
A New Algorithm for

Efficient Pattern Matching with Swaps

Matteo Campanelli1, Domenico Cantone2, and Simone Faro2

1 Università di Catania, Scuola Superiore di Catania
Via San Nullo 5/i, I-95123 Catania, Italy

2 Università di Catania, Dipartimento di Matematica e Informatica
Viale Andrea Doria 6, I-95125 Catania, Italy

macampanelli@ssc.unict.it, cantone@dmi.unict.it, faro@dmi.unict.it

Abstract. The Pattern Matching problem with Swaps consists in find-
ing all occurrences of a pattern P in a text T , when disjoint local swaps
in the pattern are allowed.

In this paper, we present a new efficient algorithm for the Swap Match-
ing problem with short patterns. In particular, we devise a O(nm2)
general algorithm, named Backward-Cross-Sampling, and show an
efficient implementation of it, based on bit-parallelism, which achieves
O(nm) worst-case time and O(σ)-space complexity, with patterns whose
length m is comparable to the word-size of the target machine (n and σ
are respectively the size of the text and of the alphabet).

From an extensive comparison with some of the most recent and ef-
fective algorithms for the swap matching problem, it turns out that our
algorithm is very flexible and achieves very good results in practice.

Keywords: pattern matching with swaps, nonstandard pattern match-
ing, combinatorial algorithms on words, design and analysis of algorithms.

1 Introduction

The Pattern Matching problem with Swaps (Swap Matching problem, for short)
is a well-studied variant of the classic Pattern Matching problem. It consists in
finding all occurrences, up to character swaps, of a pattern P of length m in a
text T of length n, with P and T sequences of characters drawn from a same
finite character set Σ of size σ. More precisely, the pattern is said to swap-match
the text at a given location j if adjacent pattern characters can be swapped,
if necessary, so as to make it identical to the substring of the text ending (or,
equivalently, starting) at location j. All swaps are constrained to be disjoint, i.e.,
each character can be involved in at most one swap. Moreover, identical adjacent
characters are not allowed to be swapped.

This problem is of relevance in practical applications such as text and music
retrieval, data mining, and network security, and many others. Following [5], we
also mention a particularly important application of the swap matching problem

J. Fiala, J. Kratochv́ıl, and M. Miller (Eds.): IWOCA 2009, LNCS 5874, pp. 230–241, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A New Algorithm for Efficient Pattern Matching with Swaps 231

in biological computing, specifically in the process of translation in molecular
biology, with the genetic triplets (otherwise called codons). In such application
one wants to detect the possible positions of the start and stop codons of an
mRNA in a biological sequence and find hints as to where the flanking regions
are relative to the translated mRNA region.

The swap matching problem was introduced in 1995 as one of the open prob-
lems in nonstandard string matching [10]. The first nontrivial result was reported
by Amir et al. [1], who provided a O(nm

1
3 log m)-time in the case of alphabet

sets of size 2, showing also that the case of alphabets of size exceeding 2 can be
reduced to that of size 2 with a O(log2 σ)-time overhead (subsequently reduced
to O(log σ) in the journal version [2]). Amir et al. [4] studied some rather restric-
tive cases in which a O(m log2 m)-time algorithm can be obtained. More recently,
Amir et al. [3] solved the swap matching problem in O(n log m logσ)-time. We
observe that the above solutions are all based on the fast Fourier transform
(FFT) technique.

In 2008 the first attempt to provide an efficient solution to the swap matching
problem without using the FFT technique has been presented by Iliopoulos and
Rahman in [9]. They introduced a new graph-theoretic approach to model the
problem and devised an efficient algorithm, based on bit parallelism, which runs
in O((n + m) log m)-time, provided that the pattern size is comparable to the
word size in the target machine.

More recently, in 2009, Cantone and Faro [7] presented a first approach for
solving the swap matching problem with short patterns in linear time. More
precisely, they devised a simple algorithm, named Cross-Sampling, which,
though characterized by a O(nm) worst-case time complexity, admits an efficient
implementation based on bit-parallelism, achieving O(n) worst-case time and
O(σ) space complexity for short patterns fitting in few machine words.

In this paper, we present a new efficient algorithm for solving the swap match-
ing problem. In particular, we provide a O(nm2) general algorithm, named
Backward-Cross-Sampling algorithm, which inherits much the same itera-
tive structure of the Cross-Sampling algorithm, but is based on a right-to-left
scan of the text, giving better results in practice. We will also describe an ef-
ficient implementation of the algorithm, characterized by a O(nm) worst-case
time and O(σ)-space complexity, for patterns of length comparable to the word
size of the target machine.

