vertices we write G[S] for
the subgraph induced by S, that is, the graph with S as its set of vertices and
with those edges of E that have both endvertices in S. For a subset W ⊆ V we
write G−W for the graph G[V −W ]. For a vertex x we write G−x rather than
G − {x}. We usually denote graph classes by calligraphic capitals.

1 A vertex is universal if it is adjacent to all other vertices.
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The paper is organized as follows: in Section 2, we show that the rankwidth of
k-probe trivially-perfect graphs is bounded and for constant k, k-probe trivially-
perfect graphs can be recognized in O(n3) by formulating the problem in C2MS-
logic. In Section 3, we give a linear time algorithm for the recognition of par-
titioned k-probe trivially-perfect graphs. In Section 4, we show that TP-width
is NP-complete. In Section 5, we give a fixed-parameter algorithm to check if a
given graph is a k-probe trivially-perfect graph.

Since the results are comparable to those of rankwidth, it seems worthwhile to
examine G-width for specific classes of graphs. We started with one of the ‘easiest’
in this paper. Although for this class rankwidth gives an alternative solution,
a closer examination of the method seems not a bad idea anyway. Next in line
are the distance-hereditary graphs; for those no monadic-order formulation is
available at the moment. We hope that, with this paper, we obtained a sufficient
understanding of the methods to solve this, and other classes in future research.

2 Trivially-Perfect Width Is Fixed-Parameter Tractable

In this section we show that for constant k, k-probe trivially-perfect graphs can
be recognized in O(n3) time.

The following Theorem 2 is a characterization which can be formulated in
C2MS-logic [3]. We will prove that k-probe trivially-perfect graphs have
rankwidth at most 2k shortly. It is known that problems which can be for-
mulated in C2MS-logic can be solved in O(n3) time on graphs with bounded
rankwidth [3].

Definition 3. Let (G,N ) be a partitioned graph with a witness

N = {Ni | i = 1, . . . , k}
of k, possibly overlapping independent sets in G. A vertex ω is probe universal
if for every vertex x �= ω either

(i) (x, ω) ∈ E, or
(ii) there exists i ∈ {1, . . . , k} with {x, ω} ⊆ Ni.

Theorem 2. A graph G = (V, E) is a k-probe trivially-perfect graph if and only
if there exist independent sets Ni, i = 1, . . . , k, such that every connected induced
subgraph has a probe universal vertex.

Proof. Assume that G is a k-probe trivially-perfect graph. Let N be a witness
of k independent sets Ni and let H be an embedding, obtained by adding edges
in these independent sets. Let C ⊆ V be a subset of vertices such that G[C] is
connected. Then H [C] is also connected. By Theorem 1 H [C] has a universal
vertex ω. Let x be another vertex of G[C]. Since H is an embedding of (G,N ),
either x and ω are adjacent in G, or there exists an i such that x, ω ∈ Ni.

Assume that there exists a witness N of k independent sets Ni such that
every connected induced subgraph of G has a probe universal vertex. Let C be
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a component of G. We show that G[C] can be embedded into a trivially perfect
graph. Let ω be a probe universal vertex in G[C]. By induction we may assume
that G[C] − ω with the induced witness has a trivially-perfect embedding H ′.
We obtain an embedding H of G[C] by adding ω as a universal vertex to H ′. ��
Definition 4 ([10]). A rank-decomposition of a graph G = (V, E) is a pair
(T, τ) where T is a ternary tree and τ a bijection from the leaves of T to the
vertices of G. Let e be an edge in T and consider the two sets A and B of leaves
of the two subtrees of T − e. Let Me be the submatrix of the adjacency matrix
of G with rows indexed by the vertices of A and columns indexed by the vertices
of B. The width of e is the rank over GF (2) of Me. The width of (T, τ) is the
maximum width over all edges e in T and the rankwidth of G is the minimum
width over all rank-decompositions of G.

The class of graphs with rankwidth at most 1 is exactly the class of distance-
hereditary graphs [2,5,10]. Note that every trivially-perfect graph is distance
hereditary [1], since every induced path has length 1 or 2 by Theorem 1.

Theorem 3. k-Probe trivially-perfect graphs have rankwidth at most 2k.

Proof. Consider a rank-decomposition (T, τ) with width 1 for an embedding H
of a k-probe trivially-perfect graph G. Consider an edge e in T and assume that
Me is an all 1s-matrix. Each independent set Ni creates a 0-submatrix in Me. If
k = 1 this proves that the rankwidth of G is at most 2. In general, for k ≥ 0,
note that there are at most 2k different neighborhoods from one leaf-set of T − e
to the other. It follows that the rank of Me is at most 2k. ��
Theorem 4. For each k ≥ 0 there exists an O(n3) algorithm which checks
whether a graph G with n vertices is a k-probe trivially-perfect graph; that is,
TP-width is in FPT .

