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Jiří Fiala
Jan Kratochvíl
Charles University
Institute for Theoretical Computer Science and
Department of Applied Mathematics
Malostranské nám. 25, 118 00 Prague 1, Czech Republic
E-mail: {fiala,honza}@kam.mff.cuni.cz

Mirka Miller
The University of Newcastle
School of Electrical Engineering and Computer Science
University Drive, Callaghan NSW 2308, Australia
E-mail: mirka.miller@newcastle.edu.au

Library of Congress Control Number: 2009938817

CR Subject Classification (1998): G.2.1, G.2.2, I.1, F.2, E.1, E.4, H.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-10216-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-10216-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12784363 06/3180 5 4 3 2 1 0



Preface

The 20th International Workshop on Combinatorial Algorithms was held during
June 28 – July 2, 2009 in the picturesque castle of Hradec nad Moravićı, located
in the north-east corner of the Czech Republic.

IWOCA — the workshop that originated 19 years ago as AWOCA — made a
big step towards globalization this year. After 19 conferences held in Australia,
Indonesia, Korea, and Japan, the 20th anniversary was celebrated by taking the
conference outside the Australasian region for the first time. Another novelty
this year was that the proceedings are being published by Springer in the LNCS
series.

Our Call for Papers brought an overwhelming response of the combinatorial
community. IWOCA 2009 received over 100 submissions, more than twice the
amount it received before. Most of the submissions were of exceptionally high
quality and thus the Program Committee was faced with hard work and some-
times hard decisions. Many very good papers had to be rejected because of the
limited capacity of the conference schedule. In the end, 41 contributed talks were
presented during the conference — the maximum number that we could fit in
the program.

We would like to thank all who sent their submissions and to congratulate
all the authors of the accepted papers. They contributed to what was a most
successful conference. We also thank all the authors who submitted posters for
the poster session (not included in the proceedings).

We extend special thanks to the distinguished invited speakers. We believe
that we offered the participants a rich selection of plenary speakers who are
all well-known experts in the area of algorithmic combinatorics and graph the-
ory. Sue Whitesides introduced the issues of computational geometry. Giovanni
Manzini gave a splendid overview of data compression algorithms on strings and
trees. Robin Thomas revealed intriguing details of clique minors in highly con-
nected graphs. Mike Fellows, one of the founders of fixed parameter complexity
theory, surveyed recent progress in this area of theoretical computer science. A
cherry on the cake was undoubtedly the participation by Jack Edmonds, the
guru of algorithmic mathematics. We were very happy that Jack accepted our
invitation and agreed to give an honorary lecture on branching systems, with
glimpses of matching and matroid theory as well as lush memories of the early
days of combinatorial optimization. We trust that the special setting of Jack’s
lecture in the historical premises of the castle was a fitting gift for his recent 75th
birthday. Jack’s interaction with other participants during scientific discussions
and social events was one of the highlights of the conference.

We were very pleased to see a large number of students and young researchers
among the participants at IWOCA 2009. For the first time in the history of
IWOCA, the PC considered awarding a prize for the best student paper. How-
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ever, since the quality of the top three student papers was uniformly very high,
it was decided to share the prize (sponsored by DIMATIA Charles University)
between the authors of these papers. We extend our congratulations to Thomas
Feierl for his paper “The Height and Range of Watermelons Without Wall,”
to Pawe�l Gawrychowski and Travis Gagie for “Minimax Trees in Linear Time
with Applications,” and to Petr Škoda for “Computability of Branch-Width of
Submodular Partition Functions”.

We thank all the members of the Program Committee, all referees and all
the members of the Organizing Committee for all the hard work they have done.
While all committee members worked well as a team, some names must be sin-
gled out: Special thanks go to Yuqing Lin for editing the proceedings that were
made available during the conference, to Alan Gibbons and Joe Ryan for or-
ganizing the problem session (see graphtheorygroup.com/iwocaproblems.html),
and to Dalibor Fronček and Petr Kovář for the exceptionally successful running
of the local organization. We also gratefully acknowledge sponsorship of the con-
ference and preparation of the proceedings by Czech research grants 1M0545 and
MSM0021620838.

August 2009 Jǐŕı Fiala
Jan Kratochv́ıl

Mirka Miller
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Branching Systems

Jack Edmonds

Equipe Combinatoire et Optimisation
Universite Paris VI

For a digraph G = (V, E) with a specified subset R(j) of V , its nodes, a branching
B(j) rooted at R(j) is a forest in G such that for each node u in V −R(j) there
is exactly one edge of B(j) entering u. A branching system B = [B(j) : j ∈ J ]
is a collection of edge-disjoint branchings, with specified root-sets, in G. Given
costs c(i) on the edges i of G, and given root sets R(j), we survey the use of
matroids to find a least cost branching system, B.

Jack Edmonds giving his plenary lecture at IWOCA 2009.
(Photo c©Rudolf Stolař)

J. Fiala, J. Kratochv́ıl, and M. Miller (Eds.): IWOCA 2009, LNCS 5874, p. 1, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Towards Fully Multivariate Algorithmics: Some
New Results and Directions in Parameter

Ecology

Michael Fellows

University of Newcastle, Callaghan, Australia
michael.fellows@newcastle.edu.au

Abstract. This paper reports on three recent research directions that be-
gin to explore the subject of fully multivariate algorithmics, meaning by
this the largely uncharted theoretical landscape that lies beyond param-
eterized complexity and algorithmics — itself a natural two-dimensional
generalization of the familiar one-dimensional framework of P versus NP .

1 Introduction

Parameterized complexity starts from the premise that there are usually sec-
ondary measurements, apart from the primary measurement of overall input
size, that can significantly affect the computational complexity of a problem, in
qualitatively different ways that merit systematic investigation. Parameterized
complexity makes room for one such measurement, the parameter, and turns on
the contrast between the classes of bivariate functions defining FPT and XP ,
respectively.

This is formalized by saying that a parameterized problem Π takes as input
a pair (x, k) where k is the parameter (usually a positive integer). The problem
Π is fixed-parameter tractable if it can be solved in time f(k)nc where n is the
overall input size, that is, n = |(x, k)|, c is a constant, and f(k) is some function
of the parameter k. XP is the class of parameterized problems that are solvable
in time O(ng(k)).

Viewing complexities theories as driven by contrasting function classes, the
classical framework of P versus NP is “about” the contrast between the univari-
ate function classes:P , solvability in time O(nc), and functions of the form O(2nc

).
Hardness for NP indicates that you will probably be stuck with a running time
of the latter kind.
FPT generalizes P , and parameterized complexity is a natural 2-dimensional

sequel to the familiar one-dimensional classical framework. Of course, there may
be more than one relevant measurement beyond the overall input size. So what
is the natural 3-dimensional sequel? Could there be a mathematically elegant
and useful fully multivariate framework? Presently, there are no satisfactory
answers to these questions. In view of the theoretical and practical successes
of parameterized complexity and algorithmics it is natural to investigate them.
We report here on three recent research directions that begin to explore the
possibilities for fully multivariate algorithmics.

J. Fiala, J. Kratochv́ıl, and M. Miller (Eds.): IWOCA 2009, LNCS 5874, pp. 2–10, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Background on Parameterized Complexity

Parameterized complexity analysis unfolds in the contrast between the “good
class” of bivariate functions FPT, and the “bad class” of runtimes of the form
O(ng(k)) — solvability in such time defines the parameterized complexity class
XP. To emphasize the contrast, one could also consider defining FPT additively
as solvability in time f(k) + nc. It turns out it makes no difference whether
the parameterized complexity class FPT is defined multiplicatively or additively
[13,10]. The basic issue in parameterized complexity is whether any exponential
costs of the problem can be confined to the parameter.

2.1 Some Motivating Examples

Type Checking in ML.
ML is a logic-based programming language for which relatively efficient compil-
ers exist. One of the problems the compiler must solve is the checking of the
compatibility of type declarations. This problem is known to be complete for
EXP (deterministic exponential time) [20], so the situation appears discourag-
ing from the standpoint of classical complexity theory. However, the implemen-
tations work well in practice because the ML Type Checking problem is FPT
with a running time of O(2kn), where n is the size of the program and k is the
maximum nesting depth of the type declarations [22]. Since normally k ≤ 5, the
algorithm is clearly practical on the natural input distribution.

The central issue in parameterized complexity can also be illustrated by fun-
damental problems about graphs. Consider the following well-known problems:

Vertex Cover

Input: A graph G = (V, E) and a positive integer k.
Question: Does G have a vertex cover of size at most k? (A vertex cover is a set
of vertices V ′ ⊆ V such that for every edge uv ∈ E, u ∈ V ′ or v ∈ V ′ (or both).)

Dominating Set

Input: A graph G = (V, E) and a positive integer k.
Question: Does G have a dominating set of size at most k? (A dominating set is
a set of vertices V ′ ⊆ V such that ∀u ∈ V : u ∈ N [v] for some v ∈ V ′.)

Although both problems are NP-complete, the input parameter k contributes
to the complexity of these two problems in two qualitatively different ways.

1. There is a simple bounded search tree algorithm for Vertex Cover that
runs in time O(2kn)

2. The best known algorithm for Dominating Set is only a minor improve-
ment on the brute force algorithm of trying all k-subsets. For a graph on n
vertices this approach has a running time of O(nk+1).

The table below shows the contrast between these two kinds of complexity.
In these two example problems, the parameter is the size of the solution being

sought. But a parameter that affects the compexity of a problem can be many
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Table 1. The Ratio nk+1

2kn
for Various Values of n and k

n = 50 n = 100 n = 150
k = 2 625 2,500 5,625
k = 3 15,625 125,000 421,875
k = 5 390,625 6,250,000 31,640,625
k = 10 1.9 × 1012 9.8 × 1014 3.7 × 1016

k = 20 1.8 × 1026 9.5 × 1031 2.1 × 1035

things. The quest for FPT algorithms leads to a positive toolkit of methods for
obtaining FPT algorithms. For the most up-to-date overview of such methods,
see the surveys in [6].

Classically, evidence that a problem is unlikely to have an algorithm with a
runtime in the good class is given by determining that it is NP-hard, PSPACE-
hard, EXP-hard, etc. In parameterized complexity analysis there are analogous
means to show likely parameterized intractability (the negative toolkit). The
current tower of the main parameterized complexity classes is:

FPT ⊆M [1] ⊆W [1] ⊆M [2] ⊆W [2] ⊆ · · · ⊆W [P ] ⊆ XP

Parameterized by the size k of a solution, the familiar Independent Set prob-
lem is complete for W [1] and Dominating Set is complete for W [2]. The nat-
urally parameterized Bandwidth problem is hard for W [t] for all t [2]. The
best known algorithms for the parameterized Independent Set and Domi-

nating Set problems are slight improvements on the brute-force approach of
trying all k-subsets. The parameterized class W [1] is strongly analogous to NP,
because the k-Step Halting Problem for Turing machines of unlimited non-
determinism is complete for W [1] [11]. FPT is equal to M [1] if and only if the
so-called Exponential Time Hypothesis fails [21,9]. There is an algorithm for the
k-Independent Set problem that runs in time O(no(k)) if and only if FPT is
equal to M [1], and there is an algorithm for the k-Dominating Set problem
that runs in time O(no(k)) if and only if FPT is equal to M [2] [5].

For further background on parameterized complexity we refer the reader to
the textbooks [10,15,23], and the double-special issue of surveys of aspects of the
field and various application areas [6].

Relevant secondary measurements that affect problem complexity can be
many different things, such as the size of the solution, aspects of the struc-
ture of typical instances, aspects of the algorithmic approach, or the goodness
of an approximation. For any real-world problem, there may be several such sec-
ondary measurements in various ranges of magnitude that should be considered.
Parameterized complexity establishes a qualitative framework where there is a
place for only one such secondary measurement. It is quite natural to investigate
the prospects for fully multivariate frameworks for qualitatively assessing com-
putational complexity. We report here on three recent research directions that
begin to explore the possibilities:
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• Parameter ecology, where the two different measurements of input structure
and solution size interact.
• Algorithmic metatheorems in the context of structural parameterizations.
• Relationships between structural parameterizations.

3 Parameter Ecology

Why ecology?
Let us consider again the example of Type Checking in ML. Although

the problem is highly intractable from the classical point of view, the imple-
mented ML compilers (that include type-checking subroutines) work efficiently.
The explanation is that human-composed programs typically have a maximum
type-declaration nesting depth of k ≤ 5. The FPT type-checking subroutine that
runs in time O(2kn) is thus entirely adequate in practice. The reason that natu-
rally occuring programs have small nesting depth is because the programs would
otherwise risk becoming incomprehensible to the programmer creating them!

What this example points to (we think) is that often the “inputs” to one
computational problem of interest to real-world algorithmics are not at all arbi-
trary, but rather are produced by other natural computational processes (e.g.,
the thinking processes and abilities of the programmer) that are themselves
subject to computational complexity constraints. In this way, the natural input
distributions encountered by abstractly defined computational problems often
have inherited structural regularities and restrictions (relevant parameters, in
the sense of parameterized complexity) due to the natural complexity constraints
on the generative processes. This connection is what we refer to as the ecology
of computation.

It therefore seems to be useful to know how all the various parameterized
structural notions interact with all the other computational objectives one might
have. The familiar paradigm of efficiently solving various problems for graphs of
bounded treewidth just represents one row of a matrix of algorithmic questions.
Table 1 illustrates the idea. We use here the shorthand: TW is Treewidth, BW

is Bandwidth, VC is Vertex Cover, DS is Dominating Set, G is Genus

and ML is Max Leaf. The entry in the 2nd row and 4th column indicates that
there is an FPT algorithm to optimally solve the Dominating Set problem for
a graph G of bandwidth at most k. The entry in the 4th row and second column
indicates that it is unknown whether Bandwidth can be solved optimally by
an FPT algorithm when the parameter is a bound on the domination number
of the input. An entry in the table describes the current state of knowledge
about the complexity of the problem where the input graph is assumed to have
a structural bound described by the row, and the problem described by the
column is to be solved to optimality. The table just gives a few examples of the
unbounded conceptual matrix that we are concerned with.

The complexity of graph problems, for graphs of bounded treewidth, is
well-developed and supports many systematic approaches, such as described in
[7,1,4,10,23,3]. For example, Minimum Coloring can be solved in time O(n) for
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Table 2. The Complexity Ecology of Parameters

TW BW VC DS G ML

TW FPT W [1]-hard FPT FPT ? FPT

BW FPT W [1]-hard FPT FPT ? FPT

VC FPT FPT FPT FPT ? FPT

DS W [1]-hard ? W [1]-hard W [1]-hard ? ?
G W [1]-hard W [1]-hard W [1]-hard W [1]-hard FPT W [1]-hard

ML FPT FPT FPT FPT FPT FPT

graphs of treewidth at most k. In the terminology of parameterized complexity
Minimum Coloring is fixed parameter tractable for the parameter treewidth.

Highly structured graph problems lead to the consideration of structural pa-
rameters that are more restrictive than treewidth: other rows of the matrix. One
might ask whether these rows are really interesting, since a graph of bounded max
leaf number is severely restricted in its structure. To be fair, however, a graph of
bounded treewidth is also severely restricted, in contrast to an arbitrary graph.
How to determine whether a graph of bounded max leaf number is 3-colorable
in the “best possible” FPT runtime is an easily stated problem for which the
answer is not obvious. Another observation that points to the interest in these
rows is that there are now known to be many examples of problems that are
W [1]-hard parameterized by a bound on treewidth, including Bandwidth [2];
List Coloring, Pre-Coloring Extension and Equitable Coloring [14];
General Factor [26]; and Minimum Maximum Outdegree [27]. One must
therefore look “below treewidth” for FPT structural parameterizations for these
problems. Note that while both bounded vertex cover number and bounded max
leaf number imply bounded treewidth, neither of these structural bounds implies
a bound on the other. List Coloring even remains W [1]-hard for graphs of
bounded vertex cover number [18]. Lastly, it seems that for severe structural
parameterizations such as bounded vertex cover number and bounded max leaf
number, different FPT techniques are brought forward to importance, such as
well-quasi-ordering and bounded variable integer linear programming.

Some recent positive results include:

Theorem 1. [18,19] The Minimum Bandwidth problem can be solved to op-
timality for graphs of bounded vertex cover number (bounded max leaf number)
parameterized by the vertex cover number (max leaf number).

Open Problem. The Optimal Linear Arrangement problem, that asks for
an injective layout function f : V → N that minimizes

∑
u�=v |f(u) − f(v)|, is

open, parameterized by the vertex cover and max leaf numbers.

3.1 How to Parameterize?

There are two priciples of how to find relevant parameterizations that seem
worthwhile to articulate, and that naturally lead in multivariate directions.
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Principle 1: Model Enrichment. We have noted above that the graph Mini-

mum Coloring problem is FPT when parameterized by the treewidth of a graph.
Coloring models scheduling, but in the real world, it is often the case that not every
timeblock (color) can be assigned to every task (because, for example, Bob may
not be available for any meetings on Thursday). In the interests of greater realism
and a better fit to applications, we should always explore more richly structured
variations of tractable problems. Following this example, since Minimum Color-

ing is FPT parameterized by graph treewidth, it is worth exploring the complexity
of Minimum List Coloring parameterized by treewidth, as this more structured
problem has better traction on real applications. Unfortunately, in this case, we
have the following negative result.

Theorem 2. [14] (Minimum) List Coloring is hard for W [1], parameterized
by treewidth, and even when parameterized by vertex cover number.

Principle 2: Deconstruction of Intractability. One way to find relevant
parameterizations of hard problems is to examine the proofs of the intractability
results, and ask, “Why are the instances produced in this argument unreason-
able?” An examination of the negative result(s) for (Minimum) List Coloring

in [14] shows that the reduction from Multicolor Clique produces instances
of List Coloring where “most” vertices has lists of allowable colors of size
2. This is clearly unreasonable. Bob may not be available on Thursdays, but it
seems unlikely that everybody is available only two hours per week! This in turn
suggests richer parameterizations, such as treewidth, together with a bound on
the average number of colors not on the list.

The interplay between these two principles of parameterization, inevitably
leads to us to consider highly structured problems for parameters more restrictive
than treewidth.

4 Algorithmic Metatheorems: Well-Quasiordering

One of the most powerful FPT classification tools is well-quasiordering. Graphs
in general are well-quasiordered by minors (the celebrated Graph Minor The-
orem), and also importantly, determining whether a graph H is a minor of a
graph G, parameterized by H , is FPT (we say that the minor order has FPT
order tests) [24,25].

The study of general algorithmic machineries, such as well-quasiordering, for
rows of the parameter ecology matrix other than bounded treewidth has scarcely
begun. One recent positive result is described as follows.

By a 3-star path we refer to the graph formed by adding a path linking two
copies of K(1, 3). The resulting graph has two pairs of vertices of degree 1, each
pair adjacent to a vertex of degree 3 (there are two of these) and all other vertices
have degree 2. Let U be the set of graphs that consists of all the cycles, together
with all of the 3-star paths.

It is easy to check that U is an antichain in the induced subgraph order; it is
in the sense of the following theorem a universal antichain.
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Theorem 3. [8,16,17]
(1) A family of graphs F that is a lower ideal in the (ordinary) subgraph order
is well-quasiordered by the induced subgraph order, and has FPT order tests, if
and only if F ∩ U is finite (where the order tests are parameterized by the size
of the intersection).
(2) For any induced subgraph order antichain U ′ for which (1) holds, the
symmetric difference Δ(U ,U ′) is finite.

As a corollary, graphs of bounded vertex cover number are well-quasiordered by
induced subgraphs and have FPT order tests.

5 Relationships between Structural Parameters

Some rows of the parameter ecology matrix are better than others in a certain
sense.

Example: Topological Bandwidth. The topological bandwidth of a graph is
defined to be the minimum, taken over all subdivisions G′ of a graph G, of
the bandwidth of G′. Determining whether a graph has topological bandwidth
bounded by k, is hard for W [t] for all t [2]. However, the topological bandwidth of
a graph is “sandwiched” by its cutwidth: tbw(G) ≤ cw(G) and cw(G) ≤ tbw(G)2,
and furthermore, it is FPT to determine whether a graph has cutwidth at most
k [10]. Consequently, a family of graphs has bounded cutwidth if and only if it
has bounded topological bandwidth, and the former is easier to determine.

These examples raise fundamental questions about general relationships be-
tween rows of the parameter ecology matrix. When a row is hard to determine
exactly (that is, NP-hard, or hard for W [1]) — when can we find a sandwiching
structural parameter that is easier to determine?

We currently know only one concrete example of when such “easier” structural
sandwiching is (likely) impossible: the parameter is the minimum independent
domination number of a graph id(G) defined to be the minimum size of an
independent dominating set of G.

Theorem 4. [12] There is no FPT sandwiching parameter for id(G) (for any
computable sandwich bound) unless FPT = W [2].

6 Concluding Remark

We have surveyed some of the issues involved in the quest to develop fully multi-
variate algorithmics and a few recent research directions that lead us to consider
how several different secondary measures with different roles interact in shap-
ing the complexity of computational problems, and thereby the angles we have
available to exploit in order to design useful algorithms for NP-hard general
problems, in situations where we are attentive to natural input distributions.
Much more remains to be explored.
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1 Introduction

Trees are by far the most common data structures to represent/organize/search
large amount of data. Part of the trees’ success is probably due to the simplicity
of the usual pointer-based implementation in which to move from parent to
child we simply follow a pointer. Unfortunately, a simple counting argument
shows that the pointer-based implementation is highly redundant. The number
of distinct trees with n nodes is given by the n-th Catalan number:

Cn =
1

2n + 1

(
2n + 1

n

)
.

Hence, provided n is known, log Cn = 2n − Θ(log n) bits1 suffice to identify
a particular n-node tree. A pointer-based representation takes at least n log n
bits; one could think that the extra space is needed in order to support constant
time navigation between tree nodes, but this is not the case. In this paper we
review many different succinct representations of trees which take only 2n +
o(n) bits and support constant time computation of (a subset of) the following
navigation/query operations:

– Parent(x): Return the parent of node x;
– Degree(x): Return the degree (number of children) of node x;
– Child(x, i): Return the i-th child of node x;
– SubtreeSize(x): Return the size (number of nodes) of the subtree rooted at

node x;
– Depth(x): Return the depth (distance from the root) of node x;
– LevelAncestor(x, d): Return the ancestor of x with depth d;
– LowestCommonAncestor(x, y): Return the lowest common ancestor of nodes

x and y.

In the following we assume that a succinct representation is allowed to use
an arbitrary numbering of the nodes (a bijection between nodes and the set
{1, 2, . . . , n}); but the operations above must be consistent with this numbering.
For example, if nodes are numbered as in Fig. 1, we must have Parent(6) = 2 (the
parent of node f is node b) and LowestCommonAncestor(4, 10) = 1 (the lowest

1 All logarithms in this paper are to the base 2.

J. Fiala, J. Kratochv́ıl, and M. Miller (Eds.): IWOCA 2009, LNCS 5874, pp. 11–18, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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common ancestor of nodes d and j is node a). The node numbering is also used
to access any auxiliary information stored in tree nodes.

In this paper we review the main techniques for representing static unlabeled
ordinal trees. An ordinal tree is a rooted tree of arbitrary degree in which the
children of each node are ordered (so we have a first child, a second child, and so
on). We do not consider cardinal trees in which each node has up to k children
each one labeled by a unique integer from the set {1, 2, . . . , k} (for example, a
binary tree in which we distinguish between left-child and right-child is a car-
dinal tree of degree 2). Succinct representations of cardinal trees are described
in [4,6,21]. Another important family of trees are the (multi)labeled trees in
which each node has assigned one (or more) symbols. In this case we want to
represent the tree succinctly and, in addition to the navigation operations, we
want to support path-search queries, that is, we want to find all the occur-
rences in the tree of a given labeled path. Succinct representations of labeled
and multi-labeled trees, and their applications to XML storage and processing,
are described in [1,2,3,7,8,10,16].

In the following we assume a RAM model with a word size of Θ(log n) bits.

2 Representation of Binary Strings

Many tree representations are based on binary strings, and in particular on the
possibility of performing the Rank and Select queries on binary strings in con-
stant time. Given a binary string B[1, n] and c ∈ {0, 1} we denote by Rankc(B, i)
the number of occurrences of the bit c in B[1, i], and by Selectc(B, j) the position
in B of the j-th occurrence of bit c (hence Rankc(Selectc(B, j)) = j). We will
make use of the following result:

Lemma 1 ([5,15,18]). For any binary string B[1, n] we can build an auxiliary
data structure of o(n) bits supporting Rank and Select queries in O(1) time.

Proof. To give an idea of the proof we describe the data structure supporting the
Rank1 query. We logically split B[1, n] into mini-blocks of length

⌈
log2 n

⌉
. At the

beginning of each mini-block we store the number of 1’s in the previous mini-
blocks. Note that this takes log n bits per mini-blocks; since the are O(n/ log2 n)
mini-blocks these entries take o(n) bits overall. Then, we logically split each mini-
block into micro-blocks of length �(log n)/2	. At the beginning of each micro-
block we store the number of 1’s since the beginning of the current mini-block.
This number is at most

⌈
log2 n

⌉
so we can be represent it using O(log log n) bits.

Since there are O(n/ log n) micro-blocks, the overall space is again o(n).
To answer the Rank1(B, i) query we first find the mini-block m and micro-

block μ containing position i. Accessing the mini-block and micro-block tables
we get the number of 1’s up to the beginning of μ, so we are left with the
task of counting the number of 1’s from the beginning of μ up to position i. The
crucial observation is that a micro-block, being a bit-string of length �(log n)/2	,
is identified by a positive integer of size at most 2�(log n)/2� = O(

√
n). Hence, we

can build a two dimensional table T such that T (p, q) stores the number of 1’s
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Fig. 1. An unlabeled tree and the corresponding LOUDS binary sequence. The figure
also shows the correspondence between 0’s 1’s and tree nodes.

among the first q bits of the micro-block represented by the integer p. Table T
has O(

√
n× log n) entries each one of size O(log log n) so it also takes o(n) bits.

Summing up, using o(n) additional space, computing Rank1(B, i) reduces to
three table lookups which takes constant time as claimed. To compute Rank0(B, i)
we use the formula Rank0(B, i) = i − Rank1(B, i). For Select queries we use a
similar approach with a different set of auxiliary data structures. ��
Although the above result is all we need for most tree representations, it is
worth mentioning that it has been recently improved in different directions. For
example, assuming the binary string B[1, n] contains exactly m 1’s, the usual
counting argument gives a lower bound for representing B of B(n, m) =

⌈
log
(

n
m

)⌉
bits. In [21] it is shown how to represent B in B(n, m) + o(n) bits. This result
has been later generalized to non-binary sequences [9,12,22], and optimal lower
bounds have been given in [11].

3 Jacobson LOUDS Representation

The first succinct representation of ordinal trees was proposed in 1989 by Ja-
cobson in [14,15]. Jacobson’s representation is called Level Order Unary Degree
Sequence (LOUDS) since it is obtained by traversing the tree in level order and
writing the degree of each node in unary (see Fig. 1). For example, for a node
with 3 children we write the string 1110. Since we write a 0 for each node and an
1 for each child, for an n-node tree the resulting string has n 0’s and n−1 1’s. By
adding an initial 1 to this string—corresponding to an hypothetical super-root
node—we get a string with n 0’s and n 1’s in which both the i-th 0 and the i-th 1
correspond to the i-th node in the level order. Because of these correspondences
Parent and Child operations can be expressed in terms of Rank/Select queries.
Indeed, we have:

Parent(x) = 1 + Rank0(Select1(x)),
Child(x, k) = Rank1(Select0(x − 1) + k).
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Fig. 2. An unlabeled tree and the corresponding BP sequence. The figure also shows
the correspondence between open/closing parentheses and tree nodes.

For example, in Fig. 1 to compute Parent(7), i.e. the parent of node g, we
first compute Select1(7) = 10, which is the 1 corresponding to node g. Then,
Rank0(10) = 3 gives the number of 0’s preceding the unary degree of g’s parent.
Hence, g’s parent has position 1 + Rank0(10) = 4 in level order and is indeed
node d.

Jacobson’s representation of an n-node tree consists of the 2n bit LOUDS
string together with auxiliary o(n) bits to support Rank/Select operations in
O(1) time (Lemma 1). Clearly such representation offers constant time2 tree
navigation, but none of the other tree operations mentioned in Section 1.

4 Balanced Parentheses Representation

Ten years after Jacobson’s results, Munro and Raman [19,20] proposed an al-
ternative tree representation based on strings of open and closing parentheses.
Note that parentheses are used for convenience: being strings over a two-symbol
alphabet these are equivalent to ordinary binary strings. The Balanced Paren-
theses (BP) representation is obtained by traversing the tree in depth-first order
writing an open parenthesis when a node is first encountered and a closing paren-
thesis when the same node is encountered again while going up after traversing
its subtree (see Fig. 2 for an example). Clearly, for an n-node tree the BP repre-
sentation consists of a string containing n open and n closing parentheses that
respect the usual nesting rule. In addition to the o(n) bits auxiliary data struc-
tures for Rank/Select of Lemma 1, Munro and Raman’s representation makes
use of o(n) bits data structures supporting in O(1) time the operations:

2 Jacobson’s representation precedes the results on constant-time Rankselect; Jacob-
son’s original navigation operations take, in our model, O(log log n) time.
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– FindClose(i): Return the position of the closing parenthesis matching the
open parenthesis in position i.

– FindOpen(i): Return the position of the open parenthesis matching the clos-
ing parenthesis in position i.

– Enclose(i): Return the position of the closest open parenthesis enclosing the
open parenthesis in position i.

Assuming that each node is identified by its depth-first rank, it is straightforward
to verify that the following identities hold:

Parent(x) = Rankopen(Enclose(Selectopen(x)));
SubtreeSize(x) = (FindClose(Selectopen(x))− Selectopen(x) + 1)/2.

For example, in Fig. 2 to compute Parent(6), i.e. the parent of node j, we first
compute Selectopen(6) = 8, which is the position of the open parenthesis asso-
ciated to node j. Then we compute Enclose(8) = 3 which is the position of the
closest open parenthesis enclosing the one in position 8 and is therefore the open
parenthesis associated to j’s parent. Finally, by computing Rankopen(3) = 3 we
get the identifier of j’s parent, which is of course node e. As another example, to
compute SubtreeSize(9), i.e. the size of the subtree rooted at node d, we compute
Selectopen(9) = 16, which is the position of the open parenthesis associated to
node d, and FindClose(16) = 23, which is the position of the closing parenthe-
sis associated to d. The size of the subtree is half of the number of parenthesis
between these two, hence (23− 16 + 1)/2 = 4.

Unfortunately, the BP representation does not support Child(x, i) directly.
Instead, we can compute in constant time the first child and the right sibling of
a node using the identities

FirstChild(x) = x + 1,

RightSibling(x) = Rankopen(FindClose(Selectopen(x)) + 1).

Used together these formulas can be used to compute Child(x, i) in O(i) time.
Summing up, the BP representation takes 2n + o(n) bits and supports tree

navigation and subtree size, provided that the tree’s degree is bounded by a
constant.

5 DFUDS Representation

In [4] Benoit et al. introduce the Depth-First Unary Degree Sequence (DFUDS)
representation of an n-node tree. DFUDS combines the LOUDS and BP repre-
sentations and offers the benefits of both. As in the BP representation, nodes
are considered in depth-first order. As in the LOUDS representation, for each
visited node we write its degree in unary, but using open and closing parenthe-
ses instead of 1’s and 0’s respectively. As in LOUDS, we include an initial open
parenthesis corresponding to the hypothetical super-root, thus obtaining a string
of 2n balanced parentheses (see Fig. 3 for an example). Benoit et al. shows that
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Fig. 3. An unlabeled tree and its DFUDS representation. The figure shows the starting
and ending position of the unary encoding of the degree of each node.

the Parent(x), Child(x, i), and SubtreeSize(x) operations can all be implemented
via a constant number of Rank, Select, FindOpen, FindClose, Enclose operations
on the above string. Thus, the DFUDS representation offers constant time basic
navigation operations using 2n + o(n) bits of storage.

Recently, Jansson et al. [16] have shown that using the DFUDS representation
is possible to implement also the Depth, LevelAncestor, LowestCommonAncestor
operations within the same space bound of 2n+o(n) bits. This makes DFUDS the
first succinct representation able to support the whole set of navigation/query
operations mentioned in Section 1.

6 Ultra-Succinct Representation

In [16], Jansson et al. have not only extended the range of operations supported
by the DFUDS representation, but also used DFUDS to derive a new represen-
tation which breaks the 2n−Θ(log n) bits lower bound established in Section 1.
This was possible because 2n − Θ(log n) bits is a lower bound for represent-
ing a generic n-node tree; if we have additional information on the tree struc-
ture we can devise more economical encodings. For example, it is easy to show
that an n-node full binary tree (in which every internal node has degree 2) can
be represented using n bits. The following result3 is the key to generalize this
observation.

Lemma 2. The number of ordered trees with n nodes having ni nodes with i
children is given by

1
n

(
n

n0 n1 · · · nn−1

)
(1)

provided that
∑

i≥0 ni(i − 1) = −1. If the equality does not hold no such tree
exists. ��
3 See for example http://www.emis.de/journals/SLC/wpapers/s38pr rote.pdf.



Succinct Representations of Trees 17

Using an ingenuous encoding of the DFUDS sequence, and appropriate auxiliary
data structures, Jansson et al. [16] have been able to represent an n-node tree
with degree distribution n0, n1, . . . with a number of bits equal to the base 2
logarithm of (1) plus o(n) bits.

7 Representations Based on Tree Covering

A completely different approach to the succinct representation of trees is the
one based on tree covering [10,13,17]. This approach is similar to the techniques
described in Section 2 for supporting constant time Rank/Select over binary
strings. An n-node tree is decomposed into O(n/ log4 n) mini-trees of O(log4 n)
nodes each. Each mini-tree is then decomposed into O(log3 n) micro-trees of
at most (log n)/8 nodes each. If we collapse each mini-tree into a single node,
the original tree has size O(n/ log4 n), so even a pointer-based representation
takes o(n) bits. Similarly, if we collapse micro-trees into single nodes each mini-
tree has size O(log3 n) and they can be represented in overall o(n) bits. Finally,
micro-trees are represented using for example DFUDS using a total storage of
2n+o(n) bits. Tree operations are computed working at three levels: the original
tree, mini-trees, and micro-trees. The crucial point is that, since micro-trees are
very small, for each tree operation we can store in a o(n) bits table the answer
of each possible query on each possible micro-tree (compare with the proof of
Lemma 1 where we pre-compute a table of the answers of each possible Rank1
query on each possible micro-block).

Recently, [6] has refined this approach showing that it can be used to represent
in an uniform way ordinal, cardinal, and free trees, and that its space usage
matches the tighter lower bound induced by Lemma 2.
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A graph G has a Kt minor if a graph isomorphic to Kt, the complete graph
on t vertices, can be obtained from a subgraph of G by contracting edges. A
long-standing conjecture of Hadwiger states that every graph with no Kt minor
is (t − 1)-colorable. Hadwiger’s conjecture is known for t ≤ 6, and open for all
t > 7.

A deep theorem of Robertson and Seymour describes the structure of graphs
with no Kt minor. The theorem is very powerful, but it is fairly complicated to
state, and the condition it gives is necessary, but not sufficient, for the exclusion
of a Kt minor.

We prove a necessary and sufficient condition under additional restrictions on
the graph G. We prove that for every integer t there exists an integer N such
that every t-connected graph on at least N vertices with no Kt minor has a set
of at most t − 5 vertices whose deletion makes the graph planar. This is best
possible in the sense that neither t-connectivity nor the size of the deleted set
can be lowered, and for t > 7 some lower bound on the number of vertices is
needed.
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J. Fiala, J. Kratochv́ıl, and M. Miller (Eds.): IWOCA 2009, LNCS 5874, p. 19, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Intractability in Graph Drawing and Geometry:
FPT Approaches

Sue Whitesides

Department of Computer Science, University of Victoria, Victoria BC, Canada
sue@uvic.ca

Abstract. The fixed parameter tractability (FPT) approach pioneered
by Downey and Fellows provides an algorithm design philosophy for solv-
ing special cases of intractable problems. Here we review several examples
from geometry and graph drawing, in particular layered graph drawing,
that illustrate fixed parameter tractability techniques.

What follows is a brief summary of the topics presented in an invited talk at
IWOCA 09, and some follow-up, but far from comprehensive, references. The
author thanks the conference organizers and the program committee for their
kind invitation to speak.

The fixed parameter tractability (FPT) approach of Downey and Fellows [4],
has produced a substantial body of literature that provides both lower bound
and algorithmic results. On the algorithmic side, the philosophy is to identify
a parameter k associated with a given hard problem and then to design an
algorithm whose running time is polynomial in the problem size while depending
exponentially or worse on k. For example, a running time of O(2kn) reflects fixed
parameter tractability, whereas a running time of O(nk) does not. An algorithm
with a running time of this form could possibly give useful results for small values
of k. Sometimes this is the case in practice, and sometimes such results are of
mainly theoretical interest. Experimentations with implementations appear to
be uncommon in the literature.

From the perspective of computational geometry and graph drawing, it thus
natural to ask whether FPT techniques can be applied in those domains. See [11]
for a recent survey article on this topic and for further elaboration and references
for most of the examples mentioned here.

In honour of the transformation and evolution of AWOCA into IWOCA, a
problem in visibility representations of graphs is also included; this is a topic
from previous AWOCA’s and ACCMCC’s and GD’s.

1 Graph Drawing

The field of graph drawing seeks good layouts and embeddings for graphs. The
motivation for these layouts may be physically based (e.g., arrangements of wires,
roads, pipes, laser beams) or visually based (e.g., diagrams or maps to be drawn
on paper, viewed on screens, experienced in a 3D virtual reality environment).

J. Fiala, J. Kratochv́ıl, and M. Miller (Eds.): IWOCA 2009, LNCS 5874, pp. 20–23, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The desired properties of the layout depend on the intended use. One may wish
to realize edges as straight lines, paths that follow grid lines, or arcs or polylines.
One may aim to minimize the number of bends in edges or the area in a grid
layout, or the number of edge crossings. One may seek good angular resolution.
Electrical properties or readability properties of the resulting layout may be the
concern. The desired properties may conflict with one another, generating trade-
off issues between, for example, layout readability and area. Many optimization
problems in graph drawing are NP-hard.

2 Visibility Representations

While one typically lays out graphs by drawing vertices as points and edges as
curves of some sort (straight lines, arcs, polylines, gridlines), more geometric
representations of graphs have also been studied. Here, vertices are represented
as geometric objects such as line segments or axis-aligned boxes in 3D, and edges
are represented as a binary geometric relation such as intersection, tangency, or
visibility.

One example is as follows. If one represents vertices as axis-aligned unit
squares in 3D floating above the xy-plane, and edges as lines of sight paral-
lel to the z-axis, what is the largest complete graph that can be represented?
The answer is 7. While specific constructions show that 7 is possible, the proof
that K8 has no such representation so far involves a non-trivial computer search
(see [3]) If axis aligned rectangles having possibly different sizes are allowed,
the size of the largest representable complete graph Kn increases to at least
n = 22. The upper bound on n has decreased in stages from 102 to 50. Hence
a substantial gap between the best known lower and upper bounds continues
to exist. Other representations for vertices have also been considered, including
equal regular n-gons. For example, in this situation, an upper bound of O(n4)
has been shown by Štola (see [14], [15]).

3 Layered Graph Drawing Problems

Given a graph G = (V, E), where V is partitioned into h subsets V1, . . . , Vh to
be drawn as points on h horizontal layers L1, . . . , Lh, and edges are to be drawn
as straight line segments joining endpoints in adjacent layers, the problem of
minimizing crossings in the drawing becomes one of choosing permutations σi

for the vertices Vi assigned to each layer Li. A related problem is to choose
permutations so as to minimize the number of edges whose removal leaves a
crossing-free drawing. Indeed there are a number of variants of this type of
problem. One can consider two layers at a time, with the permutation on one
of the two layers fixed, or drop the pre-assignment of vertices to the layers. In
any case, natural parameters to associate with these types of problems are the
number of crossings allowed, the number of edges allowed whose removal results
in a planar layout, or the number of layers available.
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Hard problems abound. For example, TWO-LAYER PLANARIZATION is
NP-complete; that is, to determine, given a bipartite graph G = (V1 ∪ V2, E)
and non-negative integer k, whether there exist orderings for V1 and V2 so that
after at most k edges are removed, the graph can be drawn without crossings on
two layers. See [8], [2].

A number of fixed parameter tractable algorithms are known for layered graph
drawing, often tracing their roots to a workshop at the Bellairs Research Institute
that investigated the application of FPT methods to layered graph drawing. The
workshop was the result of the author’s discussions with Mike Fellows at confer-
ences in Australia, including AWOCA Hunter Valley. See [5], [6], [7]). Two by
now classic methods of FPT algorithm design, the bounded search tree method
and the problem kernelization method (and their combination) are used to ob-
tain the results. Later implementation and experimentation work [13] showed
that the FPT approach for two-layer planarization led to results that are com-
parable but complementary to ILP results for the same problem. The results for
h-layer graph drawing exploit the fact that h- layer planar graphs (and graphs
that can be made h-layer planar after removal of at most k edges), have path
width w expressable in terms of h (or h and k). Then a path decomposition of
width at most w is sought, leading to an FPT result with an algorithm with
impractical running time even for small parameter values.

See also the chapter on graph drawing problems in the habilitation thesis of
Henning Fernau [9].

4 FPT Algorithms for Geometry Problems

We mention two examples that are particularly accessible. See [11] for more
details and references, as well as more examples.

The Independent Set Problem on Disc Graphs is as follows. Given n disks Di

in the plane, where the radius ri of disc Di lies in the range [1, σ], and given
that the distance dij between the centers of discs Di and Dj is at least λ > 0
for each pair of discs Di, Dj are there at least k non-intersecting discs? Taking
σ and λ as parameters, Alber and Fiala used the kernelization method to obtain
an FPT algorithm ([1]).

The Independent Set Problem for Segment Graphs has been studied by Kara
and Kratochvil, who parameterize on d, the number of different directions of the
segments.

The Crossing Free Spanning Tree Problem is as follows. Given a graph
G = (V, E) together with a drawing Γ (G) of G (the drawing need not be
crossing-free), the problem is to determine whether Γ (G) contains a crossing-
free spanning tree for G. FPT algorithmic results based on kernelization have
been obtained for this problem, using the number of crossings in Γ (G) as a
parameter.
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5 Conclusion

The exploration of FPT methods in geometry and graph drawing is presently
at an early stage, with a small but growing number of results. It is hoped that
this presentation will serve as an invitation to explore the area further and to
experiment with implementations of FPT algorithmic results.
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Abstract. In the context of scheduling and timetabling, we study a
challenging combinatorial problem which is interesting from both a prac-
tical and a theoretical point of view. The motivation behind it is to cope
with scheduled activities which might be subject to unavoidable distur-
bances, such as delays, occurring during the operational phase. The idea
is to preventively plan some extra time for the scheduled activities in or-
der to be “prepared” if a delay occurs, and to absorb it without the neces-
sity of re-scheduling the activities from scratch. This realizes the concept
of designing so called robust timetables. During the planning phase, one
has to consider recovery features that might be applied at runtime if
delays occur. Such recovery capabilities are given as input along with
the possible delays that must be considered. The objective is the mini-
mization of the overall needed time. The quality of a robust timetable is
measured by the price of robustness, i.e. the ratio between the cost of the
robust timetable and that of a non-robust optimal timetable. The consid-
ered problem is known to be NP -hard. We propose a pseudo-polynomial
time algorithm and apply it on random networks and real case scenar-
ios provided by Italian railways. We evaluate the effect of robustness
on the scheduling of the activities and provide the price of robustness
with respect to different scenarios. We experimentally show the practical
effectiveness and efficiency of the proposed algorithm.

1 Introduction

In this work, we investigate an important combinatorial problem in the context
of scheduling: the timetable planning of public transportation systems. It arises,
for instance, in the planning phase of railway systems, requiring to compute a
timetable for passenger trains that determines minimal passenger waiting times.
However, many disturbing events might occur during the operational phase, that
is when the system is running. Such events, whose main effect is the arising of
delays, might make unfeasible the scheduled timetables. Hence, it is important to
take them into account in advance. A schedule that lets vehicles sit at stations for
� This work was partially supported by the Future and Emerging Technologies Unit of

EC (IST priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).
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some time will not suffer from small delays of arriving vehicles, because delayed
passengers can still catch potential connecting vehicles. On the other hand, big
delays can cause passengers to lose vehicles and hence imply extra traveling time.
The problem of deciding when to guarantee connections from a delayed vehicle
to a connecting vehicle is known in the literature as delay management prob-
lem [1,2,3,4,5,6,7]. Although the problem has a natural formalization, it turns
out to be very complicated to be optimally solved. In fact, it has been shown to
be NP -hard, while it is polynomial in some particular cases (see [1,4,5,7]).

In order to cope with the management of delays we follow the recoverable
robust optimization approach provided in [8,9]. The aim is to design timetables
in the planning phase in order to be “prepared” to react against possible dis-
turbances. E.g., if a delay occurs, the designed timetable should guarantee the
recovery of the scheduled events by means of allowed operations represented by
given recovery algorithms. In [10], interesting theoretical results were presented,
assuming that only one delay might occur at a generic event of the scheduled
event activity network (see [1,7]) which is a directed graph that represents the
sequence and the dependencies of scheduled events. The attention was restricted
to event activity networks whose topology is a tree. In this context, it is worth
noting that the assumption concerning one single delay does not constitute a
restriction to the problem as k delays of size at most α can be modelled as one
delay of size at most kα. An event either absorbs the entire delay or propagates
it to all the subsequent events. In order to absorb the delay, an event is associ-
ated with a so called slack time of α time. Clearly, by associating a slack time
of α to each event, every delay of duration α can be locally absorbed. How-
ever, this approach is not practical as the overall duration time of the scheduled
events would increase too much. The planned timetables should be instead able
to absorb the possible occurring delay in a fixed amount of steps, Δ. This means
that if a delay occurs, it is not required that the delay is immediately absorbed
(unless Δ = 0), but it can propagate to a limited number of events in the net-
work. Namely, the propagation might involve at most Δ events. The objective
function to minimize is the total time required by the events in order to serve
all the scheduled activities and to be robust with respect to one possible delay
of α time. That is, a timetable is robust if it can be recovered by postponing at
most a fixed number of events in case of a delay.

In [11], the authors show that the described problem is NP -hard when the event
activity network topology is a DAG with weights associated to nodes. In the same
paper, it is shown that the problem where the weights are associated to the arcs is
a subproblem. Even for this subproblem, in [1], the authors show that the problem
remains NP -hard, and they provide polynomial time algorithms which cope with
the case of Δ = 0. In [11], the authors provide algorithms for any Δ when the
event activity network is a path with positive weights on nodes.

In this paper, we keep on investigating the complexity of the problem. In
particular, we study event activity networks which have a tree topology and
positive weights. In [10], this problem has been shown to be NP -hard even in this
restricted scenario. We provide an algorithm that solves the problem in O(nΔ+1)
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time where n is the number of events in the input event activity network. The
result implies that the problem can be solved in pseudo-polynomial time for
constant Δ, i.e. when Δ is fixed a priori. The algorithm is not polynomial, since
it has been shown in [10] that some instances can be represented in O(log n)
space and the problem restricted to these instances remains NP -hard. Hence,
when Δ is fixed, the proposed algorithm requires a time which is polynomial in
n, that is pseudo-polynomial in the size of the instances. For practical contexts,
Δ << n is a reasonable restriction, since we may require that in at most Δ steps
(independently from the input instance) a possible delay must be absorbed.
We evaluate the proposed algorithm both theoretically and experimentally. The
latter evaluation is done by using random networks and real world instances of
the problem provided by the Italian railways company, Trenitalia [12]. It turns
out that, even if the algorithm is not polynomial, it is very efficient in practice.
Moreover, we show the applicability and the low costs in terms of slack times
needed for making robust the considered timetables.

2 Recoverable Robust Timetabling Problem

In railway systems, events and dependencies among events are modeled by event
activity networks (see [7]). They are directed graphs where nodes represent ar-
rival or departure events of trains and arcs represent activities occurring between
events (waiting in a train, driving between stations or changing to another train).
Event activity networks are a particular class of direct acyclic graphs (DAGs).

Given a DAG G = (V, A), the timetabling problem consists in assigning a
time to each event in such a way that all the constraints provided by the set
of activities are respected. A function L : A → N assigns the minimal duration
time to each activity. A timetable Π ∈ R

|V |
≥0 for G is an assignment of a time

Π(u) to each event u ∈ V such that Π(v)−Π(u) ≥ L(a), for all a = (u, v) ∈ A.
Given a function w : V → R≥0 that assigns a weight to each event, an

optimal solution to the timetabling problem minimizes the total weighted time
for all events. Formally, TT is as follows.

TT

given: A DAG G = (V, A), and functions L : A → N and w : V → R≥0.
problem: Find a function Π : V → R≥0 such that Π(v) −Π(u) ≥ L(a) for

all a = (u, v) ∈ A and f(Π) =
∑

v∈V w(v)Π(v) is minimal.

An instance i of TT is a triple (G, L, w), where G is a DAG, L associates a
minimal duration time to each activity, and w associates a weight to each event.
The set of instances for TT is denoted by I. The set of feasible solutions for i ∈ I
is: F (i) = {Π : Π(u) ∈ R≥0, ∀u ∈ V and Π(v)−Π(u) ≥ L(a), ∀a = (u, v) ∈ A}.

A solution Π for TT may induce a positive slack time s(a) for each a ∈ A.
In particular, since the planned duration of an activity a = (u, v) is given by
Π(v) − Π(u), then s(a) = Π(v) − Π(u) − L(a). Problem TT can be solved in
linear time by assigning the minimal possible time to each event (e.g. by using
the Critical Path Method [1,13]). However, in practical context, delays on the
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scheduled activities may occur. In this case, an optimal solution for TT could
result unfeasible and recovery (on-line) strategies become necessary.

Given an instance i = (G, L, w) for TT , and a constant α ∈ R≥0, we
consider a single delay of at most α time. This is modeled as an increase
on the minimal duration time of the delayed activity. We denote the set
of instances of TT that can be obtained by applying all possible modifica-
tions to i as a function M(i) which is formally defined as follows: M(i) =
{(G, L′, w) : ∃ ā ∈ A : L(ā) ≤ L′(ā) ≤ L(ā) + α, L′(a) = L(a) ∀a �= ā} .

Recovery capabilities against delays are modeled as a class A of algorithms
whose definition depends on the concept of events affected by one delay as follows.

Definition 1. Given a DAG G = (V, A), a function s : A→ R≥0, and a number
α ∈ R≥0, a node x is α-affected by a = (u, v) ∈ A (a α-affects x) if there exists
a path p = (v0 ≡ u, v1 ≡ v, . . . , vk ≡ x) in G, such that

∑k
i=1 s((vi−1, vi)) < α.

The set of nodes α-affected by an arc a = (u, v) is denoted as Aff(a).

In the following, given a solution Π for i = (G, L, w), the slack time function in-
duced by Π is used as the function s in the previous definition. It is assumed that
the recovery capabilities allow to change the time of at most Δ events. Formally,
each algorithm in A is able to compute a solution Π ′ ∈ F (j) if |Aff(a)| ≤ Δ,
where Δ ∈ N. This implies that a robust solution must guarantee that, if a delay
of at most α time occurs, then it affects at most Δ events.

We define the recoverable robust timetabling problem RTT as the problem
of finding a timetable that can be recovered by changing the time of at most
Δ events when a delay of at most α time occurs. According to the recoverable
robustness model in [8,9], such a problem is defined as RTT = (TT, M, A).

In other words, a solution Π for an instance i is feasible for RTT if it can be
recovered by applying an algorithm in A which changes the time of at most Δ
events for each possible disturbance j ∈M(i). The solution Π is called a robust
solution for i w.r.t. the original problem TT .

A robust algorithm for TT is any algorithm Arob such that, for each i ∈ I,
Arob(i) is a robust solution for i w.r.t. TT . The quality of a robust so-
lution is measured by the price of robustness. The price of robustness of
Arob is the worst case ratio between the robust solution for an instance of
RTT and the corresponding optimal solution for the underlying TT problem.
Formally, Prob(RTT , Arob) = maxi∈I

{
f(Arob(i))

min{f(x):x∈F (i)}
}

. The price of robust-
ness Prob(RTT ) of problem RTT is defined as the minimum price of robust-
ness among all the robust algorithms. An algorithm Arob is RTT -optimal if
Prob(RTT , Arob) = Prob(RTT ). A robust solution Π for an instance i of RTT is
RTT -optimal if: f(Π) = min {f(Π ′) : Π ′ is a feasible solution for RTT }.

3 Pseudo-polynomial Algorithms for Fixed Δ

In this section, we give some theoretical results, whose omitted proofs can be
found in [14]. We concentrate our attention to instances of RTT where the DAG
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is a tree with n nodes. Hence, in the reminder of the paper, we will refer as RTT
to the problem restricted to trees. We denote as T = (V, A) a tree rooted in r.
If v ∈ V , deg(v) denotes the degree of v, Tv denotes the subtree of T rooted
in v ∈ V . Given a subtree Tv, No(Tv) denotes the set of nodes y such that
(x, y) ∈ A, x ∈ Tv and y �∈ Tv. We denote by w(Tv) the value

∑
x∈Tv

w(x) and
by |Tv| the number of nodes contained in Tv. Note that, in order to compute all
the values w(Tv) for each v ∈ V , one visit of Tr is sufficient.

In the next lemma, we prove that for any instance, there exists a RTT -optimal
solution which assigns only slack times of size α.

Lemma 1. Given an instance i of RTT , for each solution Π for i, there exists
a solution Π ′ for i such that f(Π ′) ≤ f(Π) and, for each arc a = (x, y), either
Π ′(y) = Π ′(x) + L(a) or Π ′(y) = Π ′(x) + L(a) + α.

Denoted by RTTΔ the problem RTT when the maximal number Δ of affected
nodes allowed is fixed a priori, algorithm SAΔ, provided in Figure 1, is RTTΔ-
optimal for any fixed Δ ≥ 1. The computational complexity of SAΔ is O(nΔ+1).
In order to characterize a solution Π , we need the following definition and lemma.

Definition 2. Given a solution Π of RTTΔ and a node v ∈ V , a ball BΠ(v) is
the maximal subtree rooted in v s. t. for each arc a = (x, y) in BΠ(v), s(a) = 0.

Lemma 2. For each instance of RTTΔ, there exists a RTTΔ-optimal solution
Π such that for each v ∈ V , BΠ(v) cannot be extended by adding any node
from No(BΠ(v)) while keeping feasibility and, unless Δ = 0, at most one of two
consecutive arcs has a slack time of α.

Then, for any Δ ≥ 1, there exists a RTTΔ-optimal solution Π with the following
structure. By Lemma 2, for each arc a outgoing from the root r, s(a) = 0. Then,
for each v ∈ No(r), Π induces a ball BΠ(v) such that |BΠ(v)| ≤ Δ. In particular,
|BΠ(v)| < Δ only if |Tv| < Δ. As a consequence, |BΠ(r)| ≤ 1 + Δ · deg(r). For
each arc a = (x, y) such that x ∈ BΠ(r) and y �∈ BΠ(r), s(a) = α. By Lemma
2, for each arc a outgoing from y, s(a) = 0 and the same arguments used for
BΠ(r) can be used to characterize BΠ(y).

A possible approach can be that of enumerating all the solutions with the
above structure and choosing the cheapest one. Note that, such an approach
has a computational time which is exponential in n. In what follows, we show
a recursive approach which avoids to consider a large number of solutions and
thus reducing the computational time to a polynomial in n. The algorithm SAΔ

works as follows. It assigns Π(r) = 0 and no slack times to arcs outgoing from r.
Then, for each v ∈ No(r) it has to decide which subtree of Tv belongs to BΠ(r).
To do this, it evaluates the cost, in terms of the value of the objective function,
of any possible subtree B of Tv rooted at v of size at most Δ and then chooses
the subtree which implies the cheapest solution.

For each already defined ball BΠ , this procedure is then repeated for each
v ∈ No(BΠ) which does not belong to a defined ball by using v as the root.
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Algorithm SAΔ

Input: v ∈ V
Output: (Π, f(Π)), times assigned at nodes in Tv with Π(v) = 0 and f(Π)

1. Π(v) = 0, fΠ = 0
2. for each vi ∈ No(v)
3. fmin = +∞
4. for each maximal subtree B rooted at vi of Tvi , such that |B| ≤ Δ
5. ΠB(vi) = L((v, vi)), fB = L((v, vi)) · w(vi)
6. for each (x, y) ∈ B
7. ΠB(y) = ΠB(x) + L((x, y))
8. fB = fB + ΠB(y) · w(y)
9. for each (u, z) ∈ A, such that u ∈ B and z �∈ B
10. (ΠTz , fTz ) = SAΔ(z)
11. fB = fB + fTz + (ΠB(u) + L((u, z)) + α) · w(Tz)
12. if fB < fmin then
13. fmin = fB

14. Bmin = B
15. Π(vi) = L((v, vi))
16. for each (x, y) ∈ Bmin

17. Π(y) = Π(x) + L((x, y))
18. for each (u, z) ∈ A, such that u ∈ Bmin and z �∈ Bmin

19. for each x ∈ Tz

20. Π(x) = ΠTz (x) + Π(u) + L((u, z)) + α
21. fΠ = fΠ + fmin

22. return (Π,fΠ)

Fig. 1. Recursive algorithm to compute a robust timetable on a tree

The cost of a subtree B rooted at v is computed as the value of the objective
function when B is chosen as a ball rooted in v. That is, for each arc a ∈ B,
s(a) = 0; for each a = (x, y) ∈ A such that x ∈ B and y �∈ B, s(a) = α; and for
each node in Ty, an optimal solution is chosen. Computing this cost requires to
know the optimal solution of a subtree, this is done by using recursively SAΔ.

Formally, SAΔ is given in Figure 1. It takes a node v as input and it returns a
pair (Π, f(Π)) where Π is a RTT -optimal timetable for Tv and f(Π) is its value
of the objective function. A solution for RTTΔ is computed by calling SAΔ(r).

In detail, Lines 1 assigns Π(v) and initializes fΠ . For each vi ∈ No(v), Lines
3–21 compute Π for the subtree Tvi . Lines 3–14 compute a subtree Bmin of Tvi

rooted at vi of size at most Δ which implies the cheapest solution of cost fmin.
To do this, Line 4 enumerates all the possible subtree B rooted at vi of Tvi of size
at most Δ. Then, Lines 5–8 compute the cost fB of nodes in B and Lines 9–11
compute the cost of nodes not in B by summing for each (u, z) ∈ A, such that
u ∈ B and z �∈ B the cost fTz of a solution of Tz computed by recursively calling
SAΔ(z). If fTz is the cost of a solution of a subtree Tz, then the contribution to
fB of all nodes in Tz is (ΠB(u)+ L((u, z))+ α) ·w(Tz) where ΠB(u) is the time
assigned to u if B is chosen as a ball rooted in vi. In fact, each time assigned
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to such nodes have been shifted of ΠB(u) + L((u, z)) + α. Finally, Lines 15–21
assign Π for the subtree Tvi by choosing Bmin as a ball rooted in vi.

Theorem 1. SAΔ is RTTΔ-optimal and requires O(nΔ+1) time and O(n2) space,
where n is the number of nodes. Prob(RTTΔ, SAΔ) ≤ 1+ α

2 . Prob(RTTΔ) ≥ 1+ α
Δ+1 .

4 Experimental Study

4.1 Real World Data

We consider real case scenarios of Single-Line Corridors. A corridor is a sequence
of stations represented by a line. The stations are linked by multiple tracks and
each station is served by many trains of different types. Types of trains concern
the locations that each train serves and its maximal speed. For an example,
see Figure 2. In these systems, it is a practical evidence that slow trains wait
for faster trains in order to serve passengers to small stations. This situation
is modelled with the only assumption that the changes of passengers from one
train to another at a station must be guaranteed only when the second train is
starting its journey from the current station. In practice, we do not require as a
constraint the possibility for passengers to change for a train which has already
started its journey. This does not mean that passengers cannot change train at
some station in the middle of a train journey, but only that this is not considered
as a constraint. Further motivations for this model can be found in [15,16].

Let us consider the real world example provided in Figure 2 where three
trains serve the same line. The slowest train, the Espresso, goes from Verona
to Bologna, the Interregionale goes from Fortezza to Bologna, and the fastest
one, the Euro-City, goes from Brennero to Bologna. The Euro-City starts its
journey before all the other trains, and it arrives at Fortezza station before
the departure event of the Interregionale. At Verona Station, the Espresso is
scheduled to start its journey after the arrival event of the Euro-City. Hence,
there is an arc between the Euro-City and the starting event corresponding to
the Interregionale at Fortezza station, and another arc connecting the Euro-City
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Fig. 2. Example of three trains serving a line. For each station and for each train, we
represent only one circle which indeed corresponds to an arrival and a departure event.
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Table 1. Data used in the experiments

Corridor Line N. of Stations N. of Trains

BrBo Brennero–Bologna 48 68
MdMi Modane–Milano 54 291
BzVr Bolzano–Verona 27 65
PzBo Piacenza–Bologna 17 25

Table 2. Sizes of the trees

Corridor N. of Nodes Max. Traveling Time Avg. Activity Time

BrBo 1103 516 9
MdMi 4358 318 8
BzVr 648 197 5
PzBo 163 187 10

to the starting event of the Espresso at Verona station. An arc which represents
a changing activity can only connect one node to the head of a branch. The DAG
obtained by this procedure is a tree, as shown in Figure 2. In general, the result
of this procedure is a forest and we link the roots of the trees in this forest to a
unique root event (for details, see [15]). The weights on the events represent the
relevance of the trains which they belong to, the weight of the root is 0.

Table 1 shows the data used in the experiments referring to four corridors
provided by Trenitalia [12]. Starting from the provided data and according to the
described requirements, we derived event activity networks having tree topologies
whose sizes are reported in Table 2. We then apply the SAΔ algorithm on different
scenarios, comparing the obtained robust timetables with the optimal non-robust
ones.

Our experiments are based on three parameters. Namely, we vary on the
maximum number Δ of events that can be affected by a delay, the maximum time
delay α, and the case of average or real times L needed to perform the scheduled
activities. In what follows, all the activities times and the delays are expressed in
minutes. In order to obtain RTT instances, for each corridor among BrBo, MdMi,
BzVr and PzBo, we vary Δ ∈ {1, 2, . . .11} and α ∈ {1, 5, 9, 13, 17}. Moreover, we
use two different functions L: the first one is based on the real values obtained
by available data; the second one is the constant average function which assigns
to each activity the same duration time obtained as the average among all real
values of each instance. This second function is used to test the behavior of
the algorithm based only on the network topology, in order to understand the
dependability w.r.t. real values. The average activity times are shown in Table 2.

For each corridor we show three diagrams concerning the objective function f ,
the price of robustness Prob of SAΔ, and the computational time t needed by SAΔ

in the mentioned cases. In each diagram, we show three curves which represent
the results obtained by setting L to real values and α ∈ {1, 5, 9}. Results obtained
by assigning α ∈ {13, 17} are not shown as they are less significant being α too
large compared with the average activity time. Furthermore, for the instance
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Fig. 3. Corridor BrBo with real values of minimum activity times (left) and average
activity times (right)

BrBo, we give the three diagrams obtained by setting L to the corresponding
average activity time. For any other instance we do not give these diagrams as
the inferred properties do not change. The full set of results can be found in [14].
All the experiments have been carried out on a workstation equipped with a 2,66
GHz Intel Core2 processor, 8Gb RAM, Linux (kernel 2.6.27) and gcc 4.3.3.

In the obtained diagrams, the values of the objective function f of the robust
problem are compared to the optimum value of f for the non-robust problem.
As Δ increases, the curves tend rapidly to the optimum. For small values of α,
the price of robustness is very low. Concerning the diagrams representing the
computational times, we can see that our tests required a very small amount of
time. However, the exponential growth of the curves as Δ increases is already ev-
ident. Surprisingly, for practical purposes, our experiments show that algorithm
SAΔ can be safely applied without requiring ages of computation.

Corridor BrBo (see Figure 3, left). This corridor is quite large in terms of
stations and trains as shown in Table 1. We can see that the price of robustness
is very close to 1 when α = 1 while it is almost 1.5 when considering big delays
of α = 9 and Δ = 1. When Δ = 1, the algorithm adds one slack time for
each pair of consecutive arcs. Then, the value of Prob, when Δ = 1, is about
2Lavg+α

2Lavg
= 1 + α

2Lavg
, where Lavg is the average activity time, as shown in

Figure 3. It is interesting to note how the values of f and Prob decrease quickly
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Fig. 4. Corridor MdMi

with Δ. In particular, the price of robustness is between 1.00754 and 1.06785,
when Δ = 11. This implies that adding robustness reflects an increasing in the
costs of just 0.8− 6.8%. The computational time increases with Δ but it is less
than 30 milliseconds in the worst case. In detail, for Δ = 11 we need about 28
milliseconds to achieve a price of robustness of at most 1.06785.

Corridor BrBo (average activity times). (see Figure 3, right). In this case,
the objective function takes almost identical values w.r.t. the previous case. As
we expect, the value of the objective function does not depend on the value
of L, but only on the structure of the tree and on the size of the delay. Prob

strictly depends on α/Lavg which can be considered a parameter for evaluating
the magnitude of a delay. For Δ = 1 an optimal robust timetable has to assign
one slack time of size α for each pair of consecutive activities. It follows that, if
α = 9 and Lavg = 9, the price of robustness is 1.5, as it can be seen in Figure 3.
The same happens for α = 5 where the expected value is about 1.27.

Corridor MdMi (see Figure 4). This corridor is the biggest in terms of stations
and trains. As shown in Table 1, the number of considered trains is more than
four times the one in BrBo, while the number of stations is slightly more. Still,
we can see comparable performances for the price of robustness even though the
incidence of the required computational time is more evident. However, as the
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Fig. 5. Randomly generated trees

timetables are calculated at the planning phase and not at runtime, the required
time is still of an acceptable order being about 96 seconds in the worst case.
Results regarding corridors BzVr and PzBo are reported in [14].

4.2 Randomly Generated Data

By analyzing the obtained results, we note that the time required by the al-
gorithm is negligible w.r.t. the theoretical bound. This suggests that those real
world instances have some hidden properties. One cause might be the almost
linearity of the input trees which are made of long paths and whose nodes have
low outdegree. In order to investigate on this matter, we test the algorithm on
a set of five randomly generated trees. Each tree contains 1000 nodes and is
generated starting from a single node and then by linking a new generated node
to an existing one extracted uniformly at random. The node weights randomly
range in [1, 10], and the minimum duration times of activities randomly range in
[1, 18]. In this way, the average activity duration time is comparable with that
of the real world instances. Finally, Δ ∈ {1, 2, . . .10} and α ∈ {1, 5, 9}. For each
pair (Δ, α), we performed one test for each generated tree.

In Figure 5, we show the average values of price of robustness and computa-
tional time, and the standard deviation of the price of robustness. The results
confirm our intuition that the almost linear structure of the real world data heav-
ily influences the computational times. In fact, in this case the time elapsed is
about 10000 times worse than that of the corridor BrBo which have comparable
size. However, the price of robustness is kept low as in the previous instances.

5 Conclusion

We have presented algorithm SAΔ for solving the problem of planning robust
timetables when the input event activity network topology is a tree. The algo-
rithm ensures that, if a delay occurs, no more than Δ activities are influenced by
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the propagation of such a delay. We have shown the performances of SAΔ both
theoretically and experimentally. Despite the problem is proved to be NP -hard,
the obtained results show the applicability of the algorithm to ensure robust
timetables with respect to bounded delays.
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Abstract. The Longest Common Subsequence (LCS) of two strings A
and B is a well studied problem having a wide range of applications.
When each symbol of the input strings is assigned a positive weight the
problem becomes the Heaviest Common Subsequence (HCS) problem. In
this paper we consider a different version of weighted LCS on Position
Weight Matrices (PWM). The Position Weight Matrix was introduced as
a tool to handle a set of sequences that are not identical, yet, have many
local similarities. Such a weighted sequence is a ‘statistical image’ of
this set where we are given the probability of every symbol’s occurrence
at every text location. We consider two possible definitions of LCS on
PWM. For the first, we solve the weighted LCS problem of z sequences
in time O(znz+1). For the second, we prove NP-hardness and provide
an approximation algorithm.

1 Introduction

The Longest Common Subsequence problem, whose first famous dynamic pro-
gramming solution appeared in 1974 [14], is one of the classical problems in
Computer Science. The widely known string version appears in Definition 1.

Definition 1. The String Longest Common Subsequence (LCS) Problem:
Input: Two strings A, B of length n over alphabet Σ.
Output: The length of the longest subsequence common to both strings.

The LCS problem has been very well studied. For a survey, see [5]. The problem
is mainly motivated in measuring the similarity over the input strings. An imme-
diate example from computational biology is measuring the commonality of two
DNA molecules or proteins, which may yield functional similarity between them.
The well known dynamic programming solution [7] requires a running time of
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O(n2), for two input strings of length n. The LCS problem had also been in-
vestigated on more general structures such as trees and matrices [2], run-length
encoded strings [4], and more.

Another structure, useful in molecular biology, is the weighted sequence. This
is defined as a sequence S = s1, .., s|S| where a value is associated to every si,
i = 1..|S|. While comparing two weighted sequences we define a weight function,
W , assigning a value to every possible match between two characters one from
the first sequence and the other from the second sequence. The LCS variant
for these weighted sequences aims at maximizing the weight of the common
subsequence, instead of its length as hereafter defined:

Definition 2. The Heaviest Common Subsequence (HCS) Problem:
Input: Two strings A = a1..an, B = b1..bn of length n over alphabet Σ and a

weight function W : ai × bj → N .
Output: A common subsequence of length l ai1 ..ail

= bj1 ..bjl
maximizing the sum∑l

k=1 W (aik
, bjk

)

Note that in contrast to sequence alignment problem, where we have a single
weight for the matching of two characters, in the HCS problem the weight of the
match depends on the position of the symbols in the input sequences as well as
on the characters themselves.

Recently, another model of weighted sequences was introduced in which, at
each position of the sequence, any symbol of the alphabet can occur with a cer-
tain probability. To prevent ambiguity, we refer to such sequences as p-weighted
sequences, though in the literature they are both named weighted sequences.

Definition 3. ([9]) A p-weighted sequence A = a1..an over alphabet Σ, is a
sequence of sets ai, 1 ≤ i ≤ n. Every ai is a set of pairs (sj , πi(sj)), where
sj ∈ Σ and πi(sj) is the probability of having symbol sj at location i.

Formally, ai = {(sj , πi(sj)) | sj �= sl for j �= l, and
∑

j πi(sj) = 1}.
The concept of p-weighted sequences was introduced as a tool for motif discovery
and local alignment. A weighted sequence is called in the biological literature a
“Position Weight Matrix” (PWM) [12]. A p-weighted sequence of length m is a
|Σ| ×m matrix that reports the frequency of each symbol in a finite alphabet
Σ for every possible location.

The first usage of PWM sequences was for relative short sequences, for exam-
ple binding sites, sequences resulting from multiple alignment etc. Iliopoulos et.
al. [9] considered building very large Position Weight Matrices that correspond,
for example, to complete chromosome sequences that have been obtained using
a whole-genome shotgun strategy [13]. By keeping all the information the whole-
genome shotgun produces, it is possible to ferret out information that has been
previously undetected after being faded during the consensus step. This concept
is true for other applications where local similarities are thus encoded. There-
fore, the necessity of developing adequate algorithms for p-weighted sequences
increases.

It is natural to extend the LCS definition to p-weighted strings as a means
of measuring their similarity. However the PWM model deals with probabilities,
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thus values smaller than 1 are multiplied as a subsequence is extended. The
heaviest common p-weighted subsequence will always be of length 1, since every
added symbol reduces the total weight. Therefore, we define a new but related
problem named Longest Common Weighted Subsequence, in which the weight is
allowed to decrease till a certain bound, and under this restriction the longest
common subsequence is sought.

The bound is set according to the certainty level required in the applica-
tion. Since we consider two p-weighted sequences, we differentiate between their
probabilities by denoting πA

i the probability of occurring at the ith location of
sequence A. The formal definition appears below.

Definition 4. The Longest Common Weighted Subsequence (LCWS)
Problem:
Input: Two p-weighted strings A, B of length n over alphabet Σ,

and a constant α, 0 < α ≤ 1.
Output: The maximal l such that there is a common subsequence of length l,

ai1 ..ail
= bj1 ..bjl

, where
∏l

y=1(π
A
iy

(aiy ) · πB
jy

(bjy )) ≥ α.

Though the LCWS problem seems natural for the position weighted matrices
input, in case the probabilities of the characters of one input sequence are far
from being uniformly distributed, the results may be biased and not reflect a
real relation between the weighted sequences. In order to prevent this effect,
and obtain informative results we suggest an additional definition to the LCWS
problem, Longest Common Weighted Subsequence with two thresholds, referred
to as LCWS2. In the LCWS2 problem, a separate probability bound is set for
each of the p-weighted sequences.

Definition 5. The Longest Common Weighted Subsequence 2 (LCWS2)
Problem:
Input: Two p-weighted strings A, B of length n over alphabet Σ,

and constants α1, α2, 0 < αi ≤ 1.
Output: The maximal l such that there is a common subsequence of length l,

ai1 ..ail
= bj1 ..bjl

, where
∏l

y=1 πA
iy

(aiy ) ≥ α1 AND
∏l

y=1 πB
jy

(bjy) ≥ α2.

In real-world applications it is rarely the case that one needs to compare only two
data instances. Rather, it is important to be able to compare multiple sequences.
Consequently, we generalize the LCWS problems to multiple sequences and show
that our algorithm generalizes in the natural way.

This paper is organized as follows: Section 2 describes related work. The
LCWS problem solution and its extension appear in Section 3. We consider the
LCWS2 problem and its hardness in Section 4. Section 5 concludes the paper
and poses some open questions.

2 Related Work

Jacobson and Vo [10] solved the Heaviest Common Subsequence problem by
reducing it to the Heaviest Increasing Subsequence problem (HIS). Their algo-
rithm for the Heaviest Common Subsequence runs in O((r+n) log n) time, where
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r is the number of matches between A and B and n is the length of the input
sequences. For small alphabets with a uniform distribution, the time may be
O(n2 log n). Recently Li [11] gave a linear space algorithm for the HCS problem.

Regarding the p-weighted sequences, Iliopoulos et al. [8] defined the problem
of longest common substring of p-weighted sequences, where the common se-
quence is consecutive. They suggested solving the problem using a p-weighted
generalized suffix tree, in which the longest branch common to both strings is
the answer. Their problem is a special case of the LCWS problem.

Amir et. al. [1] showed some conditions where p-weighted matching problems
can be reduced to ordinary pattern matching problems. In their model, the
probability is fixed, and the text is p-weighted while the pattern is an ordinary
string. Both these assumptions are not valid for the LCWS problem.

Finally, Amir et. al. [3] have defined weighted Hamming and edit distances.
Although edit distance and LCS are known to be related, our model and that of
[3] are different in that they consider a p-weighted text and a regular pattern.
The case of Amir et. al. [3] is the special case in our model where all probabilities
of the sequences equal one.

3 Longest Common Weighted Subsequence (LCWS)

The resemblance between the HCS and LCWS problems lies in the weight de-
mands on the common subsequence. However, there is a substantial difference
between the problems. The HCS maximizes a single parameter – the weight –
whereas the LCWS maximizes the length under a weight restriction.

The weight bound does force the algorithm to maximize the weight at every
step, yet not as a goal but rather as a byproduct. Consider the example in Fig. 1.
Let the associated weight function of the HCS be multiplying the probabilities
of the symbols, as given in the third table. The HCS result will be a common
subsequence of length one, obtained from matching a1 to b3, with weight 56/81.
Nevertheless, the LCWS for α = 1/9 will return length 2 obtained from matching
a2 to b1 and a3 to b2, which has a lower probability (weight) yet respects the
threshold and yields a longer subsequence.As a consequence, a new method for
solving the Longest Common Weighted Subsequence problem is required.

We present a dynamic programming algorithm for the LCWS problem. We
construct a two dimensional table, where the columns represent the characters of
the A sequence, and the rows refer to the characters of sequence B. A character in
a p-weighted sequence is a table containing all symbols of Σ and the probability
of appearing at that location.

As above mentioned, the core of the LCWS problem is maximizing the LCS
length under a weight restriction. Consequentially, we cannot save at every entry
merely the highest probability achieved so far as it may, in the future, degrade
below α and would have to be discarded. We therefore save at entry i, j, for
every possible length, the highest probability of a common subsequences that
can be obtained from A[1..j] and B[1..i]. We denote the variables containing
this information by lki,j , where k represents the length of the common subse-
quence. Saving these probabilities, when some lki,j is too small, we still have the
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A
ΠA

1 (0) = 1/9 ΠA
2 (0) = 2/3 ΠA

3 (0) = 2/3
ΠA

1 (1) = 8/9 ΠA
2 (1) = 1/3 ΠA

3 (1) = 1/3
a1 a2 a3

B

b1 b2 b3

ΠB
1 (0) = 1/2 ΠB

2 (0) = 2/3 ΠB
3 (0) = 2/9

ΠB
1 (1) = 1/2 ΠB

2 (1) = 1/3 ΠB
3 (1) = 7/9

prob(ai, bj) a1 a2 a3

b1 4/9 1/3 1/3
b2 8/27 4/9 4/9
b3 56/81 7/27 7/27

Fig. 1. An example of two p-weighted sequences

information regarding lk−1
i,j , which may increase its length in future steps and

still exceed α in weight.
As each position in a p-weighted sequence consists of |Σ| symbols and their

probabilities, when considering the matching of ai and bj we compute for each
symbol σ ∈ Σ the product πA

i (σ)πB
j (σ) and select the highest value. We de-

note the selected value of entry i, j as besti,j and save the symbol yielding this
probability.

We can fill the dynamic programming table in row-major order. Computing an
entry i, j implies computing the most probable common subsequence of A[1..j]
and B[1..i] of length k, 1 ≤ k ≤ min{i, j}. Considering lki,j , the correlated
subsequence can be constructed by matching the aj and bi, selecting their best
symbol, and by this extending a smaller subsequence, or by matching one of bi

and aj to a previous character from the counterpart sequence. Lemma 1 formally
defines the computation required for filling an entry in the dynamic programming
table.
Lemma 1

LCWS(B[1..i], A[1...j])={lki,j}
min{i,j}
k=1 =max{lki,j−1, lki−1,j , besti,j ·lk−1

i−1,j−1}.

Proof: An LCWS entry contains probabilities of most probable common sub-
sequences of length k. k must start from 1, which means that only a single
element was used for the common subsequence, and is bounded by the length
of the longest possible common subsequence of A[1..j] and B[1..i], implying it
cannot exceed min{i, j} .

Computing a certain lki,j = x we will prove the optimality of x inductively
on i, j. The base case is l11,1 when the common subsequence consists of a single
symbol obtained by matching b1 to a character from a1. Obviously best1,1, yields
the proper value.

Consider now lki,j . Suppose to the contrary, that the values of lki′,j′ , i′ < i, or
j′ < j are optimal, but x is not the optimal probability of a common subsequence
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of length k of A[1..j] and B[1..i], implying there exists another common subse-
quence of length k with probability x′ such that x < x′. The x′ subsequence can
be either obtained by a previous computed subsequence not including a match of
A[j] and B[i], or by adding the current match to a k−1 common subsequence of
B[1..f ] and A[1..h]. In the former case, the x′ subsequence can include a match
of B[i], a matching of A[j] or neither of them. Since lki,j maximizes the values
of lki−1,j , lki,j−1, the assumption implies that there exists another subsequence of
length k with probability x′ where max{lki−1,j , lki,j−1} < x′ contradicting the in-
duction hypothesis of optimal value of lki′,j′ , i′ < i, or j′ < j. Note, that lki−1,j−1

needs no separate discussion, as it is considered when computing both lki−1,j ,
lki,j−1.

The second possible case where the common subsequence has probability x′,
includes matching A[j] and B[i]. The fact that x < x′ yields besti,j · lk−1

i−1,j−1 <

besti,j· lk−1
f,h , f < 1, h < j, contradicting the optimality of lk−1

i−1,j−1, therefore this
possibility is impossible as well.

We can fill the whole table and then go over {lkn,n} in decreasing order of k, and
check whether lkn,n ≥ α. The first value satisfying the inequality, the relevant
k is returned, as the length of the longest common subsequence under the α
demands.

An example of a LCWS table where α = 0.002 appears in Fig. 2.
Filling the table in this fashion implies computing every entry of the table

requires O(n + |Σ|) time for finding the best symbol and all O(n) relevant prob-
abilities, using Lemma 1. So the time complexity is O(n3 + |Σ|n2).

πA
1 (a) = 0.5 πA

2 (a) = 0.3 πA
3 (a) = 0.1 πA

4 (a) = 0.4 πA
5 (a) = 0.3

πA
1 (b) = 0.4 πA

2 (b) = 0.2 πA
3 (b) = 0.1 πA

4 (b) = 0.3 πA
5 (b) = 0.7

πA
1 (c) = 0.1 πA

2 (c) = 0.5 πA
3 (c) = 0.8 πA

4 (c) = 0.3 πA
5 (c) = 0

πB
1 (a) = 0.2 (best - 0.16) (best - 0.2) (best - 0.32) (best - 0.12) (best - 0.28)

πB
1 (b) = 0.4 l1 ↘[b].16 l1 ↘[c].2 l1 ↘[c].32 l1 →[c] .32 l1 →[c] .32

πB
1 (c) = 0.4

πB
2 (a) = 0.5 (best - 0.25) (best - 0.2) (best - 0.32) (best - 0.2) (best - 0.15)

πB
2 (b) = 0.1 l1 ↘ [a].25 l1 → [a].25 l1 ↘[c].32 l1 →[c].32 l1 →[c].32

πB
2 (c) = 0.4 l2 ↘[bc].032 l2 ↘[cc].064 l2 ↘[ca].064 l2 →[ca].064

(best - 0.36) (best - 0.18) (best - 0.09) (best - 0.27) (best - 0.63)
πB

3 (a) = 0 l1 ↘[b].36 l1 →[b].36 l1 →[b].36 l1 →[b].36 l1 ↘[b].63
πB

3 (b) = 0.9 l2 ↘[ab]0.045 l2 ↓[cc].064 l2 →[cc].064 l2 ↘[cb].2016
πB

3 (c) = 0.1 l3 ↘[bcb].0029 l3 ↘[ccb].0173 l3 ↘[cab].0403
(best - 0.3) (best - 0.18) (best - 0.24) (best - 0.24) (best - 0.18)

πB
4 (a) = 0.6 l1 ↓[b].36 l1 →[b].36 l1 →[b].36 l1 ↓[b]0.36 l1 ↓[b].63

πB
4 (b) = 0.1 l2 ↘[ba].0648 l2 →[ba].0648 l2 ↘[ba].0864 l2 ↓[cb].2016

πB
4 (c) = 0.3 l3 ↘[abc].0108 l3 ↓[ccb].0173 l3 ↓[cab].0403

l4 ↘ —— l4 ↘[ccba].0031

Fig. 2. A LCWS Table
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The space required is O(n2). Though each of the n2 entries contains O(n)
probabilities and their origin. Nevertheless, due to Lemma 1, during the com-
putation of lki,j we need only the cells adjacent to the current. Therefore when
filling the hth row we keep only rows h, h− 1 in the memory. As a consequence,
at each step we save only O(n) activated entries implying the space requirement
is O(n2).

The time complexity can be improved if we note that the dependency on adja-
cent entries holds for each of the lki,js separately. In other words, we do not have
to compute lki,j for all possible ks in the same iteration. We suggest improving
the algorithm, by filling the table layer after layer. After the initialization of l1i,j
with besti,j values, at every step, we will have lki,j , for a single k, computed for
the entire table, and we will compute lk+1

i,j , as these computation will be possible,
according to Lemma 1.

At the end of iteration k+1, we check whether lk+1
n,n ≥ α. In case the inequality

is valid we consider k + 1 as a possible answer, as we have just found that
there exists a common subsequence of this length with a proper probability. We
continue to compute lk+2

i,j s and discard all lki,js, as their information is useless
from now on.

If the contrary holds and lk+1
n,n < α we return k as the length of the longest

common weight subsequence, as lk+1
n,n contains the highest probability of a com-

mon subsequence of length k + 1, due to Lemma 1. In case its probability is less
than expected, there would be no other common subsequence of length k + 1 or
more respecting the weight demand.

Theorem 1. The LCWS problem is solvable in O(Ln2) time and O(n2) space,
where L is the length of the longest common weighted subsequence of the input.

Proof: The Algorithm stops after an iteration in which the weight bound is not
respected. Therefore the number of iterations performed is L + 1. In each of
them lki,j is computed for all n2 entries of the table. This computation involves
a constant number of operation, as detailed in Lemma 1. In a addition, besti,j
is determined once in time O(|Σ|n2).

All in all we have O((L + |Σ|)n2) time requirements. Since in most usages
of the Position Weight Matrix, |Σ| is rather small, and actually a constant, the
time complexity is converted to O(Ln2).

Regarding space, at each iteration we consider two probabilities lki,j and lk+1
i,j .

As the table consists of n2 entries, we get space requirement of O(n2).

4 Longest Common Weighted Subsequence with Two
Thresholds (LCWS2)

The LCWS2 problem, defined in Section 1, in which the probability of the com-
mon subsequence in each of the sequences, must exceed its αi threshold cannot
be solved in the same manner as the LCWS is solved. This is due the difference
between the problems that can be intuitively summarized by the following two
observations.
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Observation 1. The LCWS problem allows its optimal solution to consider at
every step increasing prefixes of the input strings.

Proof: The dynamic programming solution has a single possible direction of
enlarging the substrings to which it computes their LCWS, since all probabili-
ties are associatively multiplied together. Therefore, computing LCWS(A[1, i],
B[1, j]) depends merely on the LCS of prefixes of A and B shorter by one or
zero symbols.

Observation 2. It does not seem sufficient to consider at every step increas-
ing prefixes of the input strings in order to obtain an optimal solution for the
LCWS2 problem.

Intuition: In this problem we execute two distinct probability multiplications
and want to obtain the longest common subsequence satisfying the thresholds
demand. Consequentially, we would like to multiply high probabilities in both
sides. In case the current characters A[i], B[j] agree, i.e., a single symbol, σ ∈ Σ,
whose probability is highest for both positions, then adding this symbol as the
match of the characters does not change the invariant of optimal solution so far.

However, when A[i], B[j] do not agree, where there is a σ1 whose probabil-
ity is maximal in A[i] but σ2 �= σ1 has maximal probability in B[j], it is not
clear which symbol one should choose for the common subsequence. It may be
more profitable to choose σ1, even causing the B probability to decrease a lot,
since later on a reversed case will occur and balance the probabilities. It, there-
fore, seems intuitive that local considerations do not suffice for computing the
LCWS2 problem. This intuition is proven in the next subsection.

4.1 LCWS2 Is NP-Hard

We prove that the LCWS2 problem is NP-hard for unbounded alphabets. To
this aim we define the CWS2 decision version:

Definition 6. The Common Weighted Substructure with 2 thresholds
(CWS2):
Input: Two p-weighted strings A, B of length n over alphabet Σ,

and constants L, α1, α2, 0 < αi ≤ 1.
Output: Does there exists a common weighted subsequence of length L, where

ai1 ..aiL=bj1 ..bjL , where (
∏L

y=1 πiy (aiy ))≥α1 AND (
∏L

y=1 πiy (bjy ))≥α2.

Theorem 2. The LCWS2 problem is NP-hard.

Proof: We prove the hardness using a Turing reduction from the Partition
problem.

Definition 7. The Partition problem: [6]
Input: A finite set S and a “value” v(s) ∈ Z+ for each s ∈ S.
Output: Is there a subset S′ ⊆ S such that

∑
s∈S′ v(s) =

∑
s∈S−S′ v(s) ?
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Lemma 2. Partition ≤p
T CWS2.

Given set S = s1, s2, ..., sn of integers, we construct two weighted sequences
A = A1..An, B = B1..Bn both over alphabet of size n + 2. In addition we need
to set a pair of thresholds α1, α2 and L.

Observation 3. The requirement that the product of the probabilities of the
common sequence be higher than αi is equivalent to demanding that the sum of
the logarithm of the probabilities will be higher than log αi.

Proof: The observation is a direct result of the fact that the logarithm of a
product equals the sum of logarithms. A special case is a zero probability that
is converted to infinity. Note that the logarithms of probabilities are all negative
numbers. We can simply invert the signs of all numbers, making them all positive,
and require adding as many numbers as possible without exceeding (the inverted)
log αi.

We are now ready to define the reduction. Given a set S = {s1, ..., sn}, we
set alphabet of the LCWS2 problem to be Σ = {σ1, ..., σn+2}. We define two
p-weighted sequences, A and B, of length n. By definition 3, location i in a
p-weighted sequence is the set of all pairs (σ, πi(σ)), where σ ∈ Σ and πi(σ) is
the probability of having symbol σ at location i. We define the probabilities of
the symbols of Σ in the following manner.

Let sum =
∑

s∈S s, the sum of all elements of S.

πA
i (σj) =

⎧⎨⎩
si j = i
xi j = n + 1
∞ otherwise

πB
i (σj) =

⎧⎨⎩
sum− si j = i
yi j = n + 2
∞ otherwise

The value of xi is such that 2−si + 2−xi = 1, and the value of yi is such that
2si−sum +2−yi = 1. They are necessary because in each location there is a single
element with probability non-zero, thus we need to add a probability that, with
it, will add up to 1.

Obviously the construction is done in polynomial time in the size of n, as
|Σ| = n+2. For an example of the construction for set S = {6, 3, 4, 7} see Fig. 3.

From the probabilities definition we get that the only possible symbols that
can potentially be chosen for any weighted LCS with finite threshold are choosing
σi of ai with σi of bi for 1 ≤ i ≤ n.

We proceed with the Turing reduction. we perform up to n/2 iterations. In
the ith iteration we set α1 = sum/2, α2 = sum · (i− 1/2), and L = i. We check
whether there is a CWS2 with these parameters. If the answer is negative we
increment i by one and start a new iteration. If no CWS2 was found after the
n/2 iteration we terminate the search. If there is a CWS2 in iteration i, we
declare a partition of S into sizes i and n− i.

Claim. A partition of S into size i and n− i exists iff a CWS2 of length i was
found on the ith iteration.
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A =

πA
1 (a) = 6 πA

2 (a) = ∞ πA
3 (a) = ∞ πA

4 (a) = ∞
πA

1 (b) = ∞ πA
2 (b) = 3 πA

3 (b) = ∞ πA
4 (b) = ∞

πA
1 (c) = ∞ πA

2 (c) = ∞ πA
3 (c) = 4 πA

4 (c) = ∞
πA

1 (d) = ∞ πA
2 (d) = ∞ πA

3 (d) = ∞ πA
4 (d) = 7

πA
1 (e) = x1 πA

2 (e) = x2 πA
3 (e) = x3 πA

4 (e) = x4

πA
1 (f) = ∞ πA

2 (f) = ∞ πA
3 (f) = ∞ πA

4 (f) = ∞

B =

πB
1 (a) = 14 πB

2 (a) = ∞ πB
3 (a) = ∞ πB

4 (a) = ∞
πB

1 (b) = ∞ πB
2 (b) = 17 πB

3 (b) = ∞ πB
4 (b) = ∞

πB
1 (c) = ∞ πB

2 (c) = ∞ πB
3 (c) = 16 πB

4 (c) = ∞
πB

1 (d) = ∞ πB
2 (d) = ∞ πB

3 (d) = ∞ πB
4 (d) = 13

πB
1 (e) = ∞ πB

2 (e) = ∞ πB
3 (e) = ∞ πB

4 (e) = ∞
πB

1 (f) = y1 πB
2 (f) = y2 πB

3 (f) = y3 πB
4 (f) = y4

Fig. 3. The constructed sequences, according to the set {6, 3, 4, 7}

Proof: (⇒) Suppose there is a partition of S into two subsets S1 =
{sg1 , sg2 , .., sgi} and S2. As S1 is a subset of the partition we know that
the

∑
sg∈S1

sg = sum/2. Consequently, considering the g1, g2, ...gi characters
of A and their corresponding symbol as the common subsequence, their log
probabilities will sum up to α1 = sum/2. Due to the probabilities alloca-
tion in our construction, we are bound to select the same indices g1, ...gi in
the counterpart sequence B. Note that adding their new probabilities we get,
sum−sg1+sum−sg2+...+sum−sgi = i·sum−

∑
sg∈S1

sg = isum−1/2sum = α2.
All in all, the existence of a partition of subsets i, n− i in the set, implies a com-
mon subsequence of length i respecting the thresholds.

Clearly, there cannot be a longer CWS2, as addition of a single character to
the common subsequence implies adding to the calculations of both sequences
altogether sum, which result in (i+1)sum while the sum of αis is merely i ·sum.

(⇐) We perform up to n/2 iterations. In the ith iteration we check whether
there is a CWS2 of length i. In case the answer is negative we increment i by
one and start a new iteration. If no CWS2 was found after the n/2 iteration we
terminate the search, as the largest size of the smaller subset of the partition is
n/2, so we have covered all relevant sizes.

Suppose we find a CWS2 of length i, where the common weighted subse-
quence is Ag1 , Ag2 , ..., Agi . Due to the construction, the common subsequence
will appear in B at the same indices as in A. Obtaining the CWS2 implies
that

∑i
k=1 πA

gk
(σgk

) ≤ sum/2 and due to the construction we get sg1 + ... +
sgi ≤ sum/2. In addition, the occurrence of the CWS2 in B implies that∑i

k=1 πB
gk

(σgk
) ≤ sum(i− 1/2) which means that sum− sg1 + ... + sum− sgi =

i·sum−(sg1+...+sgi) ≤ sum(i−1/2). Since we have just claimed that the sum of
the chosen numbers from set S are less than or equal to sum/2, subtracting it from
i · sum we get a result greater or equal to sum(i−1/2), contradicting the require-
ment of not exceeding α2. Hence, it must be the case that sg1 + ...+ sgi = sum/2.
Thus, these numbers form a subset of the partition problem.

The above lemma concludes the proof of the theorem.
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4.2 Approximation Algorithm

Having proved that the LCWS2 problem for unbounded Σ is NP-hard, we
provide an approximation algorithm LCWS2A.

The approximation algorithm considers each symbol σ ∈ Σ separately. For a
fixed σ ∈ Σ, let i1, ..., ik be the indices of the longest possible sequence of σ’s
in A such that Πk

�=1π
A
i�

(σ) ≥ α1, and let j1, ..., jm be the indices of the longest
possible sequence of σ’s in B such that Πm

�=1π
B
j�

(σ) ≥ α2. Take the minimum of
k and m as counterσ.

Choose the symbol σ with the largest counterσ and output σcounterσ .

Observation 4. The approximation algorithm requires time O(|Σ|n log n).

Proof: The input is a p-weighted sequence of length n, where each character
contains Σ probabilities. We therefore construct Σ lists of length at most n and
we sort each list.

Theorem 3. The approximation ratio of LCWS2A is 1
|Σ| .

Proof: Suppose the optimal length of the LCWS2 is OPT , and that the LCWS2A

algorithm returned counteri. This implies that the symbol that can be repeated
most frequently, without decreasing beneath the thresholds is σi. The optimal so-
lution to the LCWS2 problem suggested by the OPT algorithm may include sev-
eral symbols. Let σj be the most frequent symbol in the optimal solution. Note that
counterσj ≤ counterσi . In addition, the number of σj ’s in the optimal solution is
at least 1

|Σ|OPT . We get 1
|Σ|OPT ≤ counterσj ≤ counterσi .

5 Conclusions and Open Problems

The main contribution of this paper is in applying the Longest Common Sub-
sequence to a new useful structure. We define the problem of Longest Common
Weighted Subsequence, considering the LCS problem applied to the important
structure of p-weighted sequences. We give two possible definitions to the prob-
lem. For the first, we present a simple dynamic programming algorithm that
generalizes to higher dimensions. For the second we proved NP-hardness for
unbounded alphabets, and described a proper approximation algorithm. It re-
mains unclear what is the actual complexity class of the LCWS2 problem over
unbounded alphabet, since we used a Turing reduction for the hardness proof.
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Abstract. Balanceable clutters are clutters whose bipartite representa-
tion contains no odd wheel and no odd 3-path configuration as induced
subgraph (this is Truemper’s characterization of balanceable
matrices). In this paper we study a proper subclass of balanceable clut-
ters called quasi-graphical defined by forbidding one-sided even wheels
and one-sided even 3-path configurations. We characterize Mengerian
quasi-graphical clutters and, as a consequence, we show that a recent
conjecture in [5] is true for quasi-graphical clutters.

Keywords: Wheels, 3-path configurations, Mengerian Clutters.

1 Introduction

An unbalanced hole submatrix of a {−1, 0, 1} matrix A is a square submatrix of
A having exactly two nonzero entries per row and per columns whose sum of
the entries is not divisible by four and minimal with this property. A {−1, 0, 1}
matrix A is balanced if it does not contain any unbalanced hole submatrix. A
binary matrix is a matrix with 0, 1 entries. A binary matrix is balanceable if it
can be signed to become balanced, where signing a binary matrix A consists
of multiplying some of its entries by −1. A finite family of subsets of a finite
ground set is balanceable if so is its incidence matrix, i.e., the binary matrix
whose columns are the incidence vectors of the members of the family (taken
over the ground set). The bipartite graph of a finite family C = (Lj | j ∈
P ) of subsets of V is the bipartite graph B(C) with color classes V and P
in which v ∈ V and j ∈ P are connected by an edge if v ∈ Lj. Truemper
characterized balanceable families as those finite families whose bipartite graph
contains neither odd wheels nor odd 3-path-configuration as induced subgraphs
(see e.g., [6]). Recall that a (bipartite) uv-3-path configuration (3PC(u, v)) is
a bipartite graph consisting of three internally vertex-disjoint uv-paths P1, P2
and P3 such that V (Pi) ∪ V (Pj), i �= j, induces a chordless cycle and u and v
are not adjacent. A 3-path configuration (3PC) is a 3PC(u, v) for some u and
v. Since 3PC(u, v) is a bipartite graph, the length of each of the three uv-paths

J. Fiala, J. Kratochv́ıl, and M. Miller (Eds.): IWOCA 2009, LNCS 5874, pp. 48–59, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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is odd or even accordingly to whether u and v belong to different color classes
or to the same color class, respectively. In the former case each path has length
at least three and the 3PC is said to be odd. In the latter case, if each path
has length at least four, we say that the 3PC is even1. A (bipartite) wheel is a
bipartite graph (C, v) consisting of a chordless cycle C and a vertex v �∈ V (C)
that has at least three neighbors on C; C and v are referred to as the rim and
the center of the wheel, respectively. Each edge of the wheel incident to the
center is called a spoke. The wheel is odd if it has an odd number of spokes. It
is even otherwise. A k-wheel is a bipartite wheel with k spokes. In this paper
we study a proper subclass of balanceable matrices, namely, the class of quasi-
graphical families defined as follows: a finite family C = (Lj | j ∈ P ) of subsets
of V is quasi-graphical if it is balanceable and its bipartite graph contain neither
even C-wheel nor even C-3PC as induced subgraph where an even C-wheel is an
even wheel whose center is in the color class P and an even C-3PC is an even
3PC whose vertices of degree three are both in the color class P . The choice of
the term quasi-graphical is explained in Remark 2. With any finite family C of
subsets of a common ground set V and a function w ∈ Z

V
+ we can associate the

following pair of dual linear programs:

minimize wy subject to∑
(y(v) : v ∈ L) ≥ 1 ∀L ∈ C

y ∈ R
V
+ ,

(1)

maximize 1x subject to∑
(x(L) : v ∈ L ∈ C) ≤ w(v) ∀v ∈ V

x ∈ R
C
+,

(2)

The main aim of this paper is to characterize Mengerian quasi-graphical families,
namely, those quasi-graphical families C for which problem (2) has an integral
optimal solution for any w ∈ Z

V
+ , i.e, the defining system of (1) is Totally Dual

Integral. Our result relies on the notion of pie introduced by Golumbic and Jami-
son in [8] in the context of Edge-Path-Tree graphs and closely follow a similar
characterization for Edge-Path-Tree families given in [1] to which it specializes.
Odd pies can be viewed as natural generalizations of odd circuits in graphs. A
pie is a collection of subsets of a common ground set whose members can be
cyclically ordered so that each member intersects exactly its two neighbors in
the order and each element of the ground set occurs in at most two members of
the collection. We base the characterizations of Mengerian quasi-graphical fam-
ilies on Lovász’s 2-matching characterization of Mengerianity (see Theorem 1)
and the additional observation (see Theorem 2) that if a quasi-graphical family
C does not contain any odd pie as minor either it contains the Q6 clutter as
minor or the members of certain 2-matchings in C can be chosen “as uncrossing
as possible”. Recall that the Q6 clutter is the clutter whose members are the

1 We stress here that if H is a 3PC(u, v), with u and v belonging to the same color
class, but u and v are linked by a path of length two, then H must not be considered
an even wheel.



50 N. Apollonio and M. Caramia

edge sets of the four triangles of the complete graph on four vertices. A Venn
representation of the Q6 is given in Figure 3 (a).

Terminology. Throughout the rest of the paper C = (Lj | j ∈ P ) denotes a finite
family of subsets of a finite ground set V . We also denote ∪(L | L ∈ C) by V (C)
and we say that C is a family on V if V = V (C). We use the term collection
for families with no repeated members. A clutter is a collection whose elements
are inclusionwise incomparable. For X, Y ⊆ V and X ∩ Y = ∅ the family of the
(inclusionwise) minimal members in {L − Y | L ∩X = ∅, L ∈ C} is denoted by
C \X/Y and is referred to as a minor of C. If C is a clutter so is C \X/Y . It is
well known that C \X/Y = C/Y \X . When X = ∅ or Y = ∅ the notation will be
abridged to C\X (deletion minor) and C/X (contraction minor), respectively. In
a graph, a chordless cycle on four or more vertices is called a hole. In a bipartite
graph, a hole is odd if its length is not divisible by four. Throughout the rest
of the paper we use the following concrete coloring for the bipartite graph B(C)
of C = (Lj | j ∈ P ): the vertices in the color class P are represented by solid
circles; those in the color class V are represented by empty circles.

In a graph every odd cycle contains an odd circuit, i.e., a subgraph where each
vertex occurs in two edges. The natural generalization to families of the notion
of circuit in a graph, is the notion of pie introduced in [8]. A pie is a collection
P = (Lj | j ∈ N) on some finite ground set V such that n := |N | ≥ 3 and

– for some permutation (j1, . . . , jn) of N one has Lji∩Lji+1 �= ∅ and Ljh
∩Lji =

∅ if |i− h| �∈ {1, n− 1}, (addition over indices is modulo n);
– if n = 3 then ∩j∈NLj = ∅.

Two members Lh and Li of a pie are consecutive if Lh ∩ Li �= ∅. The number
n is the size of the pie; a pie of size n is a n-pie. The pie is odd if n is odd and
even otherwise. We set Bji = Lji ∩Lji+1 , i = 1, . . . , n (addition over the indices
is taken modulo n) and we call Bji , the i-th branch of the pie. Observe that by
the definition of pie one has Bi ∩Bj = ∅, for i �= j, i, j ∈ N . If P is a pie in C we
say that C contains a pie. Notice that a family might contain odd pies without
containing odd pies as minor: in a Q6 the collection formed by any three of its
members is a 3-pie though no minor of the Q6 is an odd pie.

Organization. The rest of the paper goes as follows. In the next section we
give the characterization of Mengerian quasi-graphical families and discuss some
consequences—mainly the fact that the Conjecture in [5] asserting that every
minimal non-packing clutter has a transversal of size 2 holds true within quasi-
graphical families–. The characterization uses Theorem 2 which is technical and
hence proved in Section 2.1.

