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Abstract. An n-bit (cyclic) Gray code is a (cyclic) sequence of all n-bit
strings such that consecutive strings differ in a single bit. We describe
an algorithm which for every positive integer n constructs an n-bit cyclic
Gray code whose graph of transitions is the d-dimensional hypercube Qd

if n = 2d, or a subgraph of Qd if 2d−1 < n < 2d. This allows to compress
sequences that follow this code so that only Θ(log log n) bits per n-bit
string are needed. The algorithm generates the transitional sequence of
the code in a constant amortized time per one transition.

1 Introduction

An n-bit (cyclic) Gray code Cn = (u1, u2, . . . , uN) where N = 2n is a (cyclic)
sequence listing all n-bit strings, so that every two consecutive strings differ
in exactly one bit. This corresponds to a Hamiltonian path (cycle) in the n-
dimensional hypercube Qn. A well-known example of such a code [3] is the
reflected Gray code Γn which may be defined recursively by

Γ1 = (0, 1), Γn+1 = 0Γn, 1ΓR
n (1)

where bS denotes the sequence S with b ∈ {0, 1} prefixed to each string, and SR

denotes the sequence S in reverse order.
Gray codes are named after Frank Gray, who in 1953 patented the use of the

reflected code Γn for shaft encoders: a pattern representing the code, printed on
a shaft, determines the angle of shaft rotation. Since then, considerable atten-
tion has been paid to the research on Gray codes satisfying certain additional
properties, and applications have been found in such diverse areas as graph-
ics and image processing, information retrieval or signal encoding [7]. Here we
are particularly concerned with applications of Gray codes in the field of data
compression [6, Section 4.2.1].

The transitional sequence τ(Cn) = [t1, t2, . . . , tN ] of a code Cn lists the po-
sitions (called transitions) ti ∈ [n] = {1, 2, . . . , n} for i ∈ [N ] in which ui and
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ui+1 differ. For simplicity, the indices are always taken cyclically, thus uN+1 is
identified with u1. An (undirected) graph GCn induced by Cn (sometimes called
the graph of transitions of Cn) is defined by

V (GCn) = [n] and E(GCn) = {titi+1 | i ∈ [N ]}.

See Figure 1 for an illustration. Slater [8,9] and independently Bultena and
Ruskey [1], motivated by applications of Gray codes, asked what graphs can be
induced by (cyclic) Gray codes. For example, the star K1,n−1 is induced by the
reflected Gray code Γn defined by (1).

The problem to characterize graphs which can be induced by (cyclic) Gray
codes is still widely open. By computational search, Bultena and Ruskey [1]
catalogued these graphs for n ≤ 5, and Ernst and Wilmer [11] extended the
list to n ≤ 7. For general n, there are only some partial results, positive and
negative.

Bultena and Ruskey [1] showed that every tree of diameter 4 can be induced
by a cyclic Gray code. On the other hand, no tree of diameter 3 can be induced
by such code. Also, they conjectured that all trees induced by cyclic Gray codes
have diameter 2 or 4. This was disproved by Ernst and Wilmer [11] who in-
troduced so called supercomposite Gray codes which induce trees of arbitrarily
large diameter. Moreover, they answered two questions from [1] by showing that
supercomposite Gray codes induce spanning trees of arbitrary 2-dimensional
grids, and for a directed version of the problem, that there are cyclic Gray codes
that induce digraphs with no bidirectional edge. Furthermore, Suparta and van
Zanten [10] showed that the complete graph can also be induced by cyclic Gray
codes, which solves a problem in [11]. Among many open problems posed in
[1,8,9,10,11], it is particularly interesting whether paths and cycles can be in-
duced by (cyclic) Gray codes.

