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Abstract. Although there exist many polynomial algorithms for
NP -hard problems running on a bounded clique-width expression of the
input graph, there exists only little comparable work on such algorithms
for rank-width. We believe that one reason for this is the somewhat
obscure and hard-to-grasp nature of rank-decompositions. Nevertheless,
strong arguments for using the rank-width parameter have been given
by recent formalisms independently developed by Courcelle and Kanté,
by the authors, and by Bui-Xuan et al. This article focuses on designing
formally clean and understandable “pseudopolynomial” (XP) algorithms
solving “hard” problems (non-FPT) on graphs of bounded rank-width.
Those include computing the chromatic number and polynomial or
testing the Hamiltonicity of a graph and are extendable to many other
problems.
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1 Introduction

We postpone all formal definitions till the next section. Rank-width, introduced
by Oum and Seymour [20], is a relatively new graph complexity measure which
is quickly receiving attention over the past few years. Compared to the (per-
haps better known) clique-width measure, rank-width has two major advan-
tages: First, an optimal rank-decomposition can be efficiently constructed if the
rank-width is bounded [17]. Second, a rank-decomposition (actually, a suitable
modification of it, see Section 3) allows for design of formally cleaner [11], and
sometimes much faster parameterized algorithms [2,12] than previously known
ones running on a clique-width expression of the given graph.

The core of the new approach lies in an alternative characterization of rank-
decompositions using bilinear graph products [4], or equivalently labeling parse
trees [10,11], or Rk-joins [2]. These new approaches have led to interesting new
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and 201/09/J021, and P. Hliněný also by the research intent MSM0021622419 of the
Czech Ministry of Education.

J. Fiala, J. Kratochv́ıl, and M. Miller (Eds.): IWOCA 2009, LNCS 5874, pp. 266–277, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Better Polynomial Algorithms on Graphs of Bounded Rank-Width 267

FPT algorithms [2,12] which run much faster with respect to the rank-width
parameter than previously known algorithms, as in [5].

The aim of this paper is to extend the ideas of the mentioned algorithms to
problems which likely do not have FPT algorithms with respect to rank-width,
and hence their presented algorithms are “pseudopolynomial”, a complexity class
known as XP. We present some of the basic definitions in Section 2, and describe
the parse-tree formalism for handling rank-decompositions of graphs in Section 3.
The main new results are then presented and proved in Section 4.

We prove (Theorem 4.1) that the chromatic number of a graph of rank-width t
can be determined in time O(nh(t)) where h(t) = O(2t(t+1)/2). This algorithm
significantly improves over a previous algorithm of Kobler and Rotics [19] which
runs in time O

(
n4k)

on graphs of clique-width k. When comparing these two
algorithms, the readers should keep in mind that our parameter t is the rank-
width of the input graph, and the clique-width k can reach up to 2t/2−1 by [3].
We, moreover, straightforwardly extend our algorithm (Theorem 4.8) to compute
the chromatic polynomial, again improving runtime over previous [1]. Finally,
we show (Theorem 4.9) how to decide Hamiltonian path in a graph of bounded
rank-width.

2 Definitions and Basics

We only consider finite undirected simple graphs without loops. We will start by
briefly introducing a few needed concepts and then define rank-decompositions
and rank-width, while in Section 3 we continue by defining the concepts of t-
labeled graphs and their parse trees. Many of the definitions in the latter section
are taken or adapted from our [11].

The reader should be aware of the notion of fixed-parameter tractable [6] al-
gorithms (FPT algorithms in short), which are the algorithms running in time
O(nc · 2f(k)) for a constant c, a parameter k (rank-width in our case) and any
(computable) f . Some NP -hard problems such as deciding whether a graph
is q-colourable do have FPT algorithms when parameterized by clique-width,
see e.g. [5]. On the other hand, [9] have recently proved that various problems,
such as the chromatic number or hamiltonicity, likely can not be solved by FPT
algorithms parameterized by clique-/ rank-width.