2 Mengerian Quasi-graphical Families

In this section we characterize Mengerian quasi-graphical clutters. The charac-
terization closely follows the characterization of Mengerian Edge-Path-Tree fam-
ilies given in [1]. We need the following two results. Recall that a w-matching x
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v v

u

v

u

v

Fig. 1. An odd wheel, an even C-wheel, an odd 3PC(u, v) and an even C-3PC(u, v).
Solid lines represent edges and dotted lines represent paths.

of C is any integral point in the polyhedron of (2). The number
∑

(x(L) | L ∈ C)
is called the size of x and the maximum size of a w-matching of C is denoted by
νw(C).

Theorem 1 (Lovász). A family C of subsets of a given ground set V is Men-
gerian if and only if ν2w(C) = 2νw(C) for each w ∈ Z

V
+.

Theorem 2. Let C be a quasi-graphical family. Assume that C is a clutter with-
out any odd pie as minor and let P be an odd pie in C. Then either C contains
the Q6 clutter as minor or F0 ∪ F1 ⊆ LΔL′ for some two members L and L′ of
C which are consecutive in P and some two disjoint members F0 and F1 of C.

Theorem 1 is Lovász’s 2-matching characterization of Mengerian families. The-
orem 2 is technical and its proof will be postponed after the characterization.
Recall that a family C is balanced if B(C) does not contain any induced odd hole.
Balanced families are Mengerian (see, e.g., [9]).

Theorem 3. Let P be a quasi-graphical family. Then P is Mengerian if and
only if P contains neither odd pies nor the Q6 clutter as minors.

Proof. Neither odd pies nor the Q6 clutter are Mengerian—in particular odd
pies are not even ideal: if P ′ = {L′

1, . . . , L
′
k} is an odd pie minor of P , then P ′

can be contracted to the edge set of an odd polygon—hence necessity follows.
To prove sufficiency we need the following fact whose proof can be found in [3].

Claim. Let E = (Ej | j ∈ P ) be a quasi-graphical family on V . If E does not
contain any odd pie then E is balanced.

Without loss of generality C is a clutter on V . Suppose that C contains neither
odd pies nor the Q6 clutter as minors but it is not Mengerian. By Theorem 1
one has ν2w(C) > 2νw(C) for some w ∈ Z

V
+ . Let w be chosen so as to minimize∑

v∈V w(v) and let V ∗ := {v ∈ E | w(v) ≥ 1} be its support. Therefore, for
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v ∈ V ∗, ν2(w−χv)(C) = 2νw−χv (C), χv ∈ Z
V
+ , being the incidence vector of

edge v over V . Let x ∈ Z
C
+ be a 2w-matching of size ν2w(C) and let M =

{L ∈ C | x(L) ≥ 1} be its support. The clutter M must contain some odd pie
otherwise, by Claim 2, we would have ν2w(C) = ν2w(M) = 2νw(M) ≤ 2νw(C).
Let P = {L1, . . .Ln} ⊆ M ⊆ C be any odd pie in M. Clearly P is a an odd
pie in C. Notice that V (P) ⊆ V ∗. Possibly after renumbering we may suppose
that Li and Lj are consecutive in P if and only if |i− j| ∈ {1, n− 1}. Therefore,
by Theorem 2, there are disjoint members F0 and F1 of C such that, for some
j = 1, . . . , n, one has Fi ⊆ LjΔLj+1, i = 0, 1. Define x as follows:

x(L) =

⎧⎨⎩
x(L)− 1 if L ∈ {Lj, Lj+1}
x(L) + 1 if L ∈ {F0, F1}
x(L) otherwise.

By construction,

∑
L
v

x(L) =

⎧⎨⎩
∑

L
v x(L)− 1 if v ∈ (LjΔLj+1)− (F0 ∪ F1)∑
L
v x(L)− 2 if v ∈ Lj ∩ Lj+1∑
L
v x(L) otherwise.

Let vj ∈ Pj ∩ Lj+1. It follows that x is a 2(w − χvj )-matching of size∑
L∈M∪{F0,F1}

x(L) =
∑

L∈M
x(L),

contradicting the minimality of w. ��

Corollary 1. An ideal quasi-graphical family is Mengerian if and only if it does
not contain the Q6 clutter as minor.

Remark 1. A clutter has the packing property if Problem (1) has an integral
optimal dual solution for all w ∈ {0, 1, +∞}V (see [6]). In [5] the authors conjec-
ture that every minimally non packing clutter has a transversal of size 2. In the
same paper the authors show that the conjecture implies the replication conjec-
ture of Conforti and Cornuejols for packing clutters which is in turn equivalent
to the conjecture that a clutter is Mengerian if and only if it is packing [6]. By
corollary 1 all these conjectures hold true for quasi-graphical families.

Corollary 1 can be specialized to Edge-Path-Tree families. A family E = (Ei | i ∈
P ) is an Edge-Path-Tree family if there exists a tree T = (V, E) such that Ei is
the edge set of some path in T . To see this we need to recall some well known pre-
liminary notion. With every binary matrix A with m rows one can associate the
binary matroid M(A) generated by the columns of [Im, A], Im being the identity
matrix of order m. Such a matroid is defined as the matroid whose circuits are
the minimal supports of the vectors in the nullspace of [Im, A], [Im, A] being a
viewed as a matrix over GF (2). Two binary matrices are GF (2)-equivalent if one
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arises from the other by a sequence of GF (2)-pivoting2. Any binary matrix A is
GF (2)-equivalent to itself. GF (2)-equivalent matrices generate the same binary
matroid and, conversely, if A and A′ have the same order and M(A) = M(A′)
then A and A′ are GF (2)-equivalent. A minor in M(A) is a matroid of the form
M(C) where C is a submatrix of some matrix A′ which is GF (2)-equivalent to
A. The operation of GF (2)-pivoting a matrix A ∈ {0, 1}I×J can be described in
terms of the bipartite graph B(A) as follows: if A′ is the result of GF (2)-pivoting
on a nonzero entry ai,j of A, then B(A′) results from B(A) by complementing
the edges between N(i) − {j} and N(j) − {i}, where, for a vertex h of B(A),
N(h) denotes the set of neighbors of h (see [4,6]). Let W4 denote the wheel with
four spokes and whose rim has eight vertices. The proof of the following lemma,
which is similar to an analogous result in [4] about odd wheels and odd 3PC’s,
can be found in [3].

Lemma 1. Let G be a bipartite graph such that G is either an even 3-path
configuration 3PC(u, v) or an even wheel (C, v). Then G can be pivoted into a
bipartite graph containing a W4 whose center is in the same color class of u and
v, if G = 3PC(u, v) and in the same color class of v if G = (C, v).

Corollary 2 ([1]). An Edge-Path-Tree family is Mengerian if and only if it
does not contain any odd pie as minor. Consequently, every ideal Edge-Path-
Tree family is Mengerian.

Proof. Let E = (Ei | i ∈ P ) be an edge-path-tree family on E and let A(E) be
its incidence matrix. Let |E| = m. Recall that a binary matrix is regular if it can
be signed to become totally unimodular (see e.g. [6,9]). Since E is an Edge-Path-
Family it follows that A(E) is the unsigned pattern of a network matrix and
any such matrix is a totally unimodular matrix [9]. Therefore A(E) is regular
and, consequently, E is balanceable, [6]. In [7], Fournier observed that E is an
Edge-Path-Tree family if and only if the binary matroid M(E) generated by the
columns of [Im, A(E)] is a graphic matroid. By Tutte’s deep characterizations of
regular and graphic matroids (see e.g., [9]) M(E) is graphic if and only if A(E)
is regular and M(E) contains neither M∗(K3,3) nor M∗(K5) as matroid-minors
(the co-graphic matroid of the K3,3 and K5, respectively). LetW4 be a family on
F with five members such that B(W4) ∼= W4. We show that M(W4) = M∗(K3,3);
let W∗

4 be the dual of W4, i.e., the family ({L ∈ W4 | f ∈ L} | f ∈ F ); W∗
4

is an Edge-Path-Tree family obtained as follows: let G be a copy of the K3,3
and T let be spanning tree of G whose degree sequence is (1, 1, 1, 1, 3, 3). Let
F = E(G) − E(T ) and for each f in F let P (f) be the unique path of T con-
necting the endpoints of f . Thus W∗

4 = (P (f) | f ∈ F ) and M(W∗
4 ) = M(K3,3)

2 Recall that pivoting A over GF (2) on a nonzero entry (the pivot element) means
replacing

A =
(

1 a
b D

)
by Ã =

(
1 a
b D + ba

)
where the rows and columns of A have been permutated so that the pivot element
is a1,1 ([6], p. 69, [9], p. 280).
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hence M(W4) = M∗(K3,3). Therefore A(E) contains neither even E-wheels nor
even E-3PC’s because, by Lemma 1, these graphs could be pivoted into graphs
containing a W4 as induced subgraph. Accordingly, M(E) would contain an
M∗(K3,3) minor contradicting that M(E) is a graphic matroid. Therefore every
Edge-Path-Tree family is a quasi-graphical family. Moreover, no Edge-Path-Tree
family can contain the Q6 clutter as minor. Indeed every minor of an Edge-Path-
Tree family is an Edge-Path-Tree family but the binary matroid generated by
[I6, AQ6 ], AQ6 being the incidence matrix of the Q6 clutter, is the co-graphic
matroid of the K5. ��

Remark 2. In view of the proof of Corollary 2 the term quasi-graphical is due
to the fact that quasi graphical families contain families which generate regular
matroids with no M∗(K3,3) minor, that is almost graphic matroids.

2.1 Proof of Theorem 2

Throughout the rest of the section we set N = {1, . . . , n} and P = {1, . . . , p};
moreover, P = {L1, . . . , Ln} is an odd pie in C = {L1, . . . , Ln, Ln+1, . . . , Lp},
C being a clutter on V (C) = V . Possibly after renumbering, Li and Lj are
consecutive in P if and only if |i − j| ∈ {1, n− 1}. For i ∈ N we denote by Si

the set of elements of V (P) occurring in Li and in no other member of P . By
the definition of branch it follows that

– Si ∩ Sj = ∅, i �= j, i, j ∈ N and Si ∩Bj = ∅, i, j ∈ N ;
– ∪j∈NLj = (∪j∈JSj) ∪ (∪j∈NBj).
– Sj ∪ Sj+1 ⊆ LjΔLj+1 (addition over indices is modulo n) and ∪j∈NSj =

Δj∈NLj,

where Bj is the j-th branch of P , j ∈ N . We also observe explicitly that if v ∈ Bi

for some i ∈ N then v ∈ Pj for some j �= i if and only if |i− j| ∈ {1, n− 1}. We
denote by [P ] the clutter P \ (V − V (P)) and by N∗ the set of indices of [P ].
Thus N ⊆ N∗ ⊆ P , [P ] = {Lj | j ∈ N∗} and [P ] is the set of members of C
contained in V (P). Finally, for s ∈ N∗ let

κN (s) = |{j ∈ N | Pt ∩Bj �= ∅}|.

Lemma 2. If C is a quasi-graphical clutter then κN (s) is either zero or two for
each s ∈ N∗.

Proof. For j = 1, . . .n, if Ls ∩Bj �= ∅ let vj be an element in Ls ∩Bj , otherwise
let vj be an element arbitrarily chosen in Bj . Thus {v1, . . . vn} ∪N induces an
odd hole C in B(C). Now κN(s) ≤ 2 otherwise V (C) ∪ {s} would induce a C-
wheel in B(C) with at least three spokes contradicting the assumption that C is
quasi-graphical. Thus κN (s) ≤ 2. Suppose κN(s) = 1; hence for some h ∈ N ,
vh ∈ Ls ∩ Bh �= ∅ and vj �∈ Ls, for j �= h. As [P ] is a clutter Ls intersects
∪j∈NSj . Suppose first that there is v ∈ Ls ∩Sl for some l �∈ {h, h + 1} (addition
is taken modulo n). Thus V (C) ∪ {v} ∪ {s} induces a 3PC(vh, l), contradicting
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that C is quasi-graphical. Hence Ls ∩Sl = ∅ for every l �∈ {h, h + 1}. Necessarily
there are u ∈ Ls ∩ Sh and z ∈ Ls ∩ Sh+1 (for if not Ls would be included either
in Lh or in Lh+1). Possibly after renumbering, we may suppose that h = 1. Let
us consider the graph G induced by V (C) ∪ {s} ∪ {u, z} (see Figure 2 (a)). the
set (V (C)− {v1}) ∪ {s} ∪ {u, z} induces a hole C′ in G and the neighbors of v1
on C′ are 1, 2 and s. Therefore V (C′) ∪ {v1} induces the odd wheel (C′, v1) in
B(C) contradicting that C is quasi-graphical. We conclude that κN (s) �= 1 and
hence κN (s) ∈ {0, 2} as stated. ��
Let N∗

0 = {s ∈ N∗ | κN (s) = 0 andLs ∩ Lj �= ∅ ∀j ∈ N}.

Lemma 3. Let C be a quasi-graphical clutter. If κN (t) = 0 for some t ∈ N∗

then either Lt ⊆ LjΔLj+1 for some j ∈ N , or |N | = 3 and N∗
0 = {t}.

Proof. Since κN (t) = 0, Lt does not intersect any branch of P . Hence Lt ⊆
∪j∈NSj = Δj∈NLj. Suppose that Lt intersects two nonconsecutive members
of the pie. Then |N | = n ≥ 5. Let Lj and Ll be such members and let C be
the hole induced in B(C) by {v1, . . . , vn} ∪ N where vi ∈ Bi (i = 1, . . . , n).
Pick uj ∈ Lt ∩ Lj and ul ∈ Lt ∩ Ll. Notice that uj, ul �∈ V (C) because uj ∈
Sj and ul ∈ Sl. Moreover, j and l are at distance at least four on C. Thus
V (C) ∪ {t} ∪ {uj, ul} induces an even 3PC(j, l), that is, an even C-3PC. This
contradicts that C is quasi-graphical. Therefore for n ≥ 5, if κN (t) = 0 then
Lt ⊆ Sj ∪ Sj+1 ⊆ LjΔLj+1 for some j ∈ N . It follows that, if κN (t) = 0 but
Lt �⊆ LjΔLj+1 for all j ∈ N , then necessarily |N | = 3 and Lt ∩ Sj �= ∅ for all
j ∈ N . Hence t ∈ N∗

0 . To prove the rest of the lemma we need the following
fact whose proof can be found in [2]. A chain is a family of inclusionwise nested
members.

Claim. Let C = (Lj | j ∈ P ) be a quasi-graphical family (not necessarily a
clutter) and let P = {L1, L2, L3} be a 3-pie in C. Moreover, let N0(C,P) ⊆ P be
the set of indices of those members of C which intersect each member of P but
no branch of P . Then the family (Lj | j ∈ N0(C,P)) is a chain.

Since in a clutter nonempty members of nontrivial chains are singletons the last
part of the lemma is a straightforward consequence of the claim after noticing
that N0(C,P) = N∗

0 . ��
Let P be a 3-pie in C. For s ∈ N∗ we say that Ls wraps L1 if Ls ∩ B1 and
Ls ∩B3 are both nonempty. Similarly, Ls wraps L2 if Ls ∩B1 and Ls ∩B2 are
both nonempty and Ls wraps L3 if Ls ∩B2 and Ls ∩B3 are both nonempty.

Lemma 4. Let C be a quasi-graphical clutter and P be a 3-pie in C with N∗
0 =

{t}. If for s ∈ N∗−{t} and i ∈ N , Ls wraps Li and meets Lt then Ls∩Lt∩Li+1
and Ls ∩ Lt ∩ Li+2 are both empty, addition over indices being modulo 3.

Proof. Since s �= t it follows that κN(s) = 2 (by Lemma 2). Possibly after
renumbering, Ls wraps L1. Hence Ls intersects B1 and B3. Let v1 ∈ Ls ∩ B1,
v3 ∈ Ls ∩B3. Moreover, let u ∈ Lt ∩L2 if Ls ∩Lt ∩L3 = ∅ and u ∈ Ls ∩Lt ∩L2
otherwise (see Figure 3 (b)). Analogously, let v ∈ Lt∩L3 if Ls∩Lt∩L3 = ∅ and
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v ∈ Ls ∩Lt ∩L3 otherwise. Observe that |Lj ∩ {v1, v3, u, v}| = 2 for j ∈ N ∪ {t}
and that |Ls∩{v1, v3, u, v}| = 2 if and only if Ls∩Lt∩L2 and Ls∩Lt∩L3 are both
empty. Therefore if at least one among Ls∩Lt∩L2 and Ls∩Lt∩L3 is nonempty
then |Ls∩{v1, v3, u, v}| ≥ 3 and N ∪{s, t}∪{v1, v3, u, v} induces a C-wheel with
at least three spokes in B(C) contradicting that C is quasi-graphical. ��

Lemma 5. Let C be a quasi-graphical clutter and let P be a pie in C. For j ∈ N
and v ∈ Bj let δ(v) = {t ∈ N∗ | v ∈ Lt}. Then (δ(v) | v ∈ Bj) is a chain for
each j ∈ N .

Proof. Suppose not. Hence, for some i ∈ N there are u(r), u(s) ∈ Bi and r, s ∈
N∗ such that Lr ∈ δ(u(r)) − δ(u(s)) and Ls ∈ δ(u(s)) − δ(u(r)). By Lemma 2,
κN (r), κN (s) ∈ {0, 2}. Hence there are (not necessarily distinct) indices h, j ∈
N−{i} such that Lr∩Bh �= ∅ and Ls∩Bj �= ∅. For l �∈ {h, i, j}, let vl ∈ Bl. Since
κN (r) = κN (s) = 2 and the branches of a pie are pairwise disjoint it follows that
vl �∈ Lr and vl �∈ Ls for l ∈ N − {h, i, j}. Also observe that by the definition
of branch u(r), u(s) ∈ Li+1. Possibly after renumbering, we may suppose that
h = 1 and i �= n. Hence i + 1 �= 1 (modulo n). Let us distinguish three cases.

Case (a): h = j = 1 and there is some z ∈ Lr ∩ Ls ∩ B1. The assumptions
on the indices guarantee that B1 �= Bi and B1 �= Bi+1. Thus {1, z, r, u(r), i +
1, vi+1, . . . , n, vn} induces a hole C in B(C). The unique neighbor of s on C is
z; the unique neighbor of u(s) on C is i + 1; and since u(s) ∈ Ls, u(s) and s
induce an edge in B(C). Thus V (C) ∪ {u(s), s} induces a 3PC(z, i + 1) in B(C),
contradicting that C is quasi-graphical.

Case (b): h = j = 1 and Lr∩Ls∩B1 = ∅. Let z(r) ∈ Lr∩B1 and z(s) ∈ Ls∩B1.
Possibly after renumbering, we may suppose that π := |{1, i+ 1, i+ 2, . . . , n}| ≥
|{2, 3, . . . , i}|. Thus if n = 3 then π = 2 and if n ≥ 5 then π ≥ 3. Let C be the
hole induced in B(C) by {1, z(r), r, u(r), i+1, u(s), s, z(s)} and let Q be the path
induced in B(C) by {1, vn, n, vn−1, . . . , vi+1, i + 1}. The length of Q is 2(π − 1).
Thus if n ≥ 5 then 2(π−1) ≥ 4 and V (C)∪V (Q) induces an even 3PC(1, i+1) in
B(C). If n = 3 then i = 2. Hence B1 ∪B2 ⊆ L2 and {u(r), u(s), z(r), z(s)} ⊆ L2.
It follows that V (C)∪{2} induces a C-wheel with four spokes in B(C). In either
case the fact that C is quasi-graphical is contradicted.

Case (c): h = 1 �= j. Let z(r) ∈ Lr∩B1 and z(s) ∈ Ls∩Bj . As i �= j and i �= n,
possibly after renumbering, we may suppose that i < j. Let (see Figure 2(b))

D1 = {z(s), j + 1, vj+1, . . . , vn, 1, z(r)}, D2 = {2, v2, . . . , vi−1, i},

D3 = {i + 1, vi+1, . . . , vj−1, j}.

We claim that j = i+1. For, if not, D1∪{r, u(r)}∪D3 induces a hole C in B(C)
and V (C)∪{s, u(s)} is a 3PC(i+1, z(s)), contradicting that C is quasi-graphical.
Hence D3 = {i + 1}. Next we claim that i = 2. For, if not, z(r) �∈ Li because
z(r) ∈ B1 and L1 and Li are not consecutive. Hence z(r) and i are not adjacent in
B(C). Thus D1∪{r, u(r), i, u(s), s} induces a hole C in B(C) and i+1 has exactly
three neighbors on C, namely, u(r), u(s) and z(s) (Figure 2(c)). Therefore (C, i+
1) is an odd wheel in C contradicting that C is quasi-graphical. We conclude that
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i = 2 and, consequently, that D2 = {2} and D3 = {3}. Let now C be the hole
induced by {1, z(r), 2, u(r), 3, z(s), . . . , n, vn} (Figure 2(d)). Since Lr intersects
B1 and B2 it follows that Lr must intersects some Sj with j �= 2. For, if not,
Lr would be included in L2 and [P ] would not be a clutter contradicting that
[P ] is a deletion minor of the clutter C. Thus there is some q ∈ Lr ∩ Sj for some
j ∈ N−{2}. Suppose first that j �= 3 and let D = {z(s), . . . j, q, r, u(r), 2, u(s), s}.
Clearly D induces a hole C′ in B(C). Since 3 has exactly three neighbors on C′,
namely, z(s), u(s) and u(r) it follows that (C′, 3) is an induced odd wheel in B(C)
(Figure 2(e)). Thus j = 3. Let now D = D1 ∪ {r, q, 3}. The graph C′ induced
by D is still a hole. Moreover, 2 and u(s) have each exactly one neighbor on C,
namely, z(r) and 3, respectively. Since u(s) and 2 are adjacent in B(C) it follows
that V (C′) ∪ {2, s} induces a 3PC(z(s), 3) in B(C) (Figure 2(f)). We conclude
that case (c) cannot occur and this completes the proof of the lemma. ��

Proof of the Theorem. Let P = (Lj j ∈ N) be a pie in the quasi-graphical clutter
C = (LJ | j ∈ P ) where, N = {1 . . . , n} ⊆ P = {1, . . . , p} and, possibly after
renumbering, Li and Lj are consecutive in P if and only if |i− j| ∈ {1, n− 1}.
Observe first that κN (t) must be zero for some t ∈ N∗ otherwise C would
contain an odd pie as minor contradicting the hypotheses of the Theorem. To
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Fig. 2. (a): the odd wheel in Lemma 2; (b)÷(f): the various cases occurring in part (c)
of Lemma 5. Solid lines represent edges and dotted lines represent paths.
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Fig. 3. (a): a Venn-representation of the Q6 clutter; (b): Lemma 4, (red) boxes are
(possibly) elements of Ls; (c): the factorization on the r.h.s of (3)

see this let us argue as follows. By Lemma 2 if κN (s) > 0 for each s ∈ N∗ then
κN (s) = 2 for each s ∈ N∗. For j = 1, . . . , n let vj be such that δ(v) ⊆ δ(vj)
for each v ∈ Bj . Thus |Ls ∩ {v1, . . . , vk}| = 2 for each s ∈ N∗. It follows that
[P ]/(V (P) − {v1, . . . , vn}) is an n-pie. A contradiction. Hence κN(t) = 0, for
some t ∈ N∗. By Lemma 3 either

–case (a) Lt ⊆ LjΔLj+1 for some t ∈ N∗ and some j ∈ N ; or
–case (b) n = 3, N∗

0 = {t} and κN (s) = 2 for each s ∈ N∗ − {t}.

In case (a), since Lt ⊆ LjΔLj+1 ⊆ Lj ∪Lj+1 and [P ] is a clutter, it follows that
Lt meets both Lj and Lj+1. Thus Q = {Lj, Lj+1, Lt} is a 3-pie with index set
{j, j + 1, t}. Possibly after relabelling the members of C we may suppose that
j = 1, and t = 3. Hence Q is a 3-pie in C whose index set is M = {1, 2, 3} and
where M∗ is the index set of [Q]. By Lemma 2 one has κM (s) = 0 for some
s ∈M∗ otherwise, as above, [Q] (and hence C) would contain an odd pie minor.
Therefore Ls ⊆ L1ΔL2ΔL3 for some s ∈M∗. Thus Ls ⊆ (L1ΔL2)−L3 (because
Lt ⊆ LjΔLj+1). Hence Ls ∩ Lt = ∅ and the theorem is proved in case (a) with
F0 = Ls and F1 = Lt.

Suppose we are in case (b). We show that [P ] contains the Q6 clutter as minor.
Let A1 = Lt ∩ L1, A2 = Lt ∩ L2 and A3 = Lt ∩ L3 (see Figure 3 (c)). We claim
that

Ls ⊆ A1 ∪A2 ∪A3 ∪B1 ∪B2 ∪B3 for every s ∈ N∗ − {t}. (3)

To see (3) suppose that it does not hold. Thus there exists some v in Li ∩
Ls − (Li+1 ∪ Li+2 ∪ Lt) for some i ∈ N and some s ∈ N∗ − {t}. Observe
that Li+1, Li+2 and Lt are members of [P ] \ v. Since N∗

0 = {t}, it follows
that Q = {Li+1, Li+2, Lt} is a 3-pie in [P ] \ v and hence in [P ] and C. Let
M = {i + 1, i + 2, t}, be the index set of Q where i + 1 and i + 2 are modulo
3 and let M∗ be the index set of [Q]. Remark that [Q] is a minor of [P ]. For
no r ∈ P member Lr can be contained in Li+1ΔLi+2ΔLt otherwise any such
member either would be contained in one among S1 ∪ S2, S1 ∪ S3 and S2 ∪ S3
contradicting that we are in case (b) or r ∈ N∗

0 and r �= t contradicting Lemma 3.
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Hence κM (s) = 2 for each s ∈ M∗ and, as above, [Q] contains an odd pie as
minor contradicting the hypotheses of the theorem. Thus we conclude that (3)
holds. Next we claim that

N∗ = N ∪ {t}. (4)

To prove (4) let us argue as follows. Since κN(s) = 2 for all s ∈ N∗ − {t} it
follows that for each s ∈ N∗ − {t} there is i ∈ N such that Ls wraps i and
meets Lt (by (3)). By Lemma 4, Ls ∩Ai+1 and Ls ∩Ai+2 are both empty (i + 1
and i + 2 are modulo 3). Therefore (still by (3)) Ls ⊆ Ai ∪ Bi ∪ Bi+2 ⊆ Li.
Thus s = i (because [P ] is a clutter) and N∗ = {1, 2, 3, t}. Hence (4) holds and
[P ] = {L1, L2, L3, Lt}.

Let now ai and bi be arbitrarily chosen elements in Ai and Bi, respectively
(i = 1, 2, 3). Thus, for j ∈ N ∪ {t}, Lj ∩ {a1, a2, a3, b1, b2, b3} is one of the four
members of the Q6 clutter. Hence [P ]/(V (P) − {a1, a2, a3, b1, b2, b3}) is the Q6
clutter and the proof of part (b) is completed. ��
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Abstract. We present an improved upper bound of O(d1+ 1
m−1 ) for the

(2,F)-subgraph chromatic number χ2,F (G) of any graph G of maximum
degree d. Here, m denotes the minimum number of edges in any member
of F . This bound is tight up to a (log d)1/(m−1) multiplicative factor and
improves the previous bound presented in [1].

We also obtain a relationship connecting the oriented chromatic num-
ber χo(G) of graphs and the (j,F)-subgraph chromatic numbers χj,F (G)
introduced and studied in [1]. In particular, we relate oriented chro-
matic number and the (2, r)-treewidth chromatic number and show that
χo(G) ≤ k ((r + 1)2r)k−1 for any graph G having (2, r)-treewidth chro-
matic number at most k. The latter parameter is the least number of
colors in any proper vertex coloring which is such that the subgraph
induced by the union of any two color classes has treewidth at most r.

We also generalize a result of Alon, et. al. [2] on acyclic chromatic
number of graphs on surfaces to (2,F)-subgraph chromatic numbers and
prove that χ2,F (G) = O(γm/(2m−1)) for some constant m depending only
on F . We also show that this bound is nearly tight. We then use this
result to show that graphs of genus g have oriented chromatic number
at most 2O(g1/2+ε) for every fixed ε > 0. This improves the previously
known bound of 2O(g4/7). We also refine the proof of a bound on χo(G)
obtained by Kostochka, et. al. in [3] to obtain an improved bound on
χo(G).

1 Introduction

We study several variants of proper vertex colorings and present relationships
connecting them. The chromatic number χ(G) of G is the least k such that G
is properly colorable using k colors. An acyclic vertex coloring (introduced in
[4], see also [5]) of G = (V, E) is a proper coloring of V in which the subgraph
induced by the union of any two color classes is acyclic. The acyclic chromatic
number a(G) is the least k such that G admits an acyclic vertex coloring using
k colors.

Sopena, in ([6]), introduced the notion of oriented chromatic number for ori-
ented graphs (directed graphs having no self-loops and no 2-cycles). The oriented
chromatic number of an oriented graph −→G is the smallest size |V (−→H )| of a −→H for
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which a homomorphism φ : −→G → −→
H exists. Equivalently, χo(

−→
G ) is the smallest

k ≥ 1 such that there is a proper k-coloring (V1, . . . , Vk) of V (−→G) such that for
every i �= j, all edges joining Vi and Vj are oriented in the same way.

The oriented chromatic number χo(G) of an undirected graph G is the maxi-
mum value of χo(

−→
G) where the maximum is over all orientations −→G of G. Bounds

for the oriented chromatic number have been obtained in terms of the maximum
degree and also for special families of graphs such as trees, planar graphs, par-
tial k-trees([6]), etc. Of these, the following two results are relevant to the main
results of this paper. They are:

(B1) The result of Sopena in [6] that, for every r ≥ 1, every partial r-tree
has oriented chromatic number at most (r + 1)2r.
(B2) The result of Raspaud and Sopena in [7] that if a graph has acyclic
chromatic number at most k, then χo(G) ≤ k2k−1.

In this paper, we obtain improved bounds on (2,F)-subgraph chromatic numbers
(of which acyclic chromatic number is a special case) and also obtain a relation
involving these numbers and oriented chromatic numbers. We then apply these
results to obtain new or improved bounds on (2,F)-subgraph chromatic numbers
and oriented chromatic numbers of graphs of bounded genus.

1.1 Improved Bounds on (2, F)-Chromatic Numbers

Recently, the present authors [1] studied a generalized notion of proper colorings
which impose constraints on the union of any few color classes. Such a notion
was first considered by Nesetril and Ossona de Mendez in [8], where it is proved
that these numbers are bounded for proper minor-closed families of graphs.
For suitably chosen constraints, this general notion specializes to known re-
stricted colorings like acyclic colorings, star colorings, etc. We need the following
definitions from [1], which formally define a general restricted coloring.

Given two graphs G and H , we say that G is H-free if G has no isomorphic
copy of H as a subgraph (not necessarily induced). Given a family F of graphs,
we say that G is F -free if G is H-free for each H ∈ F .

Definition 1. Let j be a positive integer and F be a family of connected graphs
of (usual) chromatic number at most j such that for each H ∈ F , |V (H)| > j.
We define a (j,F)-subgraph coloring to be a proper coloring of the vertices of a
graph G so that the subgraph of G induced by the union of any j color classes is
F-free. We denote by χj,F(G) the minimum number of colors sufficient to obtain
a (j,F)-subgraph coloring of G.

In [1], we obtained the bound of χj,F(G) = O
(
d

k−1
k−j

)
for any graph G of max-

imum degree d, where k is minH∈F |V (H)|. But this bound is not optimal; for
acyclic coloring, we have j = 2, F = {C4, C6, . . .} and k = 4 and hence we get
a bound of O(d3/2) but it is known [9] that a(G) = O(d4/3). Our first main
result is the following improved bound on the (2,F)-chromatic numbers. This
improves the above bound of [1] for the case j = 2.
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Theorem 1. Let F be a family of connected bipartite graphs on 3 or more
vertices such that the minimum number of edges in any member of F is m.
Then, for any graph G of maximum degree d, χ2,F(G) < �Cd1+ 1

m−1 	 where
C = C(F) = 64(m + 1)3s and s is the number of bipartite graphs in F on at
most m vertices.

For acyclic vertex coloring, we note that this leads to the optimal bound of
O(d4/3) since F = {C4, C6, . . .} so that m = 4 in this case. In fact, for every
constant family F , the upper bound of Theorem 1 is tight within a multiplicative
factor of O((log d)1/(m−1)); this follows from the results of [1].

1.2 Relating χj,F(G) and χo(G)

Our second main result is the following connection between (j,F)-subgraph col-
orings and oriented colorings. This generalizes and was inspired by the connec-
tion (B2) between a(G) and χo(G) established in [7]. For a family F of connected
graphs, let Forb(F) = {G : G is F − free}.

Theorem 2. Let F be a family of connected graphs. Suppose there exists a nat-
ural number t such that χo(F ) ≤ t, for each F ∈ Forb(F). Suppose j ≥ 2. Then,
for any graph G �∈ Forb(F) with χj,F (G) ≤ k, its oriented chromatic number
χo(G) is at most kt�

2k−j
j � if j is even and is at most kt�

2k−j+1
j−1 � if j is odd.

In Section 2, we prove this theorem. The special case of this theorem obtained
by setting j = 2, is going to be used later and we state it separately as the
following theorem.

Theorem 3. Let F be a family of connected graphs. Suppose there exists a t
such that χo(F ) ≤ t, for each F ∈ Forb(F). Then, for any graph G �∈ Forb(F)
with χ2,F (G) ≤ k, its oriented chromatic number χo(G) is at most ktk−1.

Fixing F = {G : χ(G) ≤ j, tw(G) ≥ r + 1}, Definition 1 specializes to the
following:

Definition 2. Let j, r be positive integers such that j ≤ r+1. We define a (j, r)-
treewidth (vertex) coloring of a graph G = (V, E) to be a proper coloring of V (G)
so that the subgraph induced by the union of any j color classes has treewidth at
most r. We denote by χtw

j,r(G) the minimum number of colors sufficient to obtain
a (j, r)-treewidth coloring of G.

We now specialize Theorem 3 by choosing F to be the set of all connected
bipartite graphs of treewidth r + 1 and apply the bound (B1) on the oriented
chromatic number of partial r-trees to obtain the following result which we shall
later use to bound the oriented chromatic number of graphs on surfaces.

Corollary 1. For r ≥ 2, let G be any graph with a (2, r)-treewidth chromatic
number at most k. Then, χo(G) is at most k((r + 1)2r)k−1.
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1.3 (2, F)-Subgraph Colorings of Graphs on Surfaces

It is known from the Map Color Theorem of Ringel and Youngs [10] that the
chromatic number of an arbitrary surface of Euler characteristic −γ is Θ(γ1/2).
Using the O(d4/3) bound (for general graphs), Alon, Mohar and Sanders proved
in [2] that the acyclic chromatic number of a (simple) graph embeddable on a
surface of characteristic −γ(≤ 0) is at most 100γ

4
7 +104. It was also shown that

this bound is nearly tight.
Generalizing these arguments and by using the bound of Theorem 1, we prove

that this result can be extended for (2,F)-colorings as well provided that F does
not contain connected graphs with pendant vertices. Our third main result is this
extension. which we state below.

Theorem 4. Let F be a family of connected bipartite graphs on at least 4 ver-
tices each having minimum degree at least 2. Let m be the smallest number of
edges of any member of F . If G is a (simple) graph embeddable on a surface of
Euler characteristic −γ ≤ 0, then χ2,F(G) ≤ Aγ

m
2m−1 + B where A and B are

constants depending only on F .

For the acyclic chromatic number, we have m = 4 and m/(2m− 1) = 4/7; this
is the bound obtained in [2]. By choosing F = Fr where Fr is the set of all
connected bipartite graphs of treewidth r + 1, we get the following consequence
of Theorem 4.

Corollary 2. If G is a simple graph embeddable on a surface of Euler charac-
teristic −γ ≤ 0, then, χtw

2,r(G) ≤ Aγ
mr

2mr−1 + B for every r ≥ 1. Here, A and B
are suitable absolute positive constants and mr denotes the minimum number of
edges in any member of Fr.

We also establish that the upper bound of Theorem 4 is tight upto a polylog(γ)
multiplicative factor. This generalizes a similar tightness result presented in [2]
for acyclic chromatic numbers.

Theorem 5. Let F and m be as described in Theorem 4. For every sufficiently
large γ ≥ 0, there is a graph G embeddable on a surface (orientable or non-
orientable) with Euler characteristic −γ : χ2,F(G) ≥ cγ

m
2m−1 /(log γ)1/(2m−1),

for some positive constant c which depends only on F .

1.4 Oriented Chromatic Numbers on Surfaces

For graphs of Euler characteristic −γ ≤ 0, by combining the bound a(G) =
O(γ4/7) obtained in [2] with the bound (B2) of [7] (mentioned before), we get
an upper bound of O(γ4/72O(γ4/7)) = 2O(γ4/7) for the oriented chromatic number
χo(G). The fourth main result of this paper is an improvement of this bound and
is obtained by combining Corollary 1 and Corollary 2. Recall that Corollary 1 is
a generalization of bound (B2) and Corollary 2 is a generalization of the bound
obtained in [2].
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Theorem 6. Let G be a simple graph embeddable on a surface of Euler charac-
teristic −γ ≤ 0. Then,

χo(G) ≤ O(γ
mr

2mr−1 )((r + 1)2r)O(γ
mr

2mr−1 ) ≤ 2O(γmr/(2mr−1))

for every fixed r ≥ 1. Thus for every ε > 0, there exists cε such that χo(G) ≤
2cεγ(1/2)+ε

.

Proof: Follows as a consequence of combining Corollary 1 and Theorem 4 with
the bound (B1) (mentioned earlier).

Note that this significantly improves the bound 2O(γ4/7) mentioned before.

1.5 Outline of the Paper

We prove Theorem 1 in Section 2. Theorem 2 is proved in Section 3. Theorem 4 and
Theorem 5 are proved in Section 4. In Section 5, we refine the proof of a bound on
χo(G) (in terms of its maximum degree) obtained by Kostochka, Sopena and Zhu
in [3] to obtain an improved bound on χo(G). Finally, in Section 6, we conclude
with remarks on some related issues.

2 Proof of Theorem 1

The proof is based on probabilistic arguments. The probabilistic tool we use is
an easy-to-use version of the Lovasz Local Lemma, which we state below without
proof (will appear in the journal version).

Lemma 1. (Special case of Lovász Local Lemma) Consider a finite set of events
which can be partitioned into types 1,2,... such that the probability of any event
of type i is at most pi and let the events of type i be Ai,1, Ai,2, .... Further, let
there be reals a1, a2, ... and b1, b2, ... (each bi ≥ 1) such that any event of type
i is independent of all but at most ai ∗ bj events of type j. Suppose, also that
(A) :

∑
i 2(ai+1)bipi ≤ 1 holds. Then,

Pr(∩(Ai,j)) > 0

i.e. with positive probability none of the events Ai,j holds. In particular, if the
number of types of events is k and k2ai+1bipi ≤ 1 for each i ∈ [k], then with
positive probability, none of the events Ai,j hold.

Proof of Theorem 1:
Choose x = �Cd1+β	 where β = 1

m−1 and C = C(F) = 64(m + 1)3s.
Let f : V → {1, 2, ..., x} be a random vertex coloring of G, where for each

vertex v ∈ V independently, the color f(v) ∈ {1, 2, ..., x} is chosen uniformly at
random. It suffices to prove that with positive probability, f is a (2,F)-coloring
of G. To this end, we define a family of bad events whose total failure implies a
(2,F)-coloring and use the Lovasz local Lemma (as stated in Lemma 1) to show
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that with positive probability none of them occurs. The events we consider are
of the following types.

a) Type 1: For each pair of adjacent vertices u and v, let Au,v be the event
that f(u) = f(v).

To reduce the number of copies of forbidden subgraphs we need to consider,
we use a notion similar to the one employed in [9]. A subset of k vertices is called
a special k-set if there are more than d1−(k−1)β vertices adjacent to each of the
k vertices.

We say that a subset S of the vertices is good if for every vertex v ∈ S and for
any k ∈ [2, m], the set of neighbors of v in S does not contain any special k-set
as a subset.

For each k ∈ [2, m], we define the following events:
b) Types 2,k: For each special set S of k vertices, let Bk(S) be the event

that the vertices of S are colored with one common color by f .
c) Type 3: For each connected subset L of V (G) such that |L| = m + 1, let

CL be the event that the vertices in L are colored using at most 2 colors in the
coloring by f .

Let the bipartite members of F of size at most m be H1, H2,...,Hs where
s = s(F) is the number of such members. For each i ∈ [1, s], we define the
following Type 4, i events:

d) Type 4,i: For each good subset S of vertices of G such that G[S] contains
Hi as a spanning subgraph, let Di(S) be the event that the random coloring f
uses at most 2 colors on the vertices of S.

If we forbid all events of Types 1 and (2, k), then for any S ⊆ V such that
(i) G[S] contains some Hi as a spanning subgraph and (ii) S is not a good set,
there should be some v ∈ S and some k ∈ [2, m] such that NS(v) contains a
special k-set which is not monochromatically colored (since events of Type 2,k
are forbidden) and hence f uses at least 3 colors on S.

Thus, it follows that if none of the events of the above types occur, then f
is a (2,F)-coloring. We first estimate upper bounds on the probabilities of each
type of events.

(i) For each Type 1 event A, p1 = Pr(A) = 1
x .

(ii) For each Type (2, k) event Bk, p2,k = Pr(Bk) = 1
xk−1 .

(iii) For each Type 3 event C, p3 = Pr(C) ≤ 1
xm−1 .

(iv) For each Type (4, i) event Di, p4,i = Pr(Di) ≤ 2ni

xni−2 .

Note that any of the events defined above is mutually independent of all events
that do not share a vertex in common with the given event. Thus, it suffices
to estimate the number of events of each type containing a given vertex. This
estimate is given in the following simple lemma.

Claim 2
Let v be an arbitrary vertex of the graph G = (V, E). Then the following two
statements hold.
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(i) v belongs to at most d edges of G.
(ii) For each k ∈ [2, m], the number of special k-sets containing v is at most

d(k−1)(1+β).
(iii) v belongs to at most (m + 1)4m+1dm connected subsets of size m + 1 in

V (G).
(iv) For each i ∈ [1, m + 1], v belongs to at most nid

(ni−2)(1+β) subgraphs
isomorphic to Hi where ni = |V (Hi)| and such that the vertex set of the subgraph
is good.

Proof of Claim 2
Part (i) follows from the fact that Δ(G) = d.

Part (ii) follows from the fact that there are at most dk induced stars of size k+1
in G, with v as a leaf, and for each special k-set there are more than d1−(k−1)β

centers of the k + 1-star. Thus the number of special k-sets containing v is at
most dk

d1−(k−1)β = d(k−1)(1+β).

Part (iii) has already been established as part of the proof of Proposition 2.2
in [1].

Part (iv) can be seen as follows: The position of v in Hi has atmost ni choices.
Once v is identified with a vertex of Hi, the number of ways of embedding the
remaining vertices can be bounded as follows: consider a sequence v2, ..., vni of
the remaining vertices of Hi such that each vertex has atleast one neighbour
to its left in the sequence. Clearly this is possible since Hi is connected. Let
ti denote the number of vertices to the left of vi and adjacent to it. Once the
vertices to the left of vi are embedded in G, the number of ways of identifying vi

in G is at most d1−(ti−1)β because there is no special ti set among these vertices.
Thus the number of ways of embedding the remaining vertices of Hi in G is at
most d

∑ni
i=2[1−(ti−1)β]. Using the fact that

∑ti

i=2 = |E(Hi)| ≥ m and β = 1
m−1 ,

we see that
∑ni

i=2[1− (ti − 1)β] ≤ (ni − 1)(1 + β)−mβ = (ni − 2)(1 + β). This
proves Part (iv) and completes the proof of Claim 2.

Since an event is independent of all other events with which it does not share
a vertex, we see that the assumptions of Lemma 1 hold with the following values
of ais and bis.

Type 1 : a1 = 2, b1 = d.
Type 2,k : a2,k = k, b2,k = d(k−1)(1+β) for each k ∈ [2, m].
Type 3 : a3 = m + 1, b3 = (m + 1)4m+1dm.
Type 4,i : a4,i = ni, b4,i = nid

(ni−2)(1+β) for each i ∈ [1, s].

By Lemma 1, to prove that with positive probability none of the ”bad” events
hold, it suffices to verify the following inequality:

8
d

x
+

m∑
k=2

2(k+1) d
(k−1)(1+β)

xk−1 + 2(m + 1)8m+1 dm

xm−1 +
s∑

i=1

2ni4ni
d(ni−2)(1+β)

xni−2 ≤ 1

We now substitute x = Cd1+ 1
m−1 where C = 64(m + 1)3s. Using the facts that

β = 1
m−1 and ni ≤ m for i ∈ [1, s] , we see that it suffices to verify:
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1
8m3s

+
1

32ms
+

2(m + 1)8m+1

(4m + 4)3m−3
s

+
1

4m2 ≤ 1

The above inequality can easily be seen to be true for any m ≥ 2, s ≥ 1.
Thus by Lemma 1, with positive probability, none of the bad events occurs

and hence there exists a (2,F)-coloring using O(d1+ 1
m−1 ) colors. This completes

the proof of Theorem 1.

3 Relating χj,F(G) and χo(G)

We now prove Theorem 2 which relates oriented chromatic number and the
forbidden subgraph colorings.

Proof of Theorem 2. Let G = (V, E) be an undirected graph such that G �∈
Forb(F) and let −→G = (V, A) be an arbitrary orientation of E(G). Since G �∈
Forb(F), we have k ≥ χj,F ≥ j + 1. Let V1, ..., Vk be the color classes of V with
respect to a (j,F)-subgraph coloring c of V (G) using k colors. Let T be the
collection of subsets obtained by partitioning [1, k] into at most � k

�j/2 	 subsets
of size at most �j/2� each. Note that |T | is at most � 2k

j 	 if j is even and is at
most � 2k

j−1	 if j is odd. Let S be the collection defined by

S = {T ∪ T ′ : T, T ′ ∈ T , T �= T ′}.

It follows that

(i) Each S ∈ S is a set of size at most j.
(ii) for every l, m ∈ [1, k], there exists a S ∈ S with l, m ∈ S,

(iii) for each i ∈ [k], i is a member of at most � k
�j/2 	 − 1 sets in S. Let Si be

defined by Si = {S ∈ S : i ∈ S}.

For each S ∈ S, let −→GS denote the induced subgraph −→G [∪i∈SVi]. Clearly GS ∈
Forb(F), since (V1, . . . , Vk) is a (j,F)-subgraph coloring.

Let cS be an oriented coloring of −→GS using at most t colors.
Assume an ordering {S1, S2, . . .} on the members of S. We now define a new

coloring φ of V (G): Fix any i and let Si = {Si1 , . . . , Sil
} be the members of Si

where we have l ≤ � k
�j/2	 − 1. For each v ∈ Vi,

φ(v) = (c(v), cSi1
(v), ..., cSil

(v)).

Clearly, φ is a proper coloring of V (−→G ) because of the component c. We now prove
that it is an oriented coloring. If it is not an oriented coloring, then there are four
vertices x, y, z, t of −→G such that (x, y) ∈ A and (z, t) ∈ A with φ(x) = φ(t) and
φ(y) = φ(z). By the definition of φ, x and t (respectively y and z) belong to the
same Vi (respectively Vj) where i = c(x) = c(t) and j = c(y) = c(z). Let S be
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any set in S containing i and j where S ∈ Si ∩Sj and x, y, z, t ∈ V (−→Gs). By the
definition of φ, we have cS(x) = cS(t) and cS(y) = cS(z). But this contradicts
the fact that cS is an oriented coloring of −→GS .

The number of possible values of φ(v) is at most kt�
k

�j/2� �−1. This number is
kt�

2k−j
j � if j is even and is kt�

2k−j+1
j−1 � if j is odd. This proves Theorem 2.

4 (2, F)-Subgraph Colorings of Graphs on Surfaces

By applying the bound of Theorem 1 which holds for general graphs, we obtain
a bound on χ2,F (G) for graphs embeddable on surfaces, provided the members
of F have minimumdegree at least 2. This bound was stated in Theorem 4 and
is proved in this section.

The proof is essentially the proof of [2] extended to a more general setting.
Hence, we only provide the sketch of the proof.

4.1 Proof of Theorem 4

We follow the proof of [2]. Assume the theorem is false for a surface S with
Euler characteristic −γ ≤ 0, and let G be a graph embeddable on it, with a
minimum number of vertices, which is a minimal counterexample to the theorem.
Let H be G with (possibly multiple) edges added to triangulate S. Clearly
degG(v) ≤ degH(v) for all vertices v of G. Suppose V (G) = V (H) = {v1, ..., vn},
where degH(v1) ≤ degH(v2) ≤ ... ≤ degH(vn). If γ = 0, define h1 = 0 and
h2 = 0. Otherwise, define h1 := �cγ m

2m−1 	 and h2 := �6γ/h1� (≤ 6γ
m−1
2m−1 /c),

where c is an absolute constant, to be chosen later. Let d := deg(vn−h1). The
proof will split on the size of d.

Case I: d ≤ (4/3)h2 + 9. In this case, the induced subgraph of G on {v1, ..., vn}
has maximum degree at most d, and thus has a (2,F)-subgraph coloring using
at most �Cdm/(m−1)	 colors, by Theorem 1. Coloring the remaining vertices of
G with h1 new colors that have not been used before gives a (2,F)-subgraph
coloring of G with at most

�C((4/3)h2 + 9)m/(m−1)	+ h1 ≤ C(8γ
(m−1)
(2m−1) /c + 9)

m/(m−1)
+ cγm/(2m−1) + 2

colors. An appropriate choice of constant values (independent of γ) for A, B and
c shows that this is smaller than Aγm/(2m−1) + B, implying that in this case G
cannot be a counterexample.

Case II: d ≥ (4/3)h2 + (28/3). We charge each vertex as follows. Define
charge′(vi) = 6 − degH(vi) for 1 ≤ i ≤ n− h1, and charge′(vi) = −degH(vi)/4
for n− h1 + 1 ≤ i ≤ n.

In this case, using the discharging method and an inductive argument ex-
plained in [2], it can be shown that there exists a vertex v such that (i) G− v is
(2,F)-subgraph colorable using Aγm/(2m−1) + B colors, (ii) v can be properly
colored with a color i so that for any other color j, any connected component
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containing v in the union of color classes i and j must have a vertex of degree one.
Thus a (2,F)-subgraph coloring of G− v can be extended to a (2,F)-subgraph
coloring of G using no additional color. This is a contradiction to our assumption
that G is a minimum counter example. This completes the proof.

4.2 Proof of Theorem 5

The proof is based on an approach similar to the one used in [2]. It uses the
following lemma whose proof follows from the proof of a lower bound presented
in [1].

Lemma 2. Let F and m be as described in Theorem 5. Let G = G(n, p) be the
random graph on {1, . . . , n} where each potential edge is chosen independently

with probability p = c
(

log n
n

)1/m

for suitable positive constant c which depends

only on F . Then, almost surely, G is connected and has at most cn
(2m−1)

m (log n)
1
m

edges and satisfies χ2,F (G) = Ω(n).

Let G be a connected graph on at most O(n(2m−1)/m(log n)1/m) edges and satis-
fying χ2,F(G) = Ω(n) guaranteed by Lemma 2. Let G be embedded on a surface
of characteristic −γ for the smallest γ ≥ 0 possible. Let e = |E(G)|. By an ap-
plication of Euler’s formula, one can show (as shown in [2]) that γ > n(2m−1)/m,
and hence log γ > (2m − 1)(log n)/m and also that γ = O

(
n

(2m−1)
m (log γ)

1
m

)
.

Hence, χ2,F(G) = Ω(n) = Ω
(
γ

m
(2m−1) /(log γ)

1
(2m−1)

)
.

5 An Improved Bound on the Oriented Chromatic
Number

In [3], Kostochka, Sopena and Zhu showed that the oriented chromatic number
of any graph G of maximum degree k is at most 2k22k. They prove this result
using probabilistic arguments which can in fact be refined so that we obtain the
following improvement of this result.

Theorem 7. If G is any graph of maximum degree k and degeneracy d, then
its oriented chromatic number χo(G) is at most 16kd2d.

This replaces a factor k2k by d2d and will result in a better bound for those G
having d � k.

As in [3], we prove (using probabilistic arguments) the following lemma. Before
that, we recall the following notation from [3]. For an oriented graph G = (V, A)
and a subset I = {x1, . . . , xi} of V and a vertex v ∈ V \ I such that v is adjacent
to each xj , we use F (I, v, G) to denote the vector a = (a1, . . . , ai) where, for
each j ≤ i, aj = 1 if (xj , v) ∈ A and aj = −1 if (v, xj) ∈ A.
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Lemma 3. Let d, k be positive integers with d ≤ k and k ≥ 5. There exists a
tournament T = (V, A) on t = 16kd2d vertices with the following property:

For each i, 0 ≤ i ≤ d, for each I ⊆ V , |I| = i, and for each a ∈ {1,−1}i, there
exist at least kd + 1 vertices v ∈ V \ I with F (I, v, T ) = a.

We now give the proof of Theorem 7 assuming Lemma 3 whose proof is omitted
due to lack of space.

Proof of Theorem 7. Let G = (V, E) be any graph of maximum degree k and
degeneracy d. If d ≤ 1, then G is a forest and hence its χo(G) ≤ 3 as shown
in [6]. For d ≥ 2 and k ≤ 4, the result follows from a bound of (2k − 1)22k−2

derived in [6]. Hence, we assume that k ≥ 5 and d ≥ 2. Consider a linear
ordering (vn, . . . , v1) of V such that for each i ≤ n, vi has at most d neighbors
in the subgraph Gi induced by Vi = {v1, . . . , vi}. Let T be the tournament on
t = 16kd2d vertices specified in Lemma 3. Let G′ be any orientation of G. We
inductively color vertices of G′ in the order (1, . . . , n) in such a way that after
the coloration of the first m vertices:

(1) The partial coloring f(v1), . . . , f(vm) is a valid oriented coloring of G′
m using

vertices of T ;
(2) For each vj with j > m, all neighbors of vj in Vm are colored with distinct

colors.

Now, we need to color vm+1 so that (1) and (2) hold for f(vm+1) as well. For
this, let {y1, . . . , yi} ⊆ Vm be the neighbors of vm+1 in Vm each colored with
distinct colors (because of (2)) from I = {f(y1), . . . , f(yi)}. Note that i ≤ d. Let
a = F ({y1, . . . , yi}, vm+1, G

′
m+1). Let K = {w ∈ V (T ) \ I : F (I, w, T ) = a}. By

Lemma 3, we know that |K| ≥ kd + 1. Now, there can be at most kd paths of
the form (vm+1, u, vj) such that u ∈ V \ Vm+1 is a neighbor of vm+1 in G and
vj , j ≤ m is a neighbor of u in Vm. Let B ⊆ Vm be the set of all such vj ’s and
let f(B) be the set of their colors with |f(B)| ≤ kd. Now, color vm+1 with any
color from K \ f(B) and one can easily check that f(vm+1) satisfies both (1)
and (2), thus extending the coloring inductively. This proves Theorem 7.

6 Conclusions and Open Problems

We showed a relation between forbidden subgraph colorings and oriented color-
ings. In particular, we obtained an upper bound for oriented chromatic number
in terms of low treewidth colorings and found an upper bound of O(2g1/2+o(1)

)
for the oriented chromatic number of graphs of genus g. However, we believe
that this bound is not tight. In fact, we believe in the following

Conjecture: There exist absolute positive constants c1, c2 such that : if G is a
graph of genus at most g, then χo(G) ≤ c12c2

√
g.

Further, it would be interesting to obtain bounds for the (j, k)-treewidth chro-
matic number (for graphs of bounded genus), when j > 2. We also pose the
following interesting and challenging open problem.



Forbidden Subgraph Colorings and the Oriented Chromatic Number 71

Open Problem: Determine if there is a k such that χtw
2,k(G) ≤ 4 for all planar

graphs G and find the smallest such k if it exists.
Note that if we replace 4 by 5 in the above inequality, then the answer is yes

for k = 1 since it has been shown by Borodin [11] that a(G) ≤ 5 for any planar
graph G. Also, this bound is tight as Grünbaum [4] has obtained an infinite
family of planar graphs having no acyclic 4-coloring.
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Abstract. A graph G = (V, E) is a 3-leaf power iff there exists a tree
T the leaf set of which is V and such that (u, v) ∈ E iff u and v are at
distance at most 3 in T . The 3-leaf power edge modification problems,
i.e. edition (also known as the Closest 3-Leaf Power), completion
and edge-deletion are FPT when parameterized by the size of the edge
set modification. However, a polynomial kernel was known for none of
these three problems. For each of them, we provide a kernel with O(k3)
vertices that can be computed in linear time. We thereby answer an open
question first mentioned by Dom, Guo, Hüffner and Niedermeier [9].

1 Introduction

The combinatorial analysis of experimental data-sets naturally leads to graph
modification problems. For example, extracting a threshold graph from a dis-
similarity on a set is a classical technique used in clustering and data analysis
to move from a numerical to a combinatorial data-set [1,17]. The edge set of the
threshold graph aims at representing the pairs of elements which are close to
each another. As the dissimilarity reflects some experimental measures, the edge
set of the threshold graph may reflect some false positive or negative errors. So
for the sake of cluster identification, the edge set of the threshold graph has to
be edited in order to obtain a disjoint union of cliques. This problem, known as
cluster editing, is fixed-parameter tractable (see e.g. [12,14,25]) and efficient
parameterized algorithms have been proposed to solve biological instances with
about 1000 vertices and several thousand edge modifications [2,6].

The (Proper) Interval Graph Completion problem is another example
of graph modification problem which arises in the context of molecular biol-
ogy for the dna physical mapping problem [13,18]. So, motivated by the iden-
tification of some hidden combinatorial structures on experimental data-sets,
edge-modification problems cover a broad range of classical graph optimization
problems, among which completion problems, edition problems and edge-deletion
problems (see [21] for a recent survey). Though most of the edge-modification
problems turn out to be NP-hard problems, efficient algorithms can be obtained
to solve the natural parameterized version of some of them. Indeed, as long as the
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number k of errors generated by the experimental process is not too large, one
can afford a time complexity exponential in k. A problem is fixed parameterized
tractable (FPT for short) with respect to parameter k [11,22] whenever it can
be solved in time f(k) · nO(1), where f(k) is an arbitrary computable function.
The reduction to a polynomial kernel is one of the most efficient fixed parame-
terized algorithmic techniques. The idea is to preprocess the input in order to
reduce its size while preserving the existence of a solution so that the size of the
reduced instance is bounded by a polynomial in the parameter k. More formally,
a problem is kernelizable if any instance (G, k) can be reduced in polynomial
time (using reduction rules) into an instance (G′, k′) such that k′ � k and the
size of G′ is bounded by a function of k. Clearly having a kernel of small size is
highly desirable and is an important issue in the context of applications [6,16].

This paper follows this line of research and studies the kernelization of edge-
modification problems related to the family of leaf powers, graphs arising from
a phylogenetic reconstruction context [19,20,23]. The goal is to extract, from a
threshold graph G on a set S of species, a tree T , whose leaf set is S and such
that the distance between two species is at most p in T iff they are adjacent
in G (p being the value used to extract G from dissimilarity information). If
such a tree T exists, then G is a p-leaf power and T is its p-leaf root. For
p � 5, the p-leaf power recognition is polynomial time solvable [3,5], whereas the
question is still open for p strictly larger than 5. Parameterized p-leaf power edge
modification problems have been studied so far for p � 4. The edition problem
for p = 2 is known as the Cluster Editing problem for which the kernel size
bound has been successively improved in a series of recent papers [12,14,24],
culminating in [15] with a kernel with 4k vertices. For larger values of p, the
edition problem is known as the Closest p-Leaf Power problem. For p = 3
and 4, the Closest p-Leaf Power problem is known to be FPT [7,9], while
its fixed parameterized tractability is still open for larger values of p. However,
the existence of a polynomial kernel for p �= 2 remained an open question [8,10].
Though the completion and edge-deletion problems are FPT for p � 4 [9,10], no
polynomial kernel is known for p �= 2 [15].

Our Results. We prove that the Closest 3-Leaf Power, the 3-Leaf Power

Completion and the 3-Leaf Power Edge-Deletion problems admit a ker-
nel with O(k3) vertices. We thereby answer positively to the open question of
Dom, Guo, Hüffner and Niedermeier [9,10].

2 Preliminaries

The graphs we consider in this paper are undirected and loopless. The vertex set
of a graph G is denoted by V (G), with |V (G)| = n, and its edge set by E(G),
with |E(G)| = m. The open neighborhood of a vertex x is denoted by NG(x)
and its closed neighborhood NG(x) ∪ {x} by NG[x]. We write dG(u, v) for sthe
distance between two vertices u and v in G (in the notations, the reference to
the graph G will be omitted when the context is clear). For a subset S ⊆ V ,
dS(u, v) denotes the distance between u and v within S. Two vertices x and y
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of G are true twins if N [x] = N [y]. A module is a set of vertices S such that for
any distinct vertices x and y of S, N(x) \ S = N(y) \ S. The subgraph induced
by a subset S of vertices is denoted G[S]. If H is a subgraph of G, G \H stands
for G[V (G)\V (H)]. A graph family F is hereditary if for any graph G ∈ F , any
induced subgraph H of G also belongs to F .

As the paper deals with undirected graphs, we abusively denote by X×Y the
set of unordered pairs containing one element of X and one of Y . Let G = (V, E)
be a graph and F be a subset of V × V , G + F is the graph on vertex set V ,
the edge set of which is E � F (the symmetric difference between E and F ).
Such a set F is called an edition of G (we may also abusively say that G + F
is an edition). A vertex v ∈ V is affected by an edition F whenever F contains
an edge incident to v. Given a graph family F and given a graph G = (V, E),
a subset F ⊆ V × V is an optimal F-edition of G if F is a set of minimum
cardinality such that G + F ∈ F . If we constrain F to be disjoint from E, we
say that F is a completion, whereas if F is asked to be a subset of E, then F is
an edge deletion. The problem we mainly consider is thus the following:

Parameterized Closest 3-Leaf Power:

Input : A graph G = (V, E).
Parameter : k ∈ N.
Question : Is there a 3-leaf power edition F of G such that |F | � k ?

If we replace edition by deletion (resp.completion), we get the Parameter-

ized 3-Leaf Power Edge-Deletion (resp. Parameterized 3-Leaf Power

Completion) problem.

2.1 Critical Cliques

The notions of critical clique and critical clique graph, introduced in [20], have
been recently successfully used in problems such as Cluster Editing [15] and
Bicluster Editing [24].

Definition 1. A critical clique of a graph G is a clique K which is a module
and is maximal under this property.

It follows from definition that the set K(G) of critical cliques of a graph G defines
a partition of its vertex set V .

Definition 2. Given a graph G = (V, E), its critical clique graph C(G) has
vertex set K(G) and edge set E(C(G)) with

(K, K ′) ∈ E(C(G)) ⇔ ∀ v ∈ K, v′ ∈ K ′, (v, v′) ∈ E(G)

The following lemma was used in the construction of polynomial kernels for
Cluster Editing and Bicluster Editing problems in [24].

Lemma 1. Let G = (V, E) be a graph. If H is the graph G + {(u, v)} with
(u, v) ∈ V × V , then |K(H)| � |K(G)| + 4.



Polynomial Kernels for 3-Leaf Power Graph Modification Problems 75

We now generalize a result used to obtain FPT algorithms for the Closest

3-Leaf Power problem [7]. A graph family F is said to be closed under twin
addition if for any graph G ∈ F , adding a twin of any of its vertices yields a
graph of F .

Lemma 2. Let F be an hereditary graph family closed under true twin addition.
For any graph G = (V, E), there exists an optimal F-edition (resp. F-deletion,
F-completion) F such that any critical clique of G + F is the disjoint union of
a subset of critical cliques of G.

In particular, this means that one can find an optimal solution that does not
delete any edges within a critical clique. Furthermore, in this optimal solution,
either all or no edges are added or deleted between two critical cliques. From now
on, every considered optimal edition (resp. deletion, completion) is supposed to
verify these two properties.

2.2 Leaf Powers

Definition 3. Let T be an unrooted tree whose leaves are one-to-one mapped to
the elements of a set V . The k-leaf power of T is the graph T k, with T k = (V, E)
where E = {(u, v) | u, v ∈ V and dT (u, v) � k}. We call T a k-leaf root of T k.

It is easy to see that for any k, the k-leaf power family of graphs satisfies the
conditions of Lemma 2. In this paper we focus on the class of 3-leaf powers
for which several characterizations are known, one of which propose a list of
forbidden induced subgraphs [8]. The proofs of our kernel for the Closest 3-
Leaf Power problem (or 3-Leaf Power Editing) rely on the well-known
critical clique graph characterization and on a new one which is based on the
join composition of graphs.

Theorem 1. [7] A graph G is a 3-leaf power iff its critical clique graph C(G)
is a forest.

Let G1 = (V1, E1) and G2 = (V2, E2) be two disjoint graphs and let S1 ⊆ V1
and S2 ⊆ V2 be two non-empty subsets of vertices. The join composition of
G1 and G2 on S1 and S2, denoted (G1, S1) ⊗ (G2, S2), results in the graph
H = (V1 ∪ V2, E1 ∪ E2 ∪ (V (S1)× V (S2))).

Theorem 2. Let G1 = (V1, E1) and G2 = (V2, E2) be two connected 3-leaf
powers. The graph H = (G1, S1) ⊗ (G2, S2), with S1 ⊆ V1 and S2 ⊆ V2, is a
3-leaf power if and only if one of the following conditions holds:

1. S1 and S2 are two cliques of G1 and G2 respectively, and if S1 (resp. S2) is
not critical, then G1 (resp. G2) is a clique or,

2. there exists v ∈ V1 such that S1 = N [v] and S2 = V2 is a clique.

The following observation will help proving reduction rules.

Observation 3. Let C be a critical clique of a 3-leaf power G = (V, E). For
any S ⊆ V , if the clique C \ S is not critical in G[V \ S], then the connected
component of G[V \ S] containing C \ S is a clique.



76 S. Bessy, C. Paul, and A. Perez

3 A Cubic Kernel for Closest 3-Leaf Power Problem

In this section, we present five preprocessing reduction rules the application of
which leads to a kernel with O(k3) vertices for the Closest 3-Leaf Power

problem. We first give two simple reduction rules; note that the second one
was already used to obtain a kernel with O(k2) vertices for the parameterized
Cluster Editing problem [24].
Rule 1. If G has a connected component C such that G[C] is 3-leaf power, then
remove C from G.

Rule 2. If G has a critical clique K such that |K| > k+1, then remove |K|−k−1
vertices of K from V (G).

3.1 Branch Reduction Rules

We now assume that the input graph G is reduced under Rule 1 and Rule 2.
The next three reduction rules use the fact that the critical clique graph of a
3-leaf power is a forest. The idea is to identify induced subgraphs of G, called
branches, which correspond to subtrees of C(G). Such a subgraph is already a
3-leaf power.

Definition 4. Let G = (V, E) be a graph. An induced subgraph G[S], with S ⊆
V , is a branch if S is the union of critical cliques K1, . . . , Kr ∈ K(G) such that
the subgraph of C(G) induced by {K1, . . . , Kr} is a tree.

Let B = G[S] be a branch of a graph G and let K1, . . . , Kr be the critical cliques
of G contained in S. We say that Ki (1 � i � r) is an attachment point of the
branch B if it contains a vertex x such that NG(x) intersects V (G)\S. A branch
B is a l-branch if it has l attachment points. Our next three rules deal with 1-
branches and 2-branches. In the following, we denote by BR the subgraph of
B in which the vertices of the attachment points have been removed. For an
attachment point P of B, NB(P ) denotes the set of neighbors of vertices of P
in B.

Lemma 3. Let G = (V, E) be a graph and B be a 1-branch of G with attachment
point P . There exists an optimal 3-leaf power edition F of G such that:

1. the set of affected vertices of B is a subset of P ∪NB(P ) and
2. in G + F , the vertices of NB(P ) are all adjacent to the same vertices of

V (G) \ V (BR).

Proof. Let F be an arbitrary optimal 3-leaf power edition of G. We construct
from F another optimal 3-leaf power edition which satisfies the two conditions
above. Let C be the critical clique of H = G + F that contains P and set
C′ = C \BR. By Lemma 2, the set of critical cliques of G whose vertices belong
to NB(P ) contains two kind of cliques: K1, . . . , Kc, whose vertices are in C or
adjacent to the vertices of C in H , and Kc+1, . . . , Kh whose vertices are not
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adjacent to the vertices of C in H . For i ∈ {1, . . . , h}, let Ci be the connected
component of BR containing Ki.

Let us consider the three following induced subgraphs : G1 the subgraph of
G induced by the disjoint union of C1, . . . , Cc; G2 the subgraph of G induced by
the disjoint union of Cc+1, . . . , Ch; and finally G′, the subgraph of H induced
by V (G) \ V (BR). Let us notice that these three graphs are 3-leaf powers. By
Observation 3, if C′ is not a critical clique of G′, then the connected component
of G′ containing C′ is a clique. Similarly, if Ki, for any 1 � i � c, is not a critical
clique of G1, then the connected component of G1 containing Ki is a clique. Thus,
by Theorem 2, the disjoint union H ′ of G2 and (G′, C′)⊗ (G1, {K1, . . . , Kc}) is
a 3-leaf power. By construction, the edge edition set F ′ such that H ′ = G + F ′

is a subset of F and thus |F ′| � |F |. Moreover, the vertices of B affected by F ′

all belong to P ∪NB(P ), which proves the first point.
To state the second point, we focus on the relationship between the critical

cliques Ki and C′ in H ′ = G + F ′. If some Ki is linked to C′ in H ′ (i.e. c > 1),
it means that the cost of adding the missing edges between Ki and C′ (which,
by Theorem 2, would also result in a 3-leaf power) is lower than the cost of
removing the existing edges between Ki and C′: |Ki| · |C′ \ P | � |Ki| · |P |. On
the other hand, if some Kj is not linked to C′ in H ′ (i.e. c < h), we conclude
that |P | � |C′ \ P |. Finally, if both cases occur, we have |P | = |C′ \ P |, and
we can choose to add all or none of the edges between Ki and C′. In all cases,
we provide an optimal edition of G into a 3-leaf power in which the vertices of
NB(P ) are all adjacent to the same vertices of V (G) \ V (BR). �

The safeness of the first 1-branch reduction rule follows from Lemma 3.

Rule 3. If G contains a 1-branch B with attachment point P , then remove from
G the vertices of BR and add a new critical clique of size min{|NB(P )|, k + 1}
adjacent to P .

Our second 1-branch reduction rule considers the case where several 1-branches
are attached to the rest of the graph by a join. The following lemma shows that

K

Rule 3

NB

BR

PP

Fig. 1. On the left, a 1-branch B with attachment point P . On the right, the effect of
Rule 3 which replaces BR by a clique K of size min{|NB(P )|, k + 1}.
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under some cardinality conditions, the vertices of such 1-branches are not affected
by an optimal 3-leaf power edition.

Lemma 4. Let G = (V, E) be a graph for which a 3-leaf power edition of size at
most k exists. Let B1, . . . , Bl be 1-branches, the attachment points P1, . . . , Pl of
which all have the same neighborhood N in V \∪l

i=1V (Bi). If
∑l

i=1 |Pi| > 2k+1,
then there is no optimal 3-leaf power edition F of G that affects vertices of
∪l

i=1V (Bi).

By Lemma 4, if there exists a 3-leaf power edition F of G such that |F | � k,
then the 1-branches B1, . . . , Bl can be safely replaced by two critical cliques of
size k + 1. This gives us the second 1-branch reduction rule.

Rule 4. If G has several 1-branches B1, . . . , Bl, the attachment points P1, . . . , Pl

of which all have the same neighborhood N in V \∪l
i=1V (Bi) and if

∑l
i=1 |Pi| >

2k + 1, then remove from G the vertices of ∪l
i=1V (Bi) and add two new critical

cliques of size k + 1 neighboring exactly N .

3.2 The 2-Branch Reduction Rule

To complete the set of reduction rules, we need to consider 2-branches. So let B
be a 2-branch with attachment points P1 and P2. The subgraph of G induced
by the critical cliques of the unique path from P1 to P2 in C(B) is called the
main path of B and denoted path(B). We say that B is clean if P1 and P2 are
leaves of C(B), in which case we denote by Q1 (resp. Q2) the critical clique that
neighbors P1 (resp. P2) in B.

Lemma 5. Let B be a clean 2-branch of a graph G = (V, E) with attachment
points P1 and P2 such that path(B) contains at least 5 critical cliques. There
exists an optimal 3-leaf power edition F of G which, if it affects vertices of B
not in V (P1 ∪Q1 ∪ P2 ∪Q2), then it contains a min-cut of path(B).

Rule 5. If G has a clean 2-branch B such that path(B) is composed by at least
5 critical cliques, then remove from G all the vertices of V (B) except those of
V (P1 ∪Q1 ∪ P2 ∪Q2) and add four new critical cliques:
– K1 (resp. K2) of size k + 1 adjacent to Q1 (resp. Q2);
– K ′

1 (resp K ′
2) adjacent to K1 (resp. K2) and such that K ′

1 and K ′
2 are

adjacent and |K ′
1| · |K ′

2| equals the min-cut of path(B).

3.3 Kernel Size and Time Complexity

Let us discuss the time complexity of the reduction rules. The 3-leaf power recog-
nition problem can be solved in O(n+m) time [4]. It follows that Rule 1 requires
linear time. To implement the other reduction rules, we first need to compute
the critical clique graph C(G), which, as noticed in [24], can be computed in
linear time if we use modular decomposition algorithm (see [26] for a recent pa-
per). Given C(G), which is linear in the size of G, it is easy to detect the critical
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Rule 5

BR

Q1 2Q

P2P1

Q1 2Q

P2P1

K K’ K’ K1 1 2 2

Fig. 2. A 2-branch B on the left (only pendant critical cliques are hanging on path(B)
since we can assume that the graph is reduced by the previous rules). On the right,
the way Rule 5 reduces B.

cliques of size at least k + 1. So, Rule 2 requires linear time. A search on C(G)
can identify the 1-branches. It follows that the two 1-branches reduction rules
(Rule 3 and Rule 4) can also be applied in O(n+m) time. Let us now notice that
in a graph reduced by the first four reduction rules, a 2-branch is a path to which
pendant vertices are possibly attached. It follows that to detect a 2-branch B,
such that path(B) contains at least 5 critical cliques, we first prune the pendant
vertices, and then identify in C(G) the paths containing only vertices of degree
2, and at least 5 of them. To do this, we compute the connected components of
the graph induced on vertices of degree 2 in C(G). This shows that Rule 5 can
be carried out in linear time.

Theorem 4. The Parameterized Closest 3-Leaf Power problem admits
a kernel with O(k3) vertices. Given a graph G, a reduced instance can be
computed in linear time.

Proof. The discussion above established the time complexity to compute a ker-
nel. Let us determine the kernel size. Let G = (V, E) be a reduced graph
(i.e. none of the reduction rules applies to G) which can be edited into a 3-
leaf power with a set F ⊆ V × V such that |F | � k. Let us denote H = G + F
the edited graph. For the sake of simplicity, we assume that H is connected, and
thus C(H) is a tree. If C(H) is a forest, one has to apply the following arguments
to each of its connected component, and then to sum up. We first show that
C(H) has O(k2) vertices (i.e. |K(H)| ∈ O(k2)), and then Lemma 1 enables us to
conclude.

We say that a critical clique is affected if it contains an affected vertex and
denote by A the set of the affected critical cliques. As each edge of F affects two
vertices, we have that |A| � 2k. Since H is a 3-leaf power, its critical clique graph
C(H) is a tree. Let T be the minimal subtree of C(H) that spans the affected
critical cliques. Let us observe that if B is a maximal subtree of C(H)−T , then
none of the critical cliques in B contains an affected vertex and thus B was
the critical clique graph of a 1-branch of G, which has been reduced by Rule 3
or Rule 4. Let A′ ⊂ K(H) be the critical cliques of degree at least 3 in T . As
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Rule 5

Rule 3 + Rule 4

Rule 3

Rule 3

Fig. 3. The black circles are the critical cliques of A, the grey ones belong to A′, and
the squares are the critical cliques not in T . On the figure, we can observe a 2-branch
of size 8 reduced by Rule 5. Application of Rule 3 may let a path of two critical cliques
pendant to the elements of A and a single critical clique pendant to the elements of
the small 2-branches. Finally, Rule 4 can only affect critical cliques of A.

|A| � 2k, we also have |A′| � 2k. The connected components resulting from the
removal of A and A′ in T are paths. There are at most 4k such paths. Each of
these paths is composed by non-affected critical cliques. It follows that each of
them corresponds to path(B) for some 2-branch B of G, which has been reduced
by Rule 5.

From these observations, we can now estimate the size of the reduced graph.
Attached to each of the critical cliques of T \A, we can have 1 pendant critical
clique resulting from the application of Rule 3. Remark that any 2-branch re-
duced by Rule 5 has no such pendant clique and that path(B) contains 5 critical
cliques. So, a considered 2-branch in C(H) is made of at most 8 critical cliques.
Finally, attached to each critical clique of A, we can have at most (4k + 2) ex-
tra critical cliques resulting from the application of Rule 4. See Figure 3 for an
illustration of the shape of C(H). Summing up everything, we obtain that C(H)
contains at most 4k · 8 + 2k · 2 + 2k · (4k + 3) = 8k2 + 42k critical cliques.

By Lemma 1 we know that for each edited edge in a graph the number of critical
cliques increases by at most 4. It follows thatK(G) contains at most 8k2+46k crit-
ical cliques, each of size at most k + 1 (Rule 2). Thus, the reduced graph contains
at most 8k3 + 54k2 + 46k vertices, proving the O(k3) kernel size. �

4 Kernels for Edge Completion and Edge Deletion

We now explain and adapt the previous rules to the cases where only insertions or
only deletions of edges are allowed. First, observe that Rules 1 and 2 are also safe
for 3-Leaf Power Completion and 3-Leaf Power Edge-Deletion (Rule
2 directly follows from Lemma 2). The same holds for Rules 3 and 4. However,
this is not the case for the 2-branch reduction rule (Rule 5), which is safe for
3-Leaf Power Edge-Deletion, but not for 3-Leaf Power Completion.
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Nevertheless, in the latter case, the following lemma yields a rule specific to the
3-leaf power completion.

Lemma 6. Let G be a graph admitting a clean 2-branch B such that path(B)
is composed by at least k + 4 critical cliques. If P1 and P2 belong to the same
connected component in G, then there is no 3-leaf power completion of size at
most k.

Rule 6. Let G be a graph having a clean 2-branch B with attachment points P1
and P2 such that path(B) is composed by at least k + 4 critical cliques.

– If P1 and P2 belong to the same connected component in G \BR, then there
is no completion of size at most k.

– Otherwise, remove from G all the vertices of V (B) except those of P1 ∪Q1∪
P2 ∪Q2 and add all possible edges between Q1 and Q2.

Using Rules 3, 4 and 5 for deletion and Rules 3, 4 and 6 for completion, we
obtain a kernel with O(k3) vertices.

Theorem 5. The Parameterized 3-Leaf Power Completion and Pa-

rameterized 3-Leaf Power Edge-Deletion problems admit kernels with
O(k3) vertices. Given a graph G, a reduced instance can be computed in linear
time.
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Abstract. We study the weighted generalization of the edge coloring
problem where the goal is to minimize the sum of the weights of the
heaviest edges in the color classes. In particular, we deal with the approx-
imability of this problem on bipartite graphs and trees. We first improve
the best known approximation ratios for bipartite graphs of maximum
degree Δ ≥ 7. For trees we present a polynomial 3/2-approximation
algorithm, which is the first one for any special graph class with an ap-
proximation ratio less than the known ratio of two for general graphs.
Also for trees, we propose a moderately exponential approximation algo-
rithm that improves the 3/2 ratio with running time much better than
that needed for the computation of an optimal solution.

1 Introduction

In the max edge-coloring (MEC) problem we are given a graph G = (V, E) and
a positive integer weight w(e), for each edge e ∈ E, and we ask for a proper
edge-coloring of G, M = {M1, M2, . . . , Mk}, such that the sum of the weights of

the heaviest edges in the color classes (matchings),
k∑

i=1

max
e∈Mi

{w(e)}, is minimized.

Clearly, for unit edge weights the MEC problem reduces to the classical edge-
coloring problem.

The MEC problem arises in optical communication systems (see for example
[9]), where messages are to be transmitted directly from senders to receivers
through connections established by an underlying switching network. Any node
of such a system cannot participate in more than one transmissions at a time,
while the transmission of messages between several pairs of nodes can take place
simultaneously. The scheduler of such a system establishes successive configura-
tions of the switching network, each one routing a non-conflicting subset of the
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messages from senders to receivers. Given the transmission time of each mes-
sage, the transmission time of each configuration equals to the longest message
transmitted. The aim is to find a sequence of configurations such that all the
messages are transmitted and the total transmission time is minimized. It is easy
to see that the above situation corresponds directly to the MEC problem.

Related Work. It is well known that the classical edge coloring problem is not
approximable within a factor less than 4/3 for general graphs [8], unless P=NP,
while it becomes polynomial for bipartite graphs [10]. On the other hand, the
MEC problem is known to be not approximable within a factor less than 7/6
even for cubic planar bipartite graphs with edge weights w(e) ∈ {1, 2, 3}, unless
P=NP [3]. The MEC problem is also known to be polynomial for a few special
cases including bipartite graphs with edge weights w(e) ∈ {1, 2} [5], chains [7]
(in fact, this algorithm can be also applied for graphs of Δ = 2), stars of chains
and bounded degree trees [13].

Concerning the approximability of the MEC problem, a natural greedy 2-
approximation algorithm for general graphs has been proposed in [9]. The ratio of
this algorithm has been slightly improved to 2− 1

Δ and 2− 2
Δ+2 in [12]. Especially

for bipartite graphs of maximum degree Δ = 3 an algorithm that attains the
7/6 inapproximability bound has been presented in [3]. For bipartite graphs,
algorithms have been also presented improving the 2− 2

Δ+2 approximation ratio
for general graphs. In fact, algorithms presented in [7] and [13] achieve better
ratios for bipartite graphs of Δ ≤ 7, and Δ ≤ 12, respectively. However, the ratio
of these algorithms exceeds two for larger values of Δ. Moreover, two algorithms
of approximation ratios 2− 2

Δ+1 and 2Δ3

Δ3+Δ2+Δ−1 , which tend asymptotically to
two as Δ increases, have been presented in [12].

The analogous to the MEC problem weighted generalization of the classical
vertex-coloring problem, known as max vertex-coloring (MVC) problem, has
been also addressed in the literature [3,5,6,7,15,16]. The MVC problem is not
approximable within a factor less than 8/7 even for planar bipartite graphs, un-
less P=NP, [5,15]. In addition, this bound has been attained for general bipartite
graphs [3,15] and a PTAS for trees has been presented in [7,15].

Despite the recent research activity on both the MEC and the MVC prob-
lems, their complexity for trees is still unknown. Moreover, no algorithm of
approximation ratio 2 − δ, for any small constant δ > 0, for the MEC problem
on bipartite graphs or even on trees is known.

Our Results and Organization of the Paper. In this paper we contribute
on decreasing the above mentioned gap in the approximability of the MEC prob-
lem on bipartite graphs and trees. In Section 2, we present an approximation
algorithm for bipartite graphs of ratio 2(Δ+1)3

Δ3+5Δ2+5Δ+3−2(−1/Δ)Δ , which beats the
known ratios for graphs of maximum degree Δ ≥ 7. In Section 3, we present a
polynomial 3/2-approximation algorithm for trees, which improves the known
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two approximation ratio for general graphs. Finally, in Section 4, we propose
a moderately exponential approximation algorithm for trees that improves the
3/2 ratio with running time much better than that needed for the computation
of an optimal solution.

Notation. In the following we consider the MEC problem on an edge weighted
graph G = (V, E), where |V | = n and |E| = m. A positive integer weight w(e) is
associated with each edge e ∈ E. By d(v) we denote the degree of vertex v ∈ V
and by Δ the maximum degree of the graph G. For a subset of edges of G,
E′ ⊆ E, we denote by G[E′] the subgraph of G induced by the edges in E′.

For a proper coloring M = {M1, M2, . . . , Mk} of the edges of G, we denote
by wi = max{w(e)|e ∈ Mi} the weight of the color class Mi, 1 ≤ i ≤ k, and by
W =

∑k
i=1 wi the total weight of this coloring. By M∗ = {M∗

1 , M∗
2 , . . . , M∗

k∗}
we denote an optimal solution to the MEC problem of weight OPT = w∗

1 +
w∗

2 + · · ·+ w∗
k∗ , where w∗

1 ≥ w∗
2 ≥ · · · ≥ w∗

k∗ .
Finally, given a set S and a positive integer weight w(s) for every element

s ∈ S, we denote by 〈S〉 = 〈s1, s2, . . . , s|S|〉 an ordering of S such that w(s1) ≥
w(s2) ≥ · · · ≥ w(s|S|).

2 Improved Approximation for Bipartite Graphs

All known approximation algorithms yielding ratios less than 2 for the MEC

problem on a bipartite graph G = (V, E) [3,7,13,12] are based on the following
general idea: Consider an ordering 〈E〉 = 〈e1, e2, . . . , em〉 of the edges of G,
and let Ep,q = {ep, ep+1, . . . , eq}, p ≤ q. Repeatedly, partition the graph G into
three edge induced subgraphs G[E1,p], G[Ep+1,q ] and G[Eq+1,m] and produce a
solution for the whole graph G by considering the MEC problem on these three
edge induced subgraphs. Depending on how the problem is handled for each
subgraph and the analysis followed, this general idea leads to different algorithms
of different approximation ratios. Note that the same general approach is also
employed by the 8/7-approximation algorithm for the MVC problem [3,15].

Let us denote by (p, q), 0 ≤ p < q ≤ m, a partition of G into subgraphs G[E1,p],
G[Ep+1,q] and G[Eq+1,m]; by convention, we define E1,0 = ∅ and E0,q = E1,q. By
Δ1,q we denote the maximum degree of the subgraph G[E1,q]. For a partition (p, q)
of G, we call critical matching a matching M ⊆ Ep+1,q which saturates all the
vertices of G[E1,q] of degree Δ1,q. The proposed algorithm relies on the existence
of such a critical matching M : a solution for the subgraph G[E1,q ] is found by
concatenating a (Δ1,q−1)-coloring solution for the subgraph G[E1,q \M ] and the
matching M , if exists, and by a Δ1,q-coloring of the subgraph G[E1,q], otherwise.
For each partition (p, q), the algorithm computes a solution for the input graph G
by concatenating a solution for G[E1,q] and a Δ-coloring solution for G[Eq+1,m].
The algorithm computes also a Δ-coloring solution for the input graph and returns
the best among them.
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Algorithm BIPARTITE
1. Find a Δ-coloring solution for G;
2. Let 〈E〉 = 〈e1, e2, . . . , em〉
3. For p = 0, 1, 2, . . . , m− 1 do
4. For q = p + 1 to m do
5. Find, if any, a critical matching M in G[Ep+1,q];
6. If M exists

then find a (Δ1,q − 1)-coloring solution for G[E1,q \M ]
else find a Δ1,q-coloring solution for G[E1,q];

7. Find a Δ-coloring solution for G[Eq+1,m];
8. Find a solution for G by concatenating the solutions

found in Lines 6 and 7 and matching M, if exists;
9. Return the best among the solutions found in Lines 1 and 8;

The next proposition deals with finding, if any, a critical matching M in Line 5
of the algorithm.

Proposition 1. For a partition (p, q) of a graph G = (V, E), a critical matching
M , if any, can be found in O(n2.5) time.

Proof. Let U be the set of vertices of G[E1,q] of degree Δ1,q to be saturated by
a critical matching M ⊆ Ep+1,q. Consider the graph G′ = (V ′, E′) where V ′

consists of V and an additional vertex, if |V | is odd, and E′ consists of Ep+1,q

and all the edges between the vertices V ′ \ U (i.e., the vertices V ′ \ U induce a
clique in G′). If there exists a perfect matching in G′, then there exists a critical
matching M , since no edges adjacent to U have been added in G′. Conversely,
if there exists a critical matching M , then there exists a perfect matching in G′,
consisting of the edges of M plus the edges of a perfect matching in the complete
subgraph of G′ induced by its vertices not saturated by M . Therefore, a critical
matching M , if any, can be found by looking for a perfect matching, if any, in
G′. It is well known that this can be done in O(n2.5) time [14]. ��

Theorem 1. Algorithm BIPARTITE achieves an approximation ratio of
2(Δ + 1)3

Δ3 + 5Δ2 + 5Δ + 3− 2(−1/Δ)Δ
for the MEC problem on bipartite graphs.

Proof. The solution obtained by a Δ-coloring of the input graph computed in
Line 1 of the algorithm is of weight W1 ≤ Δ · w∗

1 .
Consider the partition (p, q) of G where w(ep+1) = w∗

i−1 and w(eq+1) = w∗
i ,

for 2 ≤ i ≤ Δ (recall that w∗
1 ≥ w∗

2 ≥ · · · ≥ w∗
k∗ and k∗ ≥ Δ). In such an

iteration, all the edges in E1,q belong to i − 1 ≥ Δ1,q matchings of an optimal
solution M∗.

If Δ1,q < i− 1, then an (i− 2)-coloring of G[E1,q] yields a solution of weight
at most (i− 2) · w∗

1 for this subgraph.
If Δ1,q = i−1 then a critical matching M exists. Indeed, in this case the (i−1)-

th matching of M∗ always contains some edges from Ep+1,q, for otherwise all
the edges in E1,q belong to i− 2 matchings of M∗, a contradiction; these edges
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of Ep+1,q could be a critical matching M for the partition (p, q). Thus, a (i− 2)-
coloring solution of G[E1,q \M ] and critical matching M yield a solution for the
subgraph G[E1,q] of weight at most (i − 2) · w∗

1 + w∗
i−1. Finally, a Δ-coloring

solution for G[Eq+1,m] is of cost at most Δ · w∗
i .

Hence, for such a partition (p, q) the algorithm finds a solution for the whole
input graph of weight

Wi ≤ (i− 2) · w∗
1 + w∗

i−1 + Δ · w∗
i , 2 ≤ i ≤ Δ.

As the algorithm returns the best among the solutions found, we have Δ different
bounds on the weight W of this solution, that is W ≤ Wi, 1 ≤ i ≤ Δ (recall that
W1 ≤ Δ · w∗

1). By multiplying both sides of the i-th bound inequality by

xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
Δ

, if i = Δ

1
Δ + 1

(
1−
(
−1
Δ

)Δ−i+1
)

, if Δ− 1 ≥ i ≥ 2

1
Δ
−

Δ−3∑
j=0

(
Δ− (j + 2)

Δ
xΔ−j

)
− 1

Δ
x2, if i = 1

and adding them we get

W

OPT
≤ 2(Δ + 1)3

Δ3 + 5Δ2 + 5Δ + 3− 2(−1/Δ)Δ
. ��

Lines 5-8 of the algorithm are repeated O(m2) times. Finding a critical matching
in Line 5, takes, by Proposition 1, O(n2.5) time, while finding the colorings of
the bipartite subgraphs of G in Lines 6 and 7, takes O(m log Δ) time [2].

The approximation ratios achieved by Algorithm BIPARTITE are compared,
as Δ increases, with the best known ones in Table 1. Note that our algorithm
is of the same complexity with those in [3] and [12], while the complexity of the
algorithm in [13] is greater by a factor of O(m2).

Table 1. Approximation ratios for bipartite graphs

Δ Best known This paper
3 1.17 [3] 1.42
4 1.32 [13] 1.50
5 1.45 [13] 1.55
6 1.56 [13] 1.60
7 1.65 [13] 1.64
8 1.74 [13] 1.67
9 1.78 [12] 1.69
10 1.80 [12] 1.71
11 1.82 [12] 1.73
12 1.84 [12] 1.75
13 1.85 [12] 1.76
20 1.90 [12] 1.83
50 1.96 [12] 1.93
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3 A 3/2 Approximation Algorithm for Trees

In this section, we first present an (1 + w∗
1−w∗

Δ

OPT )-approximation algorithm for
the MEC problem on trees. Our algorithm roots the tree in an arbitrary vertex
r and constructs a solution as follows: Traverse the vertices of the rooted tree
in pre-order, for each vertex, u ∈ V , consider the edges to its children in non
increasing order and insert them into the first matching they fit.

Algorithm TREES
1. Let Tr be the tree rooted in an arbitrary vertex r;
2. For each vertex u in pre-order traversal of Tr do
3. Let 〈Eu〉 = 〈eu

1 , eu
2 , . . . , eu

d(u)〉 be the edges adjacent to u,

and (u, p) be the edge from u, u �≡ r, to its parent;
4. Using ordering 〈Eu〉, insert each edge in Eu, but (u, p), into

the first matching which does not contain an edge in Eu;

To analyze our algorithm we define yi, 1 ≤ i ≤ Δ, to be the weight of the heaviest
edge between those ranked i in each ordering 〈Eu〉, u ∈ V , i.e., yi = max

u∈V
{w(eu

i )}.
It is clear that y1 ≥ y2 ≥ . . . ≥ yΔ. Next two propositions use these values for
bounding the weights of the matchings of both an optimal solution and the
solution constructed by our algorithm.

Proposition 2. For all 1 ≤ i ≤ Δ, it holds that w∗
i ≥ yi.

Proof. Let e = (u, v) be the heaviest edge with rank equal to i, i.e., yi = w(e).
For at least one of the endpoints of e, assume, w.l.o.g., for u, it holds that e is
ranked i in Eu, that is yi = w(eu

i ). Therefore, there exist i edges adjacent to
vertex u of weight at least yi. These i edges belong in i different matchings in
an optimal solution, since they share vertex u as a common endpoint. Thus, the
i-th matching in an optimal solution is of weight at least yi. ��

Proposition 3. Algorithm TREES constructs a solution of exactly Δ match-
ings. For the weight, wi, of the i-th, 2 ≤ i ≤ Δ, matching it holds that wi ≤ yi−1.

Proof. For the first part of the proposition consider first the root vertex of the
tree. It has at most Δ adjacent edges which the algorithm inserts into at most
Δ different matchings. Consider, next, any other vertex u and let e be the edge
between u and its parent. This edge e has been already inserted by the algorithm
into a matching, say Mk. The rest, but e, adjacent to vertex u edges are at most
Δ− 1 which the algorithm inserts into at most Δ− 1 matchings different than
Mk. Therefore, the algorithm will use exactly Δ matchings M1, M2, . . . , MΔ.

We shall prove the second part of the proposition by induction on the vertices
in the order they are processed by the algorithm.

For the root r, the algorithm sorts all adjacent edges to r and inserts er
1 into

matching M1, er
2 into matching M2, and so on. Thus, after the first iteration it

holds that wi = w(er
i ) ≤ yi ≤ yi−1, 2 ≤ i ≤ Δ.

Assume that the statement of the lemma holds before the iteration processing
the vertex u ∈ V , that is wi ≤ yi−1, 2 ≤ i ≤ Δ.
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Consider, now, the iteration in which the algorithm processes the vertex u.
Let e be the edge between u and its parent, j be the rank of the edge e in Eu

and Mk be the matching where the algorithm has already inserted edge e. Let
us also denote by w′

i the weight of the matching Mi, 2 ≤ i ≤ Δ, after processing
the vertex u. We distinguish among three cases, and for each one we prove that
w′

i ≤ yi−1, 2 ≤ i ≤ Δ.

(i) If k = j, then after this iteration each edge eu
i belongs to matching Mi, 1 ≤

i ≤ d(u). By the inductive hypothesis it follows that w′
i = max{wi, w(eu

i )},
where wi ≤ yi−1. Since w(eu

i ) ≤ yi, it holds that w′
i ≤ yi−1, 2 ≤ i ≤ Δ.

(ii) If k > j, then after this iteration: for 1 ≤ i ≤ j − 1 and k + 1 ≤ i ≤ d(u)
each edge eu

i belongs to matching Mi; for j + 1 ≤ i ≤ k each edge eu
i

belongs to matching Mi−1. For the former case we conclude as in Case
(i). For the latter case by the inductive hypothesis it follows that w′

i =
max{wi, w(eu

i+1)} where wi ≤ yi−1. Since w(eu
i+1) ≤ yi+1 ≤ yi−1, it holds

that w′
i ≤ yi−1.

(iii) If k < j, then after this iteration: for 1 ≤ i ≤ k − 1 and j + 1 ≤ i ≤ d(u)
each edge eu

i belongs to matching Mi; for k ≤ i ≤ j − 1 each edge ev
i

belongs to matching Mi+1. For the former case we conclude as in Case
(i). For the latter case by the inductive hypothesis it follows that w′

i =
max{wi, w(eu

i−1)} where wi ≤ yi−1. Since w(eu
i−1) ≤ yi−1, it holds that

w′
i ≤ yi−1. ��

Using the bounds established in Propositions 2 and 3 we obtain the approxima-
tion ratio of our algorithm.

Lemma 1. Algorithm TREES achieves an approximation ratio equal to 1 +
w∗

1−w∗
Δ

OPT for the MEC problem on trees. This is an asymptotically tight 2 approx-
imation ratio.

Proof. For the weight of the first matching obtained by Algorithm TREES it
holds that w1 ≤ y1 = w∗

1 , since both y1 and w∗
1 are equal to the weight of

heaviest edge of the tree. By Proposition 3 it holds that wi ≤ yi−1, 2 ≤ i ≤ Δ
and by Proposition 2 it holds that yi ≤ w∗

i , 1 ≤ i ≤ Δ. Therefore, the weight

of the solution obtained by Algorithm TREES is W =
Δ∑

i=1

wi ≤ y1 +
Δ∑

i=2

yi−1 =

y1 +
Δ−1∑
i=1

yi ≤ w∗
1 +

Δ−1∑
i=1

w∗
i ≤ w∗

1 +OPT −w∗
Δ, that is

W

OPT
≤ 1+

w∗
1 − w∗

Δ

OPT
< 2.

Figure 1(a) shows an example for which the algorithm performs a ratio of two.
The weight of an optimal solution to this instance is C+2ε (Figure 1(b)) and the
weight of the solution obtained by Algorithm TREES is 2C + ε
(Figure 1(c)). Thus, the approximation ratio for this instance becomes 2C+ε

C+2ε . ��

The most general result we have for the MEC problem is due to Kesselman
and Kogan [9]. This is a greedy 2-approximation algorithm for general graphs,
to which we refer as Algorithm KK. A slightly better analysis of this algorithm
presented in [12] leads to the following lemma.
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Fig. 1. A tight example for the 2 approximation ratio of Algorithm TREES

Lemma 2. [12] Algorithm KK achieves a tight approximation ratio of 2 −
w∗

1
OPT < 2− 1

Δ .

To obtain the 3/2 approximation ratio we combine Algorithm KK [9] with Al-
gorithm TREES, i.e., we run both algorithms and we select the best of the two
solutions found.

Theorem 2. There is a tight 3
2 -approximation algorithm for the MEC problem

on trees.

Proof. Let W be weight of the best of the two solutions found by Algorithm KK

and Algorithm TREES. By Lemma 2 it holds that
W

OPT
≤ 2 − w∗

1

OPT
and by

Lemma 1 that
W

OPT
≤ 1 +

w∗
1 − w∗

Δ

OPT
. As the first bound is increasing and the

second one is decreasing with respect to OPT , it follows that the ratio
W

OPT

is maximized when 2 − w∗
1

OPT
= 1 +

w∗
1 − w∗

Δ

OPT
, that is OPT = 2 · w∗

1 − w∗
Δ.

Therefore,
W

OPT
≤ 2− w∗

1

OPT
= 2− w∗

1

2 · w∗
1 − w∗

Δ

≤ 2− w∗
1

2 · w∗
1

=
3
2
.

For the tightness of the ratio consider the example shown in Figure 2(a).
The weight of an optimal solution to this instance is 2C + 2ε (Figure 2(b)), the
weight of the solution created by Algorithm TREES is 3C (Figure 2(c)) and the
weight of the solution created by Algorithm KK (Figure 2(d)) is 3C − ε. Our
algorithm selects the solution obtained by Algorithm KK of weight 3C − ε and
thus approximation ratio becomes 3C−ε

2C+2ε . ��
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Fig. 2. A tight example for the 3/2-approximation algorithm for trees
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4 Moderately Exponential Approximation for Trees

In this section, we present a moderately exponential approximation algorithm
for the MEC problem on trees. Each step of this algorithm exhaustively con-
siders k edge weights as the weights of k matchings of the optimal solution.
The range of values of k (i.e., the number of steps) depends on an integer pa-
rameter z, 0 < z ≤ m

2 . More specific, for each value of k ≤ z and k ≥ m − z
the algorithm considers all

(
m
k

)
combinations of edge weights. Thus, both the

ratio and the (non polynomial) complexity of the algorithm depend also on z.
In fact, for any combination w1, w2, . . . , wk, of k edge weights the algorithm
has to answer to the following decision problem: is there a feasible solution
M1, M2, . . . , Mk, of the MEC problem where maxe∈Mi w(e) = wi? Moreover, for
each k′, z < k′ < m− z, a similar decision problem is considered, with weights
w1, w2, . . . , wz, wz+1, wz+2, . . . , wk′ , where wz+1 = wz+2 = · · · = wk′ = wz . The
algorithm returns the minimum feasible solution found among all the iterations.
These decision problems encountered in each combination of weights can be
answered by transforming them to instances of the next problem:
List Edge-Coloring (LEC)

Instance: A graph G = (V, E), a set of colors C = {C1, C2, . . . , Ck} and a list
of colors φ(e) ⊆ C for each e ∈ E.
Question: Is there a k-coloring of G such that each edge e is assigned a color
in its list φ(e)?
It is known that the LEC problem is polynomial for trees [4], but it becomes
NP-complete for bipartite graphs [11]. Therefore, our decision problem for trees
can be solved in polynomial time, while this method cannot be extended to
bipartite graphs.

Algorithm TREES(z)
1. For k = 1, 2, . . . , z, m− z, . . . , m do
2. Exhaustively search for the weights of the k heaviest

matchings of the optimal solution, w∗
1 ≥ w∗

2 ≥ · · · ≥ w∗
k;

3. Build the input for the List Edge-Coloring algorithm:
- Set of colors {C1, C2, . . . , Ck};
- For each e ∈ E set φ(e) = {Ci : w(e) ≤ w∗

i , 1 ≤ i ≤ k};
4. Run the algorithm for the List Edge-Coloring problem;
5. If k = z then
6. For k′ = z + 1, z + 2, . . . , m− z − 1 do
7. Build the input for the List Edge-Coloring algorithm:

- Set of colors {C1, C2, . . . , Cz, . . . , Ck′};
- If w(e) > w∗

z then φ(e) = {Ci : w(e) ≤ w∗
i , 1 ≤ i ≤ z − 1};

- If w(e) ≤ w∗
z then φ(e) = {C1, C2, . . . , Ck′};

8. Run the algorithm for the List Edge-Coloring problem;
9. Return the best solution found;
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Theorem 3. For any ρ ≥ 1, Algorithm TREES(z) achieves a ρ approximation
ratio for the MEC problem on trees, in polynomial space and running time
O∗(f(ρ)m), where f(ρ) = (2ρ−1)2+1

(2ρ−1)2(2ρ−1)2/((2ρ−1)2+1) .

Proof. If k∗ ≤ z or k∗ ≥ m − z then in an iteration of Lines 2-4 the optimal
solution is found.

