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Abstract. We prove three complexity results on vertex coloring problems
restricted to Pk-free graphs, i.e., graphs that do not contain a path on k vertices
as an induced subgraph. First of all, we show that the pre-coloring extension
version of 5-coloring remains NP-complete when restricted to P6-free graphs.
Recent results of Hoàng et al. imply that this problem is polynomially solvable
on P5-free graphs. Secondly, we show that the pre-coloring extension version of
3-coloring is polynomially solvable for P6-free graphs. This implies a simpler
algorithm for checking the 3-colorability of P6-free graphs than the algorithm
given by Randerath and Schiermeyer. Finally, we prove that 6-coloring is
NP-complete for P7-free graphs. This problem was known to be polynomially
solvable for P5-free graphs and NP-complete for P8-free graphs, so there
remains one open case.

Keywords: graph coloring, Pk-free graph, computational complexity.

1 Introduction

In this paper we consider computational complexity issues related to vertex coloring
problems restricted to Pk-free graphs. Due to the fact that the usual vertex �-coloring
problem is NP-complete for any fixed � ≥ 3, there has been considerable interest in
studying its complexity when restricted to certain graph classes. Without doubt one of
the most well-known results in this respect is that �-coloring is polynomially solvable
for perfect graphs. More information on this classic result and related work on coloring
problems restricted to graph classes can be found in, e.g., [11] and [13]. Instead of
repeating what has been written in so many papers over the years, we also refer to these
surveys for motivation and background. Here we continue the study of �-coloring and
its variants for Pk-free graphs, a problem that has been studied in several earlier papers
by different groups of researchers (see, e.g., [4], [8], [9], [10], [14]).

1.1 Background and Terminology

We refer to [1] for standard graph theory terminology and to [3] for terminology on
computational complexity. Let G = (V, E) be a graph. A (vertex) coloring of G is a
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mapping φ : V → {1, 2, . . .} such that φ(u) �= φ(v) whenever uv ∈ E. Here φ(u)
is usually referred to as the color of u in the coloring φ of G. An �-coloring of G
is a mapping φ : V → {1, 2, . . . , �} such that φ(u) �= φ(v) whenever uv ∈ E. In
list-coloring we assume that V = {v1, v2, . . . , vn} and that for every vertex vi of G
there is a list Li of admissible colors (a subset of the natural numbers). Given these
lists, a list-coloring of G is a mapping φ : V → {1, 2, . . .} such that φ(vi) ∈ Li

for all i ∈ {1, 2, . . . , n} and φ(vi) �= φ(vj) whenever vivj ∈ E. In pre-coloring
extension we assume that a (possibly empty) subset W ⊆ V of G is pre-colored with
φW : W → {1, 2, . . .} and the question is whether we can extend φW to a coloring of
G. If φW is restricted to {1, 2, . . . , �} and we want to extend it to an �-coloring of G, we
say we deal with the pre-coloring extension version of �-coloring. In fact, we consider
a slight variation on the latter problem which can be considered as list coloring, but
which has the flavor of pre-coloring: lists have varying sizes including some of size
1. We will slightly abuse terminology and call these problems pre-coloring extension
problems too.

1.2 Results of This Paper

We prove the following three complexity results on vertex coloring problems restricted
to Pk-free graphs.

– First of all, in Section 2 we show that the pre-coloring extension version of 5-
coloring remains NP-complete when restricted to P6-free graphs. Recent results of
Hoàng et al. [4] imply that this problem is polynomially solvable on P5-free graphs.
Their algorithm for �-coloring for any fixed � is in fact a list-coloring algorithm
where the lists are from the set {1, 2, . . . , �}.

– Secondly, in Section 3 we show that the pre-coloring extension version of 3-
coloring is polynomially solvable for P6-free graphs. The 3-coloring problem was
known to be polynomially solvable for P6-free graphs from [10], where the authors
use the Strong Perfect Graph Theorem and a result of Tucker [12] to obtain their
algorithm. Our algorithm is independent of the Strong Perfect Graph Theorem, and
uses a recent structural result of [5]; it reduces the 8 page journal description of the
algorithm in [10] to 3 pages.