In such cases, authors usually look for algorithms which are “pseudopolyno-
mial”—formally in class XP or uniform XP [6]—i.e. running in time O(nf(k))
for the parameter k and a computable function f . Many examples using the
clique-width parameter can be found in [1,7,13,19,21]. Our goal in this paper
is to design and use a mathematically precise and sound formalism for solving
problems on graphs of bounded rank-width in XP time. This extends the Myhill–
Nerode type formalism which we have introduced in [11] for FPT algorithms on
such graphs.

Branch-width. A set function f : 2M → Z is called symmetric if f(X) =
f(M \ X) for all X ⊆ M . A tree is subcubic if all its nodes have degree at
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most 3. For a symmetric function f : 2M → Z on a finite set M , the branch-
width of f is defined as follows.

A branch-decomposition of f is a pair (T, μ) of a subcubic tree T and a bijective
function μ : M → {t : t is a leaf of T}. For an edge e of T , the connected
components of T \ e induce a bipartition (X, Y ) of the set of leaves of T . The
width of an edge e of a branch-decomposition (T, μ) is f(μ−1(X)). The width of
(T, μ) is the maximum width over all edges of T . The branch-width of f is the
minimum of the width of all branch-decompositions of f . (If |M | ≤ 1, then we
define the branch-width of f as f(∅).)

A natural application of this definition is the branch-width of a graph, intro-
duced by Robertson and Seymour along with better known tree-width. In that
case we use M = E(G), and f the connectivity function of G. There is, however,
another interesting application of the aforementioned general notions, in which
we consider the vertex set V (G) = M of a graph G as the ground set.

Rank-width ([20]). For a graph G, let AG[U, W ] be the bipartite adjacency
matrix of a bipartition (U, W ) of the vertex set V (G) defined over the two-
element field GF(2) as follows: the entry au,w, u ∈ U and w ∈ W , of AG[U, W ]
is 1 if and only if uw is an edge of G. The cut-rank function ρG(U) = ρG(W ) then
equals the rank of AG[U, W ] over GF(2). A rank-decomposition and rank-width
of a graph G is the branch-decomposition and branch-width of the cut-rank
function ρG of G on M = V (G), respectively.

Theorem 2.1 ([17]). For every fixed t there is an O(n3)-time FPT algorithm
that, for a given n-vertex graph G, either finds a rank-decomposition of G of
width at most t, or confirms that the rank-width of G is more than t.

A Few Rank-width Examples. Any complete graph of more than one vertex
has clearly rank-width 1 since any of its bipartite adjacency matrices consists of
all 1s. It is similar with complete bipartite graphs if we split the decomposition
along the parts. We illustrate the situation with graph cycles: while C3 and C4

have rank-width 1, C5 and all longer cycles have rank-width equal 2. A rank-
decomposition of, say, the cycle C5 is shown in Fig. 1. Conversely, every subcubic
tree with at least 4 leaves has an edge separating at least 2 leaves on each side,
and every corresponding bipartition of C5 gives a matrix of rank 2.
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Fig. 1. A rank-decomposition of the graph cycle C5
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Rank-width is closely tied to another width parameter called clique-width [7].
A graph has bounded rank-width if and only if it has bounded clique-width.
However, there is no equivalent of Theorem 2.1 for clique-width [8], and the
value of clique-width can be up to exponentially larger than rank-width [3],
both making rank-width a more attractive parameter for designing algorithms.
On the other hand, it appears really difficult to design dynamic-programming
algorithms running on a given rank-decomposition of a graph.

3 Rank-Width Parse Trees and Regularity

In a search for a “more suitable form” of a rank-decomposition, Courcelle and
Kanté [4] defined the bilinear products of multiple-coloured graphs, and proposed
algebraic expressions over these operators as an equivalent description of a rank-
decomposition (cf. Theorem 3.1). Here we introduce (following [10,11]) the same
idea in terms of labeling join and parse trees which we propose as more convenient
for the results in the next sections. One should note that an analogous idea also
underlies the H-join decompositions of Bui-Xuan, Telle and Vatshelle [2].