If z < k∗ < m− z then we consider the following two solutions.
In the k = m − z step of the algorithm, for a combination w1, w2, . . . , wk of

weights, it holds that wi = w∗
i , 1 ≤ i ≤ k∗. Hence, for this combination, there is

a feasible solution of weight at most w∗
1 + w∗

2 + · · ·+ w∗
k∗ + (m − z − k∗)w∗

k∗ =
OPT + (m− z − k∗)w∗

k∗ .
For a combination w1, w2, . . . , wk of weights, in the iteration of Lines 7-8

where k′ = k∗ it holds that wi = w∗
i , 1 ≤ i ≤ z. Hence, for this iteration there

is a feasible solution of weight at most w∗
1 + w∗

2 + · · · + w∗
z + (k∗ − z)w∗

z =
OPT −

∑k∗

i=z+1 w∗
i + (k∗ − z)w∗

z .
Thus, it holds that

W

OPT
≤ min

{
OPT + (m− z − k∗)w∗

k∗

OPT
,
OPT −

∑k∗

i=z+1 w∗
i + (k∗ − z)w∗

z

OPT

}

≤ min
{

1 +
(m− z − k∗)w∗

k∗

zw∗
z + (k∗ − z)w∗

k∗
, 1 +

(k∗ − z)(w∗
z − w∗

k∗)
zw∗

z + (k∗ − z)w∗
k∗

}
.

As the first value is increasing with w∗
k∗ and the second one is decreasing, this

quantity is maximized when (k∗ − z)w∗
z = (m− 2z)w∗

k∗ . Therefore, we have

W

OPT
≤ 1 +

(m− z − k∗)w∗
k∗

z(m−2z)
k∗−z w∗

k∗ + (k∗ − z)w∗
k∗

=
k∗(m− 2z)

z(m− 2z) + (k∗ − z)2
,

which is maximized for k∗ =
√

z(m− z). Hence,

W

OPT
≤

√
z(m− z)(m− 2z)

z(m− 2z) + (
√

z(m− z)− z)2
=

m− 2z

2
√

z(m− z)− 2z
.

By setting z = λm, where 0 < λ ≤ 1
2 , we get

W

OPT
≤ m− 2λm

2
√

λm(m− λm)− 2λm
=

1− 2λ

2
√

λ(1 − λ)− 2λ
= ρ.

Therefore, in order to achieve a ρ approximation ratio we choose λ = 1
(2ρ−1)2+1 ,

that is z = m
(2ρ−1)2+1 .

Since Lines 3-8 of the algorithm are executed independently for each combi-
nation of weights, it follows that the algorithm needs polynomial space. Since
the List Edge-Coloring algorithm is polynomial, the complexity of the algorithm
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is equal, within a polynomial factor, to the number, T (m), of combinations
generated. Thus, we have

T (m) ≤
z∑

i=1

(m

i

)
+

m∑
i=m−z

(m

i

)
= 2

z∑
i=1

(m

i

)
≤ 2z

(m

z

)
≤ m

( m

λm

)

≤ m

((
1
λ

)λ( 1
1− λ

)1−λ
)m

= m

(
(2ρ− 1)2 + 1

(2ρ− 1)2(2ρ−1)2/((2ρ−1)2+1)

)m

��

Some values of ρ ≤ 3/2 and f(ρ) are summarized in the following table:

Table 2. Approximation ratios vs. complexity’s base for trees

ρ OPT 1.1 1.2 1.3 1.4 1.5
f(ρ) 2 1.968 1.896 1.811 1.727 1.649

As it is shown in Table 2, Algorithm TREES(m
2 ) computes an exact solution

for the MEC problem on trees in O∗(2m) time and polynomial space. Note that,
in [1] has been presented an algorithm with running time and space O∗(2n),
which, for any k, computes the number of all proper k-colorings of a graph,
and moreover enumerates these colorings. This algorithm can be used to find
an optimal solution for the MVC problem on a general graph, by running it for
1 ≤ k ≤ n. Considering the line graph L(G) of the input graph G of the MEC

problem, we derive that the MEC problem on general graphs can be optimally
solved with running time and space O∗(2m).

Proposition 4. If Δ = o(m), then Algorithm TREES(m
2 ) requires subexponen-

tial running time 2o(m) in order to compute an exact solution for trees.

Proof. Note that for the number k of matchings in any optimal solution to the
MEC problem it holds that k ≤ 2Δ− 1. Thus, the number, T (m), of combina-
tions of weights generated becomes

T (m) ≤
( m

2Δ

)
≤ mm

(2Δ)2Δ(m− 2Δ)m−2Δ

≤ 2m log m−2Δ log(2Δ)−(m−2Δ) log(m−2Δ)

≤ 2m log (1+2Δ/(m−2Δ))+2Δ log(m/2Δ−1)

Notice first that 2Δ/(m− 2Δ) tends to 0 for m →∞, since Δ = o(m), and thus

m log
(

1 +
2Δ

(m− 2Δ)

)
→ 0. Moreover, note that 2Δ log

( m

2Δ
− 1
)

= o(m),

since
2Δ log

(
m
2Δ − 1

)
m

tends to 0 as m increases. Combining the two observations

above, we get that T (m) = 2o(m) and, hence, the running time of Algorithm
TREES(m

2 ) is O∗(2o(m)). ��
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Abstract. We prove three complexity results on vertex coloring problems
restricted to Pk-free graphs, i.e., graphs that do not contain a path on k vertices
as an induced subgraph. First of all, we show that the pre-coloring extension
version of 5-coloring remains NP-complete when restricted to P6-free graphs.
Recent results of Hoàng et al. imply that this problem is polynomially solvable
on P5-free graphs. Secondly, we show that the pre-coloring extension version of
3-coloring is polynomially solvable for P6-free graphs. This implies a simpler
algorithm for checking the 3-colorability of P6-free graphs than the algorithm
given by Randerath and Schiermeyer. Finally, we prove that 6-coloring is
NP-complete for P7-free graphs. This problem was known to be polynomially
solvable for P5-free graphs and NP-complete for P8-free graphs, so there
remains one open case.

Keywords: graph coloring, Pk-free graph, computational complexity.

1 Introduction

In this paper we consider computational complexity issues related to vertex coloring
problems restricted to Pk-free graphs. Due to the fact that the usual vertex -coloring
problem is NP-complete for any fixed  ≥ 3, there has been considerable interest in
studying its complexity when restricted to certain graph classes. Without doubt one of
the most well-known results in this respect is that -coloring is polynomially solvable
for perfect graphs. More information on this classic result and related work on coloring
problems restricted to graph classes can be found in, e.g., [11] and [13]. Instead of
repeating what has been written in so many papers over the years, we also refer to these
surveys for motivation and background. Here we continue the study of -coloring and
its variants for Pk-free graphs, a problem that has been studied in several earlier papers
by different groups of researchers (see, e.g., [4], [8], [9], [10], [14]).

1.1 Background and Terminology

We refer to [1] for standard graph theory terminology and to [3] for terminology on
computational complexity. Let G = (V, E) be a graph. A (vertex) coloring of G is a
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mapping φ : V → {1, 2, . . .} such that φ(u) �= φ(v) whenever uv ∈ E. Here φ(u)
is usually referred to as the color of u in the coloring φ of G. An -coloring of G
is a mapping φ : V → {1, 2, . . . , } such that φ(u) �= φ(v) whenever uv ∈ E. In
list-coloring we assume that V = {v1, v2, . . . , vn} and that for every vertex vi of G
there is a list Li of admissible colors (a subset of the natural numbers). Given these
lists, a list-coloring of G is a mapping φ : V → {1, 2, . . .} such that φ(vi) ∈ Li

for all i ∈ {1, 2, . . . , n} and φ(vi) �= φ(vj) whenever vivj ∈ E. In pre-coloring
extension we assume that a (possibly empty) subset W ⊆ V of G is pre-colored with
φW : W → {1, 2, . . .} and the question is whether we can extend φW to a coloring of
G. If φW is restricted to {1, 2, . . . , } and we want to extend it to an -coloring of G, we
say we deal with the pre-coloring extension version of -coloring. In fact, we consider
a slight variation on the latter problem which can be considered as list coloring, but
which has the flavor of pre-coloring: lists have varying sizes including some of size
1. We will slightly abuse terminology and call these problems pre-coloring extension
problems too.

1.2 Results of This Paper

We prove the following three complexity results on vertex coloring problems restricted
to Pk-free graphs.

– First of all, in Section 2 we show that the pre-coloring extension version of 5-
coloring remains NP-complete when restricted to P6-free graphs. Recent results of
Hoàng et al. [4] imply that this problem is polynomially solvable on P5-free graphs.
Their algorithm for -coloring for any fixed  is in fact a list-coloring algorithm
where the lists are from the set {1, 2, . . . , }.

– Secondly, in Section 3 we show that the pre-coloring extension version of 3-
coloring is polynomially solvable for P6-free graphs. The 3-coloring problem was
known to be polynomially solvable for P6-free graphs from [10], where the authors
use the Strong Perfect Graph Theorem and a result of Tucker [12] to obtain their
algorithm. Our algorithm is independent of the Strong Perfect Graph Theorem, and
uses a recent structural result of [5]; it reduces the 8 page journal description of the
algorithm in [10] to 3 pages.

– Finally, in Section 4 we prove that 6-coloring is NP-complete for P7-free graphs.
This problem was known to be polynomially solvable for P5-free graphs [4] and
NP-complete for P8-free graphs [14], so there remains one open case.

2 Pre-coloring Extension of 5-Coloring for P6-Free Graphs

In this section we show that the pre-coloring extension version of 5-coloring remains
NP-complete when restricted to P6-free graphs. We use a reduction from not-all-equal
3-Satisfiability with positive literals only which we denote as NAE 3SATPL (also
known as HYPERGRAPH 2-COLORABILITY), which is defined as follows. Given a
set X = {x1, x2, . . . , xn} of logical variables, and a set C = {C1, C2, . . . , Cm} of
three-literal clauses over X in which all literals are positive, does there exist a truth
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assignment for X such that each clause contains at least one true literal and at least one
false literal?

We consider an arbitrary instance I of NAE 3SATPL and define a graph GI and
a pre-coloring on some vertices of GI , and next we show that GI is P6-free and that
the pre-coloring on GI can be extended to a 5-coloring of GI if and only if I has a
satisfying truth assignment in which each clause contains at least one true literal and at
least one false literal.

2.1 The Graph GI Corresponding to the Instance I

Let I be an arbitrary instance of NAE 3SATPL with variables {x1, x2, . . . , xn} and
clauses {C1, C2, . . . , Cm}. We define a graph GI corresponding to I and lists of ad-
missible colors for its vertices based on the following construction. We note here that
the lists we introduce below are only there for convenience to the reader; it will be clear
later that all lists other than {1, 2, . . . , 5} are in fact forced by the pre-colored vertices.

– We introduce one new vertex for each of the clauses, and use the same labels
C1, C2, . . . , Cm for these m vertices; we assume that for each of these vertices
there is a list {1, 2, 3} of admissible colors. We say that these vertices are of
C-type.

– We introduce one new vertex for each of the variables, and use the same labels
x1, x2, . . . , xn for these n vertices; we assume that for each of these vertices there
is a list {4, 5} of admissible colors. We say that these vertices are of x-type.

– We join all C-type vertices to all x-type vertices to form a large complete bipartite
graph.

– For each clause Cj containing the variables xi, xk and xr we introduce three
pairs of new vertices {ai,j, bi,j}, {ak,j, bk,j}, {ar,j, br,j}; we assume the follow-
ing lists of admissible colors for these three pairs, respectively: {{1, 4}, {2, 5}},
{{2, 4}, {3, 5}}, {{3, 4}, {1, 5}}. We say that these vertices are of a-type and b-
type. We add edges between x-type and a-type vertices whenever the first index of
the a-type vertex is the same as of the x-type vertex, and similarly for the b-type
vertices. We add edges between C-type and a-type vertices whenever the second
index of the a-type vertex is the same as the index of the C-type vertex, and simi-
larly for the b-type vertices. Hence each clause with three variables is represented
by three 4-cycles that have one C-type vertex in common.

– For each a-type vertex we introduce a copy of a K2,3, as follows: for ai,j we add
five vertices {pi,j,1, . . . , pi,j,5}, and we add all edges between {pi,j,1, pi,j,2, pi,j,3}
and {pi,j,4, pi,j,5}. We say that these vertices are of p-type. We add edges between
each a-vertex and the p-vertices of its corresponding K2,3 depending on its list of
admissible colors. In particular, we join the a-vertex to the three p-vertices of its
K2,3 that have a third index which is not in its list of admissible colors. So, if ai,j

has list {1, 4}, we join it to pi,j,2, pi,j,3, pi,j,5.
– For each b-type vertex we introduce a new copy of a K2,3 on five vertices of q-type,

in the same way as we introduced the p-type vertices for the a-type vertices. Edges
are added in a similar way, depending on the indices and the lists.

– We join all the p-type and q-type vertices with third indices 1, 2, 3 to all the p-type
and q-type vertices with third indices 4, 5 to form a huge complete bipartite graph.



98 H. Broersma et al.

– We join all x-type vertices to all p-type and q-type vertices with third indices 1, 2, 3.
– We join all C-type vertices to all p-type and q-type vertices with third indices 4, 5.
– We pre-color all the p-type and q-type vertices according to their third index, so

pi,j,	 will be pre-colored with color  ∈ {1, 2, . . . , 5}. Note that we can now in fact
replace all lists introduced earlier by {1, 2, . . . , 5}, since the shorter lists will be
forced by the given pre-coloring.

2.2 The Proofs for the Result on 5-Coloring

Lemma 1. The graph GI is P6-free.

Proof. Due to the page restrictions we can only sketch the proofs of this lemma and the
claims that follow. We give a proof by contradiction. Suppose the graph GI contains an
induced subgraph H which is isomorphic to P6. Then H contains at most three vertices
from the set S of all p-type and q-type vertices; otherwise H would either contain a
cycle, or an independent set of four vertices, or a vertex with degree at least three.
Analogously, H contains at most three vertices from the set T of all C-type and x-type
vertices. By similar arguments, one can show that H contains at most three vertices
from S ∪ T . We complete the proof by a series of claims followed by proof sketches.

Claim 1. H contains at most two vertices of S.

Proof of Claim 1. Suppose |V (H) ∩ S| = 3. This implies H does not contain a vertex
of T , so H contains three vertices from the set U of all a-type and b-type vertices. This
is impossible and completes the proof of Claim 1.

Claim 2. H contains at most one vertex of S.

Proof of Claim 2. Suppose |V (H) ∩ S| = 2. Then H contains at least one vertex of
T ; otherwise |V (H)| ≤ 4. So |V (H) ∩ T | = 1, and H contains three vertices of U . If
V (H) ∩ S is an adjacent pair, the vertex of V (H) ∩ T is adjacent to precisely one of
them, and we easily obtain a contradiction. In the other case, (V (H)∩S)∪(V (H)∩T )
induces either a P3 or an independent set in H . Both cases lead to contradictions. This
completes the proof of Claim 2.

Claim 3. H contains no vertex of S.

Proof of Claim 3. Suppose |V (H)∩S| = 1. Then |V (H)∩T | = 1 or |V (H)∩T | = 2.
The first case is impossible since U is an independent set. For the second case first
observe that common neighbors of two vertices from U can only be in T , and that two
x-type vertices or two C-type vertices do not have a common neighbor in U . Noting
that the three vertices of V (H)∩U form an independent set, there are two possibilities
for the remaining three vertices of H : they either induce an independent set in H or a
P2 and a P1. In the first case the two vertices of V (H) ∩ T are either both x-type or
both C-type vertices. This yields a contradiction. In the second case, the induced P1
can only result from a vertex in T , so the P2 is induced by a vertex from S and a vertex
from T . Now the two vertices from V (H)∩T must be both of x-type or both of C-type.
But then both these vertices are adjacent to the vertex of V (H) ∩ S, a contradiction.
This completes the proof of Claim 3.
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We conclude that H contains no vertex of S and at most three vertices of T . So H
contains at least three vertices of U which form an independent set in H . This yields
only one case: H contains precisely three vertices of T and precisely three vertices of
U . By previous observations all vertices of V (H) ∩ T must be of the same type, so
they form an independent set as well. Recalling that two x-type vertices or two C-type
vertices have no common neighbors in U , we obtain a contradiction. This completes the
proof of Lemma 1. ��
Lemma 2. If I has a truth assignment in which each clause contains at least one true
and at least one false literal, then the pre-coloring of GI can be extended to a 5-coloring
of GI .

Proof. Suppose I has a satisfying truth assignment in which each clause contains at
least one true and at least one false literal. We use color 4 to color the x-type vertices
representing the true literals and color 5 for the false literals. Now consider the lists as-
signed to the a-type and b-type vertices that come in pairs chosen from {{1, 4}, {2, 5}},
{{2, 4}, {3, 5}}, {{3, 4}, {1, 5}}. If the adjacent x-type vertex has color 4, color 1, 2 or
3 is forced on one of the adjacent a-type or b-type vertices, respectively, while on the
other one we can use color 5; similarly, if the adjacent x-type vertex has color 5, color
2, 3 or 1 is forced on one of the adjacent a-type or b-type vertices, respectively, while
on the other one we can use color 4. Since precisely two of the three x-type vertices of
one clause gadget have the same color, this leaves at least one of the colors 1, 2 and 3
admissible for the C-type vertex representing the clause. By coloring the vertices asso-
ciated with each clause and variable as described above, a 5-coloring of the pre-colored
graph GI is obtained. This completes the proof of Lemma 2. ��
Lemma 3. If the pre-coloring of GI can be extended to a 5-coloring of GI , then I has
a satisfying truth assignment in which each clause contains at least one true and at
least one false literal.

Proof. Suppose we have a 5-coloring of the graph GI that respects the pre-coloring and
all lists assigned as indicated in the previous section. Then each of the x-type vertices
has color 4 or 5, and each of the C-type vertices has color 1, 2 or 3. We define a truth
assignment that sets a variable to TRUE if the corresponding x-type vertex has color 4,
and to FALSE otherwise. Suppose one of the clauses contains only true literals. Then
the three x-type vertices in the corresponding clause gadget of GI all have color 4. Now
consider the lists assigned to the a-type and b-type vertices of this gadget that come in
pairs chosen from {{1, 4}, {2, 5}},{{2, 4}, {3, 5}},{{3, 4}, {1, 5}}. Since the adjacent
x-type vertices all have color 4, colors 1, 2 and 3 are forced on three of the a-type and
b-type vertices adjacent to the C-type vertex of this gadget, a contradiction, since the
C-type vertex has color 1, 2 or 3. This proves that every clause contains at least one
false literal. Analogously, it is easy to show that every clause contains at least one true
literal. This completes the proof of Lemma 3. ��

3 Pre-coloring Extension of 3-Coloring for P6-Free Graphs

In this section we show that the pre-coloring extension version of 3-coloring is polyno-
mially solvable for P6-free graphs. The key ingredient in our approach is the following
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recently obtained characterization of P6-free graphs [5]. Here a subgraph H of a graph
G is said to be a dominating subgraph of G if every vertex of V (G) \ V (H) has a
neighbor in H .

Theorem 1 ([5]). A graph G is P6-free if and only if each connected induced subgraph
of G on more than one vertex contains a dominating induced cycle on six vertices or
a dominating (not necessarily induced) complete bipartite subgraph. Moreover, these
dominating subgraphs can be obtained in polynomial time.

A key ingredient in our approach is the following observation: it is checkable in poly-
nomial time whether a pre-coloring of a graph G can be extended to a proper -coloring
of G as soon as the uncolored vertices of G have admissible lists of size at most 2.
In this case the remaining decision problem can be modeled and solved as a 2SAT-
problem. This approach has been introduced by Edwards [2] and is folklore now. It has
been used especially for checking 3-colorability of graphs with small dominating sets
(if such dominating sets can be found in polynomial time), e.g., for P5-free graphs ([4])
and for P6-free graphs ([10]). If there are a polynomial number of possible 3-colorings
on the dominating set, then by exhaustively checking all of these colorings combined
with solving the 2SAT-problem(s) on the remaining (dominated) vertices, this yields a
polynomial time algorithm.

This obviously solves our problem in case the (component of the) instance graph
contains a dominating C6: all lists of admissible colors on the vertices in the beginning
are subsets of {1, 2, 3} and after assuming a coloring on the C6 (respecting the pre-
coloring, i.e., lists of size 1) all lists of admissible colors for the uncolored vertices have
size at most 2, and we can model and solve the remaining problem as a 2SAT-problem.
Although in the other case we cannot assume that the dominating complete bipartite
graph has a bounded size, we can use a similar approach due to the special structure of
P6-free graphs. We will describe the procedure in more detail. Full details will appear
in a journal version.

Suppose our instance graph G is connected (otherwise we treat the components of G
separately), that we have lists of admissible colors from the set {1, 2, 3} on each vertex
of G, and that we have constructed a dominating complete (not necessarily induced)
bipartite graph H of G with bipartition classes A and B.

If there exists no 3-coloring of G (respecting a possible pre-coloring, i.e., respecting
the given lists) in which one of A and B is monochromatic (i.e., every vertex of A or B
receives the same color), then clearly G has no 3-coloring extending the pre-coloring,
since we have to use at least 4 colors on H . Then we eventually obtain a NO answer after
first trying all cases with A monochromatic and successively with B monochromatic,
in the way we describe below.

Hence we can assume that A or B is monochromatic, and we can guess that A is
monochromatic (if this does not result in a 3-coloring of G we can repeat the procedure
assuming that B is monochromatic).

From now on we assume that all vertices of A are colored with color 1 (possibly
after renaming the colors). We remove color 1 from all the lists of admissible colors at
vertices of N(A) =

⋃
v∈A N(v)\A, we choose one vertex a ∈ A and delete all vertices

of A \ {a}. We let R denote the subset of all remaining vertices with admissible lists
of size 3. Clearly we are done with the graph (or component) G if R = ∅, as argued
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above, simply by solving a 2SAT-problem defined on the uncolored vertices and all
edges incident with these vertices.

So let us assume R �= ∅. Clearly B∩R = ∅ because all vertices in B have a neighbor
colored with color 1, so their admissible lists have size at most 2. It is now also clear
that B dominates R (since A does not dominate any vertex of R; otherwise the list
of such a vertex would have been updated to size at most 2). Now let us consider the
subgraph Q of G′ = G− (A\{a}) induced by the vertices of V (G′)\ ({a}∪N(a)). In
the remainder we redefine B := N(a) for convenience. If Q contains an isolated vertex
v (i.e., a vertex with no neighbors in Q) with a list containing color 1, then we can use
color 1 on v and remove v. So, in particular we can assume that all isolated vertices of
Q have admissible lists of size at most 2. We next analyze pairs of adjacent vertices of
Q, and distinguish a number of cases.

Case 1. Q contains an edge pq such that p is adjacent to a vertex b ∈ B \N(q) and q is
adjacent to a vertex c ∈ B \N(p).

First note that the set S = {a, b, c, p, q} induces a C5 with possibly an additional edge
bc in G′. If S dominates all vertices of R, we can just guess the eligible 3-colorings
on S and solve our problem for the graph G′ by solving a polynomial number of
2SAT-problems.

Supposing the contrary, let x ∈ R be a vertex that is not dominated by S. Since B
dominates R there exists a vertex y ∈ B \ S with xy ∈ E(G′). Consider the paths
xyabpq and xyacqp on six vertices. If yb ∈ E(G′) or yc ∈ E(G′), then guessing a
3-coloring on S would also fix the eligible color on y, and reduce the list size on x. So
if this would occur for all possible choices of x and y, we could solve our problem in
polynomial time. It remains to consider the cases where yb �∈ E(G′) and yc �∈ E(G′).
Now since G′ is P6-free at least one of {yp, yq} is an edge of G′. If both are edges of
G′, then, since in any 3-coloring of G′ at least one of p and q receives color 2 or 3, any
eligible 3-coloring on S will fix the eligible color on y, and reduce the list size on x.
An analogous situation occurs when x, a and p share a common neighbor, and x, a and
q share another common neighbor.

We next analyze the subcase in which there are pairs of vertices p′, q′ ∈ R not dom-
inated by S, but where p′, a, p have a common neighbor b′ and q′, a, q have a common
neighbor c′ �= b′ such that b′ is not adjacent to either of {b, c, q, q′} and c′ is not adjacent
to either of {b, c, p, p′}. Now consider the path p′b′pqc′q′. If b′c′ ∈ E(G′), then in any
3-coloring on S at least one of p and q receives color 2 or 3, and the eligible colors on b′

and c′ will be fixed, and the lists on p′ and q′ reduced. So we can deal comfortably with
this subcase. Since G′ is P6-free, assuming b′c′ �∈ E(G′) the only other possible sub-
case is that p′q′ ∈ E(G′). But this yields a contradiction, since then {q, c, a, b′, p′, q′}
induces a P6 in G′.

For the remainder of Case 1, we can now assume that the only subcase that has to
be resolved is when all vertices of R that are not dominated by S (like x above) have
no neighbor in common with both a and p, but only with a and q, or symmetrically.
Then we can use the same approach as before if q receives color 2 or 3 in the guessed
3-coloring on S. If this does not result in a 3-coloring of G′ in the end, we start the
whole procedure (with color 1 on each vertex of A) again after assigning color 1 to q,
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adjusting the lists on all vertices in N(q), and removing the vertex q. This clearly yields
a polynomial number of cases to check.

Concluding, for all subcases we analyzed in Case 1 except for one, we can propagate
any 3-coloring on the set S to obtain a reduction of the list sizes of all vertices in R, and
solve our problem using 2SAT-formulations (or obtain an obstruction to a 3-coloring
at an earlier stage). In the other subcase, we either also get such a reduction or we can
pre-color a specific new vertex and start the procedure on a smaller instance.

In the next case we assume that Case 1 does not apply, and we apply similar argu-
ments. We skip the details due to page restrictions.

Case 2. Q contains an edge pq such that p is adjacent to a vertex b ∈ B ∩N(q) and q
is adjacent to a vertex c ∈ B \N(p).

In the remainder we assume that neither Case 1 nor Case 2 applies. This implies that
for each edge pq in Q, the vertices p and q have exactly the same neighbors in B, so by
repeating the arguments this holds for all vertices in the same component of Q.

Case 3. All vertices in each component of Q have the same neighbors in B.

We start with the graph G′ as above. As long as there exist or appear new vertices
with lists of size 1 that are not in B ∪ {a}, we do the following: for such a vertex v
we adjust the lists of all vertices of N(v), and then remove v (unless we can conclude
that we cannot obtain a 3-coloring of G′ extending the pre-coloring; then we stop and
return to an earlier stage with a different guess on S or finally with B monochromatic
instead of A). Denote the resulting graph by G∗, and assume that in the remainder all
neighborhoods, lists of admissible colors, subsets of vertices, etc. are with respect to G∗.
In particular, let Q be the subgraph of G∗ induced by the vertices of V (G∗)\({a}∪B).
Recall that if Q contains an isolated vertex v with a list containing color 1, then we can
use color 1 on v and remove v. So we can assume that all isolated vertices of Q have
admissible lists not containing color 1.

Consider the set B′ ⊆ B with vertices that have lists {2, 3}; the other vertices of B
have a fixed color, so every vertex dominated by such a vertex has a list of size 2.

Suppose C is a component of the subgraph G∗[B′] induced by B′ in G∗. Then clearly
C is a bipartite graph (otherwise we arrive at the conclusion that G∗ is not 3-colorable)
with all lists equal to {2, 3}. So if we fix one color on a vertex of C, the other colors
on C will also be fixed. If C′ is another component of G∗[B′] such that C and C′ are
connected by a path with internal vertices in Q, then fixing one color on a vertex of C
will also fix the colors on C′: this is clear if C and C′ have an isolated vertex v of Q
as a common neighbor, since the list of v does not contain color 1; in the other case,
it follows from the assumption that all vertices in each component of Q have the same
neighbors in B, so the colors propagate from C to C′ through subgraphs isomorphic to
K4 minus an edge. We can split the checking whether the pre-coloring can be extended
to a 3-coloring of G∗ in separate disjoint problems now. Let C denote a maximal set of
components of G∗[B′] that are connected by paths with internal vertices in Q that force
the propagation of one fixed color in C to fixed colors for all vertices in C. LetD denote
all vertices of Q dominated by vertices of C. Then fixing one color (so all colors) on C,
we can model the problem on D as a 2SAT-problem. If this results in a YES answer,
we can check the next maximal set of components, etc.; if for one of the sets we get a
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NO answer, we try the swap of colors on this set; if we still get a NO answer, we repeat
the whole procedure with color 1 on all vertices of B instead of A.

One readily checks that the above arguments can be turned into a polynomial algo-
rithm for checking whether a pre-coloring on a P6-free graph G can be extended to a
3-coloring of G.

4 6-Coloring for P7-Free Graphs

In this section we sketch how to prove that 6-coloring is NP-complete for P7-free
graphs. We use a reduction from 3-Satisfiability (3SAT).

We consider an arbitrary instance I of 3SAT and define a graph GI , and next we
show that GI is P7-free and that GI is 6-colorable if and only if I has a satisfying truth
assignment. Due to page restrictions we omitted the proofs but only give the construc-
tion of GI . The complete proofs will appear in a full journal version.

Let I be an arbitrary instance of 3SAT with variables {x1, x2, . . . , xn} and clauses
{C1, C2, . . . , Cm}. We define a graph GI corresponding to I based on the following
construction.

– We introduce a gadget on 8 new vertices for each of the clauses, as follows: for
clause Cj we introduce a gadget with vertex set:
{aj,1, aj,2, aj,3, bj,1, bj,2, bj,3, cj,1, cj,2} and edge set:
{aj,1aj,2, aj,1aj,3, aj,2aj,3, aj,1bj,1, aj,2bj,2, aj,3bj,3, bj,1cj,1, bj,1cj,2, bj,2cj,1,
bj,2cj,2, bj,3cj,1, bj,3cj,2, cj,1cj,2}.
We say that these vertices are of a-type, b-type and c-type.

– We introduce a gadget on 3 new vertices for each of the variables, as follows: for
variable xi we introduce a complete graph with vertex set {xi, xi, yi}. We say that
these vertices are of x-type (both the xi and the xi vertices) and of y-type.

– If clause Cj contains the variables xi, xk and xr, we add three matching edges
between the corresponding literal vertices (so xi or xi, etc., depending on which
of them appear in Cj ) and the three b-type vertices of the gadget corresponding to
Cj . If bj,sxi or bj,sxi has been added as an edge, we also add the edge bj,syi, and
analogously for xk and xr.

– We introduce three additional vertices d1, d2 and z, and join d1 and d2 by an edge.
We join all xi to d1 by edges, and all xi to d2.

– We join z to all vertices of y-type, a-type and c-type, and to d1 and d2.
– We join all the x-type vertices and y-type vertices to all the a-type and c-type

vertices.
– Finally, we join d1 and d2 to all the a-type, b-type and c-type vertices.

5 Conclusions and Open Problems

We proved that the pre-coloring extension version of 5-coloring remains NP-complete
for P6-free graphs. Results of Hoàng et al. [4] imply that this problem is polynomially
solvable on P5-free graphs. They show that -coloring for any fixed  is polynomially
solvable on P5-free graphs. In contrast, determining the chromatic number (i.e., the



104 H. Broersma et al.

smallest  such that the graph is -colorable) is NP-hard on P5-free graphs [7]. We
also showed that the pre-coloring extension version of 3-coloring is polynomially solv-
able for P6-free graphs. Finally, we proved that 6-coloring is NP-complete for P7-free
graphs. This problem was known to be polynomially solvable for P5-free graphs and
NP-complete for P8-free graphs. This leaves the natural open problem for 6-coloring
on P6-free graphs. Also the complexity of 4-coloring and 5-coloring on P6-free graphs
are open problems. We refer to [9] for the most recent table of the complexity status
of -coloring for Pk-free graphs: the problem is trivially in P for arbitrary fixed  if
k ≤ 2; it is also in P for fixed k ≤ 5 and arbitrary fixed , and for k = 6 and  = 3;
it is NP-complete for  = 4 and any k ≥ 9, for  = 5 and k ≥ 8, for  ≥ 6 and
k ≥ 8 (and by our result also for k = 7). Interesting questions are: what is the com-
plexity of 4-coloring for P6-free graphs, of 3-coloring for P7-free graphs; does there
exist an integer k such that 3-coloring is NP-complete for Pk-free graphs? What is the
complexity of 5-coloring for P7-free graphs, and of 4-coloring for P8-free graphs? We
finish this paper with two other open problems on 3-coloring that have intrigued many
researchers: the complexity of 3-coloring is open for graphs with diameter 2, and for
graphs with diameter 3.
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2 LITA, Université de Metz, 57045 Metz Cedex 01, France

kratsch@lita.univ-metz.fr
3 Department of Mathematics and Computer Science, TU Eindhoven, P.O. Box 513,

5600 MB Eindhoven, The Netherlands
gwoegi@win.tue.nl

Abstract. We discuss various questions around partitioning a split
graph into connected parts. Our main result is a polynomial time
algorithm that decides whether a given split graph is fully decompos-
able, i.e., whether it can be partitioned into connected parts of order
α1, α2, . . . , αk for every α1, α2, . . . , αk summing up to the order of
the graph. In contrast, we show that the decision problem whether
a given split graph can be partitioned into connected parts of order
α1, α2, . . . , αk for a given partition α1, α2, . . . , αk of the order of the
graph, is NP-hard.
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1 Introduction

Throughout we only consider finite undirected graphs without loops or multiple
edges. Let G = (V, E) be a graph on n vertices, and let α = (α1, . . . , αk) denote a
partition of n, that is, a sequence of positive integers α1, . . . , αk with

∑k
i=1 αi =

n. The graph G is called α-decomposable, if there exists a partition of V into
disjoint subsets A1, . . . , Ak of cardinality |Ai| = αi for 1 ≤ i ≤ k such that
every set Ai induces a connected subgraph of G. Such a partition is called an
α-decomposition of G, and a (connected) subgraph induced by |Ai| = αi vertices
is also referred to as an αi-component of the α-decomposition. A graph is called
fully decomposable (or arbitrarily vertex decomposable) if it is α-decomposable
for every partition α of n.

Fully decomposable graphs were introduced by Horňák & Woźniak [6]. There
are two natural algorithmic questions centered around α-decompositions of
graphs.
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Q1: Decide whether a given graph G is α-decomposable for a given
partition α.

Q2: Decide whether a given graph G is fully decomposable.

Question Q1 is notoriously hard. For instance, Dyer & Frieze [3] proved that it is
NP-hard to decide whether a planar graph is (3, 3, . . . , 3)-decomposable. Barth
& Fournier [2] showed that Q1 is NP-hard for trees. Generally speaking, Q1
seems to be NP-hard for every natural non-trivial class of specially structured
graphs.

The computational complexity of question Q2 is not understood. We are aware
of only a single result on question Q2 from the literature: Barth, Baudon & Puech
[1] designed a polynomial time algorithm for deciding whether a given tripode
(a tree with a single vertex of degree three, and all other vertices of degree one
or two) is fully decomposable. Barth & Fournier [2] also proved that every fully
decomposable tree has maximum vertex degree at most four. Determining the
precise computational complexity of Q2 is an outstanding open problem: The
problem is neither known to be NP-hard, nor is it known to be contained in the
class NP.

2 Results of This Paper

A graph G = (V, E) is a split graph (see for instance Golumbic [5]) if its vertex
set can be partitioned into an induced independent set I and a clique C. Often
split graphs are specified in the form G = (C, I, E).

In this paper, we will resolve the computational complexity of questions Q1
and Q2 for split graphs: The following two theorems show that for this graph
class Q1 is hard, whereas Q2 is easy.

Theorem 1. It is NP-hard to decide whether a given split graph with n vertices
is α-decomposable for a given partition α of n.

Theorem 2. It can be decided in polynomial time whether a given split graph
with n vertices is fully decomposable.

Theorem 1 will be proved in the following Section 3, and the key ingredients for
the proof of Theorem 2 will be presented in the remaining part of this paper.
The complete proof of the latter result will appear in a full journal version of
this paper.

3 The Hardness Proof

In this section we will prove Theorem 1. The reduction is done from the following
version of the NP-hard d-DIMENSIONAL MATCHING problem; see Garey &
Johnson [4].
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Problem: d-DIMENSIONAL MATCHING (d-DM)

Input: A ground set X = {x1, . . . , xqd} of qd elements; a family S of
d-element subsets S1, . . . , S	 of X .

Question: Can set X be partitioned into q disjoint subsets from
S1, . . . , S	?

For an instance of this problem d-DM, we now construct the following corre-
sponding split graph.

– For every element x ∈ X , the independent set I contains a corresponding
vertex i(x). Furthermore, in the independent set I there are  − q groups
D1, . . . , D	−q of dummy vertices; every such group consists of exactly d− 1
vertices.

– For every set S in the family S, the clique C contains a corresponding vertex
c(S). Furthermore, the clique C contains − q dummy vertices c1, . . . , c	−q.

– There is an edge between any two vertices in the clique C.
– Whenever x ∈ S for some x ∈ X and some S ∈ S, there is an edge between

i(x) and c(S).
– Furthermore, for k = 1, . . . , − q the dummy vertex ck is joined to the d− 1

dummy vertices in the group Dk.

The resulting split graph G has 2− q vertices in C, has (d− 1) + q vertices in
I, and thus consists altogether of (d + 1) vertices. Finally, we define the vector
α = (d + 1, d + 1, . . . , d + 1) that consists of  components of value d + 1. We
claim that the split graph G is α-decomposable, if and only if the instance of
d-DM has answer YES.

First assume that the instance of d-DM has answer YES. Consider the par-
tition of X into q subsets from S. For every set S occurring in this partition,
we put vertex c(S) together with all vertices i(x) with x ∈ S into one connected
component. For every set S not occurring in this partition, we put vertex c(S)
together with one of the dummy vertices ck and the vertices in the group Dk

into one connected component. This yields that G is α-decomposable.
Next assume that the graph G is α-decomposable. Every dummy vertex ck

must be in the same connected component with the vertices in group Dk, and
with exactly one of the vertices c(S). This leaves q of the vertices c(S) un-
matched, and each of them must be in one connected components with d vertices
i(x) of the independent set. This yields the desired partition of the set X .

This completes the NP-hardness argument, and the proof of Theorem 1. Since
d-DM is NP-hard for every fixed d ≥ 3, we have actually established the following
stronger statement.

Corollary 1. For every fixed integer f ≥ 4, it is NP-hard to decide whether
a given split graph on qf vertices is α-decomposable with respect to the vector
α = (f, f, . . . , f) consisting of q components of value f . ��
The following sections will show that the statement in Corollary 1 is essentially
strongest possible: For f ≤ 3, the corresponding decomposition problem allows
a polynomial time solution.
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4 Primitive Partitions

For n ≥ 2, a partition α of n is called 2-3-primitive, if it is of one of the following
forms.

– α = (1, 3, 3, . . . , 3) consists of threes and a single one;
– α = (2, . . . , 2, 3, 3, . . . , 3) only consists of twos and threes.

The following lemma shows that for analyzing the full decomposability of a split
graph, we can restrict our attention to 2-3-primitive partitions.

Lemma 1. A split graph on n vertices is fully decomposable, if and only if it is
α-decomposable for every 2-3-primitive partition α of n.

Proof. The only-if-statement is implicit in the definition of a fully decomposable
graph. For the if-statement, we recall that every integer  ≥ 2 can be written in the
form  = 2a + 3b with non-negative integers a and b. Consider an arbitrary parti-
tion α = (α1, . . . , αk) of n. Replace every αi ≥ 2 in α by a partition of αi into ai

twos and bi threes. Let α0 denote the number of 1s in the vector α. If α0 ≥ 2, then
replace the 1s in vector α by a partition of α0 into a0 twos and b0 threes. If α0 ≤ 1,
then leave the 1s untouched. The resulting new partition α′ = (α′

1, . . . , α
′
m) of n

is of the form (1, 3, 3, . . . , 3) or (2, . . . , 2, 3, 3, . . . , 3), and hence 2-3-primitive. By
assumption the split graph G is α′-decomposable. We let A′

1, . . . , A
′
m denote the

corresponding connected vertex sets. Every set A′
j with α′

j = |A′
j | ≥ 2 contains

at least one clique-vertex; therefore, the union of the ai two-element sets and the
bi three-element sets corresponding to component αi is a connected vertex set Ai

with αi elements. This yields that G is α-decomposable. ��

We note that Lemma 1 already implies an NP-certificate for deciding whether an
n-vertex split graph is fully decomposable: The certificate lists all 2-3-primitive
partitions of n together with the corresponding decompositions into connected
parts. The following sections prove even stronger results.

5 Canonical Primitive Partitions

Next let us introduce canonical primitive partitions as a crucial subfamily of the
2-3-primitive partitions. Let n ≥ 2 be an integer.

– If n = 2k is even, then the canonical 2-primitive partition of n consists of k
twos.

If n = 2k+1 is odd, then the canonical 2-primitive partition of n consists
of k − 1 twos and a single three.

– If n = 3k, then the canonical 3-primitive partition of n consists of k threes.
If n = 3k + 1, then the canonical 3-primitive partition of n consists of k

threes and a single one.
If n = 3k + 2, then the canonical 3-primitive partition of n consists of k

threes and a single two.
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The following lemma strengthens the statement of Lemma 1.

Lemma 2. A split graph with n vertices is fully decomposable, if and only if
it is α-decomposable for the canonical 2-primitive partition α of n and for the
canonical 3-primitive partition α of n.

The rest of this section is dedicated to the proof of Lemma 2. We first introduce
some additional notation and terminology.

We use 2r3s to denote a partition of n = 2r + 3s into r (possibly r = 0) twos
and s (possibly s = 0) threes. A partition of n = 3k + 1 into k threes and 1 one
is denoted by 13k.

Suppose G = (C, I, E) is a split graph and H is a subgraph of G. Then a vertex
of V (H) ∩ C or V (H) ∩ I is called a C-vertex or I-vertex of H , respectively.
Analogously, we call a neighbor u of a vertex v ∈ V (G) a C-neighbor or I-
neighbor of v if u ∈ C or u ∈ I, respectively. If |V (H)| = 3, we say that H is
a T c

i if |V (H) ∩ C| = c and |V (H) ∩ I| = i; in the special case that c = 2 and
i = 1 we add a bar (only) if T 2

1 is a triangle, so we use T
2
1 instead of T 2

1 if and
only if the three vertices induce a triangle in G.

For proving Lemma 2 it is sufficient to prove the following result.

Lemma 3. If a split graph G with n vertices is α-decomposable for the canonical
2-primitive partition α of n and for the canonical 3-primitive partition α of n,
then G is α-decomposable for every 2-3-primitive partition α of n.

Proof. Let G = (C, I, E) be a split graph on n vertices, and assume that G
is α-decomposable for the canonical 2-primitive partition α of n and for the
canonical 3-primitive partition α of n. First note that we may assume that
n ≥ 10; if n < 10 then the only possible 2-3-primitive partitions are the canonical
2-primitive and the canonical 3-primitive partitions. Secondly, note that G has a
matching saturating at least |I|−1 vertices of I (and all vertices of I if n is even);
since I is an independent set, this follows immediately from the hypothesis that
G is α-decomposable for the canonical 2-primitive partition α of n. This also
implies that |C| ≥ |I| − 1.

Definition 1. We say that G is (3, 3)-reducible if and only if it has the following
property: If G is 2r3s-decomposable for some r ≥ 0 and s ≥ 4, then it is also
2r+33s−2-decomposable.

Similarly, we say that G is (1, 3)-reducible if and only if G has the follow-
ing property: If G is 13k-decomposable for some k ≥ 3, then it is also 223k−1-
decomposable.

Note that in the language of this definition, it is now sufficient to prove that G
is both (3, 3)-reducible and (1, 3)-reducible. The following two claims establish
these facts, and thus complete the proof of Lemma 3.

Claim. G is (3, 3)-reducible.

Proof. Suppose G has a 2r3s-decomposition α with r ≥ 0 and s ≥ 4. Then at
least two of the 3-components in α have at least two C-vertices, since |C| ≥ |I|−1.
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It is obvious how to decompose the subgraph of G induced by the six vertices of
two such 3-components into three 2-components.

Claim. G is (1, 3)-reducible.

Proof. Suppose G has a 13k-decomposition α with k ≥ 3. Then at least one of the
3-components in α has at least two C-vertices, since |C| ≥ |I| − 1. Let H denote
such a 3-component, and let v denote the vertex of the 1-component in α.

If v ∈ C it is clear how to decompose the subgraph of G induced by V (H)∪{v}
into two 2-components.

Next suppose v ∈ I. Clearly, v is not an isolated vertex since G is α-
decomposable for the canonical 2-primitive partition α of n. Let u be a C-
neighbor of v. If u is in a T

2
1 or T 3

0 of α, or if it is the vertex with degree 1 in a
T 2

1 of α, then it is again clear how to decompose the subgraph of G induced by
v and the vertices of the 3-component containing u into two 2-components.

If u is the vertex with degree 2 in a T 2
1 of α, we use that α contains at least

one other 3-component H ′ with at least two C-vertices, since |C| ≥ |I| − 1 and
v ∈ I. In this case we can combine v with u and its I-neighbor in T 2

1 into a 3-
component, and we can decompose the subgraph of G induced by the remaining
vertex of this T 2

1 and the vertices of H ′ into two 2-components.
A similar transformation along a longer chain of 3-components can be used

in the remaining case where u is the C-vertex of a T 1
2 . In this case the existence

of a matching that saturates at least |I| − 1 vertices of I implies there is an
alternating path P = v1v2 . . . v2t starting at v = v1 and terminating at a vertex
w = v2t in a T

2
1, T 2

1 or T 3
0 , in which each v2j with 1 ≤ j < t is the C-vertex

of a T 1
2 and each v2j+1 with 1 ≤ j < t is an I-vertex adjacent to v2j in the

corresponding T 1
2 for t − 1 disjoint 3-components isomorphic to T 1

2 . The chain
of these t − 1 copies of a T 1

2 without the vertex v2t−1 together with the vertex
v and the edges v2j−1v2j with 1 ≤ j < t can be transformed into t− 1 new T 1

2 s
by swapping the edges of P (meaning that we include all edges v2j−1v2j with
1 ≤ j < t and remove all edges v2jv2j+1 with 1 ≤ j < t). The remaining vertex
v2t−1 and the 3-component Hw containing w can be treated as before, yielding
a decomposition of the subgraph of G induced by V (Hw) ∪ {v2t−1} into two
2-components in case w is not the vertex with degree 2 in a T 2

1 ; otherwise we
use again that α contains at least one other 3-component H ′ with at least two
C-vertices. In this case we can combine v2t−1 with w and its I-neighbor in T 2

1
into a 3-component, and we can decompose the subgraph of G induced by the
remaining vertex of this T 2

1 and the vertices of H ′ into two 2-components. ��

6 The Polynomial Time Result

From the previous sections we conclude that to prove Theorem 2 it now suffices
to prove the following two lemmas. The first lemma can be proved by straight-
forward matching techniques, but for the second lemma we have to apply a more
sophisticated technique closely related to matching theory. We leave the details
for the full journal paper version, but indicate the main tool which can be found
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in, e.g., Lovász & Plummer [7]: Let G′ = (V ′, E′) be an edge-weighted graph,
and for every vertex v ∈ V ′ let d(v) be a non-negative integer. Then we can
determine in polynomial time a maximum-weight subset F ′ ⊆ E′ of the edges,
such that in the graph (V ′, F ′) every vertex v has degree d(v), or find out that
no such set F ′ exists.

Lemma 4. Let G = (V, E) be a split graph on n vertices, and let α be the
canonical 2-primitive partition of n. Then it can be decided in polynomial time
whether G is α-decomposable.

Proof. This boils down to a bipartite matching problem. If n is even, we need to
find a matching from the independent set I into the clique C. If n is odd, then
we check all possibilities for the extra component with three vertices. ��

Lemma 5. Let G = (V, E) be a split graph on n vertices, and let α be the
canonical 3-primitive partition of n. Then it can be decided in polynomial time
whether G is α-decomposable.

7 Conclusions

We have settled the complexity of recognizing fully decomposable split graphs.
We feel that it might be very difficult to come up with other graph classes for
which this problem is tractable. The algorithm of Barth, Baudon & Puech [1]
for recognizing fully decomposable tripodes (trees with a single vertex of degree
three, and all other vertices of degree one or two) is highly non-trivial. Unfor-
tunately, many other graph classes contain graphs with a similar connectivity
structure as tripodes (with respect to full decomposability); hence settling the
problem for these classes would amount to generalizing the proof of [1].

Let us illustrate this claim for the class of co-graphs. Consider a tripode T
that consists of a root and three paths with 1, 2, and 3 vertices, respectively.
We define a corresponding co-graph G(T ) that consists of three independent
cliques with 1, 2, and 3 vertices, and a single vertex that is connected to all
vertices in the cliques. It can be seen that the tripode T is fully decomposable if
and only if the co-graph G(T ) is fully decomposable. We pose the computational
complexity of recognizing fully decomposable co-graphs as an open problem.

Furthermore, we are not aware of any natural NP-certificates or coNP-
certificates for deciding full decomposability of general graphs. In fact, this
problem might be located in one of the complexity classes above NP (see for
instance Chapter 17 in Papadimitriou’s book [8]). If the problem is hard, then
the complexity class DP=BH2, the second level of the Boolean Hierarchy, might
perhaps be a reasonable guess.

Finally, we will formulate a conjecture that would imply that the problem is
easy. Let us call a vector α with positive integer components balanced, if k − 1
of these components are equal to each other, and the last component does not
exceed the other components. We did not manage to construct a counter-example
to the following bold conjecture.
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Conjecture 1. An n-vertex graph G is fully decomposable, if and only if G is
α-decomposable for every balanced vector α whose components add up to n.

If this conjecture turns out to be true (for which admittedly we do not have the
slightest evidence), then this would yield an NP-certificate for fully decomposable
graphs: There are only O(n) many balanced vectors α whose components add
up to the number n of vertices in a graph. The α-decompositions for these O(n)
vectors form a certificate of polynomial length that can easily be verified in
polynomial time.
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6. Horňák, M., Woźniak, M.: Arbitrarily vertex decomposable trees are of maximum
degree at most six. Opuscula Mathematica 23, 49–62 (2003)

7. Lovász, L., Plummer, M.D.: Matching Theory. Annals of Discrete Mathematics,
vol. 29. North-Holland, Amsterdam (1986)

8. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)



Feedback Vertex Set on Graphs of Low
Cliquewidth�

Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle

Department of Informatics, University of Bergen, Norway
{buixuan,telle,vatshelle}@ii.uib.no

Abstract. The Feedback Vertex Set problem asks whether a graph con-
tains q vertices meeting all its cycles. This is not a local property, in the
sense that we cannot check if q vertices meet all cycles by looking only at
their neighbors. Dynamic programming algorithms for problems based on
non-local properties are usually more complicated. In this paper, given
a graph G of cliquewidth cw and a cw -expression of G , we solve the
Minimum Feedback Vertex Set problem in time O(n222cw2 log cw) . Our
algorithm applies a non-standard dynamic programming on a so-called
k -module decomposition of a graph, as defined by Rao [26], which is
easily derivable from a k -expression of the graph. The related notion
of module-width of a graph is tightly linked to both cliquewidth and
nlc-width, and in this paper we give an alternative equivalent character-
ization of module-width.

1 Introduction

The problem of finding a minimum Feedback Vertex Set (FVS) in a graph, i.e. the
smallest set of vertices whose removal results in a graph that has no cycles, has
many applications, for example to optical networks [19], circuit testing, deadlock
resolution, analyzing manufacturing processes and computational biology (see [8]
and its bibliography). It is one of the classical NP-complete problems from the
1972 list of Karp [18] and has been extensively studied from many viewpoints,
including linear programming [6], approximation algorithms [2,10,13,19], exact
algorithms [11] and parameterized complexity [5,8,14,25].

The minimum FVS problem is 2 -approximable in polynomial time [1]. The
fastest exact algorithm has runtime O(1.7548n) [11]. The fastest FPT (Fixed
Parameter Tractable) algorithm when parameterized by the size q of the FVS
has runtime O(5qqn2) [5]. These algorithmic results are quite strong, but are not
useful for cases of input graphs having a large number of vertices n , and a large
minimum FVS q , if we want the actual smallest FVS. For such cases we may in-
stead hope that the input graph has a bounded width parameter. For example, if
G is a planar graph of treewidth tw then Kloks et al [20] give a dynamic program-
ming algorithm solving minimum FVS on G in time O(2O(tw log tw)n). A similar
algorithm can be devised also for non-planar G of treewidth tw , given with an
� Supported by the Norwegian Research Council, project PARALGO.
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optimal tree-decomposition, but it is an open problem if algorithms with runtime
O(2O(tw)n) exist for minimum FVS, even though such algorithms exist for a large
variety of NP-hard problems. However, for minimum FVS it would require a small
breakthrough to get such an algorithm. One reason for this is that FVS is not a lo-
cally checkable property, in the sense that if given q vertices we cannot check that
they form an FVS simply by looking at the neighbors of these q vertices. In this pa-
per we consider instead graphs of cliquewidth cw , that encompasses large classes
of graphs of unbounded treewidth, and for which powerful algorithmic results are
known. For instance, we have that any graph problem expressible in MSO1 -logic,
as is the case with minimum FVS, is FPT when parameterized by cliquewidth
(roughly, apply [17], then [23, Proposition 6.3], then [7]).

In this paper we will be interested in as low exponential dependency on cw
as possible, and for this we need to use a specially designed dynamic program-
ming algorithm. Dynamic programming based on decompositions having small
cliquewidth are usually more complicated than dynamic programming on de-
compositions having small treewidth. The algorithm we give solves minimum
FVS on a graph G of cliquewidth cw in time O(22cw2 log cwn2), when given
a cw -expression of G which is a decomposition of the graph showing that it
has cliquewidth cw . The only other problems for which O(poly(n)2poly(cw))
algorithms exist are for problems based on domination-type properties, like
Dominating Set in [21] and a class of vertex partitioning problems as in [4].

Cliquewidth is related to the notion of nlc-width of a graph [9] with which it
shares most properties but we have chosen to use cliquewidth in this paper sim-
ply because that notion is more famous. Our algorithm applies a non-standard
dynamic programming on a so-called k -module decomposition of a graph, as de-
fined by Rao [26], which is easily derivable from a k -expression of the graph. The
related notion of module-width of a graph is tightly linked to both cliquewidth
and nlc-width, and in this paper we give an alternative equivalent characteriza-
tion of module-width. Our dynamic programming algorithm is non-standard in
the sense that we index tables by the classes of one equivalence relation on the
set of possible solutions, but store optimal solutions at these indices that are
related to another equivalence relation which is a coarsening of the first one. We
need to do this in order to achieve the stated runtime.

2 Framework

Let G be a graph with vertex set V (G) and edge set E(G). Consider the
following unifying decomposition framework for several decomposition schemes.
A binary tree is a rooted tree where every internal node has exactly two children.

Definition 1 (Decomposition Tree). A rooted decomposition tree of a graph
G is a pair (T, δ) where T is a binary tree having n = |V (G)| leaves and δ is
a bijection between the vertices of G and the leaves of T .

Roughly, trees with their leaves in a bijection with the vertices of G are im-
portant for techniques like divide-and-conquer or dynamic programming since
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they show how to “divide” the graph instance into several sub-instances and
recurse. Clearly, any tree with the right number of leaves and a bijection can be
considered as a decomposition tree. Then, a common technique to select those
that are more suited for some task is to use an evaluating function.

Definition 2 (Decomposition and Width Parameters). Let G be a graph,
f a set function over V (G), and (T, δ) a rooted decomposition tree of G . For
every node u of T , let Vu denote the vertex subset of G induced by the leaves
of the subtree of T rooted at u . The f -width of (T, δ) is the maximum value
of f(Vu), taken over every node u of T . An optimal f -decomposition of G is
a rooted decomposition tree of G having minimum f -width. The f -width of G
is the f -width of an optimal f -decomposition of G .

If f is also required to be symmetric, namely that f(Vu) = f(V (G) \ Vu) for
every Vu , then the above framework, up to unrooting the tree T and setting
f(V (G)) = f(∅) = −∞ , is equivalent to the one developed for the study of
branch decomposition of symmetric and submodular functions (see, e.g., [23, Sec-
tion 2] for a short and recent introduction). This includes the branch-width [27],
rank-width [23], and boolean-width [4] decompositions of graphs. On the other
hand, rooted decomposition trees as defined here can be used for situations where
the symmetry does not occur, for instance with a branch-like decomposition of
a submodular function that is not necessarily symmetric, a cliquewidth or NLC-
width expression, or a so-called k -module decomposition as will be presented
below.

For an efficient complexity analysis of the algorithm that will be described in
Section 4, we will be interested in the following definition of f -width, so-called
module-width in [22,26].

Definition 3. Let G be a graph and let X ⊆ V (G) be a vertex subset. A
subset A ⊆ X is a twin set of X if, for every z ∈ V (G) \X and pair of vertices
x, y ∈ A , we have x adjacent to z if and only if y adjacent to z . A twin set A
is a twin class of X if A is maximal. The set of all twin classes of X forms a
partition of X , that we call the twin class partition of X .

Definition 4 (Module-width). The function μG : 2V (G) → N is defined such
that μG(X) is the number of twin classes of X in the graph G . The module-
width decompositions and parameters of G refer to those of Definition 2 when
f = μG . The μG -width of G will be called the module-width of G and denoted
by μw(G).

The terminology of module-width is according to the name given to an equivalent
notion that was mentioned in [22, last two pages] and formalized in [26]. More
precisely, Lanlignel and Rao defined so-called k -module decomposition, leading
to the same parameter.

Clique-width and NLC-width expressions are constructions of a graph using
logic operations. For a proper introduction to cliquewidth and NLC-width refer
to [7,9]. The underlying graphs of cliquewidth and NLC-width expressions are
rooted trees where every internal node has at most two children and where the
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leaves are in a bijection with the vertices of the graph. This, up to contracting
one child nodes, can be seen as a rooted decomposition tree. The clique-width
cw(G) and the NLC-width nlc-w(G) of a graph G are parameters of G having
powerful algorithmic properties. For instance, we have that any graph problem
expressible in MSO1 -logic is FPT when parameterized by one of these two
parameters (roughly, apply [17], then [23, Proposition 6.3], then [7]). They are
closely linked to module-width by the following property.

Theorem 1. ([26]) We have for any graph G that

μw(G) ≤ nlc-w(G) ≤ cw(G) ≤ 2μw(G).

We now give an alternative viewpoint of these module-width decompositions,
that will link module-width to the so-called H -join decomposition framework [3]
in an unexpected way.

Definition 5. Let H be a bipartite graph with color classes V1 and V2 , thus
V (H) = V1 ∪ V2 . Let G be a graph and X ⊆ V (G) a subset of its vertices. We
say that G is an H -join across the ordered cut (X, V (G) \X) if there exists a
partition of X with set of classes P and a partition of V (G) \ X with set of
classes Q , and injective functions f1 : P → V1 and f2 : Q → V2 , such that for
any x ∈ X and y ∈ V (G) \X we have x adjacent to y in G if and only if x
belongs to a class Pi of P and y to a class Qj of Q with f1(Pi) adjacent to
f2(Qj) in H .

We will abusively refer to ordered cuts simply by cuts. Twins in a bipartite graph
are vertices in the same color class having exactly the same neighborhood. A twin
contraction is the deletion of a vertex when it has a twin. Notice that H -joins are
insensitive to twin contractions: if H ′ is obtained from H by a twin contraction
then G is an H -join across some cut if and only if G is an H ′ -join across
the same cut. Note also that we do allow a twin-free bipartite graph to have
one isolated vertex in each color class. We model the joining in module-width
decompositions by using the following graph.

Definition 6. For a positive integer k we define a bipartite graph Yk having
for each integer i of {1, 2, . . . , k} a vertex ai ∈ A and having for each subset S
of {1, 2, . . . , k} a vertex bS ∈ B , with V (Yk) = A ∪B . This gives k vertices in
A and 2k vertices in B . A vertex ai is adjacent to a vertex bS if and only if
i ∈ S .

Lemma 1. Let k be an integer, let H be a bipartite graph over color classes
V1 ∪ V2 with |V1| ≤ k . Then, applying successive twin contractions in H until
stability will always result in a graph that is isomorphic to an induced subgraph
of Yk .

Corollary 1. The function μG of Definition 4 is exactly equal to the function
ηG defined by:
ηG(X) = min{k : G is a Yk-join across the cut (X, V (G) \ X)}, for all
X ⊆ V (G) .
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3 Computing the Twin Classes

In the next section we will give a dynamic programming algorithm to solve the
feedback vertex set problem on an input made by an n-vertex m-edge graph
G and one of its rooted decomposition tree (T, δ). Note that the underlying
graph of a clique-width expression of G is a rooted tree where each internal
node having at most two children, and the leaves are in a bijection with the
vertices of G . By contracting the internal nodes having one child, we will result
in a rooted decomposition tree of G . Moreover, it can also be obtained from
the proof of Theorem 1 that the module-width of this rooted decomposition tree
is at most the clique-width of the clique-width expression. Consequently, if the
input to our algorithm is the graph G and a clique-width k expression of G ,
we can transform them in a straightforward manner to an input made of G and
one of its rooted decomposition tree of module-width at most k .

For every internal node u of T with Vu being the vertex subset of G induced
by the subtree of T rooted at u , we will need to compute the twin classes of Vu

as mentioned in the definition of μG in Definition 4. For this, the algorithm given
in [23] for transforming a rank decomposition into a cliquewidth expression can
be used for a global runtime in O(n222rw(G)). In this section, we will describe
such a computation for every internal node u of T , with global runtime O(n2).

We will use the so-called partition refinement algorithmic technique (refer to,
e.g., [15,24] for details).

A simple way to compute the twin class partition of Vu is to initialize Q =
(Vu) and, for every vertex z ∈ V (G) \ Vu , perform an one-to-one refinement of
Q using the neighborhood N(z) of z as pivot. The correctness follows directly
from the definition of twin classes. This computation would have O(m) runtime
for each internal node u of T , hence a global O(nm) runtime.

The main idea to reduce this runtime is to observe that, in the above opera-
tions, we can use N(z)∩ Vu as pivot instead of N(z) (for every z ∈ V (G) \Vu )
without modifying the refined partition of each step. However, the sum over
every possible Vu and z ∈ V (G) \ Vu of the value |N(z) ∩ Vu| might still be
large. We will observe a second fact. For a partition Q = (Q1, Q2, . . . , Qk) of X
and a subset Y ⊆ X , we denote by Q[Y ] the partition of Y which results from
removing all empty sets from (Q1 ∩ Y, Q2 ∩ Y, . . . , Qk ∩ Y ).

Remark 1. Let w be an internal node of T with children a and b . Let Vw , Va , and
Vb be the vertex subsets of G induced by the leaves of the subtrees of T rooted
at w , a , and b , respectively. Let Qw = (Qw(1), Qw(2), . . . , Qw(hw)) be the twin
class partition of Vw . Then, initializing Q = Qw[Va] and refining Q using N(z)∩
Va as pivot for all z ∈ Vb will result to the twin class partition of Va .

Basically, the algorithmic difference given by the remark is that we can now be
restricted to z ∈ Vb instead of using all z ∈ V (G)\Va as before. The main point
is that the sum over every possible Va and z ∈ Vb of the value |N(z) ∩ Va| will
be at most twice the value n+m (every edge of G appears at most twice in the
sum). We now implement Remark 1.
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First of all, the bottleneck of using N(z) ∩ Va as pivot will be that, unlike
the case with N(z) which can be read simply in the adjacency list of G , we
will need to compute N(z) ∩ Va for every possible Va and z . We do this as a
preprocessing step as follows.

We prepare the tree T as described in [16] so that afterwards we can, given
two leaves x and y of T , compute the lowest common ancestor w of x and y
in T in O(1) time. This can also be done in such a way that, if a and b denote
the children of w , then we can in O(1) time decide whether x is a descendent of
a or it is a descendent of b . Then, for every internal node w of the tree T , with
children a and b , we initialize two tables N b→a

w and Na→b
w that will contain, for

every vertex z in Vb (resp. Va ), the neighborhood of z in Va (resp. Vb ). Now,
we scan through every edge xy of G and compute the lowest common ancestor
w of x and y , as well as the children a and b of w such that x is a descendent
of a , and finally add x to N b→a

w [y] and y to Na→b
w [x] . Clearly, after scanning

all edges of G , we have that N b→a
w [z] = N(z)∩ Va for all w , a , b , and z . This

preprocessing takes O(n) time.
We come to the proper computation of the twin class partitions. The twin

class partition associated to the root of T only has one class, which is V (G).
Suppose that we have computed the twin class partition Qw of an internal node
w having children a and b . This partition Qw is stored in a double-linked list
w.r.t. the data structure used for partition refinement. Basically, the following
operations can operate directly on this data structure, if we allow ourselves to
modify the double-linked list. However, the information on the twin classes of
Vw would then be lost. For this reason, before continuing, we duplicate the data
structure of Qw so that we store the twin classes of Vw in a private place of
node w . Then, we can compute Qw[Va] and Qw[Vb] simply by performing an
one-to-two refinement of Qw using either Va or Vb as pivot (cf. Vb = Vw \ Va ).
for each w . Duplication and refinement using Va (or Vb ) as pivot take O(n)
time for every node w , hence an O(n2) global runtime.

We then initialize Q = Qw[Va] and, for every entry z of the table N b→a
w ,

refine Q using N b→a
w [z] as pivot. As mentioned before, the main point of all

these procedures is that the sum of the size of all possible pivots will now be at
most twice the value n+m . Hence, the global runtime of this step is in O(n+m).
We deduce the following lemma, whose proof is straightforward. Recall that from
the input of a cliquewidth expression of G , we can derive a rooted decomposition
tree simply by contracting all internal nodes having one child in the underlying
graph of the cliquewidth expression. The module-width of this decomposition
tree is at most the cliquewidth of the expression.

Lemma 2. Given a graph G and either (T, δ) a rooted decomposition tree of
G , or a clique-width expression tree of G . Then in O(n2) global runtime we
can compute and store, for every internal node u of T with Vu being the vertex
subset of G induced by the leaves of the subtree of T rooted at u , the partition
of Vu into its twin classes Qu(1), Qu(2), . . . , Qu(hu) .
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4 Solving the Feedback Vertex Set Problem

Definition 7. A Feedback Vertex Set of a graph G is a subset of vertices S with
G[V (G) \S] a forest. A Forest Inducing Set (FI-set) of a graph G is a subset of
vertices S with G[S] a forest.

Fact 41. If S is a FI-set of maximum cardinality then V (G)−S is a Feedback
Vertex Set of minimum cardinality.

We give dynamic programming algorithms that given a graph G and a rooted
decomposition tree (T, δ) of G will find the size of a minimum Feedback Vertex
Set of G , by computing the size of a maximum FI-set in G . For a node a of T ,
let Va be the vertices of G mapped to leaves in the subtree of T rooted at a .
The runtime of the algorithm will be expressed as a function of μG(Va), i.e. the
number of twin-classes of such vertex subsets Va .

4.1 Two Equivalence Relations on FI-Sets: by FI-Classes and by
FI-Patterns

Let node a of T have ha = μG(Va) twin-classes Qa(1), ..., Qa(ha). We first
consider how a FI-set X ⊆ Va interacts with twin-classes. We characterize X
by a 5-tuple that we call Pata(X) that records how the trees T (X) in the forest
induced by the FI-set X interact with twin-classes. Note that T (X) may contain
trees having only one vertex.

We first consider interaction of X on the set of pairs of twin-classes. Define
Z(X) to be the pairs (i, j) such that there is no path in G[X ] between a vertex
in twin-class Qa(i) and a vertex in twin-class Qa(j). Define S(X) to be the
pairs (i, j) such that there is exactly one tree in T (X) having a path between
a vertex in twin-class Qa(i) and a vertex in twin-class Qa(j). Define W (X)
to be the pairs (i, j) such that there are at least two trees in T (X) having a
path between a vertex in twin-class Qa(i) and a vertex in twin-class Qa(j). Note
that Z(X), S(X), W (X) is a partition of the set of pairs of indices of twin-classes
{(i, j) : 1 ≤ i ≤ j ≤ ha} , and thus given S(X), W (X) we can uniquely identify
Z(X). Define also P(S(X)) to be the partition of S(X) into distinct trees, i.e.
with two pairs (i, j) and (i′, j′) belonging to the same class of P(S(X)) if and
only if the same tree in T (X) has both a path between vertices in twin-classes
Qa(i) and Qa(j) and a path between vertices in twin-classes Qa(i′) and Qa(j′).

1 2 3 4 5 6

D

C

B

A

Fig. 1. In the above figure is an example containing 6 twin-classes named 1,2,...,6 and
a FI-set X having 11 vertices. T(X) contains 4 trees named A,B,C,D. The FI-pattern
of X will be the 5-tuple < S, W, S′, W ′, P (S) > , where S = {12, 24, 34, 44, 33} , and
W = {23} and S′ = {1, 5} and W ′ = {2, 3, 4} and P (S) = {{12}, {24, 34, 44}, {33}} .
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Now we consider interaction of X on twin-classes. Define Z ′(X), S′(X),
W ′(X) to be the partition of the set of indices {1, 2, ..., ha} of twin-classes such
that if i ∈ Z ′(X) there is no vertex in X belonging to Qa(i), and if i ∈ S′(X)
there is exactly one vertex in X belonging to Qa(i), and if i ∈ W ′(X) there
are at least two vertices in X belonging to Qa(i).

Definition 8. For a FI-set X ⊆ Va define the FI-pattern Pata(X) to be the
5-tuple
< S(X), W (X), S′(X), W ′(X),P(S(X)) > .

Our dynamic programming algorithm computing the size of a maximum FI-set
in graph G will store a table Taba at each node a of the rooted decomposition
tree T of G . For the computation of maximum FI-sets by a bottom-up traversal
of T the following equivalence relation on FI-sets contained in Va is clearly
important.

Definition 9. For two FI-sets X, Y ⊆ Va we define X ≡a Y if for any FI-set
Z ⊆ V (G) \ Va the set X ∪ Z is a FI-set if and only if Y ∪ Z is a FI-set.
The equivalence classes of ≡a are called FI-classes and for a FI-set X ⊆ Va we
denote by FIclassa(X) the FI-class containing X .

The table Taba will be indexed by FI-patterns, and the following lemma will be
crucial for correctness of the algorithm.

Lemma 3. If Pata(X) = Pata(X ′) for two FI-sets X, X ′ ⊆ Va then X ≡a X ′ ,
i.e. FIclassa(X) = FIclassa(X ′) .

Proof. Consider a FI-set Z ⊆ V (G) \ Va . We show that if G[X ∪ Z] contains
a cycle then G[X ′ ∪ Z] contains a cycle, and the statement in the lemma will
follow by symmetry. Let C be a chordless cycle in G[X∪Z] that has a minimum
number of edges between a vertex of X and a vertex of Z . We call these crossing
edges, and note that there are at least two crossing edges in C .

Let u1v1 be a crossing edge of C with u1 ∈ X, v1 ∈ Z . Let the cycle C
continue from v1 by a path P (v1, v2) in G[B] to vertex v2 ∈ Z and then a
crossing edge v2u2 , then a path P (u2, u3) from u2 to u3 in G[X ] and again a
crossing edge u3v3 , etc. We thus get a total ordering u1v1, u2v2, ..., u2kv2k on
all crossing edges of C , with ui s in X and vi s in Z .

In this way we get k paths of cycle C belonging to G[X ] , i.e. k − 1 paths
P (u2i, u2i+1) for 1 ≤ i ≤ k − 1, and also the path P (u2k, u1). Note that any
such path will contain edges and vertices from a single tree of T (X), even if such
a tree may be trivial, i.e. with u2i = u2i+1 or u2k = u1 . Moreover, since the
cycle C has the minimum number of crossing edges no tree of T (X) contains a
vertex belonging to two of these k paths.

Consider now CT = {j : Qa(j) ∩ {ui : 1 ≤ i ≤ 2k} �= ∅} , i.e. the indices of
twin-classes containing a vertex involved in a crossing edge. Note that |Qa(j) ∩
{ui : 1 ≤ i ≤ 2k}| can be at most two. Thus, to be able to exchange these k paths
in G[X ] by equivalent paths in G[X ′] we only need that the set of twin-classes
containing respectively zero, one or at least two vertices of X are the same as
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the set of twin-classes containing containing respectively zero, one or at least
two vertices of X ′ , and this indeed holds since Pata(X) = Pata(X ′) implies
that S′(X) = S′(X ′) and W ′(X) = W ′(X ′) and hence also Z ′(X) = Z ′(X ′).
Thus, since Pata(X) = Pata(X ′) we can exchange the set of k paths in G[X ] ,
named P (u2i, u2i+1) for 1 ≤ i ≤ k − 1 and P (u2k, u1), by k paths in G[X ′]
named P (u′

2i, u
′
2i+1) for 1 ≤ i ≤ k−1 and P (u′

2k, u′
1), in such a way that vertex

ui , for any 1 ≤ i ≤ 2k , is in the same twin class as u′
i , and also such that all the

new paths belong to distinct trees in T (Y ). The latter statement is guaranteed
by the fact that P(S(X)) = P(S(X ′))} and W (X) = W (X ′). Since any two
vertices in the same twin class have the same neighbors in Z we have that also
G[X ′ ∪ Z] contains a cycle and the lemma follows.

Corollary 2. The relation on FI-sets {X ⊆ Va : X is a FI-set} given by
Pata(X) = Pata(Y ) is an equivalence relation that is a refinement of ≡a .

4.2 Tables and Algorithm

The table Taba at node a of the rooted decomposition tree T of G , is defined
as follows:

Definition 10. The table Taba will be indexed by FI-patterns. For a FI-pattern
Pa , let FIclassa(Pa) be the FI-class of the FI-sets having FI-pattern Pa , or let
it be undefined if no such FI-set exists. Thus FIclassa(Pa) = FIclassa(X) for
any FI-set X ⊆ Va having Pata(X) = Pa . For a FI-class C let max(C) be the
maximum cardinality of a FI-set in C . If FIclassa(Pa) is undefined then define
max(FIclassa(Pa)) to be −∞ . The table Taba is correct when it satisfies the
following two conditions:
1. For any FI-pattern Pa we have Taba[Pa] ≤ max(FIclassa(Pa))
2. For any FI-class C there is FI-pattern Pa with FIclassa(Pa) = C and
Taba[Pa] = max(C)

Whenever Taba[Pa] ≥ 0 we also store with this table index some arbitrary FI-set
Fa with Pata(Fa) = Pa . We are now ready to describe the algorithm computing
the cardinality of a maximum FI-set of G . Let us start by noting that based on
the above definition, the maximum entry over all table entries at the root of T
will correctly solve the problem.

The algorithm starts by initializing all table entries to −∞ .
At any leaf a of the tree T we have Va = {δ(a)} and set Taba[∅, ∅, ∅, ∅, ∅] = 0

(and store the empty FI-set Fa ) and Taba[∅, ∅, {1}, ∅, ∅] = 1 (and store the FI-
set {δ(a)} consisting of δ(a) belonging to the twin-class Qa(1)).

In a bottom-up traversal of the tree T , when reaching an internal node w
having children a and b we do the following:

For all pairs of patterns Pa, Pb from Taba, T abb with non-negative entries
Let Fa and Fb be the FI-sets stored with these indices
If G[Fa ∪ Fb] is acyclic (i.e. if Fa ∪ Fb is a FI-set)

Compute Pw = Patw(Fa ∪ Fb)
If Tabw[Pw] = −∞ store Fa ∪ Fb with this index
Tabw[Pw] = max(Tabw[Pw], T aba[Pa] + Tabb[Pb])
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4.3 Correctness and Runtime

We consider correctness of the algorithm and start by a lemma showing that
the equivalence relation given by FI-classes are well-behaved with respect to the
child-parent relation of the rooted decomposition tree.

Lemma 4. Let w be an inner node of T with children a and b . If A ≡a A′

and B ≡b B′ then A ∪B ≡w A′ ∪B′ .

Lemma 5. Based on correct tables of children Taba, T abb , the algorithm will
correctly update the parent table Tabw .

Proof. We first show that Tabw will satisfy condition 1 in Definition 10. If after
updating we have Tabw[Pw] = k for some integer k then there must be a pair
Pa, Pb with Taba[Pa] = ka and Tabb[Pb] = kb with k = ka + kb , and since
condition 1 holds for the children tables we have max(FIclassa(Pa)) ≥ ka and
max(FIclassb(Pb)) ≥ kb . Thus, there exists FI-sets Xa ⊆ Va and Xb ⊆ Vb

with FIclassa(Xa) = FIclassa(Pa) and FIclassb(Xb) = FIclassb(Pb) and
|Xa| ≥ ka and |Xb| ≥ kb . Moreover, we have stored FI-sets Fa and Fb , with
FIclassa(Fa) = FIclassa(Pa) and FIclassb(Fb) = FIclassb(Pb), by Lemma 3,
and in the algorithm we have checked that Fa ∪ Fb is a FI-set. We now apply
Lemma 4 to conclude that also Xa ∪Xb is a FI-set. By Lemma 4 we also get
the stronger statement that FIclassw(Fa ∪Fb) = FIclassw(Xa ∪Xb). We have
thus shown that if Tabw[Pw] = k then there must exist a FI-set Xa ∪Xb with
|Xa ∪Xb| ≥ k and FIclassw(Xa ∪Xb) = FIclassw(Pw) so that condition 1 is
satisfied.

We now show that Tabw will satisfy condition 2 in Definition 10. Consider a
FI-class C of ≡w . Let Z ⊆ Vw be a FI-set in this class. Note that Za = Z ∩ Va

and Zb = Z ∩ Vb must be FI-sets. Since condition 2 holds for the children
tables we therefore have Pa and Pb with Taba[Pa] ≥ |Za| and Tabb[Pb] ≥
|Zb| and FIclassa(Pa) = FIclassa(Za) and FIclassb(Pb) = FIclassb(Zb).
When the algorithm considers the pair Pa, Pb we find stored FI-sets Fa and
Fb which by Lemma 3 have the property that FIclassa(Fa) = FIclassa(Za)
and FIclassb(Fb) = FIclassb(Zb). Therefore, applying Lemma 4 we get that
since Za ∪ Zb is a FI-set then Fa ∪ Fb is a FI-set. Moreover, we also get the
stronger statement that C = FIclassw(Fa ∪ Fb) = FIclassw(Za ∪ Zb). We
have thus shown that for any FI-class C containing a FI-set Z ⊆ Vw there
will be a FI-pattern Pw = Patw(Fa ∪ Fb) with FIclassw(Pw) = C such that
Tabw[Pw] ≥ |Za|+|Zb| = |Z| . We conclude that also condition 2 will be satisfied.

Theorem 2. Given either a rooted decomposition tree (T, δ) of module-width k
of a graph G , or a k -expression of a graph G of cliquewidth at most k , we can
in O(22k2 log kn2) steps solve the Minimum Feedback Vertex Set problem on G .

Proof. Consider first the case of input being a rooted decomposition tree. By
Lemma 2 we can compute twin classes for all nodes of the tree in time O(n2).
Note that for any node a of the tree T the number of twin-classes of Va is at
most k . By Definition 10 and Lemma 5 the maximum value over all entries in
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the table at the root of our dynamic programming algorithm will correctly solve
the problem.

For the runtime, the bottleneck is the inner node update procedure which
loops over all pairs of patterns Pa, Pb . The number of patterns is bounded by
the number of choices for the 5-tuples S, W, S′, W ′,P(S). An upper bound on
the number of choices for the third and fourth components jointly (3-partitions
of the k twin-classes) is 3k , while for the first and second components jointly (3-

partitions of unordered pairs of twin-classes) it is 3
k2+k

2 . The number of choices
for the fifth component can be (loosely) upper bounded by the number of par-
titions of unordered pairs of indices of the k twin-classes. This gives an upper
bound on the total number of patterns 2k2 log k . In the update procedure we
spend for each pair of patterns time at most O(nk2) to check if the union of
two FI-sets are a FI-set and to compute the new pattern, making use of the fact
that two vertices in the same twin class have the same neighbors across the cut.
Since there are at most n inner nodes the runtime in the theorem follows.

Note that within the same runtime we could instead have taken as input a
k -expression of a graph G of cliquewidth at most k . This since by Theorem 1
the module-width of G is no larger than the clique-width of G , and from the
k -expression we easily derive a rooted decomposition tree of module-width at
most k .

Note: After submitting this paper we have learned that Ganian and Hliněný
have a manuscript [12] with an algorithm solving FVS in time O(rw2 |V (G)|2 +
25rw2

rw3|V (G)|) parameterized by the rankwidth rw of G , when a rank
decomposition of width rw is given.
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Note on Decomposition of Kn,n into (0, j)-prisms
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1 AGH University of Science and Technology
2 University of Minnesota Duluth
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Abstract. R. Häggkvist proved that every 3-regular bipartite graph of
order 2n with no component isomorphic to the Heawood graph decom-
poses the complete bipartite graph K6n,6n. In [2] the first two authors
established a necessary and sufficient condition for the existence of a fac-
torization of the complete bipartite graph Kn,n into certain families of
3-regular graphs of order 2n. In this paper we tackle the problem of de-
compositions of Kn,n into 3-regular graphs some more. We will show that
certain families of 3-regular graphs of order 2n decompose the complete
bipartite graph K 3n

2 , 3n
2

.

1 Introduction

All graphs considered in this paper are simple, finite and undirected. We use
standard terminology and notation of graph theory.

Graph decompositions have been widely studied in many different settings.
We say that a graph B has a G-decomposition if there are subgraphs G1, G2,
. . . , Gs of B, all isomorphic to G, such that each edge of B belongs to exactly
one Gi. If each Gi, i = 1, . . . , s contains all vertices of B, then we say that B
has a G-factorization.

Recall that a prism is a graph of the form Cm×P2. As in [2] for j even let the
(0, j)-prism (pronounced “oh-jay prism”) of order 2n be a graph with two vertex
disjoint cycles Ri

n = vi
0, . . . , v

i
n−1 for i = 1, 2 of length n called rims and edges

v1
1v

2
1 , v1

3v
2
3 , v1

5v
2
5 , . . . and v1

0v
2
j , v1

2v
2
2+j , v

1
4v2

4+j , . . . called spokes of type 0 and type
j, respectively (see Fig. 1). It is easy to observe that an (0, j)-prism is a 3-regular
graph and is isomorphic to an (0,−j)-prism, (j, 0)-prism and (−j, 0)-prism. In
our terminology the usual prism is an (0, 0)-prism.

The problem of factorization of Kn,n into (0, j)-prisms was solved in [2]. In
this paper we approach the decomposition problem of Kn,n into (0, j)-prisms. As
in [6] by G[H ] we denote the composition of graphs G and H which is obtained
by replacing every vertex of G by a copy of H and every edge of G by the
complete bipartite graph K|H|,|H|. We say that G[H ] arose from G by blowing
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Fig. 1. (0, j)-prism

up by H and recall that Km is the complement of Km, i.e., the graph consisting
of m independent vertices.

A labeling of a graph G is a function from V (G) into a group Γ . A. Rosa
([11]) introduced several types of graph labelings as tools for decompositions of
complete graphs. In this paper we will use a decomposition method based on
certain vertex labeling.

Definition 1. Let G be a bipartite graph with k edges. Let V (G) = V0 ∪ V1,
V0 ∩ V1 = ∅ and |V0| � |V1| � k. Let λ be an injection such that λ : Vi →
{(u, v)i : u ∈ Za, v ∈ Zb, a · b = k} and i = 0, 1. We define the dimension of
an edge x0y1 with λ(x0) = (u, v)0 and λ(y1) = (t, z)1 as dim(x0y1) = ((t − u)
(mod a), (z − v) (mod b)) for x0 ∈ V0 and y1 ∈ V1.

Let p = j
2 and b = 3. Notice that, if G is an (0, j)-prism of order 2n, where n

is even, then we can label vertices of G in such a way that R1
n = (0, 0)1, (0, 1)0,

(1, 0)1, (1, 1)0, (2, 0)1, (2, 1)0, (3, 0)1, . . . , (n
2 − 1, 1)0, (0, 0)1, R2

n = (0, 2)0, (1, 2)1,
(1, 2)0, (2, 2)1, (2, 2)0, (3, 2)1, . . . , (n

2 − 1, 2)0, (0, 2)1, (0, 2)0 and (i + 1, 0)1(i, 2)0,
(i, 1)1(i + p, 2)0 ∈ E(G), where i ∈ Zn

2
(see Fig. 2). Observe that such labeling

implies that spokes have the dimension either (1, 1) or (−p, 1). Notice that we
can also label the end-vertices of the spokes as (i, 1)0(i, 2)1, (i, 2)0(i + p + 1, 0)1,
where i ∈ Zn

2
and then they have the dimension either (0, 1) or (p + 1, 1).

Problems of decomposition of graphs into k-regular graphs were studied
widely. R. Häggkvist [8] proved that every 3-regular bipartite graph of order
2n with no component isomorphic to the Heawood graph decomposes the com-
plete bipartite graph K6n,6n. In [2] it was proved that Kn,n can be factorized into
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Fig. 2. Labeling of (0, j)-prism

(0, j)-prisms of order 2n if and only if n ≡ 0 (mod 6). It is natural to consider
also a more general problem. In this paper we decompose complete bipartite
graphs Kk,k into (non-spanning) (0, j)-prisms on 2n vertices. It is obvious that
for n ≡ 0 (mod 6) we can decompose every graph Kmn,mn by first decomposing
it into m2 copies of Kn,n and then factorizing each copy into the (0, j)-prisms.
Hence, for (0, j)-prisms our construction for n �≡ 0 (mod 6) gives stronger re-
sults than Häggkvist’s theorem. On the other hand, we notice that the obvious
necessary conditions allow wider classes of complete bipartite graphs than just
Kmn,mn for consideration. For if we want to decompose Kk,k into (0, j)-prisms
of order 2n, then it follows that k2 ≡ 0 (mod 3n), because the number of edges
of the (0, j)-prism is 3n. Moreover, since an (0, j)-prism has to be bipartite in
order to decompose Kk,k, it follows that n must be even and the (0, j)-prism has
an even number of edges. Therefore, k must be even, which implies that k ≡ 0
(mod 6). However, these conditions may be in some cases satisfied even when
k �= mn. For instance, if n ≡ 0 (mod 4), then K 3n

2 , 3n
2

satisfies the necessary
conditions. In this paper we will deal with case n ≡ 0 (mod 8) and decompose
K 3n

2 , 3n
2

into an even number of (0, j)-prisms.
The main idea of the proof is the following. First we decompose K n

2 , n
2

into
Cn, then we blow up K n

2 , n
2

into K 3n
2 , 3n

2
= K n

2 , n
2
[K3] and each Cn into Cn[K3].

Then we “glue together” certain pairs of Cn[K3] and we decompose them into
six copies of (0, j)-prisms.

The decomposition of Kn1,n2 into cycles was completely solved by J.C. Ber-
mond, C. Huang, and D. Sotteau [1] and [10].

Theorem 2. Kk1,k2 can be decomposed into Cn if and only if n, k1, k2 are all
even, n divides k1k2 and both k1, k2 � n

2 .
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2 Decomposition

In order to prove our main result, we first need the following three lemmas.

Lemma 3. Let G be an (0, 0)-prism of order 2n, where n is even. Then Kk1,k2

can be decomposed into G if 9n divides k1k2, both k1, k2 � 3n
2 and 6 divides both

k1 and k2.

Proof. Since n, k1
3 , k2

3 are all even and k1
3 , k2

3 � n
2 , we observe that Cn decom-

poses K k1
3 ,

k2
3

by Theorem 2. By blowing up each cycle by K3 we obtain decom-

position of Kk1,k2 into Cn[K3]. Denote vertices of Cn by 01, 00, 11, 10, . . . , (n
2 −

1)1, (n
2 − 1)0, 01. By blowing up Cn by K3 we obtain Cn[K3]. From each vertex

ji of Cn we obtain three vertices (j, 0)i, (j, 1)i, (j, 2)i of Cn[K3].
Let G be an (0, 0)-prism of order 2n. Notice that we can find one copy of G in

Cn[K3] in such a way that the rims are R1
n = (0, 0)1, (0, 1)0, (1, 0)1, (1, 1)0, (2, 0)1,

(2, 1)0, (3, 0)1, . . . , (n
2 − 1, 1)0, (0, 0)1, R2

n = (0, 2)1, (0, 2)0, (1, 2)1, (1, 2)0, (2, 2)1,
(2, 2)0, (3, 2)1, . . . , (n

2 − 1, 2)0, (0, 2)1 and the spokes are (i, 1)0(i, 2)1, (i, 2)0(i +
1, 0)1 ∈ E(G), where i ∈ Zn

2
(see Fig. 3).

Using Definition 1 we can see that between any two triples (i, j)0 and (i, k)1
for j, k ∈ {0, 1, 2} we have three edges of dimensions (0, 0), (0, 1), (0, 2). Similarly,
for any two triples (i, j)0 and (i+1, k)1 for j, k ∈ {0, 1, 2} we have three edges of
dimensions (1, 0), (1, 1), (1, 2). If we now apply mappings φm((a, b)s) = (a, b+m)s

for m = 0, 1, 2 and s = 0, 1, the image of every edge e will have the same
dimension as e itself. Because the endvertices of all three edges with the same
dimension between a fixed pair of triples are all different, one can observe that
the isomorphisms φm produce three edge-disjoint copies G0, G1, G2 in Cn[K3],
where Gm = φm(G). This technique is a slightly generalized form of a widely
used labeling technique, first introduced by G. Ringel, A. S. Lladó and O. Serra
[12]. Notice that such labeling implies that spokes have the dimension either
(1, 1) or (0, 1). ��

Lemma 4. Let n ≡ 0 (mod 4) and G be an (0, 2)-prism of order 2n. Then
Kk1,k2 can be decomposed into G if 18n divides k1k2 and both k1, k2 � 3n

2 and
k1, k2 ≡ 0 (mod 12).

(i, 0)1

(i, 1)1

(i, 2)1

(i, 0)0

(i, 1)0

(i, 2)0

(i + 1, 0)1

(i + 1, 1)1

(i + 1, 2)1

(i + 1, 0)0

(i + 1, 1)0

(i + 1, 2)0

Fig. 3. One copy of the graph G
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u3,1

u3,0

v3,1

v3,0

u2,1

u2,0

v2,1

v2,0

u1,1

u1,0

v1,1

v1,0

u0,1

u0,0

v0,1

v0,0

Fig. 4. Two copies of (0,2)-prisms in a segment of H [K2]

Proof. For n = 4 the graph G is isomorphic to an (0, 0)-prism, so we are done
by Lemma 3. From now on assume n � 8. Let H be an (0, 0)-prism of order
n. We know by Lemma 3 that H decomposes K k1

2 ,
k2
2

. Denote the vertices of

H so that the graph H has two rims R1
n
2

= u0, u1, . . . , un/2−1, u0 and R2
n
2

=
v0, v1, . . . , vn/2−1, v0 of length n

2 and spokes u0v0, u1v1, . . . , un/2−1vn/2−1. By
blowing up each graph H by K2 we obtain a decomposition of Kk1,k2 into H [K2].
From each vertex uj of H we obtain two vertices uj,0 and uj,1 of H [K2] and from
each vertex vj of H we obtain two vertices vj,0 and vj,1 of H [K2] (see Fig. 4).

Notice that we can find two copies G1, G2 of G in Cn[K2] in such a way that for
G1 we take the rims v0,0, u0,0, u1,1, v1,1, v2,0, u2,0, u3,1, . . . , un/2−1,1, vn/2−1,1, v0,0
and v0,1, u0,1, u1,0, v1,0, v2,1, u2,1, u3,0, . . . , un/2−1,0, vn/2−1,0, v0,1 and the spokes
u0,0u1,0, u1,1u0,1, v1,1v2,1, v2,0v1,0, u2,0u3,0, u3,1u2,1, v3,1v4,1, v4,0v3,0, u4,0u5,0, . . .,
vn/2−1,1v0,1. For G2 we let the rims be v0,0, v1,0, u1,1, u2,1, v2,0, v3,0, u3,1, . . .,
un/2−1,1, vn/2−1,0, v0,0 and v0,1, v1,1, u1,0, u2,0, v2,1, v3,1, u3,0, . . ., un/2−1,0,
vn/2−1,1, v0,1 and the spokes v0,0v1,1, v1,0v0,1, u1,1u2,0, u2,1u1,0, v2,0v3,1, v3,0v2,1,
u3,1u4,0, u4,1u3,0, . . . , un/2−1,1u0,0 (see Fig. 4). ��

In the proof of Theorem 6 we want to find a pair of (0, 0)-prisms with the
property that we can remove every other spoke in each of them and mutually
swap the two sets of spokes between the two prisms such that they become type
j spokes and hence we obtain two (0, j)-prisms. Therefore we need to make sure
that we can decompose K 3n

2 , 3n
2

into unions of these pairs of (0, 0)-prisms.
Notice that we can write any integer z uniquely as z = a2r, where a is odd

and r � 0.
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Lemma 5. Let m ≡ 0 (mod 4), c = a2α, m = b2β where a, b are odd, 1 � α < β
and H be a 4-regular bipartite graph with bipartition X = {x0, x1, . . . , xm−1},
Y = {y0, y1, . . . , ym−1} and edges xiyi, xiyi+1, xiyi+c, xiyi+c+1 for some positive
c � (m− 2)/2, where the addition in subscripts is taken modulo m. Then Km,m

can be decomposed into H.

Proof. Claim 1 Let c = a2α, m = b2β where a, b are odd and 1 � α < β.
Then Zm can be decomposed into a collection D of m/4 mutually disjoint sets
Dq = {fq, fq + 1, fq + c, fq + c + 1} for q = 0, 1, . . . , m/4− 1.

Denote g = gcd(c, m), c′ = c/g, m′ = m/g and notice that 1 � α < β implies
that g and m′ are both even.

Let M be the subgroup of Zm generated by g. This is isomorphic to Zm′

where the isomorphism φ : Zm′ → Zm is defined by φ(i) = gi. Because c′ and
m′ are relatively prime, c′ is a generator of Zm′ . We can therefore write Zm′ =
{0, c′, 2c′, . . . , (m′ − 1)c′}. Obviously, because m′ is even, we can decompose
Zm′ into sets Ap = {2pc′, 2pc′ + c′} for p = 0, 1, . . . , m/(4g) − 1. Using the
isomorphism φ, this gives corresponding subsets B0,p = {2pc, 2pc + c} for p =
0, 1, . . . , m/(4g)− 1 of Zm. Now for every coset i + M of Zm we can define the
sets Bi,p = {2pc + i, 2pc + c + i}, which obviously decompose i + M . Because
g is even, we have an even number of cosets and can combine the sets from
two consecutive cosets into desired quadruples of D. In particular, we define
Cs,p = B2s,p ∪B2s+1,p = {2pc + 2s, 2pc + 2s + 1, 2pc + c + 2s, 2pc + c + 2s + 1}
for s = 0, 1, . . . , m′/4− 1.

Because every q = 0, 1, . . . , m/4 − 1 can be written uniquely as q = sg + p,
where 0 � s < m′/4 and 0 � p < g, we can set Dq = Cs,p for q = sg + p.

Claim 2. Under the assumptions above, Km,m can be decomposed into H .
Define the length of an edge xrys as r − s (mod m) and denote by H0 the

factor of Km,m isomorphic to H with edges of lengths 0, 1, c, c + 1. Also denote
by Hq a factor of Km,m with edges of lengths fq, fq + 1, fq + c, fq + c + 1, where
fq ∈ Dq. More precisely, in Hq a vertex xi will be adjacent to vertices yj where
j = fq, fq + 1, fq + c, fq + c + 1.

Now we can define mappings ψ : H → Hq for q = 0, 1, . . . , m/4−1 by ψ(xi) =
xi, ψ(yj) = yj+fq . It should be obvious that this mapping is an isomorphism
between H and Hq. Because each factor Hq now contains edges of four different
lengths belonging to the set Dq ∈ D and according to Claim 1, D decomposes
Zm, the collection of factors Hq for q = 0, 1, . . . , m/4 − 1 forms a factorization
of Km,m. ��
Theorem 6. Let n ≡ 0 (mod 8), j = a2r and n = b2s, for some positive
integers a, b, r, s, where a, b are odd. If G is an (0, j)-prism of order 2n and
r < s, then G decomposes K 3n

2 , 3n
2

.

Proof. For j = 0 or j = 2 we are done by Lemma 3 or 4, respectively. From now
on assume that j � 4 and let p = j

2 . Recall that it follows from the definition of
an (0, j)-prism that j is always even.

As in Lemma 3 the graph K n
2 , n

2
can be decomposed into Cn by Theorem 2.

For (0, 0)-prisms the method is based on decomposition of Cn[K3] into three
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prisms (see Lemma 3), but for general (0, 2p)-prisms we need to pair up two
(0, 0)-prisms and swap half of their spokes (of type 0) so that they will be of
type j = 2p in the other prism.

So we need two cycles C1
n and C2

n, which will together give us an appropriate
collection of (0, 2p)-prisms. We denote the union C1

n∪C2
n of the appropriate cycles

by H . Obviously, H is a bipartite 4-regular graph of order n. Let the partite sets
be X = {00, 10, . . . , (n

2−1)0} and Y = {01, 11, . . . , (n−1
2 −1)1}. If the neighbors of

any vertex i0 ∈ X in H are i1, (i+1)1, (i+d)1, (i+d+1)1 for some even d � 2, then
H consists of cycles C1

n = 01, 00, 11, 10, . . . , j1, j0, (j +1)1, (j +1)0, . . . , (n
2 )1, (n

2 )0
and C2

n = d1, 00, (d+1)1, 10, . . . , (d+j)1, j0, (d+j+1)1, (j+1)0, . . . , (d−1)1, (n
2 )0.

Now the graph K n
2 , n

2
can be decomposed into H by Lemma 5.

As in Lemma 3 denote the vertices of C1
n by 01, 00, 11, 10, . . . , (n

2−1)1, (n
2−1)0,

01. By blowing up C1
n by K3 we obtain C1

n[K3]. Recall that such labeling implies
that after blowing up C1

n into K3 we can decompose C1
n[K3] into three (0, 0)-

prisms the spokes with the dimension either (1, 1) or (0, 1). We consider the
following cases:

Case 1. p is odd.
We want to “glue together” two C1

n[K3] and C2
n[K3] in such a way that we can

swap spokes of type 0 and dimension (0, 1) between C1
n and C2

n to obtain spokes
of dimension (−p, 1) that will be of type j = 2p in their new prisms.

It implies that we need edges p100, (p + 1)110, (p + 2)120, . . . ... and x100, (x +
1)110, (x + 2)120, . . . ... in the cycle C2

n. Because these two matchings need to
form the cycle C2

n of length n, we must have px− x− p2 + p + x ≡ 0 (mod n
2 ).

Because x ≡ (p−1) (mod n
2 ) is a solution, we can set x = p−1 and get C2

n =
p0, 11, (p+1)0, 21 . . . , (p−1)0, 01. Define a graph H as a union C1

n∪C2
n. By blowing

up H by K3 from each vertex ji we obtain three vertices (j, 0)i, (j, 1)i, (j, 2)i.
Using that labeling we will show now that we can decompose the graph H [K3]
into six copies of (0, 2p)-prisms.

Let G be an (0, 2p)-prism of order 2n. Notice that we can find two edge-
disjoint copies G0, G3 of G in H [K3] in such a way that for G0 we define the rims
R10

n = (0, 0)1, (0, 1)0, (1, 0)1, (1, 1)0, (2, 0)1, (2, 1)0, (3, 0)1, . . . , (n
2 − 1, 1)0, (0, 0)1,

R20
n = (0, 2)1, (0, 2)0, (1, 2)1, (1, 2)0, (2, 2)1, (2, 2)0, (3, 2)1, . . . , (n

2 − 1, 2)0, (0, 2)1
and the spokes (i + p, 1)0(i, 2)1, (i + 1, 0)1(i + 1, 2)01 ∈ E(G0), where i ∈ Zn

2
.

Whereas for G3 we define the rims R13
n = (p − 1, 0)0, (0, 1)1, (p, 0)0, (1, 1)1,

(p + 1, 0)0, (2, 1)1, (p + 2, 0)0, . . . , (p− 2, 0)0, (n
2 − 1, 1)1, (p− 1, 0)0, R23

n = (p−
1, 2)0, (0, 2)1, (p, 2)0, (1, 2)1, (p + 1, 2)0, (2, 2)1, (p + 2, 2)0, . . . , (p − 2, 2)0, (n

2 −
1, 2)1(p−1, 2)0 and the spokes (i, 1)0(i, 2)1, (i+p−1, 2)0(i, 0)1 ∈ E(G3). We can
obtain six edge-disjoint copies G0, G1, . . . , G5 in H [K3], where Gm = φm(G0)
and φm((a, b)i) = (a, b+m)i and G3+m = φm(G3) and φ3+m((a, b)i) = (a, b+m)i

for m = 0, 1, 2 and i = 0, 1.
Case 2. p is even.
In that case we want to “glue together” two C1

n[K3] and C2
n[K3] in such a

way that we can swap spokes of type 0 and dimension (1, 1) obtaining spokes
of dimension (p + 1, 1) which are now of type j = 2p. It follows that C2

n =
(p + 1)1, 10, (p + 2)1, 20 . . . , p1, 00, (p + 1)1. Define a graph H as a union C1

n ∪
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C2
n. By blowing up H by K3 from each vertex ji we obtain three vertices

(j, 0)i, (j, 1)i, (j, 2)i. As in Case 1 we show that we can decompose the graph
H [K3] into six copies of (0, 2p)-prisms. Let G be an (0, 2p)-prism of order 2n.
We can find two edge-disjoint copies G0, G3 of G in H [K3] in such a way that G0
has the rims R10

n = (0, 0)1, (0, 1)0, (1, 0)1, (1, 1)0, (2, 0)1, (2, 1)0, (3, 0)1, . . . , (n
2 −

1, 1)0, (0, 0)1, R20
n = (0, 2)1, (0, 2)0, (1, 2)1, (1, 2)0, (2, 2)1, (2, 2)0, (3, 2)1, . . . , (n

2 −
1, 2)0, (0, 2)1 and the spokes (i, 1)0(i+p, 2)1, (i, 2)0(i+1, 0)1 ∈ E(G0), where i ∈
Zn

2
. Whereas G3 has the rims R13

n = (p, 0)1, (0, 1)0, (p+1, 0)1, (1, 1)0, (p+2, 0)1,
(2, 1)0, (p + 3, 0)1, . . . , (p − 1, 0)1, (n

2 − 1, 1)0, (p, 0)1, R23
n = (p, 2)1, (0, 2)0, (p +

1, 2)1, (1, 2)0, (p + 2, 2)1, (2, 2)0, (p + 3, 2)1, . . . , (p − 1, 2)1, (n
2 − 1, 2)0(p, 2)1 and

the spokes (i, 1)0(i+p, 2)1, (i, 2)0(i+1, 0)1 ∈ E(G3), We obtain six edge-disjoint
copies G0, G1, . . . , G5 in H [K3], where Gm = φm(G0) and φm((a, b)i) = (a, b +
m)i and G3+m = φm(G3) and φ3+m((a, b)i) = (a, b + m)i for m = 0, 1, 2 and
i = 0, 1. ��

Unfortunately, this technique cannot be used for the case when n ≡ 4 (mod 8),
because we glue together two (0, 0)-prisms and swap spokes, whereas for n ≡ 4
(mod 8) we want to decompose K 3n

2 , 3n
2

into an odd number of (0, j)-prisms of
order 2n. Therefore, more powerful methods are needed to solve the case n ≡ 4
(mod 8). Also we remark here that we did not attempt to solve the cases when
the necessary conditions are satisfied while the complete bipartite graph is not
K 3n

2 , 3n
2

. For these cases the labeling techniques we used are not suitable and
methods borrowed from design theory need to be utilized instead.
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Abstract. A circuit in a simple undirected graph G = (V, E) is a se-
quence of vertices {v1, v2, . . . , vk+1} such that v1 = vk+1 and {vi, vi+i} ∈
E for i = 1, . . . , k. A circuit C is said to be edge-simple if no edge of G
is used twice in C. In this article we study the following problem: which
is the largest integer k such that, given any subset of k ordered vertices
of an infinite square grid, there exists an edge-simple circuit visiting the
k vertices in the prescribed order? We prove that k = 10. To this end,
we first provide a counterexample implying that k < 11. To show that
k ≥ 10, we introduce a methodology, based on the notion of core graph,
to reduce drastically the number of possible vertex configurations, and
then we test each one of the resulting configurations with an ILP solver.
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A circuit in a simple undirected graph G = (V, E) is a sequence of vertices
{v1, v2, . . . , vk+1} such that v1 = vk+1 and {vi, vi+i} ∈ E for i = 1, . . . , k.
A circuit C is said to be edge-simple if no edge of G is used twice in C. An
edge-simple circuit is also called closed trail in the literature. The existence of
a circuit through a prescribed set of vertices or edges has been an important
graph-theoretical question for many years [2, 3, 4, 7, 8, 9, 11, 12, 13, 16, 17, 20].
Typically, high connectivity is a powerful sufficient condition for the existence of
such circuits. For instance, it is well known that in a k-vertex-connected graph
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However, knowing specific properties of the graph often permits to prove much
stronger results. In this article we focus on the existence of edge-simple circuits
through specified vertices in the infinite square grid (or equivalently, a large
enough torus), which is a widely studied 4-connected graph. In addition, we do
not require the circuit only to visit a subset of vertices, but also to visit them in a
prescribed order. It is clear that such a circuit in the square grid always exists for
any ordered subset of 4 vertices. After thinking for a few minutes it is also easy to
convince oneself that the same holds for 5 vertices. On the other hand, it seems
intuitive to suspect that this property will not be true for an arbitrary large
subset of ordered vertices of the square grid. Therefore, the following question
arises: which is the largest integer k such that, given any subset of k ordered
vertices of an infinite square grid, there exists an edge-simple circuit visiting the
k vertices in the prescribed order? Here, we prove that k = 10.