– Finally, in Section 4 we prove that 6-coloring is NP-complete for P7-free graphs.
This problem was known to be polynomially solvable for P5-free graphs [4] and
NP-complete for P8-free graphs [14], so there remains one open case.

2 Pre-coloring Extension of 5-Coloring for P6-Free Graphs

In this section we show that the pre-coloring extension version of 5-coloring remains
NP-complete when restricted to P6-free graphs. We use a reduction from not-all-equal
3-Satisfiability with positive literals only which we denote as NAE 3SATPL (also
known as HYPERGRAPH 2-COLORABILITY), which is defined as follows. Given a
set X = {x1, x2, . . . , xn} of logical variables, and a set C = {C1, C2, . . . , Cm} of
three-literal clauses over X in which all literals are positive, does there exist a truth
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assignment for X such that each clause contains at least one true literal and at least one
false literal?

We consider an arbitrary instance I of NAE 3SATPL and define a graph GI and
a pre-coloring on some vertices of GI , and next we show that GI is P6-free and that
the pre-coloring on GI can be extended to a 5-coloring of GI if and only if I has a
satisfying truth assignment in which each clause contains at least one true literal and at
least one false literal.

2.1 The Graph GI Corresponding to the Instance I

Let I be an arbitrary instance of NAE 3SATPL with variables {x1, x2, . . . , xn} and
clauses {C1, C2, . . . , Cm}. We define a graph GI corresponding to I and lists of ad-
missible colors for its vertices based on the following construction. We note here that
the lists we introduce below are only there for convenience to the reader; it will be clear
later that all lists other than {1, 2, . . . , 5} are in fact forced by the pre-colored vertices.

– We introduce one new vertex for each of the clauses, and use the same labels
C1, C2, . . . , Cm for these m vertices; we assume that for each of these vertices
there is a list {1, 2, 3} of admissible colors. We say that these vertices are of
C-type.

– We introduce one new vertex for each of the variables, and use the same labels
x1, x2, . . . , xn for these n vertices; we assume that for each of these vertices there
is a list {4, 5} of admissible colors. We say that these vertices are of x-type.

– We join all C-type vertices to all x-type vertices to form a large complete bipartite
graph.

– For each clause Cj containing the variables xi, xk and xr we introduce three
pairs of new vertices {ai,j, bi,j}, {ak,j, bk,j}, {ar,j, br,j}; we assume the follow-
ing lists of admissible colors for these three pairs, respectively: {{1, 4}, {2, 5}},
{{2, 4}, {3, 5}}, {{3, 4}, {1, 5}}. We say that these vertices are of a-type and b-
type. We add edges between x-type and a-type vertices whenever the first index of
the a-type vertex is the same as of the x-type vertex, and similarly for the b-type
vertices. We add edges between C-type and a-type vertices whenever the second
index of the a-type vertex is the same as the index of the C-type vertex, and simi-
larly for the b-type vertices. Hence each clause with three variables is represented
by three 4-cycles that have one C-type vertex in common.

– For each a-type vertex we introduce a copy of a K2,3, as follows: for ai,j we add
five vertices {pi,j,1, . . . , pi,j,5}, and we add all edges between {pi,j,1, pi,j,2, pi,j,3}
and {pi,j,4, pi,j,5}. We say that these vertices are of p-type. We add edges between
each a-vertex and the p-vertices of its corresponding K2,3 depending on its list of
admissible colors. In particular, we join the a-vertex to the three p-vertices of its
K2,3 that have a third index which is not in its list of admissible colors. So, if ai,j

has list {1, 4}, we join it to pi,j,2, pi,j,3, pi,j,5.
– For each b-type vertex we introduce a new copy of a K2,3 on five vertices of q-type,

in the same way as we introduced the p-type vertices for the a-type vertices. Edges
are added in a similar way, depending on the indices and the lists.