Proof. By Theorem 3 k-probe trivially-perfect graphs have bounded rankwidth.
It is well-known that C2MS-problems can be solved in O(n3) time for graphs
of bounded rankwidth (see [3], and follow pointers from there). By Theorem 2,
the recognition of k-probe trivially-perfect graphs is such a problem. ��

3 Partitioned k-Probe Trivially-Perfect Graphs

Obviously, the result of the previous section holds as well when the collection of
independent sets N1, . . . , Nk is a part of the input. Thus for each k there is an
O(n3) algorithm that checks whether a graph G with a witness of k independent
sets Ni, can be embedded into a trivially-perfect graph. However, there are a few
drawbacks to this solution. First of all, Theorem 4 only shows the existence of
an O(n3) recognition algorithm. In any case, a priori , it is unclear how to obtain
the algorithm explicitly. Furthermore, the constants involved in the algorithm
make the solution impractical. Already there is an exponential blow-up when
one moves from TP-width to rankwidth.
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In this section we show that there exists an easy algorithm for the recognition
of partitioned k-probe trivially-perfect graphs by recursively eliminating a probe
universal vertex.

Proposition 1. Let (G,N ) be a partitioned graph with a witness

N = {Ni | i = 1, . . . , k}
of k, possibly overlapping independent sets. Then (G,N ) is a partitioned k-probe
trivially-perfect graph if and only if every component of G, with the induced
witness, is a partitioned k-probe trivially-perfect graph.

Theorem 5. There exists a linear-time algorithm to check whether a partitioned
graph (G,N ) with a witness N of k independent sets, is a partitioned k-probe
trivially-perfect graph.

Proof. If G is disconnected then, by Proposition 1, we can check each component
individually. Assume G is connected. It is easy to see that we can compute an
elimination ordering by probe universal vertices in linear time, by keeping a list
of vertices ordered by degree. ��
Remark 1. Note that the algorithm described in Theorem 5 is fully polynomial.
The algorithm can be used to compute an embedding in O(n2) time.

4 TP-Width Is NP-Complete

Let T be the class of complete graphs (cliques). We first show that T-width is
NP-complete.

Theorem 6. T-Width is NP-complete.

Proof. Let (G,N ) with witness N = {Ni | i = 1, . . . , k} be a partitioned k-
probe complete graph. Thus every nonedge of G has its endvertices in one of
the independent sets Ni. That is, N forms a clique-cover of the edges of Ḡ. This
proves that a graph G has T-width at most k if and only if the edges of Ḡ can be
covered with k cliques. The problem to cover the edges of a graph by a minimum
number of cliques is NP-complete [9]. ��
Theorem 7. TP-Width is NP-complete.

Proof. Let G = (V, E) be a graph with n vertices and m edges. Add a vertex
ω and make ω adjacent to all vertices of G. Additionally, add a clique C of
n2 vertices and make every vertex of C adjacent to every vertex of G. Let G′

be the graph constructed in this way. Note that, when we add edges between
nonadjacent vertices of V we obtain an embedding of G′ into a trivially-perfect
graph. We show that this is the only feasible embedding.

For each nonedge {x, y} in G we now have a collection of C4’s using x, y,
the vertices of the clique C and ω. Assume that there is an embedding of G′
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into a trivially-perfect graph with x and y not adjacent. Then each vertex of
C is adjacent to ω. Thus each vertex of C must be in one of the independent
sets Ns, s = 1, . . . , k, and no two are in the same independent set since C is a
clique. Then k ≥ n2 which is a contradiction, since making a clique of G creates
a trivially-perfect embedding, and this needs at most

(
n
2

)−m independent sets.
Thus the only feasible embedding makes a clique of G. That is, the TP-width of
G′ is the same as the T-width of G, and by Theorem 6 this is hard to compute.

��

5 A Fixed-Parameter Algorithm to Compute TP-Width

In this section we show that there exists for each k an O(n3) algorithm which
checks if a graph G is a k-probe trivially-perfect graph.