To obtain this result, one has a priori to test the existence of an edge-simple
circuit visiting k vertices in the prescribed order on the grid, for all possible
placements and orderings of the k vertices. Since the number of possible place-
ments and orderings is prohibitively large, we introduce a methodology, based
on the notion of core graph, to reduce the number of configurations to be tested.
We first provide some background and motivations for the problem in Section 2.
We then show in Section 3 that checking the feasibility of a configuration on the
grid is equivalent to checking its feasibility on an auxiliary graph, called inter-
nal graph. Then, in Section 4 we introduce the notion of core graphs to reduce
drastically the number of internal graphs to be tested. In Section 5 we give a
counterexample establishing the upper bound k ≤ 10. In Section 6 we match this
upper bound with an ILP solver to exhaustively test all the orderings for a small
list of possible configurations that we obtained after applying the reductions of
Sections 3 and 4. Finally, Section 7 concludes the article.

2 Background and Motivation

Connectivity is one of the cornerstone concepts of graph theory. Maybe the
most archetypal results are Menger’s classical theorems [6], which say that a
graph is k-vertex-connected (resp. k-edge-connected) if and only if it contains k
vertex-disjoint (resp. edge-disjoint) paths between any two vertices. There is a
huge literature concerning extremal problems of cycles in k-connected graphs.
For instance, it is well known that in a k-vertex-connected graph any subset of k
nodes [7] or any subset of k−1 independent edges [13] is included in a cycle. There
are a number of works giving necessary or sufficient conditions for the existence
of a cycle through a specified set of vertices in a general graph [16,4,8, 17].

Some stronger results have been given for specific classes of graphs, like 3-
connected cubic graphs [9,8]. For this class of graphs it is known that there exists
a cycle through any 9 vertices, and that there exists a cycle which passes through
any 10 given vertices if and only if the graph is not contractible to the Petersen
graph [9] in such a way that each of the 10 vertices maps to a distinct vertex
of the Petersen graph. If, in addition, the 3-connected cubic graph is planar,
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then there exists a cycle through any 23 vertices [2]. Another example can be
found in [11], where the authors provide necessary and sufficient conditions for
a given graph embedded on the torus to contain edge-disjoint cycles satisfying
prescribed topological properties.

The disjoint paths problem. Observe that, in a general (di)graph, the prob-
lem of deciding whether there exist edge-disjoint paths between given pairs of
vertices is NP-complete [15] (even if the graph is a square grid [18]). When the
number of pairs of vertices is bounded by a constant, the disjoint paths prob-
lem is polynomial in undirected graphs [21], NP-complete in directed graphs [19]
(even with only two pairs of vertices [10]), and polynomial in symmetric directed
graphs [14].

However, all these results do not take into account the order in which the
cycle visits the prescribed set of nodes. This is a natural constraint, since for
example in telecommunication networks it may be important to connect a subset
of nodes in such a way that each node numbered i has capability to communicate
only with the two nodes numbered i − 1 and i + 1 (modulo the cardinality of
the subset of nodes). This could be the case, for instance, of the classical token
ring networks defined by the standard IEEE 802.5. That is, there exists a whole
class of problems to consider when the constraint on the order is introduced. In
this article we study one of these problems in square grids.

When designing a telecommunication network, the fault tolerance is a crucial
issue. Observe that the simplest network which is able to support any single
link failure is an edge-simple circuit, and that is one of the main reasons why
the study of such circuits is important. The study of the square grid is also
natural, due among other reasons to its extensive use in parallel computing. In
this context, it is interesting to know which is the largest integer k for which
there always exists a circuit visiting any ordered subset of at most k nodes.
Observe also that without taking into account the ordering, there exists a cycle
(and thus, a circuit) visiting any subset of vertices of the square grid, since the
square grid is a Hamiltonian graph.

It is worth mentioning that the square grid is in some sense the common
skeleton of planar graphs. Indeed it is well-known that every planar graph of
branchwidth at least  contains an (�/4�×�/4�)-grid as a minor [22]. Therefore,
a square grid is inside every planar graph, and any edge-disjoint circuit in a
minor of a graph can be easily transformed to an edge-disjoint circuit in the
graph itself.

3 Preliminaries

In this section we introduce some definitions to be used throughout. We use
standard graph terminology (see, for instance, [6]).

Definition 1 (Configuration, Feasible Configuration). A configuration X
is a subset of vertices of the infinite square grid. A configuration X is feasible
if, for any permutation σ of the vertices of X, there exists an edge-simple circuit
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X Gu

Fig. 1. A configuration X (defined by the full dots) and its corresponding internal
graph G

in the infinite square grid joining the vertices of X following the ordering given
by σ.

Definition 2 (Internal Graph, Internal and External Degree). Given a
subset
X = {u1, . . . , un} of nodes in the square grid, the internal graph G = (V, E) of
X is the graph with V = {v1, . . . , vn}, and for ui, uj ∈ X, {vi, vj} ∈ E if and
only if ui and uj are on the same row (or column) and there is no other z ∈ X
between ui and uj on that row (or column).

Given u ∈ X, the internal degree din(u) of u is the degree of u in the internal
graph G of X, i.e., dG(u). Similarly, the external degree of u ∈ X is dout(u) =
4− din(u). A vertex u ∈ X is isolated if din(u) = 0.

For example, in Fig. 1, a configuration X in the square grid (defined by the full
dots) and its corresponding internal graph G are depicted. The vertex labeled u
satisfies din(u) = 3 and dout(u) = 1.

Since we deal with an infinite square grid, any two vertices of an internal graph
G with external degree at least one can be connected with a path in the grid
without using any edge of G. This is because a vertex that has external degree
at least one has no neighbor in the internal graph along an infinite semirow or
semicolumn of the grid. This fact can be modeled in the following way: given an
internal graph G, we construct a (multi)graph Ĝ from G by adding a new vertex
∞ and, for each vertex u ∈ V (G), dout(u) copies of the edge {u,∞}.

Definition 3 (Feasible internal graph). An internal graph G is feasible if,
for all the permutations σ of the vertices of G, there exists an edge-simple circuit
in Ĝ joining the vertices of G following the ordering given by σ.

The following lemma follows easily from the above definitions.

Lemma 1. A configuration X is feasible if its internal graph G is feasible.

Observe that the fact that G is feasible is a sufficient (but not necessary) con-
dition for X to be feasible. Intuitively, the internal graph captures the most
difficult case among all the configurations having the same internal graph.



138 D. Coudert, F. Giroire, and I. Sau

13 5

79

2

46 8

10

13

5 7

9

2

468

10

1

3

5

7 9

24 6

810

1

3 5

79

2

46 8

10

1

35

7

9

2

4

6

810

Fig. 2. Some feasible internal graphs on 10 vertices

Before getting into technical results, and in order to get familiar with the
problem, the curious reader may verify that the internal graphs on 10 vertices
depicted in Fig. 2 (together with a numbering of their vertices) are feasible. We
shall see in Section 6 that this fact is not a coincidence, since any configuration
on 10 vertices is feasible.

4 Reducing the Problem

We now prove several technical lemmata to be used in the sequel of the article.
The objective is to reduce the number of configurations to be tested.

Lemma 2. Any internal graph in which all vertices have external degree at least
2 is feasible.

Proof: Let G be an internal graph in which all vertices have external degree at
least 2, and assume that the vertices are ordered v1, v2, . . . , vk by the permutation
σ. Then the circuit {v1,∞, v2,∞, v3, . . . , vk−1,∞, vk,∞, v1} is a solution in G. �

Lemma 3. If an internal graph G is feasible then any internal graph H that is
a subgraph of G is feasible.

Proof: Let G be a feasible internal graph, and let H be a subgraph of G. Assume
first that |V (H)| = |V (G)|, and let v1, . . . , vk be an ordering of the vertices of H .
Consider a solution C in G for the same ordering v1, . . . , vk of the vertices of G.
A solution in H is obtained from C by replacing each each {u, v} ∈ E(G)\E(H)
with the edges {u,∞}, {∞, v}. Otherwise, if |V (H)| = k < n = |V (G)|, given
an ordering v1, . . . , vk of V (H), consider a solution C in G for an ordering of
V (G) that coincides with v1, . . . , vk when restricted to V (H). Then the above
replacement transforms C into a solution in H . �

The proofs of the three following lemmas can be found in [5]. Two internal graphs
G1 and G2 are said to be equivalent if G2 is feasible if and only if G1 is.

Lemma 4. Any two isomorphic internal graphs G1 and G2 are equivalent.
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T2T1 T2+

Fig. 3. We can restrict ourselves to core graphs. An arrow from a graph G to a graph H
means that if G is feasible, so is H (due to either transformation T1 or transformation
T2).

Lemma 5. If an internal graph G is feasible, then any internal graph G′ that
can be obtained from G via the following transformation T1 is also feasible:

(1) Choose from G an isolated vertex u and an edge {x, y}.
(2) Remove u, add a new vertex v, and replace the edge {x, y} with the edges

{x, v}, {v, y}.
Lemma 6. If an internal graph G is feasible, then any internal graph G′ that
can be obtained from G via the following transformation T2 is also feasible:

(1) Choose from G two vertices u and w, such that u is isolated and din(w) ≤ 3.
(2) Remove u, and add a new vertex v and the edge {w, v}.
Combining inductively Lemmas 5 and 6, we deduce that if G′ is an internal
graph obtained from a feasible graph G with a sequence of the transformations
T1 and T2, then G′ is also feasible. In practice, this means that in any internal
graph we can take the vertices that lie in the middle of a path and the vertices
with internal degree one, and put them as isolated vertices. If the resulting graph
is a feasible internal graph, then by Lemmas 5 and 6, so is the original one. In
other words, we can restrict ourselves to internal graphs G whose connected
components (except isolated vertices) have at least two vertices in each row and
each column.

Definition 4 (Core Graph, -core Graph). An internal graph is a core
graph if all its non-edgeless connected components have at least two vertices
in each row and each column. A core graph G on k vertices is an -core graph
if G has k −  isolated vertices.

Lemmas 5 and 6 imply that we can restrict ourselves to core graphs. For instance,
consider the example of Fig. 3. The leftmost internal graph (which is the same
example of Fig. 1) can be obtained by a sequence of the transformations T1
and T2. Thus, to prove that the three internal graphs of Fig. 3 are feasible it is
enough to prove it for the rightmost graph, which is a 7-core graph.

This simplification reduces the number of configurations dramatically. In par-
ticular, the above discussion together with Lemma 2 proves that all forests are
feasible. Therefore, if we want to know if all the configurations on k vertices are
feasible, it suffices to test all the core graphs on k vertices; this is the topic of
Section 6 for k = 10. Summarizing,
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Proposition 1. If all the core graphs on k vertices are feasible, then all the
configurations on k vertices are feasible.

Note that if all the configurations on k vertices are feasible, then clearly so are
all the configurations on k′ vertices, for every k′ < k.

We introduce a last criterium to deduce the feasibility of an internal graph
on 10 vertices. The proof can be found in [5].

Lemma 7. All the 10-core graphs on 10 vertices whose non-edgeless connected
components can be obtained from a triple edge by subdividing edges are feasible.

5 Upper Bound: k < 11

In this section we show an unfeasible counterexample proving that k < 11. For
the sake of the presentation, we first describe a simple configuration showing
that k < 12.

Given a set X = {1, 2, 3, . . . , 12} of ordered nodes in a square grid G, let
Xe (resp. Xo) be the subset of nodes of X with an even (resp. odd) number,
and note that any path joining two consecutive vertices must go from Xo to
Xe, or viceversa. Let Xo be the set displayed in Fig. 4. Then, regardless of the
placement of Xe, we need at least 12 edges outgoing from the graph induced by
Xo to route the 12 paths, but there are only 10 such edges (the thick edges in
Fig. 4). So, this configuration is unfeasible for any placement of Xe.

Before providing the counterexample showing that k < 11, we need the fol-
lowing definition.

Definition 5 (Internal Path). Given an internal graph G, a permutation σ
of X, a solution C to the instance (G, σ), and a subset S ⊆ X, an internal path
in S is a subpath P of C linking two consecutive vertices of X according to σ,
such that P is a subgraph of G[S].

Given a subset of vertices S ⊆ X , the paths originating from S are paths with
at least one endpoint in S.

Proposition 2. k < 11.

Proof: Let (G, σ) be the internal graph on 11 vertices together with the ordering
depicted in Fig. 5.

Suppose for the sake of contradiction that there exists a solution C to the
instance (G, σ). Let S = {1, 6, 3, 9, 5, 11, 7} ⊆ X , and let S = {2, 8, 4, 10} (see
Fig. 5(a)). Note that there are 12 edges outgoing from G[S] to the rest of the
grid.

Claim 1. C contains exactly 1 internal path in S.

Proof: Suppose first that there is no internal path in S. Therefore, each path
originating from S uses at least 2 edges outgoing from G[S]. Since |S| = 7, there
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Fig. 5. Counterexample (G, σ) of Proposition 2 showing
that k < 11, together with the vertex sets defined in the
proof

must be 14 edges in C outgoing from G[S] to the rest of the grid, but there are
only 12. Therefore, C contains at least 1 internal path in S.

Suppose now that C contains at least 2 internal paths in S. Let S′ = {3, 9}
(see Fig. 5(a)), and note that there are 6 edges outgoing from G[S′]. Note also
that the only possible internal paths in S are 5 → 6, 6 → 7, and 11 → 1, so
any internal path in S must cross S′. Therefore, there can be at most 2 such
internal paths, and those 2 paths use 4 edges outgoing from G[S′]. Thus, only
6− 4 = 2 outgoing edges from G[S′] are left, which are not enough to route the
4 subpaths in C containing the vertices of S′. Therefore, C contains exactly 1
internal path in S. �

Claim 1 implies all the edges outgoing from G[S] are used by C to route paths
originating at S. Let S1 = {1, 3, 5} and S3 = {2, 4} (see Fig. 5(b)).

Claim 2. C contains at least 2 internal paths from S1 to S3.

Proof: Note that subgraph G[S3] has 6 outgoing edges. Since all the edges
outgoing from G[S] are used by C, exactly 3 paths go from S to S in C. Clearly,
the 4 subpaths in C containing the vertices of S3 use 4 outgoing edges from
G[S3]. Note that all paths from S to S3 are from S1.

If there is no path in C from S1 to S3, then the 3 paths from S to S cross
S3, so no edge outgoing from G[S3] would be left to route the paths originating
from S3, which is a contradiction.

If there is 1 path in C from S1 to S3, then 2 paths from S to S cross S3, so
altogether the 3 paths from S to S use 5 out of the 6 outgoing edges from G[S3].
However, 3 additional outgoing edges from G[S3] would be needed to route the
3 remaining paths originating from S3, which is a contradiction. �

Consider now S2 = {6, 9, 11} (see Fig. 5(b)). The subgraph G[S2] has 8 outgoing
edges, and 6 of them are required in C to route the paths originating at S2, so
only 2 edges outgoing from G[S2] are still available in C. But, by Claim 2, C
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contains at least 2 internal paths from S1 to S3 (which cross S2), hence using 4
outgoing edges from G[S2]. The proposition follows. �

6 Lower Bound: k ≥ 10

To show that k ≥ 10, one has a priori to test all the configurations with 10
vertices on the grid are feasible. But, the number of such configurations is pro-
hibitively big, as testing a single configuration may take a non-negligible (see
discussion below). Hence we introduce a methodology, based on the notion of
core graph (see the results of Section 4), to reduce the number of configurations
to be tested.

A näıve strategy to generate all configurations is to consider all the possibili-
ties of placing 10 points in the square grid. However, we showed in Proposition 1
that we only need to consider core graphs with 10 vertices (Definition 4). In
addition, these core graphs can be considered modulo isomorphism (Lemma 4).
It is clear that the smallest integer i such that an i-core on 10 vertices exists is 4,
and in that case the non-edgeless connected component of the 4-core is a 4-cycle.
Such a core is always feasible due to Lemma 2, because all the vertices have ex-
ternal degree at least 2. It is also easy to check that, due to the topology of the
grid, a 5-core cannot exist. One can also verify that the only 6-core in which not
all vertices have external degree at least 2 is a 2× 3-grid. Therefore, it is enough
to test this 6-core plus all the -cores on 10 vertices, for  = 7, 8, 9, 10. The pro-
cedure to generate the core graphs to be tested is detailed in Algorithm 1. The
complete code and some examples as well can be found at [1].

Proposition 3. The feasibility of any configuration on 10 vertices follows from
Algorithm 1.

The proof can be found in [5].

Remark 1. In step 12 of Algorithm 1, we partition T	 into isomorphism classes.
This step could take a non-negligible time if we just test if each pair of graphs
are isomorphic. To deal with this problem, we first carry out a sieve according to
the sorted degree sequence of the vertices and the sorted degree sequences of the
neighbours of each vertex. That is, if two graphs do not have the same sequence
of degrees and degrees of the neighbours of each vertex, we infer directly that
these two graphs are not isomorphic. This sieve reduces the computation time
considerably.

Remark 2. Observe that, due to Lemma 5, the internal graphs without at least 2
vertices per row and column could have been already removed from T	 after step
2. The reason why we kept those graphs until step 15 is that some graphs that do
have at least 2 vertices per row and column are isomorphic to graphs without at
least 2 vertices per row and column, so we can also remove them from T	.

Table 1 summarizes the number of -cores obtained while running Algorithm 1,
for  ∈ {6, 7, 8, 9, 10}. The numbers given in the first row (initial number of inter-
nal graphs) follow from the introduction of internal graphs; without it, we would
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Algorithm 1. Test configurations on 10 vertices
1: for 
 = 6 to 10 do
2: generate a list T� of all the internal graphs on 
 vertices in an (

⌊
�
2

⌋× ⌊ �
2

⌋
)-grid

(modulo translations, symmetries, and compression of empty rows or columns)
3: // INTERNAL DEGREE 1:

4: for all G ∈ T� such that G has some vertex of internal degree 1 do
5: remove G from T� {Lemma 6}
6: // EXTERNAL DEGREE AT LEAST 2:

7: for all G ∈ T� such that all the vertices of G have external degree at least 2
do

8: remove G from T� {Lemma 2}
9: // ISOMORPHIC GRAPHS:

10: partition T� into classes G1, . . . ,Gn of isomorphic graphs
11: for i = 1 to n do
12: if there exists G ∈ Gi without at least two vertices per row and column then
13: remove from T� all the graphs in Gi {Lemma 4 and Proposition 1}
14: else
15: remove from T� all the graphs in Gi except one {Lemma 4}
16: // SUBDIVISION OF TRIPLE EDGE:

17: if 
 = 10 then
18: for all G ∈ T� such that G can be obtained from a triple edge by subdividing

edges do
19: remove G from T� {Lemma 7}
20: // SUBGRAPHS:

21: for each pair of graphs G, H ∈ T� such that H is a subgraph of G do
22: remove H from T� {Lemma 3}
23: b� ← 1
24: for each G ∈ T� do
25: G′ ← G + (10 − 
) isolated vertices
26: for each permutation σ of the vertices of G′ do
27: test if (G′, σ) is feasible using an LP solver
28: if (G′, σ) is not feasible then
29: b� ← 0
30: if (b6 · b7 · b8 · b9 · b10) == 1 then
31: k = 10
32: else
33: k < 10

have a much greater number of configurations to test. Note that the results of
Section 4 induce an overall reduction from 4714 to 52 graphs.

Testing the Feasibility of Core Graphs. Recall that for each core graph G
on 10 vertices, G is feasible if for any ordering of V (G) there is an edge-simple
circuit visiting V (G) in the prescribed order. W.l.o.g. we can assign to one of the
vertices of G the number 1 of the permutation (modulo cyclic permutations),
and then for each core graph one has to test 9! = 362.880 possibilities.
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Table 1. Number of 
-core graphs on 10 vertices in Algorithm 1. A single graph is a
graph with a line or column with only one vertex.

Graphs \ 
 6 7 8 9 10 Total
Initial number of internal graphs 1 7 53 485 4166 4714

Number of isomorphisms 0 3 42 453 4051 4581
Number of subgraphs 0 0 5 10 58 73

Number of single graphs 0 2 6 22 74 104
Final number of internal graphs 1 2 4 10 35 52

For each core graph G and permutation σ, the problem we study can be easily
formulated as an integer multicommodity flow problem in a graph with unitary
capacity on the edges and so as an integer linear program (ILP). Indeed, the
existence of an edge-simple circuit Cσ in a core graphs G is equivalent to the
existence of k edge-disjoint paths in G between the pairs of vertices (or commodi-
ties) {σ(1), σ(2)}, . . . , {σ(k− 1), σ(k)}, {σ(k), σ(1)}. Thus, a feasible solution of
the ILP implies the existence of an edge simple circuit, and this feasibility can
be quickly checked using an ILP solver (for instance, CPLEX).

In average, testing the 9! permutations for each internal graph takes around
40 minutes on a PC with an Intel Core 2 Duo CPU 2.33GHz running Fedora 8
(see [1]), so testing the 4714 internal graphs would take around 4 months and a
half. Testing the 52 remaining graphs has taken just 35 hours and 37 minutes [1].

Running the ILP solver on the configurations given by Algorithm 1, we ob-
tained that all -cores are feasible for each  ∈ {6, 7, 8, 9, 10}.Therefore, combining
Propositions 2 and 3 yields that

Theorem 1. There exists an edge-simple circuit through any set of 10 ordered
vertices of an infinite square grid.

7 Concluding Remarks

In this article we showed that given any subset of 10 ordered vertices of an
infinite square grid, there exists an edge-simple circuit visiting the 10 vertices
in the prescribed order, and that the number 10 cannot be replaced by 11. To
do so, we introduced a methodology to reduce the problem to a small number
of configurations, which were then exhaustively tested using an ILP solver. The
details about the implementation of our algorithm are available at [1]. Finding
a purely combinatorial proof of this result remains open.

Another avenue for further research could be to impose a bound on the size of
the grid or torus, namely to consider an (n1 × n2)-torus and to find the largest
integer k(n1, n2) such that given any subset of k(n1, n2) ordered vertices in an
(n1×n2)-torus, there exists an edge-simple circuit visiting the k(n1, n2) vertices
in the prescribed order.

Another direction is to consider another graphs instead of the square grid,
like triangular and hexagonal grids and, more generally, general planar graphs
or graphs of bounded treewidth.
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Finally, adding the constraint of the prescribed order to the classical problems
concerning the existence of circuits (see related work in Section 2), creates a
whole family of new problems to consider.
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Abstract. In this paper we address the problem of designing O(n) space
representations for permutation and interval graphs that provide the
neighborhood of any vertex in O(d) time, where d is its degree. To that
purpose, we introduce a new parameter, called linearity, that would solve
the problem if bounded for the two classes. Surprisingly, we show that it
is not. Nevertheless, we design representations with the desired property
for the two classes, and we implement the Breadth-First Search algorithm
in O(n) time for permutation graphs; thereby lowering the complexity of
All Pairs Shortest Paths and Single Source Shortest Path problems for
the class.

1 Introduction

Interval graphs are the intersection graphs of intervals of the real line, and per-
mutation graphs are the intersection graphs of segments joining two parallel
lines. They are extensively studied graph classes. One of the reasons is that they
naturally appear in many contexts such as scheduling, genomics, phylogeny and
archeology. On these two classes, a lot of usually NP-complete problems (e.g.
coloring, maximum clique, domination) admit very efficient and elegant solu-
tions (see [7,11]). These algorithms are based on geometric definitions of the two
classes, which give rise to O(n) space representations providing adjacency infor-
mation1 between an arbitrary pair of vertices in O(1) time, while the adjacency
matrix takes O(n2) space, where n is the number of vertices in the graph.

Though it seems a natural question, the issue of designing O(n) space data
structures providing the neighborhood of an arbitrary vertex in O(d) time, where
d is its degree, has never been investigated for any of the two classes. For arbitrary
graphs, the question of finding compact representations providing optimal time
neighborhood queries is actually a practical issue [12]. The compactness of such
representations allows to store the graph entirely in memory, and preserve the
� This work was supported by the French ANR project ANR-06-BLAN-0148-01

(GRAAL).
1 That is, answering the question ”Is x adjacent to y?”
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complexity of algorithms using neighborhood queries. The conjunction of these
two advantages has great impact on the running time of algorithms managing
large amount of data.

Does there exist a O(n) space structure providing neighborhoods in O(d) time
for interval and permutation graphs? There is a natural approach that one can-
not avoid to consider. It consists in trying to extend some known results for
subclasses of interval graphs or permutation graphs that are known to have very
good properties with regard to neighborhood encoding. The proper (or unit)
interval graphs are the subclass of interval graphs that admit a model whose
intervals all have the same length. They are also characterized as the graphs
admitting a linear order on their vertices such that the closed2 neighborhood of
each vertex is an interval [10]. Some compression techniques are based on this
notion [1,2]: they try to find orders of the vertices that group the neighborhoods
together, as much as possible. If one uses one single order on the vertices and
allows the closed neighborhoods of the graph to be split in at most k intervals,
the minimum value of k which make possible to encode the graph in this way is
a known parameter called closed contiguity. Let us mention that [6,14] showed
that deciding whether a graph has closed contiguity at most k is NP-complete
for any fixed k ≥ 2, and [5] gave an upper bound on the value of the parameter
for arbitrary graphs. Another possible way of generalization is to use at most k
orders on the vertices such that the closed neighborhood of a vertex is the union
of one interval in each of the k orders. It gives rise to a new parameter, that
we call closed linearity, which is always less or equal to the closed contiguity.
Concerning the corresponding notions for open neighborhoods, it is known that
bipartite permutation graphs have3 open contiguity 1 [3], or equivalently open
linearity 1. Then, it seems unavoidable to ask whether interval and permutation
graphs have one of the four parameters mentioned above bounded. Unfortu-
nately, none of them is bounded for any of the two classes. We show that the
linearity (closed or open) can be up to Ω(log n/ log log n). However, following an-
other approach, we devise O(n) space data structures, for both interval graphs
and permutation graphs, that provide neighborhoods in O(d) time, and that can
be computed from an intersection model of the graph in O(n) time. This gives
new possibilities for the applications dealing with big interval or permutation
graphs on which neighborhood queries are needed.

The fact that the neighborhood representation question had not been risen
before for interval and permutation graphs is even more surprising consider-
ing that, on arbitrary graphs, many algorithmic problems are efficiently solved
thanks to adjacency lists, which provide O(d) time neighborhood queries. Part
of the reason is that the structure induced by the intersection models of these
two classes often allows to avoid addressing the problem. However, we believe

2 The closed neighborhood is the classic neighborhood augmented with the vertex
itself. We will refer to the classic neighborhood as the open neighborhood, in order
to avoid confusion between the two notions.

3 The graphs having open contiguity 1 are exactly biconvex graphs, which is a subclass
of bipartite graphs that properly contains bipartite permutation graphs.
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that the problem of efficiently managing neighborhood in interval and permu-
tation graphs may lead to new algorithmic developments for the two classes by
improving or simplifying some algorithms. As an illustration of the interest of
considering this question, we show how to implement an O(n) time Breadth-
First Search algorithm (BFS for short) for permutation graphs. This lowers the
complexity of finding All Pair Shortest Paths and Single Source Shortest Paths
in a non weighted graph of the class to respectively O(n2) and O(n).

Outline of the Paper. Section 2 gives some basic definitions and notations. In
Section 3, we formally define the closed linearity and show that this parameter
can be up to Ω(log n/ log log n) for both interval graphs and permutation graphs.
In Section 4, we design an O(n) space data structure providing the neighborhood
of any vertex in O(d) time. Finally, in Section 5 we implement the BFS algorithm
in O(n) time for permutation graphs.

2 Preliminaries

All graphs considered here will be finite, undirected, loopless and simple. In the
following, G denotes for a graph, V for its vertex set and E for its edge set,
we denote G = (V, E). The set of subsets of V is denoted 2V . Throughout the
paper, n stands for |V | and m for |E|. An edge between vertices x and y will be
arbitrarily denoted xy or yx. The (open) neighborhood of x is denoted N(x) and
the closed neighborhood N [x] = N(x) ∪ {x}. For a rooted tree T and a vertex
u ∈ T , we denote T (u) for the subtree of T rooted at u, and AncT (u) for the
ancestors of u in T (u ∈ AncT (u)). The depth of u in T , is the number of edges
in the path from the root to u (the root has depth 0). The depth of T , denoted
depth(T ), is the greatest depth of its leaves. The set of vertices at depth i in T
will be denoted T i. For a linear ordering σ on a set S, we denote min(σ) (resp.
max(σ)) for the first (resp. last) element of σ. For any s ∈ S, we denote σ(s)
for the rank of s in σ (min(σ) has rank 1, and max(σ) rank |S|), and for any
i ∈ [1, |S|], we denote σ−1(i) for the element s ∈ S such that σ(s) = i. For s ∈ S,
s− (resp. s+) denotes for the predecessor (resp. successor) of s in σ. σ denotes
for the reverse order of σ. The list L containing elements x1, . . . , xk is denoted
L = [x1, . . . , xk]. For two lists L1, L2 with L1 = [x1, . . . , xk] and L2 = [y1, . . . , yk],
we denote L1.L2 for the concatenated list L1.L2 = [x1, . . . , xk, y1, . . . , yk].

An interval model of a graph G is a set of intervals of the real line together
with a one to one mapping onto the set of vertices of G, such that there is an
edge between vertices x and y in G iff their corresponding intervals intersect
(see Fig. 1(b)). An interval graph is a graph admitting such a model. The class
remains the same if the intervals are required to be closed and to have integer
endpoints between 1 and 2n, all models considered in the following satisfy this
restriction. Associating each vertex with the endpoints of its interval provides
an efficient encoding of the graph that takes O(n) space and allows to answer
adjacency queries between any pair of vertices in O(1) time.
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A permutation model of a graph is a set of segments joining two given parallel
lines along with a one to one mapping onto the set of vertices of G, such that there
is an edge between vertices x and y in G iff their corresponding segments intersect
(see Fig. 1(c)). A graph G is a permutation graph iff it admits a permutation
model. The class remains the same if the endpoints of the segments are required
to be pairwise distinct. We denote π1 and π2 for the orders on the vertices
induced by the order of their endpoints respectively on the first and second line.
Vertices x and y are adjacent in G iff (π1(y) − π1(x)) × (π2(y) − π2(x)) < 0;
that is iff x and y do not appear in the same relative order in the first and
in the second linear ordering. Associating with each vertex x of G the couple
(π1(x), π2(x)) results in a O(n) representation of G providing adjacency in O(1)
time. We will refer to π1(x) and π2(x) as the endpoints of x, identifying x and
its corresponding segment.

3 Interval Graphs and Permutation Graphs Have
Unbounded Closed Linearity

The aim of this section is to prove that interval graphs and permutation graphs
have unbounded contiguity and linearity (both open and closed). Thanks to the
relationships between the four parameters, we will derive the result from the
case of closed linearity, for which we give a formal definition.

Definition 1. We call a closed p-line-model of a graph G = (V, E) a tuple
(σ1, . . . , σp) of linear orders on V such that ∀v ∈ V, ∃(I1, . . . , Ip) ∈ (2V )p, (∀i ∈
[1, p], Ii is an interval of σi) and N [x] =

⋃
1≤i≤p Ii.

The closed linearity of G, denoted cl(G) is the minimum integer p such that
there exists a closed p-line-model of G.

We now exhibit a family of graphs which shows that closed linearity is unbounded
for interval and permutation graphs.

Theorem 1. For any k ∈ N, there exists a graph G that is both an interval
graph and a permutation graph, and such that cl(G) > k.

Proof. Consider the transitive closure of the rooted directed 2k + 1-ary tree Tk

of depth k, for k ≥ 1. Let Gk be its underlying undirected graph.
We first prove that Gk is a permutation graph: for every internal node v of Tk,

choose an arbitrary order πv on its 2k+1 children. Let π1 (resp. π2) be the order
in which one discovers the nodes of Tk in a Depth-First Search that respects the
orders πv (resp. πv) for all v ∈ Tk. (π1, π2) is a permutation model of Gn, as
illustrated for G2 in Fig. 1(c). It is easy to see that Gk is also an interval graph:
for any vertex v ∈ T , choose an interval included in its father’s one and disjoint
from its siblings’one, as in Fig. 1(b).

We now prove that cl(Gk) > k. Assume for contradiction that Gk admits a
closed k-line-model M. We prove by recursion that for all i ∈ [0, k], there is
a vertex xi at depth i in Tk such that for all u ∈ AncTk

(xi) \ {xi} and for all
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(a)

(b) (c)

Fig. 1. The interval model (b) and the permutation model (c) of the undirected
underlying graph of the transitive closure of the rooted directed tree T2 (a). This
graph has linearity strictly greater than 2, because two orders are not sufficient to
represent the closed neighborhood {r, x1, x2} of x2.

y ∈ Tk(u), y is not next to u in any order of M. This is trivially true for i = 0
since the root is at depth 0 and has no strict ancestor. We now suppose this is
true for some i ∈ [0, k− 1], and prove it for i + 1. Since there are k orders in M
and since xi has 2k + 1 children, there exists one child xi+1 of xi such that for
all y ∈ Tk(xi+1), y is not next to xi in any order of M. Then, xi+1 shows that
the inductive hypothesis also holds for i + 1.

Consider the leaf xk given by the statement above, proved by recursion. The
closed neighborhood of xk is exactly AncTk

(xk). Let σ be a linear order of
M. From the statement, no vertex of AncTk

(xk) is next to another vertex of
AncTk

(xk) in σ. It follows that the interval associated to xk in σ contains only
one vertex. As there are k+1 vertices in the closed neighborhood of xk and only
k orders in M, we get a contradiction. Thus, cl(Gk) > k. �

Since the graphs Gk used in the proof of Theorem 1 have (2k + 1)k vertices and
since cl(Gk) > k, it follows that cl(Gk) = Ω(log n/ log log n). This lower bound
also holds for open linearity, open contiguity and closed contiguity, which are
respectively denoted ol(G), oc(G) and cc(G). Indeed, one can obtain a closed
p + 1-line-model from an open p-line-model by adding a linear order in which
the interval associated to a vertex is reduced to the vertex itself. It follows that
ol(G) ≥ cl(G) − 1. In addition, if G has contiguity p, make p copies of a linear
ordering π realizing this p, and, in each of the p copies, associate to all the
vertices of G one of their at most p intervals in π. This results in a k-line-model
of G and shows that cc(G) ≥ cl(G) and oc(G) ≥ ol(G) ≥ cl(G) − 1. Thus, the
four parameters have value Ω(log n/ log log n) for Gn. Let us mention that there
are examples showing that the contiguity (open and closed) can even be up to
Ω(log n) for both interval and permutation graphs.
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4 Encoding Neighborhoods in Interval Graphs and
Permutation Graphs

Here, we aim at providing O(n) space representations of interval graphs and
permutation graphs that allow to answer neighborhood queries on any vertex x
in O(d) time, where d is the degree of x. Moreover, the structures we propose
can be constructed in O(n) time from the interval or permutation model of the
graph. We first show that, for interval graphs, the encoding problem we consider
can be reduced to the same problem on permutation graphs. Then, we describe
an encoding of permutation graphs satisfying the desired properties.

Interval Graphs. The neighborhood of a vertex x of an interval graph can
be divided into three (not necessarily disjoint) parts: the subset L(x) of vertices
whose interval left endpoint lies in the interval of x, the subset R(x) of vertices
whose interval right endpoint lies in the interval of x, and the vertices whose
interval either contains or is included in the one of x. Let π1 (resp. π2) be the
order on the vertices of G obtained by sorting them with increasing interval left
(resp. right) endpoints, breaking the ties in an arbitrary way. It is not difficult to
see that L(x) is an interval I1 of π1 and R(x) is an interval I2 of π2. Concerning
the last part of the neighborhood, it is known that the containment relationship
of intervals (i.e. I is in relation with J iff I ⊆ J or J ⊆ I) is a permutation graph,
denoted G′, whose permutation model is (π1, π2). Therefore, a neighborhood
query on x in G will be treated by augmenting the result of the query in G′ with
the vertices of I1 ∪ I2.

Note that this encoding of interval graphs usually contains redundant infor-
mation. During the query on x, a vertex whose interval is included in that of
x will appear in the result of the query in G′, as well as in I1 and in I2. This
drawback can be avoided by simply parsing the output list to remove repetitions.
Anyway, this redundancy only introduces a constant multiplicative factor and
we still achieve expected time and space complexity, provided that there exists a
structure achieving it for permutation graphs. We now concentrate on building
such a structure.

Permutation Graphs. The difficulty of encoding neighborhoods in permuta-
tion graphs comes from the fact that the neighborhood of a vertex can be spread
everywhere in the two orders of the permutation model. Then, scanning the or-
ders to collect the neighborhood of x may take up to O(n) time. However, we
show that it is possible to extract the neighborhood of x from the permutation
model, without scanning it, in O(d) time, where d is the degree of x. This can be
achieved thanks to augmented Cartesian trees, introduced in [4], which is based
on Cartesian trees [13] and constant time nearest common ancestor queries [8,9].
This structure provides, in constant time, the maximum, on any given interval,
of an integer function f defined on a linear order; and it can be computed in
O(n) time for a linear order on n elements. Notice that changing f for its oppo-
site provides the same features for minimum queries. We denote max(f, I) (resp.
min(f, I)) for the maximum (resp. minimum) of function f over interval I.
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We now detail the algorithm listing the neighborhood of a vertex (cf. Fig 2).
We assume that the model (π1, π2) of the permutation graph G is given, as well
as the augmented Cartesian tree of the function π2 on the linear order π1, which
provides the maximum of π2 on any interval of π1. The prerequisites of Routine
MaxNeighbor(x, I) are: 1) x is a vertex of G and 2) I = [lI , rI ] is a non-empty
interval of π1 such that rI <π1 x. Lemma 1 below states that, when they are
satisfied, the routine returns all the neighbors y of x that belong to I, and runs
in O(d) time.

Lemma 1. When its prerequisites are satisfied, Routine MaxNeighbor returns
the neighbors of x belonging to the interval I of π1, in O(d) time.

Proof. The prerequisite 2) guarantees that rI <π1 x. Then, a vertex z ∈ I is
adjacent to x iff z >π2 x. Since the test of Line 3 occurs on the vertex y ∈ I
having the greatest value for π2(y), it exactly determines whether x is adjacent
to some vertex of I; and in the positive, y is added to N . Then, the search
recursively goes on in the two pieces made by the removal of x in I. Since these
two pieces still satisfy the prerequisites and since the search do not forget any
part of I, it discovers all the neighbors of x belonging to I.

Thanks to the augmented Cartesian tree, the maximum query of Line 2 takes
constant time, and so does each recursive call to MaxNeighbor. Then the com-
plexity of the routine is its number of recursive calls. Each vertex y ∈ N(x) ∩ I
discovered during a recursive call, then called a discovering call, has not been
discovered before, since the neighbors discovered are excluded from the search.
Then the number of discovering calls is O(d). When a recursive call does not
discover any neighbor of x, it does not call Routine MaxNeighbor. It follows
that all calls are made by a discovering call, called its parent call. Since Routine

MaxNeighbor(x, I)
1. N ← ∅

2. y ← π−1
2 (max(π2, I))

3. If y >π2 x Then
4. N ← N ∪ {y}
5. If lI <π1 y Then N ← N∪ MaxNeighbor(x, [lI , y−])
6. If y <π1 rI Then N ← N∪ MaxNeighbor(x, [y+, rI ])
7. Return N

Neighborhood(x)
8. N ← ∅

9. If min(π1) <π1 x Then N ← N∪ MaxNeighbor(x, [min(π1), x−])
10. If x <π1 max(π1) Then N ← N∪ MinNeighbor(x, [x+, max(π1)])
11. Return N

Fig. 2. Routines MaxNeighbor and Neighborhood. x is a vertex of G and I = [lI , rI ] is
an interval of π1.
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BuildTree(π1, π2, σ)
1. x ← min(σ); ord(x) ← 1
2. initialize I and Γ with (x, x, x, x)
3. For all y ∈ N(x) Do
4. parent(y) ← x; color y in gray; update(Γ, y)
5. While I �= Γ Do
6. Γnew ← Γ ; Exam ← ∅

7. If α1 < a1 Then PutInTree(α1 , a−
1 , π1, Q

l
1, Exam)

8. If β1 > b1 Then PutInTree(β1 , b+
1 , π1, Q

r
1, Exam)

9. If α2 < a2 Then PutInTree(α2 , a−
2 , π2, Q

l
2, Exam)

10. If β2 > b2 Then PutInTree(β2 , b+
2 , π2, Q

r
2, Exam)

11. AssignOrd(Ql
1, Q

r
1, Q

l
2, Q

r
2); color Exam in gray

12. I ← Γ ; Γ ← Γnew

Fig. 3. Routine BuildTree. Lists Ql
1, Qr

1, Ql
2, Qr

2 and Exam are local variables of
the main loop, as well as Γnew which is a quadruplet of integers. I and Γ are global
variables.

MaxNeighbor contains at most two recursive calls during an execution, a discov-
ering call is the parent of at most two non-discovering calls. Thus, the number
of non-discovering calls is also O(d), and so is the total running time of Routine
MaxNeighbor. �

Similarly to MaxNeighbor, we can design a Routine MinNeighbor that discovers
all the neighbors of x belonging to an interval I of π1 lying entirely to the right
of x: simply replace max with min at Line 2 and reverse the inequality of Line 3.
Then, from Lemma 1, it is clear that Routine Neighborhood discovers all the
neighbors of x in O(d) time, as stated by Theorem 2.

Theorem 2. Routine Neighborhood returns the neighborhood of x in O(d) time.

5 Breadth-First Search of Permutation Graphs

The input of our algorithm is a permutation graph G given by its model (π1, π2)
and a linear order σ on V . It computes the BFS tree Tσ resulting from the BFS of
G with priority order σ, that is, the BFS starting with vertex min(σ) and where
the neighbors y of a vertex are examined with increasing σ(y). Our algorithm
does not discover the vertices in the same order as the standard BFS would
do. Nevertheless, the tree T produced is the same, except that the children of
a vertex of T are not ordered; which we fix, in a final step, by sorting all the
children lists according to σ. The total complexity of the process is O(n).

The Algorithm. Routine BuildTree (cf. Fig. 3) computes the BFS tree of
the connected component of the first visited vertex. It can be applied itera-
tively on the first non-visited vertex in σ in order to get the complete BFS
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forest. From now on, we concentrate on building a single tree T . In the de-
scription of the algorithm, parent(y) denotes for the parent of vertex y in T .
Before the algorithm starts, parent(y) is initialized with ⊥, and y is colored in
white. Γ = (α1, β1, α2, β2) and I = (a1, b1, a2, b2) are quadruplets of vertices.
We denote I1 for the interval [a1, b1] of π1 and I2 for [a2, b2] in π2. Similarly,
Γ1 = [α1, β1] in π1, and Γ2 = [α2, β2] in π2. Procedure update(X, y), where
y ∈ V and X = (l1, r1, l2, r2) is a quadruplet of vertices, executes the instructions
lj ← minπj(lj , y) and rj ← maxπj (rj , y), for j ∈ {1, 2}. Function ord takes inte-
ger values assigned by Procedure AssignOrd. We denote <ord the order defined
by u <ord v iff ord(u) < ord(v). The arguments of AssignOrd are four lists (not
necessarily disjoint), which are merged by the procedure into a single one Qglob

without repetition and sorted according to order <prior (defined below), the
first element of the list being the least one for <prior. Then, for each vertex x in
Qglob, the procedure assigns ord(x) with the rank of x in Qglob. For any i ≥ 0, we
denote Oi for {y ∈ T i | ord(y) is defined}. Order <prior is defined by u <prior v
iff ord(parent(u)) < ord(parent(v)) or

(
ord(parent(u)) = ord(parent(v)) and

σ(u) < σ(v)
)
. By convention, element ⊥ is the greatest for order <prior.

Routine BuildTree builds T level by level from the root to the leaves. The
ith iteration of the main loop (starting at Line 5) builds T i+1 by parsing the
vertices of (Γ1 \I1)∪(Γ2 \I2), thanks to the four calls to Routine PutInTree (cf.
Fig. 4). This routine affects to the encountered white vertices their parent in T
(Line 4). A vertex is colored gray (Line 11 of BuildTree) only when it has been
placed correctly in T ; note that a vertex may be assigned a parent twice, once
in π1 and once in π2. The main loop stops when I = Γ (Line 5), that is, when
the two intervals of π1 and π2 corresponding to the connected component C of
min(σ) have been entirely parsed. Then, all the vertices have been assigned a
parent, and the construction of T is over.

Correctness. It is straightforward that during all the algorithm, I1 ⊆ Γ1 and
I2 ⊆ Γ2. The key of the correctness of our algorithm is the following invariants. At
the beginning of the ith iteration of the main loop of BuildTree (Line 5), T has
been built correctly until depth i, the set of gray vertices is exactly

⋃
0≤j≤i T j,

and the properties below hold.

1. The vertices of
⋃

0≤j<i T j have their two endpoints in I1 and I2;
2. The vertices of T i have their two endpoints in Γ1 and Γ2;
3. I1 ∪ I2 contains all the vertices of

⋃
0≤j≤i T j and no others;

4. The bounds of Γ1 and Γ2 belong to
⋃

0≤j≤i T j.
5. The order <ord restricted to Oi−1 is exactly the order of visit of the vertices

of Oi−1 by the standard BFS algorithm.

During the main loop, the four calls to PutInTree parse the vertices of B =
(Γ1 \ I1)∪ (Γ2 \ I2). The white vertices of B are exactly the vertices of T i+1 and
the gray ones are in T i. PutInTree affects to the white vertices of B their parent
in T , which is among the gray vertices of B. The vertices of T i that have their
two endpoints in I1 and I2 are leaves of T . Let us examine more precisely the
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PutInTree(u, v, π, Q, F )
1. p ← u; Q ← [p]
2. For y from u to v in π Do
3. If y is white and p <prior parent(y) Then
4. parent(y) ← p; F ← F.[y]; update(Γnew, y)
5. If y is gray and y <prior p Then
6. p ← y; Q ← [p].Q

Fig. 4. Routine PutInTree. π is an order, u and v two vertices, and Q and F are lists.
Γnew is a variable of Routine BuildTree.

first call to PutInTree, when α1 < a1. From Invariant 1 and 4 (Inv. for short),
α1 ∈ T i. Let w be a white vertex of [α1, a

−
1 ]. Since all the vertices of I1 ∪ I2

are gray (Inv. 3) and since w is not adjacent to min(σ), necessarily w <π2 a2.
Moreover, since α1 ∈ T i, α1 has an endpoint in I2 (Inv. 3). It follows that w and
α1 are adjacent and w ∈ T i+1. Similarly, w is adjacent to all the gray vertices
z <π1 w and to none of the gray vertices z >π1 w. From Inv. 5 and the definition
of <prior, we have that, for u, v ∈ T i, u <prior v iff u is visited before v by the
standard BFS. Then, the test at Line 5 together with the affectation at Line 6
maintain variable p as the gray node of [α1, y] which is the first visited by the
standard BFS, where y is the current vertex in the loop starting at Line 2. Thus,
any white vertex w ∈ [α1, a

−
1 ] is assigned a parent which is the gray vertex of

[α1, a
−
1 ] ∩ N(w) being the first one visited by the standard BFS (remind that

[w, a−
1 ] ∩N(w) = ∅). More generally, this is true for any white node discovered

in any of the four calls to PutInTree. Note that a white vertex w may be seen
in two different calls to PutInTree, once in π1 and once in π2. In this case, the
test at Line 3 guarantees that the second possible parent is affected if and only
if it is visited by the standard BFS before the first one. Thus, during the main
loop, any white vertex w of B is affected its correct parent in T . We showed
that w ∈ T i+1; note that conversely, every vertex w ∈ T i+1 is white and has
necessarily an endpoint in B: otherwise, it would either be adjacent to none of
the vertices of

⋃
0≤j≤i T j, or adjacent to min(σ); both contradict the fact that

w ∈ T i+1. As a conclusion, the ith iteration of the main loop properly computes
level T i+1 and colors its vertices in gray (Line 11).

The fact that Γnew is updated, at Line 4 of PutInTree, every time a white
vertex (which will become gray at Line 11) is visited, together with the two
affectations at Line 12 of BuildTree, imply that Inv. 1 to 4 are still true at
the beginning of the next iteration. Finally, since order <prior on set T i is the
order of visit of the vertices of T i by the standard BFS, and since AssignOrd
(Line 11) assigns the values of ord(v) to the vertices v ∈ T i according to <prior,
it follows that Inv. 5 is also maintained during the loop.
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Complexity. The total running time of our BFS algorithm is O(n). First, we
build the structure of Section 4 that allows to answer neighborhood queries in
O(d) time. It takes O(n) time. Then, Routine BuildTree gives the BFS tree
(except the order on the children) of the connected component C of the first
vertex examined, in O(|C|) time. We repeat Routine BuildTree, starting from
the first non-visited vertex in σ, until all the vertices of the graph have been
visited. As the sets of vertices visited during each call to BuildTree are disjoint,
the total running time of all the calls to BuildTree is O(n). At last, we order the
lists of children of the vertices in all the trees produced: set the lists of children
of all the vertices in the forest to ∅, and scan σ placing each vertex in the list
of its parent. At the end of the scan, all the children lists have been rebuilt and
sorted according to σ. This process takes O(n) time.

Let us detail the O(|C|) time complexity of Routine BuildTree. Remind that
B denotes for (Γ1 \ I1) ∪ (Γ2 \ I2). Thanks to the data structure of Section 4,
at Line 3, we can get N(x) in O(|N(x)|) time, which is also the running time
of the initialization loop. In PutInTree, all instructions take O(1) time, and
the Routine runs in O(|π(u) − π(v)|) time. That is, O(|B|) time for the four
calls of the main loop. Coloring Exam also takes O(|B|) time. The complexity
of procedure AssignOrd is a crucial point. It is worth to note that any list
Q′ being one of its arguments is already sorted according to <prior. This is a
property of PutInTree, which produces Q′, guaranteed by the test y <prior p
at Line 5 and the affectations of Line 6. It follows that AssignOrd can be
implemented to merge the four lists in a single one, sorted according to <prior,
in O(|Ql

1| + |Qr
1| + |Ql

2| + |Qr
2|) = O(|B|) time. Then, the running time of an

iteration of the loop is O(|B|), and since all the B’s considered until the end of
the loop are pairwise disjoint, it follows that the main loop, as well as Routine
BuildTree, runs in O(|C|) time.
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Abstract. We present efficient algorithms for storing past segments of a
text. They are computed using two previously computed read-only arrays
(SUF and LCP) composing the Suffix Array of the text. They compute
the maximal length of the previous factor (subword) occurring at each
position of the text in a table called LPF. This notion is central both in
many conservative text compression techniques and in the most efficient
algorithms for detecting motifs and repetitions occurring in a text.

The main results are: a linear-time algorithm that computes explic-
itly the permutation that transforms the LCP table into the LPF table;
a time-space optimal computation of the LPF table; and an O(n log n)
strong in-place computation of the LPF table.

Keywords: longest previous factor, suffix array, Ziv-Lempel factorisa-
tion, text compression, detection of repetitions.

1 Longest Previous Factor

We consider a string y of length n on the alphabet A: y = y[0 . . n − 1]. The
problem is to compute the Longest Previous Factor table defined, for 0 ≤ i < n,
by

LPF[i] = max{k | y[i . . i + k − 1] occurs at a position j < i}.
For example, the text y = abaabababbabbb has the following LPF table.
position i 0 1 2 3 4 5 6 7 8 9 10 11 12 13

y[i] a b a a b a b a b b a b b b
LPF[i] 0 0 1 3 2 4 3 2 1 4 3 2 2 1
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The problem may be regarded as an extension of the Ziv-Lempel factorisation
(LZ77) of a string as defined in [20]. A string y is decomposed into factors, called
phrases, u0, u1, . . . , uk, for which y = u0u1 · · ·uk and defined informally by:
ui = va where a is a letter and v is the longest segment of u0u1 · · ·ui occurring
both at position |u0u1 · · ·ui−1| and before it in y. The factorisation is used in
several adaptive compression methods which encode carefully re-occurrences of
phrases by pointers or integers (see [18] or [19]). The factorisation yields more
powerful compressors than the factorisation in [21] (called LZ78) where a phrase
is an extension by a single letter of a previous phrase. But the LZ77 factorisation
is more difficult to compute.

It is clear that the LZ77 factorisation comes readily when the LPF table is
available, which is a remarkable application of the table (see [5]). This implies a
linear-time solution for LZ77 factorisation on integer alphabets. Previous solu-
tions using a Suffix Tree [17] or a Suffix Automaton [2] of the text not only run
in time O(|y| log |A|) but these data structures are more space-expensive than
the Suffix Array.

A slight variant of string parsing, whose relation with the LZ77 factorisation
is analysed in [1], plays an important role in String Algorithms. The intuitive
reason is that, when processing a string on-line, the work done on an element
of the factorisation can usually be skipped because already done on one of its
previous occurrences. A typical application of this idea resides in algorithms to
compute repetitions in strings (see [2,15,14]). For example, the algorithm in [14]
reports all maximal repetitions (called runs) occurring in a string in O(|y| log |A|)
time. It runs in linear time if a Suffix Array is used instead of a Suffix Tree [4].
Indeed the technique seems to be the only technique that leads to linear-time
algorithms independently of the alphabet size for this type of question.

Suffix Arrays provide an ideal data structure to solve many questions requiring
an index on all the factors of a string. Introduced by Manber and Myers [16]
the structure can be built in linear-time by different methods [10,12,13,8] for
sorting the suffixes of the text possibly adding the method of [11] to compute
the Longest Common Prefix table. The result holds if the text is drawn from an
integer alphabet, that is, if the alphabet of the text can be sorted in linear time
(otherwise the Ω(n log n) lower bound for sorting applies).

The notion of Longest Previous Factor has been introduced by Franek et al.
as part of their concept of a Quasi Suffix Array (their π array is the LPF table)
in [7], where the authors presented a direct computation running in O(n log n)
average time. A naive computation of the LPF table, either on the text itself or
on its Suffix Array, as done by the algorithm LPF-naive in Section 5, leads to
quadratic effective running time on many inputs.

In this article we intensively use the Suffix Array of the text to be processed,
and we consider only linear-time solutions. A graphical representation of the Suf-
fix Array structure helps understand the design of the algorithms. The Longest
Previous Factor is coined in [4], where a linear-time computation is described
and applied to LZ77 factorisation. Another version running on-line on the Suffix
Array of the text and requiring only O(

√
n) extra memory space is shown in [5].
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We improve on the previous results and show that the computation of the
Longest Previous Factor table of a text from its Suffix Array can be implemented
to run in linear time with only a constant amount of additional memory space.
Thus, the method is time-space optimal.

The next section introduces the necessary material for the design of Longest
Previous Factor computations. First, an algorithm similar to the one in [4] is
described. The algorithm is regarded in Section 3 as using the Suffix Array like
a sorting network. Section 4 shows how the computation can be done on-line on
the Suffix Array and Section 5 describes the time-space optimal algorithm for
constructing the table.

2 Using a Suffix Array

The Suffix Array of the text y is a data structure used for indexing its content.
It comprises two tables that we denote SUF and LCP and that are defined as
follows.

The table SUF stores the list of position on y associated with the sorted list
of its suffixes in increasing lexicographic order. That is, the table is such that

y[SUF[0] . . n− 1] < y[SUF[1] . . n− 1] < · · · < y[SUF[n− 1] . . n− 1].

Thus, indices on SUF are ranks of the suffixes in their sorted list.
The second table LCP is also indexed by the ranks of suffixes and stores

the longest common prefixes between consecutive suffixes in the sorted list. Let
lcp(i, j) = longest common prefix of y[i . . n − 1] and y[j . . n − 1], for two posi-
tions i and j on y. Then, LCP[0] = 0 and, for 0 < r < n, we set

LCP[r] = |lcp(SUF[r − 1], SUF[r])|.

(The actual Suffix Array contains indeed about n additional LCP values used
for binary searching the suffixes.)

Example 1. For the text y = abaabababbabbb we get the Suffix Array:
rank r 0 1 2 3 4 5 6 7 8 9 10 11 12 13
SUF[r] 2 0 3 5 7 10 13 1 4 6 9 12 8 11
LCP[r] 0 1 3 4 2 3 0 1 2 3 4 1 2 2

The computation of the Suffix Array of y can be done in time O(n log n) in the
comparison model [16] (see [3,6,9]). If the text is on an alphabet of integers in
the range [0, nc] for some constant c, the Suffix Array can be built in time O(n)
[10,12,13,8] (see also [3]).

Graphic representation. The Suffix Array of the text y has a nice graphic rep-
resentation that helps understand the algorithms computing the LPF table. The
abscissae axis refers to ranks of suffixes and the ordinates axis refers to their po-
sitions. The sorted list of suffixes is plotted by their positions, and consecutive
positions are linked by an edge whose label is the associated LCP value. Figure 1
shows the Suffix Array representation for the text of Example 1.
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Fig. 1. Graph of the permutation of positions on abaabababbabbb (Example 1) in the
lexicographic order of its suffixes. Labels of edges are Longest Common Prefix lengths
between consecutive suffixes.

Simple algorithm. The LCP table satisfies a simple property consequence of the
lexicographic order: the LCP value between two positions at ranks r and t, r < t,
is the minimal value in LCP[r + 1 . . t].

For a rank r, let us define prev[r] as the largest rank s, s < r, for which
SUF[s] < SUF[r] if it exists, and as −1 otherwise. Let us also define the dual
notion next[r] as the smallest rank t, r < t, for which SUF[t] < SUF[r] if it exists,
and as n otherwise. The above property implies that to compute LPF[SUF[r]]
there is no need to look at ranks smaller than prev[r] or greater than next[r],
that is

LPF[SUF[r]] = max{ |lcp(SUF[r], SUF[prev[r]])|, |lcp(SUF[r], SUF[next[r]])| } (1)

where undefined LCP values are set to 0. In particular, if a position i is a “peak”
at rank r in the graphic representation of the Suffix Array (SUF[r] = i) we get

LPF[i] = max{LCP[r], LCP[r + 1]}.

And the minimum of the two values is the LCP between positions at ranks r−1
and r + 1 if defined. This gives the idea underlying the next algorithm.

Figure 2 illustrates a step of the algorithm when the input is the text of
Example 1. The algorithm LPF-simple computes the two tables prev and next,
which implement indeed a double-linked list of ranks. The algorithm runs in
linear time but requires several extra arrays in addition to its input and output.
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Fig. 2. Illustration of the run of the algorithm LPF-simple on the text abaabababbabbb
(see Figure 1) after processing positions 13, 12, 11, 10. Gray positions and gray edges
are no longer considered. The next step is to process position 9 at rank 10. According
to the weights of edges pending from 9, we have LPF[9] = max{4, 1} = 4. Positions 6
and 8 will be linked, through the prev and next arrays on their ranks, with an edge of
weight min{4, 1} = 1, which is indeed LPF[8].

Namely, the array ISU, inverse of SUF, that provides the rank of a position, and
the two arrays prev and next.

LPF-simple(SUF, LCP, n)
1 LCP-copy← LCP
2 LCP-copy[n]← 0
3 ISU← inverse SUF
4 for r ← 0 to n− 1 do
5 prev[r] ← r − 1
6 next[r] ← r + 1
7 for i ← n− 1 downto 0 do
8 r ← ISU[i]
9 LPF[i]← max{LCP-copy[r], LCP-copy[next[r]]}

10 LCP-copy[next[r]] ← min{LCP-copy[r], LCP-copy[next[r]]}
11 if prev[r] ≥ 0 then
12 next[prev[r]] ← next[r]
13 if next[r] < n then
14 prev[next[r]] ← prev[r]
15 return LPF
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Proposition 1. The algorithm LPF-simple computes the LPF array of a text
of length n from its Suffix Array in linear time and space. It requires 3n + c
integer cells in addition to its input and output.

The array next can alternatively be pre-computed by the following procedure
whose linear-time behaviour is an interesting exercise left to the reader. The
procedure also computes the array LPF> defined in [4] and that accounts for
larger ranks only. It is defined, for r = 0, . . . , n− 1, by

LPF>[r] = |lcp(SUF[r], SUF[next[r]])|.

Next(SUF, LCP, n)
1 next[n− 1]← n
2 LPF>[n− 1]← 0
3 for r ← n− 2 downto 0 do
4 t← r + 1
5  ← LCP[t]
6 while t < n and SUF[t] > SUF[r] do
7  ← min{, LPF>[t]}
8 t← next[t]
9 next[r] ← t

10 LPF>[r] ← 
11 return next, LPF>

The computation of the dual prev and LPF< arrays is done symmetrically. When
both arrays LPF< and LPF> are available, the computation of the LPF table is
an application of identity 1 that rewrites, for position i at rank r, as

LPF[i] = max(LPF>[r], LPF<[r]).

3 Sorting Network

It has been noticed in [4] that the content of the LPF table is the same as
that of the LCP table up to some permutation. A question arises then: what
permutation is it? Does it depend on the text, its Suffix Array or maybe just its
LCP array? It turns out that, for fixed SUF and LCP arrays, it does not depend
on the actual text. It is possible to construct such a sorting network, whose shape
depends only on the Suffix Array, that transforms the LCP array into the LPF
table. This observation leads to the algorithm LPF-sorting, producing LPF by
permutating the elements of LCP.

In the algorithm LPF-sorting below we assume that the table next intro-
duced in the previous section has been pre-computed by the procedure Next

(in which instructions related to LPF> are useless and may be removed, as well
as the parameter LCP). Table next is used to compute, for each position i, the
next closest position nextp[i] in the Suffix Array that is smaller than i, that is,
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nextp[SUF[r]] = SUF[min{t | t > r and SUF[t] < SUF[r]}].
Initially, the LPF table is a copy of the LCP array permuted according to the
SUF table. The algorithm sorts the array by permuting its elements to get the
LPF table.

LPF-sorting(SUF, LCP, n)
1 SUF[n]← −1
2 for r ← 0 to n− 1 do
3 LPF[SUF[r]] ← LCP[r]
4 nextp[SUF[r]] ← SUF[next[r]]
5 for i ← n− 1 downto 0 do
6 if (nextp[i] ≥ 0) and (LPF[i] < LPF[nextp[i]]) then
7 Exchange(LPF[i], LPF[nextp[i]])
8 return LPF

Note that the elements of LPF are exchanged (lines 6–7) only if they are not
in increasing order. Which elements are compared, depends on values in nextp,
and this in turn depends only on the Suffix Array. So, for a given Suffix Array,
one can construct a sorting network implementing lines 5–7 of the algorithm
LPF-sorting. Hence, the following proposition holds:

Proposition 2. For a given Suffix Array of a text, there exists a sorting network
processing a sequence of n numbers in such a way that it transforms the LCP
table into the LPF table. Moreover, the shape of the sorting network depends only
on the Suffix Array, but not on its LCP table nor on the actual text.

As it is done for any sorting procedure, instead of directly computing the LPF ta-
ble, the algorithm LPF-sorting can equivalently produce explicitly the permu-
tation π to transform the LCP array into the LPF table, that is, the permutation
that satisfies LPF[i] = LCP[π[i]].

The algorithm LPF-sorting uses only one integer array in addition to its
input and output since the next table it uses is substituted for the nextp table.
This yields the next statement.

Proposition 3. The algorithm LPF-sorting computes the LPF table of a text
of length n from its Suffix Array in linear time and space. It requires n+c integer
cells in addition to its input and output.

4 On-Line Computation

Techniques of the previous sections to compute the LPF table are simple but
space consuming. In this section and the next one we address this issue. We
show that a computation on-line on the Suffix Array using a stack reduces the
memory space to only O(

√
n) for a text of length n.

The design of the on-line computation still relies on the property used for
the algorithm of Section 2 and related to “peaks” (see lines 6-8 below). It re-
lies additionally on another straightforward property that we describe now. As-
sume that a position SUF[r] at rank r satisfies LCP[r] ≥ LCP[r + 1]. Then, no
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position after it in the list can provide a larger LCP value and therefore we
get LPF[SUF[r]] = LCP[r]. This is implemented in lines 10-11 of the algorithm
LPF-on-line.

Note that lines 15 to 18 may be removed from the algorithm LPF-on-line

if the Suffix Array can be extended to rank n and initialised to SUF[n] = −1
and LCP[n] = 0. But we prefer the present design that is compatible with the
algorithm of the next section.

LPF-on-line(SUF, LCP, n)
1 EmptyStack(S)
2 for r ← 0 to n− 1 do
3 r-lcp← LCP[r]
4 while not Empty(S) do
5 (t, t-lcp)← Top(S)
6 if SUF[r] < SUF[t] then
7 LPF[SUF[t]]← max{t-lcp, r-lcp}
8 r-lcp← min{t-lcp, r-lcp}
9 Pop(S)

10 elseif (SUF[r] > SUF[t]) and (r-lcp ≤ t-lcp) then
11 LPF[SUF[t]]← t-lcp
12 Pop(S)
13 else break
14 Push(S, (r, r-lcp))
15 while not Empty(S) do
16 (t, t-lcp) ← Top(S)
17 LPF[SUF[t]]← t-lcp
18 Pop(S)
19 return LPF

Stack size. The extra memory space used by the algorithm LPF-on-line to
compute the LPF table of a text is occupied by the stack and a constant number
of integer variables. To evaluate the total size required by the algorithm it is
then important to determine the maximal size of the stack for a text of length
n. It is proved in [5] that this quantity is O(

√
n).

For most values of n there are plenty of texts for which the stack reaches
its maximal size. But if n is of the form k(k + 1)/2, that is, if it is the sum of
the first k positive integers, then there is a unique string on the alphabet {a, b}
(with a < b) giving the maximal size stack. This word is aabab2 · · · abk−1 and
the maximal stack size is k.

The next table shows maximal stack sizes for texts of lengths 4 to 19:
length n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

max-stack-size 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6 6

Proposition 4. The algorithm LPF-on-line computes the LPF array of a text
of length n from its Suffix Array in linear time and O(

√
n) space. It requires less

than 2
√

2n + c integer cells in addition to its input and output.
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5 Time-Space Optimal Implementation

In this section we show that the computation of the LPF table of a text can be
implemented with only constant memory space in addition to the Suffix Array
of the text and its LPF table. The underlying property used for this purpose is
the O(

√
n) stack size reported in the previous section. The property allows an

implementation of the stack inside the LPF table for a sufficiently large part of
the text. The rest of the computation for the remaining positions is done in a
more time-expensive manner but for a small part of the text. This preserves the
linear running time of the whole computation.

LPF-optimal(SUF, LCP, n)
1 � it is assumed that n ≥ 8
2 K ← �n− 2

√
2n�

3 � next three procedures share the same LPF table
4 LPF-on-line(SUF, LCP, K)
5 LPF-naive(SUF, LCP, K, n)
6 LPF-anchored(SUF, LCP, K, n)
7 return LPF

It is rather clear that only constant extra memory space is required to imple-
ment the strategy retained by the algorithm LPF-optimal. The choice of the
parameter K is a result of the previous section and is done to let enough space
in the LPF array to implement the stack used by the algorithm LPF-on-line.

Although not done here, the choice of the parameter K can be dynamic and
done during the algorithm LPF-on-line as n − 2k − 1, where k is the size of
the stack just before executing line 15. This certainly reduces the actual running
time but does not improve its asymptotic evaluation.

In the algorithm LPF-optimal, the stack of the procedure LPF-on-line is
implemented in the LPF table. Access to the table is done via the SUF array.
Doing so, the stack is treated like a continuous space LPF[SUF[K . . n − 1]]. El-
ements are stored sequentially so that the elementary stack operations (empty,
top, push, pop) are all executed in constant time. Therefore, the running time
of the first step is O(n) (indeed O(K)) as for the algorithm LPF-on-line.

Example 2. The next table shows the content of the LPF array at two stages
of the run of the procedure LPF-on-line on Example 1: (i) immediately after
processing rank 5 and (ii) at the end of the first step.

rank r 0 1 2 3 4 5 6 7 8 9 10 11 12 13
(i) LPF[SUF[r]] 1 3 4 5 3 4 2 1 0
(ii) LPF[SUF[r]] 1 0 3 4 2 3 1 8 2 7 0

Row (i) shows that LPF values of positions 2, 3, 5 at respective ranks 0, 2,
3 have already been computed. The part LPF[SUF[8 . . 13]] of the table stores
the content of the stack: ((1, 0), (4, 2), (5, 3)). Row (ii) shows that values have
already been computed for positions at ranks 0 to 6. The content of the stack is
((7, 0), (8, 2)). On this example, K could have been set dynamically to 5.
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Naive computation. The second step of the algorithm LPF-optimal processes
the Suffix Array from rank K. For each rank r, the values prev[r], next[r] and
the corresponding LCP values are computed starting from r and going backward
and forward, respectively. The code is given below for the sake of completeness
but it contains no algorithmic high value.

The process takes O(n−K) time per rank, and hence the total running time
of the step is O((n−K)2), which is O(n) since K = n− 2

√
2n.

LPF-naive(SUF, LCP, K, n)
1 LCP[n]← 0
2 for r ← K to n− 1 do
3 left ← LCP[r]
4 s ← r − 1
5 while s ≥ K and SUF[s] > SUF[r] do
6 left ← min{left , LCP[s]}
7 s ← s− 1
8 if s = K − 1 then
9 left ← 0

10 t← r + 1
11 right ← LCP[t]
12 while t < n and SUF[t] > SUF[r] do
13 t← t + 1
14 right ← min{right , LCP[t]}
15 LPF[SUF[r]] ← max{left , right}
16 return LPF

Completing the computation. The first two steps of the algorithm LPF-optimal

process independently two segments of the Suffix Array. The last step consists
in joining their results, which requires updating some LPF values. Indeed, for a
rank r, r < K, next[r] can be in [K, n−1], which implies that the computation of
LPF[SUF[r]] might not be achieved. The same phenomenon happens for a rank
in the second part, whose associated prev rank is smaller than K.

The next algorithm updates all LPF values and completes the whole com-
putation. It assumes that the LPF calculation has been done independently on
parts LPF[SUF[0 . .K−1]] and LPF[SUF[K . . n−1]] of the array, which is realised
by the first two steps on the algorithm LPF-optimal.

The running time of this last step LPF-anchored is obviously linear, O(n),
as are the other steps of the algorithm LPF-optimal.

The first conclusion of the section is the following statement.

Theorem 1. The Longest Previous Factor table of a text of length n on an
integer alphabet can be built from its Suffix Array in time O(n) (independently
of the alphabet size) with a constant amount of extra memory space.
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LPF-anchored(SUF, LCP, K, n)
1 s ← K − 1
2 t← K
3 ← LCP[K]
4 while (s ≥ 0) and (t < n) do
5 � invariant:  = min LCP[s + 1, . . . , r]
6 if SUF[s] < SUF[t] then
7 LPF[SUF[t]]← max{LPF[SUF[t]], }
8 t← t + 1
9  ← min{, LCP[t]}

10 else LPF[SUF[s]]← max{LPF[SUF[s]], }
11  ← min{, LCP[s]}
12 s ← s− 1
13 return LPF

The algorithm LPF-optimal uses the Suffix Array of the input text in a read-
only manner but does not use the LPF table in a write-only manner. If this
last condition is to be satisfied, the question remains of whether there exists a
linear-time LPF table construction running with constant extra space. We get
this feature if the algorithm LPF-anchored is applied recursively by dividing
the Suffix Array into two equal parts. The running time becomes O(n log n) in
the model of computation allowing priority writes.

Theorem 2. The Longest Previous Factor table of a text of length n on an
integer alphabet can be built from its read-only Suffix Array in time O(n log n)
(independently of the alphabet size) with a constant amount of extra memory
space and with a write-only output.

Despite the use of the output as auxiliary storage in the ultimate linear-time
algorithm, the series of algorithms described in the article provide a large range
of efficient solutions that meet many practical needs.
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Abstract. This paper examines the distances between vertices in a
rooted k-tree, for a fixed k, by exhibiting a correspondence with a va-
riety of trees that can be specified in terms of combinatorial specifica-
tions. Studying these trees via generating functions, we show a Rayleigh
limiting distribution for expected distances between pairs of vertices in a
random k-tree: in a k-tree on n vertices, the proportion of vertices at dis-
tance d = x

√
n from a random vertex is asymptotic to c2kx√

n
exp(− c2kx2

2
),

where ck = kHk.

1 Introduction

This work takes place within the general framework of analyzing statistical prop-
erties of combinatorial structures: we evaluate distances between vertices in a
graph structure named k-tree.

In graph theory, very important research is being done on k-trees, for their
characterization [15,10] and from an algorithmic viewpoint, since many NP-
complete problems can be solved linearly on k-trees [1]. The class of k-trees,
together with many close families, have also been extensively studied as combi-
natorial structures for their enumeration [2,6,9,12].

Our interest in k-trees focuses on their graph structure and the behavior of
parameters such as degree or distance. This work is a generalization of our study
of planar 3-trees [3], and the results presented here can be easily extended to
planar k-trees.

Here we are interested in quantifying the distribution of expected distances
between two random vertices in a random k-tree, for a fixed k. Our main ad-
vantage for addressing this problem is a bijection between k-trees and a class K
which is specifiable in terms of combinatorial constructions and thus amenable
to the powerful tool of generating functions which combines algebraic meth-
ods for constructing relevant power series and analytic methods for evaluating
parameters of interest.

Our bijection extends works by Klawe et al. [8] and Ibarra [7] providing a
one to one correspondence that exploits the recursive structure of k-cliques to
transform the k-tree graph into a labeled tree structure. Moreover the parame-
ter “k-tree distance to the root” transfers to a clearly identifiable parameter on
subtrees of the tree structure, that can be precisely analysed by bivariate gen-
erating functions and leads to an asymptotic distribution that obeys a Rayleigh
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law. In order to deal with distances between random pairs of vertices we use a
tree “rerooting” process that is also expressible in terms of generating functions
and the same result of a Rayleigh asymptotic law still holds.

Though the tree parameter that we are studying is not a profile, its behavior
is similar to profiles in simple varieties of trees, where Rayleigh distributions
were first shown by Meir and Moon [11], see the recent book by Drmota [4] for
an extensive review.

While the class K that we consider here is a class of labeled trees correspond-
ing to all k-trees on n vertices, the class of label-increasing trees of K would also
be of interest: it would correspond, with the same bijection, to k-trees whose
labeling is constrained by their recursive construction. The corresponding gen-
erating functions satisfy differential rather than algebraic equations and we show
in future work that the properties are similar to those of recursive trees [4].

In section 2, we set the bijective algorithm between k-trees and class K, and
derive the enumerative generating function for k-trees. Section 3 explains the
algorithm to calculate distances (in the graph) to the root of a k-tree, on the
corresponding tree-structure in K. The corresponding equations on bivariate
generating functions are established by a careful analysis, marking vertices at
distance d to the root and working on the cumulative generating functions to
get the proportion of vertices at distance d. Finally, evaluating coefficients by
means of complex analysis, we obtain the limiting distribution of distances to
the root. In section 4 we extend this result to distances between a random pair
of vertices in a random k-tree: we give an algorithm to “reroot” a k-tree, and
show, via the equality of their generating functions, that “rerooted” k-trees are
in bijection with k-trees with a pointed vertex. Using the same technique as in
section 3, we finally obtain a Rayleigh limiting distribution.

2 Structures: k-Trees and Class K
In this section we show a bijection between rooted k-trees and a simple variety
of labeled trees, named K, which is specifiable in terms of combinatorial con-
structions: K = ZkT , and T = Set(Z × T k). This representation of k-trees,
which highlights the cliques and their relationships, will be helpful to study the
distance between vertices.

Inductive definition of k-trees. A k-tree on n vertices is a graph defined induc-
tively as follows: the complete graph on k vertices (a k-clique) is a k-tree (with
n = k), and if G is k-tree on n−1 vertices, then the graph resulting from adding
a new vertex adjacent to the vertices of a k-clique of G is also a k-tree. This
definition corresponds to graph theory trees when k = 1.

A rooted k-tree is a k-tree with a distinguished k-clique, together with a given
permutation of the k vertices.

The K-representation of a k-tree is a tree with black and white nodes: black
nodes correspond to k+1-cliques and white nodes to k-cliques. Each black node
is adjacent to the k + 1 white nodes representing the k-cliques it contains. The
size of a tree in K is the number of black nodes it contains plus k.
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Remark 1. In this paper we shall consistently use the term vertex to denote
“points” of the graph (k-tree), and node to denote “points” of the tree (in K).

Inductive definition of K. A tree T ∈ K of size n is either reduced to its root, a
white node with k vertices (size k), or a tree T ′ ∈ K of size n − 1 in which we
add a new black node adjacent to a white node of T and its k white sons.

2.1 Bijection

The transformation of a rooted k-tree G into a tree T ∈ K is a two step process.
First, create a tree called the completed clique-separator tree of G, whose nodes
are cliques of G; moreover the root of the k-tree is the root of the corresponding
tree. Second, simplify the labels of the tree by encoding most of the information
in the tree structure.

The completed clique-separator tree of a k-tree G is a bipartite graph, whose
black nodes are the k+1-cliques of G (which are also the maximal cliques of
G), and whose white nodes are the k-cliques of G (which include the minimal
separators of G). A black node is adjacent to the k + 1 white nodes it contains.
This structure is very similar to the clique-separator graph Ibarra [7] defined for
the larger class of chordal graphs.

Proposition 1. The completed clique-separator tree of G is a tree.

Proof. Following the inductive definition of k-trees it is easy to see that each new
vertex adds one black node connected to one existing and k new white nodes.

Proposition 2. There is a bijection between the class of rooted k-trees and K.

Sketch of proof. For a rooted k-tree, the completed clique-separator tree is a
rooted tree; its root is the root of the k-tree (a k-clique presented as an ordered
list of vertices).

We see that the only information carried by a black node is the label of the
vertex not included in its father. We can thus simplify the labeling of black nodes
by retaining only this one vertex.

The one-to-one correspondence between k-trees and trees in K relies on an
ordering of the sons of the black nodes. We proceed recursively from the root:
consider a white node w with its ordered list of vertices (x1, . . . , xk); this node
is adjacent to a set of black nodes and there is a natural order between the k
sons of any of these black nodes. Let b be a black node: the i-th son si is the
k-clique that does not contain xi. The list of vertices in si is the same as in w
except that xi is missing and is replaced by b: (x1, . . . , xi−1, b, xi+1, . . . , xk).

Now we only need n labels in the representation of a k-tree on n vertices; the
list of vertices in each white node can be completely determined by the position
of the node in the tree, the vertices in the black nodes and the list of vertices at
the root (i.e.: the first white node). We do however keep the labels on the white
nodes for clarity, in figure 1 for instance, they still appear, in grey color.
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Fig. 1. A 2-tree and the corresponding tree in K

x1, . . . , xk

y

y, x2, . . . , xk

. . .

x1, . . . , xi−1, y, xi+1, . . . , xk

. . .
x1, . . . , xk−1, y

z

z, x2, . . . , xk

. . .
x1, . . . , xk−1, z

. . .

Fig. 2. The ordering of sons of black nodes

Algorithm 1. Tree representation
Input: a rooted k-tree G on n vertices
Output: a tree T , with a list of k vertices at the root
1: Create one white node for each k-clique of G
2: Create one black node for each k+1-clique of G
3: Put an edge between each black node and all k+1 k-cliques it contains

{At this point we have the completed clique-separator tree of G}
4: Remove all vertices from each b. node except for the one not included in its father
5: Propagate the order of the vertices in white nodes starting from the root
6: Order the sons of b. nodes: the i-th does not containing the i-th vertex of the father
7: Remove all vertices from each white node {The resulting tree is in K}

Reversing this algorithm is easy. The labels removed in steps 4 and 7 can be
determined by the position of the nodes in the tree, and the list of k+1-cliques
created in step 2 suffices to reconstruct the k-tree; no edge is missing: each one
of them is between two vertices belonging to the same k+1-clique.

2.2 Generating Function for K
Algorithm 1 transforms a rooted k-tree into a K structure, composed of a tree-
structure T (that we call the proper tree), and a list of k vertices. A rooted k-tree
on n vertices leads to a proper tree with n− k black nodes. The proper tree is
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made of a white root, from which stems a set of black nodes; and each black
node has a list of children which are k subtrees of the same type as the proper
tree. Thus we get the following specification, with E denoting white nodes and
Z denoting vertices of the original k-cliques:

K = ZkT , T = E × Set(Z × T k).

Using the symbolic method, see e.g. Flajolet and Sedgewick [5], we derive from
this specification the functional equations on exponential generating functions,
K(z) =

∑
n Kn

zn

n! and T (z) =
∑

n Tn
zn

n! , where Kn (resp. Tn) is the number of
trees of size n in K (resp. T ):

K(z) = zkT (z), T (z) = exp(zT k(z)). (1)

These generating functions are extensively used in the rest of this paper, espe-
cially in a bivariate form. We first use them to compute the number of k-trees
on n vertices (this is another proof of a well known result [2,12, . . . ]).

Theorem 1. The number of k-trees on n + k vertices is
(
n+k

k

)
(kn + 1)n−2.

Proof. Let Ck(z) = kzT k(z). Then equation (1) becomes Ck(z) = kzeCk(z)

and T (z) = exp(Ck(z)
k ). Using the Lagrange-Bürmann theorem we thus get

[zn]T (z) = 1
n! (kn + 1)n−1 = Kn+k

(n+k)! . Since Kn is in bijection with the class of
rooted k-trees on n vertices, we need to divide Kn+k by the number of possible
roots, k!(kn + 1), to obtain the number of k-trees.

3 Distance to the Root

This section deals with distances to the first vertex of the root of a k-tree. These
distances can be easily marked on the corresponding tree structure, and by study-
ing the resulting family of bivariate generating functions, we show that the pro-
portion of vertices at distance d from the first vertex of the root is asymptotically
Rayleigh distributed.

3.1 Using the Tree to Calculate the Distance in the Graph

We use an algorithm similar to that of Proskurowski [13] to decorate each vertex
with its (graph) distance to the root. Given a k-tree G and the corresponding
tree T we start by assigning the distance 0 to the vertices of the root. Then,
given a white node w, each of its black sons corresponds to a vertex at distance
1 plus the minimum of the distances of w’s vertices.

Note that this process can be applied recursively starting from the root since
each vertex in a white node w is either a part of the root or in a black node on
the path from w to the root.
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Algorithm 2. Distances to the first vertex of the root in K
Input: a tree K ∈ K (with root r)
Output: an association table (vertex, distance)
1: Create an empty table A
2: for all vertices v in r do
3: if v is the first vertex of r then Add (v, 0) to A else Add (v, 1) to A
4: return A∪ the result of Algorithm 3 on the proper tree of K and (0, 1, . . . , 1)

Remark 2. The same process can be used to calculate the distance to any subset
s = (xj1 , . . . , xji) of i vertices in the root: instead of assigning distance 0 to all
the vertices of the root, we set to 0 the distance of the i vertices in s and set to
1 the distance of the other k − i vertices of the root. Notice that the resulting
decorated tree could have been obtained as a subtree of the distance tree in the
original process.

Algorithm 3. Distances in T
Input: a tree T ∈ T and k integers (ai)i∈{1,...,k}
Output: an association table (vertex, distance)
1: Let d be 1 + min(a1, . . . , ak) and A an empty table
2: for all sons v of the root of T do
3: Add (v, d) to A
4: for all i ∈ {1, . . . , k} do
5: A ← A∪ recursive call on the i-th son of v and (a1, . . . , ai−1, d, ai+1, . . . , ak)
6: return A

Remark 3. It is clear that if we shift, by a value d, all distances of a white node
w’s vertices, then all the distances in the subtree under w will be consistently
shifted by d.

3.2 Bivariate Generating Functions

In this section, we are interested in estimating Kd,n,p, the number of trees of size
n in K with p vertices at distance d from the first vertex of the root. Though
it is possible to directly work on the combinatorial objects, we use a generating
function framework that makes presentation easier. We thus define the bivariate
generating functions Kd(z, u) =

∑
n,p Kd,n,pu

p zn

n! , with Kd(z, 1) = K(z), for all
d. Differentiating Kd(z, u) with respect to u and setting u = 1, provides function

K ′
d(z) ≡ ∂

∂uKd(z, u)
∣∣
u=1 ,

where the coefficient of zn

n! represents the total number of vertices at distance d
from the first vertex of the root in all trees of size n in K. So that, in a random
k-tree of size n the proportion of vertices at distance d from the vertex of the
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root is 1
nKn

K ′
d(z). The aim of this section is to give a closed form expression for

K ′
d(z) (see proposition 3).
We mostly argument and calculate on the proper subtree T rather than on

the whole structure K and the generating functions are very similar.

Lemma 1. Let Td(z, u) be the bivariate generating function with u marking
vertices at distance d from the first vertex of the root,

K1(z, u) = zkuk−1T1(z, u), and ∀d ≥ 2, Kd(z, u) = zkTd(z, u).

Proof. In the case d = 1, each of the k − 1 other vertices of the root are at
distance one from the first vertex, since they are in the same clique. Whereas
for d ≥ 2 vertices in the root do not interfere.

Case d = 1. We begin with vertices at distance one to the first vertex of the
root. In a second paragraph we shall be interested in vertices at distance one to
a subset of i vertices in the root, in order to prepare the general study of vertices
at distance d.

Lemma 2. T1(z, u) = exp(zuT (z)T k−1
1 (z, u)).

Proof. All sons of the root are at distance one, and for each of these black nodes,
all but the first of its white children contain the first vertex of the root, so that
the black nodes immediately below them are also at distance one. Hence the
result for generating functions.

By differentiation we thus obtain the generating function for the total number
of vertices at distance one, (also using the fact that T1(z, 1) = T (z)).

Lemma 3. T ′
1(z) ≡ ∂

∂uT1(z, u)
∣∣
u=1 = zT k+1(z)

1−(k−1)zT k(z) .

Remark 4. If we want to count the distances to some other vertex in the root,
the whole computation is the same: permuting the root’s vertices brings us back
to the initial problem.

The next problem is to count the number of vertices at distance one from a
subset s of i vertices in the root. Extending the preceding notation (T1(z, u) =
T1,1(z, u)), let T1,i(z, u) be the bivariate generating function for the number of
vertices at distance one from any vertex in s.

Lemma 4. T1,i(z, u) = exp(zuT i
1,i−1(z, u)T k−i

1,i (z, u)).

Proof. The idea of the proof is the same as when i = 1: for each black node at
distance one, k−i of its white children contain all the i vertices of the subset and
the remaining i contain all but one of them. By symmetry, the corresponding
bivariate generating functions do not depend on the position of the i vertices in
the root.

Differentiating leads to the generating function for the number of vertices at
distance one from i vertices of the root, (notice that for all i, T1,i(z, 1) = T (z)).

Lemma 5. T ′
1,i(z) ≡ ∂

∂uT1,i(z, u)
∣∣
u=1 = zT k(z)

1−(k−i)zT k(z)

(
T (z) + iT ′

1,i−1(z)
)
.

This recurrence can be solved and T ′
1,i(z) is a rational function in z and T (z).
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General case. By remark 3, in order to calculate the number of vertices at
distance two from the first vertex of the root, it suffices to find all the white
nodes containing only vertices at distance one (from the first vertex of the root)
and apply the previous process to count the vertices at distance one from any of
the vertices of these white nodes. In terms of generating functions, this means
that T2,1(z, u) = exp(zT1,k(z, u)T k−1

2,1 (z, u)) (notice that there is no occurrence
of u outside T1,k(z, u)).

Applying the same argument recursively, we can treat the case of any distance
d ≥ 2, and obtain the following lemma.

Lemma 6. The bivariate generating function Td,i(z, u), with u marking the ver-
tices at distance d from a subset of i vertices of the root, satisfies, for d ≥ 2:

Td,i(z, u) = exp(zT i
d,i−1(z, u)T k−i

d,i (z, u)), for i ≥ 2, and

Td,1(z, u) = exp(zTd−1,k(z, u)T k−1
d,1 (z, u)).

By differentiating we obtain:

Lemma 7. T ′
d,i(z) ≡ ∂

∂uTd,i(z, u)
∣∣
u=1 = izT k(z)

1−(k−i)zT k(z)T
′
d,i−1(z),

for i ≥ 1 and d ≥ 2, setting T ′
d,0(z) = T ′

d−1,k(z).

Lemma 8. T ′
d,i(z) = H(z)T ′

d−1,i(z), for d ≥ 2,
where H(z) = k!(zT k(z))k

∏k−1
i=1

1
1−izT k(z) .

This recurrence is easy to expand, the only difficulty is that it does not extend to
when d = 1. We can however calculate T ′

2,1(z) which has the form of a rational
function in z and T (z).

Lemma 9. T ′
d,1(z) ≡ ∂

∂uTd,1(z, u)
∣∣
u=1 = Hd−2(z)T ′

2,1(z).

Back to the whole structure K, we have Kd(z, u) = zkTd,1(z, u), so that

Proposition 3. The exponential generating function counting the total number
of vertices at distance d from the first vertex of the root in a rooted k-tree satisfies

K ′
d(z) ≡ ∂

∂uKd(z, u)
∣∣
u=1 = Hd−2(z)K ′

2(z),

with K ′
2(z) = zkT ′

2,1(z) and H(z) = k!(zT k(z))k
∏k−1

i=1
1

1−izT k(z) .

3.3 Limiting Distribution

The number of vertices at distance d from the first vertex of the root in a k-tree
of size n is obtained by estimating the coefficient of zn

n! in K ′
d(z) and normalizing

by nKn. We study the asymptotic of this quantity when n becomes large.
We first turn to the asymptotic estimation of coefficients of T (z), H(z) and

Hd(z), which relies on complex analysis.
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Proposition 4. Function T (z) is analytic at the origin, with radius of conver-
gence ρ = 1

ke , singular value τ = e
1
k , and a square-root singular expansion:

T (z) = τ − τ

k

√
2 (1− z/ρ) + O (1− z/ρ) .

Proof. Class T is a simple variety of trees [11], and the result follows from the
implicit function theorem. Moreover by singularity analysis Tn ∼ τ

k
√

2π
ρ−nn− 3

2 .

Lemma 10. H(z) is singular in ρ, with a square-root singular expansion

H(z) = 1− kHk

√
2 (1− z/ρ) + O (1− z/ρ) , where Hk =

∑k
i=1

1
i .

Proof. As seen before, H(z) = k!(zT k(z))k
∏k−1

i=1
1

1−izT k(z) . For all k ∈ N
∗ and

i ∈ {1, . . . , k − 1}, the term izT k is singular in ρ and asymptotically equivalent
to iρτk = i

k < 1, so that no singularity comes from the cancellation of the
denominators in the product. This product is shown to be equivalent, around

the singularity ρ, to G(z) = kk−1

(k−1)!

∏k−1
i=1

(
1 − i

√
2(1−z/ρ)
k−i

)
. H(z) is equivalent

to (zT k(z))kG(z), and the combination of square-root terms brings up a factor
involving the k-th harmonic number Hk.

Evaluating the coefficient of zn in Hd(z) depends on the values of d. The region
where an interesting renormalization takes place is for d = x

√
n, as shown in the

semi-large power theorem [5, Theorem IX.16].

Proposition 5. For d = x
√

n, with x in any compact of R
∗
+,

[zn]Hd(z) ∼ kHkx
n
√

2π
e−

k2H2
kx2

4 .

Proof. This result can be obtained by using the saddle-point method or singu-
larity analysis [5].

Back to the estimation of distances, we have K ′
d(z) = Hd−2(z)K ′

2(z), where
K ′

2(z) is a rational function of z and T (z) with no pole in [0, ρ], so that it
contributes for a constant in the coefficient of zn. Finally, to get the proportion
of vertices at distance d, we normalize by nKn, and obtain the following theorem.

Theorem 2. In a k-tree on n vertices, the probability that a random vertex r is
at distance d = x

√
n (with x in a compact of R

∗
+) from the first vertex v of the

root, satisfies, as n →∞, a local law of the Rayleigh type:

lim
n→∞

√
nP(D(v, r) = �x

√
n�) = c2

kxe−
(ckx)2

2 , with ck = k
∑k

i=1
1
i .

In parallel to proving the limiting distribution, we made a series of measures
on random k-trees generated with a purpose-built Boltzmann sampler1, and the
experimental curves perfectly fit the theoretical results, as shown in figure 3.
1 Available at http://www-apr.lip6.fr/˜darrasse/ktrees
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x = d√
n

P(D(v, r) = d) ·
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n
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Fig. 3. Theoretical (on the left) and experimental (on the right) distributions of dis-
tances in k-trees, for k = 2, 3 and 4. The experimental curves come from measures on
103 random k-trees of size 104 ± 10%.

4 Distances to a Random Vertex

To estimate the distance to a random vertex of a k-tree we use the same idea as
Proskurowski [14]: “rerooting” the corresponding tree in order to move the vertex
we are interested in to the root. In our case, we find an expression K◦(z) of the
rerooted k-trees in terms of generating functions. This is proved by exhibiting a
bijection between rerooted k-trees and pointed k-trees (that is k-trees with one
pointed vertex, counted by K•(z)).

The limiting distribution is obtained by using the same analytic tools as before
and we finally prove that the distances to a random vertex exactly obey the same
distribution as the previous case.

4.1 Rerooting Process

Given a distinguished vertex v in a rooted k-tree G with root r, we want to
associate another rooted k-tree G′ having the same underlying k-tree as G and
where v is the first vertex of the new root r′. Two cases appear: either v belongs
to the list of vertices of r, and exchanging v with r’s first vertex suffices, or we
need to find another k-clique of G to be the root of G′.

It is easier to work on the corresponding tree T ∈ K. In T , we want to find a
white node containing v as first vertex. There are many choices, but only one of
them is always the closest to the root: the first son of v. This white node, named
r′, will be the root of G′. The corresponding tree T ′ can be either constructed
using the method of section 2, or obtained directly from T by pulling on r′.

Note that this process is reversible, since the mark allows to find the old
root r.

Remark 5. The mark of the old root is always contained in the first subtree of
one of the sons of the new root.
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Algorithm 4. Rerooting
Input: a tree T ∈ K (with root r) and a vertex v
Output: a tree in K◦, with v its first root vertex
1: if v is in r then
2: Put a mark on the first vertex of r
3: Exchange the first vertex in r with v
4: Apply steps 5 and 6 of Algorithm 1 to reorder the sons of black nodes
5: return the resulting tree
6: else {in this case v is a black node}
7: Let r′ be the first son of v {r′ is a white node and v its first vertex}
8: Get the k-tree G corresponding to T by the inverse of Algorithm 1
9: Let G′ be the same graph as G, with a new root: r′

10: Apply Algorithm 1 to G′ to obtain a new tree T ′

11: return T ′ with a mark on the white node corresponding to r

Theorem 3. The class of rerooted k-trees is counted by the generating function
K◦(z) = kzkT (z) + zk+1T k(z)T ◦(z), where T ◦(z) counts the trees in T with a
mark on a white node.

Proof. The two terms of the sum correspond to the two cases of the rerooting
process. For the first one, we have k possibilities. For the second, remark 5
implies that the black son of the root containing the old root is described by
zT ◦(z)T k−1(z) and the other black sons give the factor exp(zT k(z)):
K◦(z) = kzkT (z)+zk exp(zT k(z)) zT ◦(z)T k−1(z) = kzkT (z)+zk+1T k(z)T ◦(z).

Theorem 4. There is a bijection between rerooted k-trees and pointed k-trees.

Proof. We show that the generating functions for both classes are the same. We
first need to express T ◦(z): adding a variable x to count white nodes for trees
in T , deriving with respect to x and setting x = 1, we get

T ◦(z) = T (z) + k exp(zT k(z))zT ◦(z)T k−1(z) = T (z) + zkT k(z)T ◦(z),

which can also be obtained with a combinatorial argument: marking a white
node consists either in marking the root or in choosing one of the sets of black
nodes below it and marking in one of the k subtrees below this black node.

We now need to show the equality of generating functions T •(z) = zT k(z)
T ◦(z), where T •(z) counts trees in T with a mark on a black node.

For that, we use the fact that a tree in T with n black nodes contains kn + 1
white nodes and that [zn]T •(z) = n[zn]T (z). We thus have

[zn]zT k(z)T ◦(z) =
1
k

[zn](T ◦(z)− T (z)) =
kn + 1

k
[zn]T (z)− 1

k
[zn]T (z)

= n[zn]T (z) = [zn]T •(z).

Hence K•(z) = kzkT (z) + zkT •(z) = kzkT (z) + zk+1T k(z)T ◦(z) = K◦(z).
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4.2 Limiting Distribution

We now come to study the distances to the first vertex of the root in a tree
of type K◦, which are exactly the distances to the marked vertex of a tree of
type K•. This allows to show that the distance between two random points in a
random k-tree follows a Rayleigh distribution.

With similar notations as in section 3 and a similar analysis of the recursive
structure of the trees, but more involved computations, we obtain:

Lemma 11. The b.g.f. of vertices at distance d in K◦ can be expressed as

K◦
1 (z, u) = kzkuk−1T1,1(z, u) + zk+1ukT k

1,1(z, u)T ◦(z),

K◦
d(z, u) = kzkTd,1(z, u) + zk+1T k

d,1(z, u)T ◦
d−1,k(z, u).

Differentiating with respect to u gives

K◦′
d (z) = kzkT k−1(z)T ′

d,1(z)+kzk+1T k−1(z)T ′
d,1(z)T ◦(z)+zk+1T k(z)T ◦′

d−1,k(z).

In this function the dominant term is zk+1T k(z)T ◦′
d−1,k(z) and has the same

singular behavior as K ′
d(z), up to a factor n, corresponding to the choice of a

random vertex.
This result agrees with the general fact that in a very large random tree the

root tends to have the same properties as any random vertex. We thus get exactly
the same asymptotic distribution, as in section 3.

Theorem 5. Given a random k-tree G over n vertices, the distance between
two random vertices v, w of G has mean value of order

√
n and is asymptotically

Rayleigh distributed in the range x
√

n:

lim
n→∞

√
nP(D(v, w) = �x

√
n�) = c2

kxe−
(ckx)2

2 , with ck = k
∑k

i=1
1
i .
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Abstract. An n-bit (cyclic) Gray code is a (cyclic) sequence of all n-bit
strings such that consecutive strings differ in a single bit. We describe
an algorithm which for every positive integer n constructs an n-bit cyclic
Gray code whose graph of transitions is the d-dimensional hypercube Qd

if n = 2d, or a subgraph of Qd if 2d−1 < n < 2d. This allows to compress
sequences that follow this code so that only Θ(log log n) bits per n-bit
string are needed. The algorithm generates the transitional sequence of
the code in a constant amortized time per one transition.

1 Introduction

An n-bit (cyclic) Gray code Cn = (u1, u2, . . . , uN) where N = 2n is a (cyclic)
sequence listing all n-bit strings, so that every two consecutive strings differ
in exactly one bit. This corresponds to a Hamiltonian path (cycle) in the n-
dimensional hypercube Qn. A well-known example of such a code [3] is the
reflected Gray code Γn which may be defined recursively by

Γ1 = (0, 1), Γn+1 = 0Γn, 1ΓR
n (1)

where bS denotes the sequence S with b ∈ {0, 1} prefixed to each string, and SR

denotes the sequence S in reverse order.
Gray codes are named after Frank Gray, who in 1953 patented the use of the

reflected code Γn for shaft encoders: a pattern representing the code, printed on
a shaft, determines the angle of shaft rotation. Since then, considerable atten-
tion has been paid to the research on Gray codes satisfying certain additional
properties, and applications have been found in such diverse areas as graph-
ics and image processing, information retrieval or signal encoding [7]. Here we
are particularly concerned with applications of Gray codes in the field of data
compression [6, Section 4.2.1].

The transitional sequence τ(Cn) = [t1, t2, . . . , tN ] of a code Cn lists the po-
sitions (called transitions) ti ∈ [n] = {1, 2, . . . , n} for i ∈ [N ] in which ui and
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ui+1 differ. For simplicity, the indices are always taken cyclically, thus uN+1 is
identified with u1. An (undirected) graph GCn induced by Cn (sometimes called
the graph of transitions of Cn) is defined by

V (GCn) = [n] and E(GCn) = {titi+1 | i ∈ [N ]}.

See Figure 1 for an illustration. Slater [8,9] and independently Bultena and
Ruskey [1], motivated by applications of Gray codes, asked what graphs can be
induced by (cyclic) Gray codes. For example, the star K1,n−1 is induced by the
reflected Gray code Γn defined by (1).

The problem to characterize graphs which can be induced by (cyclic) Gray
codes is still widely open. By computational search, Bultena and Ruskey [1]
catalogued these graphs for n ≤ 5, and Ernst and Wilmer [11] extended the
list to n ≤ 7. For general n, there are only some partial results, positive and
negative.

Bultena and Ruskey [1] showed that every tree of diameter 4 can be induced
by a cyclic Gray code. On the other hand, no tree of diameter 3 can be induced
by such code. Also, they conjectured that all trees induced by cyclic Gray codes
have diameter 2 or 4. This was disproved by Ernst and Wilmer [11] who in-
troduced so called supercomposite Gray codes which induce trees of arbitrarily
large diameter. Moreover, they answered two questions from [1] by showing that
supercomposite Gray codes induce spanning trees of arbitrary 2-dimensional
grids, and for a directed version of the problem, that there are cyclic Gray codes
that induce digraphs with no bidirectional edge. Furthermore, Suparta and van
Zanten [10] showed that the complete graph can also be induced by cyclic Gray
codes, which solves a problem in [11]. Among many open problems posed in
[1,8,9,10,11], it is particularly interesting whether paths and cycles can be in-
duced by (cyclic) Gray codes.

C4 =

⎛⎜⎜⎝
0 0 1 1 0 0 0 0 1
0 0 0 1 1 1 1 1 1
0 1 1 1 1 0 0 1 1
0, 0, 0, 0, 0, 0, 1, 1, 1,

1 0 0 1 1 1 1
0 0 0 0 1 1 0
1 1 0 0 0 0 0
1, 1, 1, 1, 1, 0, 0

⎞⎟⎟⎠

1

3

1 11 1 1

4

4

2 2

22

3
3 3

0000

1

2

3

4

GC4:Q4:

Fig. 1. The cyclic Gray code C4, the corresponding Hamiltonian cycle of Q4 and
the graph GC4 induced by the code C4. The transitional sequence is τ (C4) =
[3, 1, 2, 1, 3, 4, 3, 1, 2, 1, 3, 1, 2, 4, 2, 1].
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In this paper, for every positive integer n we construct an n-bit cyclic Gray
code Cn which induces the d-dimensional hypercube Qd if n = 2d, or a subgraph
of Qd if 2d−1 < n < 2d. More precisely, since the vertices of GCn are labeled by
the elements of [n], we obtain the graph Q∗

d defined by

V (Q∗
d) = [2d] and E(Q∗

d) = {xy | where |x− y| = 2i for some 0 ≤ i < d}.

