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Abstract. A graph G = (V, E) is a 3-leaf power iff there exists a tree
T the leaf set of which is V and such that (u, v) ∈ E iff u and v are at
distance at most 3 in T . The 3-leaf power edge modification problems,
i.e. edition (also known as the Closest 3-Leaf Power), completion
and edge-deletion are FPT when parameterized by the size of the edge
set modification. However, a polynomial kernel was known for none of
these three problems. For each of them, we provide a kernel with O(k3)
vertices that can be computed in linear time. We thereby answer an open
question first mentioned by Dom, Guo, Hüffner and Niedermeier [9].

1 Introduction

The combinatorial analysis of experimental data-sets naturally leads to graph
modification problems. For example, extracting a threshold graph from a dis-
similarity on a set is a classical technique used in clustering and data analysis
to move from a numerical to a combinatorial data-set [1,17]. The edge set of the
threshold graph aims at representing the pairs of elements which are close to
each another. As the dissimilarity reflects some experimental measures, the edge
set of the threshold graph may reflect some false positive or negative errors. So
for the sake of cluster identification, the edge set of the threshold graph has to
be edited in order to obtain a disjoint union of cliques. This problem, known as
cluster editing, is fixed-parameter tractable (see e.g. [12,14,25]) and efficient
parameterized algorithms have been proposed to solve biological instances with
about 1000 vertices and several thousand edge modifications [2,6].

The (Proper) Interval Graph Completion problem is another example
of graph modification problem which arises in the context of molecular biol-
ogy for the dna physical mapping problem [13,18]. So, motivated by the iden-
tification of some hidden combinatorial structures on experimental data-sets,
edge-modification problems cover a broad range of classical graph optimization
problems, among which completion problems, edition problems and edge-deletion
problems (see [21] for a recent survey). Though most of the edge-modification
problems turn out to be NP-hard problems, efficient algorithms can be obtained
to solve the natural parameterized version of some of them. Indeed, as long as the
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number k of errors generated by the experimental process is not too large, one
can afford a time complexity exponential in k. A problem is fixed parameterized
tractable (FPT for short) with respect to parameter k [11,22] whenever it can
be solved in time f(k) · nO(1), where f(k) is an arbitrary computable function.
The reduction to a polynomial kernel is one of the most efficient fixed parame-
terized algorithmic techniques. The idea is to preprocess the input in order to
reduce its size while preserving the existence of a solution so that the size of the
reduced instance is bounded by a polynomial in the parameter k. More formally,
a problem is kernelizable if any instance (G, k) can be reduced in polynomial
time (using reduction rules) into an instance (G′, k′) such that k′ � k and the
size of G′ is bounded by a function of k. Clearly having a kernel of small size is
highly desirable and is an important issue in the context of applications [6,16].

This paper follows this line of research and studies the kernelization of edge-
modification problems related to the family of leaf powers, graphs arising from
a phylogenetic reconstruction context [19,20,23]. The goal is to extract, from a
threshold graph G on a set S of species, a tree T , whose leaf set is S and such
that the distance between two species is at most p in T iff they are adjacent
in G (p being the value used to extract G from dissimilarity information). If
such a tree T exists, then G is a p-leaf power and T is its p-leaf root. For
p � 5, the p-leaf power recognition is polynomial time solvable [3,5], whereas the
question is still open for p strictly larger than 5. Parameterized p-leaf power edge
modification problems have been studied so far for p � 4. The edition problem
for p = 2 is known as the Cluster Editing problem for which the kernel size
bound has been successively improved in a series of recent papers [12,14,24],
culminating in [15] with a kernel with 4k vertices. For larger values of p, the
edition problem is known as the Closest p-Leaf Power problem. For p = 3
and 4, the Closest p-Leaf Power problem is known to be FPT [7,9], while
its fixed parameterized tractability is still open for larger values of p. However,
the existence of a polynomial kernel for p �= 2 remained an open question [8,10].
Though the completion and edge-deletion problems are FPT for p � 4 [9,10], no
polynomial kernel is known for p �= 2 [15].