– We join all the p-type and q-type vertices with third indices 1, 2, 3 to all the p-type
and q-type vertices with third indices 4, 5 to form a huge complete bipartite graph.
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– We join all x-type vertices to all p-type and q-type vertices with third indices 1, 2, 3.
– We join all C-type vertices to all p-type and q-type vertices with third indices 4, 5.
– We pre-color all the p-type and q-type vertices according to their third index, so

pi,j,� will be pre-colored with color � ∈ {1, 2, . . . , 5}. Note that we can now in fact
replace all lists introduced earlier by {1, 2, . . . , 5}, since the shorter lists will be
forced by the given pre-coloring.

2.2 The Proofs for the Result on 5-Coloring

Lemma 1. The graph GI is P6-free.

Proof. Due to the page restrictions we can only sketch the proofs of this lemma and the
claims that follow. We give a proof by contradiction. Suppose the graph GI contains an
induced subgraph H which is isomorphic to P6. Then H contains at most three vertices
from the set S of all p-type and q-type vertices; otherwise H would either contain a
cycle, or an independent set of four vertices, or a vertex with degree at least three.
Analogously, H contains at most three vertices from the set T of all C-type and x-type
vertices. By similar arguments, one can show that H contains at most three vertices
from S ∪ T . We complete the proof by a series of claims followed by proof sketches.

Claim 1. H contains at most two vertices of S.

Proof of Claim 1. Suppose |V (H) ∩ S| = 3. This implies H does not contain a vertex
of T , so H contains three vertices from the set U of all a-type and b-type vertices. This
is impossible and completes the proof of Claim 1.

Claim 2. H contains at most one vertex of S.

Proof of Claim 2. Suppose |V (H) ∩ S| = 2. Then H contains at least one vertex of
T ; otherwise |V (H)| ≤ 4. So |V (H) ∩ T | = 1, and H contains three vertices of U . If
V (H) ∩ S is an adjacent pair, the vertex of V (H) ∩ T is adjacent to precisely one of
them, and we easily obtain a contradiction. In the other case, (V (H)∩S)∪(V (H)∩T )
induces either a P3 or an independent set in H . Both cases lead to contradictions. This
completes the proof of Claim 2.

Claim 3. H contains no vertex of S.

Proof of Claim 3. Suppose |V (H)∩S| = 1. Then |V (H)∩T | = 1 or |V (H)∩T | = 2.
The first case is impossible since U is an independent set. For the second case first
observe that common neighbors of two vertices from U can only be in T , and that two
x-type vertices or two C-type vertices do not have a common neighbor in U . Noting
that the three vertices of V (H)∩U form an independent set, there are two possibilities
for the remaining three vertices of H : they either induce an independent set in H or a
P2 and a P1. In the first case the two vertices of V (H) ∩ T are either both x-type or
both C-type vertices. This yields a contradiction. In the second case, the induced P1

can only result from a vertex in T , so the P2 is induced by a vertex from S and a vertex
from T . Now the two vertices from V (H)∩T must be both of x-type or both of C-type.
But then both these vertices are adjacent to the vertex of V (H) ∩ S, a contradiction.
This completes the proof of Claim 3.
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We conclude that H contains no vertex of S and at most three vertices of T . So H
contains at least three vertices of U which form an independent set in H . This yields
only one case: H contains precisely three vertices of T and precisely three vertices of
U . By previous observations all vertices of V (H) ∩ T must be of the same type, so
they form an independent set as well. Recalling that two x-type vertices or two C-type
vertices have no common neighbors in U , we obtain a contradiction. This completes the
proof of Lemma 1. 
�
Lemma 2. If I has a truth assignment in which each clause contains at least one true
and at least one false literal, then the pre-coloring of GI can be extended to a 5-coloring
of GI .