Clearly, Q∗
d
∼= Qd by the isomorphism that maps x ∈ [2d] to the binary repre-

sentation of x− 1.
We conclude the introduction with an explanation of the title of this paper.

Note that every Gray code Cn = (u1, u2, . . . , uN) is uniquely determined by its
first string u1 and the transitional sequence τ(Cn) = [t1, t2, . . . , tN ]. Since each
transition is an integer from [n], it may be encoded with d = �log2 n	 bits. This
provides a representation of Cn with Θ(log n) bits per one n-bit string.

However, in case that Cn induces a subgraph of Q∗
d, we may further explore

the property that two consecutive transitions of τ(Cn) always form an edge of
Q∗

d. Indeed, each transition ti+1, i ∈ [N−1], is then determined by the preceding
transition ti and by the edge titi+1 ∈ E(Q∗

d), which may be represented by its
direction

d(titi+1) = j such that |ti − ti+1| = 2j.

Consequently, the code Cn may be represented by the sequence

u1, t1, d(t1t2), d(t2t3), . . . , d(tN−1tN ).

Since edges of Q∗
d occur only in d directions, each d(titi+1) for i ∈ [N − 1] may

be encoded with �log2 d	 bits. Hence we obtain a representation of Cn which
requires only Θ(log log n) bits on the average to represent one n-bit string of the
code, which outperforms the Θ(log n) bits obtained above.

2 Preliminaries

For the rest of the paper, all Gray codes are cyclic. Let Cn = (u1, u2, . . . , uN)
be a Gray code where n denotes the dimension of the code and N = 2n, and let
τ(Cn) = [t1, t2, . . . , tN ] be the transitional sequence of Cn. We deal with Cn as
with a Hamiltonian cycle of the n-dimensional hypercube Qn, which is the graph
with V (Qn) = {0, 1}n and uv ∈ E(Qn) if and only if u and v differ in exactly
one coordinate. For a vertex v ∈ V (Qn) let Qn − v denote the graph obtained
by removing v and all its incident edges from Qn.

Let ei denote the vertex of Qn with 1 exactly in the i-th coordinate for i ∈ [n].
Thus ui ⊕ ui+1 = eti for every i ∈ [N ] where ⊕ denotes the (coordinatewise)
addition modulo 2. Moreover, let eij = ei⊕ej for distinct i, j ∈ [n]. The elements
of [n] are called directions.

Let CR
n = (uN , . . . , u2, u1) denote the Gray code Cn in reverse order. Simi-

larly, for any path P = (v1, v2, . . . , vm) of Qn, let PR = (vm, . . . , v2, v1) denote
the reverse of P . The notion of transitional sequences and induced graphs can
be naturally extended to paths as follows. We define τ(P ) = [p1, p2, . . . , pm−1]
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where pi for i ∈ [m − 1] is the coordinate in which vi and vi+1 differ, and the
(undirected) graph GP induced by P is

V (GP ) = [n] and E(GP ) = {pipi+1 | i ∈ [m− 2]}.

Note that for cycles, the transitional sequence is considered to be cyclic, whereas
for paths it is not.

Let T = [t1, t2, . . . , tm] be a (cyclic) transitional sequence of a path
(u1, u2, . . . , um+1) (resp. of a cycle (u1, u2, . . . , um)). We say that T contains
a segment S = [s1, s2, . . . , sk] if there exists j ∈ [m−k] (resp. j ∈ [m]) such that

si = ti+j−1 for all i ∈ [k].

Furthermore, if k is even, we say that S is centered at a vertex uj+k/2. For
example, τ(C4) on Figure 1 contains a segment [2, 1, 3, 1] centered at u1 = 0000.

We say that a direction t is repeating in a transitional sequence T , if T contains
a segment [t, x, t] for some x.

Let π : [n] → [n] be a permutation and w = (w1w2 · · ·wn) ∈ {0, 1}n be a
vector called translation. It is well known that the mapping � : V (Qn)→ V (Qn)
given by

�(u1u2 · · ·un) = (v1v2 · · · vn) such that vi = uπ(i) ⊕ wi for every i ∈ [n] (2)

is an automorphism of Qn. Moreover, for every automorphism � of Qn there exist
unique π and w such that � is given by (2). That is, every hypercube automor-
phism is composed of a unique permutation of coordinates and a unique transla-
tion. The translation determines where the vertex 0 = (00 · · · 0) is mapped, i.e.
�(0) = w.

The hypercube Qn may be expressed as a Cartesian product Qn = Qk � Qn−k

for 1 ≤ k < n. Every vertex v ∈ V (Qn) is then represented as a pair v =
(v1, v2) where v1 ∈ V (Qk) and v2 ∈ V (Qn−k). The subgraph of Qn induced on
vertices (v1, v2) for all v1 ∈ V (Qk) and fixed v2 ∈ V (Qn−k) is called a subcube
and denoted by Qk(v2). Clearly, Qk(v2) is isomorphic to Qk. Thus, Qn may be
viewed as Qn−k in which every vertex v2 ∈ V (Qn−k) corresponds to the subcube
Qk(v2) and every edge v2v3 ∈ E(Qn−k) corresponds to the collection of edges
(v1, v2)(v1, v3) for all v1 ∈ V (Qk).

In particular, the graph Q∗
d+1 defined in the previous section can be decom-

posed into two subcubes denoted by QA
d and QB

d induced on the sets A =
{1, 2, . . . , n} and B = {n + 1, n + 2, . . . , 2n}. Note that by the definition, every
vertex i ∈ A of QA

d is joined in Q∗
d+1 only with the vertex n + i ∈ B of QB

d .
Let GCn be the graph induced by the Gray code Cn. A transition tj where

j ∈ [N ] is critical for GCn if at least one of the edges tj−1tj , tjtj+1 ∈ E(GCn)
is induced by no other pair of consecutive transitions in τ(Cn), i.e. E(GCn) �=
{titi+1 | i ∈ [N ] \ {j − 1, j}}. If we view the cycle Cn in Qn as a path Pn,
then τ(Cn) = [τ(Pn), tN ]. Thus, if tN is not critical for GCn , we obtain that
GPn = GCn .
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3 Inducing the Hypercube

In this section, we construct an n-bit Gray code Cn for n = 2d that induces the
hypercube Q∗

d. The following lemma shows that under certain conditions, we
may modify a Gray code so that the induced Q∗

d is preserved, and at the same
time, a given segment of its transitional sequence is replaced by a new prescribed
one.

Lemma 3.1. Let C be an n-bit Gray code with GC = Q∗
d, d > 1, such that

τ(Cn) contains a segment [a, b, a, c] where a, b, c are pairwise distinct and n = 2d.
Let S be a segment [x, y, x, z] or [z, x, y, x] where x, y, z are pairwise distinct and
xy, xz ∈ E(GC), and let v be a vertex of Qn. Then, there exists a Gray code
B such that GB = Q∗

d, each occurrence of [a, b, a, c] in τ(C) is replaced by S in
τ(B), and one of them is centered at the vertex v.

Proof. We assume that S = [x, y, x, z], otherwise we proceed with SR and obtain
BR, so by changing the direction we get B. Assume that one occurrence of
[a, b, a, c] in S is centered at a vertex u ∈ V (Qn). Since ab, ac ∈ E(GC) and
GC = Q∗

d, we can extend the mapping π(a) = x, π(b) = y, π(c) = z to a
permutation π : [n] → [n] such that π is an automorphism of GC . Consider the
automorphism � of Qn given by (2) with the permutation π and a translation
vector w = (w1w2 · · ·wn) ∈ {0, 1}n such that wi = uπ(i) ⊕ vi for all i ∈ [n].

It follows directly by (2) that �(u) = v, and furthermore, � maps the subse-
quence (u ⊕ eab, u⊕ eb, u, u⊕ ea, u⊕ eac) of the code C to

�(u⊕ eab, u⊕ eb, u, u⊕ ea, u⊕ eac) = (v ⊕ exy, v ⊕ ey, v, v ⊕ ex, v ⊕ exz).

Hence, for the n-bit Gray code B = �(C), each occurrence of [a, b, a, c] in τ(C)
is replaced by S in τ(B), and one of them is centered at the vertex v. Moreover,
for every p, q ∈ [n],

pq ∈ E(GB) if and only if π−1(p)π−1(q) ∈ E(GC) if and only if pq ∈ E(GC).

The first equivalence holds by the definition of �, the latter holds since π is an
automorphism of GC . It follows that also B induces GC = Q∗

d. This establishes
the lemma. ��

Now we state one of our main results. Note that the last part of the following
theorem (on repeating directions) is only needed in the next section for a general
dimension n.

Theorem 3.1. For every integer d ≥ 1, there exists an n-bit cyclic Gray code
Cn, n = 2d, such that GCn = Q∗

d. Moreover, for d > 1 and τ(Cn) = [T, tN ], it
holds that the transition tN is not critical for GCn , T contains two disjoint oc-
currences of some segment [a, b, a, c], and every direction from [n−1] is repeating
in T .

Proof. We argue by induction on d. For d = 1 the statement is trivial. For d = 2
consider the 4-bit Gray code C4 given on Figure 1. Observe that GC4 = Q∗

2 and
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for τ(C4) = [T, tN ], the transition tN is not critical for GC4 , T contains two
disjoint occurrences of the segment [1, 2, 1, 3], and T contains segments [1, 2, 1],
[2, 4, 2], and [3, 4, 3], so the directions 1, 2, and 3 are repeating in T .

Now we assume that the statement holds for d > 1 and we prove it for d + 1.
Recall that n = 2d and N = 2n.

The idea of the proof is as follows. We view Q2n as a Cartesian product
Q2n = Qn � Qn. First, we interconnect the copies (0n, u) of the vertex 0n in all
subcubes Qn(u) for u ∈ V (Qn) by a path P which induces QB

d on vertices B =
{n + 1, . . . , 2n}. Then, in each subcube Qn(u) we find a Hamiltonian path R(u)
of Qn(u) − (0n, u) which induces QA

d on vertices A = {1, . . . , n}. Moreover, by
Lemma 3.1 we can choose the path R(u) so that R(u) joins prescribed neighbors
of (0n, u), and its first and last edge are of prescribed directions. This assures
that we can interconnect these paths together into a Hamiltonian cycle of Q2n,
and when we do so, the newly induced edges are only between i ∈ V (QA

d ) and
n+ i ∈ V (QB

d ). See Figure 2 for an illustration. Note that the bold (green) paths
R(u)’s are connected by dash-dotted (red) edges between the subcubes Qn(u)’s,
and the dashed (blue) path P is connected with R(u1) and R(uN) by the purple
edges.

By the induction hypothesis, let Cn = (u1, u2, . . . , uN) be an n-bit Gray code
such that GCn = Q∗

d and for τ(Cn) = [T, tN ], tN is not critical for GCn , T
contains two disjoint occurrences of some segment S = [a, b, a, c], one centered
at a vertex u, and every direction from [n− 1] is repeating in T .

First, we interconnect the copies of the vertex 0n in each subcube Qn(ui) by
a path

P = (0n, u1), (0n, u2), . . . , (0n, uN ). (3)

Since P will be a part of C2n, T contains two disjoint occurrences of S =
[a, b, a, c], and every direction of [n− 1] is repeating in T , it follows that τ(C2n)
will contain two disjoint occurrences of [a + n, b + n, a + n, c + n], and every
direction from {n + 1, n + 2, . . . , 2n− 1} will be repeating in τ(C2n).

Second, we find a sequence which determines the endvertices of the paths
R(u)’s, see Figure 2 for illustration. We claim that there is σ(Cn) = [s1, s2,
. . . , sN−1] such that

(a) tisi ∈ E(GCn) for every 1 ≤ i < N , and
(b) precisely one of ti = si−1 and si = ti−1 holds for every 1 < i < N .

Such a sequence can be found as follows. Note that degGCn
(ti) = d ≥ 2 for every

i ∈ [n]. For i = 1, we choose si arbitrarily such that tisi ∈ E(GCn). Now assume
1 < i < N . If ti = si−1, then we choose si such that si �= ti−1 and tisi ∈ E(GCn).
If ti �= si−1, then we put si = ti−1 and observe that tisi ∈ E(GCn) since
ti−1ti ∈ E(GCn). Thus both (a) and (b) hold.

The sequence σ(Cn) determines the endvertices of paths R(ui) as described
below. Note that from (a) and (b) we have that si−1si ∈ E(GCn) for every
1 < i < N . In each subcube Qn(ui) we find a Hamiltonian path R(ui) of
Qn(ui)− (0n, ui) as follows:
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(i) For i = 1 we apply Lemma 3.1 for a vertex v = 0n and a segment S =
[z, t1, s1, t1] where z �= s1 such that t1z ∈ E(GCn). Let B be the obtained
Gray code containing S centered at v. By removing v from B we get a
Hamiltonian path R(u1) of Qn(u1)− (0n, u1)

R(u1) = (es1 , u1), (et1s1 , u1), . . . , (et1z , u1), (et1 , u1). (4)

(ii) For 1 < i < N we proceed similarly, but we apply Lemma 3.1 for v = 0n

and S = [ti−1, si−1,si,ti ]. Note that by (a) and (b), the conditions of the
lemma are satisfied. Again, let B be the obtained Gray code containing S
centered at v. By removing v from B we get a Hamiltonian path R(ui) of
Qn(ui)− (0n, ui)

R(ui) = (esi , ui), (esiti , ui), . . . , (esi−1ti−1 , ui), (esi−1 , ui). (5)

(iii) For i = N we apply Lemma 3.1 for v = 0n and S = [tN−1, sN−1, tN−1, z]
where z �= sN−1 and tN−1z ∈ E(GCn). Similarly as above, we get a Hamil-
tonian path R(uN ) of Qn(uN )− (0n, uN)

R(uN ) = (etN−1, uN ), (eztN−1 , uN), . . . , (esN−1tN−1, uN ), (esN−1 , uN). (6)

Observe that the following sequence is a 2n-bit Gray code since the endvertices
of consecutive subpaths given by (3)–(6) are adjacent:

C2n = P, R(uN ), R(uN−1), . . . , R(u2), R(u1).

Next, we verify that C2n induces Q∗
d+1. We have

τ(C2n) = [τ(P ), tN−1, τ(R(uN )), tN−1 + n, τ(R(uN−1)), tN−2 + n,

. . . , t2 + n, τ(R(u2)), t1 + n, τ(R(u1)), t1].

Since tN is not critical for GCn , we have by (3) that τ(P ) induces the subcube
QB

d
∼= Q∗

d of GC2n on vertices B = {n + 1, n + 2, . . . , 2n}. Furthermore, no
other edge is induced between two vertices of B since τ(C2n) contains no two
consecutive transitions from B other than those in τ(P ).

Moreover, we show that τ(R(ui)) for every i ∈ [N ] induces the subcube QA
d
∼=

Q∗
d of GC2n on vertices A = {1, 2, . . . , n}. This follows from the fact that in each

of the cases (i)–(iii) above, GB = Q∗
d and τ(B) contains two occurrences of

the segment S. In addition, no other edge is induced between two vertices of A
since τ(C2n) contains no two consecutive transitions from A other than those in
τ(R(ui)) for some i ∈ [N ].

Finally, observe by (3)–(6) that the remaining edges of GC2n are joining ver-
tices i and n + i for some i ∈ [n], and for every i ∈ [n] there exists such edge
since τ(Cn) contains all i ∈ [n]. Altogether, we obtain that GC2n = Q∗

d+1.
To conclude the proof, it remains to verify the second part of the statement.

Let τ(C2n) = [t′1, . . . , t′N2 ] = [T ′, t′N2 ]. Since t′N2−1 = z, t′N2 = t1, and t′1 =
t1 + n, observe that the transition t′N2 is not critical for GC2n , because the edge
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zt1 ∈ E(QB
d ) is induced by τ(R(ui)) for any i ∈ [n], and the edge of GC2n joining

t1 and t1 + n is induced also by transitions t′N2−N = t1 and t′N2−N+1 = t1 + n.
Furthermore, T ′ contains τ(P ). Consequently, T ′ contains two disjoint oc-

currences of a segment [a + n, b + n, a + n, c + n], and every direction from
{n+1, n+2, . . . , 2n−1} is repeating in T ′. In addition, T ′ contains the segments
[t1, t1 + n, t1], [t2, t2 + n, t2], . . . , [tN−1, tN−1 + n, tN−1]. Hence, the directions
D = {t1, . . . , tN−1} are repeating in T ′. Clearly D = [n] since every direction
from [n] appears at least twice in τ(Cn) = [t1, . . . , tN−1, tN ]. Therefore, every
direction from [2n− 1] is repeating in T ′. ��

4 General Dimension

In this section, we generalize Theorem 3.1 to an arbitrary dimension n. More
precisely, we construct a Gray code inducing a subgraph of Q∗

d for the smallest
d possible.

Theorem 4.1. For every integer n ≥ 1, there exists an n-bit cyclic Gray code
Cn such that GCn ⊆ Q∗

�log2 n�. Moreover, if n ≥ 4 and n = 2d + k where
0 ≤ k ≤ 2d − 2, then every direction from {k + 1, . . . , 2d − 1} is repeating in
τ(Cn).

Proof. We argue by induction on k. By Theorem 3.1, the statement holds if
n = 2d for some integer d, i. e. for k = 0. If n = 1 or n = 3, observe that the
reflected codes Γ1 = (0, 1) and Γ3 = (000, 001, 011, 010, 110, 111, 101, 100) from
(1) induce a subgraph of Q∗

0 and Q∗
2, respectively.

Now we have n = 2d + k ≥ 5 where d > 1 and 1 ≤ k < 2d, so �log2 n	 =
d + 1. By the induction hypothesis, there is an (n − 1)-bit Gray code Cn−1
inducing a subgraph of Q∗

d+1 such that every direction from D = {k, . . . , 2d−1}
is repeating in τ(Cn−1). That is, for every t ∈ D the transitional sequence
τ(Cn−1) = [t1, . . . , tN/2] where N = 2n contains a segment [t, x, t] for some
x ∈ [n− 1]. We may assume that

tN/2−1 = k, tN/2 = x, t1 = k, (7)

otherwise we shift the code Cn−1 so that the segment [k, x, k] appears at this
position.

We define the Gray code Cn schematically as in (1),

Cn = 0Cn−1, 1CR
n−1. (8)

From (7) and (8) it follows that

τ(Cn) = [k = t1, . . . , tN/2−1 = k, n, tN/2−1 = k, . . . , t1 = k, n].

Hence, for the graph GCn induced by Cn we have that

E(GCn) ⊆ E(GCn−1) ∪ {kn}.
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Consequently, GCn ⊆ Q∗
d+1 since GCn−1 ⊆ Q∗

d+1 and kn ∈ E(Q∗
d+1) because

n− k = 2d.
It remains to verify the second part of the statement. Observe that if S =

[s, x, s] and T = [t, y, t] are segments of τ(Cn−1) for some x, y ∈ [n − 1] and
distinct repeating transitions s, t ∈ D, then S and T must be disjoint. Therefore,
since every direction from D is repeating in τ(Cn−1) and by (7), it follows that
every direction from D \ {k} is repeating in [t1, . . . , tN/2−1], which is a segment
of τ(Cn). ��

5 Concluding Remarks

In this paper we have described a construction of a cyclic n-bit Gray code whose
graph of transitions is the d-dimensional hypercube Qd if n = 2d, or a subgraph
of Qd if 2d−1 < n < 2d.

Note that the proofs of Theorems 3.1 and 4.1 actually provide a description of
an algorithm which, given a positive integer n, constructs a transitional sequence
of an n-bit code with the desired property. Following the inductive construction
described in both proofs, the running time T (n) of the algorithm may be ex-
pressed as

T (n) =

⎧⎪⎨⎪⎩
T (n/2) + O(2n) if n = 2d and d > 2,

T (n− 1) + O(2n) if 2d−1 < n < 2d and d > 2,

O(1) if n ≤ 4.

Consequently, the time complexity of our construction is bounded by O(N),
where N = 2n is the output size, i. e. only constant amortized time is required
per one element of the output sequence. However, it is well-known [3] that the
reflected Gray code Γn may be generated looplessly in the sense that time to
find the next transition is constant even in the worst case. Is there a loopless
construction algorithm for a Gray code inducing a subgraph of Qd?

As mentioned in the introduction, our variant of Gray code allows for a more
space-saving representation compared to Gray codes in general. This suggests
that it may be reasonable to inspect other data compression applications where
Gray codes are traditionally used.

In particular, consider the problem of compressing a sequence of n-bit strings
which arises in context of compressing bitmap indices of large databases. There
are several efficient methods developed for this purpose [12] whose compression
rate may be improved by reordering the input sequence so that the sum of
Hamming distances of consecutive strings is minimized [4]. Unfortunately, this
problem is known to be NP-complete [2]. In the special case when the sequence
contains all n-bit strings, the optimal solution is provided by an n-bit Gray code.
This suggests a heuristics for this problem [4]: sort the strings in the order given
by a Gray code. We suggest that it is conceivable to employ our variant of Gray
code for that purpose.

Then, it would be necessary to device an efficient algorithm for sorting the
strings in the order given by our variant of Gray code. It is well-known that
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sorting by the Γn code may be performed in O(mn) time [5]. Is such a time
complexity achievable for sorting by a Gray code inducing a subgraph of Qd?
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Abstract. Embedded trees are labelled rooted trees, where the root has
zero label and where the labels of adjacent vertices differ by ±1. Recently
it was proved by Chassaing and Schaeffer, and Janson and Marckert
that the distribution of the maximum and minimum label are closely
related to the support of the density of the integrated superbrownian
excursion (ISE). The purpose of this paper is make this probabilistic
limiting relation more explicit by using a generating function approach
due to Bouttier, Di Francesco, and Guitter that is based on properties
of Jacobi’s θ-functions. In particular we derive an integral representation
of the joint distribution function of the supremum and infimum of the
support of the ISE in terms of the Weierstrass ℘-function.

1 Introduction

A planted plane tree is a rooted ordered tree, which means that all successors of
a node have a left-to-right order. It is a classical result that the number pn of
planted planted plane trees with n edges equals the Catalan number

pn =
1

n + 1

(
2n

n

)
.

An embedded tree (with increments ±1) is a planted plane tree, where the vertices
are labelled by integers such that the root has label 0 and labels of adjacent
vertices differ by ±1 (see Figure 1). By construction the number q of different
embedded trees (with increments ±1) is given by

qn = 2npn =
2n

n + 1

(
2n

n

)
.

In what follows we assume that every embedded tree (with n edges) is equally
likely. Of course, in this random setting every parameter on embedded trees
becomes a random variable.

Let Xn(j) denote the number of vertices with label j in a (random) embedded
tree of size n. The sequence (Xn(j))j∈Z is then the label profile, and let Xn(t),
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Fig. 1. Embedded tree and contour of integration Γ

t ∈ R, be the the linearly interpolated (random) function. Recently, Bousquet-
Mélou and Janson [3] proved that(

n−3/4Xn(n1/4t), −∞ < t < ∞
)

d−→ (fISE(t), −∞ < t < ∞) , (1)

where d−→ denotes weak convergence in the space C0(R) and the stochastic
process (fISE(t), −∞ < t < ∞) is the densitiy of the integrated superbrownian
excursion (ISE). Recall that the ISE is a random measure which can be seen
– despite a scaling factor

√
2 – as the occupation measure of the head of the

Brownian snake (see Chassaing and Schaeffer [6], Janson and Marckert [9], and
Bousquet-Mélou and Janson [3]).

One interesting feature of the ISE is that the support of its density [LISE, RISE]
is (almost surely) a finite interval. By (1) it is clear that the largest label Mn

and the smallest label mn of a random embedded tree with n edges is related to
RISE and LISE:

Mn

n1/4
d−→ RISE and

mn

n1/4
d−→ LISE.

We also have
Mn − mn

n1/4
d−→ RISE − LISE.

Note that RISE and −LISE have the same distribution but they are not
independent.

By using the relation between Mn and RISE and asymptotics of generating
functions Bousquet-Mélou [2] proved a remarkable integral representation of the
tail distribution function G(λ) = P{RISE > λ}:

G(λ) =
12

i
√

π

∫
Γ

v5ev4

sinh2(λv)
dv, (2)

where
Γ = {1 − te−iπ/4, t ∈ (−∞, 0]} ∪ {1 + teiπ/4, t ∈ [0,∞)}, (3)
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see Figure 1. In [7] one can also find a relation for the Laplace transform of the
function x− 3

2 P{RISE > x
1
4 } which is given by∫ ∞

0
x− 3

2 P{RISE > x
1
4 } e−sx dx =

6
√

πs(
sinh((s/2)1/4)

)2
and representations for the moments

E(Rr
ISE) =

24
√

π Γ (r + 1)ζ(r − 1)
2rΓ ((r − 2)/4)

,

for �(r) > −4, where the right hand side has to be analytically continued at the
points −3,−2,−1, 2.

The purpose of this paper is to extend the result (2) by Bousquet-Mélou. We
will provide integral representations for the joint distribution of LISE and RISE
and also for the length RISE−LISE of the support of the ISE. In the proof we use
an explicit representation of the corresponding generating function of embedded
trees in terms of θ-functions (see [5]) and use asymptotics of these generating
functions, where Eisenstein series the Weierstrass ℘-function appear.

The structure of the paper is as follows. In Section 2 we give precise statements
of our results. The proof is then divided into two major parts. First we discuss
combinatorics on embedded trees (Section 3) and derive then the asymptotic
results in Section 4.

2 Results

As above let Mn and mn denote the maximum and minimum labels in embedded
trees of size n, respectively. In order to formulate our main result we need the
notion of the Weierstrass ℘-function

℘(z; τ) =
1
z2 +

∑
(m1,m2)∈Z2\{(0,0)}

(
1

(z − m1τ − m2)2
− 1

(m1τ + m2)2

)
,

where τ and z are complex variables with �(τ) > 0 and z 	∈ Z + τZ. The ℘-
function – considered as a function in z – is an elliptic function that has periods
1 and τ . It is analytic in τ and meromorphic in z with double poles on the lattice
points Z + τZ; for details we refer to [10].

Theorem 1. The distribution function

F (λ1, λ2) = P{RISE ≤ λ1, −LISE ≤ λ2}

of the limit (
Mn

n1/4 ,
−mn

n1/4

)
d−→ (RISE,−LISE)

is given by

F (λ1, λ2) =
20

3iπ5/2

∫
Γ

℘

(
− iλ1

π
v;− i(λ1 + λ2)

π
v

)
v5 e

5
9 v4

dv.
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Similarly we obtain an integral representation for the length of the support of
the ISE.

Theorem 2. The distribution function

H(λ) = P{RISE − LISE ≤ λ}

of the limit
Mn − mn

n1/4
d−→ RISE − LISE

is given by

H(λ) = − 20
3π7/3

∫ λ

0

∫
Γ

∂

∂τ
℘

(
− is

π
v;− iλ

π
v

)
v6 e

5
9 v4

dv ds.

There is almost no literature on explicit results on the support [LISE, RISE] of
the ISE. Besides the aforementioned results on RISE the expected values

E (−RISELISE)=−3
√

2π+2
√

2π

∫ ∞

1

∫ ∞

1

(u + 1)√
t3 − 1

√
u3 − 1(u +

√
u2 + u + 1)

du dt

and

E (min{RISE,−LISE}) = 6
√

2π

(
1 − 1

8

(∫ ∞

1

du√
u3 − 1

)2
)

have been computed by Delmas [7].

3 Combinatorics

Let P (t) denote the generating function of planted plane trees, where the expo-
nent of t counts the number of edges. Then by using the combinatorial decom-
position – namely that all subtrees of the root are again planted plane trees, see
Figure 2 – we obtain the relation

P (t) = 1 + tP (t) + t2P (t)2 + t3P (t)3 + · · · =
1

1 − tP (t)

and consequently

P (t) =
1 −

√
1 − 4t

2t
=
∑
n≥0

1
n + 1

(
2n

n

)
tn.

It is also very easy to count embedded trees without any restriction with the help
of generating functions. Let R(t) denote the generating function of embedded
trees, where the exponent of t counts the number of edges. Furthermore let
Rn(t), n ∈ Z, be the generating function of embedded trees, where we assume
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= + + + ...+

Fig. 2. Recursion for planted plane trees

that the root is labelled by n (and labels of adjacent vertices differ by ±1). Then
by using the same decomposition as above we have

Rn(t) =
1

1 − t(Rn−1(t) + Rn+1(t))
. (4)

Since there are no restrictions on the embedded trees we have Rn(t) = R0(t) =
R(t) for all n ∈ Z leading to the relation

R(t) =
1

1 − 2tR(t)

and to the explicit representation

R(t) =
1 −

√
1 − 8t

4t
=
∑
n≥0

2n

n + 1

(
2n

n

)
tn.

The situation becomes more interesting if we just consider embedded trees, where
all labels are non-negative. Let R

[0]
n (t) be the generating functions of those em-

bedded trees, where the root has label n. By definition R
[0]
n (t) = 0 if n < 0.

However, we have the same recurrence relation as above:

R[0]
n (t) =

1

1 − t(R[0]
n−1(t) + R

[0]
n+1(t))

, (n ≥ 0). (5)

Interestigly, this system of equations has an explicit solution of the form

R[0]
n (t) = R(t)

unun+4

un+1un+3
,

where
un = un(t) = Z(t)

n+1
2 − Z(t)−

n+1
2

and

Z(t) =
1 − (1 − 8t)1/4

1 + (1 − 8t)1/4

is the solution of the equation

Z +
1
Z

+ 2 =
1

tR(t)
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that is analytic at t = 0. This miraculous relation was observed by Bouttier, Di
Francesco, and Guitter [4]. In fact this explicit solution was used by Bousquet-
Mélou [2] to obtain the integral representation for (2).

In another paper Bouttier, Di Francesco, and Guitter [5] considered the class
of embedded trees, where all labels are bounded between 0 and L, where L is a
non-negative integer. Let R

[0,L]
n (t) be the generating functions of those embedded

trees, where the root has label n. By definition R
[0,L]
n (t) = 0 if n < 0 of n > L.

We have the same recurrence relation as above:

R[0,L]
n (t) =

1

1 − t(R[0,L]
n−1 (t) + R

[0,L]
n+1 (t))

, (0 ≤ n ≤ L). (6)

Interestingly there is an explicit solution of this system of equation in terms of
the Jacobi theta function

θ1(u; q) = 2i sin(πu)
∏
j≥1

(
1 − 2qj cos(2πu) + q2j

)
. (7)

First let q = q(t) be determined by the equation

t =
θ1

(
1

L+6 , q
)4

θ1

(
4

L+6 , q
)

θ1

(
2

L+6 , q
)5 (8)

Then we have (see [5])

R[0,L]
n (t) =

θ1

(
2

L+6 , q
)3

θ1

(
1

L+6 , q
)2

θ1

(
4

L+6 , q
) θ1

(
n+1
L+6 , q

)
θ1

(
n+5
L+6 , q

)
θ1

(
n+2
L+6 , q

)
θ1

(
n+4
L+6 , q

) . (9)

4 Asymptotic Analysis

In [5] the generating functions R
[0,L]
n (t) have been analyzed by considering so-

called scaling limits which can be interpreted in terms of potentials and char-
acteristic lengths etc. For our purpose we have to be more precise, since we are
interested in asymptotics of the coefficients. Nevertheless, we use – more or less
– the same of scaling as in [5].

By shifting labels from 0 to j it follows that

P{Mn ≤ k, mn ≥ −j} =
[tn] R[0,j+k]

j (t)
2n

n+1

(2n
n

) . (10)

Thus, in order to prove Theorem 1 we need asymptotics of the coefficient [tn]
R

[0,j+k]
j (t). Note that it is not necessary to prove asymptotics in the full range

of parameters. In particular, we will set j ∼ λ1n
1/4 and k ∼ λ2n

1/4 for positive
real numbers λ1, λ2.
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We use Cauchy’s formula

[tn] R[0,j+k]
j (t) =

1
2πi

∫
γ

R
[0,j+k]
j (t)t−n−1 dt,

where γ is a certain contour of winding number +1 around the origin, contained
in the analyticity region of Rj(t)[0,j+k]. In this case we will use a path of inte-
gration γ of the form γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4, where x0 = 1

8 , c > 0,

γ1 =
{

x = x0

(
1 − c

i + n1/4 − s

n

)
: 0 ≤ s ≤ n1/4

}
,

γ2 =
{

x = x0

(
1 − c

1
n

e−iϕ

)
: −π

2
≤ ϕ ≤ π

2

}
,

γ3 =
{

x = x0

(
1 + c

i + s

n
:
)

0 ≤ s ≤ n1/4
}

,

and γ4 is a circular arc centred at the origin and making γ a closed curve (see
also Figure 3). Note that γ1∪γ2∪γ3 constitutes a so-called Hankel contour that
appears in Hankel’s integral representation of 1/Γ (s).

By the relation (8), t and q are related. We will first study this relation for
t ∈ γ1 ∪ γ2 ∪ γ3. For this purpose we use the following asymptotic property.

Lemma 1. Suppose that q = e2πiτ and L satisfy |1−q| ≥ c/L for some constant
c > 0. Then

θ1

(
1

L+6 , q
)4

θ1

(
4

L+6 , q
)

θ1

(
2

L+6 , q
)5 =

1
8

(
1 − 25

(L + 6)4
G4(τ) + O

(
1

L6|1 − q|6

))
, (11)

where G4(τ) denotes the Eisenstein series

G4(τ) =
∑

(m1,m2)∈Z2\{(0,0)}

1
(m1 + m2τ)4

.

Fig. 3. Contour of integration and Hankel contour
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Proof. By using the Taylor series expansions for sin(πu) and cos(2πu) we can
represent θ1(u, q) as

θ1(u, q) = 2πi u exp

((
−π2

6
+ 4π2

∑
j≥1

qj

(1 − qj)2

)
u2

+

(
− π4

180
− 4π4

3

∑
j≥1

qj

(1 − qj)2
− 8π4

∑
j≥1

q2j

(1 − qj)4

)
u4 + O

(
u6

|1 − q|6

)))
.

This gives

θ1

(
1

L+6 , q
)4

θ1

(
4

L+6 , q
)

θ1

(
2

L+6 , q
)5

=
1
8

(
1 − 100π4

(L + 6)4

(
1

180
+

4
3
S1 + 8S2

)
+ O

(
1

L6|1 − q|6

))
,

where S1 and S2 abbreviate

S1 =
∑
j≥1

qj

(1 − qj)2
and S2 =

∑
j≥1

q2j

(1 − qj)4

By using the notation σ�(n) =
∑

d|n d� we have

4
3
S1 + 8S2 =

4
3

∑
j,k

k3qjk =
4
3

∑
n≥1

σ3(n)qn.

Since

G4(τ) =
∑

(m1,m2)∈Z2\{(0,0)}

1
(m1 + m2τ)4

=
π4

45
+

16π4

3

∑
n≥1

σ3(n)e2πinτ .

it follows that
π4

180
+

4
3
π4S1 + 8π4S2 =

1
4
G4(τ). (12)

This proves (11).

Alternatively to the previous proof we could have used the relation

G4(τ) =
5
8

(
θ′′′1 (0, q)
θ′1(0, q)

)2

+
3
8

θ
(5)
1 (0, q)
θ′1(0, q)

,

where ′ denotes the derivative with respect to the first variable u.
Next we discuss the behaviour of G4(τ) if τ is close to 0.
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Lemma 2. We have uniformly for τ → 0 with ε ≤ arg(τ) ≤ π − ε (for any
ε > 0)

G4(τ) =
π4

45
τ−4 + O

(
τ−3) . (13)

Proof. We just study the behaviour of S2, since it constitutes the asymptotic
leading term in the representation (12). Set q = e−x. Then by using the
representation

S2 = S2(x) =
1
6

∑
n≥1

(σ3(n) − σ1(n)) e−nx

we obtain that the Mellin transform of S2(x) (see [8]) is given by

F (s) =
∫ ∞

0
S2(x)xs−1 dx =

Γ (s)
6

ζ(s) (ζ(s − 3) − ζ(s − 1)) .

for complex s with �(s) > 4. By taking the inverse Mellin transform (and shifting
the line of integration to the left and taking into account the residue at s = 4)
one gets directly

S2(x) = ζ(4)x−4 + O(x−3) =
π4

90
x−4 + O(x−3)

which is uniform for x → 0 when | arg(x)| ≤ π − ε for any ε > 0 (see again [8]).
Finally by setting τ = −x/(2πi) and by using the relation G4(τ) ∼ 32π4S2 we
obtain (13).

We now assume that L ∼ j + k = (λ1 + λ2)n1/4 for some positive constants λ1
and λ2. Furthermore it is convenient to introduce a new variable

w =
1
2π

(log(1/q))−1 =
i

τ
.

Now suppose that t varies in γ1∪γ2∪γ3 (with x0 = 1
8 ). If we write t = 1

8

(
1 − w′

n

)
then w′ varies in −H ′, where H ′ is a Hankel contour cut at real part n1/4. For
simplicity we neglect this cut for a moment. With the help of the asymptotic
relations of Lemmas 1 and 2 we have

w′ =
5π4

9(λ1 + λ2)4
w4 + O(w2).

Hence w varies on a contour coming from +eiπ/4∞, cutting the real axis at
some positive value and leaving to +e−iπ/4∞ (compare with Figure 4). Hence,
without loss of generality we can assume that w varies on Γ̂ , where Γ is defined
in (3) andˆdenotes the time reversed contour.

The next goal is to determine the asymptotic behaviour of R
[0,j+k]
j (t) for

t ∈ γ1 ∪ γ2 ∪ γ3. For this purpose we will use the following property.
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-H

Fig. 4. Negative Hankel contour and contour of integration of w

Lemma 3. Suppose that q = e2πiτ and L satisfy |1−q| ≥ c/L for some constant
c > 0. Then

R
[0,L]
j (t) = 2

(
1 − 3

(L + 6)2
℘

(
j + 1
L + 6

; τ
)

+ O

(
1

L4|1 − q|4

))
(14)

uniformly for ε ≤ j/L ≤ 1 − ε (for any ε > 0), where ℘(z; τ) denotes the
Weierstrass ℘-function

℘(z; τ) =
1
z2 +

∑
(m1,m2)∈Z2\{(0,0)}

(
1

(z − m1τ − m2)2
− 1

(m1τ + m2)2

)

Proof. By proceeding as in the proof of Lemma 1 we obtain

θ1

(
2

L+6 , q
)3

θ1

(
1

L+6 , q
)2

θ1

(
4

L+6 , q
) = 2

(
1 − 1

(L + 6)2
θ′′′1 (0, q)
θ′1(0, q)

+ O

(
1

L4|1 − q|4

))
.

Furthermore we have for u = (j + 1)/(L + 6) (and uniformly for ε ≤ u ≤ 1 − ε)

θ1

(
j+1
L+6 , q

)
θ1

(
j+5
L+6 , q

)
θ1

(
j+2
L+6 , q

)
θ1

(
j+4
L+6 , q

)=1+
3

(L + 6)2

(
θ′′1 (u, q)
θ1(u, q)

−
(

θ′1(u, q)
θ1(u, q)

)2
)
+O

(
1

L4 |1 − q|

)

Finally, by using the relation (see [1])

θ′′′1 (0, q)
3 θ′1(0, q)

− θ′′1 (u, q)
θ1(u, q)

+
(

θ′1(u, q)
θ1(u, q)

)2

= ℘(u; τ)

we obtain the asymptotic relation (14).

We are now ready to prove Theorem 1. We set j + 3 = λ1n
1/4, k + 3 = λ2n

1/4

and L + 6 = (j + 3) + (k + 3) = (λ1 + λ2)n1/4. As mentioned above we use
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Cauchy’s formula. For technical reasons we apply it to R
[0,j+k]
j (t)− 2 instead of

R
[0,j+k]
j (t). Of course, if n > 0 we have

[tn] R[0,j+k]
j (t) = [tn]

(
R

[0,j+k]
j (t) − 2

)
=

1
2πi

∫
γ

(
R

[0,j+k]
j (t) − 2

)
t−n−1 dt

=
1

2πi

∫
γ1∪γ2∪γ3

(
R

[0,j+k]
j (t) − 2

)
t−n−1 dt+

1
2πi

∫
γ4

(
R

[0,j+k]
j (t) − 2

)
t−n−1 dt

We will focus on the contribution coming from the contour γ1 ∪ γ2 ∪ γ3. Namely
if t ∈ γ4 then |t| ∼ 1

8

(
1 + cn−3/4

)
(for some c > 0) whereas R

[0,j+k]
j (t) stays

bounded (note that Lemma 3 still applies). Hence∫
γ4

(
R

[0,j+k]
j (t) − 2

)
t−n−1 dt = O

(
8n e−c n1/4

)
which is negligible compared to the normalization 2n

n+1

(2n
n

)
∼ 8nn−3/2/

√
π.

For t ∈ γ1 ∪ γ2 ∪ γ3 we use the substitution

t =
1
8

(
1 − 5

9
π4w4

L4

)
,

where w = i/τ now varies on a contour that we can deform (due to analyticity) to
Γ̂ . Note, however, that we have to cut Γ̂ to a finite contour Γ̂ ′, since t ∈ γ1∪γ2∪γ3
implies that w = O(n1/16). In this range we use the approximations

R
[0,j+k]
j (t) − 2 = − 6

(λ1 + λ2)2
√

n
℘

(
λ1

λ1 + λ2
;

i

w

)
+ O

(
w4

n

)
,

t−n−1 = 8n+1 exp
(

5
9

π4

(λ1 + λ2)4
w4 + O

(
w6
√

n

))
,

and the substitution

dt = − 20
8 · 9

π4

(λ1 + λ2)4n
w3 dw

that lead to the integral

1
2πi

∫
γ1∪γ2∪γ3

(
R

[0,j+k]
j (t) − 2

)
t−n−1 dt =

π4

2πi

8n

n3/2

40
3(λ1 + λ2)6

×
∫

Γ̂ ′

(
℘

(
λ1

λ1 + λ2
;

i

w

)
+ O

(
w4 + w6

√
n

))
exp
(

5
9

π4

(λ1 + λ2)4
w4
)

w3 dw

At this point we can neglect the error terms and extend the cutted path of
integration Γ̂ ′ to the infinite path Γ̂ . Furthermore, we substitute v = πw/(λ1 +
λ2), use the relation ℘(z;−1/τ) = τ2℘(zτ ; τ) and obtain (after reversing Γ̂ to Γ
and deforming (π/(λ1 + λ2))Γ to Γ )

[tn] R[0,j+k]
j (t) ∼ 1

π3i

8n

n3/2

20
3

∫
Γ

℘

(
− iλ1

π
v;− i(λ1 + λ2)

π
v

)
v5 e

5
9 v4

dv.
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Since 2n

n+1

(2n
n

)
∼ 8nn−3/2/

√
π we finally derive the proposed result of Theorem 1.

Theorem 2 can be deduced from Theorem 1 and by applying the following
property. Suppose that F (λ1, λ2) is the distribution function of a non-negative
random vector (X1, X2) which has density ∂2

∂λ1∂λ2
F (λ1, λ2). Then the distribu-

tion function H(λ) of the sum Y = X1 + X2 is given by

H(λ) =
∫ λ

0

∫ λ−λ1

0

∂2

∂λ1∂λ2
F (λ1, λ2) dλ2 dλ1 =

∫ λ

0

∂

∂λ1
F (λ1, λ − λ1) dλ1

This directly implies

H(λ) =

− 20
3π7/3

∫ λ

0

∫
Γ

(
∂

∂τ
℘

(
− iλ1

π
v;− iλ

π
v

)
+

∂

∂z
℘

(
− iλ1

π
v;− iλ

π
v

))
v6 e

5
9 v4

dv dλ1.

Finally, since ℘(τ − z; τ) = ℘(z; τ) we have ∂
∂τ ℘(τ − z; τ) + ∂

∂z ℘(τ − z; τ) =
∂
∂τ ℘(z; τ) and consequently (by setting s = λ − λ1) we derive the proposed
representation for H(λ) that is given in Theorem 2. Note that it is not possible
to interchange the integrals, since the ℘-function is singular at z = 0 and z = τ .

Acknowledgement. The author is grateful to Mireille Bousquet-Mélou for several
helpful comments.
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Abstract. We analyze special random network models – so-called thick-
ened trees – which are constructed by random trees where the nodes are
replaced by local clusters. These objects serve as models for random real
world networks. It is shown that under a symmetry condition for the
cluster sets a local-global principle for the degree distribution holds: the
degrees given locally through the choice of the cluster sets directly af-
fect the global degree distribution of the network. Furthermore, we show
a superposition property when using clusters with different properties
while building a thickened tree.

1 Introduction

There has been substantial interest in random graph models where vertices are
added to the graph successively and are connected to several already existing
nodes according to some given law. The so-called Albert-Barabási model (see [1])
joins a new node to an existing one with probability proportional to the degree.
This is called preferential attachment and the motivation for introducing such
schemes is to model various real-word graphs like the Internet or social networks.

It turns out that the preferential attachment rule of the Albert-Barabási model
is not defined in an unambiguous way. One rigorous approach is due to [3]. They
introduced a random multigraph which is built of random forests which are then
formed into multigraphs by partitioning the vertex set and identifying vertices
in the same block of the partition. It was shown in [4] that the graphs are scale
free, that is, the degree distribution of these graphs satisfies asymptotically a
power law. In particular, the fraction of vertices with degree d is asymptotically
proportional to d−3. Furthermore, the model fulfills the preferential attachment
rule given by Albert and Barabási.
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2 Thickened Trees

The concept of thickened trees was introduced in [5]. The starting point was
to construct a model of scale free graphs which is locally clustered, but the
global structure is tree-like. This fits with observations from real world networks.
In particular the design of this model was motivated to describe cooperation
networks, where one usually has small groups with a strong interaction and some
connections to other groups. Of course, there might be circles in a cooperation
network but they are usually rare so that we neglect them.

The idea how to get such a graph is to start with a scale free tree and then
“thicken” the tree by substituting the nodes by clusters. Then the initial tree
causes the global tree-like structure while the inserted clusters cause the local,
highly clustered structure. However, the clusters are not produced by an evolu-
tion process. Nevertheless we think that our model has several advantages and
can be used to explain several properties that are observed in practice:

– There is large flexibility in choosing the structure of local clusters and, thus,
it can be adapted to the situation.

– The model is feasible for an analytic treatment.
– It can be used to study (analytically) the influence of local changes of the

network to the global behavior.

In the following, we present a brief explanation how the model is constructed: We
first introduce an evolution process that leads to a plane oriented recursive tree
(PORT). Recall that a recursive tree is a labeled rooted tree, where the labels
of all paths leading away form the root are strictly increasing. Furthermore, a
rooted tree is plane oriented if the successors of every node have a left-to-right
order. The process starts with the root that is labeled with 1. Next, we attach
a node labeled with 2 to the root. We continue attaching the node with label 3,
however there are three possibilities, two possibilities to attach at the root, and
one to attach at the other vertex. Thus, with probability 2/3, we attach to the
root. We proceed in a similar way. Inductively at step j a new node with label j
is attached to any previous node of out-degree k with probability proportional
to k +1. Thus we are in the framework of the Albert-Barabási model. Note that
if a node v has out-degree k, then there are exactly k+1 ways of attaching a new
node to v. Each of this k + 1 options is leading to a different plane tree, since
the left-to-right order of child nodes is significant and corresponds to a different
embedding into the plane.

Observe that the evolution process described above generates each PORT of
given size with the same probability. Thus, it is possible to analyze them by
a usual counting procedure, in particular by a generating function approach.
Because of the recursive structure, it is easy to see that the generating function
y(z) =

∑
n≥1 yn

zn

n! , where yn denotes number of PORTs of size n, satisfies the
differential equation

y′(z) = 1 + y(z) + y(z)2 + · · · =
1

1 − y(z)
.
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Fig. 1. A simple example of a thickened PORT. The original tree has only nodes of
out-degree 0,1, or 2. So the choice of all sets Tk with k > 2 is not relevant for the
thickening process. For example, the node with label 2 is cut along the circular dashed
line. Since it has out-degree 2, we choose one of the three graphs in T2 (here the first one
was chosen) and glue it into the corresponding space. Applying the same procedure to
all nodes and relabeling afterwards yields the graph on the right hand side, a thickened
PORT.

More generally, using the variable xk to mark a node of out-degree k, we get the
generating function y(z, x0, x1, x2, . . . ) fulfilling

y′(z, x0, x1, x2, . . . ) =
∑
k≥0

xky(z, x0, x1, x2, . . . )k,

where ′ denotes differentiation with respect to z. Following this approach, it is
for instance straightforward to give the probability generating functions of nodes
of out-degree d in a random PORT of size n, see [5]. Thus it can be shown that
PORTs are scale free trees, that is, the degree distribution follows asymptotically
a power law. More precisely, the degree distribution is given by

lim
n→∞ pn(d) =

4
d(d + 1)(d + 2)

∼ 4
d3 ,

where pn(d) denotes the probability that a random node in random PORT of
size n has degree d (see [8] or [9]).

Now, we introduce a substitution process creating random graphs that have a
global tree structure that is governed by plane oriented recursive trees. For every
k ≥ 0 let Tk denote a non-empty set of labeled graphs with half edges attached
to their nodes in such a way that each graph receives in total k + 1 half edges.
The half edges are also ordered from 0 to k. Now consider the following random
process. Take a tree T according to the PORT-model. Then we substitute every
node v of out-degree k in the following way: cut v and one half of each edge
incident with v. Then take a randomly chosen graph G of Tk and glue the k + 1
half edges of G to those left in T by the cutting of v respecting the given order,



Combinatorial Models for Cooperation Networks 209

that is, the half edge coming from the predecessor of v is glued to the 0th half
edge1 of G and the 1st, 2nd,. . . , kth successor of v is attached to the 1st, 2nd,
. . . , kth half edge of G, respectively. Further we relabel all nodes in the new
graph G = G(T ) in a way that is consistent with the original labeling, i.e. the
order relations among the labels are preserved, see Fig. 1. We denote the graphs
that are obtained by this process thickened trees or more precisely thickened
PORTs.

3 Generating Functions for Thickened PORTs and a
Local-Global-Principle

Consider the formal solution y = y(z, x0, x1, x2, . . .) of the differential equation

y′ =
∑
k≥0

xkyk,

where ′ denotes differentiation with respect to z. Then y = y(z, x0, x1, x2, . . .)
can be considered as a power series in z, x0, x1, . . . By construction the coefficient

[znxk0
0 xk1

1 . . .] y(z, x0, x1, x2, . . .)

is exactly the number of PORTs T of size n and with kj nodes of out-degree j
(j ≥ 0).

For every k ≥ 0 let Tk denote a non-empty set of labeled graphs with k + 1
additional half edges ẽ0, ẽ1, . . . , ẽk. Furthermore, let

tk(z) =
∑

G∈Tk

z|G|

|G|!

denote the exponential generating function of these graphs.
The generating function of the numbers gn of thickened trees with n vertices,

g(z) =
∑

n≥1 gn
zn

n! , is then

g(z) = y(z, t0(z)/z, t1(z)/z, . . .).

We are interested in the number Nd(G) of nodes of degree d in a graph G.
Therefore we consider the bivariate generating function

t
(d)
k (z, u) =

∑
G∈Tk

z|G|

|G|!u
Nd(G),

Here the the half-edges ẽ0, . . . , ẽk contribute to the node degrees as well. Then
the generating function

g(z, u) = y(z, t
(d)
0 (z, u)/z, t

(d)
1 (z, u)/z, . . .)

encodes the distribution of nodes of degree d of thickened trees.
1 If we substitute the root note, we disregard this 0th half edge, since there exists no

predecessor.
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Set

Td(z, y, u) =
1
z

∑
k≥0

t
(d)
k (z, u)yk.

Then the following results were shown in [5]:

Lemma 1. Set

Gd(z, y, u) =
∫ y

0

dt

Td(z, t, u)
.

Then g(z, u) satisfies the functional equation

Gd(z, g, u) = z.

Theorem 1. Let Tk be substitution sets (as described above) such that the
equation

X =
∫ 1

0

dt

Td(X, t, 1)

has a unique positive solution X = ρ in the region of convergence of Td(z, y, u)
and that Td(z, y, u) can be represented as

Td(z, y, u) =
C0(z, y) + C1(z, y)(1 − y)r′

yd+α(u − 1) + O
(
(1 − y)r′

(u − 1)2
)

(1 − y)r
,

(1)
where r′ and r are real numbers with 0 < r′ ≤ r, α is an integer, C0(z, y)
and C1(z, y) are power series that contain z = ρ and y = 1 in their regions of
convergence and that satisfy Ci(ρ, y) 	= 0 for i = 0, 1 and 0 ≤ y ≤ 1. Moreover,
assume that the O (·)-term is uniform in a neighborhood of z = ρ and y = 1.

Let pn(d) denote the probability that a random node in a thickened PORT of
size n has degree d. Then the limits

lim
n→∞ pn(d) =: p(d)

exist and we have, as d → ∞,

p(d) ∼ C

dr+r′+1 .

Furthermore, for every d ≥ 0 let X
(d)
n denote the number of nodes of degree d in

a random thickened PORT of size n. Then X
(d)
n satisfies a central limit theorem

X
(d)
n − E X

(d)
n

V X
(d)
n

d−→ N(0, 1),

where E X
(d)
n and V X

(d)
n are both asymptotically proportional to n.
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The above theorem shows that thickened trees, where the generating function
Td(z, y, u) has the form (1), are scale free. Furthermore, the tail of the degree
distribution has the order r + r′ + 1. The parameters r and r′ just depend on
the structure of the cluster sets. Thus, a local change of the model, that is, a
modification of the cluster sets, changes the global degree distribution.

In what follows we will show that the (quite technical) condition (1) is sat-
isfied in very general situations. Furthermore we focus on the question how the
structure of the cluster sets influences the parameters r and r′. In fact, we will
formulate a proper local-global-principle for the order of the degree distribution.

We start with the following

Definition 1. Let M be a set of graphs, where some vertices are marked and
some or all of the marked vertices have (outgoing) half edges attached to them.
Additionally we assume that one vertex is attached to a distinguished (ingoing)
half edge. We say that M satisfies the symmetry condition if the following prop-
erty holds. Suppose that G ∈ M has k′ marked vertices and k (outgoing) half
edges. Then every graph of that kind, where k (outgoing) half edges are attached
to these k′ marked vertices in an arbitrary way is also contained in M.

Note that the above definition assumes marked nodes in the graphs whereas
the graphs in the cluster sets Tk do not have marked nodes. In order to apply
Definition 1 we mark nodes in the graphs of Tk according to the following scheme.
First, partition Tk into isomorphy classes. Now consider one particular isomorphy
class and mark in each graph all those nodes, for which another graph of the
class exists which has an outgoing half edge attached to the corresponding node.

Example 1. In [5] thickened trees with cluster set as shown in Figure 2 where
studied. Here the sets Tk satisfy the symmetry condition. Since each Tk with
k ≥ 2 contains a triangular graph where both end vertices of the bottom are
incident to a half edge, the two bottom vertices have to be marked in every
graph of Tk. The symmetry condition requires now, that all triangular graphs
where the half edges are attached to the two bottom vertices (not necessarily
involving both of them) are elements of Tk, which is indeed true.

We will first show that the condition (1) is satisfied for a very special cluster set.

Theorem 2. Consider a family of thickened trees such that all cluster sets Tk,
k ≥ k0 sufficiently large, contain only isomorphic copies of one graph (the same

...}

T ={k }
k

...}

k-1

...}

k

..., , ,

Fig. 2. Cluster sets containing all triangular graphs where the outgoing half edges are
separated from the ingoing half edge
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for all k ≥ k0) of size m and k′ marked vertices and satisfy the symmetry
condition. Then we have

Td(z, y, u) =
zm−1

m!
1 + C(y)(1 − y)(u − 1) + O

(
(1 − y)(u − 1)2

)
(1 − y)k′ , (2)

where
C(y) = ck′−1 + ck′−2(1 − y) + · · · + c0(1 − y)k′−1

is a polynomial of degree k′ − 1 and in particular ck′−1 	= 0.

Corollary 1. Suppose that the conditions of Theorem 2 are satisfied. Then (by
applying Theorem 1) we obtain for the resulting thickened PORT family (with
r = k′, r′ = 1)

p(d) = lim
n→∞ pn(d) ∼ C

dk′+2 .

This result means that a tail behavior of the form C d−3 for usual PORTs is
changed into a behavior of this form. The difference in the exponent equals
k′ − 1 which can be seen as the additional degree of freedom we have when we
choose the k half edges among the k′ marked vertices.

Overall, this means that (under the symmetry condition or by assuming (1))
the local structure of the clusters determine in a relatively simple way the global
behavior of the degree distribution. This can be seen as a local-global-principle.

Proof. For k ≥ k0 there are k′ marked vertices for attaching a half edge to the
graph in Tk and by the symmetry condition every distribution of the half edges
among those k′ places must lead to a graph in Tk. Hence we obtain

(
k+k′−1

k′−1

)
possible configurations. Since this implies that

t
(d)
k (z, 1) =

(
k + k′ − 1

k′ − 1

)
zm

m!
.

Thus

Td(z, y, u) =
zm−1

m!
1 + O ((1 − y)(u − 1))

(1 − y)k′ .

Now let a
(d)
k (u) = m!t(d)

k (z, u)/zm. Since the coefficient of u in a
(d)
k (u) is the

number of configurations where exactly one vertex has degree d is of order kk′−2

we surely have ck′−1 	= 0. Similar arguments show that all the coefficients of the
higher powers of u in a

(d)
k (u) are polynomials in k of degree less than k′. This

implies the shape of the error term in (2) and completes the proof.

Remark 1. Theorem 2 applies to the triangular cluster set of Example 1, where
we have k′ = 2 and consequently a tail of resulting degree distribution of the
form p(d) ∼ C k−4. This is in accordance with the exact result (see [5])

p(d) =
12

(d − 1)d(d + 1)(d + 2)
(d ≥ 4).
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... ...

...
...

Fig. 3. Triangular cluster where the vertex with the ingoing half edge has two marks
and the two other vertices just one

Another example (which is also discussed in [5]) is again based on triangu-
lar graphs, however, we distinguish now between left half edges and right half
edges that can be additionally attached to the vertex with the ingoing half edge,
see Figure 3. This distinction is necessary by the interpretation of PORTs as
plane (or ordered) trees. Formally, such a cluster set can be handled by giving
two marks to this vertex, that is, k′ = 2 + 1 + 1 = 4. Obviously, Theorem 2
applies in such a situation, too. Hence, the tail of the resulting degree distri-
bution is of the form p(d) ∼ C d−6. This is again in accordance with the exact
result (see [5])

p(d) =
1600

(d − 1)d(d + 1)(d + 2)(d + 3)(d + 4)
(d ≥ 4).

4 Inserting Clusters of Different Type

Theorem 2 only applies if the cluster set is of a very simple form. We will next
investigate what happens if we choose cluster sets containing clusters of different
type, that is, of different degrees of freedom for attaching half edges. In order
to understand in which way different tail behaviors caused by classes of clusters
compete, it suffices to consider the case of two different types. Since t

(d)
k (z, u) is

the generating function counting all clusters with respect to size and number of
nodes of degree d, adding another class of clusters to the cluster sets results in
adding the corresponding generating function to the first one. The same holds
for the functions Td(z, y, u). Hence the problem reduces to an analysis of what
happens if two behaviors of the forms (1) from Theorem 2 are added.

Theorem 3. Let Tk be cluster sets (as described above) such that the equation

X =
∫ 1

0

dt

Td(X, t, 1)

has a unique positive solution X = ρ in the region of convergence of Td(z, y, u)
and that Td(z, y, u) can be represented as
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Td(z, y, u) =
C0(z, y) + C1(z, y)(1 − y)r′

1yd+α(u − 1) + O
(
(1 − y)r′

1(u − 1)2
)

(1 − y)r1

+
C2(z, y) + C3(z, y)(1 − y)r′

2yd+β(u − 1) + O
(
(1 − y)r′

2(u − 1)2
)

(1 − y)r2
,

where r′i and ri, i = 1, 2, are real numbers with 0 < r′i ≤ ri and r1 > r2; α and
β are integers, Ci(z, y), i = 1, 2, 3, 4, are power series that contain z = ρ and
y = 1 in their regions of convergence and that satisfy Ci(ρ, y) 	= 0 for i = 1, 3
and 0 ≤ y ≤ 1 as well as C0(ρ, y) + C2(ρ, y)(1 − y)r1−r2 	= 0 for 0 ≤ y ≤ 1.
Moreover, assume that the O (·)-terms are uniform in a neighborhood of z = ρ
and y = 1.

Let pn(d) denote the probability that a random node in a thickened PORT of
size n has degree d. Then the limits

lim
n→∞ pn(d) =: p(d)

exist and we have, as d → ∞,

p(d) ∼ C

dmin{r1+r′
1+1,2r1−r2+r′

2+1} .

Furthermore, for every d ≥ 0 let X
(d)
n denote the number of nodes of degree d in

a random thickened PORT of size n. Then X
(d)
n satisfies a central limit theorem

X
(d)
n − E X

(d)
n

V X
(d)
n

d−→ N(0, 1),

where E X
(d)
n and V X

(d)
n are both asymptotically proportional to n.

Remark 2. This theorem is – in some sense – a superposition principle for cluster
sets. Note that (if r2 ≤ r1)

min{r1 + r′1 + 1, 2r1 − r2 + r′2 + 1} = 1 + 2 max{r1, r2} − max{r1 − r′1, r2 − r′2}.

Hence, the resulting exponent in the tail of the degree distribution is determined
by the behavior rj and the differences rj − r′j . For those (basic) cluster sets
which are covered in Theorem 2 we actually have r′j = 1. Consequently, we
obtain r1 + 2 = max{r1, r2} + 1 as the resulting exponent. This means that if
we interprete r1 as the degree of freedom to select half edges then the maximum
degree of freedom is responsible for the exponent in the degree distribution.

This extends the above formulated local-global-principle.

Proof. We start by inspecting the generating function g(z) of all thickened
PORTs. For simplicity we assume that the substitution sets Tk are of a form
that gn > 0 for sufficiently large n ≥ n0, that is, we exclude, for example, the
case that the number of nodes of graphs in Tk are all congruent to 1 modulo
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some integer m > 1.2 Then it follows that |g(z)| < g(|z|) if z is not contained in
the positive real line.

We first observe that ρ > 0 is the only singularity on the circle of convergence
|z| ≤ ρ and that g(ρ) = 1, that is, g(z) is convergent at z = ρ. First it is clear
that g(z) can be analytically continued starting with g(0) = 0 and the functional
equation Gd(z, g(z), 1) = z. However, if g(z0) 	= 1 for some z0 contained in the
region of convergence of g(z) then we have(

∂

∂y
Gd

)
(z0, g(z0), 1) =

1
Td(z0, g(z0), 1)

=
(1 − g(z0))r1

C0(z0, g(z0)) + C2(z0, g(z0))(1 − g(z0))r1−r2
	= 0.

Thus, we can continue analytically with help of the implicit function theorem.
Hence, if g(z) has a singularity ρ and if g(ρ) is convergent, then g(ρ) = 1. Since
g(z) is monotone and analytic it certainly reaches a value with g(ρ) = 1 where
it has to be singular. Further, ρ is characterized by the equation Gd(ρ, 1, 1) = ρ.

Next we characterize the kind of singularity of g(z) at z = ρ. By Lemma 1 we
have

z =
∫ g

0

(1 − t)r1

C0(z, t) + C2(z, t)(1 − t)r1−r2
dt

=
∫ 1

0

(1 − t)r1

C0(z, t) + C2(z, t)(1 − t)r1−r2
dt −

∫ 1

g

(1 − t)r1

C0(z, t) + C2(z, t)(1 − t)r1−r2
dt

=: G(z) − H(z, g) (3)

Hence, by expanding

1
C0(z, t) + C2(z, t)(1 − t)r1−r2

= c0(z) + c1(z)(1 − t) + c2(z)(1 − t)2 + . . .

we get
G(z) − z = c0(z)(1 − g(z))r1+1 (1 + O (|1 − g(z)|))

which is equivalent to(
G(z) − z

c0(z)

)1/(r1+1)

= (1 − g(z)) (1 + O (|1 − g(z)|)) . (4)

Since G(ρ) = ρ and C0(z, y) is analytic in z we can represent (G(z)− z)/c0(z) =
K(z)(1 − z/ρ). Furthermore, we can invert relation (4) and obtain

g(z) = 1 − K(z)1/(r1+1)
(

1 − z

ρ

)1/(r1+1)

+ O
(∣∣∣∣1 − z

ρ

∣∣∣∣2/(r1+1)
)

. (5)

2 We call this the aperiodic case. In the periodic case we have to deal with m singular-
ities on the boundary of the circle of convergence of g(z) which are all of the same
kind.
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Since there are no other singularities on the circle |z| ≤ ρ and g(z) can be
analytically continued to a larger range (despite at the point z = ρ) it follows
from [6] that

gn ∼ K(ρ)1/(r1+1) ρ−nn− r1+2
r1+1

−Γ
(
− 1

r1+1

) .

Next we determine the asymptotics of the average value E X
(d)
n . Set S(z) =

∂
∂ug(z, 1). Then it follows from Lemma 1 that

S(z) = − C0(z, g(z)) + C2(z, g(z))(1 − g(z)r1−r2

(1 − g(z))r1

×
[∫ g(z)

0

C1(z, t)
(C0(z, t) + C2(z, t)(1 − t)r1−r2)2

(1 − t)r1+r′
1td+α dt

+
∫ g(z)

0

C3(z, t)
(C0(z, t) + C2(z, t)(1 − t)r1−r2)2

(1 − t)2r1−r2+r′
2td+β dt

]

By (5) and a decomposition of the integral as in (3) we can transform this to

S(z) =
1

K(z)
r1

r1+1 (1 − z/ρ)
r1

r1+1

[∫ 1

0
C̃0(z, t)(1 − t)r1+r′

1td+α dt

+
∫ 1

0
C̃1(z, t)(1 − t)r2+r′

2td+β dt

]
+

1

K(z)
r2

r1+1 (1 − z/ρ)
r2

r1+1

[∫ 1

0
C̃2(z, t)(1 − t)r1+r′

1td+α dt

+
∫ 1

0
C̃3(z, t)(1 − t)2r1−r2+r′

2td+β dt

]
+ O (1) ,

where C̃i(z, t) are analytic functions. This proves that

E X(d)
n = n · r1 + 1

K(ρ)

∫ 1

0

[∫ 1

0
C̃0(z, t)(1 − t)r1+r′

1td+α dt

+
∫ 1

0
C̃1(z, t)(1 − t)2r1−r2+r′

2td+β dt

]
+ O

(
n

r2+1
r1+1

)
.

Thus, the limit p(d) = limn→∞ E X
(d)
n /n exists and is asymptotically given by

p(d) =
r1 + 1
K(ρ)

[∫ 1

0
C̃0(z, t)(1 − t)r1+r′

1td+α dt

+
∫ 1

0
C̃1(z, t)(1 − t)2r1−r2+r′

2td+β dt

]
∼ C′

dr1+r′
1+1 +

C′′

d2r1−r2+r′
2+1
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for some constants C′, C′′ > 0.
Finally the proof that the limiting distribution is normal follows from the

results and methods in [5,7] and (5).

Example 2. Let us continue the example where the cluster set Tk all triangular
graphs depicted in Figure 2 and the graph consisting of one single node. That
means that – when building the thickened tree – in each substitution step we
may substitute a node by a triangular graph or leave the node unchanged (no
local clustering in this particular place). Then Theorem 3 says that the exponent
−4 in the tail p(d) ∼ C d−4 of the degree distribution remains, but the constant
C changes.
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Abstract. Polar graphs generalise bipartite, cobipartite, split graphs,
and they constitute a special type of matrix partitions. A graph is polar
if its vertex set can be partitioned into two, such that one part induces a
complete multipartite graph and the other part induces a disjoint union
of complete graphs. Deciding whether a given arbitrary graph is polar,
is an NP-complete problem. Here we show that for permutation graphs
this problem can be solved in polynomial time. The result is surprising,
as related problems like achromatic number and cochromatic number are
NP-complete on permutation graphs. We give a polynomial-time algo-
rithm for recognising graphs that are both permutation and polar. Prior
to our result, polarity has been resolved only for chordal graphs and
cographs.

1 Introduction

Many graph problems can be formulated as finding a partition of the vertices
such that various parts satisfy certain properties internally, and at the same time
certain other properties are satisfied regarding the interaction between these
parts. Examples of such problems are the broad variety of colouring and ho-
momorphism problems, and matrix partition. The latter was posed by Feder
et al. [13], and it asks for a partition of the vertex set of a graph into subsets
A1, . . . , Ak, such that each subset is a clique, an independent set or of arbitrary
type, and pairs of subsets are completely adjacent, completely non-adjacent or
can be connected arbitrarily, depending on a given pattern. If the pattern says
that we partition into only cliques and independent sets, and Ai, Aj should be
completely adjacent for Ai, Aj independent sets, completely non-adjacent for
Ai, Aj cliques and there is no restriction for the two other cases, we get exactly
the polar graphs.

Polar graphs were defined already in 1985 by Tyshkevich and Chernyak [25]. A
graph is polar if its vertex set can be partitioned into A and B such that A induces
a complete multipartite graph and B induces a cluster graph, i.e., a disjoint
union of complete graphs. Such a partition is called polar. As a polar partition
into A and B implies that A induces a P3-free graph and B induces a P3-free
graph, polar graphs are self-complementary, and they contain the well-known
� This work is supported by the Research Council of Norway.
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classes of split graphs, bipartite graphs, and cobipartite graphs. If A is simply
an independent set, then the graph (and the partition) is called monopolar. In
addition to fitting into the matrix partition problem [13] described above, polar
partitions can be seen as generalised colourings [5].

Recognising polar graphs is an NP-complete problem [6]. Notice, however,
that “admitting a polar partition” can be expressed in monadic second order
logic without using edge set quantification, and hence polar graphs of bounded
treewidth or bounded clique-width can be recognised in polynomial time, by
the results of [1,7] and [8]. Consequently, it is of interest to find out where
the boundary goes between subclasses of polar graphs that are recognisable in
polynomial time and those whose recognition is intractable. When it comes to
graph classes of unbounded treewidth and clique-width whose intersection with
polar graphs can be recognised in polynomial time, so far we know only of chordal
graphs [10,15].

In this paper we prove that it can be decided in polynomial time whether
a given permutation graph is polar, and we give an O(n + m4)-time algorithm
for this. Permutation graphs are a well-studied graph class with a large num-
ber of theoretical applications [16,4], and they do not have bounded treewidth
or clique-width [17]. Although many NP-complete problems become tractable
on permutation graphs, well-known colouring problems, like cochromatic num-
ber [27,14] and achromatic number [2], are NP-complete on this graph class.
Our result is obtained in two steps. First we give an algorithm for recognising
monopolar permutation graphs. This algorithm is then used as a subroutine for
the recognition of polar permutation graphs.

Other results on polynomial-time recognisable subclasses of polar graphs in-
clude [24] which studies polar partitions where the size of each independent set
and clique is bounded, [15,10] which give forbidden subgraph characterisations
and a recognition algorithm for polar chordal graphs, and [12] which gives similar
results for polar cographs. In addition, [20] and [11] give respectively a forbid-
den subgraph characterisation and a polynomial-time recognition algorithm for
bipartite graphs whose line graphs are polar. Finally, [9] gives a polynomial-time
recognition algorithm for monopolar claw-free graphs. Another research direc-
tion is to study which NP-complete problems become tractable on polar graphs.
For example, [21] gives polynomial-time algorithms for finding a minimum max-
imal independent set in some subclasses of polar graphs. This problem remains
NP-hard in polar graphs admitting a polar partition where the size of every
independent set is at most one and the size of every clique is at most two.

2 Definitions and Notation

Our input graphs are simple, finite, and undirected. Only in Section 3, we will
use directed graphs (digraphs) as auxiliary tools.

Let G be a graph. We denote its vertex set by V (G) and its edge set by E(G).
An edge between vertices u and v is denoted by uv. If uv is an edge of G then
u and v are adjacent in G. For a vertex x of G, the neighbourhood of x, denoted
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as NG(x), is the set of vertices that are adjacent to x. Let X be a set of vertices
of G. The subgraph of G induced by X is denoted as G[X ] and defined as the
graph on vertex set X and edge set the set of edges of G that join only vertices
in X . By G \ X , we denote the graph G[V (G) \ X ]. A graph is called complete
if every pair of vertices is adjacent. A set X ⊆ V (G) is called a clique if G[X ] is
complete, and it is called an independent set if G[X ] has no edges.

The disjoint union of two graphs G and H is the graph on vertex set V (G)∪
V (H) and edge set E(G) ∪E(H); the disjoint union of more than two graphs is
defined analogously. The complement of G, denoted as G, is the graph on vertex
set V (G) and edge set {uv | u, v ∈ V (G) and u 	= v} \ E(G). A multipartite
graph is the complement of the disjoint union of complete graphs. Equivalently,
the vertex set of a multipartite graph admits a unique partition into maximal
independent sets.

For a given graph G, a partition (A, B) of V (G), where A or B can also be
empty, is called polar if G[A] is a complete multipartite graph and G[B] is a
disjoint union of complete graphs. Equivalently, (A, B) is a polar partition for
G if and only if neither G[A] nor G[B] contains an induced path on 3 vertices
as an induced subgraph. Note that (A, B) is a polar partition for G if and only
if (B, A) is a polar partition for G. A polar partition (A, B) for G is called
monopolar if A is an independent set in G. We say that a polar partition (A, B)
for G is B-maximal if there is no polar partition (A′, B′) for G with B ⊂ B′. If
there is a vertex u in A without a neighbour in B then (A\{u}, B∪{u}) is also
a polar partition. Hence, for (A, B) a B-maximal polar partition for a graph G,
every vertex in A has a neighbour in B.

Let n ≥ 1 and π be a permutation over {1, . . . , n}, i.e., a bijection between
{1, . . . , n} and {1, . . . , n}. We will denote π equivalently as a permutation se-
quence (π(1), . . . , π(n)). The inversion graph of π has vertex set {1, . . . , n} and
two vertices u, v are adjacent if (u−v)(π−1(u)−π−1(v)) < 0. A graph is a permu-
tation graph if it is isomorphic to the inversion graph of a permutation sequence
[16,4]. Permutation graphs can be recognised in linear time [22]. Permutation
graphs also have a geometric intersection model: for two horizontal lines, mark
n points on each line, assign to each point on the upper line a point on the lower
line, and connect the two points by a line segment. The corresponding graph has
a vertex for every line segment and two vertices are adjacent if the correspond-
ing line segments cross. This representation is called a permutation diagram. A
graph is a permutation graph if and only if it has a permutation diagram. It
is important to note that every induced subgraph of a permutation graph is a
permutation graph. For our purposes, we assume that a permutation graph is
given as a permutation sequence and equal to the defined inversion graph. Every
permutation graph with permutation sequence π has a permutation diagram D
in which the endpoints of the line segments on the lower line appear in the same
order as they appear in π. For such pairs (D, π), we say that D corresponds to π.
For convenience reasons, sometimes we will not distinguish between vertices of
the graph and line segments in the permutation diagram; however, the meaning
will always be clear.
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3 Monopolar Permutation Graphs

In this section, we give a polynomial-time algorithm for recognising monopolar
permutation graphs, that certifies a positive answer by outputting a monopolar
partition. This algorithm will be the main subroutine of our polar permutation
graph recognition algorithm in the next section. In fact the subroutine presented
in this section solves a more general problem: given a permutation graph G and
a set R ⊆ V (G), does G have a monopolar partition (A, B) such that A ⊆ R . By
choosing R = V (G) we get exactly monopolar permutation graph recognition.

Let G be a permutation graph with permutation sequence π and corresponding
permutation diagram D. A scanline in D is a pair (a, e) where a, e ∈ {0.5, 1.5, . . . ,
n+ 1

2} [3]. Scanlines can be interpreted as additional line segments in the permu-
tation diagram, that partition the vertex set into three sets: vertices to the left
of the scanline, vertices to the right of the scanline and vertices that intersect
with the scanline. Formally, for s = (a, e) a scanline of G:

– L(s) =def {x ∈ V (G) | x < a and π−1(x) < e}
– R(s) =def {x ∈ V (G) | a < x and e < π−1(x)}
– int(s) =def V (G) \ (L(x) ∪ R(x)) .

The scanlines (1
2 , 1

2 ) and (n+ 1
2 , n+ 1

2 ) play a particular role; they are denoted by
the special symbols 0 and 1. Note that L(0) = int(0) = ∅ and R(1) = int(1) = ∅
and R(0) = L(1) = V (G). A scanline s = (a, e) is called minimal separation
line1 if 1 < e < n and a − 1

2 , π(e − 1
2 ), a + 1

2 , π(e + 1
2 ) 	∈ int(s) or if s = 0

or if s = 1. We will see later that the number of minimal separation lines of a
permutation graph can be much smaller than the number of its scanlines. For
two scanlines s = (a, e) and s′ = (a′, e′), we write s < s′ if a ≤ a′ and e ≤ e′ and
s 	= s′.

We solve the monopolar permutation graph recognition problem by deciding
whether an auxiliary digraph has a directed path between two specified vertices.
This auxiliary digraph is defined as follows. Let G be a permutation graph with
permutation sequence π and permutation diagram D, and let R ⊆ V (G). By
aux(D, R), we denote the digraph with the following vertices and arcs:

– aux(D, R) has a vertex for every minimal separation line of G

– for two minimal separation lines s and s′ with s < s′, there is an arc from
the corresponding vertex of s to the corresponding vertex of s′ in aux(D, R)
if G[int(s) ∪ int(s′) ∪ (R(s) ∩ L(s′))] has a monopolar partition (I, C) such
that int(s) ∪ int(s′) ⊆ I ⊆ R and C is a clique in G.

Observe that the properties of the partition (I, C) imply that G[int(s)∪ int(s′)∪
(R(s) ∩ L(s′))] is a split graph. Observe also that aux(D, R) is acyclic, which
follows from the partial order < on the minimal separation lines. We denote the
vertices of aux(D, R) that correspond to 0 and 1 as respectively 0 and 1. Note
that 0 has no incoming arc and 1 has no outgoing arc in aux(D, R).

1 Minimal separation lines correspond exactly to minimal separators [23].
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Lemma 1. Let G be a permutation graph with permutation sequence π and
corresponding permutation diagram D. Let R ⊆ V (G). There is a 0,1-path in
aux(D, R) if and only if G has a monopolar partition (A, B) with A ⊆ R.

Proof. Let P be a 0,1-path in aux(D, R) and s0 < · · · < sr the minimal sep-
aration lines corresponding to the vertices on P . There is a monopolar parti-
tion (Ii, Ci) for G[int(si−1)∪ int(si)∪ (R(si−1)∩L(si))] for every 1 ≤ i ≤ r such
that int(si−1) ∪ int(si) ⊆ Ii ⊆ R and Ci is a clique of G. It can be shown that(
I1 ∪ · · · ∪ Ir , C1 ∪ · · · ∪ Cr

)
is a monopolar partition for G. For the converse,

let (A, B) be a monopolar partition for G with A ⊆ R. Let C1, . . . , Cr be the
sets of vertices that induce the connected components of G[B]. We can assume
that min C1 < · · · < min Cr. It follows that min C1 ≤ max C1 < · · · < min Cr ≤
maxCr. For every 1 ≤ i ≤ r − 1, there is a minimal separation line si of G
with Ci ⊆ L(si) and Ci+1 ⊆ R(si) [3,23]. Let s0 =def 0 and sr =def 1. There
is a vertex of aux(D, R) for every minimal separation line s0, . . . , sr, and these
vertices form a 0,1-path in aux(D, R). ��

Note that a 0,1-path in aux(D, R) does not correspond to a specific monopolar
partition for G but can represent many partitions. The main reason is that
the same vertex can belong to a clique or to the independent set in different
monopolar partitions.

Theorem 1. There is an O(n + m3)-time algorithm that given a permutation
graph G and a set R ⊆ V (G), decides whether there is a monopolar
partition (A, B) for G with A ⊆ R.

Proof. For a connected input graph G with sequence π and corresponding di-
agram D and R ⊆ V (G), construct the auxiliary digraph aux(D, R) and check
whether aux(D, R) has a 0,1-path; accept if and only if a 0,1-path exists. Cor-
rectness follows from Lemma 1. The running time mainly depends on the con-
struction of aux(D, R). The minimal separation lines of G can be listed in linear
time [23]. For every pair of minimal separation lines, checking whether it defines
a monopolar partition of the special type for the induced subgraph can be done
in linear time, for instance by applying the degree-sequence recognition algo-
rithm for split graphs [18] and a preselection for the independent set and clique
vertices, see also [19]. Thus, the construction of aux(D, R) can be done in time
O(m3). A path from 0 to 1 in aux(D, R) can be found in time linear in the size
of aux(D, R). For disconnected input graphs, a graph has a monopolar partition
that respects the restiction R if and only if each connected component has a
monopolar partition respecting R. ��

It is not difficult to modify the algorithm in the proof of Theorem 1 such that
it also outputs a monopolar partition. This can be achieved for instance by
assigning to every arc of the auxiliary digraph the monopolar partition that
certifies the existence of this arc, following the proof of Lemma 1.
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4 Polar Permutation Graphs

In the previous section, we have given an algorithm for recognising monopo-
lar permutation graphs. This is a subclass of polar permutation graphs. In this
section, we consider the complementary recognition problem, for polar permu-
tation graphs that are not monopolar. We will devise an algorithm that, given a
permutation graph, deletes a set of vertices with certain properties and checks
whether the remaining graph has a monopolar partition of specific properties.
The main task is to characterise the sets of vertices that can be deleted and to
define the properties of the desired monopolar partitions.

Let G be a permutation graph with permutation sequence π and corresponding
permutation diagram D. Informally, a trapezoid in D is defined by a line segment
on the upper and lower horizontal line of D and partitions the vertex set of G
into three subsets. To describe such a trapezoid, it suffices to give the endpoints
of the line segments. Formally, a trapezoid in D is a pair ((a, e), (a′, e′)) with
1 ≤ a ≤ e ≤ |V (G)| and 1 ≤ a′ ≤ e′ ≤ |V (G)|. Trapezoids are the main
substructures in permutation diagrams that we consider in this section. We define
four sets for trapezoids, in analogy to scanlines. Let S = ((a, e), (a′, e′)) be a
trapezoid in D. We define for S:

– left side: L(S) =def {x ∈ V (G) | x < a and π−1(x) < a′}
– right side: R(S) =def {x ∈ V (G) | e < x and e′ < π−1(x)}
– containment: con(S) =def {x ∈ V (G) | a ≤ x ≤ e and a′ ≤ π−1(x) ≤ e′}
– intersection: int(S) =def V (G) \ (L(S) ∩ R(S)) .

Note that con(S) ⊆ int(S). For X ⊆ V (G), the X-trapezoid in D is the trape-
zoid T with T = ((min X, maxX), (min π−1(X), maxπ−1(X)). Note that X ⊆
con(T). Informally, the X-trapezoid is the smallest trapezoid that contains X .
Note that not every trapezoid is an X-trapezoid for some set X . Our main inter-
est is in trapezoids with special properties. Let G have a polar partition (A, B)
and let Y ⊆ V (G). A trapezoid T in D is called centre trapezoid for (A, B) in
D (with Y in-cliqued) if the following conditions are satisfied:
1) G[int(T)] has a polar partition (A′, C) with

– C is a clique in G (and Y ⊆ C) and C ⊆ con(T)
– int(T) \ con(T) ⊆ A′ ⊆ A

2) one of the following two cases holds:
– A ∩ (L(T) ∪ R(T)) is an independent set in G
– A ∩ L(T) 	= ∅ and A ∩ R(T) = ∅ and there is a vertex v ∈ int(T) \

con(T) with NG(v) ∩ L(T) ⊆ A such that {v} ∪ (A ∩ L(T)) \ NG(v) is
an independent set in G.

We show that such centre trapezoids indeed exist. A graph that is polar but not
monopolar is called multipolar.

Lemma 2. Let G be a permutation graph with permutation sequence π and cor-
responding permutation diagram D. Let G be multipolar and (A, B) a B-maximal
polar partition for G. There are a trapezoid T in D and a clique X of G with
X ⊆ B and 1 ≤ |X | ≤ 2 such that T is the X-trapezoid in D and T is a centre
trapezoid for (A, B) in D with X in-cliqued.
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Proof. Let the connected components of G[B] be induced by the sets C1, . . . , Cr.
We can assume that min C1 < · · · < min Cr. For every x ∈ A, denote by α(x) and
ω(x) the respectively smallest and largest index i with Ci containing a neighbour
of x.

As the first case, assume that there are adjacent vertices u, v ∈ A with ω(u) <
α(v). Note that uv ∈ E(G) implies α(v) = ω(u)+ 1. Let C =def Cα(v) and let T
be the C-trapezoid in D. Note that u ∈ L(T) and therefore v ∈ int(T) \ con(T)
by the properties of permutation diagrams. Furthermore, L(T) ∩ NG(v) ⊆ A
by the definition of α(v) and C ⊆ con(T). For the first subcase, assume that
A ⊆ L(T) ∪ int(T), i.e., A ∩ R(T) = ∅. A vertex in A ∩ L(T) is either adjacent
or non-adjacent to v. The vertices in A ∩ L(T) that are non-adjacent to v are
in the same maximal independent set as v in G[A]. Hence, they are pairwise
non-adjacent, which means that {v} ∪ (A ∩ L(T)) \ NG(v) is an independent
set in G. For the second subcase, let A ∩ R(T) be non-empty. This means that
both A∩L(T) and A∩R(T) are non-empty. Since vertices from L(T) and R(T)
are pairwise non-adjacent, the definition of complete multipartite graphs implies
that A ∩ (L(T) ∪R(T)) is an independent set in G. Hence, in both subcases, T
satisfies the second condition of the definition of centre trapezoid.

As the second case, assume that for all pairs u, v ∈ A of adjacent vertices,
α(u) ≤ α(v) ≤ ω(u) or α(v) ≤ α(u) ≤ ω(v). Let u, v ∈ A be a pair of adjacent
vertices such that the intersection {α(u), . . . , ω(u)}∩{α(v), . . . , ω(v)} is of small-
est size. We can assume that α(u) ≤ α(v). Let C =def Cα(v) and let T be the
C-trapezoid in D. For the first subcase, let ω(v) ≤ ω(u). Then, α(u) ≤ α(v) ≤
ω(v) ≤ ω(u) with our assumptions, which implies α(x) ≤ α(v) ≤ ω(v) ≤ ω(x)
for all vertices x ∈ A∩NG(v). This follows from the choice of the pair u, v as of
smallest intersection size. Hence, A ∩ NG(v) ⊆ int(T), and by the properties of
complete multipartite graphs, A∩ (L(T)∪R(T)) is an independent set in G. For
the second subcase, let ω(u) < ω(v). For every vertex x ∈ A∩L(T), ω(x) < α(v),
which means by the assumptions of the case that (A∩L(T))∩NG(v) = ∅. Hence,
{v}∪ (A∩L(T)) is an independent set in G. In the following, we distinguish be-
tween the cases A∩L(T) non-empty and empty. First, let A∩L(T) be non-empty.
The vertices in A∩L(T) and A∩R(T) are pairwise non-adjacent, which implies
that {v}∪(A∩L(T))∪(A∩R(T)) is an independent set in G. Second, let A∩L(T)
be empty. Let A ∩R(T) be non-empty and let w ∈ A ∩R(T). Since u ∈ int(T),
w 	= u. Suppose that uw ∈ E(G). Then, α(v) < α(w) and α(v) ≤ ω(u) < ω(v)
yield a contradiction to the intersection size of u, v. Hence, u and w are non-
adjacent, which implies that {u}∪ (A∩R(T)) = {u}∪ (A∩L(T))∪ (A∩R(T))
is an independent set in G. Hence, in both subcases, A ∩ (L(T) ∪ R(T)) is an
independent set in G, which shows that T satisfies the second condition of the
definition of centre trapezoids.

It remains to check the first condition of the definition of centre trapezoids.
We can consider the two cases above simultaneously. Let C and T be as defined
above. First, we show that (int(T)\C, C) is a polar partition for G[int(T)]. Since
no edge of G joins vertices from different cliques among C1, . . . , Cr, B∩ int(T) =
C. Hence, int(T) \ B = int(T) \ C ⊆ A. By the definition of C-trapezoid,
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C ⊆ con(T), which also implies that int(T) \ con(T) ⊆ int(T) \ C ⊆ A. To
complete the proof, observe that T is the {x, y}-trapezoid and a centre trapezoid
for (A, B) in D with {x, y} in-cliqued for x =def min C and y =def maxC. ��

Lemma 2 is the main tool of our algorithm. Informally, the algorithm removes a
trapezoid from the graph and checks whether the remaining subgraph is monopo-
lar. The main problem then is to combine the independent set of the monopolar
partition with the complete multipartite graph of the polar partition of the re-
moved trapezoid. Not every monopolar partition is suitable. The next lemma will
be useful for choosing a suitable monopolar partition. Let G be a permutation
graph with permutation sequence π and corresponding permutation diagram D.
Let T = ((a, e), (a′, e′)) be a trapezoid in D and let S ⊆ int(T) \ con(T). A
vertex x ∈ S is left-endpoint close to T among the vertices in S if x < a and
x ≥ y for all vertices y ∈ S or if π−1(x) < a′ and π−1(x) ≥ π−1(y) for all vertices
y ∈ S. Right-endpoint close vertex is defined symmetrically. Note that there are
at most two left-endpoint close and at most two right-endpoint close vertices for
every trapezoid and chosen set.

Lemma 3. Let G be a permutation graph with permutation sequence π and cor-
responding permutation diagram D. Let G be multipolar and (A, B) a B-maximal
polar partition for G. Let T be a centre trapezoid for (A, B) in D.

1) Let A ∩ (L(T) ∪ R(T)) be an independent set in G and let A ∩ con(T) be
non-empty.

Let x be an arbitrary vertex in A∩con(T). Then, {x}∪(A∩(L(T)∪R(T)))
is an independent set in G.

2) Let A ∩ (L(T) ∪ R(T)) be an independent set in G and let A ∩ con(T) be
empty.

If there is x ∈ A ∩ int(T) such that {x} ∪ (A ∩ (L(T) ∪ R(T))) is an
independent set in G then x can be chosen as left-endpoint close or right-
endpoint close to T among the vertices in int(T) \ con(T).

3) Let A ∩ (L(T) ∪ R(T)) not be an independent set in G.
Let A ∩ L(T) 	= ∅ and A ∩ R(T) = ∅ and let there be a vertex x ∈

int(T) \ con(T) with NG(x) ∩ L(T) ⊆ A such that (A ∩ L(T)) \ NG(x) is
an independent set in G. Then, x can be chosen as left-endpoint close to T
among the vertices in int(T) \ con(T).

We are ready to give the final algorithm. Our algorithm for recognising polar
permutation graphs is called Polar-Permutation-graphs and given in Figure 1.
If the input graph is polar, the algorithm outputs a polar partition, thus provides
a certificate.

Theorem 2. Algorithm Polar-Permutation-graphs recognises polar permuta-
tion graphs in O(n + m4) time.

Proof. We only prove correctness. Let G be the input graph with permutation
sequence π and corresponding permutation diagram D. We first show that every
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Algorithm Polar-Permutation-graphs

Input permutation graph G with sequence π and corresponding diagram D
Output answer ‘yes’ or ‘no’, and if ‘yes’ then a polar partition for G

begin
1 if G is monopolar then
2 compute a monopolar partition (A, B) for G; return ‘yes’ and (A, B)
3 end if;
4 for X a clique of G of size 1 or 2 do
5 let T be the X-trapezoid in D;
6 if G[int(T)] is polar and has polar partition (A′, C) such that
7 int(T) \ con(T) ⊆ A′ and C is a clique of G and
8 maximal with X ⊆ C ⊆ con(T) then
9 let (A′, C) be the computed polar partition for G[int(T)];
10 if A′ ∩ con(T) �= ∅ then
11 let x ∈ A′ ∩ con(T);
12 if G \ int(T) has monopolar partition (A, B) with every vertex
13 in A is adjacent to every vertex in A′ ∩ NG(x) and non-adjacent
14 to every vertex in A′ \ NG(x) then
15 let (A, B) be the computed monopolar partition for G \ int(T);
16 return ‘yes’ and (A ∪ A′, B ∪ C)
17 end if
18 else
19 if G \ int(T) has monopolar partition (A, B) with
20 every vertex in A is adjacent to every vertex in A′ then
21 let (A, B) be the computed monopolar partition for G \ int(T);
22 return ‘yes’ and (A ∪ A′, B ∪ C)
23 end if;
24 let L and R be the sets of respectively left-endpoint close and
25 right-endpoint close vertices for T among the vertices in
26 int(T) \ con(T);
27 if there are vertex x ∈ L ∪ R and monopolar partition (A,B) for
28 G \ int(T) with every vertex in A is adjacent to every vertex in
29 A′ ∩ NG(x) and non-adjacent to every vertex in A′ \ NG(x) then
30 let (A, B) be the computed monopolar partition for G \ int(T);
31 return ‘yes’ and (A ∪ A′, B ∪ C)
32 end if;
33 if there are vertex x ∈ L and monopolar partition (A,B) for
34 G \ (int(T) ∪ (NG(x) ∩ L(T))) with A ∩ R(T) = ∅ and {x} ∪ A
35 an independent set in G and G[A ∪ A′ ∪ (NG(x) ∩ L(T))]
36 complete multipartite then
37 let (A, B) be the computed monopolar partition for G \ int(T);
38 return ‘yes’ and (A ∪ A′ ∪ (NG(x) ∩ L(T)),B ∪ C)
39 end if end if end if end for;
40 return ‘no’
end.

Fig. 1. The polar permutation graph recognition algorithm
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‘yes’ answer (in lines 2, 16, 22, 31, 38) is correct and the output partition is a
proper polar partition for G. So, let the answer of the algorithm on input G, π,D
be ‘yes’. It is a simple check that the output vertex partition is indeed a partition
of V (G). If the answer is output in line 2 then G is monopolar, thus polar, and
the output partition is a polar partition for G. We consider the four other cases.
We consider the for loop during its last execution. Let T be the trapezoid defined
in line 5 and let (A′, C) be the polar partition for G[int(T)] chosen in line 9.
Note that (A′, C) has the properties of lines 6–8. In particular, no vertex from C
has a neighbour in G \ int(T), which follows directly from C ⊆ con(T) and the
properties of permutation diagrams. Hence, since C is a clique in G and G[B] is
an induced subgraph of G\ int(T) and the disjoint union of complete graphs, for
each of the four cases for B, G[B ∪ C] is the disjoint union of complete graphs.
It remains to show for each of the four cases that the first component of the
output vertex partition induces a complete multipartite graph in G. The case is
clear for the output in line 38 by the condition in lines 34–36. Assume that the
answer is output in line 16, let (A, B) be the monopolar partition for G \ int(T)
in line 15 and let x be the vertex chosen in line 11. Since A and A′ \ NG(x) are
independent sets in G, A ∪ (A′ \ NG(x)) is an independent set in G due to the
conditions in lines 12–14. And by the properties of complete multipartite graphs
and the adjacency condition in lines 12–14, every vertex in A ∪ (A′ \ NG(x)) is
adjacent to every vertex in A′∩NG(x). Hence, G[A∪A′] is complete multipartite.
The cases for the output in lines 22 and 31 follow similarly. Thus, the output
partition is a polar partition for G, and G is polar.

For the converse, let G be polar. We show that Polar-Permutation-graphs
answers ‘yes’. If G is monopolar then Polar-Permutation-graphs returns an-
swer ‘yes’ in line 2. Let G not be monopolar, and let (P, Q) be a Q-maximal
polar partition for G. According to Lemma 2, there are a trapezoid T in D and
a clique X of G with X ⊆ Q and 1 ≤ |X | ≤ 2 such that T is the X-trapezoid in
D and T is a centre trapezoid for (P, Q) in D with X in-cliqued. Note that X
and thus T can be chosen by Polar-Permutation-graphs in lines 4 and 5. Let
(A′, C) be a polar partition for G[int(T)] as defined in condition 1 of the defi-
nition of centre trapezoids; such a partition exists by assumption. Without loss
of generality, we can assume that every vertex in A′ ∩ con(T) is non-adjacent
to some vertex in C. This partition satisfies the conditions in lines 6–8, and
Polar-Permutation-graphs continues execution in line 9. Observe for the fol-
lowing arguments that P ∩ int(T) = A′: if there is u ∈ (P ∩ int(T)) \ A′ then
u ∈ C. By the definition of (A′, C) according to condition 1 of the definition of
centre trapezoid, u ∈ con(T), which means that u is not adjacent to any vertex
in Q\int(T). Then, (P \{u}, Q∪{u}) is a polar partition for G, which contradicts
the choice of (P, Q) as Q-maximal. Then, P ∩(L(T)∪R(T)) = P \A′. We distin-
guish between the two cases in condition 2 of the definition of centre trapezoids.
As the first main case, let P \ A′ be an independent set in G. Then, G \ int(T)
is monopolar with monopolar partition (P \ A′, Q \ C). As a first subcase, let
P∩con(T) = A′∩con(T) be non-empty (line 10). For any vertex x ∈ A′∩con(T),
{x} ∪ (P \ A′) is an independent set in G and particularly in G[P ]. With the
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properties of complete multipartite graphs, all vertices in P \A′ are adjacent to
all vertices in A′ ∩ NG(x) and non-adjacent to all vertices in A′ \ NG(x). Then,
the conditions in lines 12–14 are satisfied by partition (P \ A′, Q \ C), and the
algorithm accepts. As a second subcase, let A′ ∩ con(T) be empty. If all vertices
in P \ A′ are adjacent to all vertices in A′ then Polar-Permutation-graphs
accepts in line 22. Let there be a vertex y ∈ P \A′ that is non-adjacent to some
vertex x ∈ A′. Then, x and y are in the same maximal independent set of G[P ],
which implies that {x} ∪ (P \ A′) is an independent set of G. Due to Lemma 3,
there is a vertex z in L∪R of lines 24–26 such that {z}∪(P \A′) is an independent
set of G. Analogous to the first subcase, Polar-Permutation-graphs accepts
in line 31. As the second main case, let P \ A′ not be an independent set of G.
According to condition 2 of the definition of centre trapezoids, P ∩L(T) 	= ∅ and
P ∩R(T) = ∅ and there is a vertex v ∈ A′ \ con(T) with NG(v)∩L(T) ⊆ P and
{v}∪(P∩L(T))\NG(v) is an independent set of G. Then, ((P \A′)\NG(v), Q\C)
is a monopolar partition for G\ (int(T)∪ (NG(v)∩L(T))). Due to Lemma 3, we
can choose v from L. Then, Polar-Permutation-graphs accepts in line 38. ��

5 Concluding Remarks and Open Problems

The main time consuming operation in the presented algorithm is the construc-
tion of the auxiliary digraph. One possibility to improve on the running time is
to bound the number of arcs in the auxiliary digraph and to avoid testing all
possible pairs of vertices.

Permutation graphs are both comparability and cocomparability graphs. An
interesting question is whether polar comparability graphs, or equivalently polar
cocomparability graphs, can be recognised in polynomial time. Another question
is whether in permutation graphs that are not polar, a maximum induced polar
subgraph can be computed in polynomial time.
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Abstract. The Pattern Matching problem with Swaps consists in find-
ing all occurrences of a pattern P in a text T , when disjoint local swaps
in the pattern are allowed.

In this paper, we present a new efficient algorithm for the Swap Match-
ing problem with short patterns. In particular, we devise a O(nm2)
general algorithm, named Backward-Cross-Sampling, and show an
efficient implementation of it, based on bit-parallelism, which achieves
O(nm) worst-case time and O(σ)-space complexity, with patterns whose
length m is comparable to the word-size of the target machine (n and σ
are respectively the size of the text and of the alphabet).

From an extensive comparison with some of the most recent and ef-
fective algorithms for the swap matching problem, it turns out that our
algorithm is very flexible and achieves very good results in practice.

Keywords: pattern matching with swaps, nonstandard pattern match-
ing, combinatorial algorithms on words, design and analysis of algorithms.

1 Introduction

The Pattern Matching problem with Swaps (Swap Matching problem, for short)
is a well-studied variant of the classic Pattern Matching problem. It consists in
finding all occurrences, up to character swaps, of a pattern P of length m in a
text T of length n, with P and T sequences of characters drawn from a same
finite character set Σ of size σ. More precisely, the pattern is said to swap-match
the text at a given location j if adjacent pattern characters can be swapped,
if necessary, so as to make it identical to the substring of the text ending (or,
equivalently, starting) at location j. All swaps are constrained to be disjoint, i.e.,
each character can be involved in at most one swap. Moreover, identical adjacent
characters are not allowed to be swapped.

This problem is of relevance in practical applications such as text and music
retrieval, data mining, and network security, and many others. Following [5], we
also mention a particularly important application of the swap matching problem
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in biological computing, specifically in the process of translation in molecular
biology, with the genetic triplets (otherwise called codons). In such application
one wants to detect the possible positions of the start and stop codons of an
mRNA in a biological sequence and find hints as to where the flanking regions
are relative to the translated mRNA region.

The swap matching problem was introduced in 1995 as one of the open prob-
lems in nonstandard string matching [10]. The first nontrivial result was reported
by Amir et al. [1], who provided a O(nm

1
3 log m)-time in the case of alphabet

sets of size 2, showing also that the case of alphabets of size exceeding 2 can be
reduced to that of size 2 with a O(log2 σ)-time overhead (subsequently reduced
to O(log σ) in the journal version [2]). Amir et al. [4] studied some rather restric-
tive cases in which a O(m log2 m)-time algorithm can be obtained. More recently,
Amir et al. [3] solved the swap matching problem in O(n log m logσ)-time. We
observe that the above solutions are all based on the fast Fourier transform
(FFT) technique.

In 2008 the first attempt to provide an efficient solution to the swap matching
problem without using the FFT technique has been presented by Iliopoulos and
Rahman in [9]. They introduced a new graph-theoretic approach to model the
problem and devised an efficient algorithm, based on bit parallelism, which runs
in O((n + m) log m)-time, provided that the pattern size is comparable to the
word size in the target machine.

More recently, in 2009, Cantone and Faro [7] presented a first approach for
solving the swap matching problem with short patterns in linear time. More
precisely, they devised a simple algorithm, named Cross-Sampling, which,
though characterized by a O(nm) worst-case time complexity, admits an efficient
implementation based on bit-parallelism, achieving O(n) worst-case time and
O(σ) space complexity for short patterns fitting in few machine words.

In this paper, we present a new efficient algorithm for solving the swap match-
ing problem. In particular, we provide a O(nm2) general algorithm, named
Backward-Cross-Sampling algorithm, which inherits much the same itera-
tive structure of the Cross-Sampling algorithm, but is based on a right-to-left
scan of the text, giving better results in practice. We will also describe an ef-
ficient implementation of the algorithm, characterized by a O(nm) worst-case
time and O(σ)-space complexity, for patterns of length comparable to the word
size of the target machine.