Our Results. We prove that the Closest 3-Leaf Power, the 3-Leaf Power
Completion and the 3-Leaf Power Edge-Deletion problems admit a ker-
nel with O(k3) vertices. We thereby answer positively to the open question of
Dom, Guo, Hüffner and Niedermeier [9,10].

2 Preliminaries

The graphs we consider in this paper are undirected and loopless. The vertex set
of a graph G is denoted by V (G), with |V (G)| = n, and its edge set by E(G),
with |E(G)| = m. The open neighborhood of a vertex x is denoted by NG(x)
and its closed neighborhood NG(x) ∪ {x} by NG[x]. We write dG(u, v) for sthe
distance between two vertices u and v in G (in the notations, the reference to
the graph G will be omitted when the context is clear). For a subset S ⊆ V ,
dS(u, v) denotes the distance between u and v within S. Two vertices x and y
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of G are true twins if N [x] = N [y]. A module is a set of vertices S such that for
any distinct vertices x and y of S, N(x) \ S = N(y) \ S. The subgraph induced
by a subset S of vertices is denoted G[S]. If H is a subgraph of G, G \H stands
for G[V (G)\V (H)]. A graph family F is hereditary if for any graph G ∈ F , any
induced subgraph H of G also belongs to F .

As the paper deals with undirected graphs, we abusively denote by X×Y the
set of unordered pairs containing one element of X and one of Y . Let G = (V, E)
be a graph and F be a subset of V × V , G + F is the graph on vertex set V ,
the edge set of which is E � F (the symmetric difference between E and F ).
Such a set F is called an edition of G (we may also abusively say that G + F
is an edition). A vertex v ∈ V is affected by an edition F whenever F contains
an edge incident to v. Given a graph family F and given a graph G = (V, E),
a subset F ⊆ V × V is an optimal F-edition of G if F is a set of minimum
cardinality such that G + F ∈ F . If we constrain F to be disjoint from E, we
say that F is a completion, whereas if F is asked to be a subset of E, then F is
an edge deletion. The problem we mainly consider is thus the following:

Parameterized Closest 3-Leaf Power:

Input : A graph G = (V, E).
Parameter : k ∈ N.
Question : Is there a 3-leaf power edition F of G such that |F | � k ?

If we replace edition by deletion (resp.completion), we get the Parameter-
ized 3-Leaf Power Edge-Deletion (resp. Parameterized 3-Leaf Power
Completion) problem.

2.1 Critical Cliques

The notions of critical clique and critical clique graph, introduced in [20], have
been recently successfully used in problems such as Cluster Editing [15] and
Bicluster Editing [24].

Definition 1. A critical clique of a graph G is a clique K which is a module
and is maximal under this property.

It follows from definition that the set K(G) of critical cliques of a graph G defines
a partition of its vertex set V .

Definition 2. Given a graph G = (V, E), its critical clique graph C(G) has
vertex set K(G) and edge set E(C(G)) with

(K, K ′) ∈ E(C(G)) ⇔ ∀ v ∈ K, v′ ∈ K ′, (v, v′) ∈ E(G)

The following lemma was used in the construction of polynomial kernels for
Cluster Editing and Bicluster Editing problems in [24].

Lemma 1. Let G = (V, E) be a graph. If H is the graph G + {(u, v)} with
(u, v) ∈ V × V , then |K(H)| � |K(G)| + 4.
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We now generalize a result used to obtain FPT algorithms for the Closest
3-Leaf Power problem [7]. A graph family F is said to be closed under twin
addition if for any graph G ∈ F , adding a twin of any of its vertices yields a
graph of F .

Lemma 2. Let F be an hereditary graph family closed under true twin addition.
For any graph G = (V, E), there exists an optimal F-edition (resp. F-deletion,
F-completion) F such that any critical clique of G + F is the disjoint union of
a subset of critical cliques of G.

In particular, this means that one can find an optimal solution that does not
delete any edges within a critical clique. Furthermore, in this optimal solution,
either all or no edges are added or deleted between two critical cliques. From now
on, every considered optimal edition (resp. deletion, completion) is supposed to
verify these two properties.