Let (G,N ) be a partitioned graph with a witness

N = {Ni | i = 1, . . . , k}

of k independent sets. We call the vertices of the independent sets nonprobes
and we call the vertices which are not in any independent set probes . The k-label
α(x) of a vertex x is the 0/1-vector of length k with the ith entry αi(x) equal to
1 if and only if x ∈ Ni. We write α(x) ≤ α(y) if αi(x) ≤ αi(y) for all i = 1, . . . , k.
We write α(x) ⊥ α(y) if there is no i with αi(x) = αi(y) = 1.

We use (G, α) to denote a labeled graph. If X is a subset of vertices then we
write α(X) for the restriction of the labeling α to the vertices of X . For a labeled
subset X we write (X, α), instead of (G[X ], α) and instead of (G[X ], α(X)).

Consider the equivalence relation ≡ defined by x ≡ y if N(x) = N(y). Denote
the equivalence class of a vertex x by (x). Define the partial order  by:

(x)  (y) if N(x) ⊆ N(y)

Likewise, we consider the equivalence relation ≡′ defined by x ≡′ y if N [x] =
N [y]. The equivalence class of a vertex x under this relation is denoted by [x].
We consider the partial order defined by:

[x]  [y] if N [x] ⊆ N [y]

Lemma 1. A graph G is trivially perfect if and only if for every pair of adjacent
vertices x and y, either [x]  [y] or [y]  [x].

Proof. Note that a graph G has two adjacent vertices with incomparable closed
neighborhoods, if and only if G contains an induced P4 or C4. ��
Definition 5 ([7]). A module M in a graph G = (V, E) is a set of vertices such
that for every vertex y �∈ M either

1. N(y) ∩ M = ∅, or
2. M ⊆ N(y).
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A module M is trivial if |M | ≤ 1 or if M = V .

Remark 2. Assume G = (V, E) is connected and trivially perfect. Let T be a
rooted tree with node-set V such that two vertices are adjacent in G if and only
if in T , one lies on the path from the root to the other. We refer to T as the
tree-model of G. Note that for each node x in T the vertices in the subtree rooted
at this node form a module X in G. The neighborhood NG(X) of this module
is the path in T from the root to the parent of x.

Definition 6. A probe module is a labeled set (X, α) which induces a parti-
tioned k-probe trivially-perfect graph with the additional property that for each
vertex y �∈ X there exists a y-extension, which is a label α(y) such that either

(a) N(y) ∩ X = ∅, or
(b) For each x ∈ X [x ∈ N(y) ⇔ α(y) ⊥ α(x)].

Definition 7. Two disjoint probe modules (X, α) and (Y, β) are twins if (X +
Y, γ) is a probe module with the inherited labeling γ(X) = α and γ(Y ) = β, such
that either

(i) no vertex of X is adjacent to any vertex of Y , or
(ii) one of X and Y is a probe clique, and for every pair of vertices x ∈ X and

y ∈ Y , x and y are adjacent if and only if γ(x) ⊥ γ(y).

Definition 8. Let (X, α) be a probe module in a connected graph G. Then (X, α)
embeds if the labeling α extends such that (G, α) has an embedding H which has
H [X ] as a module. The graph H is an embedding of X.

Definition 9. Let (X, α) be a probe module. A label-set of (X, α) is a maximal
subset of vertices of X with the same label. The characteristic χ(X) is the set of
labels for which the label-set is nonempty.

Remark 3. For ease of description we describe a trivially-perfect graph G also
by its cotree. This representation is a binary tree where the leaves are labeled by
the vertices of G and the internal nodes labeled by the join-operator ⊗ or the
union-operator ⊕. In case of a join-operator, the set of leaves in at least one of
the two subtrees must induce a clique, since G is chordal.

Lemma 2 (The Telescope Lemma). Let (X, α) and (Y, α) be twin probe-
modules. Assume that χ(X) ⊇ χ(Y ). Then (X + Y, α) embeds if and only if
(X, α) embeds.

Proof. Let H be an embedding of (X + Y, α). Consider the cotree of H . Since
H [X + Y ] is a module in H , we may assume that (X + Y ) forms a subtree. Let
H ′ be the trivially-perfect graph obtained from H by replacing H [X + Y ] by
the union or join of H [X ] and H [Y ], whichever is appropriate. Then H ′ is an
embedding of (X, α); we obtain a cotree by making X and Y twin-branches.

Now let H be an embedding of (X, α). Assume that a vertex z �∈ (X + Y )
is adjacent in G to a vertex y ∈ Y . Then α(z) ⊥ α(y) in any z-extension of
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(X + Y, α). There exists a vertex x ∈ X such that α(x) = α(y), which implies
that z is also adjacent to x in G.