A t-labeling of a graph is a mapping lab : V (G) → 2Lt where Lt = {1, 2, . . . , t}
is the set of labels (this notion is exactly equivalent to multiple-coloured graphs
of [4]). Having a graph G with an (implicitly) associated t-labeling lab, we refer
to the pair (G, lab) as to a t-labeled graph and use notation Ḡ. Notice that each
vertex of a t-labeled graph may have zero, one or more labels. We will often view
(cf. [4] again) a t-labeling of G equivalently as a mapping V (G) → GF(2)t to the
binary vector space of dimension t, where GF(2) is the two-element finite field.

Labeling Join ([11]). Considering t-labeled graphs Ḡ1 = (G1, lab1) and Ḡ2 =
(G2, lab2), a t-labeling join Ḡ1 ⊗ Ḡ2 is defined on the disjoint union of G1 and
G2 by adding all edges (u, v) such that |lab1(u) ∩ lab2(v)| is odd, where u ∈
V (G1), v ∈ V (G2). The resulting graph is unlabeled.

A t-relabeling is a mapping f : Lt → 2Lt . In linear algebra terms, a t-rela-
beling f is in a natural one-to-one correspondence with a linear transformation
f : GF(2)t → GF(2)t, i.e. a t × t binary matrix Af . For a t-labeled graph
Ḡ = (G, lab) we define f(Ḡ) as the same graph with a vertex t-labeling lab′ =
f ◦ lab. Here f ◦ lab stands for the linear transformation f applied to the labeling
lab, or equivalently lab′ = lab · Af as matrix multiplication. Informally, f is
applied separately to each label in lab(v) and the outcomes are summed up
“modulo 2”; e.g. for lab(v) = {1, 2} and f(1) = {1, 3, 4}, f(2) = {1, 2, 3}, we get
f ◦ lab(v) = {2, 4} = {1, 3, 4}�{1, 2, 3}.

Let 
 be a nullary operator creating a single new graph vertex of label {1}.
For t-relabelings f1, f2, g : Lt → 2Lt, let ⊗[g | f1, f2] be a binary operator—
called t-labeling composition (as bilinear product of [4])—over pairs of t-labeled
graphs Ḡ1 = (G1, lab1) and Ḡ2 = (G2, lab2) defined as follows:

Ḡ1 ⊗[g | f1, f2] Ḡ2 = H̄ =
(
Ḡ1 ⊗ g(Ḡ2), lab

)

where a new labeling is lab(v) = fi ◦ labi(v) for v ∈ V (Gi), i = 1, 2.
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Fig. 2. An example of a labeling parse tree which generates a 2-labeled cycle C5, with
symbolic relabelings at the nodes (id denotes the relabeling preserving all labels, and
∅ is the relabeling “forgetting” all labels)
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Fig. 3. “Bottom-up” generation of C5 by the parse tree from Fig. 2

A t-labeling parse tree T , see also [10, Definition 6.11], is a finite rooted ordered
subcubic tree (with the root degree at most 2) such that
– All leaves of T contain the 
 symbol, and
– Each internal node of T contains one of the t-labeling composition symbols.

A parse tree T then generates (parses) the graph G which is obtained by succes-
sive leaves-to-root applications of the operators in the nodes of T . See Fig. 2, 3.

Analogously to the work of Courcelle and Kanté we get a crucial statement:

Theorem 3.1 (Rank-width parsing theorem [4,11]). A graph G has rank-
width at most t if and only if (some labeling of) G can be generated by a t-labeling
parse tree. Furthermore, a width-t rank-decomposition of G can be transformed
into a t-labeling parse tree on Θ(|V (G)|) nodes in time O(t2 · |V (G)|2).
The tools we use are inspired by the Myhill–Nerode theorem in automata theory.
We see this classical theorem as the starting point of formal understanding of
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dynamic algorithms: Such an algorithm typically collects “all relevant informa-
tion” about the studied problem on a local part, and then processes this infor-
mation “through” the whole input. The task is to determine what the words “all
relevant information” mean here.