The rest of the paper is organized as follows. In Section 2 we recall some
preliminary definitions. Sections 3 describes the Cross-Sampling algorithm
and its bit-parallel variant. In Section 4 we present the Backward-Cross-
Sampling algorithm for the swap matching problem and then, in Section 5, we
illustrate an efficient implementation of it based on bit-parallelism. Results of
an extensive experimental comparison under various conditions with the most
efficient algorithms present in the literature are reported in Section 6. Finally,
we will briefly draw our conclusions in Section 7.

232 M. Campanelli, D. Cantone, and S. Faro

2 Notions and Basic Definitions

A string P of length m ≥ 0 is represented as a finite array P [0 .. m− 1]. In such
a case we also write length(P) = m. In particular, for m = 0 we obtain the
empty string, denoted by ε. We denote by P [i] the (i + 1)-st character of P , for
0 ≤ i < length(P). Likewise, we denote by P [i .. j] the substring of P contained
between the (i+1)-st and the (j+1)-st characters of P , for 0 ≤ i ≤ j < length(P).
A h-substring of a string S is a substring of S of length h. For any two strings
P and P ′, we say that P ′ is a suffix of P if P ′ = P [i .. length(P) − 1], for some
0 ≤ i < length(P). Similarly, we say that P ′ is a prefix of P if P ′ = P [0 .. i− 1],
for some 0 ≤ i ≤ length(P). We denote by Pi the nonempty prefix P [0 .. i] of P
of length i + 1, for 0 ≤ i < m. If i < 0, we convene that Pi is the empty string ε.
Moreover we say that P ′ is a proper prefix (suffix) of P if P ′ is a prefix (suffix)
of P and |P ′| < |P |. Finally, we write P.P ′ to denote the concatenation of P
and P ′.

Definition 1. A swap permutation for a string P of length m is a permutation
π : {0, ..., m− 1} → {0, ..., m− 1} such that:

(a) if π(i) = j then π(j) = i (characters at positions i and j are swapped);
(b) for all i, π(i) ∈ {i− 1, i, i + 1} (only adjacent characters are swapped);
(c) if π(i) �= i then P [π(i)] �= P [i] (identical characters are not swapped).

For a given string P and a swap permutation π for P , we write π(P) to denote
the swapped version of P , namely π(P) = P [π(0)].P [π(1)]. · · · .P [π(m− 1)].

Definition 2. Given a text T of length n and a pattern P of length m, P is said
to swap-match (or to have a swapped occurrence) at location j ≥ m− 1 of T if
there exists a swap permutation π of P such that π(P) matches T at location j,
i.e., π(P) = T [j −m + 1 .. j]. In such a case we write P ∝ Tj.

Definition 3 (Pattern Matching Problem with Swaps). Given a text T
of length n and a pattern P of length m, find all locations j ∈ {m− 1, ..., n− 1}
such that P swap-matches with T at location j, i.e., P ∝ Tj.

The following elementary result will be used later.

Lemma 1 ([7]). Let P and R be strings of length m over an alphabet Σ and
suppose that there exists a swap permutation π such that π(P) = R. Then π is
unique.

Corollary 1. Given a text T of length n and a pattern P of length m, if P ∝ Tj,
for a given position j ∈ {m− 1, . . . , n− 1}, then there exists a unique swapped
occurrence of P in T ending at position j.

A New Algorithm for Efficient Pattern Matching with Swaps 233

3 The Cross-Sampling Algorithm

The Cross-Sampling algorithm [7] computes the swap occurrences of all pre-
fixes of a pattern P (of length m) in continuously increasing prefixes of a text T
(of length n), using a dynamic programming approach. More precisely, during
its (j + 1)-st iteration, for j = 0, 1, . . . , n − 1, we establish whether Pi ∝ Tj ,
for each i = 0, 1, . . . , m− 1, by exploiting information gathered during previous
iterations. To this end, if we put

λj =
{{0} if P [0] = T [j]
∅ otherwise , for 0 ≤ j ≤ n− 1

Sj = {0 ≤ i ≤ m− 1 : Pi ∝ Tj}, for 0 ≤ j ≤ n− 1
S′j = {0 ≤ i < m− 1 : Pi−1 ∝ Tj−1 and P [i] = T [j + 1]} for 1 ≤ j ≤ n− 1.

then the following recurrences hold:

Sj+1 = {i ≤ m− 1 : ((i− 1) ∈ Sj and P [i] = T [j + 1]) or
((i− 1) ∈ S′j and P [i] = T [j]) } ∪ λj+1

S′j+1 = {i < m− 1 : (i− 1) ∈ Sj and P [i] = T [j + 2]} ∪ λj+2 ,
(1)

where the base cases are given by S0 = λ0 and S′0 = λ1.
Such relations allow one to compute the sets Sj and S′j in an iterative fashion,

where Sj+1 is computed in terms of both Sj and S′j , whereas S′j+1 needs only
Sj for its computation. The resulting dependency graph has a doubly crossed
structure, from which the name of the algorithm of Fig. 1, Cross-Sampling,
for the swap matching problem. Plainly, the time complexity of the Cross-
Sampling algorithm is O(nm).