C4 =

⎛
⎜⎜⎝

0 0 1 1 0 0 0 0 1
0 0 0 1 1 1 1 1 1
0 1 1 1 1 0 0 1 1
0, 0, 0, 0, 0, 0, 1, 1, 1,

1 0 0 1 1 1 1
0 0 0 0 1 1 0
1 1 0 0 0 0 0
1, 1, 1, 1, 1, 0, 0
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Fig. 1. The cyclic Gray code C4, the corresponding Hamiltonian cycle of Q4 and
the graph GC4 induced by the code C4. The transitional sequence is τ (C4) =
[3, 1, 2, 1, 3, 4, 3, 1, 2, 1, 3, 1, 2, 4, 2, 1].
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In this paper, for every positive integer n we construct an n-bit cyclic Gray
code Cn which induces the d-dimensional hypercube Qd if n = 2d, or a subgraph
of Qd if 2d−1 < n < 2d. More precisely, since the vertices of GCn are labeled by
the elements of [n], we obtain the graph Q∗

d defined by

V (Q∗
d) = [2d] and E(Q∗

d) = {xy | where |x − y| = 2i for some 0 ≤ i < d}.
Clearly, Q∗

d
∼= Qd by the isomorphism that maps x ∈ [2d] to the binary repre-

sentation of x − 1.
We conclude the introduction with an explanation of the title of this paper.

Note that every Gray code Cn = (u1, u2, . . . , uN) is uniquely determined by its
first string u1 and the transitional sequence τ(Cn) = [t1, t2, . . . , tN ]. Since each
transition is an integer from [n], it may be encoded with d = �log2 n� bits. This
provides a representation of Cn with Θ(log n) bits per one n-bit string.

However, in case that Cn induces a subgraph of Q∗
d, we may further explore

the property that two consecutive transitions of τ(Cn) always form an edge of
Q∗

d. Indeed, each transition ti+1, i ∈ [N −1], is then determined by the preceding
transition ti and by the edge titi+1 ∈ E(Q∗

d), which may be represented by its
direction

d(titi+1) = j such that |ti − ti+1| = 2j.

Consequently, the code Cn may be represented by the sequence

u1, t1, d(t1t2), d(t2t3), . . . , d(tN−1tN ).

Since edges of Q∗
d occur only in d directions, each d(titi+1) for i ∈ [N − 1] may

be encoded with �log2 d� bits. Hence we obtain a representation of Cn which
requires only Θ(log log n) bits on the average to represent one n-bit string of the
code, which outperforms the Θ(log n) bits obtained above.

2 Preliminaries

For the rest of the paper, all Gray codes are cyclic. Let Cn = (u1, u2, . . . , uN)
be a Gray code where n denotes the dimension of the code and N = 2n, and let
τ(Cn) = [t1, t2, . . . , tN ] be the transitional sequence of Cn. We deal with Cn as
with a Hamiltonian cycle of the n-dimensional hypercube Qn, which is the graph
with V (Qn) = {0, 1}n and uv ∈ E(Qn) if and only if u and v differ in exactly
one coordinate. For a vertex v ∈ V (Qn) let Qn − v denote the graph obtained
by removing v and all its incident edges from Qn.

Let ei denote the vertex of Qn with 1 exactly in the i-th coordinate for i ∈ [n].
Thus ui ⊕ ui+1 = eti for every i ∈ [N ] where ⊕ denotes the (coordinatewise)
addition modulo 2. Moreover, let eij = ei⊕ej for distinct i, j ∈ [n]. The elements
of [n] are called directions.

Let CR
n = (uN , . . . , u2, u1) denote the Gray code Cn in reverse order. Simi-

larly, for any path P = (v1, v2, . . . , vm) of Qn, let PR = (vm, . . . , v2, v1) denote
the reverse of P . The notion of transitional sequences and induced graphs can
be naturally extended to paths as follows. We define τ(P ) = [p1, p2, . . . , pm−1]
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where pi for i ∈ [m − 1] is the coordinate in which vi and vi+1 differ, and the
(undirected) graph GP induced by P is

V (GP ) = [n] and E(GP ) = {pipi+1 | i ∈ [m − 2]}.

Note that for cycles, the transitional sequence is considered to be cyclic, whereas
for paths it is not.

Let T = [t1, t2, . . . , tm] be a (cyclic) transitional sequence of a path
(u1, u2, . . . , um+1) (resp. of a cycle (u1, u2, . . . , um)). We say that T contains
a segment S = [s1, s2, . . . , sk] if there exists j ∈ [m−k] (resp. j ∈ [m]) such that

si = ti+j−1 for all i ∈ [k].