2.2 Leaf Powers

Definition 3. Let T be an unrooted tree whose leaves are one-to-one mapped to
the elements of a set V . The k-leaf power of T is the graph T k, with T k = (V, E)
where E = {(u, v) | u, v ∈ V and dT (u, v) � k}. We call T a k-leaf root of T k.

It is easy to see that for any k, the k-leaf power family of graphs satisfies the
conditions of Lemma 2. In this paper we focus on the class of 3-leaf powers
for which several characterizations are known, one of which propose a list of
forbidden induced subgraphs [8]. The proofs of our kernel for the Closest 3-
Leaf Power problem (or 3-Leaf Power Editing) rely on the well-known
critical clique graph characterization and on a new one which is based on the
join composition of graphs.

Theorem 1. [7] A graph G is a 3-leaf power iff its critical clique graph C(G)
is a forest.

Let G1 = (V1, E1) and G2 = (V2, E2) be two disjoint graphs and let S1 ⊆ V1

and S2 ⊆ V2 be two non-empty subsets of vertices. The join composition of
G1 and G2 on S1 and S2, denoted (G1, S1) ⊗ (G2, S2), results in the graph
H = (V1 ∪ V2, E1 ∪ E2 ∪ (V (S1) × V (S2))).

Theorem 2. Let G1 = (V1, E1) and G2 = (V2, E2) be two connected 3-leaf
powers. The graph H = (G1, S1) ⊗ (G2, S2), with S1 ⊆ V1 and S2 ⊆ V2, is a
3-leaf power if and only if one of the following conditions holds:

1. S1 and S2 are two cliques of G1 and G2 respectively, and if S1 (resp. S2) is
not critical, then G1 (resp. G2) is a clique or,

2. there exists v ∈ V1 such that S1 = N [v] and S2 = V2 is a clique.

The following observation will help proving reduction rules.

Observation 3. Let C be a critical clique of a 3-leaf power G = (V, E). For
any S ⊆ V , if the clique C \ S is not critical in G[V \ S], then the connected
component of G[V \ S] containing C \ S is a clique.
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3 A Cubic Kernel for Closest 3-Leaf Power Problem

In this section, we present five preprocessing reduction rules the application of
which leads to a kernel with O(k3) vertices for the Closest 3-Leaf Power
problem. We first give two simple reduction rules; note that the second one
was already used to obtain a kernel with O(k2) vertices for the parameterized
Cluster Editing problem [24].
Rule 1. If G has a connected component C such that G[C] is 3-leaf power, then
remove C from G.

Rule 2. If G has a critical clique K such that |K| > k+1, then remove |K|−k−1
vertices of K from V (G).

3.1 Branch Reduction Rules

We now assume that the input graph G is reduced under Rule 1 and Rule 2.
The next three reduction rules use the fact that the critical clique graph of a
3-leaf power is a forest. The idea is to identify induced subgraphs of G, called
branches, which correspond to subtrees of C(G). Such a subgraph is already a
3-leaf power.

Definition 4. Let G = (V, E) be a graph. An induced subgraph G[S], with S ⊆
V , is a branch if S is the union of critical cliques K1, . . . , Kr ∈ K(G) such that
the subgraph of C(G) induced by {K1, . . . , Kr} is a tree.

Let B = G[S] be a branch of a graph G and let K1, . . . , Kr be the critical cliques
of G contained in S. We say that Ki (1 � i � r) is an attachment point of the
branch B if it contains a vertex x such that NG(x) intersects V (G)\S. A branch
B is a l-branch if it has l attachment points. Our next three rules deal with 1-
branches and 2-branches. In the following, we denote by BR the subgraph of
B in which the vertices of the attachment points have been removed. For an
attachment point P of B, NB(P ) denotes the set of neighbors of vertices of P
in B.

Lemma 3. Let G = (V, E) be a graph and B be a 1-branch of G with attachment
point P . There exists an optimal 3-leaf power edition F of G such that:

1. the set of affected vertices of B is a subset of P ∪ NB(P ) and
2. in G + F , the vertices of NB(P ) are all adjacent to the same vertices of

V (G) \ V (BR).