[7] presents also an efficient implementation of the Cross-Sampling algo-
rithm based on the bit-parallelism technique [6], called BP-Cross-Sampling
algorithm. We recall that the bit-parallelism technique takes advantage of the
intrinsic parallelism of the bit operations inside a computer word, allowing to
cut down the number of operations that an algorithm performs by a factor of at
most w, where w is the number of bits in the computer word.

The BP-Cross-Sampling algorithm uses a representation of the sets Sj and
S′j as lists of m bits, Dj and D′j respectively (m is the length of the pattern).
The i-th bit of Dj is set to 1 if i ∈ Sj , i.e., if Pi ∝ Tj , whereas the i-th bit of D′j
is set to 1 if i ∈ S′j , i.e., if Pi−1 ∝ Tj−1 and P [i] = T [j + 1]. The remaining bits
are set to 0. Notice that if m ≤ w, each list fits completely in a single computer
word, whereas if m > w we need
m/w� computer words to represent each of
the sets Sj and S′j .

For each character c of the alphabet Σ, the algorithm maintains a bit mask
M [c], whose i-th bit is set to 1 if P [i] = c.

The bit vectors are initialized to 0m. Then the algorithm scans the text from
left to right and, for each position j ≥ 0, it computes the bit vector Dj in terms
of Dj−1 and D′j−1, by performing the following bitwise operations:

234 M. Campanelli, D. Cantone, and S. Faro

(A) Cross-Sampling (P, m, T, n)

1. S0 ← S′
0 ← ∅

2. if P [0] = T [0] then S0 ← {0}
3. if P [0] = T [1] then S′

0 ← {0}
4. for j ← 1 to n− 1 do
5. Sj ← S′

j ← ∅
6. for i ∈ Sj−1 do
7. if i < m− 1 then
8. if P [i + 1] = T [j]
9. then Sj ← Sj ∪ {i + 1}

10. if j < n− 1 and P [i + 1] = T [j + 1]
11. then S′

j ← S′
j ∪ {i + 1}

12. else Output(j − 1)
13. for i ∈ S′

j−1 do
14. if i < m− 1 and P [i + 1] = T [j − 1]
15. then Sj ← Sj ∪ {i + 1}
16. if P [0] = T [j] then Sj ← Sj ∪ {0}
17. if j < n− 1 and P [0] = T [j + 1]
18. then S′

j ← S′
j ∪ {0}

19. for i ∈ Sj−1 do
20. if i = m− 1 then Output(n− 1)

(B) BP-Cross-Sampling (P, m, T, n)

1. F ← 0m−11
2. for c ∈ Σ do M [c]← 0m

3. for i← 0 to m− 1 do
4. M [xi]←M [P [i]] | F
5. F ← F � 1

6. F ← 10m−1

7. D ← D′ ← 0m

8. for j ← 0 to n− 1 do
9. H ← (D � 1) | 1
10. D ← (H & M [T [j]])
11. D′ ← (D′ � 1) & M [T [j − 1]]
12. D ← D | D′

13. D′ ← H & M [T [j + 1]]
14. if (D & F) 	= 0m then
15. Output(j)

Fig. 1. (A) The Cross-Sampling algorithm for solving the swap matching problem.
(B) The BP-Cross-Sampling algorithm based on bit-parallelism.

Dj ← Dj−1 1 Sj = {i : (i− 1) ∈ Sj−1}
Dj ← Dj | 1 Sj = Sj ∪ {0}
Dj ← Dj & M [T [j]] Sj = Sj \ {i : P [i] �= T [j]}
Dj ← Dj | H1 Sj = Sj ∪ {i : (i− 1) ∈ S′j−1 ∧ P [i] = T [j − 1]},

where H1 =
(
(D′j−1 1) & M [T [j − 1]]

)
.

Similarly, the bit vector D′j is computed in the j-th iteration of the algorithm
in terms of Dj−1, by performing the following bitwise operations:

D′j ← Dj−1 1 S′j = {i : (i− 1) ∈ Sj−1}
D′j ← D′j | 1 S′j = S′j ∪ {0}
D′j ← D′j & M [T [j + 1]] S′j = S′j \ {i : P [i] �= T [j + 1]}.