The rest of the paper is organized as follows. In Section 2 we recall some
preliminary definitions. Sections 3 describes the Cross-Sampling algorithm
and its bit-parallel variant. In Section 4 we present the Backward-Cross-

Sampling algorithm for the swap matching problem and then, in Section 5, we
illustrate an efficient implementation of it based on bit-parallelism. Results of
an extensive experimental comparison under various conditions with the most
efficient algorithms present in the literature are reported in Section 6. Finally,
we will briefly draw our conclusions in Section 7.
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2 Notions and Basic Definitions

A string P of length m ≥ 0 is represented as a finite array P [0 .. m− 1]. In such
a case we also write length(P ) = m. In particular, for m = 0 we obtain the
empty string, denoted by ε. We denote by P [i] the (i + 1)-st character of P , for
0 ≤ i < length(P ). Likewise, we denote by P [i .. j] the substring of P contained
between the (i+1)-st and the (j+1)-st characters of P , for 0 ≤ i ≤ j < length(P ).
A h-substring of a string S is a substring of S of length h. For any two strings
P and P ′, we say that P ′ is a suffix of P if P ′ = P [i .. length(P ) − 1], for some
0 ≤ i < length(P ). Similarly, we say that P ′ is a prefix of P if P ′ = P [0 .. i− 1],
for some 0 ≤ i ≤ length(P ). We denote by Pi the nonempty prefix P [0 .. i] of P
of length i + 1, for 0 ≤ i < m. If i < 0, we convene that Pi is the empty string ε.
Moreover we say that P ′ is a proper prefix (suffix) of P if P ′ is a prefix (suffix)
of P and |P ′| < |P |. Finally, we write P.P ′ to denote the concatenation of P
and P ′.

Definition 1. A swap permutation for a string P of length m is a permutation
π : {0, ..., m − 1} → {0, ..., m− 1} such that:

(a) if π(i) = j then π(j) = i (characters at positions i and j are swapped);
(b) for all i, π(i) ∈ {i − 1, i, i + 1} (only adjacent characters are swapped);
(c) if π(i) 	= i then P [π(i)] 	= P [i] (identical characters are not swapped).

For a given string P and a swap permutation π for P , we write π(P ) to denote
the swapped version of P , namely π(P ) = P [π(0)].P [π(1)]. · · · .P [π(m − 1)].

Definition 2. Given a text T of length n and a pattern P of length m, P is said
to swap-match (or to have a swapped occurrence) at location j ≥ m− 1 of T if
there exists a swap permutation π of P such that π(P ) matches T at location j,
i.e., π(P ) = T [j − m + 1 .. j]. In such a case we write P ∝ Tj.

Definition 3 (Pattern Matching Problem with Swaps). Given a text T
of length n and a pattern P of length m, find all locations j ∈ {m− 1, ..., n− 1}
such that P swap-matches with T at location j, i.e., P ∝ Tj.

The following elementary result will be used later.

Lemma 1 ([7]). Let P and R be strings of length m over an alphabet Σ and
suppose that there exists a swap permutation π such that π(P ) = R. Then π is
unique.

Corollary 1. Given a text T of length n and a pattern P of length m, if P ∝ Tj,
for a given position j ∈ {m − 1, . . . , n − 1}, then there exists a unique swapped
occurrence of P in T ending at position j.
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3 The Cross-Sampling Algorithm

The Cross-Sampling algorithm [7] computes the swap occurrences of all pre-
fixes of a pattern P (of length m) in continuously increasing prefixes of a text T
(of length n), using a dynamic programming approach. More precisely, during
its (j + 1)-st iteration, for j = 0, 1, . . . , n − 1, we establish whether Pi ∝ Tj ,
for each i = 0, 1, . . . , m − 1, by exploiting information gathered during previous
iterations. To this end, if we put

λj =
{
{0} if P [0] = T [j]
∅ otherwise , for 0 ≤ j ≤ n − 1

Sj = {0 ≤ i ≤ m − 1 : Pi ∝ Tj}, for 0 ≤ j ≤ n − 1
S′

j = {0 ≤ i < m − 1 : Pi−1 ∝ Tj−1 and P [i] = T [j + 1]} for 1 ≤ j ≤ n − 1.

then the following recurrences hold:

Sj+1 = {i ≤ m − 1 : ((i − 1) ∈ Sj and P [i] = T [j + 1]) or
((i − 1) ∈ S′

j and P [i] = T [j]) } ∪ λj+1

S′
j+1 = {i < m − 1 : (i − 1) ∈ Sj and P [i] = T [j + 2]} ∪ λj+2 ,

(1)

where the base cases are given by S0 = λ0 and S′
0 = λ1.

Such relations allow one to compute the sets Sj and S′
j in an iterative fashion,

where Sj+1 is computed in terms of both Sj and S′
j , whereas S′

j+1 needs only
Sj for its computation. The resulting dependency graph has a doubly crossed
structure, from which the name of the algorithm of Fig. 1, Cross-Sampling,
for the swap matching problem. Plainly, the time complexity of the Cross-

Sampling algorithm is O(nm).
[7] presents also an efficient implementation of the Cross-Sampling algo-

rithm based on the bit-parallelism technique [6], called BP-Cross-Sampling

algorithm. We recall that the bit-parallelism technique takes advantage of the
intrinsic parallelism of the bit operations inside a computer word, allowing to
cut down the number of operations that an algorithm performs by a factor of at
most w, where w is the number of bits in the computer word.

The BP-Cross-Sampling algorithm uses a representation of the sets Sj and
S′

j as lists of m bits, Dj and D′
j respectively (m is the length of the pattern).

The i-th bit of Dj is set to 1 if i ∈ Sj , i.e., if Pi ∝ Tj , whereas the i-th bit of D′
j

is set to 1 if i ∈ S′
j , i.e., if Pi−1 ∝ Tj−1 and P [i] = T [j + 1]. The remaining bits

are set to 0. Notice that if m ≤ w, each list fits completely in a single computer
word, whereas if m > w we need �m/w� computer words to represent each of
the sets Sj and S′

j .
For each character c of the alphabet Σ, the algorithm maintains a bit mask

M [c], whose i-th bit is set to 1 if P [i] = c.
The bit vectors are initialized to 0m. Then the algorithm scans the text from

left to right and, for each position j ≥ 0, it computes the bit vector Dj in terms
of Dj−1 and D′

j−1, by performing the following bitwise operations:
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(A) Cross-Sampling (P, m, T, n)

1. S0 ← S′
0 ← ∅

2. if P [0] = T [0] then S0 ← {0}
3. if P [0] = T [1] then S′

0 ← {0}
4. for j ← 1 to n − 1 do
5. Sj ← S′

j ← ∅
6. for i ∈ Sj−1 do
7. if i < m − 1 then
8. if P [i + 1] = T [j]
9. then Sj ← Sj ∪ {i + 1}

10. if j < n − 1 and P [i + 1] = T [j + 1]
11. then S′

j ← S′
j ∪ {i + 1}

12. else Output(j − 1)
13. for i ∈ S′

j−1 do
14. if i < m − 1 and P [i + 1] = T [j − 1]
15. then Sj ← Sj ∪ {i + 1}
16. if P [0] = T [j] then Sj ← Sj ∪ {0}
17. if j < n − 1 and P [0] = T [j + 1]
18. then S′

j ← S′
j ∪ {0}

19. for i ∈ Sj−1 do
20. if i = m − 1 then Output(n − 1)

(B) BP-Cross-Sampling (P, m, T, n)

1. F ← 0m−11
2. for c ∈ Σ do M [c] ← 0m

3. for i ← 0 to m − 1 do
4. M [xi] ← M [P [i]] | F
5. F ← F � 1
6. F ← 10m−1

7. D ← D′ ← 0m

8. for j ← 0 to n − 1 do
9. H ← (D � 1) | 1
10. D ← (H & M [T [j]])
11. D′ ← (D′ � 1) & M [T [j − 1]]
12. D ← D | D′

13. D′ ← H & M [T [j + 1]]
14. if (D & F ) �= 0m then
15. Output(j)

Fig. 1. (A) The Cross-Sampling algorithm for solving the swap matching problem.
(B) The BP-Cross-Sampling algorithm based on bit-parallelism.

Dj ← Dj−1 � 1 Sj = {i : (i − 1) ∈ Sj−1}
Dj ← Dj | 1 Sj = Sj ∪ {0}
Dj ← Dj & M [T [j]] Sj = Sj \ {i : P [i] 	= T [j]}
Dj ← Dj | H1 Sj = Sj ∪ {i : (i − 1) ∈ S′

j−1 ∧ P [i] = T [j − 1]},
where H1 =

(
(D′

j−1 � 1) & M [T [j − 1]]
)
.

Similarly, the bit vector D′
j is computed in the j-th iteration of the algorithm

in terms of Dj−1, by performing the following bitwise operations:

D′
j ← Dj−1 � 1 S′

j = {i : (i − 1) ∈ Sj−1}
D′

j ← D′
j | 1 S′

j = S′
j ∪ {0}

D′
j ← D′

j & M [T [j + 1]] S′
j = S′

j \ {i : P [i] 	= T [j + 1]}.
During the j-th iteration of the algorithm, if the leftmost bit of Dj is set to 1,
i.e. if (Dj & 10m−1) 	= 0m, a swap match is reported at position j.

The code of the BP-Cross-Sampling algorithm is shown in Fig. 1(B). It
achieves a O(�mn/w�) worst-case time complexity and requires O(σ�m/w�) ex-
tra space, where σ is the size of the alphabet. If m ≤ w, then the algorithm
requires O(n)-time and O(σ) extra space.

4 The Backward-Cross-Sampling Algorithm

In this section we present a new practical algorithm for solving the swap match-
ing problem, called Backward-Cross-Sampling.

The new algorithm inherits from the Cross-Sampling algorithm the same
doubly crossed structure in its iterative computation. However, it searches for
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all occurrences of the pattern in the text by scanning characters from right to
left, as in the Backward DAWG Matching (BDM) algorithm for the exact single
pattern matching problem [8].

The BDM algorithm processes the pattern by constructing a directed acyclic
word graph (DAWG) of the reversed pattern. The text is processed in windows
of size m, which are searched for the longest prefix of the pattern from right to
left by means of the DAWG. At the end of each search phase, either a longest
prefix or a match is found. If no match is found, the window is shifted to the
start position of the longest prefix, otherwise it is shifted to the start position
of the second longest prefix.

As in the BDM algorithm, the Backward-Cross-Sampling algorithm pro-
cesses the text in windows of size m. Each attempt is identified by the last
position, j, of the current window of the text. The window is searched for the
longest prefix of the pattern which has a swapped occurrence ending at position
j of the text. At the end of each attempt, a new value of j is computed by per-
forming a safe shift to the right of the current window in such a way to left-align
the current window of the text with the longest prefix matched in the previous
attempt.

To this end, for any given position j in the text T , we let Sh
j denote the set

of the integral values i such that the h-substring of P ending at position i has a
swapped occurrence ending at position j of the text T . More formally, we have

Sh
j =Def {h − 1 ≤ i ≤ m − 1 : P [i − h + 1 .. i] ∝ Tj} ,

for 0 ≤ j < n and 0 ≤ h ≤ m.
If h−1 ∈ Sh

j , then there is a swapped occurrence of the prefix of the pattern of
length h, i.e., P [0 .. h− 1] ∝ Tj. In addition, it turns out that P has a swapped
occurrence at location j of T if and only if Sm

j 	= ∅. Indeed, if Sm
j 	= ∅ then

Sm
j = {m − 1}, for any given position j in the text.
The sets Sh

j can be computed efficiently by a dynamic programming algorithm,
by exploiting the following very elementary property.

Lemma 2. Let T and P be a text of length n and a pattern of length m, respec-
tively. Then, for each 0 ≤ j < n, 0 ≤ h ≤ m, and h − 1 ≤ i < m we have that
P [i − h + 1 .. i] ∝ Tj if and only if one of the following two facts holds

– P [i − h + 2 .. i] ∝ Tj and P [i − h + 1] = T [j − h + 1];
– P [i−h+3 .. i] ∝ Tj, P [i−h+1] = T [j−h+2], and P [i−h+2] = T [j−h+1].

Let us denote by Wh
j , for 0 ≤ j < n and 0 ≤ h < m, the collection of all values

i such that P [i − h + 1] = T [j − h] and the (h − 1)-substring ending at position
i of P has a swapped occurrence ending at location j of the text T .

More formally

Wh
j =Def {h ≤ i < m− 1 : P [i− h + 2 .. i] ∝ Tj and P [i− h + 1] = T [j − h]} .

For any given position j in the text, the base case for h = 0 is given by

S0
j = {i : 0 ≤ i < m} and W0

j = {0 ≤ i < m − 1 : P [i + 1] = T [j]}. (2)



236 M. Campanelli, D. Cantone, and S. Faro

S

�
j

W

�
j

S

2
j

W

2
j

S

1
j

W

1
j

S

0
j

W

0
j

S

h
u

W

h
u

S

2
u

W

2
u

S

1
u

W

1
u

S

0
u

W

0
u

u = j + m − �

Fig. 2. A graphic representation of the iterative pattern for computing sets Sh
j and

Wh
j for increasing values of h. A first attempt, starting at position j of the text, ends

with h = �. The subsequent attempt starts at position u = j + m − �.

Additionally, Lemma 2 justifies the following recursive definitions of the sets
Sh+1

j and Wh+1
j in terms of Sh

j and Wh
j , for 0 ≤ j < n and 0 ≤ h < m:

Sh+1
j = {h − 1 ≤ i ≤ m − 1 : (i ∈ Sh

j and P [i − h] = T [j − h]) or
(i ∈ Wh

j and P [i − h] = T [j − h + 1]) }
Wh+1

j = {h ≤ i ≤ m − 1 : i ∈ Sh
j and P [i − h] = T [j − h − 1]} .

(3)

Such relations, coupled with the initial conditions (2), allow one to compute the
sets Sh

j and Wh
j in an iterative fashion as shown in Fig. 2.

The code of the Backward-Cross-Sampling algorithm is shown in
Fig. 3(A). For any attempt at position j of the text, we denote by � the length
of the longest prefix matched in the current attempt. Then the algorithm starts
its computation with j = m− 1 and � = 0. During each attempt, the window of
the text is scanned from right to left, for h = 1 to m. If, for a given value of h,
the algorithm states that element (h − 1) ∈ Sh

j then � is updated to value h.
The algorithm is not able to remember the characters read in previous itera-

tions. Thus, an attempt ends successfully when h reaches the value m (a match
is found), or unsuccessfully when both sets Sh

j and Wh
j are empty. In any case, at

the end of each attempt, the start position of the window, i.e., position j−m+1
in the text, can be shifted to the start position of the longest proper prefix de-
tected during the backward scan. Thus the window is advanced m− � positions
to the right. Observe that since � < m, we plainly have that m − � > 0.

Moreover, in order to avoid accessing the text character of position j−h+1 =
n, when j = n − 1 and h = 0, the algorithm benefits of the introduction of a
sentinel character at the end of the text.

To compute the worst-case time complexity of the algorithm, preliminarily
we observe that, since the algorithm does not remember the length of the prefix
matched in previous attempts, each character of the text is processed at most
m times during the searching phase. Thus the while-cycle of line 7 is executed
O(nm) times. The for-cycles of line 9 and line 14 are executed |Sh

j | and |Wh
j |

times, respectively. However, according to Lemma 1, for each position j of the
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(A) Backward-Cross-Sampling (P, m, T, n)

1. T [n] ← P [0]
2. j ← m − 1
3. while j < n do
4. h ← 0
5. S0

j ← {i : 0 ≤ i < m}
6. W0

j ← {0 ≤ i < m − 1 : P [i + 1] = T [j]}
7. while h < m and Sh

j ∪ Wh
j �= ∅ do

8. if (h − 1) ∈ Sh
j then � ← h

9. for each i ∈ Sh
j do

10. if i ≥ h and P [i − h] = T [j − h]
11. then Sh+1

j ← Sh+1
j ∪ {i}

12. if i > h and P [i − h] = T [j − h − 1]
13. then Wh+1

j ← Wh+1
j ∪ {i}

14. for each i ∈ Wh
j do

15. if i ≥ h and P [i − h] = T [j − h + 1]
16. then Sh+1

j ← Sh+1
j ∪ {i}

17. h ← h + 1
18. if (h − 1) ∈ Sh

j then Output(j)
19. j ← j + m − �

(B) BP-Backward-Cross-Sampling (P, m, T, n)

1. F ← 10m−1

2. for c ∈ Σ do M [c] ← 0m

3. for i ← 0 to m − 1 do
4. M [P [i]] ← M [P [i]] | F
5. F ← F � 1
6. T [n] ← P [0]
7. j ← m − 1
8. F ← 10m−1

9. while j < n do
10. h ← 1, � ← 0
11. D ← M [T [j]]
12. D ← D | (M [T [j + 1]]&(M [T [j]] � 1))
13. C ← M [T [j − 1]]
14. while h < m and (D | C) �= 0 do
15. if F&D �= 0 then � ← h
16. H ← (C � 1) & M [T [j − h + 1]]
17. C ← (D � 1) & M [T [j − h − 1]]
18. D ← (D � 1) & M [T [j − h]]
19. D ← D | H
20. h ← h + 1
21. if D �= 0 then Output(j)
22. j ← j + m − �

Fig. 3. (A) The Backward-Cross-Sampling algorithm for the swap matching prob-
lem. (B) The BP-Backward-Cross-Sampling algorithm (based on bit-parallelism).

text we can report only a single swapped occurrence of the substring P [i − h +
1 . . . i] in Tj , for each h−1 ≤ i < m, which implies that |Sh

j | ≤ m and |Wh
j | < m.

Therefore the Backward-Cross-Sampling algorithm has a O(nm2)-time
complexity and requires O(m) extra space to represent the sets Sh

j and Wh
j .

5 The BP-Backward-Cross-Sampling Algorithm

In this section we present a practical implementation of the Backward-Cross-

Sampling algorithm based on the bit-parallelism technique [6]. The resulting
algorithm works as the BNDM (Backward Nondeterministic DAWG Match) al-
gorithm [11], which is a bit-parallel implementation of the BDM algorithm, where
the simulation of a nondeterministic automaton takes place by updating the state
vector much as in the Shift-And algorithm [6].

In the bit-parallel variant of the Backward-Cross-Sampling algorithm,
the sets Sh

j and Wh
j are represented as lists of m bits, Dh

j and Ch
j respectively.

The (i − h + 1)-th bit of Dh
j is set to 1 if i ∈ Sh

j , i.e., if P [i − h + 1 .. i] ∝ Tj ,
whereas the (i−h+1)-th bit of Ch

j is set to 1 if i ∈ Wh
j , i.e., if P [i−h+2 .. i] ∝ Tj

and P [i−h+1] = T [j−h]. All remaining bits are set to 0. Notice that if m ≤ w,
each bit vector fits in a single computer word, whereas if m > w we need �m/w�
computer words to represent each of the sets Sh

j and Wh
j .

For each character c of the alphabet Σ, the algorithm maintains a bit mask
M [c] whose i-th bit is set to 1 if P [i] = c.
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As in the Backward-Cross-Sampling algorithm, the text is processed in
windows of size m, identified by the last position j, and the first attempt starts
at position j = m − 1. For any searching attempt at location j of the text, the
bit vectors D1

j and C1
j are initialized to M [T [j]] | (M [T [j + 1]]&(M [T [j]] � 1))

and M [T [j − 1]], respectively, according to the base cases shown in (2) and
recursive expressions shown in (3). Then the current window of the text, i.e.
T [j −m + 1 .. j], is scanned from right to left, by reading character T [j − h + 1],
for increasing values of h. Namely, for each value of h > 1, the bit vector Dh+1

j is
computed in terms of Dh

j and Ch
j , by performing the following bitwise operations:

(a) Dh+1
j ← (Dh

j � 1) & M [T [j − h]] ,
(b) Dh+1

j ← Dh+1
j | ((Ch

j � 1) & M [T [j − h + 1]]) .

Concerning (a), by a left shift of Dh
j , all elements of Sh

j are added to the set
Sh+1

j . Then, by performing a bitwise and with the mask M [T [j − h]], all ele-
ments i such that P [i− h] 	= T [j − h] are removed from Sh+1

j . Similarly, the bit
operations in (b) have the effect to add to Sh+1

j all elements i in Wh
j such that

P [i − h] = T [j − h + 1]. Formally, we have the following correspondence:

(a′) Sh+1
j ← Sh

j \ {i ∈ Sh
j : P [i − h] 	= T [j − h]} ,

(b′) Sh+1
j ← Sh+1

j ∪Wh
j \ {i ∈ Wh

j : P [i − h] 	= T [j − h + 1]} .

Similarly, the bit vector Ch+1
j is computed in terms of Dh

j , by performing the
following bitwise operations:

(c) Ch+1
j ← (Dh

j � 1) & M [T [j − h − 1]]

which have the effect to add to the set Wh+1
j all elements of the set Sh

j (by shifting
Dh

j to the left by one position) and to remove all elements i such P [i] 	= T [j−h−1]
holds (by a bitwise and with the mask M [T [j − h − 1]]).

More formally, we have the following symbolic correspondence:

(c′) Wh+1
j ← Sh

j \ {i ∈ Sh
j : P [i − h] 	= T [j − h − 1]} .

As in the Backward-Cross-Sampling algorithm, an attempt ends when h =
m or (Dh

j |Ch
j ) = 0. If h = m and Dh

j 	= 0, a swap match at position j of the text
is reported. In any case, if h < m is the largest value such that Dh

j 	= 0, then a
prefix of the pattern, of length � = h, which has a swapped occurrence ending
at position j of the text, has been found. Thus a safe shift of m − � position to
the right can take place.

In practice, we can use just two vectors to implement the sets Dh
j and Ch

j .
Thus, during the h-th iteration of the algorithm at a given location j of the
text, vector Dh

j is transformed into vector Dh+1
j and vector Ch

j is transformed
into vector Ch+1

j . The resulting BP-Backward-Cross-Sampling algorithm is
shown in Fig. 3(B). It achieves a O(�nm2/w�) worst-case time complexity and
requires O(σ�m/w�) extra space, where σ is the alphabet size. If the length of
the pattern is m ≤ w, then the algorithm finds all swapped matches in O(nm)
time and O(σ) extra space.
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6 Experimental Results

Next we present experimental data which allow to compare under various con-
ditions the following string matching algorithms in terms of their running times:

- Iliopoulos-Rahman algorithm (IR)
- Cross-Sampling algorithm (CS)
- BP-Cross-Sampling algorithm (BPCS)
- Backward-Cross-Sampling algorithm (BCS)
- BP-Backward-Cross-Sampling algorithm (BPBCS)

We have chosen to exclude from our experimental comparison the Naive algo-
rithm and all algorithms based on the FFT technique, since the overhead of such
algorithms is quite high, resulting in very bad performances.

All algorithms have been implemented in the C programming language and
were used to search for the same strings in large fixed text buffers on a PC with
Intel Pentium M processor of 1.7GHz and a memory of 512Mb. In particular, all
algorithms have been tested on three Randσ problems, for σ = 8, 32, and 128, on
a genome, on a protein sequence, and on a natural language text buffer, with pat-
terns of length m = 4, 8, 12, 16, 20, 24, 28, 32. In the tables below, running times
have been expressed in hundredths of seconds and the best results are bold-faced.

Running Times for Random Problems
In the case of random texts, the algorithms have been tested on three Randσ
problems. Each Randσ problem consists in searching a set of 400 random pat-
terns of a given length in a 4Mb random text over a common alphabet of size
σ, with a uniform character distribution.

Running times for a Rand8 problem

m 4 8 12 16 20 24 28 32

IR 3.450 3.420 3.420 3.440 3.580 3.560 3.520 3.560
CS 66.670 67.210 67.230 67.590 67.850 68.280 68.670 69.060
BPCS 3.960 3.900 3.890 3.900 3.920 3.900 3.930 3.910
BCS 62.130 41.160 33.700 29.480 26.750 24.870 23.700 22.450
BPBCS 4.140 2.000 1.850 1.180 1.110 1.000 0.910 0.800

Running times for a Rand32 problem

m 4 8 12 16 20 24 28 32

IR 2.920 2.950 2.930 2.940 2.940 2.930 2.950 2.950
CS 60.030 59.760 59.740 59.710 59.610 59.580 59.350 59.200
BPCS 3.030 3.050 3.040 3.080 3.040 3.060 3.080 3.060
BCS 46.200 29.050 23.750 20.540 18.640 17.380 16.180 15.660
BPBCS 2.650 1.930 1.050 1.000 0.820 0.600 0.380 0.240

Running times for a Rand128 problem

m 4 8 12 16 20 24 28 32

IR 3.550 3.610 3.610 3.590 3.630 3.650 3.660 3.640
CS 59.910 59.610 59.460 59.390 59.380 59.130 59.180 59.130
BPCS 3.120 3.150 3.160 3.160 3.140 3.110 3.130 3.130
BCS 42.720 25.750 20.130 17.720 15.950 14.650 13.990 13.310
BPBCS 2.000 1.040 0.960 0.750 0.580 0.390 0.250 0.180
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The experimental results show that the BPBCS algorithm obtains the best
run-time performance in most cases. In particular, for very short patterns and
small alphabets, our algorithm is second only to the IR algorithm. We notice
that IR, CS. and BPCS show a linear behavior, whereas BCS and BPBCS are
characterized by a decreasing trend. Observe moreover that, in the case of small
alphabets and pattern longer than 16 characters, the BPBCS algorithm is at
least three times faster than BPCS and IR. Such a relation increases to thirty
times for large alphabets.

Running Times for Real World Problems
The tests on real world problems have been performed on a genome sequence,
on a protein sequence, and on a natural language text buffer. The genome used
is a sequence of 4, 638, 690 base pairs of Escherichia coli, taken from the file
E.coli of the Large Canterbury Corpus.1 The protein sequence used in the tests
is a 2.4Mb file with 22 different characters from the human genome. Finally, as
natural language text buffer we used the file world192.txt (The CIA World Fact
Book) from the Large Canterbury Corpus, which contains 2, 473, 400 characters
drawn from an alphabet of 93 different characters.

Running times for a genome sequence (σ = 4)

m 4 8 12 16 20 24 28 32

IR 3.070 3.060 3.070 3.080 3.100 3.150 3.150 3.100
CS 83.020 79.930 79.760 79.380 79.350 79.430 79.500 79.460
BPCS 6.820 3.950 3.910 3.920 3.930 3.920 3.930 3.940
BCS 102.410 67.010 55.480 49.050 45.250 42.290 40.260 38.650
BPBCS 10.170 3.930 2.640 2.010 1.960 1.830 1.510 1.120

Running times for a protein sequence (σ = 22)

m 4 8 12 16 20 24 28 32

IR 1.990 2.000 1.990 2.000 1.990 2.000 1.990 1.990
CS 45.190 45.230 45.490 45.650 45.900 46.040 46.400 44.400
BPCS 2.030 2.010 2.020 2.050 2.040 2.030 2.040 2.020
BCS 31.110 22.450 18.620 16.430 15.130 14.090 13.450 12.670
BPBCS 2.130 1.180 0.950 0.590 0.270 0.120 0.070 0.070

Running times for a natural language text buffer (σ = 93)

m 4 8 12 16 20 24 28 32

IR 1.850 1.820 1.820 1.850 1.880 1.820 1.860 1.850
CS 36.950 36.680 36.520 36.410 36.230 36.120 36.080 36.210
BPCS 2.050 1.970 1.970 1.990 1.970 1.980 1.990 1.980
BCS 30.410 19.390 15.720 13.640 12.350 11.430 10.820 10.320
BPBCS 2.000 0.990 0.610 0.210 0.050 0.020 0.013 0.010

The above experimental results show that in most cases the BPBCS algorithm
obtains the best results and only sporadically is second to the IR algorithm.
Moreover, in the case of natural language texts and long patterns, the BPBCS
algorithm is about 100 times faster than the IR algorithm.

1 http://www.data-compression.info/Corpora/CanterburyCorpus/
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7 Conclusions

In this paper we have presented a new efficient algorithm for the Swap Matching
problem with short patterns. In particular, we have devised a O(nm2) general
algorithm, named Backward-Cross-Sampling, and have provided an efficient
implementation of it, based on bit-parallelism.

An extensive experimental comparisons showed that our algorithm is very
fast in practice and obtains the best results in most cases, especially with long
patterns and large alphabets.
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Abstract. We determine the weak limit of the distribution of the ran-
dom variables “height” and “range” on the set of p-watermelons without
wall restriction as the number of steps tends to infinity. Additionally, we
provide asymptotics for the moments of the random variable “height”.

1 Introduction

The model of vicious walkers was originally introduced by Fisher [7] as a model
for wetting and melting processes. In general, the vicious walkers model is con-
cerned with p random walkers on a d-dimensional lattice. In the lock step model,
at each time step all of the walkers move one step in one of the allowed directions,
such that at no time any two random walkers share the same lattice point.

A configuration that attracted much interest amongst mathematical physi-
cists and combinatorialists is the watermelon configuration1, which is the model
underlying this paper (see Figure 1 for an example). This configuration can be
studied with or without the presence of an impenetrable wall. By tracing the
paths of the vicious walkers through the lattice we can identify the (probabilis-
tic) vicious walkers model with certain sets of non-intersecting lattice paths. It
is exactly this equivalent point of view that we adopt in this paper. We proceed
with a precise definition. A p-watermelon of length 2n is a set of p lattice paths
in Z

2 satisfying the following conditions:

– For i = 1, 2, . . . , p, the i-th path starts at position (0, 2i − 2) and ends at
(2n, 2i− 2),

– The paths consist of steps from the set {(1, 1), (1,−1)} only and
– The paths are non-intersecting, that is, at no time any two path share the

same lattice point.

An example of a 4-watermelon of length 16 is shown in Figure 1 (for the moment,
the dashed lines and the labels should be ignored).
� Research supported by the Austrian Science Foundation FWF, grant S9607-N13.
1 This term comes from the resemblance of large configurations to the colour patterns

of certain watermelons (see [4, Figure 1(b)]).

J. Fiala, J. Kratochv́ıl, and M. Miller (Eds.): IWOCA 2009, LNCS 5874, pp. 242–253, 2009.
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−4

0

11

16

Fig. 1. Example of a 4-watermelon of length 16 without wall, height 11, depth 4 and
range 15

Since its introduction, the vicious walkers model has been studied in numer-
ous papers. While early results mostly analyse the vicious walkers model in the
continuum limit, there are nowadays many results for certain configurations di-
rectly based on the lattice path description given above. For example, Guttmann,
Owczarek and Viennot [11] related the star and watermelon configurations to the
theory of Young tableaux and integer partitions. Later, Krattenthaler, Guttmann
and Viennot [16] proved new, exact as well as asymptotic, results for the number
of certain configurations of vicious walkers.

The vicious walkers model is also very closely related to random matrix theory,
as can be seen from articles by, e.g., Baik [1], Johansson [12] and Nagao and
Forrester [18]. More recently, Katori and Tanemura [14] and Gillet [10] studied
the diffusion scaling limit of certain configurations of vicious walkers, namely
stars and watermelons, respectively.

In 2003, Bonichon and Mosbah [2] presented an algorithm for uniform ran-
dom generation of watermelons, which relies on the counting results by Krat-
tenthaler, Guttmann and Viennot [16]. Amongst other things, Bonichon and
Mosbah studied, by means of numerical experiments, the parameter height on
the set of watermelons (with and without wall).

In this paper we rigorously analyse the following two parameters on the set
of p-watermelons:

– The height of a watermelon is the maximum ordinate reached by its top
most branch.

– The range of a watermelon is the difference of the maximum of its top
most branch and the minimum of its bottom most branch (the depth of the
watermelon).
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The 4-watermelon depicted in Figure 1 has the height 11 and the range 11 +
4 = 15.

Katori et. al. [13] and Schehr et. al. [19] studied the parameter “height” in the
continuous limit, and recovered the leading terms for some of the asymptotics
proved in [6,5]. Additionally, Schehr et. al. gave some arguments concerning the
behaviour of the parameter “height” as the number of walkers tends to infinity.

Now, consider the set m
(p)
n of p-watermelons of length 2n, endowed with

the uniform probability measure. We can then speak of the random variables
“height”, denoted by Hn,p, and “range”, denoted by Rn,p, on this set. We de-
termine the weak limits of Hn,p and Rn,p as the number n of steps tends to
infinity (see Theorem 1 and Theorem 3, respectively). Additionally, we deter-
mine the first two terms in the asymptotic expansion of the moments of Hn,p

(see Theorem 2).
Techniques similar to those applied in this paper can also be used to analyse

the random variable height on the set of p-watermelons under the presence of
an impenetrable wall. For details we refer to [6].

The paper is organised as follows. The next section contains some well known
results that are needed in the subsequent sections. In Section 3 we consider the
random variable “height”, and we determine the weak limit as well as asymp-
totics for all moments. In the last section, we determine the weak limit of the
random variable “range”.

This extended abstract contains only sketches of proofs for all results. For a
detailed presentation, we refer to the full version of this manuscript [5].

2 Preliminaries

In this section we collect several results which will be needed in the two subse-
quent sections. All these results are either well known in the literature and/or
can easily be derived by means of standard techniques. We, therefore, remain
very brief, give only a few comments on the proofs and in each case refer to the
corresponding literature for details.

We start with an exact enumeration result for the total number of watermelons
confined to a horizontal strip. (Recall, that the depth of a watermelon is the
minimum ordinate of its bottom most branch.)

Lemma 1. The number m
(p)
n,h,k of p-watermelons without wall, length 2n, height

< h and depth > −k is given by

m
(p)
n,h,k =

det
0≤i,j<p

(∑
�∈Z

((
2n

n + �(h + k) + i− j

)
−
(

2n

n + �(h + k) + h− i− j

)))
.

The total number m
(p)
n of p-watermelons is given by

m(p)
n = det

0≤i,j<p

((
2n

n + i− j

))
.
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This lemma follows immediately from the well-known Lindström–Gessel–Viennot
formula (see [9, Corollary 3] or [17, Lemma 1]), together with an iterated reflec-
tion principle.

Remark 1. Since any p-watermelon without wall and length 2n has depth >
−n−1, we see that the number of watermelons with height < h and no restriction
on the depth is given by m

(p)
n,h,n+1. For the sake of convenience, this quantity

will also be denoted by m
(p)
n,h. In this special case, the determinantal expression

above simplifies to

m
(p)
n,h = det

0≤i,j<p

((
2n

n + i− j

)
−
(

2n

n + h− i− j

))
.

Lemma 2. We have

m(p)
n =

(
2
n

)(p
2)(2n

n

)p
(

p−1∏
i=0

i!

)(
1 + O(n−1)

)
as n→∞.

The determinant expression for m
(p)
n can be evaluated to a product, from which

the asymptotics are easily obtained. For a proof, we refer to [16] (see also [5]).

Lemma 3. For |m − z| ≤ n5/8, z bounded, and arbitrary N > 1 we have the
asymptotic expansion

( 2n
n+m−z

)(2n
n

) = e−m2/n
4N+1∑
u=0

(
z√
n

)u 1
u!

Hu

(
m√
n

)

+ e−m2/n
4N+1∑
u=0

(
z√
n

)u 3N+1∑
l=1

u−1∑
k=0

2l∑
r=1

Fr,l

k!nl

(
2r

u− k

)
Hk

(
m√
n

)(
− m√

n

)2r+k−u

+ O
(
e−m2/nn−1−2N

)
(1)

as n→∞. Here, the Fr,l are some constants the explicit form of which is of no
importance in the sequel, and Hk(z) denotes the k-th Hermite polynomial, that
is,

Hk(z)
k!

=
∑
m≥0

(−1)k−m

(k −m)!
(2z)2m−k

(2m− k)!
, k ≥ 0. (2)

The lemma above follows from Stirling’s approximation for the factorials. For a
detailed proof we refer to [6, Lemma 6].
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3 Height

In this section we derive asymptotics for the distribution as well as for the
moments of the random variable Hn,p. As mentioned before, the number of
p-watermelons with length 2n and height < h is given by m

(p)
n,h = m

(p)
n,h,n+1.

Consequently, we have for the distribution of Hn,p

P {Hn,p + 1 ≤ h} =
m

(p)
n,h

m
(p)
n

.

Theorem 1. For each fixed t ∈ (0,∞) we have the asymptotics

P

{
Hn,p + 1√

n
≤ t

}
=

2−(p
2)∏p−1

j=0 j!
det

0≤i,j<p

(
(−1)iHi+j(0)−Hi+j (t) e−t2

)
+ O

(
n−1/2e−t2

)
(3)

as n→∞, where Ha(x) denotes the a-th Hermite polynomial.

Proof (Sketch). Set x = (x0, . . . , xp−1) and y = (y0, . . . , yp−1), and consider the
more general quantity

m
(p)
n,h(x, y) = det

0≤i,j<p

((
2n

n + xi − yj

)
−
(

2n

n + h− xi − yj

))
.

Asymptotics for this quantity are obtained by factoring
(2n

n

)
out of each row of

the determinant above and applying Lemma 3 to each entry of the determinant.
It is easy to see that the determinant m

(p)
n,h(x, y) is equal to zero whenever

xi = xj or yi = yj for some i �= j (in that case, two rows/columns are equal).
This also holds true for the asymptotics for m

(p)
n,h(x, y). Moreover, the asymptotic

expression obtained by the procedure described above is seen to be a polynomial
in the xi’s and yj’s. Hence,

m
(p)
n,h(x, y) = n−(p

2)
(

2n

n

)p

∏
0≤i<j<p

(xj − xi)(yj − yi)∏
0≤j<p

j!2
χ(n, h) + O(n−1/2e−h2/n)

as n→∞. Here, the error term is determined by noting that every power of xj

and yj entails a factor of n−1/2 (see Lemma 3). The unknown coefficient χ(n, h)
can now be determined by comparing coefficients on both sides of the equation
above. Comparing the coefficients of

∏p−1
j=0 xj

jy
j
j , we obtain

det
0≤i,j<p

(
(−1)iHi+j(0)−Hi+j

(
h√
n

)
e−h2/n

)
= χ(n, h).
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If we specialise by setting xj = yj = j, then we see that

m
(p)
n,h = n−(p

2)
(

2n

n

)p

det
0≤i,j<p

(
(−1)iHi+j(0)−Hi+j

(
h√
n

)
e−h2/n

)
+ O

(
n−1/2e−h2/n

)
.

Setting h = t
√

n and replacing m
(p)
2n with its asymptotic equivalent as given by

Lemma 2, we obtain the result. 	

Let us now turn our attention to the moments of the distribution of Hn,p. Clearly,
we have for s ∈ N,

E
(
Hs

n,p

)
=
∑
h≥1

hs
m

(p)
n,h+1 −m

(p)
n,h

m
(p)
n

=
∑
h≥1

(hs − (h− 1)s)
m

(p)
n −m

(p)
n,h

m
(p)
n

. (4)

The dominant terms of the asymptotics for the moments are going to be ex-
pressed by linear combinations of certain infinite exponential sums. Asymptotics
for these sums are to be determined now.

Lemma 4. For ν ≥ 0 and μ > 0 define

fν,μ(n) =
∑
h≥1

hνe−μh2/n.

This sum admits the asymptotic series expansion

fν,μ(n) ≈ 1
2
Γ

(
ν + 1

2

)(
n

μ

)(ν+1)/2

+
∑
m≥0

(μ

n

)m (−1)ν+mB2m+ν+1

(2m + ν + 1)!m!
,

as n→∞, where Γ denotes the gamma function and Bm is the m-th Bernoulli
number defined via the equation

∑
j≥0 Bjt

j/j! = t/(et − 1).

The lemma can be proved with the help of Mellin transform techniques (see,
e.g., [8] for an account on these techniques applied to asymptotics).

The rest of this section is devoted to the proof of Theorem 2 below, which gives
the final expression for the asymptotics of the moments. In order to present the
proof of this theorem in a clear fashion we split it into a series of lemmas. For a
more detailed overview of the proof, we refer directly to the proof of Theorem 2.

As a first step, we prove in Lemma 5 a preliminary asymptotic expression
for the moments of the height distribution. The presented compact form of the
asymptotics makes use of certain linear operators that are going to be defined
now.

Definition 1. Let Ξ1 and Ξ0 denote the linear operators defined by

Ξ1

(
hνe−μh2

)
=

1
2
Γ

(
ν + 1

2

)(
1
μ

)(ν+1)/2

Ξ0

(
hνe−μh2

)
= (−1)ν Bν+1

(ν + 1)!
,
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where ν ≥ 0 and μ > 0, Γ denotes the gamma function and Bk is the k-th
Bernoulli number.

By Lemma 4 we have

fν,μ(n) = Ξ1

(
hνe−μh2

)
n(ν+1)/2 + Ξ0

(
hνe−μh2

)
+ O(n−1), n→∞,

so that Ξ1 and Ξ0 yield the coefficients of the first two terms in the asymptotic
expansion of fν,μ(n).

The preliminary expression for the asymptotics of the moments can now be
proven in pretty much the same way as in Theorem 1.

Lemma 5. For s ∈ N, s ≥ 1, the s-th moment of the random variable “height”
satisfies the asymptotics

EHs
n,p = sΞ1

(
κph

s−1)ns/2 −Ξ1

((
s

2

)
κph

s−2 + τph
s−1
)

n(s−1)/2

+ Ξ0(κp) + O
(
ns/2−1

)
(5)

as n→∞, where

κp = 1− 2−(p
2)∏

0≤j<p

j!
det

0≤i,j<p

(
(−1)iHi+j(0)−Hi+j (h) e−h2

)

and

τp = (p− 1)
2−(p

2)∏
0≤j<p

j!
det

0≤i,j<p

({
(−1)iHi+j(0)−Hi+j (h) e−h2

if i < p− 1
(−1)pHp+j(0)−Hp+j (h) e−h2

if i = p− 1

)
.

Here, Hk(z) denotes the k-th Hermite polynomial.

Proof. The same arguments as in the proof of Theorem 1 give the finer
asymptotics

m
(p)
n,h(x, y) = n−(p

2)
(

2n

n

)p

∏
0≤i<j<p

(xj − xi)(yj − yi)∏
0≤j<p

j!2

×

⎛⎝χ(n, h) +
p−1∑
j=0

(
ξj(n, h)

xj√
n

+ ηj(n, h)
yj√
n

)⎞⎠+ O(n−1e−h2/n)

as n→∞. By comparing coefficients we have already seen that

χ(n, h) = det
0≤i,j<p

(
(−1)iHi+j(0)−Hi+j

(
h√
n

)
e−h2/n

)
.
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Analogously, we can determine ξk(n, h). By comparing the coefficients of
xk

∏p−1
j=0 xj

jy
j
j on both sides of the equation above, we obtain the equations

0 = ξk(n, h)− ξk+1(n, h), k < p− 1,

and

ξp−1(n, h) =
1
p

det
0≤i,j<p

⎛⎝
⎧⎨⎩(−1)iHi+j(0)−Hi+j

(
h√
n

)
e−h2/n if i < p− 1

(−1)pHp+j(0)−Hp+j

(
h√
n

)
e−h2/n if i = p− 1

⎞⎠ .

Analogous results hold for the ηk(n, h), 0 ≤ k < p.
Since Hi+j(0) is non-zero if and only if i+j is even we deduce (−1)iHi+j(0) =

(−1)jHi+j(0), which implies

ξp−1(n, h) = ηp−1(n, h).

Specialisation to xj = yj = j, 0 ≤ j < p, then leads to

m
(p)
n,h

m
(p)
n

=
2−(p

2)∏
0≤j<p

j!

(
χ(n, h) + 2

(
p

2

)
ξp−1(n, h)n−1/2

)
+ O

(
n−1e−h2/n

)
as n→∞. The result now follows from the fact that

E
(
Hs

n,p

)
=
∑
h≥1

(
shs−1 −

(
s

2

)
hs−2

)(
1−

m
(p)
n,h

m
(p)
n

)
+ O

(
ns/2−1

)
, n→∞,

which follows from Equation (4) and Lemma 4. 	


Lemma 6. Let Hk(x) denote the k-th Hermite polynomial as defined by Equa-
tion (2). We have the determinant evaluation

det
0≤i,j<p

(
(−1)(i+j)/2Hi+j(0)

)
= 2(p

2)
p−1∏
j=0

j!. (6)

Lemma 7. Let μ > 0 denote a real number. The operator Ξ1 from Definition 1
satisfies the relation

Ξ1

(
d

dh

(
hνe−μh2

))
=

{
−1 if ν = 0
0 if ν > 0.

(7)

Proof. For ν = 0 the claim follows immediately from the definition of the oper-
ator Ξ1. For ν > 0 we calculate

Ξ1

(
hν+1e−μh2

)
=

ν

2μ
Ξ1

(
hν−1e−μh2

)
,

from which the claims follows upon multiplying by 2μ and rearranging the
terms. 	
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Lemma 8. Let κp and τp denote the determinants defined in Lemma 5. We
have the relation

(p− 1)
d

dh
κp = τp, p ≥ 1. (8)

This last lemma is far from being obvious. Nevertheless, the proof has been
completely omitted because of its technical nature. For a detailed proof, we refer
to the full version [5].

We are now able to state and prove the final expression for the asymptotics
of the moments.

Theorem 2. For s ∈ N, s ≥ 1, the s-th moment of the random variable “height”
satisfies

E
(
Hs

n,p

)
= sΞ1(κph

s−1)ns/2 + (s− 1)
(
p− 1− s

2

)
Ξ1
(
κph

s−2)n(s−1)/2

+ p− 3
2

+ O
(
ns/2−1

)
(9)

as n→∞. Here, κp is defined as in Lemma 5.

Proof (Sketch). As a first step we need to prove that the quantity κp is of the
form

κp =
K∑

k=0

M∑
m=1

λk,mh2ke−mh2

for some numbers K, M and some constants λk,m. Recall, that the k-th Hermite
polynomial is even (odd) whenever k is even (odd). This implies that κp is an
even function of h. An application of Lemma 6 then shows that the constant
term of κp is equal to zero, and establishes the desired form for κp.

Now, an application of Lemma 7 immediately shows that

Ξ1

(
d

dh

(
κph

s−1)) = 0, s > 1,

and the product rule for the derivative together with Lemma 8 imply

Ξ1
(
τph

s−1) = −(s− 1)(p− 1)Ξ1
(
κph

s−2) , s > 1.

The last step in the transition from Equation (5) to (9) is the evaluation of the
quantities Ξ1(τp) and Ξ0(κp). For the sake of simplicity, we set 1

C = 2(p
2)∏p−1

j=0 j!,
as well as

χ(h) = det
0≤i,j<p

(
(−1)iHi+j(0)−Hi+j(0)e−h2

)
.

From Lemma 8 and Lemma 7 we deduce that

Ξ1 (τp) = (p− 1)Ξ1

(
d

dh
κp

)
= −(p− 1)Ξ1

(
C

d

dh
χ(h)

)
.
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Table 1. This table gives the coefficient of the dominant asymptotic term of EHs
n,p

as n → ∞ for small values of s and p (see Theorem 2)

sκ
(p)
s s = 1 s = 2 s = 3

p = 1 1
2

√
π = 0.88 . . . 1 3

4

√
π = 1.32 . . .

p = 2 2+
√

2
4

√
π = 1.51 . . . 5

2
3(12+

√
2)

16

√
π = 4.45 . . .

p = 3 72+45
√

2−16
√

3
96

√
π = 1.99 . . . 25

6
1584+315

√
2−32

√
3

385

√
π = 9.11 . . .

Now, Lemma 7 shows that

Ξ1

(
d

dh
χ(h)

)
= −1, which implies Ξ1 (τp) = 1− p.

Recall the definition of the operator Ξ0, and note that all odd Bernoulli numbers
except for B1 are equal to zero. This, together with the fact that κp is an even
function of h, proves the equality

Ξ0(κp) = Ξ0 (1− Cχ(h)) .

Furthermore, noting that Ξ0

(
hνe−μh2

)
is independent of μ we see that

Ξ0(κp) = B1 = −1
2
.

This completes the proof of the theorem. 	


4 Range

We determine the asymptotics for n→∞ of

P {Rn,p ≤ r} =
1

m
(p)
n

r∑
h=2p−2

(
m

(p)
n,h+1,r−h+1 −m

(p)
n,h,r−h+1

)
. (10)

Note that m
(p)
n,h+1,r−h+1−m

(p)
n,h,r−h+1 is the number of watermelons with height

exactly h and range ≤ r.

Theorem 3. For each fixed t ∈ (0,∞) we have the asymptotics

P

{
Rn,p + 1√

n
≤ t

}
→ 2−(p

2)∏p−1
i=0 i!

∫ t

0

(
d

dz
Tp(z, w)

∣∣∣∣
z=t

)
dw, n→∞, (11)

where

Tp(z, w) =

det
0≤i,j<p

(
(−1)i

(∑
�∈Z

Hi+j(�z)e−(�z)2
)
−
(∑

�∈Z

Hi+j (�z + w) e−(�z+w)2
))

.

Here, Ha denotes the a-th Hermite polynomial.
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Proof (Sketch). Since m
(p)
n,2p−2,k = 0 for any k, Equation (10) can be rewritten

as

P {Rn,p ≤ r} =
m

(p)
n,r+1,1

m
(p)
n

+
1

m
(p)
n

r∑
h=2p−1

(
m

(p)
n,h,r−h+2 −m

(p)
n,h,r−h+1

)
.

The first term on the right-hand side is negligible. To see this, we note that
mn,r+1,1 is equal to the number of p-watermelons with wall and height ≤ r,
which is of order

(2n
n

)p
n−p2

as n → ∞ (see [6] for details), whereas m
(p)
n is of

order
(2n

n

)p
n−(p

2) (see Lemma 2).
Asymptotics for the sum on the right-hand side can now be established in a

fashion analogous to the proof of Theorem 1. A more detailed presentation of
these techniques can also be found in [6, Theorem 2]. We find the asymptotics

P {Rn,p ≤ r} ∼
(2n

n

)p
n−(p

2)

m
(p)
n

r∑
h=2p−1

(
Tp

(
r + 2√

n
,

h√
n

)
− Tp

(
r + 1√

n
,

h√
n

))
as n→∞.

Now, Taylor series expansion shows that

Tp

(
r + 2√

n
,

h√
n

)
− Tp

(
r + 1√

n
,

h√
n

)
=

1√
n

T ′
p

(
r + 1√

n
,

h√
n

)
+ O

(
n−1)

as n→∞, where T ′ denotes the derivative of T with respect to its first argument.
Setting r + 1 = t

√
n we see that

r∑
h=2p−1

(
Tp

(
r + 2√

n
,

h√
n

)
− Tp

(
r + 1√

n
,

h√
n

))

∼
r∑

h=2p−1

1√
n

T ′
p

(
r + 1√

n
,

h√
n

)
→
∫ t

0
T ′ (t, w) dw

as n→∞. 	


Remark 2. For the special case p = 1 we recover a well-known fact originally
proven by Chung [3] and Kennedy [15] (see also Vervaat [20]). Namely, the
equality of the distributions of the height of Brownian excursions and the range
of Brownian bridges. In fact, for p = 1 Theorem 3 reads

P

{
Rn,1 + 1√

n
≤ t

}
→
∑
�∈Z

(
1− 2(�t)2

)
e−(�t)2, n→∞,

which is exactly the limiting distribution of the height of 1-watermelons with
wall (see [6]).
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Abstract. We develop a method for performing boolean convolutions
efficiently in word RAM model of computation, having a word size of
w = Ω(log n) bits, where n is the input size. The technique is applied
to approximate string matching under Hamming distance. The obtained
algorithms are the fastest known. In particular, we reduce the complexity
of the Amir et al. [1] algorithm for k-mismatches from O(n

√
k log k) to

O(n + n
√

k/w log k).

1 Introduction

A word RAM is a random-access machine with unit-cost operations for operands
of w bits, and having instruction set similar to modern computers. Traditional
model used e.g. in sorting or string matching algorithms is the comparison model,
where the algorithm complexities and lower bounds are measured by the number
of pair-wise comparisons required to perform the task. However, the word RAM
model is much more natural and realistic given the modern computers. This
model has become ever more popular since the appearance of fusion trees [2]
(showing that n integers can be sorted in o(n log n) time in word RAM).

The word RAM model has been implicit in most algorithm analyses, but the
algorithms generally have not taken the advantage of it. One such algorithm is
the famous fast Fourier transform (FFT), an efficient method to compute the
discrete Fourier transform. The algorithm assumes word RAM model in which
arithmetic operations of w = Θ(log n) bits (where n is the input size) can be
done in constant time. FFT is one of the most powerful tools in various fields of
computer science and engineering.

One of the reasons of the wide applicability of FFT is that convolutions and
polynomial multiplications can be computed in O(n log n) time, and e.g. many
approximate string matching problems can be reduced to convolutions. This idea
dates back to 1974, when Fischer and Paterson introduced convolution-based
techniques [3] for tackling with several string matching problems. Since then,

J. Fiala, J. Kratochv́ıl, and M. Miller (Eds.): IWOCA 2009, LNCS 5874, pp. 254–265, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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many new algorithms using the same general approach have been presented, see
e.g. [1,4,5] for a variety of string matching problems and FFT-based solutions.

An interesting result was achieved by Indyk [6]. He gave an O(n)-time Monte
Carlo algorithm for boolean convolutions, which let him obtain a number of
other results, for example for wild card matching.

In this paper, we consider approximate string matching permitting mismatches.
We are given a text string of length n and a pattern string of length m over some
integer alphabet of size σ, and we want to either compute the number of mis-
matches for each possible pattern alignment over the text (Hamming distance) or
report every text position where the number of mismatches is at most k. The clas-
sic convolutions-based solution [3] solves the Hamming distance problem in time
O(σn log m). This can be improved to O(n

√
m log m) time [7,8]. The current state-

of-the-art is a hybrid algorithm with O(n
√

k log k) time [1]. We improve the classic
algorithm (which is used as a component in many other, e.g. in the cited [7,1] algo-
rithms) to run in time O(σn log2 m/w) and consequently the O(n

√
k log k) time

algorithm to run in time O(n + n
√

k/w log k).
We note that there are other techniques to obtain sub-quadratic time com-

plexity for Hamming distance or k-mismatches (cf. Table 1). Landau and Vishkin
[9] used a suffix tree augmented with the lowest common ancestor (LCA) data
structure, to achieve O(nk) time. Bit-parallelism can be used to simulate a non-
deterministic automaton; the best result along these lines [10] yields O(nm/w)
time. A prime-number encoding scheme was proposed in [11] for k-mismatches
with character classes, to achieve O(nσ) time if, for example, both log2 m =
O(log n) and log m = O(σ) hold.

In this paper we present two techniques for calculating several convolutions
in parallel, using word-level parallelism. One of them samples the text in sev-
eral locations (or alternatively can be used for searching multiple patterns), the
other parallelizes computations across the alphabet. The first technique is more
efficient but cannot be used for extremely long patterns (of length close to the
length of the text).

We assume word RAM model of computation, with a word length of w bits.
The theoretical model imposes that w = Ω(log n), where n is the input size. The

Table 1. Our results. We assume that w = Ω(log n), and σp ≤ min{σ, m} is the
number of distinct symbols in the pattern. All results for Hamming distance apply to
k-mismatches as well.

Problem Previous results Our results
Hamming distance O(σpn log m) [3] O(σpn log2 m/w), if m = O(n log m/w)

O(n
√

m log m) [7,8] O(n + n
√

m/w log m)
O(nm/w) [10] O(σpn + σpn log2 m/w1−ε), for any m

O(n + σpn log(m/σp)(log m/w + 1/ log n))
k-mismatches O(n

√
k log k) [1] O(n + n

√
k/w log k)

O((n + nk3

m
) log k) [1]

O(nk) [9,12,13]
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practical view is that w = 32 or w = 64 in current typical CPU architectures,
and growing1. Like other works applying FFT and convolutions, we also assume
that multiplication of two w-bit words can be done in O(1) time. For large w
this may not be the case. Assuming that multiplication takes O(log w) time, our
result e.g. for k-mismatches becomes O(n + n

√
k log w/w log k). We note that

the wide word assumption occurs more and more often in algorithmics [14,15,16].
If not stated otherwise, logarithms used throughout the paper are in base 2.

2 Multiple Convolutions with Vector Packing

Let us have two vectors, τ = τ0τ1 . . . τn−1 and ρ = ρ0ρ1 . . . ρm−1, over some
integer alphabet. We also assume that m < n (and often m  n). We are
interested in sums of the form

S(i) = ρ⊗ τ(i) =
m−1∑
j=0

ρj × τi+j

for each possible i. Convolution of two vectors each of length n takes O(n log n)
time by using FFT (the convolution theorem), hence computing ρ⊗τ(i) for every
i takes O(n log m) total time, if we divide τ to n/m overlapping blocks, each of
length 2m. From now on, we assume that this machinery is taken as a black box,
and in particular we assume that this division to blocks is implicit. This is the
basis of numerous string matching algorithms based on FFT. Basically, various
problem instances are solved by encoding the problem to suitable vectors τ and
ρ. The first string matching algorithm based on this general idea was by Fischer
and Paterson [3]; they gave an algorithm for matching with wild cards.

We now present a general technique of computing several convolutions in
parallel. Assume that each value of S(i) can be represented with u bits. This
means that each word of w (where w = Ω(log n)) bits can pack b = �w/u�
values. Let us exploit this fact. The vector τ is divided to b blocks (overlapping
by m−1 symbols) each of length � = n/b+m−1. For simplicity, we assume that
� = Θ(n/b). (This makes the technique easier to describe [see also Fig. 1], but
in practice, we would use the same block division as in the standard algorithm,
that is, n/m blocks of length 2m, and just handle b of them in parallel.) Then
we can define a new vector τ ′ of length �; call �′ = �n/b�:

τ ′
i = τi+0�′ × 20u + τi+1�′ × 21u + τi+2�′ × 22u + . . . + τi+(b−1)�′ × 2(b−1)u.

Each value τ ′
i still fits into w bits, and the whole vector τ ′ can be easily computed

in O(n) time. Note also that the fields cannot interact with each other, i.e. there
is no possibility of a carry from one field to the next. Define S′(i) = ρ⊗ τ ′(i).

1 E.g. the multimedia extensions, such as the widely available SSE instruction set
introduced in 1999 with Intel Pentium III have word size of w = 128, and the
upcoming AVX extensions will at first double this.
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Alg. 1. Word-packed-convolution(τ, n, ρ, m, u).
1 /* preprocessing */
2 b ← �w/u�
3 �′ ← �n/b�
4 for i ← 0 to �′ − 1 do
5 τ ′

i ← 0
6 for h ← 0 to b − 1 do
7 τ ′

i ← τ ′
i + τi+h�′ × 2hu

8 /* FFT computation */
9 Compute S′(i) = ρ ⊗ τ ′(i) for all i using FFT
10 /* postprocessing */
11 for i ← 0 to n − m + 1 do
12 S(i) ← (S′(i mod �′) >> �i/�′�u) & (2u − 1)
13 return S

Observation 1. S′(i) = S(i+0�′)×20u+S(i+1�′)×21u+S(i+2�′)×22u+ · · · ,
i.e. S′ is a packed representation of S.

Now the values S′(i) for all i can be computed in O(n+ � logm) time with FFT.
Given S′, we can trivially obtain S in time O(n). Alg. 1 shows more details. In
Sec. 3 we present how this general scheme can be used to obtain efficient string
matching algorithms for Hamming distance.

On computing the convolutions. We note that “FFT” algorithm in general refers
to computing the discrete Fourier transform (DFT), or its inverse, of a (sampled)
complex or real function. In other words, DFT is susceptible to the inherent
inaccuracy of floating point arithmetic, due to its finite precision (e.g., round-
off errors). This is usually not a problem, since Θ(log m) bits of precision is
enough in many string matching applications. In our case, however, we need
Θ(w) bits of precision, where w may be large as compared to log m (or even to
log n). However, the number-theoretic transform (NTT) operates with modular
arithmetic on integers, and thus is accurate. What is important for our case, is
that NTT (and its inverse) can be computed with the same algorithms as DFT,
and that the convolution theorem holds for NTT as well. Hence we can compute
the convolutions efficiently and precisely using fast number-theoretic transforms.
Since NTT can be computed with FFT algorithm, we continue to speak about
FFT. For more details, see e.g. [17].

3 Applications

In what follows, we have a pattern P = p0p1 . . . pm−1 and text T = t0t1 . . . tn−1
over some integer alphabet Σ = {1, 2, . . . , σ}. P is said to occur exactly at
position i of T if pj = ti+j for all j = 0 . . .m−1. Likewise, P occurs at position i
of T with a Hamming distance k, if pj = ti+j for m−k values of j. The problem
is then to report every text position i that has a pattern occurrence, under some
particular matching model.

We now present improved solutions to some basic algorithms to illustrate the
technique. Convolutions (computed with FFT) are used as a component in many
other algorithms, e.g., δ and γ matching. We do not cover those here. However,
our technique has applications in those algorithms as well.
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3.1 Improved Algorithm for Hamming Distance

The classic FFT-based algorithm for Hamming distance works as follows. For
each symbol c from the alphabet we create a bit-vector ρc of length m, with bits 1
at positions where c occurs in P , and 0s elsewhere, i.e. ρc

j = 1 iff pj = c. Similarly,
τc
i = 1 iff ti = c. Having this representation, we calculate Sc(i) using FFT

in O(n log m) time. The result for each text position is a multiplication of two
binary vectors, i.e., the number of matching pairs of bits 1. This is repeated for all
the σ symbols, and the results are summed to obtain S(i) =

∑
c∈Σ Sc(i), which

is the total number of matches for a position i; in other words, the Hamming
distance is m − S(i). The algorithm obviously runs in O(σn log m) worst case
time.

To improve this algorithm, we map τ to τ ′ for each symbol (see Fig. 1 for an
example with unrealistically small n). For this, we must fix the value of u. As the
algorithm computes the number of matching characters between P and a window
of T , the sum is at most m. Hence the number of bits needed for any value S(i)
is u = �log(m + 1)�. We use this value and proceed as above using the new
representation. The total time for the convolutions is then O(σ� log m), which is
O(σn log2 m/w). The preprocessing step takes O(σn log m/w + n) time (zeroing
the vectors plus filling the actual values). Alternatively, the vectors τc can also
be built incrementally from τc−1 with setting and unsetting each affected field
separately, which can be done in O(n) total time; as the preprocessing is never
dominating in our algorithms we omit the details of this variant. The values of
S can be computed from S′ trivially in time O(σn), but we can add b values in
parallel using directly the packed representation, which gives O(σn log m/w+n)
total time for the postprocessing. The final complexity is then dominated by the
convolutions. Alg. 2 gives the pseudo code. We have just obtained:

Theorem 1. In word RAM with word length w bits, Hamming distance of P of
length m = O(n/(w/ log m)) can be computed in O(n+σn log2 m/w) total worst
case time for all n text positions.

We note that Sc needs to be computed only for the cases where c occurs in P , as
otherwise we know that all Sc(i) values are 0s. Let σp be the number of distinct
alphabet symbols occurring in P , i.e. σp ∈ {1 . . .min(m, σ)}. Second, we can
derive a better bound for u, but this time the bound will be different for each
symbol c. That is, assuming that symbol c occurs σc times in P , we use the value
uc = �log(σc + 1)�. Hence the total time for the convolutions becomes

O

(∑
c

n/w log σc log m

)
.

Hence the average time depends on the compressibility of P , or more precisely
on the 0-order entropy of P . The lower the entropy is, the faster the convo-
lutions are computed. Given the convexity of the log function, the worst case
is when all uc values are equal, and therefore the time is upper bounded by
O(σp n/w log(m/σp) log m). Summing up the vectors can be done in O(σpn)
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ρa:

P :

ρa:

m

τ ′:

�

n

T :

⇓

⇒

S:

S:

Sa:

Fig. 1. An (unrealistic) example of mapping T and P to τ and ρ for an alphabet
symbol a. Here w = 10, and u = �log(m + 1)� = 3. For τ ′ and ρ the least significant
bit is at the bottom. The result of the convolutions ρa ⊗ τ ′(i) is shown as Sa, and
the corresponding vector S in both binary and decimal form, that is, S(i) denotes the
number of matching a’s of P in T [i . . . i + m − 1] (so that the last value denotes the
matches for T [n − m . . . n − 1]).

time, which may be slower than previously, as we cannot parallelize the process
easily anymore. Still, by assuming that uc < ε log n, for some constant ε < 1
(e.g., ε = 1

2 ), for all σc, and by noticing that there are at most log m different
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Alg. 2. Word-packed-Hamming-distance(T, n, P, m).
1 /* preprocessing */
2 u ← �log2(m + 1)�
3 b ← �w/u�
4 �′ ← �n/b�
5 for c ← 0 to σ − 1 do
6 for i ← 0 to m − 1 do
7 if P [i] = c then ρc

i ← 1 else ρc
i ← 0

8 for i ← 0 to �′ − 1 do
9 τc

i ← 0
10 for h ← 0 to b − 1 do
11 if T [i + h�′] = c then τc

i ← τc
i + 2hu

12 /* FFT computations */
13 for c ← 0 to σ − 1 do
14 Compute Sc(i) = ρc ⊗ τc(i) for all i using FFT
15 /* postprocessing */
16 for i ← 0 to �′ − 1 do
17 S′(i) ← 0
18 for c ← 0 to σ − 1 do
19 S′(i) ← S′(i) + Sc(i)
20 for i ← 0 to n − m + 1 do
21 S(i) ← (S′(i mod �′) >> �i/�′�u) & (2u − 1)
22 /* Convert match counts to Hamming distance */
23 for i ← 0 to n − 1 do
24 S(i) ← m − S(i)
25 return S

uc values, one can use look-up tables of size O(2ε log n log m) = o(n) to convert
and add several counter values in parallel, giving

O

(
n + n

∑
c

log σc/ logn

)

time for the postprocessing. Again, assuming that log(m/σp) < ε log n and using
the convexity of the log function, this is upper bounded by

O(n + nσp log(m/σp)/ log n).

In summary, we have obtained:

Theorem 2. In word RAM with word length w bits, Hamming distance of P
of length m = O(n/(w/ log maxσc)), where max σc is the number of occur-
rences of the most frequent alphabet symbol in P , can be computed in O(n +
σpn log(m/σp)(log m/w+1/ logn)) total worst case time for all n text positions.

Thus computing the convolutions dominates the postprocessing as long as w =
O(log n log m), and the complexity is then O(n + σpn log(m/σp) log m/w).

3.2 Matching Permitting k Mismatches

In [1] Amir et al. showed how to find all occurrences of P from T permitting
at most k mismatches in time O(n

√
k log k). This differs from the Hamming

distance problem in that the actual distance is not computed for every text
position. Their algorithm works as follows. Call a symbol c frequent, if it occurs
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in P at least α = 2
√

k times. The algorithm distinguishes between two cases.
Case 1: there are at least β =

√
k frequent symbols. It is shown how this case can

be handled in O(knα/k) = O(n
√

k) time. Case 2: there are less than β frequent
symbols; (a) the matches of the O(β) frequent symbols are computed using
convolutions and FFT, hence this takes time O(βn log m) = O(

√
kn log m); (b)

those symbols that are not frequent occur less than α times, and can be handled
in O(nα) total time. The final match count for Case 2 is then the sum of the
subcases (a) and (b). The final time complexity is then O(

√
kn logm), as the

Case 2 (a) is dominating. They show how this can be improved to obtain the
promised complexity of O(n

√
k log k). See [1] for the details of the Case 1 and

Case 2 (b).
Our aim is to improve Case 2 (a), which is based on convolutions and FFT.

The improvement basically follows their ideas, but we obtain different optimal
values of α and β. The complexity of the above scheme (the whole algorithm)
is O(nα + nβ log m), with the restriction that αβ ≥ 2k. We can compute the
convolutions more efficiently using our technique (Alg. 2), the only difference
here is that the alphabet size is effectively reduced to β. Hence the complexity
becomes O(nα + nβ log2 m/w). Using α and β as above, we obtain O(n

√
k +

n
√

k log2 m/w). However, the optimum values are α = 2
√

k/w log m and β =√
kw/ logm, giving O(n

√
k/w log m) worst case time. However, they also have

a linear time algorithm for k < k′ = O(m1/3−ε), hence the above method is
applied only for k ≥ k′, but in this case log m = O(log k). We have just proved:

Theorem 3. The k-mismatches problem can be solved in O(n + n
√

k/w log k)
time.

This is faster than the O(n
√

k log k) algorithm by a factor of ∼
√

w/ log k.
Finally, note that if k = Θ(m), or if one is interested in computing the actual

Hamming distance for each text position, then the simpler O(n
√

m log m) time
base-line algorithm [7,8] can be used instead. Assume again that symbol c is
frequent if it occurs at least α times. Consider now the infrequent symbols,
i.e. those that occur less than α times. The contribution of these symbols to the
match can be computed by a simple linear scan over the text, spending O(α) time
per text position. The number of frequent symbols in P is then at most m/α, and
their contribution can be handled by using convolutions. Hence the total time is
O(nα + nm/α · log m), which is optimized by choosing α =

√
m log m. Similarly

as before, if we compute the convolutions with our algorithm, the optimum turns
out to be α =

√
m/w log m, and the total time becomes O(n

√
m/w log m).

3.3 Multiple Matching under Hamming Distance

The problem of multiple matching under Hamming distance or k mismatches
model can be stated as follows: Given a text T , a set P of r patterns, P =
{P 1, P 2, . . . , P r}, and r non-negative integers kh, for h ∈ {0 . . . r − 1}, report
all text positions i such that there exists an index h ∈ {0 . . . r − 1} for which
ph

j = ti+j for at least m− kh locations j from the set 0 . . .m− 1. A less general
problem variant could assume all error thresholds for the r patterns equal, but
for our algorithm handling different kh parameters does not pose any difficulty.
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A näıve application of the Fischer–Paterson k-mismatches algorithm for mul-
tiple patterns would be to calculate the convolutions for each alphabet symbol
and each pattern separately; then the products over the entire alphabet for each
pattern are summed up, and whenever the sum for a given pattern reaches its
corresponding threshold, a match is reported. In what follows, we keep the O(σ)
multiplicative factor but parallelization is used to handle several patterns at the
same time.

The technique is similar to what we used for a single pattern. Again the text
T is mapped to τ , that is, τc

i = 1 iff ti = c, and 0 otherwise. Likewise, each
pattern P h in the set P is mapped to corresponding ρ(h) vector. However, this
time we do not pack τ to τ ′. Instead, we pack several ρ vectors into a single
word of w bits. Again, the basic method assumes that u = �log(m + 1)�, and
thus each word can pack b = �w/u� values.

Similarly to our previous technique, define a new vector ρ′:

ρ′i = ρ(1)i × 20u + ρ(2)i × 21u + ρ(3)i × 22u + . . . + ρ(r)i × 2(r−1)u.

This vector uses ru bits per element, which may be larger than w; in such case we
just divide the set into smaller subsets. For simplicity we assume this implicitly.
Then we can define and compute S′(i) = ρ′ ⊗ τ(i) for each alphabet symbol,
and sum up the results as previously. Each obtained sum, however, is a w-bit
concatenation of u bit-fields, each of which stores the match count for a single
pattern for its group. Testing for a match, i.e., if the match count is at least
m− kh for P h, can be done näıvely, in O(r) time overall, per text location.

To sum up, the overall time complexity of this algorithm involves O(σ(n +
rm) log m/w + n + rm) preprocessing time, O(σn�r/(w/ log m)� log m) time
for calculating convolutions with FFT, O(σn log m/w) time for summations
over the alphabet symbols (this complexity term is absorbed by the previous
ones) and O(nr) time for match counter checks and reporting. Overall, we get
O(σrm log m/w + rm + n(σr log2 m/w + r)) worst-case time. Note that this is
asymptotically the same as multiplying the complexity of our basic algorithm
for single pattern by r, and that the same result can be obtained by applying
the method in different ways.

Using different field widths (u) depending on the actual number of occurrences
of the symbols in P works in this setting as well, even if that number is not the
same for all the patterns. I.e. each field in the packed representation (ρ′i) can
have different width.

4 Computing Hamming Distance with Alphabet Packing

So far we discussed a way to represent several subsequences of the vector τ (or
T , if we talk about text over some integer alphabet) in a single vector of w-bit in-
tegers before calculating the convolution. Now we demonstrate that the packing
idea can also be applied for several alphabet symbols rather than subsequences
of τ (or T ). This is interesting for the case of long patterns, in particular the
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case of m = Θ(n). In this section we assume integer alphabet and talk about
text T and pattern P . We consider the Hamming distance problem.

The key component of our construction is a possibly dense subsequence A(N)
of {0, 1, 2, . . . , N−1}, where N = O(w/ log m) in our problem, not containing any
arithmetic progressions of length r = 3. Finding properties of such subsequences
(also for larger r) is a classic research topic in number theory [18]. In particular,
Roth [19] proved that such subsequences for r = 3 (a result which was later
improved to any r > 2) have density zero. In other words, |A(N)|/N must tend
to zero. We start with a very simple observation that if we multiply all terms of
A(N) by the same positive integer, the newly-created sequence will not contain
any r-term arithmetic progressions either.

It is easy to generate a sequence A(N) such that |A(N)| tends to N log3 2 =
N0.6309... with N growing to infinity. This sequence is a discrete approxima-
tion of the famous Cantor ternary set. W.l.o.g. assume that N is a power of
3. From the interval containing all 0, 1, . . . , N − 1 integers its middle third is
first removed, and the sum of the intervals I1 = 0, 1, . . . , N/3− 1 and I2 =
2N/3, 2N/3 + 1, . . . , N − 1 is what remains. Note that we do not have any 3-
term progression with the first term in I1 and the last term in I2, since the
middle term would fall in the deleted range. We continue the middle subinterval
removals recursively with I1 and I2, until no more integers can be removed. Here
is the resulting set for N = 81:

0, 2, 6, 8, 18, 20, 24, 26, 54, 56, 60, 62, 72, 74, 78, 80.

Finding the optimal (possibly densest) subsequence for an arbitrary large N
is still an open problem. The best upper bound result known at the moment
[20] states that if N/|A(N)| = δ, where δ � (log log N)2/(log N)2/3, and N is
sufficiently large, then A must contain progressions of length 3. A lower bound
is given in the classic Behrend theorem [21] and states that for an arbitrarily
large N there exists a subsequence A(N) such that N/|A(N)| = ec

√
log N , where

c is some constant. Less precisely, we can say that we can select A(N) in such a
way to have N/|A(N)| = o(Nε), for any ε > 0.

We go back to our problem. Let A(N) = {A0, A1, . . . , As−1}, and we require
that its largest term, As−1, does not exceed w/(2�log(m + 1)�) − 1. W.l.o.g.
assume that s divides σ, the alphabet size in the given problem instance. Now
we can define vectors U i, 0 ≤ i ≤ σ/s− 1, of length n each:

U i
j = χsi+0(tj)× 2A0u + χsi+1(tj)× 2A1u + . . . + χsi+s−1(tj)× 2As−1u,

where u = �log(m + 1)�, and tj , 0 ≤ j < n, are symbols from T , and the
characteristic function χx(y) returns 1 iff x = y. Similarly we define vectors
Vi, with respect to the pattern P . The convolutions are now calculated (with
FFT) between vectors Ui and Vi, for all i. From the definition of Ui and Vi,
and essentially their relation to A(N), we easily notice that the components of
a convolution, i.e., the products of U i

j and V i
k , for given i, j and k, all affect

different bit-fields (of size �log(m + 1)� bits) of the machine word that stores
the final result, as long as the aligned pairs of symbols are unique. To obtain
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the match count requires adding the values in the relevant bit-fields, which we
explain briefly on an example. Imagine that i = 0, s ≥ 19, and there are three
matches for the alphabet symbol 9 for the current alignment of the pattern over
the text. The machine word storing the convolution of the corresponding U0
and V0 vectors will then have value 3 in its A18-th bit-field. Mismatches also
set some bit-fields but we simply ignore those. Overall, the time complexity
of our algorithm is O(σn + σn log m/|A(w/ log m)|), which is asymptotically
O(σn + σn log m(log m/w)1−ε), i.e., worse than the vector packing idea from
Sec. 2. Still, if m is large, and in particular if m = Θ(n), this idea works better
or is even the only one of those two applicable. More formally, we have obtained:

Theorem 4. In word RAM with word length w bits, Hamming distance of P of
length m = O(n) can be computed in O(σn + σn log m(log m/w)1−ε) total worst
case time for all n text positions. The value ε asymptotically approaches zero
with w/ log m growing to infinity.

5 Conclusions

We presented two techniques to speed-up existing algorithms for Hamming
distance calculations and related problems. They are based on the concept of bit-
parallelization of FFT-based convolutions. The technique of matching the pat-
tern against several subsequences of the text in parallel can trivially be adopted
also for multiple pattern matching under Hamming distance. Note that in the
k-mismatches variation of the problem we can immediately use different values
of k for different patterns. We believe that our technique(s) have applications
for many other string matching problems; exploring those possibilities is left for
future work. One immediate application of our technique (not mentioned earlier
in the paper) is matching with wild cards using the classic algorithm [3]. Other
possibilities include especially music information retrieval motivated problems.
For example, there exist FFT-based algorithms for δ-matching, (δ, γ)-matching
and γ-matching [4,5], and bit-parallelism should be a way to improve their
complexities.

Finally we note that other trade-offs for Hamming distance are possible; e.g.
the techniques of Theorems 2 and 4 could be combined to avoid using look-up
tables in the postprocessing. We leave the details for future work.
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Abstract. Although there exist many polynomial algorithms for
NP -hard problems running on a bounded clique-width expression of the
input graph, there exists only little comparable work on such algorithms
for rank-width. We believe that one reason for this is the somewhat
obscure and hard-to-grasp nature of rank-decompositions. Nevertheless,
strong arguments for using the rank-width parameter have been given
by recent formalisms independently developed by Courcelle and Kanté,
by the authors, and by Bui-Xuan et al. This article focuses on designing
formally clean and understandable “pseudopolynomial” (XP) algorithms
solving “hard” problems (non-FPT) on graphs of bounded rank-width.
Those include computing the chromatic number and polynomial or
testing the Hamiltonicity of a graph and are extendable to many other
problems.

Keywords: Rank-width, rank-decomposition, chromatic number,
chromatic polynomial, Hamiltonian path.

1 Introduction

We postpone all formal definitions till the next section. Rank-width, introduced
by Oum and Seymour [20], is a relatively new graph complexity measure which
is quickly receiving attention over the past few years. Compared to the (per-
haps better known) clique-width measure, rank-width has two major advan-
tages: First, an optimal rank-decomposition can be efficiently constructed if the
rank-width is bounded [17]. Second, a rank-decomposition (actually, a suitable
modification of it, see Section 3) allows for design of formally cleaner [11], and
sometimes much faster parameterized algorithms [2,12] than previously known
ones running on a clique-width expression of the given graph.

The core of the new approach lies in an alternative characterization of rank-
decompositions using bilinear graph products [4], or equivalently labeling parse
trees [10,11], or Rk-joins [2]. These new approaches have led to interesting new
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FPT algorithms [2,12] which run much faster with respect to the rank-width
parameter than previously known algorithms, as in [5].

The aim of this paper is to extend the ideas of the mentioned algorithms to
problems which likely do not have FPT algorithms with respect to rank-width,
and hence their presented algorithms are “pseudopolynomial”, a complexity class
known as XP. We present some of the basic definitions in Section 2, and describe
the parse-tree formalism for handling rank-decompositions of graphs in Section 3.
The main new results are then presented and proved in Section 4.

We prove (Theorem 4.1) that the chromatic number of a graph of rank-width t
can be determined in time O(nh(t)) where h(t) = O(2t(t+1)/2). This algorithm
significantly improves over a previous algorithm of Kobler and Rotics [19] which
runs in time O

(
n4k)

on graphs of clique-width k. When comparing these two
algorithms, the readers should keep in mind that our parameter t is the rank-
width of the input graph, and the clique-width k can reach up to 2t/2−1 by [3].
We, moreover, straightforwardly extend our algorithm (Theorem 4.8) to compute
the chromatic polynomial, again improving runtime over previous [1]. Finally,
we show (Theorem 4.9) how to decide Hamiltonian path in a graph of bounded
rank-width.

2 Definitions and Basics

We only consider finite undirected simple graphs without loops. We will start by
briefly introducing a few needed concepts and then define rank-decompositions
and rank-width, while in Section 3 we continue by defining the concepts of t-
labeled graphs and their parse trees. Many of the definitions in the latter section
are taken or adapted from our [11].

The reader should be aware of the notion of fixed-parameter tractable [6] al-
gorithms (FPT algorithms in short), which are the algorithms running in time
O(nc · 2f(k)) for a constant c, a parameter k (rank-width in our case) and any
(computable) f . Some NP -hard problems such as deciding whether a graph
is q-colourable do have FPT algorithms when parameterized by clique-width,
see e.g. [5]. On the other hand, [9] have recently proved that various problems,
such as the chromatic number or hamiltonicity, likely can not be solved by FPT
algorithms parameterized by clique-/ rank-width.

In such cases, authors usually look for algorithms which are “pseudopolyno-
mial”—formally in class XP or uniform XP [6]—i.e. running in time O(nf(k))
for the parameter k and a computable function f . Many examples using the
clique-width parameter can be found in [1,7,13,19,21]. Our goal in this paper
is to design and use a mathematically precise and sound formalism for solving
problems on graphs of bounded rank-width in XP time. This extends the Myhill–
Nerode type formalism which we have introduced in [11] for FPT algorithms on
such graphs.

Branch-width. A set function f : 2M → Z is called symmetric if f(X) =
f(M \ X) for all X ⊆ M . A tree is subcubic if all its nodes have degree at



268 R. Ganian and P. Hliněný

most 3. For a symmetric function f : 2M → Z on a finite set M , the branch-
width of f is defined as follows.

A branch-decomposition of f is a pair (T, μ) of a subcubic tree T and a bijective
function μ : M → {t : t is a leaf of T}. For an edge e of T , the connected
components of T \ e induce a bipartition (X, Y ) of the set of leaves of T . The
width of an edge e of a branch-decomposition (T, μ) is f(μ−1(X)). The width of
(T, μ) is the maximum width over all edges of T . The branch-width of f is the
minimum of the width of all branch-decompositions of f . (If |M | ≤ 1, then we
define the branch-width of f as f(∅).)

A natural application of this definition is the branch-width of a graph, intro-
duced by Robertson and Seymour along with better known tree-width. In that
case we use M = E(G), and f the connectivity function of G. There is, however,
another interesting application of the aforementioned general notions, in which
we consider the vertex set V (G) = M of a graph G as the ground set.

Rank-width ([20]). For a graph G, let AG[U, W ] be the bipartite adjacency
matrix of a bipartition (U, W ) of the vertex set V (G) defined over the two-
element field GF(2) as follows: the entry au,w, u ∈ U and w ∈ W , of AG[U, W ]
is 1 if and only if uw is an edge of G. The cut-rank function ρG(U) = ρG(W ) then
equals the rank of AG[U, W ] over GF(2). A rank-decomposition and rank-width
of a graph G is the branch-decomposition and branch-width of the cut-rank
function ρG of G on M = V (G), respectively.

Theorem 2.1 ([17]). For every fixed t there is an O(n3)-time FPT algorithm
that, for a given n-vertex graph G, either finds a rank-decomposition of G of
width at most t, or confirms that the rank-width of G is more than t.

A Few Rank-width Examples. Any complete graph of more than one vertex
has clearly rank-width 1 since any of its bipartite adjacency matrices consists of
all 1s. It is similar with complete bipartite graphs if we split the decomposition
along the parts. We illustrate the situation with graph cycles: while C3 and C4
have rank-width 1, C5 and all longer cycles have rank-width equal 2. A rank-
decomposition of, say, the cycle C5 is shown in Fig. 1. Conversely, every subcubic
tree with at least 4 leaves has an edge separating at least 2 leaves on each side,
and every corresponding bipartition of C5 gives a matrix of rank 2.
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Fig. 1. A rank-decomposition of the graph cycle C5
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Rank-width is closely tied to another width parameter called clique-width [7].
A graph has bounded rank-width if and only if it has bounded clique-width.
However, there is no equivalent of Theorem 2.1 for clique-width [8], and the
value of clique-width can be up to exponentially larger than rank-width [3],
both making rank-width a more attractive parameter for designing algorithms.
On the other hand, it appears really difficult to design dynamic-programming
algorithms running on a given rank-decomposition of a graph.

3 Rank-Width Parse Trees and Regularity

In a search for a “more suitable form” of a rank-decomposition, Courcelle and
Kanté [4] defined the bilinear products of multiple-coloured graphs, and proposed
algebraic expressions over these operators as an equivalent description of a rank-
decomposition (cf. Theorem 3.1). Here we introduce (following [10,11]) the same
idea in terms of labeling join and parse trees which we propose as more convenient
for the results in the next sections. One should note that an analogous idea also
underlies the H-join decompositions of Bui-Xuan, Telle and Vatshelle [2].

A t-labeling of a graph is a mapping lab : V (G)→ 2Lt where Lt = {1, 2, . . . , t}
is the set of labels (this notion is exactly equivalent to multiple-coloured graphs
of [4]). Having a graph G with an (implicitly) associated t-labeling lab, we refer
to the pair (G, lab) as to a t-labeled graph and use notation Ḡ. Notice that each
vertex of a t-labeled graph may have zero, one or more labels. We will often view
(cf. [4] again) a t-labeling of G equivalently as a mapping V (G)→ GF(2)t to the
binary vector space of dimension t, where GF(2) is the two-element finite field.

Labeling Join ([11]). Considering t-labeled graphs Ḡ1 = (G1, lab1) and Ḡ2 =
(G2, lab2), a t-labeling join Ḡ1⊗ Ḡ2 is defined on the disjoint union of G1 and
G2 by adding all edges (u, v) such that |lab1(u) ∩ lab2(v)| is odd, where u ∈
V (G1), v ∈ V (G2). The resulting graph is unlabeled.

A t-relabeling is a mapping f : Lt → 2Lt . In linear algebra terms, a t-rela-
beling f is in a natural one-to-one correspondence with a linear transformation
f : GF(2)t → GF(2)t, i.e. a t × t binary matrix Af . For a t-labeled graph
Ḡ = (G, lab) we define f(Ḡ) as the same graph with a vertex t-labeling lab′ =
f ◦ lab. Here f ◦ lab stands for the linear transformation f applied to the labeling
lab, or equivalently lab′ = lab · Af as matrix multiplication. Informally, f is
applied separately to each label in lab(v) and the outcomes are summed up
“modulo 2”; e.g. for lab(v) = {1, 2} and f(1) = {1, 3, 4}, f(2) = {1, 2, 3}, we get
f ◦ lab(v) = {2, 4} = {1, 3, 4}�{1, 2, 3}.

Let � be a nullary operator creating a single new graph vertex of label {1}.
For t-relabelings f1, f2, g : Lt → 2Lt, let ⊗[g | f1, f2] be a binary operator—
called t-labeling composition (as bilinear product of [4])—over pairs of t-labeled
graphs Ḡ1 = (G1, lab1) and Ḡ2 = (G2, lab2) defined as follows:

Ḡ1 ⊗[g | f1, f2] Ḡ2 = H̄ =
(
Ḡ1⊗ g(Ḡ2), lab

)
where a new labeling is lab(v) = fi ◦ labi(v) for v ∈ V (Gi), i = 1, 2.



270 R. Ganian and P. Hliněný
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Fig. 2. An example of a labeling parse tree which generates a 2-labeled cycle C5, with
symbolic relabelings at the nodes (id denotes the relabeling preserving all labels, and
∅ is the relabeling “forgetting” all labels)
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Fig. 3. “Bottom-up” generation of C5 by the parse tree from Fig. 2

A t-labeling parse tree T , see also [10, Definition 6.11], is a finite rooted ordered
subcubic tree (with the root degree at most 2) such that
– All leaves of T contain the � symbol, and
– Each internal node of T contains one of the t-labeling composition symbols.

A parse tree T then generates (parses) the graph G which is obtained by succes-
sive leaves-to-root applications of the operators in the nodes of T . See Fig. 2, 3.

Analogously to the work of Courcelle and Kanté we get a crucial statement:

Theorem 3.1 (Rank-width parsing theorem [4,11]). A graph G has rank-
width at most t if and only if (some labeling of) G can be generated by a t-labeling
parse tree. Furthermore, a width-t rank-decomposition of G can be transformed
into a t-labeling parse tree on Θ(|V (G)|) nodes in time O(t2 · |V (G)|2).

The tools we use are inspired by the Myhill–Nerode theorem in automata theory.
We see this classical theorem as the starting point of formal understanding of
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dynamic algorithms: Such an algorithm typically collects “all relevant informa-
tion” about the studied problem on a local part, and then processes this infor-
mation “through” the whole input. The task is to determine what the words “all
relevant information” mean here.

The basic approach defines a so-called canonical equivalence, e.g. [16,11],
which is analogous to the “right congruence” known in theory of regular lan-
guages. A strongly enhanced formalism, called a PCE scheme, is given by the
authors in [12]. The PCE scheme provides a very fine control over the runtime
of FPT algorithms on graphs of bounded rank-width. On the other hand, in
this paper we show a formally precise handling of problems for which we do not
have FPT algorithms (wrt. rank-width), and which thus require a different, yet
similar, formal approach.

4 Applications in XP Algorithms

4.1 Computing the Chromatic Number

We illustrate our formalism on the graph chromatic number problem, for which
we strongly improve the previous algorithm of [19] running on graphs of bounded
clique-width. For the purposes of this section, it is useful to think about colouring
not as a function from vertices to colours but rather as a vertex-partition of G.
Formally, a colour partition of G is a partition N of V (G) into pairwise disjoint
nonempty(!) sets such that each X ∈ N is independent in G. The chromatic
number of a graph G is the minimum |N | such that N is a colour partition of G.

Theorem 4.1. Assume that an input graph G is given in the form of a t-labeling
parse tree T . Then the chromatic number of G can be computed in time

O
(
|V (G)|h(t)

)
where h(t) = O(2t(t+1)/2) .

We will also need a few preliminary technical results. Let, for X ⊆ V (G),
γ(Ḡ, X) = {lab(u) : u ∈ X}. Notice that this set of labelings—vectors in
GF(2)t —generates a vector subspace 〈γ(Ḡ, X)〉. Considering a t-labeled graph
Ḡ = (G, lab) with a proper colour partition {C1, C2 . . . Cj}, the core idea is that
we only need to record the subspaces 〈γ(Ḡ, Ci)〉 for i = 1, . . . , j.

Lemma 4.2 (also [2,12]). Assume t-labeled graphs Ḡ and H̄, and arbitrary
sets X ⊆ V (Ḡ), Y ⊆ V (H̄). In the join graph Ḡ⊗ H̄, there is no edge between a
vertex of X and a vertex of Y if and only if the subspace 〈γ(Ḡ, X)〉 is orthogonal
to the subspace 〈γ(H̄, Y )〉 in GF(2)t.

Proof. Let Ḡ = (G, lab) and H̄ = (H, lab′). We consider arbitrary y ∈ Y . Then
(as a scalar product in GF(2) ) lab(x) · lab′(y) = 0 for all x ∈ X ; henceforth
α · lab′(y) = 0 for all α ∈ 〈γ(Ḡ, X)〉 by means of elementary linear algebra. By a
symmetrical argument, we get α ·β = 0 for all β ∈ 〈γ(H̄, Y )〉, which means these
subspaces indeed are mutually orthogonal. Conversely, if 〈γ(Ḡ, X)〉 ⊥ 〈γ(H̄, Y )〉,
then there is obviously no edge between x ∈ X and y ∈ Y by the definition of
⊗ as lab(x) · lab′(y) = 0.
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Corollary 4.3. Assume t-labeled graphs Ḡ1, Ḡ2 and H̄, and independent sets
Xi ⊆ V (Ḡi), i = 1, 2 and Y ⊆ V (H̄). If 〈γ(Ḡ1, X1)〉 = 〈γ(Ḡ2, X2)〉, then X1∪Y
is independent in Ḡ1⊗ H̄ if and only if X2 ∪ Y is independent in Ḡ2⊗ H̄.

Lemma 4.4 ([15], cf. [12, Proposition 6.1]). The number S(t) of subspaces
of the binary vector space GF(2)t satisfies S(t) ≤ 2t(t+1)/4 − 2 for all t ≥ 12.

Informally, the algorithm for Theorem 4.1 starts by colouring all vertices in the
leaves of the labeling parse tree by distinct colours. Notice that if we keep the
colours distinct after performing the join operator, the resulting colour partition
of the graph will always be proper — each vertex will have a unique colour.
However, to compute the chromatic number, we also need to consider two colours
merging together during a join operation. The resulting colour partition after
such a merge is only proper if there was no edge between the merging colours,
and we must make sure that this can be algorithmically determined from the
information we store. The dynamic programming algorithm then, at every join
operator, considers all possibilities of colour merges and stores some information
about these possible colour partitions

Proof of Theorem 4.1. Given a graph G, we will write G |= ν(N ) to say
that a set family N ⊆ 2V (G) \ ∅ is a proper colour partition of G. Also, having
two set families N ,N ′, we denote by I(N ′,N ) the set of all injective mappings
p : N ′ → N , and we write N p

↽ N ′ for p ∈ I(N ′,N ) to denote the family

N p
↽ N ′ = {X ∪ p(X) : X ∈ N ′} ∪

(
N \ p(N ′)

)
.

Informally, N p
↽ N ′ expands the colour partition N of G by merging some of

its colour classes with those of N ′ as prescribed by p.
For any t-labeled graphs Ḡ1, Ḡ2 and any colour partitions Ni ⊆ 2V (Gi) \ ∅

where i = 1, 2, we define (Ḡ1,N1) ≈ν,t (Ḡ2,N2) if and only if |N1| = |N2| = q
and the following holds true: For all t-labeled graphs H̄ and all colour partitions
N ⊆ 2V (H), and for all N0 ⊆ N such that |N0| ≤ q, it holds

∃p1 ∈ I(N0,N1) :
(
Ḡ1⊗ H̄

)
|= ν
(
(N1

p1
↽ N0) ∪ (N \ N0)

)
(4.5)

⇐⇒ ∃p2 ∈ I(N0,N2) :
(
Ḡ2⊗ H̄

)
|= ν
(
(N2

p2
↽ N0) ∪ (N \ N0)

)
.

Note that (Ḡ1,N1) ≈ν,t (Ḡ2,N2) means that there is no real difference between
the q-colour-partitioned (Ḡ1,N1) and (Ḡ2,N2) with respect to the possibility of
merging prescribed colour classes N0 of any joined graph H̄ with some existing
colour classes in N1,N2. Hence, ≈ν,t captures all information necessary to decide
which subcolourings of Ḡi extend to colourings of any larger Ḡi⊗ H̄ .

Let Γ (Ḡ,N ) = {〈γ(Ḡ, X)〉 : X ∈ N} denote a multiset(!) of subspaces of GF(2)t.
The crucial finding, inspired by the colouring algorithm in [19], reads:

(4.6) For any t-labeled graphs Ḡ1, Ḡ2 and anyNi ⊆ 2V (Gi)\∅, i = 1, 2 such that
Ḡi |= ν(Ni), it holds (Ḡ1,N1) ≈ν,t (Ḡ2,N2) if Γ (Ḡ1,N1) = Γ (Ḡ2,N2).
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We will use N+
i to denote (Ni

pi
↽ N0)∪ (N \N0), i = 1, 2 (cf. 4.5). To prove this

claim, we assume Γ (Ḡ1,N1) = Γ (Ḡ2,N2) and
(
Ḡ1⊗ H̄

)
|= ν(N+

1 ) for some
fixed p1. Since N+

2 is also a partition of the vertices of Ḡ2⊗ H̄, for claiming
ν(N+

2 ) it suffices to verify that all C ∈ N+
2 are independent in the graph Ḡ2⊗ H̄ .

That is trivial if C ∈ N2 or C ∈ (N \ N0), since both Ḡ2 and H̄ were properly
coloured and in this case the whole C is present in one of the original graphs.
For the rest, we consider any bijection b : N1 → N2 preserving 〈γ(Ḡ1, X)〉 =
〈γ(Ḡ2, b(X))〉 for all X ∈ N1, and choose p2 = b ◦ p1. Assume C = Y ∪ p2(Y ) ∈
N+

2 where Y ∈ N0. Applying Corollary 4.3 with X1 = p1(Y ) and X2 = p2(Y ),
we conclude that C is independent in Ḡ2⊗ H̄ if p1(Y ) ∪ Y is independent in
Ḡ1⊗ H̄, and p1(Y ) ∪ Y ∈ N+

1 .
Considering the labeling parse tree T of G, and a node z of T , let Ḡz denote

the t-labeled graph parsed by the subtree of T rooted at z. Thanks to previous
Claim (4.6), a dynamic algorithm for computing the chromatic number of G has
to remember only the set MT (z) of those multisets Γ (Ḡz,N ) coming from proper
colour partitions N of V (Gz), at any particular node z of T . This information
is trivial to construct at each leaf of T .

We now show how to obtain the set MT (z) from the sets MT (x) and MT (y) of
the left son x and right son y of our z. We consider any proper colour partitions
Nx and Ny of Ḡx and Ḡy, respectively. Let J (Ny,Nx) denote the set of all
partial injective mappings p from Ny into Nx (i.e. of injective mappings from

any subset of Ny into Nx), and let
p
� be a generalization of

p
↽ such that

Nx

p
� Ny = {X ∪ p(X) : X ∈ p−1(Nx)} ∪

(
Ny \ p−1(Nx)

)
∪
(
Nx \ p(Ny)

)
.

It is obvious that any colour partition of Ḡz induces colour partitions of Ḡx

and Ḡy, and so every Ḡz |= ν(Nz) is obtained as Nz = (Nx

p
� Ny) for some

Ḡx |= ν(Nx) and Ḡy |= ν(Ny), and suitable p ∈ J (Ny ,Nx).
For p ∈ J (Ny,Nx), we define the “signature” Sig(p) as an edge-weighted

bipartite graph Dp on the vertex set S ∪̇ S, where S is the family of all subspaces
of GF(2)t. f = ΨΨ ′ ∈ S × S is an edge of Dp iff there is Y ∈ Ny in the domain
of p such that Ψ ′ = 〈γ(Ḡy , Y )〉 and Ψ = 〈γ(Ḡx, p(Y ))〉. The weight of the edge
f is then the number of such witnesses Y ∈ Ny.

Let z carry the composition operator ⊗[g | f1, f2] in T , i.e. Ḡz =
Ḡx ⊗[g | f1, f2] Ḡy . Notice that Γ (Ḡz,Nz) where Nz = (Nx

p
� Ny) is uniquely

determined by Γ (Ḡx,Nx), Γ (Ḡy,Ny), by the relabelings f1, f2, and by Sig(p).
We furthermore define on the same vertex set a special bipartite graph D⊥

g (de-
pending on the relabeling g) with E(D⊥

g ) = {ΨΨ ′ ∈ S × S : Ψ ⊥ g(Ψ ′)}. The
purpose is to explicitly define which colour classes could be merged through
⊗[g | f1, f2] without creating edges inside any class.

From Lemma 4.2 we immediately conclude:

(4.7) Ḡz |= ν(Nz) where Nz = (Nx

p
� Ny) for some Ḡx |= ν(Nx), Ḡy |= ν(Ny)

and p ∈ J (Ny ,Nx) if, and only if, Sig(p) is a subgraph of D⊥
g .
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With Claim (4.7) at hand it is straightforward how to compute the set MT (z)
from the sets MT (x) and MT (y). We loop through all members Γx ∈ MT (x)
and Γy ∈ MT (y), and all admissible signatures Sig (i.e. nonnegative integer
weightings of the above bipartite graph D⊥

g by (4.7) ), test a simple consistency
condition, and then possibly add the resulting Γz (easily computable) to MT (z).
This consistency condition on Sig is that, for each its vertex Ψ , the sum of the
weights of the edges of Sig incident with Ψ is at most the multiplicity of Ψ in
Γx or Γy, respectively.

Finally, the chromatic number of G equals the least cardinality of a member
of MT (r) where r is the root of T . Such a leaves-to-root dynamic algorithm then
runs in time O

(
m(G, t)2 · w(G, t) · S(t)2 · t3 · |V (G)|

)
, where m(G, t) denotes

the number of possible distinct Γ (Ḡ,N ), and w(G, t) stands for the number of
distinct weightings of the graph D⊥

g . Each Γz is then determined from Γx, Γy

and Sig in S(t)2t3 steps where S(t) is estimated in Lemma 4.4.
For simplicity, we provide only short arguments giving rather weak (but suffi-

cient) bounds on m, w here: m(G, t) can be bounded from above by |V (G)|S(t)—
consider that the multiplicity of any subspace in the multiset Γ (Ḡ,N ) is at most
the number of nonempty colour classes. With analogous arguments we also get
w(G, t) ≤ |V (G)|S(t)2 . These estimates then lead to a runtime bound of order
|V (G)|h(t) where h(t) ≤ 2S(t) + S(t)2 + o(t2) + 1 = O(S(t)2) = O(2t(t+1)/2).

4.2 Chromatic Polynomial

The chromatic polynomial was first introduced by Birkhoff in the context of the
Four Colour problem. Although the concept seems quite technical and obscure in
nature, it has since become of independent interest. The chromatic polynomial of
G is a polynomial PG(x) such that for every nonnegative integer x, PG(x) equals
the number of distinct proper colourings of G which use x colours. It is a trivial
observation that, given the values of all PG(x) for x = 1, 2, . . . , n = |V (G)|,
finding PG(x) simply becomes a matter of resolving n (independent) equations
of n unknowns.

Computing the chromatic polynomial is generally #P -complete. It has been
noted by [14] that the algorithm of [19] extends towards computing the chromatic
polynomial on graphs of bounded clique-width, and the same statement occurs
with a proof in [1]. We improve those results with:

Theorem 4.8. Assume that an input graph G is given in the form of a t-labeling
parse tree T . Then the chromatic polynomial of G can be computed in time

O
(
|V (G)|h(t)

)
where h(t) = O(2t(t+1)/2) .

Proof. As already explained, we need to modify the algorithm of Theorem 4.1
so that it will compute the number of distinct proper colourings of G having the
prescribed number of colour classes. Fortunately, we do not need to process all
possible colour partitions of G; thanks to (4.6), we only have to remember the
numbers of partitions N determining the same value of Γ (Ḡz,N ) at a node z.
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Let �α =
(
αΓ : Γ is a multiset of subspaces of GF(2)t

)
be a vector of free

variables. Although �α is infinite, we shall actually use a finite part of it.
Our algorithm shall compute the linear multivariete (symbolic) polynomial
R(Ḡz)[�α] =

∑
Γ qΓ · αΓ where qΓ stands for the number of distinct colour par-

titions N of Gz such that Γ (Ḡz,N ) = Γ .
The algorithm generally proceeds as that of Theorem 4.1. Specifically, at a

node z of T with the sons x and y, we compute straightforwardly

R(Ḡz)[�α] = R(Ḡx)[�α] · R(Ḡy)[�α]

and then apply all the necessary substitutions: For every pair αΓ1 , αΓ2 ∈ �α, we
replace the term αΓ1 ·αΓ2 with a sum, over all admissible signatures Sig (4.7), of
the terms rSig · αΓSig where ΓSig is the multiset uniquely determined by Γ1, Γ2,
Sig, and the composition relabelings at z. The number rSig is defined as follows.

Let N1,N2 be such that Γ (Ḡx,N1) = Γ1 and Γ (Ḡx,N2) = Γ2. Then rSig

is the number of distinct partial injective mappings p ∈ J (N2,N1) such that
Sig(p) = Sig. One can check that this quantity does not depend on a particular
choice of N1,N2, and that it can be straightforwardly computed from Γ1, Γ2 and
Sig along with computing ΓSig .

Finally, we extract the numbers of colourings of G from the above computed
R(Ḡ)[�α]. We note two points: First, a c-colouring does not have to use all c
colours, and so we have to count with all colour partitions of at most c classes.
Second, a traditional colouring distinguishes between the colours, while our
colour classes do not. Hence we obtain the total number of distinct c-colourings
of G from R(Ḡ)[�α] if we substitute αΓ = c!/(c− |Γ |)! and αΓ = 0 if |Γ | > c.

4.3 Hamiltonian Path

The last algorithm illustrating the strength our approach is based on a Hamil-
tonian path algorithm for graphs of bounded clique-width [7]. While the goal of
the previous two subsections was to demonstrate how one can design new more
efficient algorithms on labeling parse trees with tools of linear algebra, here we
show how to translate an existing clique-width-based algorithm to a formally
better setting within our scheme.

Theorem 4.9. Assume that an input graph G is given in the form of a t-labeling
parse tree T . Then one can determine whether G has a Hamiltonian path in time

O
(
|V (G)|�(t)

)
where �(t) = O(4t) .