Proof. Let F be an arbitrary optimal 3-leaf power edition of G. We construct
from F another optimal 3-leaf power edition which satisfies the two conditions
above. Let C be the critical clique of H = G + F that contains P and set
C′ = C \BR. By Lemma 2, the set of critical cliques of G whose vertices belong
to NB(P ) contains two kind of cliques: K1, . . . , Kc, whose vertices are in C or
adjacent to the vertices of C in H , and Kc+1, . . . , Kh whose vertices are not
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adjacent to the vertices of C in H . For i ∈ {1, . . . , h}, let Ci be the connected
component of BR containing Ki.

Let us consider the three following induced subgraphs : G1 the subgraph of
G induced by the disjoint union of C1, . . . , Cc; G2 the subgraph of G induced by
the disjoint union of Cc+1, . . . , Ch; and finally G′, the subgraph of H induced
by V (G) \ V (BR). Let us notice that these three graphs are 3-leaf powers. By
Observation 3, if C′ is not a critical clique of G′, then the connected component
of G′ containing C′ is a clique. Similarly, if Ki, for any 1 � i � c, is not a critical
clique of G1, then the connected component of G1 containing Ki is a clique. Thus,
by Theorem 2, the disjoint union H ′ of G2 and (G′, C′) ⊗ (G1, {K1, . . . , Kc}) is
a 3-leaf power. By construction, the edge edition set F ′ such that H ′ = G + F ′

is a subset of F and thus |F ′| � |F |. Moreover, the vertices of B affected by F ′

all belong to P ∪ NB(P ), which proves the first point.
To state the second point, we focus on the relationship between the critical

cliques Ki and C′ in H ′ = G + F ′. If some Ki is linked to C′ in H ′ (i.e. c > 1),
it means that the cost of adding the missing edges between Ki and C′ (which,
by Theorem 2, would also result in a 3-leaf power) is lower than the cost of
removing the existing edges between Ki and C′: |Ki| · |C′ \ P | � |Ki| · |P |. On
the other hand, if some Kj is not linked to C′ in H ′ (i.e. c < h), we conclude
that |P | � |C′ \ P |. Finally, if both cases occur, we have |P | = |C′ \ P |, and
we can choose to add all or none of the edges between Ki and C′. In all cases,
we provide an optimal edition of G into a 3-leaf power in which the vertices of
NB(P ) are all adjacent to the same vertices of V (G) \ V (BR). �

The safeness of the first 1-branch reduction rule follows from Lemma 3.

Rule 3. If G contains a 1-branch B with attachment point P , then remove from
G the vertices of BR and add a new critical clique of size min{|NB(P )|, k + 1}
adjacent to P .

Our second 1-branch reduction rule considers the case where several 1-branches
are attached to the rest of the graph by a join. The following lemma shows that

K

Rule 3

NB

BR

PP

Fig. 1. On the left, a 1-branch B with attachment point P . On the right, the effect of
Rule 3 which replaces BR by a clique K of size min{|NB(P )|, k + 1}.
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under some cardinality conditions, the vertices of such 1-branches are not affected
by an optimal 3-leaf power edition.

Lemma 4. Let G = (V, E) be a graph for which a 3-leaf power edition of size at
most k exists. Let B1, . . . , Bl be 1-branches, the attachment points P1, . . . , Pl of
which all have the same neighborhood N in V \∪l

i=1V (Bi). If
∑l

i=1 |Pi| > 2k+1,
then there is no optimal 3-leaf power edition F of G that affects vertices of
∪l

i=1V (Bi).

By Lemma 4, if there exists a 3-leaf power edition F of G such that |F | � k,
then the 1-branches B1, . . . , Bl can be safely replaced by two critical cliques of
size k + 1. This gives us the second 1-branch reduction rule.

Rule 4. If G has several 1-branches B1, . . . , Bl, the attachment points P1, . . . , Pl

of which all have the same neighborhood N in V \∪l
i=1V (Bi) and if

∑l
i=1 |Pi| >

2k + 1, then remove from G the vertices of ∪l
i=1V (Bi) and add two new critical

cliques of size k + 1 neighboring exactly N .