During the j-th iteration of the algorithm, if the leftmost bit of Dj is set to 1,
i.e. if (Dj & 10m−1) �= 0m, a swap match is reported at position j.

The code of the BP-Cross-Sampling algorithm is shown in Fig. 1(B). It
achieves a O(
mn/w�) worst-case time complexity and requires O(σ
m/w�) ex-
tra space, where σ is the size of the alphabet. If m ≤ w, then the algorithm
requires O(n)-time and O(σ) extra space.

4 The Backward-Cross-Sampling Algorithm

In this section we present a new practical algorithm for solving the swap match-
ing problem, called Backward-Cross-Sampling.

The new algorithm inherits from the Cross-Sampling algorithm the same
doubly crossed structure in its iterative computation. However, it searches for

A New Algorithm for Efficient Pattern Matching with Swaps 235

all occurrences of the pattern in the text by scanning characters from right to
left, as in the Backward DAWG Matching (BDM) algorithm for the exact single
pattern matching problem [8].

The BDM algorithm processes the pattern by constructing a directed acyclic
word graph (DAWG) of the reversed pattern. The text is processed in windows
of size m, which are searched for the longest prefix of the pattern from right to
left by means of the DAWG. At the end of each search phase, either a longest
prefix or a match is found. If no match is found, the window is shifted to the
start position of the longest prefix, otherwise it is shifted to the start position
of the second longest prefix.

As in the BDM algorithm, the Backward-Cross-Sampling algorithm pro-
cesses the text in windows of size m. Each attempt is identified by the last
position, j, of the current window of the text. The window is searched for the
longest prefix of the pattern which has a swapped occurrence ending at position
j of the text. At the end of each attempt, a new value of j is computed by per-
forming a safe shift to the right of the current window in such a way to left-align
the current window of the text with the longest prefix matched in the previous
attempt.

To this end, for any given position j in the text T , we let Sh
j denote the set

of the integral values i such that the h-substring of P ending at position i has a
swapped occurrence ending at position j of the text T . More formally, we have

Sh
j =Def {h− 1 ≤ i ≤ m− 1 : P [i− h + 1 .. i] ∝ Tj} ,

for 0 ≤ j < n and 0 ≤ h ≤ m.
If h−1 ∈ Sh

j , then there is a swapped occurrence of the prefix of the pattern of
length h, i.e., P [0 .. h− 1] ∝ Tj. In addition, it turns out that P has a swapped
occurrence at location j of T if and only if Sm

j �= ∅. Indeed, if Sm
j �= ∅ then

Sm
j = {m− 1}, for any given position j in the text.
The sets Sh

j can be computed efficiently by a dynamic programming algorithm,
by exploiting the following very elementary property.

Lemma 2. Let T and P be a text of length n and a pattern of length m, respec-
tively. Then, for each 0 ≤ j < n, 0 ≤ h ≤ m, and h− 1 ≤ i < m we have that
P [i− h + 1 .. i] ∝ Tj if and only if one of the following two facts holds

– P [i− h + 2 .. i] ∝ Tj and P [i− h + 1] = T [j − h + 1];
– P [i−h+3 .. i] ∝ Tj, P [i−h+1] = T [j−h+2], and P [i−h+2] = T [j−h+1].

Let us denote by Wh
j , for 0 ≤ j < n and 0 ≤ h < m, the collection of all values

i such that P [i− h + 1] = T [j − h] and the (h− 1)-substring ending at position
i of P has a swapped occurrence ending at location j of the text T .

More formally

Wh
j =Def {h ≤ i < m− 1 : P [i− h + 2 .. i] ∝ Tj and P [i− h + 1] = T [j − h]} .

For any given position j in the text, the base case for h = 0 is given by

S0
j = {i : 0 ≤ i < m} and W0

j = {0 ≤ i < m− 1 : P [i + 1] = T [j]}. (2)

236 M. Campanelli, D. Cantone, and S. Faro

S�
j

W�
j

S2
j

W2
j

S1
j

W1
j

S0
j

W0
j

Sh
u

Wh
u

S2
u

W2
u

S1
u

W1
u

S0
u

W0
u

u = j + m − �

Fig. 2. A graphic representation of the iterative pattern for computing sets Sh
j and

Wh
j for increasing values of h. A first attempt, starting at position j of the text, ends

with h = �. The subsequent attempt starts at position u = j + m − �.