Consider a cotree of H −Y such that X forms a subtree. Add H [Y ] to H −Y
as a twin-branch of H [X ] and let H ′ be the graph that results. We prove that we
can add edges between Y and NH(X)− Y , such that X + Y becomes a module
in H ′.

Let z �∈ (X + Y ). If z is not adjacent to any vertex of X in H then z is also
not adjacent to any vertex in Y . Assume z is adjacent to X in H . Let y ∈ Y ,
and assume that z is not adjacent to y in G. We prove that αi(z) = αi(y) = 1
for some entry i. There exists a vertex x ∈ X such that α(x) = α(y). If z is not
adjacent to x in G, αi(y) = αi(x) = αi(z) = 1 for some entry i. Assume z is
adjacent to x in G. Then α(z) ⊥ α(x) in any z-extension of (X + Y, α). Since
(X + Y, α) is a probe module and α(x) = α(y) ⊥ α(z), z is adjacent to y, which
is a contradiction. ��
Definition 10. A true – or false twinset is a set of vertices such that every pair
is a true – or false twin, respectively.2 A k-twinset is either a false twinset with
at least 3 vertices or a true twinset with at least k + 2 vertices.

Lemma 3 (The Twinset Lemma). Let S be k-twinset. Then G has TP-width
at most k if and only if G − x has TP-width at most k for any x ∈ S.

Proof. Assume that G has a false twinset {x, y, z}. Assume that G − x has an
embedding H . If one of y and z is a nonprobe in H , then we can make a copy
for x as a true twin. Note that creating a true twin does not introduce a P4 or
C4 so the new embedding is also trivially perfect. Now assume that both y and
z are probes. Then their neighborhood in H must induce a clique. We may now
add x as a false twin of y and z in H . Note that also in this case no P4 or C4 is
introduced.

Assume that G has a true twinset S with k + 2 vertices. Let x ∈ S and let
H be an embedding of G − x. Since S − x is a clique there exists an ordering
of the vertices of S − x such that for every pair a, b ∈ S − x, NH [a] ⊆ NH [b] or
NH [b] ⊆ NH [a]. Let y be the smallest vertex in this ordering. If y has a neighbor
in H which is not a neighbor in G, then this is a new neighbor of all the vertices
in S − x. This is a contradiction, since S − x is a clique with k + 1 vertices, and
creating a common neighbor for S − x would require k + 1 independent sets. ��
Definition 11. A k-witness N is well-linked if for every Ni ∈ N , every vertex
x �∈ Ni has a neighbor in Ni.

Lemma 4. Every k-probe trivially-perfect graph has a witness with k indepen-
dent sets which is well-linked.

Proof. Starting with any witness, repeatedly add a vertex x to an independent
set Ni if it has no neighbor in that set. ��
2 A true twin is a pair of vertices x and y with N [x] = N [y]. A false twin is a pair of

vertices x and y with N(x) = N(y).
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Lemma 5 (The Well-Linkedness Lemma). Let (G,N ) be a k-probe trivially-
perfect graph with a well-linked witness N and corresponding labeling α. Let H be
an embedding. For every nonadjacent pair x and y in G with NH(x) ⊆ NH [y],

(x)  (y) ⇔ α(x) ≥ α(y)

Proof. Assume α(x) ≥ α(y). Let z ∈ NG(x). Then z ∈ NH [y]. Since x and y are
not adjacent, z �= y. Thus z ∈ NH(y). If z �∈ NG(y), then there exists an i with
{z, y} ⊆ Ni. Now α(x) ≥ α(y) implies that also x ∈ Ni, which contradicts that
z is adjacent to x. Hence (x)  (y).

Assume (x)  (y), that is, NG(x) ⊆ NG(y). A fortiori , x and y are not
adjacent. Assume ¬(α(x) ≥ α(y)). Then there exists an i with y ∈ Ni and
x �∈ Ni. Since N is well-linked, there exists a vertex z ∈ NG(x) ∩ Ni. Since
(x)  (y), z ∈ NG(y), contradicting that z and y are both in Ni. ��
Definition 12. Let (X, α) be a probe module. A vertex γ ∈ N(X) is X-minimal
if there exists no y ∈ N(X) with (y) �= (γ) and (y)  (γ) and also no z ∈ N(X)
with [z] �= [γ] and [z]  [γ].

Remark 4. Notice that X-minimality of a vertex is independent of the actual
labeling of the probe module (X, α).

Lemma 6. Assume G has no k-twinset. Assume that (X, α) embeds as a branch
in the tree-model of a well-linked embedding. Let Υ be the set of X-minimal
vertices. Then |Υ | ≤ 2k+1 + k − 1.