3.2 The 2-Branch Reduction Rule

To complete the set of reduction rules, we need to consider 2-branches. So let B
be a 2-branch with attachment points P1 and P2. The subgraph of G induced
by the critical cliques of the unique path from P1 to P2 in C(B) is called the
main path of B and denoted path(B). We say that B is clean if P1 and P2 are
leaves of C(B), in which case we denote by Q1 (resp. Q2) the critical clique that
neighbors P1 (resp. P2) in B.

Lemma 5. Let B be a clean 2-branch of a graph G = (V, E) with attachment
points P1 and P2 such that path(B) contains at least 5 critical cliques. There
exists an optimal 3-leaf power edition F of G which, if it affects vertices of B
not in V (P1 ∪ Q1 ∪ P2 ∪ Q2), then it contains a min-cut of path(B).

Rule 5. If G has a clean 2-branch B such that path(B) is composed by at least
5 critical cliques, then remove from G all the vertices of V (B) except those of
V (P1 ∪ Q1 ∪ P2 ∪ Q2) and add four new critical cliques:
– K1 (resp. K2) of size k + 1 adjacent to Q1 (resp. Q2);
– K ′

1 (resp K ′
2) adjacent to K1 (resp. K2) and such that K ′

1 and K ′
2 are

adjacent and |K ′
1| · |K ′

2| equals the min-cut of path(B).

3.3 Kernel Size and Time Complexity

Let us discuss the time complexity of the reduction rules. The 3-leaf power recog-
nition problem can be solved in O(n+m) time [4]. It follows that Rule 1 requires
linear time. To implement the other reduction rules, we first need to compute
the critical clique graph C(G), which, as noticed in [24], can be computed in
linear time if we use modular decomposition algorithm (see [26] for a recent pa-
per). Given C(G), which is linear in the size of G, it is easy to detect the critical
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Rule 5

BR

Q1 2Q

P2P1

Q1 2Q

P2P1

K K’ K’ K1 1 2 2

Fig. 2. A 2-branch B on the left (only pendant critical cliques are hanging on path(B)
since we can assume that the graph is reduced by the previous rules). On the right,
the way Rule 5 reduces B.

cliques of size at least k + 1. So, Rule 2 requires linear time. A search on C(G)
can identify the 1-branches. It follows that the two 1-branches reduction rules
(Rule 3 and Rule 4) can also be applied in O(n+m) time. Let us now notice that
in a graph reduced by the first four reduction rules, a 2-branch is a path to which
pendant vertices are possibly attached. It follows that to detect a 2-branch B,
such that path(B) contains at least 5 critical cliques, we first prune the pendant
vertices, and then identify in C(G) the paths containing only vertices of degree
2, and at least 5 of them. To do this, we compute the connected components of
the graph induced on vertices of degree 2 in C(G). This shows that Rule 5 can
be carried out in linear time.

Theorem 4. The Parameterized Closest 3-Leaf Power problem admits
a kernel with O(k3) vertices. Given a graph G, a reduced instance can be
computed in linear time.

Proof. The discussion above established the time complexity to compute a ker-
nel. Let us determine the kernel size. Let G = (V, E) be a reduced graph
(i.e. none of the reduction rules applies to G) which can be edited into a 3-
leaf power with a set F ⊆ V × V such that |F | � k. Let us denote H = G + F
the edited graph. For the sake of simplicity, we assume that H is connected, and
thus C(H) is a tree. If C(H) is a forest, one has to apply the following arguments
to each of its connected component, and then to sum up. We first show that
C(H) has O(k2) vertices (i.e. |K(H)| ∈ O(k2)), and then Lemma 1 enables us to
conclude.