Additionally, Lemma 2 justifies the following recursive definitions of the sets
Sh+1

j and Wh+1
j in terms of Sh

j and Wh
j , for 0 ≤ j < n and 0 ≤ h < m:

Sh+1
j = {h− 1 ≤ i ≤ m− 1 : (i ∈ Sh

j and P [i− h] = T [j − h]) or
(i ∈ Wh

j and P [i− h] = T [j − h + 1]) }
Wh+1

j = {h ≤ i ≤ m− 1 : i ∈ Sh
j and P [i− h] = T [j − h− 1]} .

(3)

Such relations, coupled with the initial conditions (2), allow one to compute the
sets Sh

j and Wh
j in an iterative fashion as shown in Fig. 2.

The code of the Backward-Cross-Sampling algorithm is shown in
Fig. 3(A). For any attempt at position j of the text, we denote by � the length
of the longest prefix matched in the current attempt. Then the algorithm starts
its computation with j = m− 1 and � = 0. During each attempt, the window of
the text is scanned from right to left, for h = 1 to m. If, for a given value of h,
the algorithm states that element (h− 1) ∈ Sh

j then � is updated to value h.
The algorithm is not able to remember the characters read in previous itera-

tions. Thus, an attempt ends successfully when h reaches the value m (a match
is found), or unsuccessfully when both sets Sh

j andWh
j are empty. In any case, at

the end of each attempt, the start position of the window, i.e., position j−m+1
in the text, can be shifted to the start position of the longest proper prefix de-
tected during the backward scan. Thus the window is advanced m− � positions
to the right. Observe that since � < m, we plainly have that m− � > 0.

Moreover, in order to avoid accessing the text character of position j−h+1 =
n, when j = n − 1 and h = 0, the algorithm benefits of the introduction of a
sentinel character at the end of the text.

To compute the worst-case time complexity of the algorithm, preliminarily
we observe that, since the algorithm does not remember the length of the prefix
matched in previous attempts, each character of the text is processed at most
m times during the searching phase. Thus the while-cycle of line 7 is executed
O(nm) times. The for-cycles of line 9 and line 14 are executed |Sh

j | and |Wh
j |

times, respectively. However, according to Lemma 1, for each position j of the

A New Algorithm for Efficient Pattern Matching with Swaps 237

(A) Backward-Cross-Sampling (P, m, T, n)

1. T [n]← P [0]
2. j ← m− 1
3. while j < n do
4. h← 0
5. S0

j ← {i : 0 ≤ i < m}
6. W0

j ← {0 ≤ i < m− 1 : P [i + 1] = T [j]}
7. while h < m and Sh

j ∪Wh
j 	= ∅ do

8. if (h− 1) ∈ Sh
j then �← h

9. for each i ∈ Sh
j do

10. if i ≥ h and P [i− h] = T [j − h]

11. then Sh+1
j ← Sh+1

j ∪ {i}
12. if i > h and P [i− h] = T [j − h− 1]

13. then Wh+1
j ←Wh+1

j ∪ {i}
14. for each i ∈ Wh

j do
15. if i ≥ h and P [i− h] = T [j − h + 1]

16. then Sh+1
j ← Sh+1

j ∪ {i}
17. h← h + 1

18. if (h− 1) ∈ Sh
j then Output(j)

19. j ← j + m− �

(B) BP-Backward-Cross-Sampling (P, m, T, n)

1. F ← 10m−1

2. for c ∈ Σ do M [c]← 0m

3. for i← 0 to m− 1 do
4. M [P [i]] ←M [P [i]] | F
5. F ← F � 1
6. T [n]← P [0]
7. j ← m− 1
8. F ← 10m−1

9. while j < n do
10. h← 1, �← 0
11. D ←M [T [j]]
12. D ← D | (M [T [j + 1]]&(M [T [j]]� 1))
13. C ←M [T [j − 1]]
14. while h < m and (D | C) 	= 0 do
15. if F&D 	= 0 then �← h
16. H ← (C � 1) & M [T [j − h + 1]]
17. C ← (D � 1) & M [T [j − h− 1]]
18. D ← (D � 1) & M [T [j − h]]
19. D ← D | H
20. h← h + 1
21. if D 	= 0 then Output(j)
22. j ← j + m− �

Fig. 3. (A) The Backward-Cross-Sampling algorithm for the swap matching prob-
lem. (B) The BP-Backward-Cross-Sampling algorithm (based on bit-parallelism).

text we can report only a single swapped occurrence of the substring P [i− h +
1 . . . i] in Tj , for each h−1 ≤ i < m, which implies that |Sh

j | ≤ m and |Wh
j | < m.

Therefore the Backward-Cross-Sampling algorithm has a O(nm2)-time
complexity and requires O(m) extra space to represent the sets Sh

j and Wh
j .