Proof. Suppose I has a satisfying truth assignment in which each clause contains at
least one true and at least one false literal. We use color 4 to color the x-type vertices
representing the true literals and color 5 for the false literals. Now consider the lists as-
signed to the a-type and b-type vertices that come in pairs chosen from {{1, 4}, {2, 5}},
{{2, 4}, {3, 5}}, {{3, 4}, {1, 5}}. If the adjacent x-type vertex has color 4, color 1, 2 or
3 is forced on one of the adjacent a-type or b-type vertices, respectively, while on the
other one we can use color 5; similarly, if the adjacent x-type vertex has color 5, color
2, 3 or 1 is forced on one of the adjacent a-type or b-type vertices, respectively, while
on the other one we can use color 4. Since precisely two of the three x-type vertices of
one clause gadget have the same color, this leaves at least one of the colors 1, 2 and 3
admissible for the C-type vertex representing the clause. By coloring the vertices asso-
ciated with each clause and variable as described above, a 5-coloring of the pre-colored
graph GI is obtained. This completes the proof of Lemma 2. 
�
Lemma 3. If the pre-coloring of GI can be extended to a 5-coloring of GI , then I has
a satisfying truth assignment in which each clause contains at least one true and at
least one false literal.

Proof. Suppose we have a 5-coloring of the graph GI that respects the pre-coloring and
all lists assigned as indicated in the previous section. Then each of the x-type vertices
has color 4 or 5, and each of the C-type vertices has color 1, 2 or 3. We define a truth
assignment that sets a variable to TRUE if the corresponding x-type vertex has color 4,
and to FALSE otherwise. Suppose one of the clauses contains only true literals. Then
the three x-type vertices in the corresponding clause gadget of GI all have color 4. Now
consider the lists assigned to the a-type and b-type vertices of this gadget that come in
pairs chosen from {{1, 4}, {2, 5}},{{2, 4}, {3, 5}},{{3, 4}, {1, 5}}. Since the adjacent
x-type vertices all have color 4, colors 1, 2 and 3 are forced on three of the a-type and
b-type vertices adjacent to the C-type vertex of this gadget, a contradiction, since the
C-type vertex has color 1, 2 or 3. This proves that every clause contains at least one
false literal. Analogously, it is easy to show that every clause contains at least one true
literal. This completes the proof of Lemma 3. 
�

3 Pre-coloring Extension of 3-Coloring for P6-Free Graphs

In this section we show that the pre-coloring extension version of 3-coloring is polyno-
mially solvable for P6-free graphs. The key ingredient in our approach is the following
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recently obtained characterization of P6-free graphs [5]. Here a subgraph H of a graph
G is said to be a dominating subgraph of G if every vertex of V (G) \ V (H) has a
neighbor in H .

Theorem 1 ([5]). A graph G is P6-free if and only if each connected induced subgraph
of G on more than one vertex contains a dominating induced cycle on six vertices or
a dominating (not necessarily induced) complete bipartite subgraph. Moreover, these
dominating subgraphs can be obtained in polynomial time.

A key ingredient in our approach is the following observation: it is checkable in poly-
nomial time whether a pre-coloring of a graph G can be extended to a proper �-coloring
of G as soon as the uncolored vertices of G have admissible lists of size at most 2.
In this case the remaining decision problem can be modeled and solved as a 2SAT-
problem. This approach has been introduced by Edwards [2] and is folklore now. It has
been used especially for checking 3-colorability of graphs with small dominating sets
(if such dominating sets can be found in polynomial time), e.g., for P5-free graphs ([4])
and for P6-free graphs ([10]). If there are a polynomial number of possible 3-colorings
on the dominating set, then by exhaustively checking all of these colorings combined
with solving the 2SAT-problem(s) on the remaining (dominated) vertices, this yields a
polynomial time algorithm.

This obviously solves our problem in case the (component of the) instance graph
contains a dominating C6: all lists of admissible colors on the vertices in the beginning
are subsets of {1, 2, 3} and after assuming a coloring on the C6 (respecting the pre-
coloring, i.e., lists of size 1) all lists of admissible colors for the uncolored vertices have
size at most 2, and we can model and solve the remaining problem as a 2SAT-problem.
Although in the other case we cannot assume that the dominating complete bipartite
graph has a bounded size, we can use a similar approach due to the special structure of
P6-free graphs. We will describe the procedure in more detail. Full details will appear
in a journal version.

Suppose our instance graph G is connected (otherwise we treat the components of G
separately), that we have lists of admissible colors from the set {1, 2, 3} on each vertex
of G, and that we have constructed a dominating complete (not necessarily induced)
bipartite graph H of G with bipartition classes A and B.