We say that a critical clique is affected if it contains an affected vertex and
denote by A the set of the affected critical cliques. As each edge of F affects two
vertices, we have that |A| � 2k. Since H is a 3-leaf power, its critical clique graph
C(H) is a tree. Let T be the minimal subtree of C(H) that spans the affected
critical cliques. Let us observe that if B is a maximal subtree of C(H)−T , then
none of the critical cliques in B contains an affected vertex and thus B was
the critical clique graph of a 1-branch of G, which has been reduced by Rule 3
or Rule 4. Let A′ ⊂ K(H) be the critical cliques of degree at least 3 in T . As
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Rule 5

Rule 3 + Rule 4

Rule 3

Rule 3

Fig. 3. The black circles are the critical cliques of A, the grey ones belong to A′, and
the squares are the critical cliques not in T . On the figure, we can observe a 2-branch
of size 8 reduced by Rule 5. Application of Rule 3 may let a path of two critical cliques
pendant to the elements of A and a single critical clique pendant to the elements of
the small 2-branches. Finally, Rule 4 can only affect critical cliques of A.

|A| � 2k, we also have |A′| � 2k. The connected components resulting from the
removal of A and A′ in T are paths. There are at most 4k such paths. Each of
these paths is composed by non-affected critical cliques. It follows that each of
them corresponds to path(B) for some 2-branch B of G, which has been reduced
by Rule 5.

From these observations, we can now estimate the size of the reduced graph.
Attached to each of the critical cliques of T \ A, we can have 1 pendant critical
clique resulting from the application of Rule 3. Remark that any 2-branch re-
duced by Rule 5 has no such pendant clique and that path(B) contains 5 critical
cliques. So, a considered 2-branch in C(H) is made of at most 8 critical cliques.
Finally, attached to each critical clique of A, we can have at most (4k + 2) ex-
tra critical cliques resulting from the application of Rule 4. See Figure 3 for an
illustration of the shape of C(H). Summing up everything, we obtain that C(H)
contains at most 4k · 8 + 2k · 2 + 2k · (4k + 3) = 8k2 + 42k critical cliques.

By Lemma 1 we know that for each edited edge in a graph the number of critical
cliques increases by at most 4. It follows thatK(G) contains at most 8k2+46k crit-
ical cliques, each of size at most k + 1 (Rule 2). Thus, the reduced graph contains
at most 8k3 + 54k2 + 46k vertices, proving the O(k3) kernel size. �

4 Kernels for Edge Completion and Edge Deletion

We now explain and adapt the previous rules to the cases where only insertions or
only deletions of edges are allowed. First, observe that Rules 1 and 2 are also safe
for 3-Leaf Power Completion and 3-Leaf Power Edge-Deletion (Rule
2 directly follows from Lemma 2). The same holds for Rules 3 and 4. However,
this is not the case for the 2-branch reduction rule (Rule 5), which is safe for
3-Leaf Power Edge-Deletion, but not for 3-Leaf Power Completion.
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Nevertheless, in the latter case, the following lemma yields a rule specific to the
3-leaf power completion.

Lemma 6. Let G be a graph admitting a clean 2-branch B such that path(B)
is composed by at least k + 4 critical cliques. If P1 and P2 belong to the same
connected component in G, then there is no 3-leaf power completion of size at
most k.

Rule 6. Let G be a graph having a clean 2-branch B with attachment points P1

and P2 such that path(B) is composed by at least k + 4 critical cliques.

– If P1 and P2 belong to the same connected component in G \BR, then there
is no completion of size at most k.

– Otherwise, remove from G all the vertices of V (B) except those of P1 ∪Q1∪
P2 ∪ Q2 and add all possible edges between Q1 and Q2.

Using Rules 3, 4 and 5 for deletion and Rules 3, 4 and 6 for completion, we
obtain a kernel with O(k3) vertices.

Theorem 5. The Parameterized 3-Leaf Power Completion and Pa-
rameterized 3-Leaf Power Edge-Deletion problems admit kernels with
O(k3) vertices. Given a graph G, a reduced instance can be computed in linear
time.
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LNCS, vol. 4639, pp. 312–321. Springer, Heidelberg (2007)

13. Goldberg, P.W., Golumbic, M.C., Kaplan, H., Shamir, R.: Four strikes against
physical mapping of DNA. Journal of Computational Biology 2, 139–152 (1995)
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