5 The BP-Backward-Cross-Sampling Algorithm

In this section we present a practical implementation of the Backward-Cross-
Sampling algorithm based on the bit-parallelism technique [6]. The resulting
algorithm works as the BNDM (Backward Nondeterministic DAWG Match) al-
gorithm [11], which is a bit-parallel implementation of the BDM algorithm, where
the simulation of a nondeterministic automaton takes place by updating the state
vector much as in the Shift-And algorithm [6].

In the bit-parallel variant of the Backward-Cross-Sampling algorithm,
the sets Sh

j and Wh
j are represented as lists of m bits, Dh

j and Ch
j respectively.

The (i− h + 1)-th bit of Dh
j is set to 1 if i ∈ Sh

j , i.e., if P [i− h + 1 .. i] ∝ Tj ,
whereas the (i−h+1)-th bit of Ch

j is set to 1 if i ∈ Wh
j , i.e., if P [i−h+2 .. i] ∝ Tj

and P [i−h+1] = T [j−h]. All remaining bits are set to 0. Notice that if m ≤ w,
each bit vector fits in a single computer word, whereas if m > w we need
m/w�
computer words to represent each of the sets Sh

j and Wh
j .

For each character c of the alphabet Σ, the algorithm maintains a bit mask
M [c] whose i-th bit is set to 1 if P [i] = c.

238 M. Campanelli, D. Cantone, and S. Faro

As in the Backward-Cross-Sampling algorithm, the text is processed in
windows of size m, identified by the last position j, and the first attempt starts
at position j = m− 1. For any searching attempt at location j of the text, the
bit vectors D1

j and C1
j are initialized to M [T [j]] | (M [T [j + 1]]&(M [T [j]] 1))

and M [T [j − 1]], respectively, according to the base cases shown in (2) and
recursive expressions shown in (3). Then the current window of the text, i.e.
T [j−m + 1 .. j], is scanned from right to left, by reading character T [j − h + 1],
for increasing values of h. Namely, for each value of h > 1, the bit vector Dh+1

j is
computed in terms of Dh

j and Ch
j , by performing the following bitwise operations:

(a) Dh+1
j ← (Dh

j 1) & M [T [j − h]] ,
(b) Dh+1

j ← Dh+1
j | ((Ch

j 1) & M [T [j − h + 1]]) .

Concerning (a), by a left shift of Dh
j , all elements of Sh

j are added to the set
Sh+1

j . Then, by performing a bitwise and with the mask M [T [j − h]], all ele-
ments i such that P [i− h] �= T [j − h] are removed from Sh+1

j . Similarly, the bit
operations in (b) have the effect to add to Sh+1

j all elements i in Wh
j such that

P [i− h] = T [j − h + 1]. Formally, we have the following correspondence:

(a′) Sh+1
j ← Sh

j \ {i ∈ Sh
j : P [i− h] �= T [j − h]} ,

(b′) Sh+1
j ← Sh+1

j ∪Wh
j \ {i ∈ Wh

j : P [i− h] �= T [j − h + 1]} .
Similarly, the bit vector Ch+1

j is computed in terms of Dh
j , by performing the

following bitwise operations:

(c) Ch+1
j ← (Dh

j 1) & M [T [j − h− 1]]

which have the effect to add to the setWh+1
j all elements of the set Sh

j (by shifting
Dh

j to the left by one position) and to remove all elements i such P [i] �= T [j−h−1]
holds (by a bitwise and with the mask M [T [j − h− 1]]).

More formally, we have the following symbolic correspondence:

(c′) Wh+1
j ← Sh

j \ {i ∈ Sh
j : P [i− h] �= T [j − h− 1]} .

As in the Backward-Cross-Sampling algorithm, an attempt ends when h =
m or (Dh

j |Ch
j) = 0. If h = m and Dh

j �= 0, a swap match at position j of the text
is reported. In any case, if h < m is the largest value such that Dh

j �= 0, then a
prefix of the pattern, of length � = h, which has a swapped occurrence ending
at position j of the text, has been found. Thus a safe shift of m− � position to
the right can take place.

In practice, we can use just two vectors to implement the sets Dh
j and Ch

j .
Thus, during the h-th iteration of the algorithm at a given location j of the
text, vector Dh

j is transformed into vector Dh+1
j and vector Ch

j is transformed
into vector Ch+1

j . The resulting BP-Backward-Cross-Sampling algorithm is
shown in Fig. 3(B). It achieves a O(
nm2/w�) worst-case time complexity and
requires O(σ
m/w�) extra space, where σ is the alphabet size. If the length of
the pattern is m ≤ w, then the algorithm finds all swapped matches in O(nm)
time and O(σ) extra space.