The basic approach defines a so-called canonical equivalence, e.g. [16,11],
which is analogous to the “right congruence” known in theory of regular lan-
guages. A strongly enhanced formalism, called a PCE scheme, is given by the
authors in [12]. The PCE scheme provides a very fine control over the runtime
of FPT algorithms on graphs of bounded rank-width. On the other hand, in
this paper we show a formally precise handling of problems for which we do not
have FPT algorithms (wrt. rank-width), and which thus require a different, yet
similar, formal approach.

4 Applications in XP Algorithms

4.1 Computing the Chromatic Number

We illustrate our formalism on the graph chromatic number problem, for which
we strongly improve the previous algorithm of [19] running on graphs of bounded
clique-width. For the purposes of this section, it is useful to think about colouring
not as a function from vertices to colours but rather as a vertex-partition of G.
Formally, a colour partition of G is a partition N of V (G) into pairwise disjoint
nonempty(!) sets such that each X ∈ N is independent in G. The chromatic
number of a graph G is the minimum |N | such that N is a colour partition of G.

Theorem 4.1. Assume that an input graph G is given in the form of a t-labeling
parse tree T . Then the chromatic number of G can be computed in time

O
(
|V (G)|h(t)

)
where h(t) = O(2t(t+1)/2) .

We will also need a few preliminary technical results. Let, for X ⊆ V (G),
γ(Ḡ, X) = {lab(u) : u ∈ X}. Notice that this set of labelings—vectors in
GF(2)t —generates a vector subspace 〈γ(Ḡ, X)〉. Considering a t-labeled graph
Ḡ = (G, lab) with a proper colour partition {C1, C2 . . . Cj}, the core idea is that
we only need to record the subspaces 〈γ(Ḡ, Ci)〉 for i = 1, . . . , j.

Lemma 4.2 (also [2,12]). Assume t-labeled graphs Ḡ and H̄, and arbitrary
sets X ⊆ V (Ḡ), Y ⊆ V (H̄). In the join graph Ḡ⊗ H̄, there is no edge between a
vertex of X and a vertex of Y if and only if the subspace 〈γ(Ḡ, X)〉 is orthogonal
to the subspace 〈γ(H̄, Y )〉 in GF(2)t.

Proof. Let Ḡ = (G, lab) and H̄ = (H, lab′). We consider arbitrary y ∈ Y . Then
(as a scalar product in GF(2) ) lab(x) · lab′(y) = 0 for all x ∈ X ; henceforth
α · lab′(y) = 0 for all α ∈ 〈γ(Ḡ, X)〉 by means of elementary linear algebra. By a
symmetrical argument, we get α ·β = 0 for all β ∈ 〈γ(H̄, Y )〉, which means these
subspaces indeed are mutually orthogonal. Conversely, if 〈γ(Ḡ, X)〉 ⊥ 〈γ(H̄, Y )〉,
then there is obviously no edge between x ∈ X and y ∈ Y by the definition of
⊗ as lab(x) · lab′(y) = 0.
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Corollary 4.3. Assume t-labeled graphs Ḡ1, Ḡ2 and H̄, and independent sets
Xi ⊆ V (Ḡi), i = 1, 2 and Y ⊆ V (H̄). If 〈γ(Ḡ1, X1)〉 = 〈γ(Ḡ2, X2)〉, then X1∪Y
is independent in Ḡ1 ⊗ H̄ if and only if X2 ∪ Y is independent in Ḡ2 ⊗ H̄.

Lemma 4.4 ([15], cf. [12, Proposition 6.1]). The number S(t) of subspaces
of the binary vector space GF(2)t satisfies S(t) ≤ 2t(t+1)/4 − 2 for all t ≥ 12.