Furthermore, if k is even, we say that S is centered at a vertex uj+k/2. For
example, τ(C4) on Figure 1 contains a segment [2, 1, 3, 1] centered at u1 = 0000.

We say that a direction t is repeating in a transitional sequence T , if T contains
a segment [t, x, t] for some x.

Let π : [n] → [n] be a permutation and w = (w1w2 · · ·wn) ∈ {0, 1}n be a
vector called translation. It is well known that the mapping � : V (Qn) → V (Qn)
given by

�(u1u2 · · ·un) = (v1v2 · · · vn) such that vi = uπ(i) ⊕ wi for every i ∈ [n] (2)

is an automorphism of Qn. Moreover, for every automorphism � of Qn there exist
unique π and w such that � is given by (2). That is, every hypercube automor-
phism is composed of a unique permutation of coordinates and a unique transla-
tion. The translation determines where the vertex 0 = (00 · · · 0) is mapped, i.e.
�(0) = w.

The hypercube Qn may be expressed as a Cartesian product Qn = Qk � Qn−k

for 1 ≤ k < n. Every vertex v ∈ V (Qn) is then represented as a pair v =
(v1, v2) where v1 ∈ V (Qk) and v2 ∈ V (Qn−k). The subgraph of Qn induced on
vertices (v1, v2) for all v1 ∈ V (Qk) and fixed v2 ∈ V (Qn−k) is called a subcube
and denoted by Qk(v2). Clearly, Qk(v2) is isomorphic to Qk. Thus, Qn may be
viewed as Qn−k in which every vertex v2 ∈ V (Qn−k) corresponds to the subcube
Qk(v2) and every edge v2v3 ∈ E(Qn−k) corresponds to the collection of edges
(v1, v2)(v1, v3) for all v1 ∈ V (Qk).

In particular, the graph Q∗
d+1 defined in the previous section can be decom-

posed into two subcubes denoted by QA
d and QB

d induced on the sets A =
{1, 2, . . . , n} and B = {n + 1, n + 2, . . . , 2n}. Note that by the definition, every
vertex i ∈ A of QA

d is joined in Q∗
d+1 only with the vertex n + i ∈ B of QB

d .
Let GCn be the graph induced by the Gray code Cn. A transition tj where

j ∈ [N ] is critical for GCn if at least one of the edges tj−1tj , tjtj+1 ∈ E(GCn)
is induced by no other pair of consecutive transitions in τ(Cn), i.e. E(GCn) 	=
{titi+1 | i ∈ [N ] \ {j − 1, j}}. If we view the cycle Cn in Qn as a path Pn,
then τ(Cn) = [τ(Pn), tN ]. Thus, if tN is not critical for GCn , we obtain that
GPn = GCn .
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3 Inducing the Hypercube

In this section, we construct an n-bit Gray code Cn for n = 2d that induces the
hypercube Q∗

d. The following lemma shows that under certain conditions, we
may modify a Gray code so that the induced Q∗

d is preserved, and at the same
time, a given segment of its transitional sequence is replaced by a new prescribed
one.

Lemma 3.1. Let C be an n-bit Gray code with GC = Q∗
d, d > 1, such that

τ(Cn) contains a segment [a, b, a, c] where a, b, c are pairwise distinct and n = 2d.
Let S be a segment [x, y, x, z] or [z, x, y, x] where x, y, z are pairwise distinct and
xy, xz ∈ E(GC), and let v be a vertex of Qn. Then, there exists a Gray code
B such that GB = Q∗

d, each occurrence of [a, b, a, c] in τ(C) is replaced by S in
τ(B), and one of them is centered at the vertex v.

Proof. We assume that S = [x, y, x, z], otherwise we proceed with SR and obtain
BR, so by changing the direction we get B. Assume that one occurrence of
[a, b, a, c] in S is centered at a vertex u ∈ V (Qn). Since ab, ac ∈ E(GC) and
GC = Q∗

d, we can extend the mapping π(a) = x, π(b) = y, π(c) = z to a
permutation π : [n] → [n] such that π is an automorphism of GC . Consider the
automorphism � of Qn given by (2) with the permutation π and a translation
vector w = (w1w2 · · ·wn) ∈ {0, 1}n such that wi = uπ(i) ⊕ vi for all i ∈ [n].