If there exists no 3-coloring of G (respecting a possible pre-coloring, i.e., respecting
the given lists) in which one of A and B is monochromatic (i.e., every vertex of A or B
receives the same color), then clearly G has no 3-coloring extending the pre-coloring,
since we have to use at least 4 colors on H . Then we eventually obtain a NO answer after
first trying all cases with A monochromatic and successively with B monochromatic,
in the way we describe below.

Hence we can assume that A or B is monochromatic, and we can guess that A is
monochromatic (if this does not result in a 3-coloring of G we can repeat the procedure
assuming that B is monochromatic).

From now on we assume that all vertices of A are colored with color 1 (possibly
after renaming the colors). We remove color 1 from all the lists of admissible colors at
vertices of N(A) =

⋃
v∈A N(v)\A, we choose one vertex a ∈ A and delete all vertices

of A \ {a}. We let R denote the subset of all remaining vertices with admissible lists
of size 3. Clearly we are done with the graph (or component) G if R = ∅, as argued
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above, simply by solving a 2SAT-problem defined on the uncolored vertices and all
edges incident with these vertices.

So let us assume R �= ∅. Clearly B∩R = ∅ because all vertices in B have a neighbor
colored with color 1, so their admissible lists have size at most 2. It is now also clear
that B dominates R (since A does not dominate any vertex of R; otherwise the list
of such a vertex would have been updated to size at most 2). Now let us consider the
subgraph Q of G′ = G− (A\{a}) induced by the vertices of V (G′)\ ({a}∪N(a)). In
the remainder we redefine B := N(a) for convenience. If Q contains an isolated vertex
v (i.e., a vertex with no neighbors in Q) with a list containing color 1, then we can use
color 1 on v and remove v. So, in particular we can assume that all isolated vertices of
Q have admissible lists of size at most 2. We next analyze pairs of adjacent vertices of
Q, and distinguish a number of cases.

Case 1. Q contains an edge pq such that p is adjacent to a vertex b ∈ B \N(q) and q is
adjacent to a vertex c ∈ B \ N(p).

First note that the set S = {a, b, c, p, q} induces a C5 with possibly an additional edge
bc in G′. If S dominates all vertices of R, we can just guess the eligible 3-colorings
on S and solve our problem for the graph G′ by solving a polynomial number of
2SAT-problems.

Supposing the contrary, let x ∈ R be a vertex that is not dominated by S. Since B
dominates R there exists a vertex y ∈ B \ S with xy ∈ E(G′). Consider the paths
xyabpq and xyacqp on six vertices. If yb ∈ E(G′) or yc ∈ E(G′), then guessing a
3-coloring on S would also fix the eligible color on y, and reduce the list size on x. So
if this would occur for all possible choices of x and y, we could solve our problem in
polynomial time. It remains to consider the cases where yb �∈ E(G′) and yc �∈ E(G′).
Now since G′ is P6-free at least one of {yp, yq} is an edge of G′. If both are edges of
G′, then, since in any 3-coloring of G′ at least one of p and q receives color 2 or 3, any
eligible 3-coloring on S will fix the eligible color on y, and reduce the list size on x.
An analogous situation occurs when x, a and p share a common neighbor, and x, a and
q share another common neighbor.

We next analyze the subcase in which there are pairs of vertices p′, q′ ∈ R not dom-
inated by S, but where p′, a, p have a common neighbor b′ and q′, a, q have a common
neighbor c′ �= b′ such that b′ is not adjacent to either of {b, c, q, q′} and c′ is not adjacent
to either of {b, c, p, p′}. Now consider the path p′b′pqc′q′. If b′c′ ∈ E(G′), then in any
3-coloring on S at least one of p and q receives color 2 or 3, and the eligible colors on b′

and c′ will be fixed, and the lists on p′ and q′ reduced. So we can deal comfortably with
this subcase. Since G′ is P6-free, assuming b′c′ �∈ E(G′) the only other possible sub-
case is that p′q′ ∈ E(G′). But this yields a contradiction, since then {q, c, a, b′, p′, q′}
induces a P6 in G′.