Informally, the algorithm for Theorem 4.1 starts by colouring all vertices in the
leaves of the labeling parse tree by distinct colours. Notice that if we keep the
colours distinct after performing the join operator, the resulting colour partition
of the graph will always be proper — each vertex will have a unique colour.
However, to compute the chromatic number, we also need to consider two colours
merging together during a join operation. The resulting colour partition after
such a merge is only proper if there was no edge between the merging colours,
and we must make sure that this can be algorithmically determined from the
information we store. The dynamic programming algorithm then, at every join
operator, considers all possibilities of colour merges and stores some information
about these possible colour partitions

Proof of Theorem 4.1. Given a graph G, we will write G |= ν(N ) to say
that a set family N ⊆ 2V (G) \ ∅ is a proper colour partition of G. Also, having
two set families N ,N ′, we denote by I(N ′,N ) the set of all injective mappings
p : N ′ → N , and we write N p

↽ N ′ for p ∈ I(N ′,N ) to denote the family

N p
↽ N ′ = {X ∪ p(X) : X ∈ N ′} ∪ (N \ p(N ′)

)
.

Informally, N p
↽ N ′ expands the colour partition N of G by merging some of

its colour classes with those of N ′ as prescribed by p.
For any t-labeled graphs Ḡ1, Ḡ2 and any colour partitions Ni ⊆ 2V (Gi) \ ∅

where i = 1, 2, we define (Ḡ1,N1) ≈ν,t (Ḡ2,N2) if and only if |N1| = |N2| = q
and the following holds true: For all t-labeled graphs H̄ and all colour partitions
N ⊆ 2V (H), and for all N0 ⊆ N such that |N0| ≤ q, it holds

∃p1 ∈ I(N0,N1) :
(
Ḡ1 ⊗ H̄

) |= ν
(
(N1

p1
↽ N0) ∪ (N \ N0)

)
(4.5)

⇐⇒ ∃p2 ∈ I(N0,N2) :
(
Ḡ2 ⊗ H̄

) |= ν
(
(N2

p2
↽ N0) ∪ (N \ N0)

)
.

Note that (Ḡ1,N1) ≈ν,t (Ḡ2,N2) means that there is no real difference between
the q-colour-partitioned (Ḡ1,N1) and (Ḡ2,N2) with respect to the possibility of
merging prescribed colour classes N0 of any joined graph H̄ with some existing
colour classes in N1,N2. Hence, ≈ν,t captures all information necessary to decide
which subcolourings of Ḡi extend to colourings of any larger Ḡi ⊗ H̄ .

Let Γ (Ḡ,N ) = {〈γ(Ḡ, X)〉 : X ∈ N} denote a multiset(!) of subspaces of GF(2)t.
The crucial finding, inspired by the colouring algorithm in [19], reads:

(4.6) For any t-labeled graphs Ḡ1, Ḡ2 and any Ni ⊆ 2V (Gi)\∅, i = 1, 2 such that
Ḡi |= ν(Ni), it holds (Ḡ1,N1) ≈ν,t (Ḡ2,N2) if Γ (Ḡ1,N1) = Γ (Ḡ2,N2).
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We will use N+
i to denote (Ni

pi
↽ N0)∪ (N \N0), i = 1, 2 (cf. 4.5). To prove this

claim, we assume Γ (Ḡ1,N1) = Γ (Ḡ2,N2) and
(
Ḡ1 ⊗ H̄

) |= ν(N+
1 ) for some

fixed p1. Since N+
2 is also a partition of the vertices of Ḡ2 ⊗ H̄, for claiming

ν(N+
2 ) it suffices to verify that all C ∈ N+

2 are independent in the graph Ḡ2 ⊗ H̄ .
That is trivial if C ∈ N2 or C ∈ (N \ N0), since both Ḡ2 and H̄ were properly
coloured and in this case the whole C is present in one of the original graphs.
For the rest, we consider any bijection b : N1 → N2 preserving 〈γ(Ḡ1, X)〉 =
〈γ(Ḡ2, b(X))〉 for all X ∈ N1, and choose p2 = b ◦ p1. Assume C = Y ∪ p2(Y ) ∈
N+

2 where Y ∈ N0. Applying Corollary 4.3 with X1 = p1(Y ) and X2 = p2(Y ),
we conclude that C is independent in Ḡ2 ⊗ H̄ if p1(Y ) ∪ Y is independent in
Ḡ1 ⊗ H̄, and p1(Y ) ∪ Y ∈ N+

1 .
Considering the labeling parse tree T of G, and a node z of T , let Ḡz denote

the t-labeled graph parsed by the subtree of T rooted at z. Thanks to previous
Claim (4.6), a dynamic algorithm for computing the chromatic number of G has
to remember only the set MT (z) of those multisets Γ (Ḡz,N ) coming from proper
colour partitions N of V (Gz), at any particular node z of T . This information
is trivial to construct at each leaf of T .