It follows directly by (2) that �(u) = v, and furthermore, � maps the subse-
quence (u ⊕ eab, u ⊕ eb, u, u ⊕ ea, u ⊕ eac) of the code C to

�(u ⊕ eab, u ⊕ eb, u, u ⊕ ea, u ⊕ eac) = (v ⊕ exy, v ⊕ ey, v, v ⊕ ex, v ⊕ exz).

Hence, for the n-bit Gray code B = �(C), each occurrence of [a, b, a, c] in τ(C)
is replaced by S in τ(B), and one of them is centered at the vertex v. Moreover,
for every p, q ∈ [n],

pq ∈ E(GB) if and only if π−1(p)π−1(q) ∈ E(GC) if and only if pq ∈ E(GC).

The first equivalence holds by the definition of �, the latter holds since π is an
automorphism of GC . It follows that also B induces GC = Q∗

d. This establishes
the lemma. 
�
Now we state one of our main results. Note that the last part of the following
theorem (on repeating directions) is only needed in the next section for a general
dimension n.

Theorem 3.1. For every integer d ≥ 1, there exists an n-bit cyclic Gray code
Cn, n = 2d, such that GCn = Q∗

d. Moreover, for d > 1 and τ(Cn) = [T, tN ], it
holds that the transition tN is not critical for GCn , T contains two disjoint oc-
currences of some segment [a, b, a, c], and every direction from [n−1] is repeating
in T .

Proof. We argue by induction on d. For d = 1 the statement is trivial. For d = 2
consider the 4-bit Gray code C4 given on Figure 1. Observe that GC4 = Q∗

2 and
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for τ(C4) = [T, tN ], the transition tN is not critical for GC4 , T contains two
disjoint occurrences of the segment [1, 2, 1, 3], and T contains segments [1, 2, 1],
[2, 4, 2], and [3, 4, 3], so the directions 1, 2, and 3 are repeating in T .

Now we assume that the statement holds for d > 1 and we prove it for d + 1.
Recall that n = 2d and N = 2n.

The idea of the proof is as follows. We view Q2n as a Cartesian product
Q2n = Qn � Qn. First, we interconnect the copies (0n, u) of the vertex 0n in all
subcubes Qn(u) for u ∈ V (Qn) by a path P which induces QB

d on vertices B =
{n + 1, . . . , 2n}. Then, in each subcube Qn(u) we find a Hamiltonian path R(u)
of Qn(u) − (0n, u) which induces QA

d on vertices A = {1, . . . , n}. Moreover, by
Lemma 3.1 we can choose the path R(u) so that R(u) joins prescribed neighbors
of (0n, u), and its first and last edge are of prescribed directions. This assures
that we can interconnect these paths together into a Hamiltonian cycle of Q2n,
and when we do so, the newly induced edges are only between i ∈ V (QA

d ) and
n+ i ∈ V (QB

d ). See Figure 2 for an illustration. Note that the bold (green) paths
R(u)’s are connected by dash-dotted (red) edges between the subcubes Qn(u)’s,
and the dashed (blue) path P is connected with R(u1) and R(uN) by the purple
edges.

By the induction hypothesis, let Cn = (u1, u2, . . . , uN) be an n-bit Gray code
such that GCn = Q∗

d and for τ(Cn) = [T, tN ], tN is not critical for GCn , T
contains two disjoint occurrences of some segment S = [a, b, a, c], one centered
at a vertex u, and every direction from [n − 1] is repeating in T .

First, we interconnect the copies of the vertex 0n in each subcube Qn(ui) by
a path

P = (0n, u1), (0n, u2), . . . , (0n, uN ). (3)

Since P will be a part of C2n, T contains two disjoint occurrences of S =
[a, b, a, c], and every direction of [n− 1] is repeating in T , it follows that τ(C2n)
will contain two disjoint occurrences of [a + n, b + n, a + n, c + n], and every
direction from {n + 1, n + 2, . . . , 2n − 1} will be repeating in τ(C2n).