For the remainder of Case 1, we can now assume that the only subcase that has to
be resolved is when all vertices of R that are not dominated by S (like x above) have
no neighbor in common with both a and p, but only with a and q, or symmetrically.
Then we can use the same approach as before if q receives color 2 or 3 in the guessed
3-coloring on S. If this does not result in a 3-coloring of G′ in the end, we start the
whole procedure (with color 1 on each vertex of A) again after assigning color 1 to q,
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adjusting the lists on all vertices in N(q), and removing the vertex q. This clearly yields
a polynomial number of cases to check.

Concluding, for all subcases we analyzed in Case 1 except for one, we can propagate
any 3-coloring on the set S to obtain a reduction of the list sizes of all vertices in R, and
solve our problem using 2SAT-formulations (or obtain an obstruction to a 3-coloring
at an earlier stage). In the other subcase, we either also get such a reduction or we can
pre-color a specific new vertex and start the procedure on a smaller instance.

In the next case we assume that Case 1 does not apply, and we apply similar argu-
ments. We skip the details due to page restrictions.

Case 2. Q contains an edge pq such that p is adjacent to a vertex b ∈ B ∩ N(q) and q
is adjacent to a vertex c ∈ B \ N(p).

In the remainder we assume that neither Case 1 nor Case 2 applies. This implies that
for each edge pq in Q, the vertices p and q have exactly the same neighbors in B, so by
repeating the arguments this holds for all vertices in the same component of Q.

Case 3. All vertices in each component of Q have the same neighbors in B.

We start with the graph G′ as above. As long as there exist or appear new vertices
with lists of size 1 that are not in B ∪ {a}, we do the following: for such a vertex v
we adjust the lists of all vertices of N(v), and then remove v (unless we can conclude
that we cannot obtain a 3-coloring of G′ extending the pre-coloring; then we stop and
return to an earlier stage with a different guess on S or finally with B monochromatic
instead of A). Denote the resulting graph by G∗, and assume that in the remainder all
neighborhoods, lists of admissible colors, subsets of vertices, etc. are with respect to G∗.
In particular, let Q be the subgraph of G∗ induced by the vertices of V (G∗)\({a}∪B).
Recall that if Q contains an isolated vertex v with a list containing color 1, then we can
use color 1 on v and remove v. So we can assume that all isolated vertices of Q have
admissible lists not containing color 1.

Consider the set B′ ⊆ B with vertices that have lists {2, 3}; the other vertices of B
have a fixed color, so every vertex dominated by such a vertex has a list of size 2.

Suppose C is a component of the subgraph G∗[B′] induced by B′ in G∗. Then clearly
C is a bipartite graph (otherwise we arrive at the conclusion that G∗ is not 3-colorable)
with all lists equal to {2, 3}. So if we fix one color on a vertex of C, the other colors
on C will also be fixed. If C′ is another component of G∗[B′] such that C and C′ are
connected by a path with internal vertices in Q, then fixing one color on a vertex of C
will also fix the colors on C′: this is clear if C and C′ have an isolated vertex v of Q
as a common neighbor, since the list of v does not contain color 1; in the other case,
it follows from the assumption that all vertices in each component of Q have the same
neighbors in B, so the colors propagate from C to C′ through subgraphs isomorphic to
K4 minus an edge. We can split the checking whether the pre-coloring can be extended
to a 3-coloring of G∗ in separate disjoint problems now. Let C denote a maximal set of
components of G∗[B′] that are connected by paths with internal vertices in Q that force
the propagation of one fixed color in C to fixed colors for all vertices in C. Let D denote
all vertices of Q dominated by vertices of C. Then fixing one color (so all colors) on C,
we can model the problem on D as a 2SAT-problem. If this results in a YES answer,
we can check the next maximal set of components, etc.; if for one of the sets we get a
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NO answer, we try the swap of colors on this set; if we still get a NO answer, we repeat
the whole procedure with color 1 on all vertices of B instead of A.

One readily checks that the above arguments can be turned into a polynomial algo-
rithm for checking whether a pre-coloring on a P6-free graph G can be extended to a
3-coloring of G.