We now show how to obtain the set MT (z) from the sets MT (x) and MT (y) of
the left son x and right son y of our z. We consider any proper colour partitions
Nx and Ny of Ḡx and Ḡy, respectively. Let J (Ny,Nx) denote the set of all
partial injective mappings p from Ny into Nx (i.e. of injective mappings from

any subset of Ny into Nx), and let
p
� be a generalization of

p
↽ such that

Nx

p
� Ny = {X ∪ p(X) : X ∈ p−1(Nx)} ∪ (Ny \ p−1(Nx)

) ∪ (Nx \ p(Ny)
)
.

It is obvious that any colour partition of Ḡz induces colour partitions of Ḡx

and Ḡy, and so every Ḡz |= ν(Nz) is obtained as Nz = (Nx

p
� Ny) for some

Ḡx |= ν(Nx) and Ḡy |= ν(Ny), and suitable p ∈ J (Ny ,Nx).
For p ∈ J (Ny,Nx), we define the “signature” Sig(p) as an edge-weighted

bipartite graph Dp on the vertex set S ∪̇ S, where S is the family of all subspaces
of GF(2)t. f = ΨΨ ′ ∈ S × S is an edge of Dp iff there is Y ∈ Ny in the domain
of p such that Ψ ′ = 〈γ(Ḡy , Y )〉 and Ψ = 〈γ(Ḡx, p(Y ))〉. The weight of the edge
f is then the number of such witnesses Y ∈ Ny.

Let z carry the composition operator ⊗[g | f1, f2] in T , i.e. Ḡz =
Ḡx ⊗[g | f1, f2] Ḡy . Notice that Γ (Ḡz,Nz) where Nz = (Nx

p
� Ny) is uniquely

determined by Γ (Ḡx,Nx), Γ (Ḡy,Ny), by the relabelings f1, f2, and by Sig(p).
We furthermore define on the same vertex set a special bipartite graph D⊥

g (de-
pending on the relabeling g) with E(D⊥

g ) = {ΨΨ ′ ∈ S × S : Ψ ⊥ g(Ψ ′)}. The
purpose is to explicitly define which colour classes could be merged through
⊗[g | f1, f2] without creating edges inside any class.

From Lemma 4.2 we immediately conclude:

(4.7) Ḡz |= ν(Nz) where Nz = (Nx

p
� Ny) for some Ḡx |= ν(Nx), Ḡy |= ν(Ny)

and p ∈ J (Ny ,Nx) if, and only if, Sig(p) is a subgraph of D⊥
g .
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With Claim (4.7) at hand it is straightforward how to compute the set MT (z)
from the sets MT (x) and MT (y). We loop through all members Γx ∈ MT (x)
and Γy ∈ MT (y), and all admissible signatures Sig (i.e. nonnegative integer
weightings of the above bipartite graph D⊥

g by (4.7) ), test a simple consistency
condition, and then possibly add the resulting Γz (easily computable) to MT (z).
This consistency condition on Sig is that, for each its vertex Ψ , the sum of the
weights of the edges of Sig incident with Ψ is at most the multiplicity of Ψ in
Γx or Γy, respectively.