A New Algorithm for Efficient Pattern Matching with Swaps 239

6 Experimental Results

Next we present experimental data which allow to compare under various con-
ditions the following string matching algorithms in terms of their running times:

- Iliopoulos-Rahman algorithm (IR)
- Cross-Sampling algorithm (CS)
- BP-Cross-Sampling algorithm (BPCS)
- Backward-Cross-Sampling algorithm (BCS)
- BP-Backward-Cross-Sampling algorithm (BPBCS)

We have chosen to exclude from our experimental comparison the Naive algo-
rithm and all algorithms based on the FFT technique, since the overhead of such
algorithms is quite high, resulting in very bad performances.

All algorithms have been implemented in the C programming language and
were used to search for the same strings in large fixed text buffers on a PC with
Intel Pentium M processor of 1.7GHz and a memory of 512Mb. In particular, all
algorithms have been tested on three Randσ problems, for σ = 8, 32, and 128, on
a genome, on a protein sequence, and on a natural language text buffer, with pat-
terns of length m = 4, 8, 12, 16, 20, 24, 28, 32. In the tables below, running times
have been expressed in hundredths of seconds and the best results are bold-faced.

Running Times for Random Problems
In the case of random texts, the algorithms have been tested on three Randσ
problems. Each Randσ problem consists in searching a set of 400 random pat-
terns of a given length in a 4Mb random text over a common alphabet of size
σ, with a uniform character distribution.

Running times for a Rand8 problem

m 4 8 12 16 20 24 28 32

IR 3.450 3.420 3.420 3.440 3.580 3.560 3.520 3.560
CS 66.670 67.210 67.230 67.590 67.850 68.280 68.670 69.060
BPCS 3.960 3.900 3.890 3.900 3.920 3.900 3.930 3.910
BCS 62.130 41.160 33.700 29.480 26.750 24.870 23.700 22.450
BPBCS 4.140 2.000 1.850 1.180 1.110 1.000 0.910 0.800

Running times for a Rand32 problem

m 4 8 12 16 20 24 28 32

IR 2.920 2.950 2.930 2.940 2.940 2.930 2.950 2.950
CS 60.030 59.760 59.740 59.710 59.610 59.580 59.350 59.200
BPCS 3.030 3.050 3.040 3.080 3.040 3.060 3.080 3.060
BCS 46.200 29.050 23.750 20.540 18.640 17.380 16.180 15.660
BPBCS 2.650 1.930 1.050 1.000 0.820 0.600 0.380 0.240

Running times for a Rand128 problem

m 4 8 12 16 20 24 28 32

IR 3.550 3.610 3.610 3.590 3.630 3.650 3.660 3.640
CS 59.910 59.610 59.460 59.390 59.380 59.130 59.180 59.130
BPCS 3.120 3.150 3.160 3.160 3.140 3.110 3.130 3.130
BCS 42.720 25.750 20.130 17.720 15.950 14.650 13.990 13.310
BPBCS 2.000 1.040 0.960 0.750 0.580 0.390 0.250 0.180

240 M. Campanelli, D. Cantone, and S. Faro

The experimental results show that the BPBCS algorithm obtains the best
run-time performance in most cases. In particular, for very short patterns and
small alphabets, our algorithm is second only to the IR algorithm. We notice
that IR, CS. and BPCS show a linear behavior, whereas BCS and BPBCS are
characterized by a decreasing trend. Observe moreover that, in the case of small
alphabets and pattern longer than 16 characters, the BPBCS algorithm is at
least three times faster than BPCS and IR. Such a relation increases to thirty
times for large alphabets.

Running Times for Real World Problems
The tests on real world problems have been performed on a genome sequence,
on a protein sequence, and on a natural language text buffer. The genome used
is a sequence of 4, 638, 690 base pairs of Escherichia coli, taken from the file
E.coli of the Large Canterbury Corpus.1 The protein sequence used in the tests
is a 2.4Mb file with 22 different characters from the human genome. Finally, as
natural language text buffer we used the file world192.txt (The CIA World Fact
Book) from the Large Canterbury Corpus, which contains 2, 473, 400 characters
drawn from an alphabet of 93 different characters.