Proof. We say that a set of edges F ⊆ E(G) is linear if the subgraph G �F =(
V (G), F

)
is a collection of disjoint paths. We also write G |= λ(F ) if F is a

Hamiltonian path in G. Having two linear subsets F1 ⊆ E(G1) and F2 ⊆ E(G2),
we define the equivalence relation (Ḡ1, F1) ≈λ,t (Ḡ2, F2) if and only if, for all
t-labeled graphs H̄ and all linear F ⊆ E(H), it holds

∃F3 ⊆ E(Ḡ1⊗ H̄) \ (E(G1) ∪E(H)) :
(
Ḡ1⊗ H̄

)
|= λ(F1 ∪ F3 ∪ F )(4.10)

⇐⇒ ∃F4 ⊆ E(Ḡ2⊗ H̄) \ (E(G2) ∪E(H)) :
(
Ḡ2⊗ H̄

)
|= λ(F2 ∪ F4 ∪ F ) .
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Obviously, ≈λ,t captures all information necessary to decide which linear subsets
of G1 extend to Hamiltonian paths in a join graph.

Similarly to [7], for a linear subset F ⊆ E(Ḡ), we define a multiset of labeling
pairs Π(Ḡ, F ) = {(lab(x), lab(y)) : x, y are the ends of a path in G �F } (an
isolated vertex is a path with the ends x = y). Analogously to (4.6) we have:

(4.11) For any t-labeled graphs Ḡ1, Ḡ2 and any linear F1 ⊆ E(G1) and F2 ⊆
E(G2), it holds (Ḡ1, F1) ≈λ,t (Ḡ2, F2) if Π(Ḡ1, F1) = Π(Ḡ2, F2).

Therefore, our algorithm computes, in the leaves-to-root direction on T , the
sets NT (z) = {Π(Ḡz, F ) : F ⊆ E(G) linear }. Since there are 22t = 4t distinct
labeling pairs in GF(2)t, there are at most |V (G)|4t

distinct multisets Π(Ḡz , F )
to be considered in each set NT (z). Obviously, G has a Hamiltonian path F
if and only if NT (r) contains a multiset Π(Ḡ, F ) of cardinality one. The rest
proceeds in the same way as the previous algorithms.

Remark 4.12. One of the advantages of our new proof of Theorem 4.9 is that it
immediately extends towards solving directed Hamiltonian path in digraphs of
bounded bi-rank-width (a directed analogue of rank-width, cf. [18]).

5 Concluding Notes

The list of algorithms presented in this article is by no means exhaustive. Other
XP algorithms designed for graphs of bounded clique-width (e.g., for the edge-
dominating set [19]) can also be straightforwardly translated into our parse tree
approach on rank-width, similarly to Theorem 4.9. One can expect that the
time complexity of such algorithms will have a “one-level higher” exponent, as
we see in Theorem 4.9. As already mentioned, the reason is that rank-width
generally has an exponentially smaller value than clique-width (not that the
new algorithms would be slower).

Still, the main advantage of designing algorithms on rank-decompositions of
graphs is that we can efficiently compute an optimal rank-decomposition by
Theorem 2.1. Even better, sometimes it is possible to use our approach to design
algorithms which are actually much faster than the best known ones on clique-
width; this is the case of computing the chromatic numbers and polynomials in
Theorem 4.1. Determining which algorithms designed for clique-width can be
radically improved in such a way remains an open question, one that we believe
deserves further study.
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Abstract. A minimax tree is similar to a Huffman tree except that,
instead of minimizing the weighted average of the leaves’ depths, it min-
imizes the maximum of any leaf’s weight plus its depth. Golumbic (1976)
introduced minimax trees and gave a Huffman-like, O(n log n)-time algo-
rithm for building them. Drmota and Szpankowski (2002) gave another
O(n log n)-time algorithm, which takes linear time when the weights
are already sorted by their fractional parts. In this paper we give the
first linear-time algorithm for building minimax trees for unsorted real
weights.

1 Introduction

In a minimax tree for a multiset W = {w1, . . . , wn} of weights, each leaf has a
weight wi, each internal node has weight equal to the maximum of its children’s
weights plus 1, and the weight of the root is as small as possible. In other words,
if �i is the depth of the leaf with weight wi, then maxi{wi + �i} is minimized.
Golumbic [21] showed that if we modify Huffman’s algorithm [24] to repeat-
edly replace the two nodes with smallest weights by a node whose weight is
equal to their maximum plus 1, instead of their sum, then it builds a minimax
tree instead of a Huffman tree. Like Huffman’s algorithm, Golumbic’s algorithm
takes O(n log n) time and can build trees of any degree. Golumbic, Parker [34]
and Hoover, Klawe and Pippenger [22] showed how to use Golumbic’s algo-
rithm to restrict circuits’ fan-in and fan-out without greatly increasing their
sizes or depths. While studying prefix codes with minimum maximum pointwise
redundancy, Drmota and Szpankowski [10,11] independently introduced mini-
max trees as code-trees for generalized Shannon codes [36] and gave another
O(n logn)-time algorithm for building them, which takes linear time when the
weights are already sorted by their fractional parts. To see why the two prob-
lems are related, consider that, if P = p1, . . . , pn is a probability distribution and
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each wi = log2 pi, then a minimax tree for W is the code-tree for a prefix code
with minimum maximum pointwise redundancy with respect to P . By analyzing
their algorithm, Drmota and Szpankowski proved bounds on the redundancy of
arithmetic coding, which Baer [3] recently improved by analyzing Golumbic’s
algorithm. In this paper we show how Drmota and Szpankowski’s algorithm can
be made to run in linear time on a word RAM when each index and weight
fits in O(1) words. Thus, we obtain the first linear-time algorithm for building
minimax trees for unsorted real weights.

Between Golumbic’s article and Drmota and Szpankowski’s, there seems to
have been little research on building minimax trees. Several important papers
were published, however, on the related problem of building alphabetic minimax
trees, in which the leaves’ weights must be in a given order from left to right.
Hu, Kleitman and Tamaki [23] gave the first O(n log n)-time algorithm for build-
ing alphabetic minimax trees for real weights. Kirkpatrick and Klawe [27] and
Coppersmith, Klawe and Pippenger [6] gave an algorithm (or, more precisely,
two algorithms that are equivalent when the trees are to be binary) that builds
alphabetic minimax trees for integer weights in linear time, and showed how
to use it to restrict circuits’ fan-in and fan-out without greatly increasing their
sizes or depths and without changing the numbers of edge crossings (and, thus,
preserving planarity). Kirkpatrick and Klawe also showed how to combine their
algorithm with binary search in order to build alphabet minimax trees for real
weights in O(n log n) time. We note that, if their algorithm for integer weights
is viewed as an alphabetic analogue of the Kraft Inequality [31] — as it was by
Yeung [38] and Nakatsu [33], who independently rediscovered it — then their al-
gorithm for real weights is an alphabetic analogue of Drmota and Szpankowski’s.
Kirkpatrick and Przytycka [28] gave an O(log n)-time, O(n/ logn)-processor
algorithm for integer weights in the CREW PRAM model. Finally, Evans and
Kirkpatrick [12] showed how a generalization of Kirkpatrick and Klawe’s
algorithm can be used to restructure binary search trees.

We became interested in minimax trees while studying adaptive prefix cod-
ing. In a previous paper [16] (see also [17,25]) we noted that minimax trees
built with Golumbic’s algorithm have the same Sibling Property [13,18] as Huff-
man trees, and turned the Faller-Gallager-Knuth algorithm [30] for adaptive
Huffman coding into an algorithm for adaptive Shannon coding. Intriguingly,
although static Huffman coding is optimal and static Shannon coding is not,
adaptive Shannon coding has a better worst-case bound than adaptive Huffman
coding does. In another previous paper [15] we used a data structure due to Kirk-
patrick and Przytycka and a technique for generalized selection due to Klawe
and Mumey [29], to make Kirkpatrick and Klawe’s algorithm for real weights
run in O

(
n min(log n, d log log n)

)
time, where d is the number of distinct values

�wi�. In that paper we conjectured that a similar modification could make Dr-
mota and Szpankowski’s algorithm run in linear time on unsorted real weights,
and in this paper we prove that conjecture.
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In Section 2 we consider the preliminary problem of building minimax trees
for unsorted integer weights. Notice that, as such weights have no fractional
parts, Drmota and Szpankowski’s algorithm takes linear time for this problem.
However, there are two difficulties when using their algorithm: first, because they
considered the weights to be logarithms, they did not address some questions of
precision that arise when the weights are large; second, because they were mostly
interested in analysis, they were satisfied with computing the depths of minimax
trees’ leaves in linear time, rather than building the trees themselves. We give
two new linear-time algorithms for unsorted integer weights that can handle
large weights — i.e., polynomial in n, so that each fits in a constant number of
machine words — and that actually build the minimax trees. In Section 3 we
present our main result, a linear-time algorithm for building minimax trees for
unsorted real weights. Our algorithm is based on Drmota and Szpankowski’s but,
whereas theirs uses sorting and binary search, ours uses generalized selection,
as well as a new data structure to test the Kraft Inequality. In Section 4 we
discuss how our algorithms from Sections 2 and 3 can be applied to problems in,
e.g., data compression, group testing and circuit design. In Section 5 we briefly
discuss two possible directions for future work. Our results generalize to higher
degrees and larger code alphabets but, for the sake of simplicity, in the current
version of this paper we consider only binary trees and alphabets; by log we
always mean log2.

2 Minimax Trees for Integer Weights

In this section we give two O(n)-time algorithms for building a minimax tree
for a multiset of integer weights, both based on the following lemma (which we
note applies to any weights, not only integers) and corollary. We write M(W )
to denote the weight of the root of a minimax tree for W .

Lemma 1. If W = {w1, . . . , wn} is a multiset of weights and

W ′ =
{

max
(
w1, maxi{wi} − n + 1

)
, . . . , max

(
wn, maxi{wi} − n + 1

)}
,

then M(W ′) = M(W ). Moreover, any minimax tree for W ′ becomes a minimax
tree for W when we replace the leaves’ weights equal to maxi{wi}− n + 1 by the
weights in W less than or equal to maxi{wi} − n + 1, in any order.

Proof. Consider a minimax tree T for W . Without loss of generality, we can
assume T is strictly binary — i.e., that every internal node has exactly two
children — and, therefore, that it has height at most n − 1. If n = 1, then
W = w1 = maxi{wi}− n + 1. Otherwise, all the leaves have depth at least 1, so
M(W ) ≥ maxi{wi} + 1. Consider any leaf (if one exists) with weight less than
maxi{wi}−n+1 and depth �. Since maxi{wi}−n+1+� ≤ maxi{wi} < M(W ),
increasing that leaf’s weight to maxi{wi} − n + 1 and updating its ancestors’
weights, does not change the weight M(W ) of the root. It follows that M(W ′) =
M(W ).
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Now consider a minimax tree T ′ for W ′. If we replace the leaves’ weights equal
to maxi{wi}−n+1 by the weights in W less than or equal to maxi{wi}−n+1
and update all the nodes’ weights, then the weight M(W ′) of the root cannot
increase nor, by definition, decrease to less than M(W ). Since M(W ′) = M(W ),
it follows that the re-weighted tree is a minimax tree for W . ��

Corollary 1. When all the weights in W are integers, we can sort W ′ in O(n)
time.

Proof. When all the weights in W at least maxi{wi}−n+1 are integers, all the
weights in W ′ are integers in the interval

[
maxi{wi} − n + 1, maxi{wi}

]
. Since

this interval has length n − 1, we can sort W ′ in O(n) time using either direct
addressing, which takes O(n) extra space, or radix sort, which takes no extra
space [14]. ��

For our first algorithm, we build and sort W ′; build a minimax tree for W ′

using an implementation of Golumbic’s algorithm that takes O(n) time when the
weights are already sorted; and replace the leaves’ weights equal to maxi{wi}−
n + 1 by the weights in W less than or equal to maxi{wi} − n + 1. We note
that Van Leeuwen [37] showed how to implement Huffman’s algorithm to take
O(n) time when the weights are already sorted. We could implement Golumbic’s
algorithm analogously, but we think the implementation below is simpler.

Lemma 2. Golumbic’s algorithm can be implemented to take O(n) time when
the weights are already sorted.

Proof. We start with the weights stored in a linked list in nondecreasing order,
and set a pointer to the head of the list. We then repeat the following procedure
until there is only one node left in the list, which is the root of a minimax
tree for the given weights: we move the pointer along the list to the last weight
less than or equal to the maximum of the first two weights plus 1; remove the
first two nodes from the list; make those nodes the children of a new node with
weight equal to the maximum of their weights plus one; and insert the new node
immediately to the right of the pointer. Notice we remove two nodes for each
one we insert, so the total number of nodes is 2n−1. Therefore, since the pointer
passes over each node once, this implementation takes O(n) time. ��

Building and sorting W ′ takes O(n) time, by Corollary 1; building a minimax
tree for W ′ takes O(n) time, by Lemma 2; replacing the leaves’ weights equal to
maxi{wi} − n + 1 by the weights in W less than or equal to maxi{wi} − n + 1
takes O(n) time, because it can be done in any order. By Lemma 1, the resulting
tree is a minimax tree for W .

Theorem 1. Given a multiset W of n integer weights, we can build a minimax
tree for W in O(n) time.

Our second algorithm differs in its second step: instead of using Golumbic’s
algorithm to build a minimax tree for W ′, we use Kirkpatrick and Klawe’s
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O(n)-time algorithm for integer weights to build an alphabetic minimax tree
for the sequence V consisting of the weights in W ′ in non-increasing order. The
algorithm’s correctness follows from the Kraft Inequality.

Theorem 2 (Kraft, 1949). If there exists a binary tree whose leaves have
depths �1, . . . , �n, then

∑
i 1/2�i ≤ 1. Conversely, if

∑
i 1/2�i ≤ 1 and �1 ≤ · · · ≤

�n, then there exists an ordered binary tree whose leaves, from left to right, have
depths �1, . . . , �n.

By the latter part of Theorem 2 and a standard exchange argument — i.e., if a
minimax tree contains two leaves such that the deeper one has a higher weight
than the shallower one, then we can swap their weights — there exists a minimax
tree for W ′ in which the leaves’ weights are non-increasing from left to right.
Therefore, by definition, any alphabetic minimax tree for V is a minimax tree
for W ′.

3 Minimax Trees for Real Weights

In this section we give the first O(n)-time algorithm for building minimax trees
for unsorted real weights. As we noted in the introduction, our algorithm is based
on Drmota and Szpankowski’s algorithm but avoids sorting, which is the step
that determines their algorithm’s O(n log n) complexity. In addition to yielding
an optimal algorithm for an interesting problem with applications in, e.g., data
compression, group testing and circuit design — described in Section 4 — we
believe the techniques we use in this section may be of independent interest.

To build a prefix code with minimum maximum pointwise redundancy with
respect to a given probability distribution P = p1, . . . , pn, Drmota and Sz-
pankowski start with a Shannon code for P , in which the codeword for the
ith character has length �log(1/pi)�, for each i; they sort the logarithms by their
fractional parts, i.e., log(1/p1) − �log(1/p1)	, . . . , log(1/pn) − �log(1/pn)	; and
they find the largest value x such that �log(1/p1)−x�, . . . , �log(1/pn)−x� obey
the Kraft Inequality. A binary tree with leaves at these depths is the code-tree
for a prefix code with minimum maximum pointwise redundancy with respect
to P , and a minimax tree for {log p1, . . . , log pn}.

We can use Drmota and Szpankowski’s algorithm to build a minimax tree
given any multiset of weights because, for any value c, if W = {w1, . . . , wn} and
W ′ = {w1 + c, . . . , wn + c} then, by definition, M(W ′) = M(W ) + c and any
minimax tree for W ′ becomes a minimax tree for W when we subtract c from each
leaf’s weight. In particular, if c = − log (

∑
i 2wi) then

∑
i 2wi+c = 2c

∑
i 2wi =

1; therefore, W ′ = {log p1, . . . , log pn} for some probability distribution P =
p1, . . . , pn and we can use Drmota and Szpankowski’s algorithm directly to build
minimax trees for W ′ and, thus, for W . Without loss of generality, we henceforth
assume the given multiset W of weights is equal to {log p1, . . . , log pn} for some
probability distribution P (so, in particular, each wi ≤ 0). We can restate the
theorem Drmota and Szpankowski proved to establish the correctness of their
algorithm — and which also establishes the correctness of our own — in terms
of minimax trees instead of prefix codes, as follows:
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Theorem 3 (Drmota and Szpankowski, 2002). If W = {w1, . . . , wn} is a
multiset of weights, X = {x1, . . . , xn} = {|w1| − �|w1|	, . . . , |wn| − �|wn|	} and
xi is the largest element in X ∪ {0} such that∑

xj≤xi

1/2�|wj|� +
∑

xj>xi

1/2�|wj|� ≤ 1 ,

then any minimax tree for {−�|wj|	 : xj ≤ xi} ∪ {−�|wj |� : xj > xi} becomes
a minimax tree for W when we replace each leaf’s weight −�|wj |	 or −�|wj |� by
wj.

If x1 ≤ · · · ≤ xn and xi > 0 then, by Theorem 3, i is the largest index such that
{�|wj |	 : xj ≤ xi} ∪ {�|wj |� : xj > xi} satisfies the Kraft Inequality. To build
a minimax tree for W with Drmota and Szpankowski’s algorithm, we compute
and sort X ; use binary search to find i, in each round testing whether the Kraft
Inequality holds; build a minimax tree for {−�|w1|	, . . . ,−�|wi|	,−�|wi+1|�, . . . ,
−�|wn|�}; and replace each leaf’s weight −�|wj |	 or −�|wj |� by wj . Our ver-
sion differs in three ways: we use generalized selection instead of sorting and
binary search; we use a new data structure to test the Kraft Inequality; and
we use either of our algorithms from Section 2 to build the minimax tree for
{−�|w1|	, . . . ,−�|wi|	,−�|wi+1|�, . . . ,−�|wn|�}. In the remainder of this section
we first show how to use generalized selection to find i in O(n) time, excluding
the time needed to test the Kraft Inequality; we then show how to perform all
the necessary tests in a total of O(n) time using our new data structure. Since
each of our algorithms from Section 2 takes O(n) time, it follows that we can
build a minimax tree for W in O(n) time.

To find xi in O(n) time with general selection, we start with the multiset
X1 = X ∪ {0} and repeat the following procedure until we reach the empty set:
in the rth round, we use the linear-time selection algorithm due to Blum et al. [4]
to find the current multiset Xr’s median xm, then test whether∑

xj≤xm

1/2�|wj|� +
∑

xj>xm

1/2�|wj|� ≤ 1 ;

if so, we remove those elements of Xr that are less than or equal to xm and
recurse on the resulting multiset; if not, we remove those elements of Xr that
are greater than or equal to xm and recurse. The element xi is the largest median
we consider for which the test is positive. Since the size of the multisets decreases
by a factor of at least 2 in each round, we use O(log n) rounds and we find all
the medians in a total of O(n) time.

By the same arguments we used to prove Lemma 1, we can assume, without
loss of generality, that �|wj |� ≤ n − 1 for each j. To test the Kraft Inequality,
we use a data structure consisting of two n-bit binary fractions, S1 and S2,
each broken into (log n)-bit blocks and initially set to 0. For 1 ≤ k ≤ n − 1,
adding 1/2k to either fraction takes O(1) amortized time, for the same reason
that incrementing a binary counter takes O(1) amortized time (see, e.g., [7,
Section 17.3]). Nondestructively testing whether S1 + S2 ≤ 1 takes O(n/ log n)
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time, because adding each corresponding pair of blocks takes O(1) time and, by
induction, the number carried from each pair to the next is at most 1; resetting
either fraction to 0 takes O(1) time for each block, i.e., O(n/ logn) time in total.

Before starting to search for xi, we set S1 =
∑

j 1/2�|wj|� in O(n) time.
Throughout our generalized selection, we maintain the invariant that, at the
beginning of the rth round,

S1 =
∑

j

1/2�|wj|� +
∑

0<xj<min(Xr)

1/2�|wj|�

and S2 = 0. In the rth round, we set

S2 =
∑

min(Xr)≤xj≤xm

1/2�|wj|�

in O(|Xr|) time. Since

S1 + S2 =
∑

j

1/2�|wj|� +
∑

0<xj<min(Xr)

1/2�|wj|� +
∑

min(Xr)≤xj≤xm

1/2�|wj|�

=
∑

xj≤xm

1/2�|wj|� +
∑

xj>xm

1/2�|wj|� ,

we can test the Kraft Inequality in O(n/ log n) time by checking whether S1 +
S2 ≤ 1. If the test is positive, then we add S2 to S1 in O(n/ logn) time; if the test
is negative, then we do not change S1. In either case, straightforward calculation
shows that, afterwards,

S1 =
∑

j

1/2�|wj|� +
∑

0<xj<min(Xr+1)

1/2�|wj|�

so the first part of our invariant is maintained. Finally, we reset S2 = 0 in
O(n/ logn) time, so the second part of our invariant is maintained. Since |Xr| =
O(n/2r), the rth round takes a total of O(n/2r + n/ logn) time. Since

∑
r≥1

n/2r = n and we use O(log n) rounds, it follows that our whole generalized
selection takes O(n) time. This completes the proof of our main result:

Theorem 4. Given a multiset W of n real weights, we can build a minimax tree
for W in O(n) time.

4 Applications

Our results from Sections 2 and 3 allow us to solve the following problems in
linear time:

I. Build a prefix code with minimum maximum pointwise redundancy with
respect to a given distribution;
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II. Given a good estimate of the distribution over an alphabet, build a good
prefix code;

III. Given a good estimate of the distribution over a set, design a good group
test to find the unique target;

IV. Build a minimax tree for a given multiset of real weights;
V. Build a Shannon code for a given distribution;

VI. Build a tree whose leaves have at most given depths;
VII. Restrict a given circuit to have bounded fan-in or fan-out;

VIII. Build a minimax tree for a given multiset of integer weights.

The authors cited in the introduction have already shown, however, that Prob-
lem I takes O(n) more time than IV [10,11,3], V than VI [10,11,16], and VI
and VII than VIII [21,34,22]. Therefore, in the current version of this paper,
we discuss only Problems II, III, IV and VIII. We showed in Sections 2 and 3,
respectively, that Problem VIII and IV take O(n) time. In the remainder of this
section we define what we mean by “good” in Problems II and III, and show they
take O(n) more time than IV. (Problems II and III are, in fact, equivalent to
each other and to I, and analogous to a problem we considered in our paper [15]
on building alphabetic minimax trees.) It follows that all the problems listed
above take O(n) time.

Suppose we want to build a good prefix code with which to compress a file,
but are given only a sample of its characters. Let P = p1, . . . , pn be the nor-
malized distribution of characters in the file, let Q = q1, . . . , qn be the normal-
ized distribution of characters in the sample and suppose our codewords are
C = c1, . . . , cn. An ideal code for Q assigns the ith character a codeword of
length log(1/qi) (which may not be an integer), and the average codeword’s
length using such a code is H(P ) + D(P‖Q), where H(P ) =

∑
i pi log(1/pi) is

the entropy of P and D(P‖Q) =
∑

i pi log(pi/qi) is the relative entropy between
P and Q. The entropy measures our expected surprise at a character drawn
uniformly at random from the file, given P ; the relative entropy (also known as
the informational divergence or Kullback-Leibler pseudo-distance) measures the
increase in our expected surprise when we estimate P by Q, and is often used
to quantify how well Q approximates P (see, e.g., [8]).

Consider the best worst-case bound we can achieve, given only Q, on how
much the average codeword’s length exceeds H(P )+D(P‖Q). A result by Katona
and Nemetz [26] implies we do not generally achieve a constant bound on the
difference when C is a Huffman code for Q. (Given P , of course, the best bound
we could achieve on how much the average codeword’s length exceeds H(P ),
would be the redundancy of a Huffman code for P .) For example, if q1, . . . , qn

are proportional to Fn, . . . , F1, where Fi denotes the ith Fibonacci number (i.e.,
F1 = F2 = 1 and Fi = Fi−1 + Fi−2 for i ≥ 3), then the codewords’ lengths are
1, . . . , n− 2, n− 1, n− 1 in any Huffman code for Q. If pn is sufficiently close to
1, then

H(P ) + D(P‖Q) ≈ log(1/qn) = log
n∑

i=1

Fi = n log φ +O(1)
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but the average codeword’s length
∑

i pi|ci| ≈ n−1, so for large n the difference
is about (1/ logφ− 1)n ≈ 0.44n, where φ ≈ 1.62 is the golden ratio.

As long as qi > 0 whenever pi > 0, the average codeword’s length∑
i

pi|ci| =
∑

i

pi

(
log(1/pi) + log(pi/qi) + log qi + |ci|

)
= H(P ) + D(P‖Q) +

∑
i

pi(log qi + |ci|)

(if qi = 0 but pi > 0 for some i, then D(P‖Q) is infinite). Notice each |ci| is
the length of a branch in the code-tree for C. Therefore, the best bound we can
achieve is

min
C

max
P

{∑
i

pi(log qi + |ci|)
}

= min
C

max
i
{log qi + |ci|}

= M(log q1, . . . , log qn) ,

which is less than 1 by inspection of Drmota and Szpankowski’s algorithm (see
also [8, Theorem 5.4.3] and [11,35,3]). Moreover, we achieve this bound when the
code-tree for C has the same shape as a minimax tree for {log q1, . . . , log qn}. In
other words, Problem II takes O(n) more time than IV.

Now suppose we want to design a good group test (see, e.g., [1,2]) to find the
unique target in a set, given only an estimate Q — presumably gained from past
experience or experimentation — of the probability distribution P according to
which the target is chosen. A group test allows us to choose, repeatedly, a subset
of the elements and check whether the target is among them. We can represent
a group test as a decision tree in which each leaf is labelled with an element
and each internal node is labelled with the concatenation of its children’s labels.
Because such a decision tree can be viewed as the code-tree for a prefix code,
and vice versa, the expected number of checks we make exceeds H(P )+D(P‖Q)
by as little as possible when the decision tree for our group test has the same
shape as a minimax tree for {log q1, . . . , log qn}. In other words, Problem III is
equivalent to II and, therefore, also takes O(n) more time than IV.

5 Future Work

We are currently studying whether either Drmota and Szpankowski’s solution to
Problem I or our solution to II can give us an intuitive explanation of why adap-
tive Shannon coding has a better worst-case bound than does adaptive Huffman
coding. On the one hand, worst-case bounds (especially for online algorithms;
see, e.g., [5]) are often proven by considering a game between the algorithm and
an omniscient adversary, and minimizing the maximum pointwise redundancy
at each step seems somehow related (more than just by name) to the minimax
strategy for the algorithm. On the other hand, adaptive prefix coding can be
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viewed as a procedure in which we repeatedly build a prefix code based on a
sample — i.e., the characters already encoded.

We are still studying alphabetic minimax trees and have started studying
minimax trees with unequal edge costs. We believe this latter variant will prove
particularly interesting, for three reasons: first, it is not known how to build
efficiently a Huffman tree with unequal edge costs (see, e.g., [19,20]); second, the
earliest efficient approximation algorithm (of which we are aware) for building
a Huffman tree with unequal edge costs, was Krause’s generalization [32] of
Shannon coding; third, there is an analogue of the Kraft Inequality for binary
trees with unequal edge costs [9].
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Abstract. A combinatorial embedding Π of a planar graph G = (V, E)
is defined by the cyclic order of incident edges around each vertex in
a planar drawing of G. The planar biconnectivity augmentation problem
with fixed embedding (PBA-Fix) asks for a minimum edge set E′ ⊆ V ×V
that augments Π to a combinatorial embedding Π ′ of G + E′ such that
G + E′ is biconnected and Π is preserved, i.e., Π ′ restricted to G yields
again Π .

In this paper, we show that PBA-Fix is NP-hard in general, i.e., for not
necessarily connected graphs, by giving a reduction from 3-PARTITION.
For connected graphs, we present an O(|V |(1 + α(|V |))) time algorithm
solving PBA-Fix optimally. Moreover, we show that—considering each
face of Π separately—this algorithm meets the lower bound for the
general biconnectivity augmentation problem proven by Eswaran and
Tarjan [1].

1 Introduction

The problem of augmenting a graph to reach a certain connectivity is a funda-
mental graph theoretic problem. For a fixed k ∈ N, the general augmentation
problem asks for a minimum number of edges to add to a graph such that the
graph becomes k-connected. In this paper, we study the case k = 2, i.e., we want
to add a minimum number of edges to obtain a biconnected graph. Though this
problem can be solved in linear time [6], it becomes NP-hard if we consider
planar graphs and demand that the augmented graph is still planar; see [7]. We
call this problem the planar biconnectivity augmentation problem (PBA). It has
applications in graph drawing, where certain drawing algorithms require a pla-
nar and biconnected graph, e.g., [4]; if we want to apply such an algorithm to an
arbitrary planar graph, we first need to augment the graph by adding edges. It
is desirable to add only few edges, since we do not want to change the structure
of the graph too much.

Several approximation algorithms for PBA have been proposed. Kant and
Bodlaender [7] presented a rather simple 2-approximation algorithm for PBA
running in O(n log n) time for a graph with n vertices, and an optimal algorithm
for the restricted case, where all cutvertices belong to the same triconnected com-
ponent, with O(n2.5) runtime. Better approximation algorithms for the general
case have been proposed but are all incorrect. Kant and Bodlaender [7] gave a
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3/2-approximation algorithm, but Fialko and Mutzel [2] gave a counter-example
showing that their algorithm has an approximation factor not better than 2. In
the same paper, they proposed a new algorithm with approximation factor 5/3.
However, we could show that even this algorithm cannot have an approximation
factor better than 2; see [5, 12].

Since PBA is hard in general, it is worth studying a variant of this problem,
where we are not only given a planar graph G but also a combinatorial embedding
of G that has to be preserved. A combinatorial embedding Π of a planar graph G
is given by the cyclic order of the incident edges around each vertex in a planar
drawing of G. If G is connected, Π also defines the set of faces, i.e., the edges
bounding the regions into which the plane is subdivided by a drawing realizing
Π . However, if G is disconnected, the faces are only defined for each connected
component, leaving the freedom to place a drawing of a connected component
into any face of another connected component.

The problem we study in this paper is formally defined as follows:

Definition 1 (PBA-Fix). Given a planar graph G and a combinatorial embed-
ding Π of G, the planar biconnectivity augmentation problem with fixed embedding
(PBA-Fix) asks for a smallest edge set E′ such that G + E′ is planar and bicon-
nected, and there exists a combinatorial embedding of G + E′ preserving Π .

In this paper, we show that PBA-Fix can be solved efficiently for connected
graphs by presenting an O(n(1 + α(n))) time algorithm, but becomes NP-hard
if disconnected graphs are allowed. The crucial part for showing NP-hardness
stems from the problem of assigning connected components of the graph to the
correct faces, which is not specified by the combinatorial embedding.

1.1 Preliminaries

We first introduce some basic definitions and results.
Let G = (V, E) be a graph. A path in G is a chain if all its inner vertices

have degree two in G. A maximal biconnected subgraph of G is a biconnected
component or block of G, and a vertex of G is a cutvertex if its removal increases
the number of connected components. The BC-forest B = (Vc ·∪Vb, Eb) of G is a
bipartite graph representing the relationships between the blocks and cutvertices
of G. It contains two types of nodes: the B-nodes Vb are the blocks of G and
the C-nodes Vc are the cutvertices of G; there is an edge between a B-node b
and a C-node c iff vertex c is contained in block b. The leaves in a BC-forest,
i.e., the blocks containing exactly one cutvertex, are also called pendants. If G
is connected, B is also connected and thus called BC-tree.

Theorem 1 ([1]). Let G = (V, E) be a graph with |V | > 2, and let h be the
number of connected components, p the number of pendants, d the maximum
degree of a C-node, and q the number of isolated B-nodes in the BC-forest of G.
Then

max {d + h− 2, �p/2�+ q}
edges are necessary and sufficient to biconnect G, if p + q > 1.
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Consider the BC-forest B of a graph G, and let p be the number of its leaves.
A C-node c∗ whose degree is at least deg(c∗) ≥ �p/2�+ 2 is called massive. If B
does not contain a massive C-node, we say that B is balanced. We remark that
the maximum in Theorem 1 becomes �p/2�+ q if B is balanced, and d + h− 2
otherwise.

We denote with P the set of all pendants in B. If p0 is a pendant, a simple
vertex in p0 refers to any vertex in the block p0 that is not the unique cutvertex
of G contained in p0. Connecting two pendants p1 and p2 means that we insert
an edge (v, w) in G, such that v and w are any two simple vertices in p1 and p2,
respectively.

We say two pendants p1 and p2 satisfy the leaf-connection condition iff p1 and
p2 lie in the same tree of B and the path from p1 to p2 contains either two nodes
with degree at least three or one B-node with degree at least four. The following
lemma shows, that such pendants allow us to decrease the number of pendants
by two by only inserting a single edge.

Lemma 1 ([6, 2]). If two pendants p1 and p2 satisfy the leaf-connection con-
dition, a new edge connecting both pendants decreases the number of pendants
by two. In case the graph is connected and the corresponding BC-tree contains
at least three pendants, the previous relation is an equivalence relation.

Therefore, we also say that two pendants satisfying the leaf-connection condition
can be profitably connected. For a connected graph with at least three pendants,
a set B ⊆ P is a bundle if

(i) any two pendants in B can be connected without losing planarity;
(ii) connecting any two pendants in B creates a new pendant; and
(iii) B is maximal with respect to condition (i) and (ii).

Condition (ii) in the definition of bundles and Lemma 1 guarantee that the path
between two pendants of the same bundle B contains exactly one node with
degree at least three. We call this node the parent of B. If B contains just one
pendant, say p1, its parent is defined as the C-node c satisfying the following
conditions:

(i) The path between p1 and c is a chain;
(ii) adding the edge (cp, c) in G preserves planarity, where cp is the only cutver-

tex adjacent to p1; and
(iii) the path from p1 to c is the longest among all C-nodes satisfying (i) and

(ii).

We call a bundle B together with its parent a label. Depending on the type of
the parent, we also say C-label if the parent is a C-node, and B-label otherwise.
The size of a label is the number of pendants in the bundle B. The definition of
labels implies that two pendants belonging to different labels always satisfy the
leaf-connection condition.
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1.2 Organization

This paper is organized as follows. In Sect. 2, we show that PBA-Fix is NP-hard
in general. Then, Sect. 3 presents an algorithm for planar biconnectivity aug-
mentation with fixed embedding for connected graphs. We prove the optimality
of this algorithm (Sect. 3.1) by showing that it meets the lower bound for bicon-
nectivity augmentation (Theorem 1) within each face and analyze its runtime
and space requirements (Sect. 3.2). Finally, Sect. 4 concludes the paper with one
open problems.

2 NP-Hardness for Non-connected Graphs

In this section we show that PBA-Fix is NP-hard in general. We prove NP-
hardness of PBA-Fix by constructing a polynomial-time reduction from the
strongly NP-complete decision problem 3-PARTITION, which is defined as fol-
lows: Given 3m positive integers s1, . . . , s3m and a positive integer bound B such
that

∑3m
i=1 si = mB with B/4 < si < B/2 for i = 1, . . . , 3m, can s1, . . . , s3m be

partitioned into m triplets S1, . . . , Sm such that
∑

s∈Sj
s = B for j = 1, . . . , m?

Theorem 2. PBA-Fix is NP-hard for disconnected graphs.

Proof. Consider an instance I = 〈s1, . . . , s3m; B〉 of 3-PARTITION. We con-
struct a planar, disconnected graph GI = (V, E) and an embedding ΠI of GI
with the property that I has a valid partition if and only if GI can be made
biconnected by adding 4mB + 3m edges while preserving ΠI ; compare Fig. 1.

GI consists of 3m + 1 connected components: 3m simple trees representing
the integers s1, . . . , s3m and one dense graph (the shaded part in Fig. 1) with m
relevant faces, i.e., one face for each triplet. More precisely, the j-th tree tj has
4sj + 1 leaves and each face fi, i = 1, . . . , m, contains 4B + 3 pendants. Hence,

4B 4B 4B

4s +1
1

f
1

f
2

f
m

4s +1
2

4s +1
3m

t
1

t
2

t
3m

Fig. 1. The constructed graph GI for the reduction from 3-PARTITION to PBA-Fix
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GI has 8mB +6m pendants in total. The embedding ΠI of GI is fixed as shown
by Fig. 1.

If I has a valid partition assigning the i-th integer to the ϕ(i)-th triplet, the
graph can obviously be made biconnected by inserting 4mB + 3m edges: We
embed each tree ti into face fϕ(i), connect one of its pendants with one of the
size-one labels in fϕ(i), and the other pendants with pendants from the label
of size 4B in fϕ(i). Since

∑
s∈Si

s = B for i = 1, . . . , m, each pendant can be
connected profitably leading to 4mB + 3m edges in total.

Now assume that an optimal solution of PBA-Fix for GI contains 4mB +
3m edges. We show in two steps that I has a valid partition by determining
properties of the augmented graph. Firstly, we observe that each face fi contains
exactly three tj-trees. If this would not be the case an augmentation of a face with
at most two trees would induce at least one expensive pendant, since sj < B/2
holds for each j and therefore 3 + 4sj + 4sk ≤ 3 + 4(B − 1) < 4B for all
j, k ∈ {1, ..., 3m}.

Secondly, we show that the assignment of the 3m trees to the m faces induces
a valid partition. Therefore, 4sj + 4sk + 4sl = 4B must hold for each face fi

containing the trees tj , tk, tl. Assume, there exists a face fi with the property
that 4sj + 4sk + 4sl > 4B. Then, the number of pendants in fi is 4(B + sj +
sk + sl) + 6 ≥ 8B + 7 and it follows directly from Theorem 1 that at least
�p/2� = 4B + 4 edges are necessary for making fi biconnected. Theorem 1 also
implies that each face requires at least d+h−2 = 4B+3 edges for augmentation,
since we have h = 4 connected components (the three trees and the subgraph
induced by the face) and the maximum degree in the corresponding BC-forest
is d = 4B + 1. Therefore, the whole augmenting set would include at least
4B + 4 + (m− 1)(4B + 3) = 4mB + 3m + 1 edges and sj + sk + sl = B holds for
each face, thus inducing a valid partitioning of the integers.

The size of GI is bounded by O(mB) and GI can also be constructed in
time O(mB). Since PBA-Fix obviously belongs to NP and 3-PARTITION is
NP-complete in the strong sense [3], implying that there is no optimal pseudo-
polynomial algorithm for 3-PARTITION unless P = NP , the theorem
follows. ��

3 The Algorithm for Connected Graphs

Though PBA-Fix isNP-hard in general, we show in this section that the problem
can be solved efficiently for connected graphs. We first present the algorithm
and then prove its optimality (Sect. 3.1) and runtime and space requirements
(Sect. 3.2). Further details can be found in [12].

Procedure PlanarAugmentationFix depicted in Alg. 1 sketches the algo-
rithm. Its subprocedures HandlePendant, FindMatching, and Update are
described in the following paragraphs.

We are given a connected, planar graph G = (V, E) and a combinatorial
embedding Π of G, and the procedure inserts a minimum number of edges
into Π such that G becomes biconnected. The approach is based on iteratively
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Algorithm 1. PlanarAugmentationFix

Input: a planar, connected graph G = (V, E) and a combinatorial embedding Π of G

1: for all faces f ∈ Π do
2: construct the BC-tree Bf of the subgraph induced by face f
3: if number of pendants ≤ 3 then
4: connect the p pendants with p − 1 edges
5: else
6: for all pendants pi of Bf do
7: HandlePendant(pi)
8: end for
9: end if

10: while number of labels > 1 do
11: let � be a label of maximum size
12: (p1, p2) ← FindMatching(�)
13: insert a new edge into f connecting simple vertices of p1 and p2

14: Update()
15: end while
16: if number of pendants > 0 then
17: connect the remaining p pendants with p − 1 edges
18: end if
19: end for

connecting pendants of different labels, i.e., each such inserted edge connects
simple vertices of the corresponding blocks.

Since the embedding Π of the input graph is fixed, it is sufficient to consider
and augment each face f separately. Therefore, we compute the BC-tree Bf of
the subgraph induced by f , i.e., the graph induced by the edges on the boundary
of f . We have to make sure that Bf reflects the embedding of the graph, since
the idea of the actual augmentation is to select the largest label and connect its
leftmost pendant with the rightmost pendant of the neighboring label to its left.
This is accomplished by procedure FindMatching, which traverses the BC-tree
in clockwise direction from the first pendant of a label to the next pendant; here,
a doubly linked list as representation is sufficient to perform this task efficiently.
If both pendants belong to the same label, their ordering in the list is adjusted
to reflect the embedding (this is easy since these pendants have to come after
each other) and the traversal continues from the latter pendant; adjusting the
ordering in the lists assures that we do not have to traverse paths in the BC-
tree between two pendants of the same label twice. Otherwise, both pendants are
neighbors with respect to the embedding and fulfill the leaf-connection condition,
since they belong to different labels.

After inserting an edge, the BC-tree needs to be updated, since the insertion
path, i.e., the unique path between the two pendants we connect, and the inserted
edge induce a new cycle in G. The following observation details the changes in
the BC-tree.
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Observation 1 ([6, 9]). Let G be a connected graph, BG its BC-tree, and p1
and p2 two pendants of BG. Let G′ and B′

G be the graph and BC-tree after
inserting an edge between two simple vertices of p1 and p2, and denote with P
the path in BG from p1 to p2. Then, B′

G is obtained from BG as follows:

1. All B-nodes on P are merged into one B-node b∗.
2. Any C-node on P with degree two is eliminated.
3. Every C-node on P with degree at least three remains in B′

G adjacent to
nodes not on P , and is now also adjacent to b∗.

For maintaining the BC-tree, we use the dynamic data structure proposed by
Westbrook and Tarjan [11]. Here, nodes of the BC-tree are not contracted after
inserting a new edge. Instead, the initial BC-tree remains unchanged and the
current tree structure is realized by an additional union-find data structure on
the BC-nodes. Moreover, we root the BC-tree at a B-node with degree at least
two, which allows us to find the path between two pendants in time linear in the
length of the path, applying a straightforward bottom up search in the tree.

A crucial part of our approach is the correct computation of the labels. For
the initial assignment of pendants to labels, procedure HandlePendant starts
a bottom-up traversal from each pendant until a node with degree at least three
is reached. If this node is a C-node it always becomes the parent of a label
containing at least the pendant from where we started the bottom-up traversal;
further pendants might be added to this label as well. A B-node becomes the
parent of a label if its degree is three and the subtrees rooted at its two children
do not contain a node with degree greater than two. Since this property can only
be decided after considering all pendants by HandlePendant, we introduce a
second structure for bundles called pseudo-labels. A pseudo-label has a B-node
b as parent and contains the size-one C-labels whose parents are adjacent to b.
If such a pseudo-label has size two, it becomes a real label and furthermore, the
adjacent size-one C-labels are deleted. Otherwise, the adjacent C-nodes remain
parents.

Furthermore, we apply pseudo-labels for maintaining labels as described in
the following. After inserting an edge the BC-tree and the labels have to be
updated. The size of each of the two labels to which the pendants we connect
belong decreases by one. A pendant whose label reaches size one needs to be
reconsidered by HandlePendant, since it probably has to be reassigned to an-
other label. Furthermore, labels whose parents are not part of the insertion path
might require an update. In particular, pseudo-labels might become real labels
if the number of adjacent size-one C-labels decreases to two. Fig. 2 illustrates
three possible cases how the contained size-one C-labels of a pseudo-label may
become obsolete after inserting an edge e. Like mentioned before, the parents of
the size-one C-labels do not lie on the insertion path. However, they are affected
by the new edge and the related pseudo-label is transformed into a B-label. In
Fig. 2(a) and (b) the parent of the pseudo-label is part of the insertion path,
whereas in (c) this property does not hold and the pseudo-label only changes
due to the new adjacent chain. Therefore, we first test each pseudo-label whose
parent lies on the insertion path for its size and transform it into a B-label, if
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b

e

(a)

b

e

(b)

b

e

(c)

Fig. 2. Three cases where a pseudo-label with parent b becomes a real B-label after
inserting an edge e. The shaded parts represent subtrees, the dashed lines depict chains,
C-nodes are represented by circles, and B-nodes by rectangles.

necessary. Secondly, further affected pseudo-labels, like the one in Fig. 2(c), are
updated implicitly, since their parents are found during the traversal in Han-

dlePendant which is called for the remaining pendant of a new size-one label.
In the special case, when the number of pendants decreases to at most three

or there is only one label left, the p remaining pendants are connected with p−1
edges by adding an edge between simple vertices of consecutive pendants. The
consideration of the involved labels and pseudo-labels, as well as the updates of
the BC-tree, are accomplished by procedure Update.

3.1 Optimality

We first examine the relationship between maximum labels and massive or
critical C-nodes. We call a C-node critical if its degree is

⌈
p
2

⌉
+ 1.

Lemma 2. If a BC-tree B is not balanced, its massive C-node c∗ must be the
parent of a label, say �0. Furthermore, �0 is the unique maximum label in B.

Proof. Let p denote the number of pendants in B. We prove both statements by
contradiction.

Assume that c∗ is not the parent of a label, let d be its degree and denote with
t1, . . . , td the d subtrees of B we would get after removing c∗. Then, there cannot
exist any chain from a pendant to c∗, and therefore each ti, i = 1, . . . , d, would
contain more than one pendant of B. Since c∗ is massive, d is at least

⌈
p
2

⌉
+ 2.

Thus, there would be at least 2(
⌈

p
2

⌉
+ 2) pendants; however, the BC-tree has

only p pendants.
Now, let j be the number of pendants contained in label �0, i.e., the pendants

from j subtrees out of t1, . . . , td belong to �0. Then, the other d− j subtrees each
contain at least two pendants. Now assume there exists another C-node c2 that
is the parent of another label with at least the same size as �0. Altogether the
BC-tree would then have at least 2 · j + 2(d− j − 1) ≥ p + 2 pendants, which is
again a contradiction. ��

Analogously, critical C-nodes are also always parents of labels. In general, the
second statement in Lemma 2 is not true for critical nodes. However, we can
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show—again by contradiction—that no label is greater than a label whose parent
is a critical C-node. We state this in the following lemma and skip the proof
because it is similar to the previous one.

Lemma 3. Let c be a critical C-node in a BC-tree B. Then, c is the parent of a
label, say �c, and there is no label in B whose size is greater than the size of �c.

To show the correctness and optimality of our approach, we remark some further
properties of the algorithm. Since edges are inserted between neighboring pen-
dants, i.e., all remaining pendants lie on the same side of the new edge, planarity
is ensured and the embedding is preserved. Furthermore, the augmented edges
obviously assure that the graph becomes biconnected.

The correct computation of labels is essential for guaranteeing optimality
of the solution. The initial assignment of pendants to their labels is obviously
correct. After inserting an edge, some labels might require an update. Since
the two involved labels—the labels whose pendants we connect—are considered
directly, HandlePendant is called for the remaining pendants if they reach
size one, and pseudo-labels on the path are also taken into account, thus all
labels are updated correctly.

Theorem 3. The solution computed by PlanarAugmentationFix is an op-
timal solution for PBA-Fix.

Proof. To complete the proof we now show that each face-induced subgraph is
made biconnected by the minimum number of edges, namely max{d − 1,

⌈
p
2

⌉
}

as given by Theorem 1, where d is the maximum degree of a C-node and p
the number of pendants in the BC-tree B. To prove this, we consider two cases
separately, which are based on the existence of a massive c-node.

Firstly, we consider the case, where B contains a massive C-node c∗. In this
case, the algorithm must not exceed the lower bound of adding deg(c∗)− 1 new
edges to biconnect the graph. By Lemma 2 the parent of the unique maximum
label �0 in B is c∗. Therefore, the algorithm automatically selects �0 to find
an appropriate matching. The following induction on deg(c∗) implies that the
bound deg(c∗)− 1 is achieved:

Base Case: Since a node with degree ≤ 3 cannot be massive, the base case is
deg(c∗) = 4. By definition, deg(c∗) ≥

⌈
p
2

⌉
+ 2 and thus p = 4 (we cannot have

less pendants than deg(c∗)). Hence, B consists of one label �0 with 4 pendants,
and 3 = deg(c∗)− 1 edges are inserted to biconnect the graph.

Inductive step: We have deg(c∗) ≥ 5. If there is only one label, B is a star and
deg(c∗) − 1 edges are inserted. Otherwise, a new edge between a pendant of �0
and another label is inserted. Therefore, the degree of c∗ decreases by one and
the BC-tree remains unbalanced since

⌈
p
2

⌉
decreases by one as well. It follows

by the induction hypothesis that ((deg(c∗)− 1)− 1) + 1 = deg(c∗)− 1 edges are
inserted.
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Fig. 3. Sketch of the situation in the BC-tree with a critical C-node c∗, its pertinent
label �0, and the two other involved labels �1 and �2

Secondly, we consider the case, where B is balanced and show that the algo-
rithm achieves the lower bound of

⌈
p
2

⌉
. The proof is again inductive, this time

on the number of pendants p.

Base Cases: The base cases are p ∈ {2, 3}. In both cases
⌈

p
2

⌉
edges are inserted.

Inductive step: We have p ≥ 4. First, notice that B contains at least two la-
bels, and therefore the new edge satisfies the leaf-connection condition. Hence,
the number of pendants decreases by two and, if the resulting BC-tree remains
balanced, we can conclude that only

⌈
p−2
2

⌉
+ 1 =

⌈
p
2

⌉
edges are inserted.

Therefore, we show by contradiction that no massive C-node arises during the
algorithm. Thus, assume that c∗ is the new massive C-node after inserting a new
edge. Let p and p′ denote the number of pendants, and degbefore and degafter the
degree of a node before and after the insertion, respectively. Therefore, p′ = p−2
holds and from the definition of a massive c-node degafter(c∗) ≥ �p′/2� + 2 =⌈

p−2
2

⌉
+ 2. By Observation 1, the degree of a C-node lying on the insertion path

between the two connected pendants either reduces by one or it is contracted to
the new B-node. Therefore, c∗ cannot lie on the insertion path, since otherwise

degbefore(c∗) = degafter(c∗) + 1 ≥
⌈

p′

2

⌉
+ 3 =

⌈p

2

⌉
+ 2

and c∗ would already be a massive c-node.
Hence, d := degbefore(c∗) = degafter(c∗) = �p′/2� + 2 = �p/2� + 1 holds and

therefore, c∗ must have been a critical C-node before the edge-insertion. Let �0
denote the label whose parent is c∗ and let j be its size; thus, there are d − j
subtrees adjacent to c∗ and each of them contains at least two pendants. There
have to exist two other labels �1 and �2 in the BC-tree since l0 is not involved in
the new edge; compare Fig. 3. One of these labels also needs to contain at least j
pendants because this label was selected by the algorithm; w.l.o.g. let this label
be �1. Both of the labels �1 and �2 are part of the same subtree adjacent to c∗,
since otherwise c∗ would be a part of the insertion path. Altogether, the number
of pendants of the BC-tree before inserting the edge is
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≥ j︸︷︷︸
�0

+ j︸︷︷︸
�1

+ 2(d− j − 1)︸ ︷︷ ︸
other subtrees

+ 1︸︷︷︸
�2

= 2d− 1

≥ 2(
⌈p

2

⌉
+ 1)− 1

≥ p + 1

This is the desired contradiction, and thus we have shown that the algorithm
always achieves the lower bound of max{d− 1,

⌈
p
2

⌉
} edges for each face-induced

subgraph and the theorem follows. ��

3.2 Runtime and Space

We prove now the main result of this section.

Theorem 4. Let G = (V, E) be a planar, connected graph and Π a combina-
torial embedding of G. Then, PlanarAugmentationFix computes an optimal
solution of PBA-Fix for G and Π in O(|V |(1 + α(|V |))) time while requiring
only linear space, where α denotes the inverse of the Ackermann function.

Proof. We already proved optimality of the solution in Theorem 3, so it remains
to analyze the runtime and space requirements of PlanarAugmentationFix.
We first remark that the number of edges in a planar graph is always linear
in the number of nodes. The algorithm considers each face of Π separately
and constructs the corresponding face-induced subgraph. Since each edge of G
belongs to at most two faces, the total number of edges in all face-induced
subgraphs is in O(|V |). Therefore, we can derive the total runtime and space
requirements from the runtimes and space requirements for handling each face.

Let Gf = (Vf , Ef ) be the subgraph induced by face f . The BC-tree of Gf can
be computed in time O(|Vf |+ |Ef |) by finding the biconnected components [10]
and requires O(|Vf |) space. Using dynamic BC-trees as proposed by Westbrook
and Tarjan [11], which utilize a union-find data structure to enable efficient
update operations, all updates on the BC-tree require a runtime of O(|Vf |(1 +
α(|Vf |))) in total. In each iteration, the largest label can be selected by using
buckets for labels with equal size. Since a newly inserted edge affects only a
constant number of labels and the size of a label changes by at most two, each
largest label can be found in constant time. Furthermore, after inserting an edge
all B-nodes on the insertion path are merged into one B-node; see Observation 1.
Hence, each path in the BC-tree is considered a constant number of times during
FindMatching and similar arguments hold for procedure HandlePendant.

Therefore, the runtime for augmenting a face-induced subgraph is dominated
by the BC-tree updates, thus resulting in a total runtime of O(|V |(1 + α(|V |)))
for the whole algorithm. ��

4 Conclusion

We have shown that the complexity status of PBA-Fix depends on the connec-
tivity of the input graph G. For the general case, i.e., if disconnected graphs



300 C. Gutwenger, P. Mutzel, and B. Zey

are allowed, PBA-Fix is NP-hard; however, if G is connected it is efficiently
solvable and we have presented an O(n(1 + α(n))) time algorithm, where n is
the number of vertices in G. An implementation of this algorithm in our graph
drawing library OGDF [8] is currently under development.

In case of a non-connected graph G, where an assignment of the faces of the
connected components to each other is given, G can be made connected in linear
time using the same procedure as described in [9] without losing the optimality
for PBA-Fix.

We close with an open problem: can the runtime of the algorithm for con-
nected graphs be improved to linear runtime? At the moment, we rely on general
dynamic BC-trees, giving us union-find complexity for our algorithm.
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Abstract. The G-width of a class of graphs G is defined as follows. A
graph G has G-width k if there are k independent sets N1, . . . , Nk in G
such that G can be embedded into a graph H ∈ G with the property
that for every edge e in H which is not an edge in G, there exists an i
such that both endpoints of e are in Ni. For the class TP of trivially-
perfect graphs we show that TP-width is NP-complete and we present
fixed-parameter algorithms.

1 Introduction

The recognition problem of probe interval graphs was introduced by Zhang et
al. [8,14]. This problem stems from the physical mapping of chromosomal DNA
of humans and other species. Since then probe graphs of many other graph
classes have been investigated by various authors. We generalize the concept to
the graph-class-width parameters.

Definition 1. Let G be a class of graphs which contains all cliques. The G-width
of a graph G is the minimum number k of independent sets N1, . . . , Nk in G such
that there exists an embedding H ∈ G of G with the property that for every edge
e = (x, y) in H which is not an edge of G, there exists an i with x, y ∈ Ni.

In this paper we investigate the width-parameter for the class TP of trivially-
perfect graphs, henceforth called the trivially-perfect width, or TP-width. If a
graph G has TP-width k then we call G also a k-probe trivially-perfect graph.
This paper deals with the recognition problem of k-probe trivially-perfect graphs.
We refer to the partitioned case of the problem when a collection of, possibly
overlapping, independent sets Ni, i = 1, . . . , k is a part of the input. We call such
a collection of independent sets a witness .
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Trivially-perfect graphs were first studied by Wolk [13]. However, Golumbic
gave the class its name [4].

Definition 2 ([4]). A graph is trivially perfect if for each induced subgraph the
independence number is equal to the number of maximal cliques.

We use Wolk’s characterization of the class.

Theorem 1 ([13]). A graph is trivially perfect if and only if every connected
induced subgraph has a universal vertex.1

We denote the class of trivially-perfect graphs by TP. The class can also be
characterized by excluding the C4 and P4 as induced subgraphs; thus the class
of trivially-perfect graphs is exactly the class of chordal cographs . In this paper
we study the TP-width of graphs.

It follows from Theorem 1 that a connected graph G = (V, E) is trivially
perfect if and only if there exists a rooted tree T , with node-set V such that two
vertices x and y are adjacent in G if and only if one lies on the path from the
root to the other. Thus the set of vertices of any path from the root to a leaf in
T induces a maximal clique in G, and these are all the maximal cliques in G.

It can be seen that the class of partitioned k-probe trivially-perfect graphs can
be characterized by a finite set of forbidden induced, partitioned subgraphs, see,
e.g., [6,11,12]. We think that a similar statement holds also for the unpartitioned
case, but we have no proof of this yet.

In the following, we write some of our notational customs. For two sets A and
B we write A + B and A−B instead of A ∪B and A \B. We write A ⊆ B if A
is a subset of B with possible equality and we write A ⊂ B if A is a subset of B
and A �= B. For a set A and an element x we write A+x instead of A+{x} and
A− x instead of A−{x}. It will be clear from the context when x is an element
instead of a set.

A graph G is a pair G = (V, E) where V is a finite set, of which the elements
are called the vertices of G, and where E is a set of two-element subsets of V , of
which the elements are called the edges of G. We denote edges of a graph as (x, y)
and we call x and y the endvertices of the edge. For a vertex x we write N(x) for
its set of neighbors and we write N [x] = N(x)+x for the closed neighborhood of
x. For a subset W ⊆ V we write N(W ) =

⋃
x∈W N(x)−W for its neighborhood

and we write N [W ] = N(W ) + W for its closed neighborhood. Usually we use
n = |V | to denote the number of vertices of G and we use m = |E| to denote
the number of edges of G.

For a graph G = (V, E) and a subset S ⊆ V of vertices we write G[S] for
the subgraph induced by S, that is, the graph with S as its set of vertices and
with those edges of E that have both endvertices in S. For a subset W ⊆ V we
write G−W for the graph G[V −W ]. For a vertex x we write G−x rather than
G− {x}. We usually denote graph classes by calligraphic capitals.

1 A vertex is universal if it is adjacent to all other vertices.
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The paper is organized as follows: in Section 2, we show that the rankwidth of
k-probe trivially-perfect graphs is bounded and for constant k, k-probe trivially-
perfect graphs can be recognized in O(n3) by formulating the problem in C2MS-
logic. In Section 3, we give a linear time algorithm for the recognition of par-
titioned k-probe trivially-perfect graphs. In Section 4, we show that TP-width
is NP-complete. In Section 5, we give a fixed-parameter algorithm to check if a
given graph is a k-probe trivially-perfect graph.

Since the results are comparable to those of rankwidth, it seems worthwhile to
examine G-width for specific classes of graphs. We started with one of the ‘easiest’
in this paper. Although for this class rankwidth gives an alternative solution,
a closer examination of the method seems not a bad idea anyway. Next in line
are the distance-hereditary graphs; for those no monadic-order formulation is
available at the moment. We hope that, with this paper, we obtained a sufficient
understanding of the methods to solve this, and other classes in future research.

2 Trivially-Perfect Width Is Fixed-Parameter Tractable

In this section we show that for constant k, k-probe trivially-perfect graphs can
be recognized in O(n3) time.

The following Theorem 2 is a characterization which can be formulated in
C2MS-logic [3]. We will prove that k-probe trivially-perfect graphs have
rankwidth at most 2k shortly. It is known that problems which can be for-
mulated in C2MS-logic can be solved in O(n3) time on graphs with bounded
rankwidth [3].

Definition 3. Let (G,N ) be a partitioned graph with a witness

N = {Ni | i = 1, . . . , k}

of k, possibly overlapping independent sets in G. A vertex ω is probe universal
if for every vertex x �= ω either

(i) (x, ω) ∈ E, or
(ii) there exists i ∈ {1, . . . , k} with {x, ω} ⊆ Ni.

Theorem 2. A graph G = (V, E) is a k-probe trivially-perfect graph if and only
if there exist independent sets Ni, i = 1, . . . , k, such that every connected induced
subgraph has a probe universal vertex.

Proof. Assume that G is a k-probe trivially-perfect graph. Let N be a witness
of k independent sets Ni and let H be an embedding, obtained by adding edges
in these independent sets. Let C ⊆ V be a subset of vertices such that G[C] is
connected. Then H [C] is also connected. By Theorem 1 H [C] has a universal
vertex ω. Let x be another vertex of G[C]. Since H is an embedding of (G,N ),
either x and ω are adjacent in G, or there exists an i such that x, ω ∈ Ni.

Assume that there exists a witness N of k independent sets Ni such that
every connected induced subgraph of G has a probe universal vertex. Let C be
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a component of G. We show that G[C] can be embedded into a trivially perfect
graph. Let ω be a probe universal vertex in G[C]. By induction we may assume
that G[C] − ω with the induced witness has a trivially-perfect embedding H ′.
We obtain an embedding H of G[C] by adding ω as a universal vertex to H ′. ��

Definition 4 ([10]). A rank-decomposition of a graph G = (V, E) is a pair
(T, τ) where T is a ternary tree and τ a bijection from the leaves of T to the
vertices of G. Let e be an edge in T and consider the two sets A and B of leaves
of the two subtrees of T − e. Let Me be the submatrix of the adjacency matrix
of G with rows indexed by the vertices of A and columns indexed by the vertices
of B. The width of e is the rank over GF (2) of Me. The width of (T, τ) is the
maximum width over all edges e in T and the rankwidth of G is the minimum
width over all rank-decompositions of G.

The class of graphs with rankwidth at most 1 is exactly the class of distance-
hereditary graphs [2,5,10]. Note that every trivially-perfect graph is distance
hereditary [1], since every induced path has length 1 or 2 by Theorem 1.

Theorem 3. k-Probe trivially-perfect graphs have rankwidth at most 2k.

Proof. Consider a rank-decomposition (T, τ) with width 1 for an embedding H
of a k-probe trivially-perfect graph G. Consider an edge e in T and assume that
Me is an all 1s-matrix. Each independent set Ni creates a 0-submatrix in Me. If
k = 1 this proves that the rankwidth of G is at most 2. In general, for k ≥ 0,
note that there are at most 2k different neighborhoods from one leaf-set of T − e
to the other. It follows that the rank of Me is at most 2k. ��

Theorem 4. For each k ≥ 0 there exists an O(n3) algorithm which checks
whether a graph G with n vertices is a k-probe trivially-perfect graph; that is,
TP-width is in FPT .

Proof. By Theorem 3 k-probe trivially-perfect graphs have bounded rankwidth.
It is well-known that C2MS-problems can be solved in O(n3) time for graphs
of bounded rankwidth (see [3], and follow pointers from there). By Theorem 2,
the recognition of k-probe trivially-perfect graphs is such a problem. ��

3 Partitioned k-Probe Trivially-Perfect Graphs

Obviously, the result of the previous section holds as well when the collection of
independent sets N1, . . . , Nk is a part of the input. Thus for each k there is an
O(n3) algorithm that checks whether a graph G with a witness of k independent
sets Ni, can be embedded into a trivially-perfect graph. However, there are a few
drawbacks to this solution. First of all, Theorem 4 only shows the existence of
an O(n3) recognition algorithm. In any case, a priori , it is unclear how to obtain
the algorithm explicitly. Furthermore, the constants involved in the algorithm
make the solution impractical. Already there is an exponential blow-up when
one moves from TP-width to rankwidth.
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In this section we show that there exists an easy algorithm for the recognition
of partitioned k-probe trivially-perfect graphs by recursively eliminating a probe
universal vertex.

Proposition 1. Let (G,N ) be a partitioned graph with a witness

N = {Ni | i = 1, . . . , k}

of k, possibly overlapping independent sets. Then (G,N ) is a partitioned k-probe
trivially-perfect graph if and only if every component of G, with the induced
witness, is a partitioned k-probe trivially-perfect graph.

Theorem 5. There exists a linear-time algorithm to check whether a partitioned
graph (G,N ) with a witness N of k independent sets, is a partitioned k-probe
trivially-perfect graph.

Proof. If G is disconnected then, by Proposition 1, we can check each component
individually. Assume G is connected. It is easy to see that we can compute an
elimination ordering by probe universal vertices in linear time, by keeping a list
of vertices ordered by degree. ��

Remark 1. Note that the algorithm described in Theorem 5 is fully polynomial.
The algorithm can be used to compute an embedding in O(n2) time.

4 TP-Width Is NP-Complete

Let T be the class of complete graphs (cliques). We first show that T-width is
NP-complete.

Theorem 6. T-Width is NP-complete.

Proof. Let (G,N ) with witness N = {Ni | i = 1, . . . , k} be a partitioned k-
probe complete graph. Thus every nonedge of G has its endvertices in one of
the independent sets Ni. That is, N forms a clique-cover of the edges of Ḡ. This
proves that a graph G has T-width at most k if and only if the edges of Ḡ can be
covered with k cliques. The problem to cover the edges of a graph by a minimum
number of cliques is NP-complete [9]. ��

Theorem 7. TP-Width is NP-complete.

Proof. Let G = (V, E) be a graph with n vertices and m edges. Add a vertex
ω and make ω adjacent to all vertices of G. Additionally, add a clique C of
n2 vertices and make every vertex of C adjacent to every vertex of G. Let G′

be the graph constructed in this way. Note that, when we add edges between
nonadjacent vertices of V we obtain an embedding of G′ into a trivially-perfect
graph. We show that this is the only feasible embedding.

For each nonedge {x, y} in G we now have a collection of C4’s using x, y,
the vertices of the clique C and ω. Assume that there is an embedding of G′
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into a trivially-perfect graph with x and y not adjacent. Then each vertex of
C is adjacent to ω. Thus each vertex of C must be in one of the independent
sets Ns, s = 1, . . . , k, and no two are in the same independent set since C is a
clique. Then k ≥ n2 which is a contradiction, since making a clique of G creates
a trivially-perfect embedding, and this needs at most

(
n
2

)
−m independent sets.

Thus the only feasible embedding makes a clique of G. That is, the TP-width of
G′ is the same as the T-width of G, and by Theorem 6 this is hard to compute.

��

5 A Fixed-Parameter Algorithm to Compute TP-Width

In this section we show that there exists for each k an O(n3) algorithm which
checks if a graph G is a k-probe trivially-perfect graph.

Let (G,N ) be a partitioned graph with a witness

N = {Ni | i = 1, . . . , k}

of k independent sets. We call the vertices of the independent sets nonprobes
and we call the vertices which are not in any independent set probes . The k-label
α(x) of a vertex x is the 0/1-vector of length k with the ith entry αi(x) equal to
1 if and only if x ∈ Ni. We write α(x) ≤ α(y) if αi(x) ≤ αi(y) for all i = 1, . . . , k.
We write α(x) ⊥ α(y) if there is no i with αi(x) = αi(y) = 1.

We use (G, α) to denote a labeled graph. If X is a subset of vertices then we
write α(X) for the restriction of the labeling α to the vertices of X . For a labeled
subset X we write (X, α), instead of (G[X ], α) and instead of (G[X ], α(X)).

Consider the equivalence relation ≡ defined by x ≡ y if N(x) = N(y). Denote
the equivalence class of a vertex x by (x). Define the partial order � by:

(x) � (y) if N(x) ⊆ N(y)

Likewise, we consider the equivalence relation ≡′ defined by x ≡′ y if N [x] =
N [y]. The equivalence class of a vertex x under this relation is denoted by [x].
We consider the partial order defined by:

[x] � [y] if N [x] ⊆ N [y]

Lemma 1. A graph G is trivially perfect if and only if for every pair of adjacent
vertices x and y, either [x] � [y] or [y] � [x].

Proof. Note that a graph G has two adjacent vertices with incomparable closed
neighborhoods, if and only if G contains an induced P4 or C4. ��

Definition 5 ([7]). A module M in a graph G = (V, E) is a set of vertices such
that for every vertex y �∈M either

1. N(y) ∩M = ∅, or
2. M ⊆ N(y).
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A module M is trivial if |M | ≤ 1 or if M = V .

Remark 2. Assume G = (V, E) is connected and trivially perfect. Let T be a
rooted tree with node-set V such that two vertices are adjacent in G if and only
if in T , one lies on the path from the root to the other. We refer to T as the
tree-model of G. Note that for each node x in T the vertices in the subtree rooted
at this node form a module X in G. The neighborhood NG(X) of this module
is the path in T from the root to the parent of x.

Definition 6. A probe module is a labeled set (X, α) which induces a parti-
tioned k-probe trivially-perfect graph with the additional property that for each
vertex y �∈ X there exists a y-extension, which is a label α(y) such that either

(a) N(y) ∩X = ∅, or
(b) For each x ∈ X [x ∈ N(y)⇔ α(y) ⊥ α(x)].

Definition 7. Two disjoint probe modules (X, α) and (Y, β) are twins if (X +
Y, γ) is a probe module with the inherited labeling γ(X) = α and γ(Y ) = β, such
that either

(i) no vertex of X is adjacent to any vertex of Y , or
(ii) one of X and Y is a probe clique, and for every pair of vertices x ∈ X and

y ∈ Y , x and y are adjacent if and only if γ(x) ⊥ γ(y).

Definition 8. Let (X, α) be a probe module in a connected graph G. Then (X, α)
embeds if the labeling α extends such that (G, α) has an embedding H which has
H [X ] as a module. The graph H is an embedding of X.

Definition 9. Let (X, α) be a probe module. A label-set of (X, α) is a maximal
subset of vertices of X with the same label. The characteristic χ(X) is the set of
labels for which the label-set is nonempty.

Remark 3. For ease of description we describe a trivially-perfect graph G also
by its cotree. This representation is a binary tree where the leaves are labeled by
the vertices of G and the internal nodes labeled by the join-operator ⊗ or the
union-operator ⊕. In case of a join-operator, the set of leaves in at least one of
the two subtrees must induce a clique, since G is chordal.

Lemma 2 (The Telescope Lemma). Let (X, α) and (Y, α) be twin probe-
modules. Assume that χ(X) ⊇ χ(Y ). Then (X + Y, α) embeds if and only if
(X, α) embeds.

Proof. Let H be an embedding of (X + Y, α). Consider the cotree of H . Since
H [X + Y ] is a module in H , we may assume that (X + Y ) forms a subtree. Let
H ′ be the trivially-perfect graph obtained from H by replacing H [X + Y ] by
the union or join of H [X ] and H [Y ], whichever is appropriate. Then H ′ is an
embedding of (X, α); we obtain a cotree by making X and Y twin-branches.

Now let H be an embedding of (X, α). Assume that a vertex z �∈ (X + Y )
is adjacent in G to a vertex y ∈ Y . Then α(z) ⊥ α(y) in any z-extension of
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(X + Y, α). There exists a vertex x ∈ X such that α(x) = α(y), which implies
that z is also adjacent to x in G.

Consider a cotree of H −Y such that X forms a subtree. Add H [Y ] to H−Y
as a twin-branch of H [X ] and let H ′ be the graph that results. We prove that we
can add edges between Y and NH(X)− Y , such that X + Y becomes a module
in H ′.

Let z �∈ (X + Y ). If z is not adjacent to any vertex of X in H then z is also
not adjacent to any vertex in Y . Assume z is adjacent to X in H . Let y ∈ Y ,
and assume that z is not adjacent to y in G. We prove that αi(z) = αi(y) = 1
for some entry i. There exists a vertex x ∈ X such that α(x) = α(y). If z is not
adjacent to x in G, αi(y) = αi(x) = αi(z) = 1 for some entry i. Assume z is
adjacent to x in G. Then α(z) ⊥ α(x) in any z-extension of (X + Y, α). Since
(X + Y, α) is a probe module and α(x) = α(y) ⊥ α(z), z is adjacent to y, which
is a contradiction. ��

Definition 10. A true – or false twinset is a set of vertices such that every pair
is a true – or false twin, respectively.2 A k-twinset is either a false twinset with
at least 3 vertices or a true twinset with at least k + 2 vertices.

Lemma 3 (The Twinset Lemma). Let S be k-twinset. Then G has TP-width
at most k if and only if G− x has TP-width at most k for any x ∈ S.

Proof. Assume that G has a false twinset {x, y, z}. Assume that G − x has an
embedding H . If one of y and z is a nonprobe in H , then we can make a copy
for x as a true twin. Note that creating a true twin does not introduce a P4 or
C4 so the new embedding is also trivially perfect. Now assume that both y and
z are probes. Then their neighborhood in H must induce a clique. We may now
add x as a false twin of y and z in H . Note that also in this case no P4 or C4 is
introduced.

Assume that G has a true twinset S with k + 2 vertices. Let x ∈ S and let
H be an embedding of G − x. Since S − x is a clique there exists an ordering
of the vertices of S − x such that for every pair a, b ∈ S − x, NH [a] ⊆ NH [b] or
NH [b] ⊆ NH [a]. Let y be the smallest vertex in this ordering. If y has a neighbor
in H which is not a neighbor in G, then this is a new neighbor of all the vertices
in S − x. This is a contradiction, since S − x is a clique with k + 1 vertices, and
creating a common neighbor for S− x would require k + 1 independent sets. ��

Definition 11. A k-witness N is well-linked if for every Ni ∈ N , every vertex
x �∈ Ni has a neighbor in Ni.

Lemma 4. Every k-probe trivially-perfect graph has a witness with k indepen-
dent sets which is well-linked.

Proof. Starting with any witness, repeatedly add a vertex x to an independent
set Ni if it has no neighbor in that set. ��
2 A true twin is a pair of vertices x and y with N [x] = N [y]. A false twin is a pair of

vertices x and y with N(x) = N(y).
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Lemma 5 (The Well-Linkedness Lemma). Let (G,N ) be a k-probe trivially-
perfect graph with a well-linked witness N and corresponding labeling α. Let H be
an embedding. For every nonadjacent pair x and y in G with NH(x) ⊆ NH [y],

(x) � (y) ⇔ α(x) ≥ α(y)

Proof. Assume α(x) ≥ α(y). Let z ∈ NG(x). Then z ∈ NH [y]. Since x and y are
not adjacent, z �= y. Thus z ∈ NH(y). If z �∈ NG(y), then there exists an i with
{z, y} ⊆ Ni. Now α(x) ≥ α(y) implies that also x ∈ Ni, which contradicts that
z is adjacent to x. Hence (x) � (y).

Assume (x) � (y), that is, NG(x) ⊆ NG(y). A fortiori , x and y are not
adjacent. Assume ¬(α(x) ≥ α(y)). Then there exists an i with y ∈ Ni and
x �∈ Ni. Since N is well-linked, there exists a vertex z ∈ NG(x) ∩ Ni. Since
(x) � (y), z ∈ NG(y), contradicting that z and y are both in Ni. ��

Definition 12. Let (X, α) be a probe module. A vertex γ ∈ N(X) is X-minimal
if there exists no y ∈ N(X) with (y) �= (γ) and (y) � (γ) and also no z ∈ N(X)
with [z] �= [γ] and [z] � [γ].

Remark 4. Notice that X-minimality of a vertex is independent of the actual
labeling of the probe module (X, α).

Lemma 6. Assume G has no k-twinset. Assume that (X, α) embeds as a branch
in the tree-model of a well-linked embedding. Let Υ be the set of X-minimal
vertices. Then |Υ | ≤ 2k+1 + k − 1.

Proof. Consider a well-linked embedding H . Let T be a tree-model of H . Con-
sider the path M from the root to the ancestor of X in T and let M0, M1, . . . be
a partition of M into modules. By minimality of the embedding we may assume
that each vertex of Mi has a neighbor in every subtree of Mi. Assume they are
ordered such that NH [xi] ⊂ NH [xi+1] for each xi ∈ Mi and xi+1 ∈ Mi+1, for
i = 0, 1, . . . .

Notice that each label-set of each Ms is a module in G. Since there is no
k-twinset, each label-set of nonprobes has at most 2 vertices and each label-set
of probes has at most k + 1 vertices. Thus

|Ms| ≤ 2(2k − 1) + (k + 1) = 2k+1 + k − 1

By the Well-Linkedness Lemma, a vertex x ∈ Ms is minimal if it has a label
α(x) such that all other label-sets α′ ≥ α(x) in M0, . . . , Ms are empty. It follows
that there are at most

∑k
i=0

(
k
i

)
= 2k label-sets of minimal vertices, at most

2k − 1 of minimal nonprobes, each containing at most 2 elements, and at most
one label-set of minimal probes, containing at most k + 1 elements. Thus the
number of minimal elements is bounded by 2k+1 + k − 1. ��

Lemma 7. Assume G is a connected k-probe trivially-perfect graph without k-
twinset. Let (X, α) be a probe module that embeds as a branch into a well-linked
embedding H. Let T be a tree-model of H and let M0 be the lowest set of ancestors
of X in T that forms a module in H. There exists a set Ω, of size |Ω| ≤ 22(k+1)

such that M0 ⊆ Ω. This set Ω can be computed in linear time.
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Proof. Start with Ω = ∅. Repeatedly compute the set of X-minimal vertices in
G, add them to Ω, and delete them from the graph. After at most 2k repetitions,
each label-set of M0 is contained in Ω. Since each set of maximal elements has
at most 2k+1 + k − 1 vertices,

|Ω| ≤ 2k(2k+1 + k − 1) ≤ 22k+1 + 22k ≤ 22(k+1) ��

Definition 13. A pattern is a cotree of a k-labeled trivially perfect graph
such that for every internal node the characteristics of the two subtrees are
incomparable.

Remark 5. Consider a cotree of an embedding of a labeled graph (G, α). By
Lemma 2, we may repeatedly prune branches for which the characteristic is
contained in the characteristic of the other branch. The result is a pattern.

Lemma 8. There are O(2(k+3)22k

) non-isomorphic patterns.

Proof. The characteristic of every internal node is the union of the characteristics
of its children. This union is larger than the two constituent sets since those are
incomparable. A binary tree with depth at most 2k has at most 22k − 1 internal
nodes. The number of binary trees with t internal nodes can be bounded by the
Catalan number Ct =

(2t
t

) 1
t+1 . Thus the number of cotrees with t + 1 leaves is

bounded by 2tCt ∼ 23t

t3/2
√

π
. There are at most 2k(t+1) labelings for the leaves.

Thus the number of patterns is bounded by c2kc 23c

c3/2
√

π
, where c = 22k

. ��

Remark 6. Similar to Lemma 6 it can be shown that the number of feasible,
incomparable induced patterns of branches incident with an internal node of
the cotree is bounded by a constant. Actually, this proves a well-quasi-ordering,
which implies a finite set of forbidden induced subgraphs for TP-width ≤ k. We
elaborate on this in the full version of this paper.

Theorem 8. For each k, there exists an O(n3)-time algorithm for the recogni-
tion of k-probe trivially-perfect graphs.

Proof. Consider a partition (M0, M1, . . . , Ms) of the vertices into probe mod-
ules. Initially, each module consists of a single vertex. For each probe module
we keep the possible embeddings, either as a clique-module or as a branch, as
a list of patterns. The algorithm tries to merge modules into new modules. By
Lemma 7 there are only a constant number of possible extensions for each mod-
ule. Assume that a probe module (X, α) unions with some other probe modules.
If there is a module (Y, β) with χ(Y ) ⊆ χ(X) then (Y, β) merges together with
(X, α) for those labelings. There are at most 2k module extensions in which the
characteristic enlarges. A suitable merge of two probe modules can be found in
O(n2) time. ��
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6 Conclusion

So far, we have limited our research to classes of graphs that have bounded
rankwidth. For classes such as threshold graphs and cographs we were able to
show that the width parameter is fixed-parameter tractable. One of the classes
for which this is still open is the class of distance-hereditary graphs.
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Abstract. We present a first algorithm for direct construction of param-
eterized suffix arrays and parameterized longest common prefix arrays
for non-binary strings. Experimental results show that our algorithm is
much faster than näıve methods.

1 Introduction

Parameterized pattern matching is a form of pattern matching first introduced by
Baker [1], that allows for interchange in the alphabet. More formally, let Π be the
set of parameter symbols and Σ be the set of constant symbols. Strings over Π∪Σ
are called parameterized strings (p-strings). Two p-strings of the same length are
said to parameterized match (p-match) if one string can be transformed into the
other by using a bijection on Σ ∪Π , with the restriction that the bijection must
be the identity on the constant symbols of Σ. In other words, the bijection maps
any a ∈ Σ to a itself, while symbols of Π can be interchanged. Examples of
applications of parameterized pattern matching are software maintenance [1,2],
plagiarism detection [3], and RNA structural matching [4].

For the standard pattern matching problem, there exist several data structures
that can be obtained by preprocessing the text string so that pattern matching
can be performed efficiently. The most famous are the suffix tree [5] and suf-
fix array [6]. These data structures can both be constructed directly in linear
time [5,7,8,9,10,11,12], independent of the alphabet size. Most operations on a
suffix tree can be efficiently simulated with the suffix array and several other
auxiliary arrays, including an array containing the lengths of longest common
prefixes of the suffixes (LCP array), composing an enhanced suffix array [13,14].
The array representation has become more preferable as it requires less memory,
and is generally faster to construct and work on, due to memory access locality.

For p-string pattern matching, Baker [2] introduced the parameterized suffix
tree (p-suffix tree), which is similar in concept to the suffix tree. Baker gave an
O(n(π + log(π + σ))) time algorithm to construct the p-suffix tree for a given
text string, where n is the text length, π = |Π | and σ = |Σ|. Kosaraju [15]

J. Fiala, J. Kratochv́ıl, and M. Miller (Eds.): IWOCA 2009, LNCS 5874, pp. 312–323, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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proposed an algorithm to construct p-suffix trees in O(n(log π + log σ)) time.
Both algorithms are based on McCreight’s construction algorithm for standard
suffix trees [7]. Shibuya [4] gave an on-line construction algorithm working in
O(n(log π + log σ)) time, which is based on Ukkonen’s construction algorithm
for standard suffix trees [8]. Given a pattern p of length m, we can compute the
set Pocc of all positions of t where the corresponding substring of t p-matches
pattern p in O(m log(π + σ) + |Pocc|) time, using the p-suffix tree of a text t.

Concerning the array representation, parameterized suffix arrays were consid-
ered by Deguchi et al. [16]. The parameterized pattern matching problem can be
solved in O(m log n+ |Pocc|) time with a simple binary search, or O(m+log n+
|Pocc|)) with a binary search utilizing PLCP information, or O(m log(π + σ) +
|Pocc|) time if we consider enhanced p-suffix arrays. As with the case of stan-
dard suffix trees and arrays, the array representation is superior in memory usage
and memory access locality. Deguchi et al. presented a linear time algorithm for
direct construction of the parameterized suffix array and parameterized LCP
(PLCP) array for binary strings. To the best of our knowledge, no efficient al-
gorithm for direct construction of a parameterized suffix array and PLCP array
for non-binary strings exist, and the best theoretical worst-case time bound is
O(n2), using a standard radix sort on strings.

This paper presents a new algorithm for efficient construction of p-suffix arrays
and PLCP arrays for non-binary strings. For p-suffix array construction, our
algorithm combines any string sorting algorithm with linear time pre- and post
processing. Though we are unable to reduce the theoretical worst case time
bound, our algorithm considerably reduces the number of suffixes to be sorted
using the string sorting algorithm, hence greatly reducing the running time. For
the PLCP array, we modify the linear time LCP array construction algorithm
of [17], so that it can be used for p-strings. However, due to properties of p-
strings, it is still open if the theoretical time bound of our algorithm is linear.
Computational experiments show both our algorithms are generally much faster
than näıve approaches for various texts.

2 Preliminaries

Let Σ and Π be two disjoint finite sets of constant symbols and parameter
symbols, respectively. An element of (Σ ∪ Π)∗ is called a p-string. The length
of any p-string s is the total number of constant and parameter symbols in s
and is denoted by |s|. For any p-string s of length n, the i-th symbol is denoted
by s[i] for each 1 ≤ i ≤ n, and the substring starting at position i and ending
at position j is denoted by s[i : j] for 1 ≤ i ≤ j ≤ n. In particular, s[1 : j]
and s[i : n] denote the prefix of length j and the suffix of length n − i + 1 of
s, respectively. For any two strings s and t, lcp(s, t) denotes the length of the
longest common prefix of s and t.

Definition 1 (Parameterized Matching). Any two p-strings s and t of the
same length m are said to parameterized match (p-match) iff one of the following
conditions hold for every 1 ≤ i ≤ m:
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1. s[i] = t[i] ∈ Σ,
2. s[i], t[i] ∈ Π, s[i] �= s[j] and t[i] �= t[j] for any 1 ≤ j < i,
3. s[i], t[i] ∈ Π, s[i] = s[i− k] for any 1 ≤ k < i iff t[i] = t[i− k].

We write s � t when s and t p-match.
For example, let Π = {a, b, c}, Σ = {X, Y}, s = abaXabY and t = bcbXbcY.

Observe that s � t.
Let N be the set of non-negative integers. For any non-negative integers i ≤

j ∈ N , let [i, j] = {i, i + 1, . . . , j} ⊂ N .

Definition 2. We define pv : (Σ ∪ Π)∗ → (Σ ∪ N )∗ to be the function such
that for any p-string s of length n, pv (s) = u where, for 1 ≤ i ≤ n,

u[i] =

⎧⎪⎨⎪⎩
s[i] if s[i] ∈ Σ,
0 if s[i] ∈ Π and s[i] �= s[j] for any 1 ≤ j < i,
i− k if s[i] ∈ Π and k = max{j | s[i] = s[j], 1 ≤ j < i}.

In the running example, pv (s) = 002X24Y with s = abaXabY.
The following proposition is clear from Definition 2.

Proposition 1. For any p-string s of length n, it holds for any 1 ≤ i ≤ j ≤ n
that pv(s[i : j]) = v[1 : j − i + 1], where v = pv(s[i : n]).

Proposition 2 ([2]). For any two p-strings s and t of the same length, s � t
iff pv (s) = pv(t).

In the running example, we then have s � t and pv(s) = pv (t) = 002X24Y.
We also define the dual of the pv function, as follows:

Definition 3. We define fw : (Σ ∪Π)∗ → (Σ ∪ N ∪ {∞})∗ to be the function
such that for any p-string s of length n, fw (s) = w where, for 1 ≤ i ≤ n,

w[i] =

⎧⎪⎨⎪⎩
s[i] if s[i] ∈ Σ,
∞ if s[i] ∈ Π and s[i] �= s[j] for any i < j ≤ n,
k − i if s[i] ∈ Π and k = min{j | s[i] = s[j], i < j ≤ n}.

Here, ∞ denotes a value for which i <∞ for any i ∈ N .1

In the running example, fw (s) = 242X∞∞Y with s = abaXabY.

Proposition 3. For any p-string s of length n, it holds for any 1 ≤ i ≤ n that
fw(s[i : n]) = w[i : n], where w = fw(s).

For any p-string s of length n, pv(s) and fw (s) can be computed in O(n) time
with extra O(π) space, using a table of size π recording the last position of each
parameter symbol in the left-to-right (resp. right-to-left) scanning of s [2].
1 In practice, n can be used in place of ∞ as long as we are considering a single p-string

of length n, and its substrings.
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Problem 1 (P-matching problem). Given any two p-strings t and p of length n
and m respectively, n ≥ m, compute Pocc(t, p) = {i | t[i : i + m− 1] � p}.

Proposition 2 implies that Pocc(t, p) = {i | pv (p) = pv(t[i : i + m− 1])}.

Lemma 1 ([18]). Problem 1 on alphabet Σ ∪Π is reducible in linear time to
Problem 1 on alphabet Π.

Due to the above lemma, in the remainder of the paper, we consider only p-
strings in Π∗. Then, note that for any p-string s of length n, pv(s) ∈ {[0, n−1]}n

and fw(s) ∈ {[1, n− 1] ∪ {∞}}n. We also see that if pv (s)[i] > 0 then fw(s)[i−
pv(s)[i]] = pv (s)[i]. Similarly, if fw (s)[i] < n then pv (s)[i + fw (s)[i]] = fw (s)[i].

Let � denote the standard lexicographic ordering on strings of an integer
alphabet. To simplify discussions on the end of strings, we assume that for any
p-string s, pv (s)[i] = −1 for any i > |s|.

In this paper, we will consider construction of the following data structures.

Definition 4 (P-suffix Array). For any p-string s ∈ Πn of length n, its p-
suffix array PSAs is an array of length n such that PSAs[i] = j, where pv(s[j : n])
is the lexicographically i-th element of {pv (s[k : n]) | 1 ≤ k ≤ n}.

Definition 5 (PLCP Array). For any p-string s ∈ Πn of length n, its PLCP
array PLCP s is an array of length n such that

PLCPs[i] =

{
−1 if i = 1,
lcp(pv (s[PSA[i− 1] : n]), pv([s[PSA[i] : n])) if 2 ≤ i ≤ n.

We abbreviate PLCP s as PLCP when clear from the context. The following is
a useful auxiliary array that we will use for the construction of PLCP .

Definition 6 (Rank Array). For any p-string s ∈ Πn of length n, its rank
array ranks is an array of length n such that ranks[PSAs[i]] = i, for any 1 ≤
i ≤ n.

We abbreviate ranks as rank when clear from the context. Note that ranks[i]
can be computed in linear time from PSAs for all i where 1 ≤ i ≤ n.

Table 1 shows an example of a p-suffix array, PLCP array and rank array for
the string s = babbcacaabcb.

The PSA, PLCP , and rank arrays can naturally be used in similar ways as
the suffix, LCP, and rank arrays for standard strings. PSA and PLCP arrays can
be constructed by a linear time traversal on the p-suffix tree. However, unlike
standard suffix arrays and lcp arrays, direct linear time algorithms that do not
construct the tree as an intermediate data structure are not known, except for
the case of binary alphabets [16].

The main difficulty in developing efficient algorithms for constructing PSA and
PLCP is that for any p-string s, a suffix pv(s)[i : n] of pv(s) is not necessarily
equal to pv (s[i : n]) of the suffix s[i : n]. As an important consequence, for
any p-strings s, t with lcp(pv (s), pv (t)) > 0, pv (s) � pv(t) does not necessarily
imply pv (s[2 : |s|]) � pv (t[2 : |t|]), which is a property essential for efficient
construction algorithms in the standard case.
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Table 1. PSAt and PLCP t for p-string s = babbcacaabcb

i PSA[i] PLCP [i] rank[i] 1 2 3 4 5 6 7 8 9 10 11 12 zlen[PSA[i]] type
1 12 -1 9 0 1 A
2 11 1 6 0 0 2 A
3 9 2 12 0 0 0 2 3 B
4 4 4 4 0 0 0 2 2 1 6 4 2 3 B
5 7 2 10 0 0 1 0 4 2 2 B
6 2 6 8 0 0 1 0 4 2 2 1 6 4 2 2 B
7 10 2 5 0 0 2 2 C
8 6 3 11 0 0 2 1 0 4 2 2 C
9 1 7 3 0 0 2 1 0 4 2 2 1 6 4 2 2 C

10 5 3 7 0 0 2 2 1 0 4 2 2 C
11 8 1 2 0 1 0 0 2 1 C
12 3 5 1 0 1 0 0 2 2 1 6 4 2 1 C

3 Algorithm

For our lightweight algorithm, we will use the number of contiguous zeroes in
the prefix of each suffix pv(s[i : n]), to sort them coarsely.

Definition 7. For any p-string s of length n, we define zlens[i] as the length of
contiguous zeroes in the prefix of pv(s[i : n]) for any 1 ≤ i ≤ n. That is,

zlens[i] = max
{
j
∣∣ pv(s[i : i + j − 1]) = 0j , 1 ≤ j ≤ n− i + 1

}
.

We abbreviate zlens as zlen when clear from the context. Note that zlens[i] can
be computed in amortized linear time for all i where 1 ≤ i ≤ n.

3.1 Constructing P-Suffix Array

zlen divides the set of suffixes s[i : n](1 ≤ i ≤ n) of p-string s into 3 types.

– Type A: those consisting of zeroes only, that is zlens[i] = |s| − i + 1.
– Type B: those with zlens[i] < |s|−i+1 and zlens[i] > pv (s[i : n])[zlens[i]+1]
– Type C: those with zlens[i] < |s|−i+1 and zlens[i] = pv(s[i : n])[zlens[i]+1].

Our algorithm consists of the following steps.

1. Calculate zlens[i] for all i in linear time and determine its type.
2. Determine the positions of type A suffixes using zlens[i].
3. Coarsely sort all type B and C suffixes in linear time by radix sort using

zlens[i] and the first non-zero value pv (s[i : n])[zlens[i] + 1] in pv (s[i : n]).
4. Determine the positions of the type B suffixes using any sorting algorithm.
5. Determine the positions of the remaining type C suffixes in linear time.

Each step can be calculated in linear time except for Step 4 which depends on
the underlying sort algorithm. We will describe the details of each step below.
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First, we determine the positions of the type A suffixes (Step 2). Let As denote
the number of type A suffixes of s. For the type A suffixes, it is obvious that
PSAs[1 : As] = n, n− 1, . . . , n−As + 1.

For the type B and C suffixes (Step 3), they are divided into blocks of suffixes
that have the same zlen value and first non-zero value. We can determine the
order of these blocks in linear time and space by radix sort, that is, bucket
sort first in ascending order of the first non-zero value and then in descending
order of the zlen value. For any suffix i, the first non-zero value is not greater
than zlen [i]. Therefore, we can also do this operation by a single bucket sort in
descending order of

∑zlen[i]
t=1 t−pv(s[i : n])[zlen[i]+1] = zlen[i](zlen[i]+1)

2 −pv(s[i :
n])[zlen [i] + 1]. This alternative method works in linear time and space, as long
as z(z+1)

2 = O(n), where z = max {zlens[i] | 1 ≤ i ≤ n−As}.
Step 4 is then conducted using any string sorting algorithm within each type B

block. Note that within a block, it suffices to see the order of pv(s[i : n])[zlens[i]+
2 : n] since they will have a common prefix of length zlens[i] + 1.

Let PSAs denote the intermediate array obtained just after processing Step 4,
that is, only the type C suffixes are not in position yet. The next lemmas describe
the key properties for sorting these remaining suffixes in linear time (Step 5).

Lemma 2. Let s be a p-string of length n. For any i, j (1 ≤ i, j ≤ n − 1), if
fw(s)[i] ≥ fw (s)[j] and pv(s[i + 1 : n]) ≺ pv (s[j + 1 : n]), then pv (s[i : n]) ≺
pv(s[j : n]).

Proof. Assume on the contrary that pv (s[i : n])  pv(s[j : n]). Let l be
lcp(pv (s[i : n]), pv(s[j : n])). Since pv(s[i : n])  pv (s[j : n]), then

pv(s[i : n])[1 : l] = pv (s[j : n])[1 : l], pv (s[i : n])[l + 1] > pv (s[j : n])[l + 1].

(i) fw(s)[j] > l. Since fw (s)[i] ≥ fw (s)[j], then pv(s[i + 1 : n])[1 : l − 1] =
pv(s[j + 1 : n])[1 : l − 1], pv (s[i + 1 : n])[l] > pv (s[j + 1 : n])[l]. We get
pv(s[i + 1 : n])  pv (s[j + 1 : n]), a contradiction.
(ii) fw(s)[j] = l. By assumption, pv(s[i : n])[l + 1] > pv (s[j : n])[l + 1] =
fw(s)[j] = l. However, by Definition 2, pv (s[i : n])[l + 1] ≤ l, a contradiction.
(iii) fw (s)[j] < l. Since fw (s)[i] = fw(s)[j], then pv (s[i + 1 : n])[1 : l − 1] =
pv(s[j + 1 : n])[1 : l − 1], pv (s[i + 1 : n])[l] > pv (s[j + 1 : n])[l]. We get
pv(s[i + 1 : n])  pv (s[j + 1 : n]), a contradiction. ��
Lemma 3. Let s be a p-string of length n. For any i (1 ≤ i ≤ n − 1), if
pv(s[i : n]) is a type C suffix, then pv(s[i + 1 : n]) ≺ pv (s[i : n]).

Proof. Assume on the contrary that pv(s[i + 1 : n])  pv(s[i : n]). Since pv (s[i :
n]) is a type C suffix, zlen[i + 1] ≥ zlen[i]. Then for some k (zlen [i] + 2 ≤ k ≤
n−i+1), pv(s[i+1 : n])[1 : k−1] = pv (s[i : n])[1 : k−1] and pv (s[i+1 : n])[k] >
pv(s[i : n])[k]. In addition, it follows from pv(s[i : n])[zlen [i] + 1] = zlen[i] that
pv(s[i + 1 : n])[zlen [i] + 1 : n] = pv(s[i : n])[zlen [i] + 2 : n− 1]. Here,

pv(s[i : n])[k] = pv(s[i + 1 : n])[k − 1] = pv (s[i : n])[k − 1]
= pv(s[i + 1 : n])[k − 2] = pv (s[i : n])[k − 2]
= . . .=pv(s[i+1 : n])[zlen [i]+1]=pv(s[i : n])[zlen[i]+1]=zlen[i].
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// Initialize:
// head[i] = k: min position in type C block with k = zlen[PSA[j]]
// block[i] = if(PSA[i]-1 is type C) then zlen[PSA[i]-1] else 0
for (i = 1; i < n; i++) {
j = block[psa[i]];
if (j != 0) { // s[psa[i]-1:n] is type C
psa[head[j]] = psa[i] - 1; // determine its position in block j
head[j]++; // increment head position of block

}
}

Fig. 1. Algorithm for sorting type C suffixes in linear time. Note that the initialization
of head and block arrays can be done in linear time.

Hence pv(s[i + 1 : n])[1 : k − 1] = 0zlen[i]zlen [i]k−1−zlen[i]. This implies that
pv(s[i + 1 : n])[k] ≤ zlen[i] = pv(s[i : n])[k], a contradiction. ��

Theorem 1. Let s be a p-string of length n. If the positions of type A and B
suffixes are determined, the positions of the remaining type C suffixes can be
determined in linear time.

Proof. From Lemma 2, if pv(s[i + 1 : n]) ≺ pv (s[j + 1] : n) and pv(s[i : n]),
pv(s[j : n]) are in the same type C block, we have pv(s[i : n]) ≺ pv(s[j : n])
since fw values are equal. Therefore, we scan PSAs in increasing order and
determine the correct position of type C suffix pv (s[i : n]) if the position of
suffix pv(s[i + 1 : n]) is already determined. This is guaranteed by Lemma 3,
since the position of suffix pv(s[i + 1 : n]) precedes that of pv (s[i : n]). Hence,
we can determine the positions of the type C suffixes by running through PSAs

once. ��

Fig. 1 shows our linear time sorting algorithm for type C suffixes.

3.2 Constructing PLCP Array

This section considers the construction of PLCP arrays, given the p-suffix array.
For standard LCP arrays, Kasai et al. [17] showed a linear time algorithm for
its construction, given the suffix array. However, the same algorithm cannot be
applied directly to PLCP arrays because of the difficulties mentioned at the end
of Section 2. In the following, we show some characteristics of PLCP arrays and
propose P-Kasai, a modified version of the algorithm of [17].

For the type A suffixes, it is obvious that PLCP s[1 : As] = −1, 1, 2, . . . , As−1.
Hence we mainly consider computing PLCP s[i] where As < i ≤ n.

Lemma 4. Let s be a p-string of length n and li = PLCPs[rank [i]]. For any
i (1 ≤ i < n), if li > 0 then{

li+1 ≥ li − 1 if pv (s[j + 1 : n]) ≺ pv (s[i + 1 : n]),
lj+1 ≥ li − 1 if pv (s[j + 1 : n])  pv (s[i + 1 : n]),

where j = PSA[rank [i]− 1].
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Proof. Since pv (s[j : j+li−1]) = pv (s[i : i+li−1]), then pv (s[j+1 : j+li−1]) =
pv(s[i + 1 : i + li − 1]). If pv (s[j + 1 : n]) ≺ pv (s[i + 1 : n]), then for any
k (rank [j + 1] ≤ k ≤ rank [i + 1]),

pv(s[j +1 : j + li−1]) = pv (s[PSA[k] : PSA[k]+ li−2]) = pv(s[i+1 : i+ li−1]).

Hence, li+1 ≥ li − 1. Similarly, if pv(s[j + 1 : n])  pv (s[i + 1 : n]), we can get
lj+1 ≥ li − 1. ��
Note that the case of li > 0 and pv(s[j +1 : n])  pv(s[i+1 : n]) does not occur
for LCP arrays, which is the key property for amortized linear time construction
algorithm [17]. In the case for PLCP arrays, for example, we can see in Table 1
that pv(s[2 : 12]) ≺ pv (s[10 : 12]) but pv(s[3 : 12])  (s[11 : 12]).

A necessary condition for pv(s[j + 1 : n])  pv (s[i + 1 : n]) is given below:

Lemma 5. Let s be a p-string of length n and li = PLCPs[rank [i]]. For any
i (1 ≤ i < n), if pv(s[j + 1 : n])  pv (s[i + 1 : n]) then pv (s[i : n])[li + 1] = li,
where j = PSA[rank [i]− 1].

Proof. First, pv (s[j + 1 : n])[1 : li − 1] = pv (s[i + 1 : n])[1 : li − 1], and by
Definition 2 pv (s[i : n])[li + 1] ≤ li. If we assume pv(s[i : n])[li + 1] < li, then

pv(s[j + 1 : n])[li] ≤ pv (s[j : n])[li + 1] < pv (s[i : n])[li + 1] = pv (s[i + 1 : n])[li].

This implies that pv (s[j + 1 : n]) ≺ pv(s[i + 1 : n]), a contradiction. ��
Focusing on the case of pv(s[i + 1 : n]) ≺ pv (s[i : n]), we have:

Lemma 6. Let s be a p-string of length n and li = PLCPs[rank [i]]. For any
i (1 ≤ i < n), if pv (s[i : n])[li + 1] = li and pv(s[i + 1 : n]) ≺ pv(s[i : n]) then
zlen[i + 1] ≥ li.

Proof. Assume contrary that zlen [i + 1] < li. Since pv (s[i + 1 : n])[li] = 0, there
exists m = min{k | 2 ≤ k < li, pv(s[i+1 : n])[k] �= 0}, that is, zlen[i+1]=m−1,
and then zlen [i]=m. This implies pv (s[i :n])≺pv (s[i+1:n]), a contradiction. ��
Lemmas 5 and 6 lead to the next lemma.

Lemma 7. Let s be a p-string of length n and li = PLCPs[rank [i]]. For any
i (1 ≤ i < As − 1), if pv(s[j + 1 : n])  pv (s[i + 1 : n]) and pv(s[i + 1 : n]) ≺
pv(s[i : n]) then{

li+1 = As if rank [i + 1] = As + 1 and li > As,

li+1 ≥ li otherwise,

where j = PSA[rank [i]− 1].

Proof. It follows from Lemma 5 and 6 that zlen [i+1] ≥ li. If rank [i+1] = As+1,
it is obvious that zlen [PSA[rank [i+1]−1]] = zlen[PSA[As]] = As. In addition if
li > As, then pv (s[1 : As]) = 0As is a prefix of pv (s[i + 1 : n]). Hence li+1 = As.

On the other hand, in the case of rank [i + 1] > As + 1, we have zlen[PSA
[rank [i+1]−1]] ≥ li, since type B and C suffixes are sorted in descending order of
zlen. If rank [i+1] = As+1 but li ≤ As, then zlen [PSA[rank [i+1]−1]] = As ≥ li.
Hence in either case, zlen[PSA[rank [i + 1]− 1]] ≥ li, and then li+1 ≥ li. ��
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plcp[1] = -1;
for (b = 2; psa[b] == n - b; b++) {

plcp[b] = b - 1; // PLCP for type A suffixes
}
// b = As + 1
k = 1;
for (i = 1; i <= n - b + 1; i++) {

j = psa[rank[i]-1];
if (plcp[rank[i]] > k)
k = plcp[rank[i]];

while (pv(s[i:n])[k+1] == pv(s[j:n])[k+1])
k++;

plcp[rank[i]] = k;
if (rank[j+1] < rank[i+1])
k--; // Kasai’s algorithm up to here

else { // below is modification
if (plcp[rank[j+1]] < k - 1)

plcp[rank[j+1]] = k - 1;
if (rank[i+1] < rank[i]) {

if (rank[i+1] == b && k > b - 1)
k = b - 1;

} else
k = 1;

}
}

Fig. 2. Algorithm for constructing PLCP array (P-Kasai)

Lemma 7 helps to compute li+1 in the case of pv(s[j + 1 : n])  pv(s[i + 1 : n]).
Fig. 2 shows our algorithm for constructing PLCP array.