Second, we find a sequence which determines the endvertices of the paths
R(u)’s, see Figure 2 for illustration. We claim that there is σ(Cn) = [s1, s2,
. . . , sN−1] such that

(a) tisi ∈ E(GCn) for every 1 ≤ i < N , and
(b) precisely one of ti = si−1 and si = ti−1 holds for every 1 < i < N .

Such a sequence can be found as follows. Note that degGCn
(ti) = d ≥ 2 for every

i ∈ [n]. For i = 1, we choose si arbitrarily such that tisi ∈ E(GCn). Now assume
1 < i < N . If ti = si−1, then we choose si such that si 	= ti−1 and tisi ∈ E(GCn).
If ti 	= si−1, then we put si = ti−1 and observe that tisi ∈ E(GCn) since
ti−1ti ∈ E(GCn). Thus both (a) and (b) hold.

The sequence σ(Cn) determines the endvertices of paths R(ui) as described
below. Note that from (a) and (b) we have that si−1si ∈ E(GCn) for every
1 < i < N . In each subcube Qn(ui) we find a Hamiltonian path R(ui) of
Qn(ui) − (0n, ui) as follows:
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(i) For i = 1 we apply Lemma 3.1 for a vertex v = 0n and a segment S =
[z, t1, s1, t1] where z 	= s1 such that t1z ∈ E(GCn). Let B be the obtained
Gray code containing S centered at v. By removing v from B we get a
Hamiltonian path R(u1) of Qn(u1) − (0n, u1)

R(u1) = (es1 , u1), (et1s1 , u1), . . . , (et1z , u1), (et1 , u1). (4)

(ii) For 1 < i < N we proceed similarly, but we apply Lemma 3.1 for v = 0n

and S = [ti−1, si−1,si,ti ]. Note that by (a) and (b), the conditions of the
lemma are satisfied. Again, let B be the obtained Gray code containing S
centered at v. By removing v from B we get a Hamiltonian path R(ui) of
Qn(ui) − (0n, ui)

R(ui) = (esi , ui), (esiti , ui), . . . , (esi−1ti−1 , ui), (esi−1 , ui). (5)

(iii) For i = N we apply Lemma 3.1 for v = 0n and S = [tN−1, sN−1, tN−1, z]
where z 	= sN−1 and tN−1z ∈ E(GCn). Similarly as above, we get a Hamil-
tonian path R(uN ) of Qn(uN ) − (0n, uN)

R(uN ) = (etN−1, uN ), (eztN−1 , uN), . . . , (esN−1tN−1, uN ), (esN−1 , uN). (6)

Observe that the following sequence is a 2n-bit Gray code since the endvertices
of consecutive subpaths given by (3)–(6) are adjacent:

C2n = P, R(uN ), R(uN−1), . . . , R(u2), R(u1).

Next, we verify that C2n induces Q∗
d+1. We have

τ(C2n) = [τ(P ), tN−1, τ(R(uN )), tN−1 + n, τ(R(uN−1)), tN−2 + n,

. . . , t2 + n, τ(R(u2)), t1 + n, τ(R(u1)), t1].

Since tN is not critical for GCn , we have by (3) that τ(P ) induces the subcube
QB

d
∼= Q∗

d of GC2n on vertices B = {n + 1, n + 2, . . . , 2n}. Furthermore, no
other edge is induced between two vertices of B since τ(C2n) contains no two
consecutive transitions from B other than those in τ(P ).

Moreover, we show that τ(R(ui)) for every i ∈ [N ] induces the subcube QA
d
∼=

Q∗
d of GC2n on vertices A = {1, 2, . . . , n}. This follows from the fact that in each

of the cases (i)–(iii) above, GB = Q∗
d and τ(B) contains two occurrences of

the segment S. In addition, no other edge is induced between two vertices of A
since τ(C2n) contains no two consecutive transitions from A other than those in
τ(R(ui)) for some i ∈ [N ].

Finally, observe by (3)–(6) that the remaining edges of GC2n are joining ver-
tices i and n + i for some i ∈ [n], and for every i ∈ [n] there exists such edge
since τ(Cn) contains all i ∈ [n]. Altogether, we obtain that GC2n = Q∗

d+1.
To conclude the proof, it remains to verify the second part of the statement.