Finally, the chromatic number of G equals the least cardinality of a member
of MT (r) where r is the root of T . Such a leaves-to-root dynamic algorithm then
runs in time O

(
m(G, t)2 · w(G, t) · S(t)2 · t3 · |V (G)|), where m(G, t) denotes

the number of possible distinct Γ (Ḡ,N ), and w(G, t) stands for the number of
distinct weightings of the graph D⊥

g . Each Γz is then determined from Γx, Γy

and Sig in S(t)2t3 steps where S(t) is estimated in Lemma 4.4.
For simplicity, we provide only short arguments giving rather weak (but suffi-

cient) bounds on m, w here: m(G, t) can be bounded from above by |V (G)|S(t)—
consider that the multiplicity of any subspace in the multiset Γ (Ḡ,N ) is at most
the number of nonempty colour classes. With analogous arguments we also get
w(G, t) ≤ |V (G)|S(t)2 . These estimates then lead to a runtime bound of order
|V (G)|h(t) where h(t) ≤ 2S(t) + S(t)2 + o(t2) + 1 = O(S(t)2) = O(2t(t+1)/2).

4.2 Chromatic Polynomial

The chromatic polynomial was first introduced by Birkhoff in the context of the
Four Colour problem. Although the concept seems quite technical and obscure in
nature, it has since become of independent interest. The chromatic polynomial of
G is a polynomial PG(x) such that for every nonnegative integer x, PG(x) equals
the number of distinct proper colourings of G which use x colours. It is a trivial
observation that, given the values of all PG(x) for x = 1, 2, . . . , n = |V (G)|,
finding PG(x) simply becomes a matter of resolving n (independent) equations
of n unknowns.

Computing the chromatic polynomial is generally #P -complete. It has been
noted by [14] that the algorithm of [19] extends towards computing the chromatic
polynomial on graphs of bounded clique-width, and the same statement occurs
with a proof in [1]. We improve those results with:

Theorem 4.8. Assume that an input graph G is given in the form of a t-labeling
parse tree T . Then the chromatic polynomial of G can be computed in time

O
(
|V (G)|h(t)

)
where h(t) = O(2t(t+1)/2) .

Proof. As already explained, we need to modify the algorithm of Theorem 4.1
so that it will compute the number of distinct proper colourings of G having the
prescribed number of colour classes. Fortunately, we do not need to process all
possible colour partitions of G; thanks to (4.6), we only have to remember the
numbers of partitions N determining the same value of Γ (Ḡz,N ) at a node z.
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Let �α =
(
αΓ : Γ is a multiset of subspaces of GF(2)t

)
be a vector of free

variables. Although �α is infinite, we shall actually use a finite part of it.
Our algorithm shall compute the linear multivariete (symbolic) polynomial
R(Ḡz)[�α] =

∑
Γ qΓ · αΓ where qΓ stands for the number of distinct colour par-

titions N of Gz such that Γ (Ḡz,N ) = Γ .
The algorithm generally proceeds as that of Theorem 4.1. Specifically, at a

node z of T with the sons x and y, we compute straightforwardly

R(Ḡz)[�α] = R(Ḡx)[�α] · R(Ḡy)[�α]

and then apply all the necessary substitutions: For every pair αΓ1 , αΓ2 ∈ �α, we
replace the term αΓ1 ·αΓ2 with a sum, over all admissible signatures Sig (4.7), of
the terms rSig · αΓSig where ΓSig is the multiset uniquely determined by Γ1, Γ2,
Sig, and the composition relabelings at z. The number rSig is defined as follows.

Let N1,N2 be such that Γ (Ḡx,N1) = Γ1 and Γ (Ḡx,N2) = Γ2. Then rSig

is the number of distinct partial injective mappings p ∈ J (N2,N1) such that
Sig(p) = Sig. One can check that this quantity does not depend on a particular
choice of N1,N2, and that it can be straightforwardly computed from Γ1, Γ2 and
Sig along with computing ΓSig .

Finally, we extract the numbers of colourings of G from the above computed
R(Ḡ)[�α]. We note two points: First, a c-colouring does not have to use all c
colours, and so we have to count with all colour partitions of at most c classes.
Second, a traditional colouring distinguishes between the colours, while our
colour classes do not. Hence we obtain the total number of distinct c-colourings
of G from R(Ḡ)[�α] if we substitute αΓ = c!/(c − |Γ |)! and αΓ = 0 if |Γ | > c.