Running times for a genome sequence (σ = 4)

m 4 8 12 16 20 24 28 32

IR 3.070 3.060 3.070 3.080 3.100 3.150 3.150 3.100
CS 83.020 79.930 79.760 79.380 79.350 79.430 79.500 79.460
BPCS 6.820 3.950 3.910 3.920 3.930 3.920 3.930 3.940
BCS 102.410 67.010 55.480 49.050 45.250 42.290 40.260 38.650
BPBCS 10.170 3.930 2.640 2.010 1.960 1.830 1.510 1.120

Running times for a protein sequence (σ = 22)

m 4 8 12 16 20 24 28 32

IR 1.990 2.000 1.990 2.000 1.990 2.000 1.990 1.990
CS 45.190 45.230 45.490 45.650 45.900 46.040 46.400 44.400
BPCS 2.030 2.010 2.020 2.050 2.040 2.030 2.040 2.020
BCS 31.110 22.450 18.620 16.430 15.130 14.090 13.450 12.670
BPBCS 2.130 1.180 0.950 0.590 0.270 0.120 0.070 0.070

Running times for a natural language text buffer (σ = 93)

m 4 8 12 16 20 24 28 32

IR 1.850 1.820 1.820 1.850 1.880 1.820 1.860 1.850
CS 36.950 36.680 36.520 36.410 36.230 36.120 36.080 36.210
BPCS 2.050 1.970 1.970 1.990 1.970 1.980 1.990 1.980
BCS 30.410 19.390 15.720 13.640 12.350 11.430 10.820 10.320
BPBCS 2.000 0.990 0.610 0.210 0.050 0.020 0.013 0.010

The above experimental results show that in most cases the BPBCS algorithm
obtains the best results and only sporadically is second to the IR algorithm.
Moreover, in the case of natural language texts and long patterns, the BPBCS
algorithm is about 100 times faster than the IR algorithm.

1 http://www.data-compression.info/Corpora/CanterburyCorpus/

A New Algorithm for Efficient Pattern Matching with Swaps 241

7 Conclusions

In this paper we have presented a new efficient algorithm for the Swap Matching
problem with short patterns. In particular, we have devised a O(nm2) general
algorithm, named Backward-Cross-Sampling, and have provided an efficient
implementation of it, based on bit-parallelism.

An extensive experimental comparisons showed that our algorithm is very
fast in practice and obtains the best results in most cases, especially with long
patterns and large alphabets.

References

1. Amir, A., Aumann, Y., Landau, G.M., Lewenstein, M., Lewenstein, N.: Pattern
matching with swaps. In: IEEE Symposium on Foundations of Computer Science,
pp. 144–153 (1997)

2. Amir, A., Aumann, Y., Landau, G.M., Lewenstein, M., Lewenstein, N.: Pattern
matching with swaps. Journal of Algorithms 37(2), 247–266 (2000)

3. Amir, A., Cole, R., Hariharan, R., Lewenstein, M., Porat, E.: Overlap matching.
Inf. Comput. 181(1), 57–74 (2003)

4. Amir, A., Landau, G.M., Lewenstein, M., Lewenstein, N.: Efficient special cases
of pattern matching with swaps. Information Processing Letters 68(3), 125–132
(1998)

5. Antoniou, P., Iliopoulos, C.S., Jayasekera, I., Rahman, M.S.: Implementation of a
swap matching algorithm using a graph theoretic model. In: Elloumi, M., et al.
(eds.) BIRD 2008. CCIS, vol. 13, pp. 446–455. Springer, Heidelberg (2008)

6. Baeza-Yates, R., Gonnet, G.H.: A new approach to text searching. Commun.
ACM 35(10), 74–82 (1992)

7. Cantone, D., Faro, S.: Pattern matching with swaps for short patterns in linear
time. In: Nielsen, M., et al. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 255–266.
Springer, Heidelberg (2009)

8. Crochemore, M., Rytter, W.: Text algorithms. Oxford University Press, Oxford
(1994)

9. Iliopoulos, C.S., Rahman, M.S.: A new model to solve the swap matching problem
and efficient algorithms for short patterns. In: Geffert, V., Karhumäki, J., Bertoni,
A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910,
pp. 316–327. Springer, Heidelberg (2008)

10. Muthukrishnan, S.: New results and open problems related to non-standard
stringology. In: Galil, Z., Ukkonen, E. (eds.) CPM 1995. LNCS, vol. 937, pp. 298–
317. Springer, Heidelberg (1995)

11. Navarro, G., Raffinot, M.: A bit-parallel approach to suffix automata: Fast extended
string matching. In: Farach-Colton, M. (ed.) CPM 1998. LNCS, vol. 1448, pp. 14–
33. Springer, Heidelberg (1998)

	A New Algorithm for Efficient Pattern Matching with Swaps
	Introduction
	Notions and Basic Definitions
	The Cross-Sampling Algorithm
	The Backward-Cross-Sampling Algorithm
	The BP-Backward-Cross-Sampling Algorithm
	Experimental Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