Let τ(C2n) = [t′1, . . . , t′N2 ] = [T ′, t′N2 ]. Since t′N2−1 = z, t′N2 = t1, and t′1 =
t1 + n, observe that the transition t′N2 is not critical for GC2n , because the edge
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zt1 ∈ E(QB
d ) is induced by τ(R(ui)) for any i ∈ [n], and the edge of GC2n joining

t1 and t1 + n is induced also by transitions t′N2−N = t1 and t′N2−N+1 = t1 + n.
Furthermore, T ′ contains τ(P ). Consequently, T ′ contains two disjoint oc-

currences of a segment [a + n, b + n, a + n, c + n], and every direction from
{n+1, n+2, . . . , 2n−1} is repeating in T ′. In addition, T ′ contains the segments
[t1, t1 + n, t1], [t2, t2 + n, t2], . . . , [tN−1, tN−1 + n, tN−1]. Hence, the directions
D = {t1, . . . , tN−1} are repeating in T ′. Clearly D = [n] since every direction
from [n] appears at least twice in τ(Cn) = [t1, . . . , tN−1, tN ]. Therefore, every
direction from [2n − 1] is repeating in T ′. 
�

4 General Dimension

In this section, we generalize Theorem 3.1 to an arbitrary dimension n. More
precisely, we construct a Gray code inducing a subgraph of Q∗

d for the smallest
d possible.

Theorem 4.1. For every integer n ≥ 1, there exists an n-bit cyclic Gray code
Cn such that GCn ⊆ Q∗

�log2 n�. Moreover, if n ≥ 4 and n = 2d + k where
0 ≤ k ≤ 2d − 2, then every direction from {k + 1, . . . , 2d − 1} is repeating in
τ(Cn).

Proof. We argue by induction on k. By Theorem 3.1, the statement holds if
n = 2d for some integer d, i. e. for k = 0. If n = 1 or n = 3, observe that the
reflected codes Γ1 = (0, 1) and Γ3 = (000, 001, 011, 010, 110, 111, 101, 100) from
(1) induce a subgraph of Q∗

0 and Q∗
2, respectively.

Now we have n = 2d + k ≥ 5 where d > 1 and 1 ≤ k < 2d, so �log2 n� =
d + 1. By the induction hypothesis, there is an (n − 1)-bit Gray code Cn−1

inducing a subgraph of Q∗
d+1 such that every direction from D = {k, . . . , 2d −1}

is repeating in τ(Cn−1). That is, for every t ∈ D the transitional sequence
τ(Cn−1) = [t1, . . . , tN/2] where N = 2n contains a segment [t, x, t] for some
x ∈ [n − 1]. We may assume that

tN/2−1 = k, tN/2 = x, t1 = k, (7)

otherwise we shift the code Cn−1 so that the segment [k, x, k] appears at this
position.

We define the Gray code Cn schematically as in (1),

Cn = 0Cn−1, 1CR
n−1. (8)

From (7) and (8) it follows that

τ(Cn) = [k = t1, . . . , tN/2−1 = k, n, tN/2−1 = k, . . . , t1 = k, n].

Hence, for the graph GCn induced by Cn we have that

E(GCn) ⊆ E(GCn−1) ∪ {kn}.
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Consequently, GCn ⊆ Q∗
d+1 since GCn−1 ⊆ Q∗

d+1 and kn ∈ E(Q∗
d+1) because

n − k = 2d.
It remains to verify the second part of the statement. Observe that if S =

[s, x, s] and T = [t, y, t] are segments of τ(Cn−1) for some x, y ∈ [n − 1] and
distinct repeating transitions s, t ∈ D, then S and T must be disjoint. Therefore,
since every direction from D is repeating in τ(Cn−1) and by (7), it follows that
every direction from D \ {k} is repeating in [t1, . . . , tN/2−1], which is a segment
of τ(Cn). 
�

5 Concluding Remarks

In this paper we have described a construction of a cyclic n-bit Gray code whose
graph of transitions is the d-dimensional hypercube Qd if n = 2d, or a subgraph
of Qd if 2d−1 < n < 2d.