Proof. Consider a well-linked embedding H . Let T be a tree-model of H . Con-
sider the path M from the root to the ancestor of X in T and let M0, M1, . . . be
a partition of M into modules. By minimality of the embedding we may assume
that each vertex of Mi has a neighbor in every subtree of Mi. Assume they are
ordered such that NH [xi] ⊂ NH [xi+1] for each xi ∈ Mi and xi+1 ∈ Mi+1, for
i = 0, 1, . . . .

Notice that each label-set of each Ms is a module in G. Since there is no
k-twinset, each label-set of nonprobes has at most 2 vertices and each label-set
of probes has at most k + 1 vertices. Thus

|Ms| ≤ 2(2k − 1) + (k + 1) = 2k+1 + k − 1

By the Well-Linkedness Lemma, a vertex x ∈ Ms is minimal if it has a label
α(x) such that all other label-sets α′ ≥ α(x) in M0, . . . , Ms are empty. It follows
that there are at most

∑k
i=0

(
k
i

)
= 2k label-sets of minimal vertices, at most

2k − 1 of minimal nonprobes, each containing at most 2 elements, and at most
one label-set of minimal probes, containing at most k + 1 elements. Thus the
number of minimal elements is bounded by 2k+1 + k − 1. ��
Lemma 7. Assume G is a connected k-probe trivially-perfect graph without k-
twinset. Let (X, α) be a probe module that embeds as a branch into a well-linked
embedding H. Let T be a tree-model of H and let M0 be the lowest set of ancestors
of X in T that forms a module in H. There exists a set Ω, of size |Ω| ≤ 22(k+1)

such that M0 ⊆ Ω. This set Ω can be computed in linear time.
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Proof. Start with Ω = ∅. Repeatedly compute the set of X-minimal vertices in
G, add them to Ω, and delete them from the graph. After at most 2k repetitions,
each label-set of M0 is contained in Ω. Since each set of maximal elements has
at most 2k+1 + k − 1 vertices,

|Ω| ≤ 2k(2k+1 + k − 1) ≤ 22k+1 + 22k ≤ 22(k+1) ��

Definition 13. A pattern is a cotree of a k-labeled trivially perfect graph
such that for every internal node the characteristics of the two subtrees are
incomparable.

Remark 5. Consider a cotree of an embedding of a labeled graph (G, α). By
Lemma 2, we may repeatedly prune branches for which the characteristic is
contained in the characteristic of the other branch. The result is a pattern.

Lemma 8. There are O(2(k+3)22k

) non-isomorphic patterns.

Proof. The characteristic of every internal node is the union of the characteristics
of its children. This union is larger than the two constituent sets since those are
incomparable. A binary tree with depth at most 2k has at most 22k − 1 internal
nodes. The number of binary trees with t internal nodes can be bounded by the
Catalan number Ct =

(
2t
t

)
1

t+1 . Thus the number of cotrees with t + 1 leaves is

bounded by 2tCt ∼ 23t

t3/2
√

π
. There are at most 2k(t+1) labelings for the leaves.

Thus the number of patterns is bounded by c2kc 23c

c3/2
√

π
, where c = 22k

. ��

Remark 6. Similar to Lemma 6 it can be shown that the number of feasible,
incomparable induced patterns of branches incident with an internal node of
the cotree is bounded by a constant. Actually, this proves a well-quasi-ordering,
which implies a finite set of forbidden induced subgraphs for TP-width ≤ k. We
elaborate on this in the full version of this paper.

Theorem 8. For each k, there exists an O(n3)-time algorithm for the recogni-
tion of k-probe trivially-perfect graphs.

Proof. Consider a partition (M0, M1, . . . , Ms) of the vertices into probe mod-
ules. Initially, each module consists of a single vertex. For each probe module
we keep the possible embeddings, either as a clique-module or as a branch, as
a list of patterns. The algorithm tries to merge modules into new modules. By
Lemma 7 there are only a constant number of possible extensions for each mod-
ule. Assume that a probe module (X, α) unions with some other probe modules.
If there is a module (Y, β) with χ(Y ) ⊆ χ(X) then (Y, β) merges together with
(X, α) for those labelings. There are at most 2k module extensions in which the
characteristic enlarges. A suitable merge of two probe modules can be found in
O(n2) time. ��
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6 Conclusion

So far, we have limited our research to classes of graphs that have bounded
rankwidth. For classes such as threshold graphs and cographs we were able to
show that the width parameter is fixed-parameter tractable. One of the classes
for which this is still open is the class of distance-hereditary graphs.
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