4.3 Hamiltonian Path

The last algorithm illustrating the strength our approach is based on a Hamil-
tonian path algorithm for graphs of bounded clique-width [7]. While the goal of
the previous two subsections was to demonstrate how one can design new more
efficient algorithms on labeling parse trees with tools of linear algebra, here we
show how to translate an existing clique-width-based algorithm to a formally
better setting within our scheme.

Theorem 4.9. Assume that an input graph G is given in the form of a t-labeling
parse tree T . Then one can determine whether G has a Hamiltonian path in time

O
(
|V (G)|�(t)

)
where �(t) = O(4t) .

Proof. We say that a set of edges F ⊆ E(G) is linear if the subgraph G �F =(
V (G), F

)
is a collection of disjoint paths. We also write G |= λ(F ) if F is a

Hamiltonian path in G. Having two linear subsets F1 ⊆ E(G1) and F2 ⊆ E(G2),
we define the equivalence relation (Ḡ1, F1) ≈λ,t (Ḡ2, F2) if and only if, for all
t-labeled graphs H̄ and all linear F ⊆ E(H), it holds

∃F3 ⊆ E(Ḡ1 ⊗ H̄) \ (E(G1) ∪ E(H)) :
(
Ḡ1 ⊗ H̄

) |= λ(F1 ∪ F3 ∪ F )(4.10)

⇐⇒ ∃F4 ⊆ E(Ḡ2 ⊗ H̄) \ (E(G2) ∪ E(H)) :
(
Ḡ2 ⊗ H̄

) |= λ(F2 ∪ F4 ∪ F ) .
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Obviously, ≈λ,t captures all information necessary to decide which linear subsets
of G1 extend to Hamiltonian paths in a join graph.

Similarly to [7], for a linear subset F ⊆ E(Ḡ), we define a multiset of labeling
pairs Π(Ḡ, F ) = {(lab(x), lab(y)) : x, y are the ends of a path in G �F } (an
isolated vertex is a path with the ends x = y). Analogously to (4.6) we have:

(4.11) For any t-labeled graphs Ḡ1, Ḡ2 and any linear F1 ⊆ E(G1) and F2 ⊆
E(G2), it holds (Ḡ1, F1) ≈λ,t (Ḡ2, F2) if Π(Ḡ1, F1) = Π(Ḡ2, F2).

Therefore, our algorithm computes, in the leaves-to-root direction on T , the
sets NT (z) = {Π(Ḡz, F ) : F ⊆ E(G) linear }. Since there are 22t = 4t distinct
labeling pairs in GF(2)t, there are at most |V (G)|4t

distinct multisets Π(Ḡz , F )
to be considered in each set NT (z). Obviously, G has a Hamiltonian path F
if and only if NT (r) contains a multiset Π(Ḡ, F ) of cardinality one. The rest
proceeds in the same way as the previous algorithms.

Remark 4.12. One of the advantages of our new proof of Theorem 4.9 is that it
immediately extends towards solving directed Hamiltonian path in digraphs of
bounded bi-rank-width (a directed analogue of rank-width, cf. [18]).

5 Concluding Notes

The list of algorithms presented in this article is by no means exhaustive. Other
XP algorithms designed for graphs of bounded clique-width (e.g., for the edge-
dominating set [19]) can also be straightforwardly translated into our parse tree
approach on rank-width, similarly to Theorem 4.9. One can expect that the
time complexity of such algorithms will have a “one-level higher” exponent, as
we see in Theorem 4.9. As already mentioned, the reason is that rank-width
generally has an exponentially smaller value than clique-width (not that the
new algorithms would be slower).

Still, the main advantage of designing algorithms on rank-decompositions of
graphs is that we can efficiently compute an optimal rank-decomposition by
Theorem 2.1. Even better, sometimes it is possible to use our approach to design
algorithms which are actually much faster than the best known ones on clique-
width; this is the case of computing the chromatic numbers and polynomials in
Theorem 4.1. Determining which algorithms designed for clique-width can be
radically improved in such a way remains an open question, one that we believe
deserves further study.
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