Note that the proofs of Theorems 3.1 and 4.1 actually provide a description of
an algorithm which, given a positive integer n, constructs a transitional sequence
of an n-bit code with the desired property. Following the inductive construction
described in both proofs, the running time T (n) of the algorithm may be ex-
pressed as

T (n) =

⎧⎪⎨
⎪⎩

T (n/2) + O(2n) if n = 2d and d > 2,

T (n− 1) + O(2n) if 2d−1 < n < 2d and d > 2,

O(1) if n ≤ 4.

Consequently, the time complexity of our construction is bounded by O(N),
where N = 2n is the output size, i. e. only constant amortized time is required
per one element of the output sequence. However, it is well-known [3] that the
reflected Gray code Γn may be generated looplessly in the sense that time to
find the next transition is constant even in the worst case. Is there a loopless
construction algorithm for a Gray code inducing a subgraph of Qd?

As mentioned in the introduction, our variant of Gray code allows for a more
space-saving representation compared to Gray codes in general. This suggests
that it may be reasonable to inspect other data compression applications where
Gray codes are traditionally used.

In particular, consider the problem of compressing a sequence of n-bit strings
which arises in context of compressing bitmap indices of large databases. There
are several efficient methods developed for this purpose [12] whose compression
rate may be improved by reordering the input sequence so that the sum of
Hamming distances of consecutive strings is minimized [4]. Unfortunately, this
problem is known to be NP-complete [2]. In the special case when the sequence
contains all n-bit strings, the optimal solution is provided by an n-bit Gray code.
This suggests a heuristics for this problem [4]: sort the strings in the order given
by a Gray code. We suggest that it is conceivable to employ our variant of Gray
code for that purpose.

Then, it would be necessary to device an efficient algorithm for sorting the
strings in the order given by our variant of Gray code. It is well-known that
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sorting by the Γn code may be performed in O(mn) time [5]. Is such a time
complexity achievable for sorting by a Gray code inducing a subgraph of Qd?

References

1. Bultena, B., Ruskey, F.: Transition restricted Gray codes. Electron. J. Combin. 3,
#R11 (1996)

2. Ernvall, J., Katajainen, J., Penttonen, M.: NP-completeness of the Hamming sales-
man problem BIT 25, 289–292 (1985)

3. Knuth, D.E.: The Art of Computer Programming. Fascicle 2: Generating All Tuples
and Permutations, vol. 4. Addison-Wesley Professional, Reading (2005)

4. Pinar, A., Tao, T., Ferhatosmanoglu, H.: Compressing bitmap indices by data
reorganization. In: Proc. 21st Int. Conf. Data Engineering (ICDE 2005), pp. 310–
321. IEEE Computer Society, Los Alamitos (2005)

5. Richards, D.: Data compression and Gray-code sorting. Inform. Process. Lett. 22,
201–205 (1986)

6. Salomon, D.: Data Compression: The Complete Reference, 4th edn. Springer,
Berlin (2006)

7. Savage, C.: A survey of combinatorial Gray codes. SIAM Rev. 39, 605–629 (1997)
8. Slater, P.J.: Open problem. In: Proc. 10th Southeastern Conf. on Combinatorics,

Graph Theory, and Computing, Congress. Utilitas Math., Winnipeg, vol. XXIV,
pp. 918–919 (1979)

9. Slater, P.J.: Research Problems 109 and 110. Discrete Math. 76, 293–294 (1989)
10. Suparta, I.N., van Zanten, A.J.: A construction of Gray codes inducing complete

graphs. Discrete Math. 308, 4124–4132 (2008)
11. Wilmer, E.L., Ernst, M.D.: Graphs induced by Gray codes. Discrete Math. 257,

585–598 (2002)
12. Wu, K., Otoo, E.J., Shoshani, A.: Optimizing bitmap indices with efficient com-

pression. ACM Trans. Database Syst. 31, 1–38 (2006)


	Gray Code Compression
	Introduction
	Preliminaries
	Inducing the Hypercube
	General Dimension
	Concluding Remarks



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