4 6-Coloring for P7-Free Graphs

In this section we sketch how to prove that 6-coloring is NP-complete for P7-free
graphs. We use a reduction from 3-Satisfiability (3SAT).

We consider an arbitrary instance I of 3SAT and define a graph GI , and next we
show that GI is P7-free and that GI is 6-colorable if and only if I has a satisfying truth
assignment. Due to page restrictions we omitted the proofs but only give the construc-
tion of GI . The complete proofs will appear in a full journal version.

Let I be an arbitrary instance of 3SAT with variables {x1, x2, . . . , xn} and clauses
{C1, C2, . . . , Cm}. We define a graph GI corresponding to I based on the following
construction.

– We introduce a gadget on 8 new vertices for each of the clauses, as follows: for
clause Cj we introduce a gadget with vertex set:
{aj,1, aj,2, aj,3, bj,1, bj,2, bj,3, cj,1, cj,2} and edge set:
{aj,1aj,2, aj,1aj,3, aj,2aj,3, aj,1bj,1, aj,2bj,2, aj,3bj,3, bj,1cj,1, bj,1cj,2, bj,2cj,1,
bj,2cj,2, bj,3cj,1, bj,3cj,2, cj,1cj,2}.
We say that these vertices are of a-type, b-type and c-type.

– We introduce a gadget on 3 new vertices for each of the variables, as follows: for
variable xi we introduce a complete graph with vertex set {xi, xi, yi}. We say that
these vertices are of x-type (both the xi and the xi vertices) and of y-type.

– If clause Cj contains the variables xi, xk and xr, we add three matching edges
between the corresponding literal vertices (so xi or xi, etc., depending on which
of them appear in Cj ) and the three b-type vertices of the gadget corresponding to
Cj . If bj,sxi or bj,sxi has been added as an edge, we also add the edge bj,syi, and
analogously for xk and xr.

– We introduce three additional vertices d1, d2 and z, and join d1 and d2 by an edge.
We join all xi to d1 by edges, and all xi to d2.

– We join z to all vertices of y-type, a-type and c-type, and to d1 and d2.
– We join all the x-type vertices and y-type vertices to all the a-type and c-type

vertices.
– Finally, we join d1 and d2 to all the a-type, b-type and c-type vertices.

5 Conclusions and Open Problems

We proved that the pre-coloring extension version of 5-coloring remains NP-complete
for P6-free graphs. Results of Hoàng et al. [4] imply that this problem is polynomially
solvable on P5-free graphs. They show that �-coloring for any fixed � is polynomially
solvable on P5-free graphs. In contrast, determining the chromatic number (i.e., the
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smallest � such that the graph is �-colorable) is NP-hard on P5-free graphs [7]. We
also showed that the pre-coloring extension version of 3-coloring is polynomially solv-
able for P6-free graphs. Finally, we proved that 6-coloring is NP-complete for P7-free
graphs. This problem was known to be polynomially solvable for P5-free graphs and
NP-complete for P8-free graphs. This leaves the natural open problem for 6-coloring
on P6-free graphs. Also the complexity of 4-coloring and 5-coloring on P6-free graphs
are open problems. We refer to [9] for the most recent table of the complexity status
of �-coloring for Pk-free graphs: the problem is trivially in P for arbitrary fixed � if
k ≤ 2; it is also in P for fixed k ≤ 5 and arbitrary fixed �, and for k = 6 and � = 3;
it is NP-complete for � = 4 and any k ≥ 9, for � = 5 and k ≥ 8, for � ≥ 6 and
k ≥ 8 (and by our result also for k = 7). Interesting questions are: what is the com-
plexity of 4-coloring for P6-free graphs, of 3-coloring for P7-free graphs; does there
exist an integer k such that 3-coloring is NP-complete for Pk-free graphs? What is the
complexity of 5-coloring for P7-free graphs, and of 4-coloring for P8-free graphs? We
finish this paper with two other open problems on 3-coloring that have intrigued many
researchers: the complexity of 3-coloring is open for graphs with diameter 2, and for
graphs with diameter 3.
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