4 Computational Experiments

We compare our algorithms and naive algorithms on randomly generated text,
and some files taken from the The Canterbury Corpus2, and those used in [19]3

(Lightweight). All experiments were conducted on an Apple Mac Pro (Early
2008) with 3.2GHZ dual core Xeons and 18GB of memory, running MacOSX
10.5 Leopard. Programs were written in the C language and compiled with the
gcc compiler and -O3 option.

Table 2 shows results on random data for various text lengths, and a fixed
alphabet size of 255. Table 3 shows results on random data for various alphabet
sizes and a fixed text length of 1,000,000. Table 4 shows results on various texts
from several corpora. Radix and Bucket denote the two alternatives for the
coarse sorting in Step 3. We use a standard quick sort on strings for the sorting
algorithm of Step 4. Qsort denotes a naive algorithm using a standard quick sort

2 http://corpus.canterbury.ac.nz/
3 http://web.unipmn.it/~manzini/lightweight/corpus/

http://corpus.canterbury.ac.nz/
http://web.unipmn.it/~manzini/lightweight/corpus/
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Table 2. Running times for random strings of length n and alphabet size = 255

p-suffix array PLCP array
n Radix Bucket Qsort P-Kasai Naive avg lcp avg zlen %C

1024 0.000099 0.000170 0.000710 0.000023 0.000207 23.6 19.4 7.58
2048 0.000241 0.000319 0.001672 0.000050 0.000374 25.5 19.6 7.57
4096 0.000689 0.000778 0.004032 0.000147 0.000595 27.1 19.7 7.66
8192 0.001759 0.001840 0.009391 0.000304 0.001116 28.1 19.6 7.73

16384 0.003840 0.003908 0.018881 0.000629 0.002363 29.0 19.7 7.71
32768 0.009518 0.009440 0.042851 0.001291 0.004697 29.6 19.6 7.73
65536 0.022920 0.022261 0.096403 0.002856 0.010423 30.3 19.7 7.72

131072 0.050810 0.048990 0.201429 0.006450 0.020761 31.0 19.7 7.73
262144 0.124608 0.120097 0.458788 0.015064 0.039021 31.9 19.7 7.72
524288 0.287857 0.276315 0.998540 0.062928 0.083262 33.0 19.7 7.72

Table 3. Running times for random strings of length 1,000,000 and alphabet size π

p-suffix array PLCP array
π Radix Bucket Qsort P-Kasai Naive avg lcp avg zlen %C
2 0.351 0.327 1.144 0.203 0.124 19.8 1.5 75.0
4 0.387 0.363 0.851 0.228 0.109 11.5 2.2 55.5
8 0.430 0.404 0.839 0.242 0.112 10.7 3.2 40.6

16 0.493 0.459 0.975 0.239 0.121 12.2 4.7 29.4
32 0.522 0.495 1.114 0.225 0.131 15.1 6.8 21.2
64 0.543 0.528 1.346 0.204 0.145 19.4 9.7 15.2

128 0.584 0.572 1.645 0.187 0.161 25.7 13.9 10.8
256 0.633 0.613 2.111 0.170 0.186 34.2 19.7 7.70
512 0.697 0.688 2.708 0.159 0.224 45.1 28.0 5.48

1024 0.754 0.754 3.570 0.147 0.264 61.1 39.8 3.89
2048 0.851 0.825 4.688 0.141 0.360 84.8 56.4 2.75
4096 0.940 0.921 6.309 0.132 0.454 118.6 79.8 1.95
8192 0.984 0.990 8.373 0.127 0.628 165.8 113.1 1.38

16384 1.039 1.068 11.570 0.124 0.864 230.3 160.0 0.978
32768 1.289 1.074 15.510 0.119 1.266 317.0 226.2 0.691
65536 0.967 1.070 21.972 0.115 1.896 430.8 320.0 0.489

131072 0.834 0.992 30.362 0.112 3.058 578.2 453.5 0.345
262144 0.667 0.946 42.425 0.111 5.780 766.4 640.4 0.245
524288 0.509 0.941 58.855 0.105 9.795 1019.7 907.2 0.173

on all suffixes. For the PLCP array, we compare the P-Kasai algorithm and a
naive algorithm. %C denotes the percentage of type C suffixes. The running times
were measured by user time, averaged over 100 and 10 iterations for random
strings and files, respectively. In the tables, they are presented in second.

Our algorithms are clearly much faster than naive methods except for the
PLCP computation when the average lcp is small.
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Table 4. Running times for files from several corpora

p-suffix array PLCP array
File Radix Bucket Qsort P-Kasai Naive length avg lcp avg

zlen
%C

Artificial
aaa.txt 0.0060 0.0044 175.3258 0.0023 17.0399 100000 49999.5 1.0 99.9
alphabet.txt 0.0060 0.0040 168.2780 0.0024 16.9446 100000 49999.5 26.0 99.9
random.txt 0.0350 0.0321 0.0947 0.0049 0.0102 100000 17.7 9.6 15.2
Canterbury
alice29.txt 0.0492 0.0477 0.1174 0.0088 0.0163 152089 13.6 5.5 31.0
asyoulik.txt 0.0413 0.0379 0.0896 0.0070 0.0125 125179 13.4 5.9 27.5
cp.html 0.0078 0.0073 0.0175 0.0010 0.0036 24603 18.6 6.2 25.1
fields.c 0.0027 0.0025 0.0062 0.0004 0.0016 11150 18.6 5.2 30.0
grammar.lsp 0.0006 0.0006 0.0016 0.0001 0.0004 3721 13.5 5.0 30.2
lcet10.txt 0.1645 0.1544 0.4040 0.0534 0.0510 426754 15.8 5.6 30.5
plrabn12.txt 0.1862 0.1849 0.4506 0.0728 0.0537 481861 13.6 6.1 29.0
xargs.1 0.0008 0.0007 0.0021 0.0001 0.0004 4227 11.6 6.2 28.6
Large
E.coli 2.9639 2.9823 7.0833 1.4862 1.0672 4638690 19.3 2.2 55.9
bible.txt 3.1321 3.0253 6.5019 1.1278 0.9816 4047392 18.0 5.5 31.6
world192.txt 2.0905 2.0194 3.9638 0.6075 0.7444 2473400 31.3 5.9 28.2
Misc.
pi.txt 0.4567 0.4529 0.8871 0.2449 0.1174 1000000 11.0 3.6 36.6
Lightweight
chr22.dna 31.8458 29.8698 4119.5402 12.6971 249.1254 34553758 1980.9 2.0 59.5
etext99 8.4958 7.8785 14.1768 1.9445 3.3963 6291456 94.6 5.6 29.7
howto 80.2950 77.1156 151.0006 13.6105 49.7969 39422105 273.8 4.8 34.9

5 Conclusion and Future Work

Using several characteristics of parameterized suffixes, we introduced techniques
to speed up the direct construction of parameterized suffix arrays and PLCP
arrays. The worst case time complexity of sorting the suffixes is O(n3) when using
a standard Quicksort on strings. For example, considering pv (abbaabb . . .) =
0013131 . . ., gives one type B block of size n/2 requiring O(n3) time. However,
since the size of the blocks to be sorted is reduced considerably compared to
n, the total time required for our algorithm is much faster than a näıve use of
Quicksort.

From a theoretical viewpoint, a näıve radix sort would give an O(n2) time
algorithm. It is an open problem if there exists better worst-case time algorithms
for p-suffix array construction. Similarly, for PLCP arrays, the P-Kasai algorithm
runs in O(n2) time. However, we do not know if this bound is tight, or if there
exist linear time algorithms for PLCP array construction.
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Abstract. There are known crossing numbers of Cartesian products of
stars with all graphs of order at most four. In this paper we are dealing
with the Cartesian products of stars with graphs on five vertices. We
give the exact values of crossing numbers for some of these graphs and
we summarise all known results concerning crossing numbers of these
graphs. In addition, we give the crossing number of the join product of
star and the cycle C5 with one additional edge.

Keywords: graph, drawing, crossing number, star, Cartesian product.

1 Introduction

Let G be a simple and undirected graph with vertex set V (G) and edge set E(G).
The crossing number cr(G) of the graph G is the minimum number of pairwise
intersections of edges in all drawings of G in the plane. It is easy to see that
a drawing with minimum number of crossings (an optimal drawing) is always a
good drawing, meaning that no edge crosses itself, no two edges cross more than
once, and no two edges incident with the same vertex cross. The investigation
on crossing numbers of graphs is a classical and however very difficult problem.
Garey and Johnson [4] have proved that this problem is NP–complete. According
to their special structure, Cartesian products of special graphs are one of few
graph classes for which the exact values of crossing numbers were obtained. (For
a definition of Cartesian product, see [1].)

Let D (D(G)) be a good drawing of the graph G. We denote the number of
crossings in the drawing D by crD(G). Let Gi and Gj be edge-disjoint subgraphs
of the graph G. We denote by crD(Gi, Gj) the number of crossings between edges
of Gi and edges of Gj , and by crD(Gi) the number of crossings among edges of
Gi in D. It is easy to see that for any three edge-disjoint subgraphs Gi, Gj , and
Gk of the graph G the following equations hold:

crD(Gi ∪Gj) = crD(Gi) + crD(Gj) + crD(Gi, Gj) ,
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crD(Gi ∪Gj , Gk) = crD(Gi, Gk) + crD(Gj , Gk) . (1)

Let Pn and Cn be the path and the cycle of length n, respectively, and the star
Sn be the complete bipartite graph K1,n. In [1] Beineke and Ringeisen asked on
the crossing numbers of Cartesian products of small graphs with paths, cycles
and stars. For the path, the crossing numbers of G×Pn are known for all graphs
G of order at most five, see [8,10,11,14], and for the cycle, the crossing numbers
of G × Cn are given for all graphs G with at most four vertices [1,10,11,16].
In [15], the known crossing numbers of G × Cn are summarised for graphs on
five vertices. The crossing numbers of stars and all graphs of order three or four
are given in [1,8,10,11]. For some graphs of order five, the crossing numbers of
Cartesian products with stars are given in [13]. We extend these results and
we establish the crossing numbers for Cartesian products of stars with several
graphs of order five.

In this paper, some proofs are based on Kleitman’s result on crossing numbers
of complete bipartite graphs. More precisely, in [9] he proved that

cr(Km,n) =
⌊m

2

⌋⌊m− 1
2

⌋⌊n

2

⌋⌊n− 1
2

⌋
, if m ≤ 6 . (2)

For convenience, the number �m
2 	�

m−1
2 	�n

2 	�
n−1

2 	 is often denoted by Z(m, n)
in our paper. In the proofs of this paper, we will often use the term “region”
also in nonplanar drawings. In this case, crossings are considered to be vertices
of the “map”.

2 Cartesian Products of Stars and Graphs of Order Five

In the Table 1, one can find all 21 connected graphs on five vertices. In [2]
Bokal proved the conjecture given by Jendrol’ and Ščerbová [8] that cr(K1,n ×
Pm) = (m − 1)�n

2 	�
n−1

2 	 for the path Pm of length m. Hence, cr(G1 × Sn) =
cr(P4 × Sn) = 3�n

2 	�
n−1

2 	. The same author in [3] proved that for every tree
T with n2 vertices of degree two and n3 vertices of degree three cr(T × Sn) =
�n

2 	((n2 + 2n3)�n−1
2 	 + 1). Thus, cr(G3 × Sn) = 3�n

2 	�
n−1

2 	 + �n
2 	. As there

is a drawing of the graph G4 × Sn with 3�n
2 	�

n−1
2 	 + �n

2 	 crossings and the
graph G4 × Sn contains G3 × Sn as a subgraph, cr(G4 × Sn) = 3�n

2 	�
n−1

2 	 +
�n

2 	. In [13], the crossing numbers of the graphs G11 × Sn and G14 × Sn are
given. Huang and Zhao proved in [7] that the crossing number of the complete
tripartite graph K1,4,n is n(n− 1). As the graph S4 × Sn is a subdivision of the
graph K1,4,n, cr(S4 × Sn) = cr(G2 × Sn) = n(n − 1). Both graphs G6 and G9
contain the graph G2 as a subgraph and therefore, cr(G6 × Sn) ≥ cr(G2 × Sn)
and cr(G9 × Sn) ≥ cr(G2 × Sn). It is not difficult to find drawings of both
graphs G6 × Sn and G9 × Sn with exactly n(n− 1) crossings. This implies that
cr(G6 × Sn) = cr(G9 × Sn) = n(n − 1). The crossing number of the graph
G10 × Sn is 4�n

2 	�
n−1

2 	 + 2n, see [12]. The graph G17 × Sn contains G10 × Sn

as a subgraph and hence, cr(G17 × Sn) ≥ cr(G10 × Sn). As there is a drawing
of the graph G17 × Sn with 4�n

2 	�
n−1

2 	 + 2n crossings, the crossing number of
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Table 1. The known crossing numbers for Cartesian products of stars and graphs of
order five
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the graph G17 × Sn is 4�n
2 	�

n−1
2 	+ 2n also. He and Huang [5] proved that the

crossing number of the Cartesian product G19 × Sn is 4�n
2 	�

n−1
2 	 + 2n + �n

2 	.
In the next sections we give the exact values of crossing numbers of the graphs
Gi × Sn for i = 13, 15, and 18.

3 The Crossing Number of G13 + nK1

Our aim is to establish the crossing number of the graph G13 × Sn. To prove
that cr(G13 × Sn) = 4�n

2 	�
n−1

2 	 + �n
2 	, we need to know the crossing number

of the join of the graph G13 with n isolated vertices. The join product of two
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Fig. 1. The graph G13 + nK1

graphs Gi and Gj , denoted by Gi + Gj , is obtained from vertex-disjoint copies
of Gi and Gj by adding all edges between V (Gi) and V (Gj). For |V (Gi)| = m
and |V (Gj)| = n, the edge set of Gi +Gj is the union of disjoint edge sets of the
graphs Gi, Gj , and the complete bipartite graph Km,n . In this section, we denote
the graph G13 by H . The graph H consists of one 5-cycle, denoted by C5(H) in
the paper, and of one additional edge. The graph H + nK1 consists of one copy
of the graph H and n vertices t1, t2, . . . , tn, where every vertex ti, i = 1, 2, . . . , n,
is adjacent to five vertices of H . Let for i = 1, 2, . . . , n, T i denote the subgraph
induced by five edges incident with the vertex ti and let F i = H ∪ T i. For the
simpler labelling, let Hn denote the graph H + nK1, in this paper. In Figure 1
one can easily see that

H + nK1 = Hn = H ∪K5,n = H ∪
(

n⋃
i=1

T i

)
. (3)

Theorem 1. cr(H + nK1) = 4�n
2 	�

n−1
2 	+

⌊
n
2

⌋
for n ≥ 1.

Proof. The drawing in Figure 1 shows that cr(H+nK1) ≤ Z(5, n)+�n
2 	 and that

the theorem is true if equality holds. We prove the reverse inequality by induction
on n. As the graph H+K1 is planar, the case n = 1 is trivial. The graph H+2K1
contains a subgraph homeomorphic to K5 and hence, cr(H+2K1) ≥ 1. A suitable
drawing of the graph H + 2K1 with one crossing shows that cr(H + 2K1) ≤ 1,
and the case n = 2 is also true. Suppose now that for n ≥ 3

cr(Hn−2) ≥ Z(5, n− 2) +
⌊n− 2

2

⌋
(4)

and consider such a drawing D of Hn that

crD(Hn) < Z(5, n) +
⌊n

2

⌋
. (5)

Assume that there are two different subgraphs T i and T j that do not cross each
other in D. Without loss of generality, let crD(T n−1, T n) = 0. The subdrawing of
T n−1∪T n induced from D divides the plane in such a way that no three vertices
of degree two (the vertices of H) are placed on the boundary of some region. If
the edges of T n−1∪T n cross in D the cycle C5(H), then crD(H, T n−1∪T n) ≥ 1.
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Otherwise the vertices tn−1 and tn are placed in D in different regions in the
view of the subdrawing of C5(H). In this case the edge of H not belonging
to C5(H) crosses some edge of T n−1 ∪ T n and crD(H, T n−1 ∪ T n) ≥ 1 again.
Moreover, as cr(K5,3) = 4, in D every subgraph T i, i = 1, 2, . . . , n− 2, crosses
T n−1 ∪ T n at least four times. Since Hn = H + nK1 = Hn−2 ∪ (T n−1 ∪ T n) and
Hn−2 = K5,n−2 ∪H , using (1) we have

crD(Hn) = crD(Hn−2) + crD(T n−1 ∪ T n) + crD(K5,n−2, T
n−1 ∪ T n)

+ crD(H, T n−1 ∪ T n) ≥ Z(5, n− 2) +
⌊n− 2

2

⌋
+ 4(n− 2) + 1

≥ Z(5, n) +
⌊n

2

⌋
.

This contradicts (5).
Hence, crD(T i, T j) �= 0 for all i, j = 1, 2, . . . , n, i �= j. Moreover, using (1)

and (3) together with cr(K5,n) = Z(5, n) we have

crD(Hn) = crD(K5,n) + crD(H) + crD(K5,n, H)

≥ Z(5, n) + crD(H) + crD(K5,n, H) .

This, together with the assumption (5), implies that

crD(H) + crD(K5,n, H) <
⌊n

2

⌋
(6)

and hence, in D there is at least one subgraph T i which does not cross H .
Without loss of generality, let crD(H, T n) = 0 and let Fn be the subgraph

H ∪ T n of the graph Hn. In the drawing D there is at least one subgraph T i,
i ∈ {1, 2, . . . , n−1}, for which crD(Fn, T i) ≤ 2, otherwise, as Hn = K5,n−1∪Fn,
we have

crD(Hn) = crD(K5,n−1) + crD(Fn) + crD(K5,n−1, F
n)

≥ Z(5, n− 1) + 3(n− 1) ≥ Z(5, n) +
⌊n

2

⌋
.

This contradicts (5). Consider now the subdrawing D∗ of Fn induced by D.
Our next analysis depends on whether or not the 5-cycle C5(H) has an internal
crossing in D∗.

Assume first, that the edges of C5(H) do not cross each other. Since the edges
of T n do not cross the edges of H , all edges of T n are placed in D∗ in one of
two regions, say outside, in the view of the subdrawing of C5(H) and the edge
of H not belonging to C5(H) is placed inside the cycle C5(H). The unique such
drawing D∗ is shown in Figure 2. It is easy to see that if, in D, some vertex
ti, i ∈ {1, 2, . . . , n − 1}, is placed in the region β1, then H is crossed by at
least two edges joining ti with the vertices of H . Moreover, as T i crosses T n,
crD(Fn, T i) ≥ 3. Consider now the region β2. One vertex of H does not appear
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a1

b1

b2
a2

Fig. 2. The subdrawing of F n = H ∪ T n

on the boundary of this region. So, if ti is placed in D in the region β2, then
crD(H, T i) ≥ 1 and crD(T n, T i) ≥ 1. On the boundary of the region α1 there
are only two vertices of H , and therefore, if the vertex ti is placed in D in the
region α1, crD(Fn, T i) ≥ 3. For crD(Fn, T i) = 3, the necessary condition is
that one edge of T i joining ti with the vertex of H on the boundaries of the
regions α2 and β1 crosses the edge of H on the boundary of α1. If no edge of T i

crosses this edge of H , then crD(Fn, T i) ≥ 4. Regarding to the symmetry of D∗,
the same holds for the region α2. For the remaining three regions of D∗, three
vertices of H do not appear on its boundary and one of them does not appear
on the boundaries of the neighbouring regions. So, if ti is placed in D in some of
the mentioned three regions, then the edges of T i cross the edges of Fn at least
four times.

Let r be the number of vertices ti, i ∈ {1, 2, . . . , n−1}, which are placed in D
in the region β2. In the drawing D, every such subgraph T i crosses Fn at least
two times and at least one of these crossings appears on the edges of H . Let s be
the number of vertices ti placed in D in the region β1 and such vertices ti placed
in the regions α1 and α2 for which T i crosses F only three times. Every such
subgraph T i crosses also H . Since crD(Fn, T j) ≤ 2 for some j ∈ {1, 2, . . . , n−1},
we have r ≥ 1, and it follows from (6) that r + s < �n

2 	. Now

crD(Hn) = crD(K5,n−1) + crD(Fn) + crD(K5,n−1, F
n)

≥ Z(5, n− 1) + 2r + 3s + 4(n− r − s− 1)

= Z(5, n)− 4
⌊n− 1

2

⌋
+ 4n− 4− 2r − s .

This, together with the assumption (5), gives

2r + s > 4n− 4− 4
⌊n− 1

2

⌋
−
⌊n

2

⌋
= 3
⌊n

2

⌋
.

On the other hand, r + s < �n
2 	 and the inequality

2r + s > 3
⌊n

2

⌋
> 3(r + s)

implies that
r + 2s < 0 .
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This contradiction with r > 0 and s ≥ 0 confirms that there is no drawing of
the graph Hn with fewer than Z(5, n) + �n

2 	 crossings in which the edges of the
5-cycle C5(H) do not cross each other.

Assume now that the edges of C5(H) cross each other in D. We remark
that in D there is at least one subgraph T j, j ∈ {1, 2, . . . , n − 1}, for which
crD(Fn, T j) ≤ 2. As crD(T n, T i) �= 0 for all i = 1, 2, . . . , n − 1, the inequality
crD(Fn, T j) ≤ 2 implies that crD(C5(H), T j) ≤ 1. Since crD(C5(H), T n) = 0,
the vertex tn of T n lies in D∗ in the region with all five vertices of C5(H)
on its boundary, and the condition crD(C5(H), T j) ≤ 1 enforces that in the
subdrawing of C5(H)∪ T n there is a region with at least four vertices of C5(H)
on its boundary. This is possible only in the case when two edges incident with
a common vertex of C5(H) cross, a contradiction with the requirement that the
drawing D is good. This completes the proof. ��

4 The Crossing Number of Gi × Sn for i = 13, 15, and 18

Let K be a connected graph on five vertices. Consider a graph GK obtained
by joining all vertices of K to five vertices of a connected graph G such that
every vertex of K be adjacent to exactly one vertex of G. Let G∗

K be the graph
obtained from GK by contracting the edges of K.

Lemma 1. If G is a connected graph and K = G13, then cr(G∗
K) ≤ cr(GK).

Proof. Assume an optimal drawing of GK . Let x1, x2, . . . , x6 denote the numbers
of crossings on the edges of the graph K in this drawing as shown in Figure 3(a).
The drawing in Figure 3(b) shows that if x4 ≤ x2+x5, then K can be contracted
such that the resulting drawing does not have more crossings than the original.
Due to symmetry of the graph G13, the same holds if x5 ≤ x1 + x4.

Assume that the statement of Lemma 1 is not true. Then there is a good
drawing of the graph GK in which x4 > x2 + x5 and x5 > x1 + x4. Combining
these inequalities we have the inequality

x4 > x2 + x5 > x2 + x1 + x4 ,

which implies that

x1 x2

x3

x
4 x5

x6

(a) (b)

k

Fig. 3. The contraction of G13
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x1 + x2 < 0 .

This contradiction with xi ≥ 0 for i = 1, 2, . . . , 5 completes the proof. ��

Lemma 2. If G is a connected graph and K = G15, then cr(G∗
K) ≤ cr(GK)−1.

Proof. As the graph K = G15 contains K2,3 as a subgraph and the graph K2,3
is not outer-planar, in every good drawing of the graph GK there is at least
one crossing on the edges of the K2,3-subgraph of K. In the graph GK , the
subgraph K contains two vertices of degree five and three vertices of degree
three. Let us denote by v1 and v2 the vertices of degree five and let e1, e2, e3 and
f1, f2, f3 be the edges of the K2,3-subgraph of K incident with the vertices v1 and
v2, respectively. Assume an optimal drawing of the graph GK . If some of the
edges e1, e2, and e3 is crossed, then the subdrawing obtained by deleting the
edges e1, e2, and e3 has at least one crossing less than the original. If none of
the edges e1, e2, and e3 is crossed, then there is at least one crossing on the edges
f1, f2, and f3. In this case, the subdrawing of the subgraph GK−{f1, f2, f3} has
at least one crossing less than the original. Both subgraphs GK−{e1, e2, e3} and
GK − {f1, f2, f3} are homeomorphic to the graph G∗

K , and therefore cr(G∗
K ) ≤

cr(GK)− 1. ��

Theorem 2. cr(G13 × Sn) = 4�n
2 	�

n−1
2 	+

⌊
n
2

⌋
for n ≥ 1.

Proof. In Figure 4 there is the drawing of the graph G13×Sn with 4�n
2 	�

n−1
2 	+

�n
2 	 crossings. Hence, cr(G13 × Sn) ≤ 4�n

2 	�
n−1

2 	 + �n
2 	. To prove the reverse

inequality we assume that there is a drawing of the graph G13 × Sn with fewer
than 4�n

2 	�
n−1

2 	+ �n
2 	 crossings. As contracting the edges of every non–central

copy of G13 in the graph G13 × Sn results in a graph isomorphic to the graph
G13 +nK1, in accordance with Lemma 1 we have cr(G13 +nK1) < 4�n

2 	�
n−1

2 	+
�n

2 	. This contradiction with Theorem 1 completes the proof. ��

Theorem 3. cr(G15×Sn) = cr(G18×Sn) = 4�n
2 	�

n−1
2 	+2n+

⌊
n
2

⌋
for n ≥ 1.

Fig. 4. The graph G13 × Sn
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Fig. 5. The graph G15 × Sn

Proof. In Figure 5 there is the drawing of the graph G15×Sn with 4�n
2 	�

n−1
2 	+

2n + �n
2 	 crossings. Hence, cr(G15 × Sn) ≤ 4�n

2 	�
n−1

2 	+ 2n + �n
2 	. To prove the

reverse inequality we assume that there is a drawing of the graph G15×Sn with
fewer than 4�n

2 	�
n−1

2 	 + 2n + �n
2 	 crossings. As contracting the edges of every

non–central copy of G15 in the graph G15×Sn results in a graph isomorphic to the
graph K1,1,3,n, in accordance with Lemma 2 we have cr(K1,1,3,n) < 4�n

2 	�
n−1

2 	+
n+ �n

2 	. This is in contradiction with the result of Ho Pak Tunk [6] which states
that cr(K1,1,3,n) = 4�n

2 	�
n−1

2 	 + n + �n
2 	 for all n ≥ 1. Hence, cr(G15 × Sn) =

4�n
2 	�

n−1
2 	+ 2n +

⌊
n
2

⌋
.

In Figure 5 it is possible to draw n + 1 edges (one edge in every copy of G15)
without increasing the number of crossings and obtain the drawing of the graph
G18×Sn with 4�n

2 	�
n−1

2 	+2n+
⌊

n
2

⌋
crossings. Thus, we have the upper bound.

On the other hand, the graph G18 × Sn contains G15 × Sn as a subgraph and
this implies that cr(G18 × Sn) = 4�n

2 	�
n−1

2 	 + 2n +
⌊

n
2

⌋
. This completes the

proof. ��
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Abstract. Fronček and Kovářová provided in [2] and [3] spanning trees
of order 2n that factorize K2n for every n ≥ 2 and for every feasible
diameter d, 3 ≤ d ≤ 2n − 1. We extend their work and give a spanning
tree on 2n vertices with a maximum degree Δ that factorize K2n for
every n ≥ 2 and for every feasible 2 ≤ Δ ≤ n. We give a construction
for both symmetric and non-symmetric spanning trees.

1 Introduction

Factorization of complete graphs into isomorphic subgraphs is a well established
topic of graph theory and design theory. During the years various classes of
graphs were examined whether they do factorize the corresponding complete
graph, provided certain necessary conditions are satisfied. For a surprisingly
long time hardly anything was known about factorization of complete graphs
K2n into isomorphic spanning trees. Note that a spanning tree factorization of a
complete graph on an odd number of vertices is not possible since the number of
edges of the spanning tree does not divide the number of edges of the complete
graph. Till 1997 only factorizations into hamiltonian paths and doublestars were
known (a doublestar arises by joining the centers of two stars K1,n−1 by an edge).
In 1997 comes the first major step by Eldergill. In his M.Sc. thesis [1] he gave
a necessary and sufficient condition for the existence of a cyclic factorization of
K2n into symmetric trees and characterized completely which trees of order 10 do
and which do not factorize K10. About non-symmetric trees of order higher than
10 nothing was known, since the cyclic factorization cannot be used. Another
breakthrough was the paper [2] by Fronček who introduces new techniques of
2-cyclic and bi-cyclic spanning tree factorization of K2n. These methods are
based on the ρ-labeling (see below), thus they can be used for factorization of
K2n only for odd n. In 2004 Kovářová introduced in [4] k-cyclic factorization of
K2kn which extends the decomposition for any k ≥ 2 and n odd. Finally, also in
2004, in [3] Kovářová introduced the swapping labeling which can be used for
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decompositions of K2n for n even and lifts the requirement of n being a multiple
of an odd number (see below).

From what was said it is obvious that finding a symmetric spanning tree fac-
torization is easier than for non-symmetric spanning trees. We solve the problem
announced in the abstract first for symmetric trees and in Sec. 4 we look also for
a non-symmetric spanning tree factorization of K2n for every feasible maximum
degree.

2 Definitions and Notation

We consider only graphs with no loops or multiple edges. We begin by stating
well known definitions.

A symmetric tree is a tree T that contains an edge e = xy (called a bridge)
such that there exists an automorphism φ of T , in which φ(x) = y and φ(y) = x.
In other words we take two copies (called banks) of an arbitrary tree T ′ and a
couple of corresponding vertices x, y, one in each copy, and join them by an edge
e = xy. The resulting graph is a symmetric tree and all symmetric trees can
be obtained in this way. Notice, that a symmetric tree is always of even order.
A broom Bn(k) is a tree, which arises from a path P of length n − k − 1 by
attaching one endvertex of P to the center of a star K1,k, where 1 ≤ k ≤ n− 1.
For k = 1 Bn(k) is the path Pn and for k = n − 1 Bn(k) is isomorphic to the
star K1,n−1. A caterpillar R is a tree such that by deleting all leaves we obtain
a path P or an isolated vertex. This nontrivial path P (if it exists) is called the
spine of R.

Definition 1. Let H be a graph on n vertices. A decomposition of the graph
H is a set of pairwise edge disjoint subgraphs G = {G1, G2, . . . , Gt} of H such
that every edge of H belongs to precisely one of the subgraphs Gi, 1 ≤ i ≤ t. If
each subgraph Gi is isomorphic to a graph G we speak about a G-decomposition
of H. If G is a connected factor of H, then the G-decomposition is often called
a G-factorization.

There are two obvious necessary conditions for the existence of a factorization of
the complete graph Km into spanning trees isomorphic to a given tree T . First,
m must be even, since the number of edges of T , m−1, must divide m(m−1)/2,
the number of edges of Km. Therefore, we consider only factorizations of the
complete graph K2n. There will always be n = m/2 factors isomorphic to T .
Second, the number of factors is n and each vertex in K2n must be in every
factor of degree at least one, thus the maximum degree of T cannot exceed n.

Definition 2. Let λ be an injection from the vertex set of a graph G with h
edges into the set L = {0, 1, . . . , 2h} and let the length of every edge e = xy in
G be determined by �(xy) = min{|λ(x)−λ(y)|, 2h+1−|λ(x)−λ(y)|}. Then we
say the graph G has a ρ-labeling if G contains edges of all lengths from 1 to h.
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The ρ-labeling was introduced by Rosa [5]. In the text below we usually identify
vertices and their labels. This will be convenient and it shall lead to no misun-
derstanding since the labelings are injective. In particular, we will refer to the
xy edges with end-vertices labeled by λ(x), λ(y) as (λ(x), λ(y)) edges.

For factorizations of regular complete bipartite graphs Kn,n Fronček intro-
duced in [2] the bipartite ρ-labeling.

Definition 3. Let G be a bipartite graph with n edges and the vertex set V (G) =
V0 ∪ V1. Let λ be an injection λ : Vi → Si, where Si is a subset of the set
{0i, 1i, . . . , (n − 1)i}, i = 0, 1. The length of an edge x0y1 for x0 ∈ V0 and
y1 ∈ V1 with λ(x0) = a0 and λ(y1) = b1 is defined as

�01(x0y1) =
{

b − a for b ≥ a,
n + (b− a) for b < a.

If the set of all lengths of n edges is equal to {0, 1, 2, . . . , n − 1}, then λ is a
bipartite ρ-labeling.

The following theorem was shown in [2].

Theorem 1. Let a bipartite graph G with n edges have a bipartite ρ-labeling.
Then there exists a G-decomposition of Kn,n into n copies of G.

Notice that if G is a spanning graph we obtain a G-factorization of Kn,n.
The following concept was introduced by Eldergill in [1]. Recall that φ is the

automorphism of a symmetric tree that takes one bank onto the other.

Definition 4. A labeling of a symmetric tree G with 2n− 1 edges and banks T ,
T ′ is ρ-symmetric graceful if T has a ρ-labeling and φ(i) = i+n for each vertex i
in T , where φ(i) is the corresponding vertex in T ′ and the addition is performed
modulo 2n.

Theorem 2. Let G be a symmetric graph with 2n− 1 edges. Then there exists
a cyclic G-decomposition of K2n if and only if G has a ρ-symmetric graceful
labeling.

Before we describe the main tool used in our constructions, we have to define
the concept of edge lengths that are used in labeling suitable for factorizations.

Definition 5. Let G be a graph with V (G) = V0 ∪ V1, V0 ∩ V1 = ∅, and |V0| =
|V1| = r. Let λ be an injection, λ : Vi −→ {0i, 1i, . . . , (r − 1)i}, i = 0, 1.

The pure length of an edge xiyi with xi, yi ∈ Vi, where i ∈ {0, 1}, for λ(xi) =
pi and λ(yi) = qi is defined as

�ii(xiyi) = min{|p− q|, r − |p− q|}.

The mixed length of an edge x0y1 with x0 ∈ V0, y1 ∈ V1, for λ(x0) = p0 and
λ(y1) = q1, is defined as

�01(x0y1) =
{

q − p for q ≥ p,
q − p + r for q < p,
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where p, q ∈ {0, 1, . . . , r − 1} are the vertex labels without subscripts. The edges
xiyi for i = 0, 1 with the pure length �ii are called pure ii-edges and the edges
x0y1 with the mixed length �01 are called mixed edges.

Definition 6. Let G be a graph with 4n+1 edges, V (G) = V0∪V1, V0∩V1 = ∅,
and |V0| = |V1| = 2n + 1. Let λ be an injection, λ : Vi → {0i, 1i, . . . , (2n)i},
i = 0, 1 and let the lengths be defined in Definition 5. We say G has a blended
labeling if

(1) {�ii(xiyi): xiyi ∈ E(G)} = {1, 2, . . . , n} for i = 0, 1 and
(2) {�01(x0y1): x0y1 ∈ E(G)} = {0, 1, . . . , 2n}.

Blended labeling was introduced by Fronček [2] as a generalization of the ρ-
symmetric graceful labeling. Notice that in comparison to Definition 4 the re-
quirement for T to be symmetric is lifted. However, the order of G has to be 2
modulo 4. For a proof of the following theorem see [2].

Theorem 3. Let G be a graph on 4n+ 2 vertices with 4n+1 edges. If G allows
a blended labeling, then there exists a G-decomposition of K4n+2 into 2n + 1
isomorphic copies of G.

If G is a spanning tree in K4n+2 with a blended labeling then by Theorem 3 it
factorizes K4n+2.

The swapping labeling was introduced by Kovářová in [4]. Unlike the blended
labeling this labeling guarantees the decomposition of complete graphs of order
0 modulo 4.

Definition 7. A graph G with 4n−1 edges has a swapping labeling if the follow-
ing is satisfied. The vertex set V (G) = V0∪V1, V0∩V1 = ∅, and |V0| = |V1| = 2n.
Let λ be an injection, λ : Vi → {0i, 1i, . . . , (2n − 1)i} for i = 0, 1. Suppose the
lengths are defined as in Definition 5, then

(1) {�ii(xiyi): xiyi ∈ E(G)} = {1, 2, . . . , n}, for i = 0, 1,
(2) there exists an isomorphism ϕ s.t. G is isomorphic to G′, where V (G′) =

V (G) and E(G′) = E(G)\{(k0, (k+n)0), (l1, (l+n)1)}∪{(k0, (l+n)1), ((k+
n)0, l1)},

(3) {�01(x0y1): x0y1 ∈ E(G)} = {0, 1, . . . , 2n− 1} \ {�01(k0, (l + n)1)}.

Theorem 4. Let G be a graph on 4n vertices with 4n− 1 edges. If G allows a
swapping labeling, then there exists a G-decomposition of K4n into 2n isomorphic
copies of G.

A proof is in [4]. If G is a spanning tree in K4n with a swapping labeling then
by Theorem 4 it factorizes K4n.

3 Symmetric Spanning Trees for Every 2 ≤ Δ ≤ n

Lemma 5. There exists a symmetric spanning tree T on 2n vertices with max-
imum degree Δ that allows a ρ-symmetric graceful labeling for every n ≥ 2 and
2 ≤ Δ ≤ n.
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2 3 1 4 0

5 6 7

10119128

151413
︷ ︸︸ ︷B8(3) ︷ ︸︸ ︷B8(3)

Fig. 1. A symmetric tree of order 2n = 16 and Δ = 5

Proof. The proof is constructive. Let 3 ≤ Δ ≤ n. We take a broom Bn(Δ − 2)
(see Fig. 1). It is well-known ([5]) that every caterpillar allows a graceful labeling.
Since Bn(Δ− 2) is a caterpillar (or a path for Δ− 2 = 1), we find for Bn(Δ− 2)
a graceful labeling (Fig. 1). Then we take a copy of Bn(Δ− 2) and we label its
vertices so that if a vertex in Bn(Δ− 2) is labeled by i, i ∈ {0, 1, . . . , n− 1}, the
corresponding vertex in the copy of Bn(Δ − 2) is labeled by i + n. Finally, we
add the edge (j, j +n) between the two disjoint copies Bn(Δ−2), where j is the
label of the vertex of degree Δ − 1 in Bn(Δ − 2), j ∈ {0, 1, . . . , n − 1}. Hence,
we obtain a symmetric tree T of order 2n with two vertices of maximum degree
Δ and with a ρ-symmetric graceful labeling for every 2 ≤ Δ ≤ n (Fig. 1). ��

By Lemma 5 and Theorem 2 we have the following corollary.

Theorem 6. There exists a symmetric spanning tree T on 2n vertices with max-
imum degree Δ that factorizes K2n for every n ≥ 2 and 2 ≤ Δ ≤ n.

4 Non-symmetric Spanning Trees for Every 3 ≤ Δ ≤ n

Since K4 has only a P4-factorization, P4 being the hamiltonian path, and every
hamiltonian path of order 2n is a symmetric spanning tree, we consider only
n ≥ 3 and Δ ≥ 3.

Lemma 7. There exists a non-symmetric spanning tree T on 2n vertices with
maximum degree Δ that allows a blended labeling for every odd n ≥ 3 and every
3 ≤ Δ ≤ n.

Proof. The proof is constructive. Let n = 2k + 1. We distinguish two cases and
show that trees T for k + 2 ≤ Δ ≤ 2k + 1 and T ′ for 3 ≤ Δ ≤ k + 1 allow a
blended labeling (Fig. 2 and 3). To describe the blended labeling, we split T and
T ′, respectively, into three subtrees T0, T01, T1 and T ′

0, T
′
01, T

′
1, respectively. T0

contains only pure 00-edges, T01 only mixed edges and T1 only pure 11-edges of
the tree T with a blended labeling (Fig. 2). Similarly, T ′ with a blended labeling
can be split into T ′

0, T
′
01, T

′
1 (Fig. 3).

Case 1. Let k + 2 ≤ Δ ≤ 2k + 1. Suppose Δ = k + m + 1, where 1 ≤ m ≤ k.
The subtree T01 will be a double star with mixed edges (00, 01), (00, 11),

(00, 21), . . . , (00, k1) of lengths 0, 1, . . . , k (in this order) and (01, 10), (01, 20),
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Fig. 2. A non-symmetric tree T with a blended labeling for k−m odd and Δ = k+m+1

. . . , (01, k0) of lengths 2k, 2k − 1, . . . , k + 1 in this order. There is a bipartite
ρ-labeling of T01 in Fig. 2.

The subtree T0 contains pure 00-edges (00, (k+1)0), (00, (k+2)0), . . . , (00, (k+
m)0) of lengths k, k−1, . . . , k−m+1 in this order, and pure 00-edges of the path
(k + m)0, (2k)0, (k + m + 1)0, (2k − 1)0, (k + m + 2)0, (2k − 2)0, . . . , (� 3k+m

2 	)0,
(� 3k+m

2 	+1)0 for odd k−m or (k +m)0, (2k)0, (k + m + 1)0, (2k− 1)0, (k + m +
2)0, (2k− 2)0, . . . , (� 3k+m

2 	+ 1)0, (� 3k+m
2 	)0 for even k−m (Fig. 2). The path is

of length k−m. It is not difficult to check that the path contains pure 00-edges of
lengths k−m, k−m− 1, k−m− 2, . . . , 1 in this order. Notice that for m = k the
path is of length 0. Since vertices in T0 are labeled by 00, 10, . . . , (2k)0 and the k
pure 00-edges achieve all lengths from 1 to k, the subtree T0 has a ρ-labeling.

The subtree T1 contains pure 11-edges (01, (k +1)1), ((k +1)1, (k + 2)1), ((k +
1)1, (k+3)1), . . . , ((k+1)1, (2k)1) of lengths k, 1, 2, . . . , k−1 (in this order). Thus
T1 allows a ρ-labeling.

It is obvious from Fig. 2 that the subtrees T0 and T01 share only the vertex
00 and similarly T01 and T1 share only the vertex 01. Hence we have a non-
symmetric spanning tree T of order 4k + 2 with a blended labeling, which has a
single vertex (namely 00) of degree k + m + 1 = Δ for every m, 1 ≤ m ≤ k, and
the remaining vertices are only of degrees k + 2, k, 2 or 1.
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Fig. 3. A non-symmetric tree T ′ with a blended labeling for k odd, k − m even and
Δ = m + 1

Case 2. Let 3 ≤ Δ ≤ k + 1. Suppose Δ = m + 1, where 2 ≤ m ≤ k.
If k is even then the subtree T ′

01 is the path 00, k1, 10, (k − 1)1, . . . , (k
2 − 1)0,

(k
2 +1)1, (k

2 )0, (k
2 )1, (k

2 +1)0, (k
2 −1)1, . . . , (k−1)0, 11, k0, 01 with mixed edges of

lengths k, k−1, k−2, . . . , 2, 1, 0, 2k, 2k−2, . . . , k+3, k+2, k+1 in this order (Fig. 3).
If k is odd then T ′

01 is the path 00, k1, 10, (k − 1)1, . . . , (k+1
2 + 1)1, (k+1

2 − 1)0,
(k+1

2 )1, (k+1
2 )0, (k+1

2 − 1)1, (k+1
2 + 1)0, . . . , (k − 1)0, 11, k0, 01 with mixed edges

of lengths k, k− 1, k− 2, . . . 2, 1, 0, 2k, 2k− 1, . . . , k + 3, k + 2, k + 1 in this order
(Fig. 3). In both cases the path T ′

01 has a bipartite ρ-labeling, which is easily
verified.

The subtree T ′
0 is the same as the subtree T0 in Case 1. Finally, the subtree T ′

1
contains pure 11-edges of the path 01, (k + 1)1, (2k)1, (k + 2)1,
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(2k−1)1, . . . , (3k+2
2 −1)1, (3k+2

2 )1 for k even or of the path 01, (k+1)1, (2k)1, (k+
2)1, (2k−1)1, . . . , (3k+1

2 +1)1, (3k+1
2 )1 for k odd. In both cases the subtree T ′

1 con-
tains pure 11-edges of all lengths from 1 to k. Therefore, T ′

1 allows a ρ-labeling.
Again the subtrees T ′

0 and T ′
01 share only a single vertex, namely 00, and

similarly T ′
01 and T ′

1 share only the vertex 01. Hence, we have a non-symmetric
spanning tree T ′ of order 4k + 2 with a blended labeling, which has exactly one
vertex, namely 00, of degree m + 1 = Δ for every m, where 2 ≤ m ≤ k, and the
remaining vertices are of degree 2 or 1. ��

By a similar argument we can show the following lemma.

Lemma 8. There exists a non-symmetric spanning tree T on 2n vertices with
a maximum degree Δ that allows a swapping labeling for every even n ≥ 4 and
3 ≤ Δ ≤ n.

Proof. The proof is constructive. Let n = 2k. We distinguish three cases and
show that trees T for k + 2 ≤ Δ ≤ 2k and T ′ for 4 ≤ Δ ≤ k + 1 and a broom
B(2, 4k − 3) for Δ = 3 allows a swapping labeling. We can split T and T ′,
respectively, to three subtrees T0, T01, T1 and T ′

0, T ′
01, T ′

1, respectively (Figs. 4
and 5). Then T0 will contain only pure 00-edges, T01 only mixed edges and T1
only pure 11-edges of the tree T with a swapping labeling. Similarly T ′ with the
swapping labeling is split to T ′

0, T ′
01, T ′

1 (Fig. 5).
Case 1. Let k + 2 ≤ Δ ≤ 2k. We take Δ = k + m + 2, where 0 ≤ m ≤ k − 2.

The subtree T01 will be the double star with mixed edges (00, 01), (00, 11),
(00, 21), . . . , (00, (k − 1)1) of lengths from 0 to k − 1 and (01, 10), (01, 20), . . .,
(01, (k − 1)0) of lengths 2k − 1, 2k − 2, . . . , k + 1 (Fig. 4).

The subtree T0 contains pure 00-edges (00, k0), (00, (k+1)0), (00, (k+2)0), . . .,
(00, (k+m)0) of lengths k, k−1, . . . , k−m, and pure 00-edges of the path 00, (k+
m+1)0, (2k−1)0, (k +m+2)0, (2k−2)0, (k +m+3)0, (2k−3)0, . . . , (� 3k+m

2 	)0,
(� 3k+m

2 	+ 1)0 for odd k −m or 00, (k + m + 1)0, (2k − 1)0, (k + m + 2)0, (2k −
2)0, (k+m+3)0, (2k−3)0, . . . , (� 3k+m

2 	+1)0, (� 3k+m
2 	)0 for even k−m (Fig. 4).

The length of the path is k −m− 1.
It is not difficult to check that the path contains pure 00-edges, of lengths

k −m− 1, k −m− 2, . . . , 1.
The subtree T1 contains pure 11-edges (01, k1), (01, (k+1)1) and ((k+1)1, (k+

2)1), ((k+1)1, (k+3)1), . . . , ((k+1)1, (2k−1)1) of lengths k, k−1 and 1, 2, . . . , k−2.
We see that the subtrees T0 and T01 share only single vertex 00 and similarly,

T01 and T1 share only 01 in T . Further, if we replace the pure edge (00, k0) by the
mixed edge (00, k1) and the pure edge (01, k1) by the mixed edge (01, k0) (both
of length k) in T , then we obtain the spanning tree isomorphic to T (dashed in
Fig. 4).

Hence, we have a non-symmetric spanning tree T of order 4k with a swapping
labeling, which has a single vertex 00 of degree k + m + 2 = Δ for every m, 0 ≤
m ≤ k − 2, and the remaining vertices are only of degrees k + 2, k − 1, 2, or 1.
Case 2. Let 4 ≤ Δ ≤ k + 1. We take Δ = m + 3, where 1 ≤ m ≤ k − 2.

If k is even then T ′
01 is the path 00, (k−1)1, 10, (k−2)1, . . . , (k

2−1)0, (k
2 )1, (k

2 )0,
(k
2 − 1)1, . . . , (k − 2)0, 11, (k − 1)0, 01 with mixed edges of lengths k − 1, k − 2,
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Fig. 4. A non-symmetric tree T with a swapping labeling for k − m odd and Δ =
k + m + 1

k − 3, . . . , 1, 0, 2k− 1, . . . , k + 3, k + 2, k + 1 (Fig. 5). If k is odd then T ′
01 is the

path 00, (k− 1)1, 10, (k− 2)1, . . . , (k−1
2 + 1)1, (k−1

2 )0, (k−1
2 )1, (k−1

2 + 1)0, . . . (k−
1)0, 11, k0, 01 with mixed edges of lengths k − 1, k − 2,
k − 3, . . . 1, 0, 2k − 1, . . . , k + 3, k + 2, k + 1.

The subtree T ′
0 contains pure 00-edges (00, k0), (00, (k+1)0), . . . , (00, (k+m−

1)0) of lengths k, k − 1, . . . , k − m + 1 and pure 00-edges of the path 00, (k +
m)0, (2k − 1)0, (k + m + 1)0, (2k − 2)0, (k + m + 2)0, (2k − 3)0, . . . , (� 3k+m

2 	)0,
(� 3k+m

2 	+ 1)0 for odd k−m or 00, (k + m)0, (2k)0, (k + m + 1)0, (2k− 1)0, (k +
m+2)0, (2k−2)0, . . . , (� 3k+m

2 	+1)0, (� 3k+m
2 	)0 for even k−m. We see that the

edges of the path have lengths k −m, k −m− 1, k −m− 2, . . . , 1 (Fig. 5).
Finally, subtree T ′

1 contains pure 11-edge (01, k1) of length k and pure 11-edges
of the path 01, (k + 1)1, (2k − 1)1, (k + 2)1, (2k − 2)1, . . . , (3k

2 + 1)1, (3k
2 )1 for k

even or of the path 01, (k+1)1, (2k)1, (k+2)1, (2k−1)1, . . . , (3k+1
2 −1)1, (3k+1

2 )1
for k odd. In both cases the subtree T ′

1 contains pure 11-edges of all lengths from
1 to k.

Again, we see that the subtrees T ′
0 and T ′

01 share only single vertex 00 and
similarly, T ′

01 and T ′
1 share only vertex 01 in T ′. If we replace the pure edge

(00, k0) by the mixed edge (00, k1) and the pure edge (01, k1) by the mixed edge
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Fig. 5. A non-symmetric tree T ′ with a swapping labeling for k even, k −m even and
Δ = m + 3

(01, k0) (both of length k) in T ′, then we obtain the spanning tree isomorphic
to T ′. Hence, we have the non-symmetric spanning tree T ′ of order 4k with the
swapping labeling, which has exactly one vertex 00 of degree m + 3 = Δ for
every m, 1 ≤ m ≤ k − 2, and the remaining vertices are of degrees 3, 2, or 1.
Case 3. Let Δ = 3. We take a broom B(2, 4k − 3) and show that B(2, 4k − 3)
admits a swapping labeling for k ≥ 3. Again we can split B(2, 4k − 3) to three
subtrees B0, B01, B1. Then B0 will contain only pure 00-edges, B01 only mixed
edges and B1 only pure 11-edges of the broom B(2, 4k − 3) with a swapping
labeling.

The subtree B01 will be the path k0, (2k − 1)1, (k + 1)0, (2k − 2)1, . . . , (3k
2 −

1)0, (3k
2 )1, (3k

2 )0, (3k
2 − 1)1, . . . , (2k − 2)0, (k + 1)1, (2k − 1)0, k1 for even k or
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Fig. 6. A B(2, 5)-factorization of K8

k0, (2k−1)1, (k+1)0, (2k−2)1, . . . , (3k−1
2 +1)1, (3k−1

2 )0, (3k−1
2 )1, (3k−1

2 +1)1, . . .,
(2k − 2)0, (k + 1)1, (2k − 1)0, k1 for odd k with mixed edges of all lengths from
0 to 2k − 1 with the exception of length k.

The subtree B0 contains pure 00-edges of the path k0, 00, (k−1)0, 10, . . . , (k
2 −

2)0, (k
2 + 1)0 and the edges ((k

2 + 1)0, (k
2 )0), ((k

2 + 1)0, (k
2 − 1)0) for even k or

edges of the path k0, 00, (k − 1)0, 10, . . . , (k−1
2 + 2)0, (k−1

2 − 1)0 and the edges
((k−1

2 − 1)0, (k
2 )0), ((k−1

2 − 1)0, (k−1
2 + 1)0) for odd k. We see that B0 contains

pure 00-edges of all lengths from 1 to k.
The subtree B1 is the path k1, 01, (k− 1)1, 11, . . . , (k

2 − 1)1, (k
2 )1 for even k or

the path k1, 01, (k − 1)1, 11, . . . , (k−1
2 + 1)1, (k−1

2 )1 for odd k.Thus B1 contains
pure 11-edges of all lengths from 1 to k.

We see that the subtrees B0 and B01 share only single vertex k0 and similarly,
B01 and B1 share only vertex k1 in B(2, 4k−3). If we replace the edge (00, k0) by
the edge (00, k1) and the edge (01, k1) by the edge (01, k0) (both of mixed length
k) in B(2, 4k− 3), then we obtain the spanning tree isomorphic to B(2, 4k− 3).

Hence, B(2, 4k− 3) allows the swapping labeling for every k ≥ 3. For k = 2 a
B(2, 5)-factorization of K8 is in Fig. 6. ��

Finally, from Lemmas 7 and 8, and Theorems 3 and 4 follows our main result.

Theorem 9. Let n, Δ be integers, where n ≥ 3 and 3 ≤ Δ ≤ n. There exists a
non-symmetric spanning tree T on 2n vertices with a maximum degree Δ that
factorizes K2n for every n ≥ 3 and 3 ≤ Δ ≤ n.
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Abstract. We investigate the problem of the maximum number of cubic
subwords (of the form www) in a given word. We also consider square
subwords (of the form ww). The problem of the maximum number of
squares in a word is not well understood. Several new results related to
this problem are produced in the paper. We consider two simple problems
related to the maximum number of subwords which are squares or which
are highly repetitive; then we provide a nontrivial estimation for the
number of cubes. We show that the maximum number of squares xx
such that x is not a primitive word (nonprimitive squares) in a word of
length n is exactly

⌊
n
2

⌋−1, and the maximum number of subwords of the
form xk, for k ≥ 3, is exactly n− 2. In particular, the maximum number
of cubes in a word is not greater than n − 2 either. Using very technical
properties of occurrences of cubes, we improve this bound significantly.
We show that the maximum number of cubes in a word of length n is
between 45

100
n and 4

5
n.

1 Introduction

A repetition is a word composed (as a concatenation) of several copies of an-
other word. The exponent is the number of copies. We are interested in natural
exponents higher than 2. In [4] the authors considered also exponents which are
not integer.

In this paper we investigate the bounds for the maximum number of highly
repetitive subwords in a word of length n. A word is highly repetitive iff it is
of the form xk for some integer k greater than 2. In particular, cubes w3 and
squares x2 with nonprimitive x are highly repetitive.

The subject of computing maximum number of squares and repetitions in
words is one of the fundamental topics in combinatorics on words [16,19] initiated
by A. Thue [25], as well as it is important in other areas: lossless compression,
word representation, computational biology etc.
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The behaviour of the function squares(n) of maximum number of squares is
not well understood, though the subject of squares was studied by many authors,
see [7,8,15]. The best known results related to the value of squares(n) are, see
[11,13,14]:

n− o(n) ≤ squares(n) ≤ 2n−O(log n)

In this paper we concentrate on larger powers of words and show that in this
case we can have much better estimations. Let cubes(n) denote the maximum
number of cubes in a word of length n. We show that:

45
100

n ≤ cubes(n) ≤ 4
5

n

There are known efficient algorithms for the computation of integer powers in
words, see [1,3,9,20,21].

The powers in words are related to maximal repetitions, also called runs. It
is surprising that the bounds for the number of runs are much tighter than for
squares, this is due to the work of many people [2,5,6,12,17,18,22,23,24].

Our main result is a new estimation of the number of cubic subwords. We
use a new interesting technique in the analysis: the proof of the upper bound is
reduced to the proof of an invariant of some abstract algorithm (in our invariant
lemma). There is still some gap between upper and lower bound but it is much
smaller than the corresponding gap for the number of squares.

2 Basic Properties of Highly Repetitive Subwords

We consider words over a finite alphabet A, u ∈ A∗; by ε we denote an empty
word; the positions in a word u are numbered from 1 to |u|. For u = u1 . . . uk, by
u[i..j] we denote a subword of u equal to ui . . . uj. We say that a positive integer
p is a period of a word u = u1 . . . uk if ui = ui+p holds for 1 ≤ i ≤ k − p. If
wk = u (k is a non-negative integer) then we say that u is the kth power of the
word w.

The primitive root of a word u, denoted root(u), is the shortest word w, such
that wk = u for some positive k. We call a word u primitive if root(u) = u,
otherwise it is called nonprimitive. It can be proved that the primitive root of a
word u is the only primitive word w, such that wk = u for some positive k. A
square is the 2nd power of some word, and an np-square (a nonprimitive square)
is a square of a word, that is not primitive. A cube is a 3rd power of some word.

In this paper we focus on the last occurrences of subwords. Hence, whenever
we say that word u occurs at position i of the word v we mean its last occurrence,
that is v[i..i+ |u|−1] = u and v[j..j + |u|−1] �= u for j > i. The following lemma
is used extensively throughout the article.

Lemma 1 (Periodicity Lemma [10,19]). If a word of length n has two such
periods p and q, that p + q ≤ n + gcd(p, q), then gcd(p, q) is also a period of the
word.
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root(y)

root(x)

Fig. 1. The situation when one hr-word is a (long) prefix of another hr-word implies
that root(x) = root(y), consequently x is a suffix of y

We often use, so called, weak version of this lemma, where we only assume that
p + q ≤ n.

A word is said to be highly repetitive (hr-word) if it is a kth power of a
nonempty word, for k ≥ 3.

Lemma 2. If a hr-word x is a prefix of a hr-word y and |x| ≥ |y| − |root(y)|,
then x is also a suffix of y.

Proof. Due to the periodicity lemma, both words have the same smallest period
and it is a common divisor of the lengths of their primitive roots, see Figure 1.
Consequently, we have root(x) = root(y) and x is a suffix of y. ��

Lemma 3. Assume that x and y are two hr-words, where y = z3 and x is a
subword of y starting at position j ≤

⌈
|root(z)|

2

⌉
+ 1 and ending at position

k > |z2|. Then, |root(x)| = |root(y)|.

Proof. Let x = wk, for some k ≥ 3. First, let us note that if the hypothesis of
the lemma holds, then |x| > 3

2 |z| — this can be verified by careful examination
of simple cases: for even and odd values of |z|. Let us also observe, that |root(x)|
and |root(y)| are both periods of x. Moreover:

|x| = |wk| = |w|+ k − 1
k
|x| ≥ |w|+ 2

3
|x| > |w|+ |z| ≥ |root(x)| + |root(y)|

From this, by the periodicity lemma, we obtain that g = gcd(|root(x)|, |root(y)|)
is also a period of x. However, root(x) and root(y) are subwords of x, so g =
|root(x)| = |root(y)|. ��

3 Some Simple Bounds

In this section we give some simple estimations of the number of square subwords
with nonprimitive roots and cubic subwords.

Lemma 4. Let u be a word. Let us consider highly repetitive subwords of u of
the form vk, for k ≥ 3 and v primitive. For each such subword we consider its
(last) occurrence in u. For each position i in u, at most one such subword can
have its (last) occurrence at position i.
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Proof. Let us assume, that we have two different hr-words x and y with their
last occurrences starting at position i, and let us assume that x is shorter. Then,
we have: |x| ≥ |y| − |root(y)|, otherwise the considered occurrence of x would
not be the last one.

Now we can apply Lemma 2 — x is not only a prefix of y, but also its suffix.
Hence, x appears later in the text and the last occurrence of x in u does not
start at position i. This contradiction proves, that the assumption that the last
occurrences of x and y start at position i is false. ��

The following fact is a straightforward consequence of Lemma 4.

Theorem 1. The maximum number of highly repetitive subwords of a word of
length n ≥ 2 is exactly n− 2.

Proof. From Lemma 4 we know, that at each position there can be at most one
last occurrence of a nonempty hr-word. Moreover, the minimum possible length
of such a word is 3. So, it cannot occur at positions n and n− 1. On the other
hand, this upper bound is reached by the word an. ��

As a corollary, we obtain a simple upper bound for the number of cubes, since
cubes are hr-words.

Corollary 1. Let us consider a word u of length n. The number of nonempty
cubes appearing in u is not greater than n− 2.

We improve this upper bound substantially in the next section. However, it
requires a lot of technicalities. Another implication of Theorem 1 is a tight bound
for the number of np-squares.

Theorem 2. Let u be a word of length n. The maximum number of nonempty
np-squares appearing in u is exactly

⌊
n
2

⌋
− 1.

Proof. Each nonempty np-square can be viewed as v2i for some nonempty prim-
itive v and i ≥ 2. However, each such np-square contains a subword v2i−1, which
is not an np-square, but still a hr-word. Hence, the number of nonempty sub-
words of the form v2i−1 (for primitive v and i ≥ 2), appearing in the given word,
is not smaller than the number of nonempty np-squares.

Please observe, that Theorem 1 limits the total number of both subwords of
the form v2i and v2i−1, by n−2. Hence, the total number of nonempty np-squares
appearing in the given word is not greater than n

2 − 1, and since it is integer, it
is not greater than

⌊
n
2

⌋
− 1. On the other hand, this upper bound is reached by

the word an. ��

4 The Number of Cubic Subwords

In this section we show, that the upper bound on the number of different cubes in
a word of length n is 4

5n. We also show example words containing 0.45n different
cubes. The following lemma states the main idea of the proof of the upper bound.
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Lemma 5. Let v3 and w3 be two nonempty cubes occurring in a word u at
positions i and j respectively, such that:

i < j ≤ i +
⌈
|root(v)|

2

⌉
Then either |root(w)| = |root(v)| or |root(w)| ≥ 2 · |root(v)| − (j − i− 1).

Proof. Let us denote p = |root(v)|, q = |root(w)|, and let k be the position of
the last letter of w3.

Let us first consider the case, when the (last) occurrence of w3 is totally
inside v3. Please note, that k must then be within the last of the three v’s, since
otherwise w3 would occur in u at position j + p or further (see also Fig. 2).
Hence, due to Lemma 3, we obtain q = p.

In the opposite case, let x be the maximal prefix of w3 that lays inside v3.
If p �= q then, by the periodicity lemma, p + q must be greater than |x| (please
note that if p + q ≤ |x| then obviously both root(v) and root(w) are subwords
of x). Therefore:

p + q > |x| > |v3| − (j − i) ≥ 3p− (j − i)

and hence q ≥ 2p− (j − i) + 1. ��

Let us introduce a notion of p-occurrence.

Definition 1. A p-occurrence is the (last) occurrence of a cube with primitive
root of length p.

It turns out, that the primitive roots of cubes appearing close to each other
cannot be arbitrary. It is formally expressed by the following lemma.

Lemma 6. Let a1, a2, . . . , ap+1 be an increasing sequence of positions in a word
u, such that aj+1 ≤ aj + p for j = 1, 2, . . . , p. It is not possible that there are
p-occurrences at all these positions.

Proof. Let us assume, to the contrary, that at each of the positions a1, a2,
. . . , ap+1 there is a p-occurrence. Please note, that the inequalities from the
hypothesis of the lemma imply that the primitive roots of cubes occurring at
these positions are all cyclic rotations of each other. There are only p different

beginning of y

j

x

k

z z z

Fig. 2. The situation from Lemma 3
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w ww w

v v v

Fig. 3. Positions of cubes v3 and w3 for the case l < k: aj+1 is not the last occurrence
of w3

v v v v

ww w

Fig. 4. Positions of cubes v3 and w3 for the case k < l: aj is not the last occurrence
of v3

rotations of such primitive roots, so due to the pigeonhole principle, some two
of them must be equal.

It suffices to show, that all these cubes have the same length, because then
two of them must be equal, and one of them is not the last occurrence of the
cube.

So, let us assume to the contrary, that some of the considered cubes have
different lengths. Let aj and aj+1 be such two considered positions, that cubes (v3

and w3 respectively) occurring at these positions have different lengths (3kp and
3lp respectively, for k �= l). Let us consider two cases. If l < k, then 3kp−3lp ≥ 3p,
and w3 occurs in u at position aj+1 + p or further.

On the other hand, if k < l, then 3lp − 3kp ≥ 3p and v3 appears in u at
position aj + p or further. So, in both cases we obtain a contradiction. Hence it
is not possible, that the lengths of the cubes differ. ��
Let us introduce a notion of independent prefixes.

Definition 2. We say that v is the independent prefix of u if it is the shortest
prefix of u, that is:

1. a 1-letter word, if there is no occurrence of a cube at the first position of u,
or otherwise

2. such a word v, for which the last occurrence of a cube in u, that starts within
v is a q-occurrence (for some q ≥ 1), and after this occurrence there are
exactly

⌈
q
2

⌉
positions (within v) without any occurrences of cubes (in u).

It is not obvious, that the above definition is valid. Therefore, we prove the
following lemma:
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Lemma 7. For every word u, there exists an independent prefix v of u.

Proof. If there is no occurrence of a cube at the first position of u, then obviously
v = u[1..1]. In the opposite case, let us assume that the independent prefix does
not exist. Let q be the maximum such value, that some q-occurrence exists in
u, and let i be the rightmost position in u, that contains a q-occurrence. From
Lemma 5,

⌈
q
2

⌉
positions following i do not contain any occurrences of cubes.

So, the prefix u[1..i +
⌈

q
2

⌉
] satisfies the properties of an independent prefix — a

contradiction. ��

Lemma 8. Let v be the independent prefix of u. The number of different
nonempty cubes that occur in u and start within v is not greater than 4

5 |v|.

Proof. Please note, that if v satisfies the first condition of Definition 2, then the
conclusion trivially holds. Therefore, from now on we assume that |v| > 1.

Let ci be a sequence describing the occurrences starting within v: ci = 0 iff
there are no occurrences in position v[i], and ci = q iff there is a q-occurrence in
position v[i]. Please note that:

a) Let i < j be such indices, that ci, cj > 0 and ci+1 = . . . = cj−1 = 0. If
j−i >

⌈
ci

2

⌉
, then the prefix of u of length i+

⌈
ci

2

⌉
or shorter is an independent

prefix of u — a contradiction. So, for any such i and j we have j − i ≤
⌈

ci

2

⌉
.

b) From Lemma 5 we obtain that cj ≥ 2ci − (j − i− 1).
c) From Lemma 6 and due to a) we have that no q + 1 consecutive positive

elements of c can be equal q.

From now on, we abstract from the actual word u, and focus only on the prop-
erties of sequence c. We show, that the ratio R of non-zero elements of c to the
length of c does not exceed 4

5 .
Let us observe that if c contains such a pair of equal elements ci = cj > 0,

that all the elements between them are equal zero, then all the elements between
ci and cj can be removed from c without decreasing R. Also, if c contains a
subsequence of consecutive elements equal to q (q > 0) of length less than q then
this subsequence can be extended to length q without decreasing R. Let c′ be
a sequence obtained from c by performing the described modification steps (as
many times as possible). Please note that none of these steps violates properties
b) or c). We will show, that even for c′ the ratio of non-zero elements does not
exceed 4

5 .
Every possible sequence c′ can be generated by the (nondeterministic)

pseudocode shown below. The following variables are used in the pseudocode:

– p — the value of the last positive element of c′

– len — the length of the sequence c′ without �p/2� trailing zeros
– occ — the number of positive elements in c′

– l — the gap between consecutive different positive elements of c′

– α — the difference between the actual value of a positive element of c′ and
the lower bound from Lemma 5.
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3 3 3 0 5 . . . 5︸ ︷︷ ︸
5 times

0 0 20 . . . 20︸ ︷︷ ︸
20 times

0 . . . 0︸ ︷︷ ︸
6 times

34 . . . 34︸ ︷︷ ︸
34 times

0 . . . 0︸ ︷︷ ︸
17 times

Fig. 5. An example of sequence c′. The length of the sequence is 88 and it contains 62
positive elements. The ratio is 62/88 ≈ 0.70 < 4/5.

Each step of the repeat-until loop corresponds to extending sequence c′, i.e.
adding l zeros and p elements of value p.

Note that the algorithm specified by the pseudocode is nondeterministic in a
few different aspects — the initial value of p, the number of steps of the repeat-
until loop and values of l and α.

p := some positive integer;
occ := p; len := p;
output: p . . . p︸ ︷︷ ︸

p times
repeat

Invariant I(p, occ, len) : occ
len+ p

2
≤ 4

5 .

l := some integer from interval [0,
⌈

p
2

⌉
);

α := some non-negative integer;
p := 2p− l + α;
occ := occ + p;
len := len + l + p;
output: 0 . . . 0︸ ︷︷ ︸

l times

p . . . p︸ ︷︷ ︸
p times

until done

In order to prove the 4
5 bound, we need to show that inequality

occ

len +
⌈

p
2

⌉ ≤ 4
5

holds for every possible execution of the above pseudocode. But this inequality
is a consequence of the fact that I(p, occ, len) is an invariant of the repeat-until
loop (Lemma 9). ��

Lemma 9 (Invariant Lemma). Inequality I(p, occ, len):

occ

len + p
2
≤ 4

5

is an invariant of the repeat-until loop from the above pseudocode.

Proof. It is easy to check that before the first execution of the repeat-until
loop inequality I(p, occ, len) holds. Therefore, we only need to prove that if
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n word #cubes ratio
20 01110101011011011000 7 0.35
30 000000110110110101101011010101 11 0.36
40 1101101101110111011100010001000100100100 16 0.40
50 11111111110010010010100101001010100101010010101000 20 0.40
60 10100101001010010101001010010101001010010101001010

1001010100

25 0.41

70 00000011011011010110101101010110101101010110101101

01011010101101010111

30 0.42

80 11011011010110110101101101011010110101011010110101

011010110101011010101101010111

34 0.42

90 11101101101110110110111011011011101101110110110111

0110111011011011101101110110111011101110

40 0.44

100 10001010100101010010101001010010101001010010101001

01001010010101001010010100101010010100101001010111

44 0.44

200 00001000100010000100010001000010001000100001000100

00100010001000010001000100001000100001000100010000

10001000100001000100001000100010000100010000100010

00100001000100001000100001000010000110111011101110

91 0.45

Fig. 6. Examples of words with high number of distinct cubic subwords

I(p, occ, len) holds then I(p′, occ′, len′) also holds, where p′, occ′ and len′ are the
values obtained as a result of a single step of the repeat-until loop, i.e.:

p′ = 2p− l + α, occ′ = occ + 2p− l + α, len′ = len + 2p + α

Let us restate I(p′, occ′, len′) equivalently in the following way:

5 · occ + 10p− 5l + 5α ≤ 4 · len + 8p + 4α + 4 · 2p− l + α

2
(1)

Since I(p, occ, len) can be expressed as 5 · occ ≤ 4 · len + 4 · p
2 , in order to show

(1), it is sufficient to prove that:

10p− 5l + 5α ≤ 8p + 4α + 2 · (2p− l + α)− 2p (2)

As a result of some rearrangement, (2) can be expressed as 0 ≤ 3l + α and this
inequality trivially holds. ��

Theorem 3. The number of different nonempty cubes that occur in a word of
length n is not greater than 4

5n.

Proof. This theorem is a consequence of Lemmas 7 and 8 — it can be proved
by simple induction on n, where the inductive step consists of removing the
independent prefix. ��

Theorem 4. For infinitely many positive integers n there exist words x of length
n with at least 0.45 · n different nonempty cubic subwords.



354 M. Kubica et al.

Proof. A trivial lower bound on the number of different cubic subwords is the
word an with

⌊
n
3

⌋
cubic occurrences. The table presented in Figure 6 contains

examples of some words with higher number of cubic subwords. These words
have been computed using extensive computer experiments. For example, we
have found a word w of length 200 over binary alphabet containing 91 different
nonempty cubic subwords. For any positive integer k we can construct a word
x = w1w2 . . . wk (over the alphabet {0, 1, . . . , 2k−1}), where wi is a word created
from w by replacing all occurrences of letter 0 by 2(i− 1), and 1 by 2i− 1. Such
word x has length 200k and contains at least 91k cubic subwords (91 in each
subword wi). This gives a ratio 91/200 · n > 0.45 · n. ��

5 Conclusions

In this paper we prove a tight bound for the number of nonprimitive squares
in a word of length n. Unfortunately, this does not improve the overall bound
of the number of squares — the main open problem is improving the bound for
primitive squares.

We also give some estimations of the number of cubes in a string of length
n. Although they are much better than the best known estimations for squares
in general, they can still be subject to improvement — both the lower and the
upper bound do not seem to be tight.
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Abstract. Bob cuts a pizza into slices of not necessarily equal size and
shares it with Alice by alternately taking turns. One slice is taken in
each turn. The first turn is Alice’s. She may choose any of the slices. In
all other turns only those slices can be chosen that have a neighbor slice
already eaten. We prove a conjecture of Peter Winkler by showing that
Alice has a strategy for obtaining 4/9 of the pizza. This is best possible,
that is, there is a cutting and a strategy for Bob to get 5/9 of the pizza.
We also give a characterization of Alice’s best possible gain depending
on the number of slices. For a given cutting of the pizza, we describe a
linear time algorithm that computes Alice’s strategy gaining at least 4/9
of the pizza and another algorithm that computes the optimal strategy
for both players in any possible position of the game in quadratic time.
We distinguish two types of turns, shifts and jumps. We prove that Alice
can gain 4/9, 7/16 and 1/3 of the pizza if she is allowed to make at most
two jumps, at most one jump and no jump, respectively, and the three
constants are the best possible.

1 Introduction

Peter Winkler posed the following problem at the conference Building Bridges,
honouring the 60th birthday of László Lovász, in Budapest in 2008. Bob and
Alice are sharing a pizza. Bob cuts the pizza into slices of not necessarily equal
size. Afterwards they take turns alternately to divide it among themselves. One
� Work on this paper was supported by the project 1M0545 of the Ministry of Educa-

tion of the Czech Republic. Viola Mészáros was also partially supported by OTKA
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slice is taken in each turn. In the first turn Alice takes any slice. In the forth-
coming turns one may take a slice if it is adjacent to some previously taken slice.
This is called the Polite Pizza Protocol. How much of the pizza can Alice gain?

The original puzzle, that is determining whether Bob can get more than half
of the pizza, was devised by Dan Brown in 1996. Bob can easily ensure for
himself one half of the pizza. For example, he may cut the pizza into an even
number of slices of equal size. Then Bob always obtains exactly one half. Peter
Winkler found out that Bob can actually get 5/9 of the pizza if he cuts the
pizza properly—see Theorem 4 for such cuttings. He conjectured that Alice can
obtain 4/9 of the pizza for any cutting. The main aim of this paper is to show
a strategy of Alice proving this conjecture.

The pizza after Bob’s cutting may be represented by a circular sequence P =
p0p1 . . . pn−1 and by the sizes |pi| ≥ 0 (for i = 0, 1, . . . , n − 1); for simplicity
of notation, throughout the paper we do not separate the elements of (circular)
sequences by commas. The size of P is defined by |P | :=

∑n−1
i=0 |pi|. Throughout

the paper the indices are counted modulo n.
For 1 < j ≤ n, if one of the players chooses a slice pi in the (j − 1)-st turn

and the other player chooses pi−1 or pi+1 in the j-th turn, then the j-th turn is
called a shift, otherwise it is called a jump.

If some strategy of a player allows the player to make at most j jumps, then
we call it a j-jump strategy. We remark that given a circular sequence P of
length n, Alice has exactly n zero-jump strategies on P , determined by Alice’s
first choice. Except for her first and her last turn, Alice has two choices in each
turn and exactly one of them is a shift and the other one is a jump. The last turn
is always a shift in which she takes the last slice. Let Σ be a particular strategy
of one of the players. We say that Σ is a strategy with gain g if it guarantees
the player a subset of slices with sum of sizes at least g.

If the number of slices is even, Alice has the following zero-jump strategy with
gain |P |/2. She partitions the slices of the pizza into two classes, even and odd,
according to their parity in P . In the first turn Alice takes a slice from the class
with the sum of slice sizes at least |P |/2. In all her forthcoming turns she makes
shifts, thus forcing Bob to eat from the other class in each of his turns.

Here is our main result.

Theorem 1. For any P , Alice has a two-jump strategy with gain 4|P |/9.

For n ≥ 1, let g(n) be the maximum g ∈ [0, 1] such that for any cutting of the
pizza into n slices, Alice has a strategy with gain g|P |.

Theorem 2. Let n ≥ 1. Then

g(n) =

⎧⎨⎩
1 if n = 1,

4/9 if n ∈ {15, 17, 19, 21, . . .},
1/2 otherwise.

Moreover, Alice has a zero-jump strategy with gain g(n)|P | when n is even or
n ≤ 7, she has a one-jump strategy with gain g(n)|P | for n ∈ {9, 11, 13}, and
she has a two-jump strategy with gain g(n)|P | for n ∈ {15, 17, 19, 21, . . .}.
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If we make a restriction on the number of Alice’s jumps we get the following
results.

Theorem 3. (a) Alice has a zero-jump strategy with gain |P |/3 and the constant
1/3 is the best possible.
(b) Alice has a one-jump strategy with gain 7|P |/16 and the constant 7/16 is the
best possible.

Theorem 4, together with Theorem 2, describes all minimal cuttings for which
Bob has a strategy with gain 5|P |/9.

Theorem 4. For any ω ∈ [0, 1], Bob has a one-jump strategy with gain 5|P |/9
if he cuts the pizza into 15 slices as follows: Pω = 0010100(1+ω)0(2−ω)00202.
These cuttings describe, up to scaling, rotating and flipping the pizza upside-
down, all the pizza cuttings into 15 slices for which Bob has a strategy with gain
5|P |/9.

If Bob can make slices of only two different sizes, then he can gain 5|P |/9 by
cutting the pizza into 21 slices of sizes 0 and 1 as follows: 001010010101001010101.
This cutting describes, up to scaling, rotating and flipping the pizza upside-down,
all the pizza cuttings into at most 21 slices of at most two different sizes for which
Bob has a strategy with gain 5|P |/9.

We omit the proof of Theorem 2, Theorem 3 and Theorem 4 from this extended
abstract. These theorems are proved in the full version of the paper [1], where
we also describe a linear-time algorithm for finding Alice’s two-jump strategy
with gain g(n)|P |:

Theorem 5. There is an algorithm that, given a cutting of the pizza with n
slices, performs a precomputation in time O(n). Then, during the game, the
algorithm decides each of Alice’s turns in time O(1) in such a way that Alice
makes at most two jumps and her gain is at least g(n)|P |.

We note that there is a straightforward quadratic-time dynamic algorithm find-
ing optimal strategies for each of the two players.

We remark that, unlike in Theorem 1, the number of Alice’s jumps in her
optimal strategy cannot be bounded by a constant. In fact, we can force both
players to take the slices in a prescribed order by cutting the pizza into slices of
sizes 1, 1/2, 1/4, . . . .

The following question is still open.

Problem 6. Is there an algorithm that uses o(n2) time for some precomputations
and then computes each optimal turn in constant time?

We remark that we even don’t know if Alice’s optimal first turn can be computed
in time o(n2).

Independently of us and approximately at the same time, K. Knauer, P. Micek
and T. Ueckerdt [4] also proved Theorem 1 and some related results.

In a follow-up paper [2] we discuss generalizations of the Pizza Problem.
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2 The Lower Bound

When the number of slices is even, Alice can always gain at least |P |/2. Here we
prove the lower bound on her gain when n ≥ 3 is odd.

2.1 Preliminaries

Note that if both players use zero-jump strategy then the set of slices taken by
either of the players forms a sequence of every other slice of the pizza. That
motivates the following rearrangement. If the number of slices is odd, instead
of the circular sequence P = p0p1 . . . pn−1 we will be working with the related
circular sequence V = v0v1 . . . vn−1 = p0p2 . . . pn−1p1p3 . . . pn−2 that we call the
characteristic cycle (see Fig. 1). The size of the characteristic cycle is denoted
by |V |. Clearly |V | = |P |.

An arc is a sequence of at most n − 1 consecutive elements of V . If we talk
about the first or the last element of an arc, we always consider it with respect to
the linear order on the arc inherited from the characteristic cycle V . For an arc
X = vivi+1 . . . vi+l−1, its length is l(X) := l and its size is |X | :=

∑i+l−1
j=i |vj |.

An arc of length (n + 1)/2 is called a half-circle.
At any time during a game, a player may decide to make only shifts further

on. The player will take one or two arcs of the characteristic cycle afterwards. An
example of such a game when Alice decided to make no more jumps is depicted
on Fig. 2. Slices taken before the decision point are labeled with ∗. The slices she
took after the decision point are forming two arcs that are separated in between
by some arc of previously taken slices.

Observation 7. Consider a position after Alice’s turn Aj , j �= 1, n. We have
V = T1R1T2R2, where �(T1) = �(T2) + 1 = (j + 1)/2, �(R1) = �(R2), T1 and
T2 are two arcs of already taken slices, and R1 and R2 are two arcs containing
the remaining slices. Suppose that all the remaining turns of Alice (Aj+2, Aj+4,
. . . , An) are shifts. Then, regardless of Bob’s remaining turns Bj+1, . . . , Bn−1,
the slices taken by Alice in the turns Aj+2, Aj+4, . . . , An necessarily form two
arcs X1 and X2 such that X1T1X2 is a half-circle of V .

pn−1 p0

p1pn−2

vn−1 = pn−2

v0 = p0

v1 = p2

vn+1
2

= p1 vn−1
2

= pn−1

...
...

. . .

Fig. 1. A cutting of a pizza and the corresponding characteristic cycle
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Fig. 2. Situation before Bobs turn with the two possible options marked by arrows
(left) and two of the possible ends of the game where Alice made no more jumps
(middle and right)
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Fig. 3. Two possible choices of Bob’s next turn (left) and the two possible ends of the
game where Bob made no more jumps (middle and right)

In addition, for any half-circle Y1T1Y2, Bob can choose his turns Bj+2, . . . ,
Bn−1 so that X1 = Y1 and X2 = Y2.

If Bob decides to make only shifts for the rest of the game, he takes one arc
afterwards. Namely, if there are two arcs of already taken slices in V at his
decision point, then the arc that will be taken by Bob is neighboring these two
arcs at both of its ends (see Fig. 3).

Observation 8. Consider a position after Alice’s turn Aj , j �= 1, n. We have
V = T1R1T2R2, where �(T1) = �(T2) + 1 = (j + 1)/2, �(R1) = �(R2), T1 and
T2 are two arcs of already taken slices, and R1 and R2 are two arcs containing
the remaining slices. Bob’s turn Bj+1 may be on the last slice of R1 or on the
first slice of R2. If Bj+1 is on the last slice of R1 and all the remaining turns
of Bob are shifts then, regardless of Alice’s remaining turns, Bob will take R1
and Alice will take R2 in this phase of the game. Similarly, if Bj+1 is on the
first slice of R2 and all the remaining turns of Bob are shifts then, regardless of
Alice’s remaining turns, Bob will take R2 and Alice will take R1 in this phase
of the game.
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2.2 Minimal Triples

For each v in V the potential of v is the minimum of the sizes of half-circles
covering v. The maximum of the potentials in V is the potential of V , which we
further denote by p(V ). It is an immediate conclusion that Alice has a strategy
with gain p(V ) because by choosing an element with potential equal to p(V )
and making only shifts afterwards Alice obtains at least p(V ). Therefore we may
assume that p(V ) < |V |/2.

A covering triple of half-circles is a triple of half-circles such that each element
of V appears in at least one of the three half-circles. We allow two half-circles of
the covering triple to be equal.

A covering triple is minimal if:

1. It contains a half-circle of minimum size (among all n half-circles),
2. All half-circles forming the triple have size at most p(V ), and
3. None of the half-circles may be replaced in the triple by a half-circle of

strictly smaller size.

Claim 9. Each half-circle of minimum size lies in at least one minimal triple.

Proof. Take a half-circle H1 of minimum size. Consider vk and vk+(n−3)/2 the
two uncovered elements neighboring H1 on V . Let H2 be the half-circle of size
at most p(V ) that covers vk and as many elements of V not covered by H1 as
possible. We define H3 in the same way for vk+(n−3)/2. The above triple of half-
circles covers V . If it is not the case, then take an uncovered element v. Consider
a half-circle H that has minimal size among half-circles covering v. At least one
of vk and vk+(n−3)/2 is covered by H . This contradicts the choice of H2 or H3.
So we get that the given triple of half-circles forms a covering triple. Now while
any of the half-circles can be replaced in the triple by a half-circle of strictly
smaller size, we replace it. Obviously H1 won’t be replaced as it is a half-circle
of minimum size. Consequently the triple we get is a minimal triple. ��

Observation 10. If the size of a half-circle in a minimal triple is z then Alice
has a zero-jump strategy with gain z.

Proof. As in a minimal triple all half-circles are of size at most p(V ) and Alice has
a zero-jump strategy with gain p(V ), the statement of the observation follows. ��

Claim 11. Let p(V ) < |V |/2. Then any minimal triple contains three pairwise
different half-circles, and thus there is a partition of V into six arcs A, B, C,
D, E, F such that the half-circles in the minimal triple are ABC, CDE and
EFA (see Fig. 4). The lengths of the arcs satisfy l(A) = l(D) + 1 ≥ 2, l(C) =
l(F ) + 1 ≥ 2 and l(E) = l(B) + 1 ≥ 2. Also the sizes of the arcs B, D and F
are positive.

Proof. If two of the three half-circles in a minimal triple are equal then V can
be covered by two half-circles of the triple. Since each half-circle in the triple
has size at most p(V ), the total size of the pizza is at most 2p(V ) < |V |, a
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A

B

C

D

E

F

Fig. 4. The partitioning of the characteristic cycle given by the covering half-circles

contradiction. If at least one of B, D, F has length or size 0, we argue exactly in
the same way.

We have l(ABC) + l(EFA) = n + 1 = l(A) + · · ·+ l(F ) + 1, therefore l(A) =
l(D) + 1 ≥ 2. The other two equalities are analogous. ��

2.3 An Auxiliary One-Jump Strategy

Throughout this section we assume that p(V ) < |V |/2. We fix any minimal triple
of half-circles. By Claim 11, it yields a partition of V into six arcs A, B, C, D, E, F
such that the half-circles in the triple are ABC, CDE, EFA (see Fig. 4). We
further use the notation a := |A|, b := |B|, and so on.

We define a median slice of an arc X = vivi+1 . . . vi+l to be a slice vk ∈ X

such that
∑k−1

j=i |vj | ≤ |X |/2 and
∑i+l

j=k+1 |vj | ≤ |X |/2. Observe that any arc of
positive length has at least one median slice.

Claim 12. Alice has a one-jump strategy for V with gain b/2+min{c+d, f +a}
if p(V ) < |V |/2.

Proof. By Claim 11 we have that l(B) > 0. In the first turn Alice takes a median
slice vk of B. Consequently Bob is forced to start in E. He may take the element
vk+(n−1)/2 or vk+(n+1)/2. Alice makes only shifts while the shift implies taking
an element of B. In the meantime Bob necessarily takes elements from E. In
the turn, when Alice’s shift would imply taking an element outside of B, Alice
makes a jump instead. In that moment some initial arc E0 of E starting from
the boundary of E is already taken. Let E1 be the remaining part (subarc) of E.
Alice takes the available element of E1. Note that such an element exists since
in the sequence P , all the neighbors of the slices of B are in E. She makes only
shifts afterwards. By Observation 7, all the elements taken by her after the jump
form two arcs X1 and X2, each of them neighboring E0 on V (see Fig. 5). The
half-circle X1E0X2 can replace either CDE or EFA in the fixed minimal triple.
Thus due to the minimality of the triple, the size of X1X2 is always at least the
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Fig. 5. One-jump strategy: Alice chooses a jump rather than a shift (left) and makes
no more jumps afterwards (right)

size of either CD or FA. As Alice obtained at least the half of B before the
jump, in the end she gains at least b/2 + min{c + d, f + a}. ��

Corollary 13. Alice has a one-jump strategy for V with gain (a + b + c)/4 +
(d + e + f)/2 if p(V ) < |V |/2.

Proof. By Claim 12 Alice has a strategy with gain b/2+min{c+d, f+a}. Without
loss of generality we may assume this sum is g1 := b/2 + c + d. Alice also has a
strategy with gain g2 := e+ f + a by Observation 10. Combining the two results
Alice has a gain max{g1, g2} ≥ g1/2 + g2/2 = (a + c + d + e + f)/2 + b/4 ≥
(a + b + c)/4 + (d + e + f)/2. ��

2.4 A Two-Jump Strategy

Throughout this subsection we assume that p(V ) < |V |/2 and that V is parti-
tioned into six arcs A, . . . , F in the same way as in the previous subsection.

In this subsection we describe a strategy satisfying the following claim.

Claim 14. Alice has a two-jump strategy for V with gain b/2 + e/4 + min{c +
d, f + a} if p(V ) < |V |/2.

Two Phases of the Game. Let B = vivi+1 . . . vi+Δ. Then E = vjvj+1 . . .
vj+Δ+1, where j = i + (n − 1)/2. Consider the circular sequence V ′ = vivi+1
. . . vi+Δ vj vj+1 . . . vj+Δ+1 obtained by concatenating the arcs B and E.

Let H be a half-circle of V ′ containing vj . Then its size is not smaller than
the size of E, since otherwise the half-circle CDE of V could be replaced in
the minimal triple T by a half-circle of smaller size—namely by the half-circle
formed by the slices contained in CD and in H .
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Similarly, if H is a half-circle of V ′ containing vj+Δ+1, then its size is also not
smaller than the size of E. Since each half-circle of V ′ contains vj or vj+Δ+1, it
follows that E is a half-circle of V ′ of minimum size.

If p(V ′) ≥ |V ′|/2 then Alice has a zero-jump strategy Σ for V ′ with gain
p(V ′) ≥ |V ′|/2 ≥ b/2 + e/4. Otherwise, by Corollary 13 (applied on V ′), Alice
has a one-jump strategy Σ for V ′ with gain b/2 + e/4 (we use the fact that E
is a half-circle of V ′ of minimum size, and therefore it is contained in a minimal
triple yielding a partition of V ′ into six arcs A′, B′, . . . , F ′ such that E = A′B′C′

and B = D′E′F ′).
Briefly speaking, Alice’s strategy on V follows the strategy Σ as long as it is

possible, then Alice makes one jump and after that she makes only shifts till the
end of the game.

In the rest of this subsection (Subsect. 2.4), we consider a game G on V . We
divide the turns of G into two phases. The first phase of G is the phase when
Alice follows the strategy Σ and it ends with Bob’s turn. Alice’s first turn that
does not follow (and actually cannot follow) the strategy Σ is the first turn of
the second phase of G. It is always a jump and all the other turns of Alice in the
second phase are shifts.

We now describe Alice’s strategy in each of the two phases of G in detail.

Alice’s Strategy in the First Phase. As mentioned above, Alice has a one-
jump strategy Σ for V ′ with gain b/2 + e/4. We now distinguish two cases.

Case 1: The strategy Σ is a zero-jump strategy. Let the first turn in the zero-
jump strategy Σ be on a slice q ∈ V ′. The first turn could be also on any other
point of V ′ with the same or larger potential. Observe that the potentials of the
slices in V ′ are e on E and at least e on B. Therefore we may assume that q lies
in B.

In the game G, Alice makes her first turn also on q. In the second turn Bob
can choose between two slices in E. In the subsequent turns Alice makes shifts
as long as Bob’s previous turn was neither on the first nor on the last slice of E.
Consider all slices taken by Bob up to any fixed moment during the first phase
of the game G. They always form a subarc of E according to Observation 7. The
first turn in which Bob takes the first or the last slice of E is the last turn of the
first phase. Note that after that Alice’s shift would be either on the last slice of
A or on the first slice of C (see Fig. 6). But Alice makes a jump and this jump
is the first turn of the second phase. Note that this jump is in E (see Fig. 6).

Case 2: The strategy Σ is not a zero-jump strategy. Following the proof of
Corollary 13, we may suppose that Σ is the strategy that we describe below.

By Claim 9, the half-circle E of minimum size is contained in some minimal
triple T ′ of half-circles of V ′. The triple T ′ determines a partition of V ′ into
six arcs A′, B′, . . . , F ′ in the same way as T determined a partition of V into
A, B, . . . , F . We may suppose that E = A′B′C′ and B = D′E′F ′.

We may suppose that the size of B′ is positive, since otherwise one of the
half-circles C′D′E′ and E′F ′A′ has size at least b/2 + e/2 and thus Alice has
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Fig. 6. Case 1: After the end of first phase, Alice chooses a jump rather than a shift
(two examples shown)

a zero-jump strategy for V ′ with gain b/2 + e/2, allowing us to use the above
Case 1.

In the first turn Alice takes a median slice of B′. Then in the second turn
Bob can choose between two slices of E′. In the subsequent turns Alice makes
shifts as long as Bob’s previous turn was neither on the first nor on the last slice
of E′. In each moment in this part of the game Bob’s turns form a subarc of
E′. At the first instance when Bob takes the first or the last slice of E′, Alice
makes a jump, which is always in E′ (see Fig. 7). Note that so far the game was
an analogue of the first phase in Case 1, with B′ and E′ in place of B and E,
respectively. After her first jump Alice makes shifts as long as Bob’s previous
turn was neither on the first nor on the last slice of E. Note that Bob’s turns
in this part of the game are in E (see Fig. 7). At the first instance when Bob
takes the first or the last slice of E, Alice makes a jump, which is already the
first turn of the second phase. This jump is necessarily in E (see Fig. 7).

Alice’s Strategy in the Second Phase. Alice’s strategy in the second phase
is very simple. Above we describe the first phase and also the first turn of the
second phase, which is always a jump done by Alice. In the rest of the second
phase Alice makes only shifts.

Analysis of Alice’s Gain. Since the first phase of G ends by Bob’s turn on
the first or on the last slice of E, we may suppose without loss of generality that
it ends with Bob’s turn on vj . Then the part of V removed in the first phase of
G is a union of some initial subarc B0 of B and some initial subarc E0 of E. Let
E1 be the arc formed by the slices of E not taken in the first phase of G, thus
E = E0E1, and let e1 := |E1|. In her jump at the beginning of the second phase
of G, Alice takes the first slice of E1.
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Fig. 7. Case 2: During the first phase, Alice makes a jump rather than a shift (left)
and then she makes another jump after the end of the first phase (right)

All the slices taken by Alice in the second phase of G form two arcs X1 and X2
such that X1E0X2 is a half-circle of V (see Fig. 5). Since none of the half-circles
CDE and EFA can be replaced in the triple T by a half-circle of a strictly
smaller size, the sum |X1|+ |X2| achieves its minimum either for X1 = CD and
X2 = E1, or for l(X1) = 0 and X2 = E1FA. Thus, the portion collected by Alice
in the second phase of G is at least e1 + min{c + d, f + a}.

Now, consider an auxiliary game G′ on V ′ consisting of two phases, such that
the first phase of G′ is exactly the same as the first phase of G (recall that all
turns in the first phase of G are in B ∪ E) and that both Alice and Bob make
only shifts in the second phase of G′.

Observe that Alice actually follows the strategy Σ in the whole game G′.
By Observation 8, Alice collects exactly the slices of E1 in the second phase

of G′. Thus, if g denotes the portion collected by Alice in the first phase of G′

then g +e1 is her portion in the whole game G′. Since the strategy Σ guarantees
gain b/2 + e/4 to Alice, we get g + e1 ≥ b/2 + e/4.

Alice’s portion in the whole game G is at least g + (e1 + min{c + d, f + a}) ≥
b/2 + e/4 + min{c + d, f + a}, which completes the proof of Claim 14.

2.5 Proof of the Lower Bound

Proof (of Theorem 1). If p(V ) ≥ |V |/2 then Alice has a zero-jump strategy with
gain |V |/2 = |P |/2.

Suppose now that p(V ) < |V |/2. Then V may be partitioned into six arcs
A, . . . , F as in Claim 11. Without loss of generality, we may assume that a+ b+
c ≤ c+d+e ≤ e+f +a. Thus, a+b ≤ d+e and c+d ≤ f +a. By Observation 10,
Alice has a zero-jump strategy with gain

g1 := e + f + a.
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By Claim 14, Alice has a two-jump strategy with gain

g2 := b/2 + e/4 + min{c + d, f + a} = b/2 + e/4 + c + d.

By an analogue of Claim 14, Alice also has a two-jump strategy with gain

g3 := f/2 + c/4 + min{a + b, d + e} = f/2 + c/4 + a + b.

One of the three strategies gives gain

max{g1, g2, g3} ≥ (3g1 + 4g2 + 2g3)/9

= (5a + 4b + 9c/2 + 4d + 4e + 4f)/9 = (4|P |+ a + c/2)/9 ≥ 4|P |/9. ��
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Abstract. A vertex subset D of a graph G is a dominating set if every
vertex of G is either in D or is adjacent to a vertex in D. The paired-
domination problem on G asks for a minimum-cardinality dominating
set S of G such that the subgraph induced by S contains a perfect match-
ing; motivation for this problem comes from the interest in finding a small
number of locations to place pairs of mutually visible guards so that the
entire set of guards monitors a given area. The paired-domination prob-
lem on general graphs is known to be NP-complete.

In this paper, we consider the paired-domination problem on permu-
tation graphs. We define an embedding of permutation graphs in the
plane which enables us to obtain an equivalent version of the problem
involving points in the plane, and we describe a sweeping algorithm for
this problem; if the permutation over the set Nn = {1, 2, . . . , n} defining
a permutation graph G on n vertices is given, our algorithm computes a
paired-dominating set of G in O(n) time, and is therefore optimal.

Keywords: permutation graphs, paired-domination, domination,
algorithms, complexity.

1 Introduction

A subset D of vertices of a graph G is a dominating set if every vertex of G
either belongs to D or is adjacent to a vertex in D; the minimum cardinality
of a dominating set of G is called the domination number of G and is denoted
by γ(G). The problem of computing the domination number of a graph has
received and keeps receiving considerable attention by many researchers (see [11]
for a long bibliography on domination). The problem finds many applications,
most notably in relation to area monitoring problems by the minimum number
of guards: the potential guard locations are vertices of a graph in which two
locations are adjacent if a guard in one of them monitors the other; then, the
minimum dominating set of the graph determines the locations to place the
guards.

The domination problem admits many variants; the most basic ones include:
domination, edge domination, weighted domination, independent domination,
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connected domination, total/open domination, locating domination, and paired-
domination [11,12,13,14,18,30]. Among these, we will focus on paired-domination:
a vertex subset S of a graph G is a paired-dominating set if it is a dominating set
and the subgraph induced by the set S has a perfect matching; the minimum cardi-
nality of a paired-dominating set in G is called the paired-domination number and
is denoted by γp(G). Paired-dominationwas introduced by Haynes and Slater [13];
their motivation came from the variant of the area monitoring problem in which
each guard has another guard as a backup (i.e., we have pairs of guards protecting
each other). Haynes and Slater noted that every graph with no isolated vertices
has a paired-dominating set (on the other hand, it easily follows from the defini-
tion that a graph with isolated vertices does not have a paired-dominating set).
Additionally, they showed that the paired-domination problem is NP-complete on
arbitrary graphs; thus, it is of theoretical and practical importance to find classes
of graphs for which this problem can be solved in polynomial time and to describe
efficient algorithms for its solution.

Trees have been one of the first targets of researchers working on paired-
domination: Qiao et al. [23] presented a linear-time algorithm for computing
the paired-domination number of a tree and characterized the trees with equal
domination and paired-domination number; Henning and Plummer [16] charac-
terized the set of vertices of a tree that are contained in all, or in no minimum
paired-dominating sets of the tree. Kang et al. [17] considered “inflated” graphs
(for a graph G, its inflated version is obtained from G by replacing each vertex
of degree d in G by a clique on d vertices), gave an upper and lower bound for
the paired-domination number of the inflated version of a graph, and described
a linear-time algorithm for computing a minimum paired-dominating set of an
inflated tree. Bounds for the paired-domination number have been established
also for claw-free cubic graphs [9], for Cartesian products of graphs [3], and for
generalized claw-free graphs [7]. An O(n + m)-time algorithm for computing a
paired-dominating set of an interval graph on n vertices and m edges, when an
interval model for the graph with endpoints sorted is available has been given
by Cheng et al. [5]; they also extended their result to circular-arc graphs giving
an algorithm running in O(m(m + n)) time in this case. Very recently, Cheng
et al. [6] gave an O(mn)-time algorithm for the paired domination problem on
permutation graphs.

We too consider the paired domination problem on the class of permuta-
tion graphs, a well-known subclass of perfect graphs. Given a permutation π =
(π1, π2, . . . , πn) over the set Nn = {1, 2, . . . , n}, we define the n-vertex graph
G[π] with vertex set V (G[π]) = Nn and edge set E(G[π]) such that ij ∈ E(G[π])
if and only if (i − j)(π−1

i − π−1
j ) < 0, for all i, j ∈ V (G[π]), where π−1

i is the
index of the element i in π. A graph G on n vertices is a permutation graph
if there exists a permutation π on Nn such that G is isomorphic to G[π] (the
graph G[π] is also known as the inversion graph of G [10]). Therefore, in this
paper, we assume that a permutation graph G[π] is represented by the corre-
sponding permutation π. A lot of research work has been devoted to the study of
permutation graphs, and several algorithms have been proposed for recognizing
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permutation graphs and for solving combinatorial and optimization problems on
them both for sequential computation (see for example [22,26,19,28,21]) as well
as for parallel (see [15,20,24]). Moreover, in addition to the above mentioned re-
sult of Cheng et al. [6] on paired domination, several variants of the domination
problem have been considered on permutation graphs; see [8,2,1,29,25,4,27].

In this paper, we study the paired-domination problem on permutation graphs
following an approach different from that of Cheng et al. [6]. We define an
embedding of permutation graphs in the plane and show that every permu-
tation graph G with no isolated vertices admits a minimum-cardinality paired-
dominating set of a particular form in the embedding of G. We take advantage of
this property to describe an algorithm which “sweeps” the vertices of the embed-
ding from left to right and computes a minimum cardinality paired-dominating
set if such a set exists; if the permutation over the set Nn = {1, 2, . . . , n} defin-
ing a permutation graph on n vertices is given, our algorithm runs in O(n) time
using O(n) space. Since for a permutation graph, a defining permutation can be
computed in O(n + m) time [19], our algorithm is optimal.

2 Theoretical Framework

We consider finite undirected graphs with no loops or multiple edges; for a
graph G, we denote its vertex and edge set by V (G) and E(G), respectively.

Let π = (π1, π2, . . . , πn) be a permutation over the set Nn = {1, 2, . . . , n}. A
subsequence of π is a sequence α = (πi1 , πi2 , . . . , πik

) such that i1 < i2 < · · · < ik.
If, in addition, πi1 < πi2 < · · · < πik

, then we say that α is an increasing
subsequence of π.

A left-to-right maximum of π is an element πi, 1 ≤ i ≤ n, such that πi > πj for
all j < i. The first element in every permutation is a left-to-right maximum. If the
largest element is the first, then it is the only left-to-right maximum; otherwise
there are at least two (the first and the largest). The increasing subsequence
α = (πi1 , πi2 , . . . , πik

) is called a left-to-right maxima subsequence if it consists
of all the left-to-right maxima of π; clearly, πi1 = π1. For example, the left-to-
right maxima subsequence of the permutation (4, 2, 6, 1, 9, 3, 7, 5, 11, 12, 8, 10) is
(4, 6, 9, 11, 12).

The right-to-left minima subsequence of π is defined analogously: α′ = (πj1 ,
πj2 , . . . , πjk′ ) is called a right-to-left minima subsequence if it is an increasing
subsequence and consists of all the right-to-left minima of π, where an element
πi, 1 ≤ i ≤ n, is a right-to-left minimum if πi < πj for all j > i. The last element
in every permutation is a right-to-left minimum, and thus πjk′ = πn. For the per-
mutation (4, 2, 6, 1, 9, 3, 7, 5, 11, 12, 8, 10), the right-to-left minima subsequence is
(1, 3, 5, 8, 10).

We will also be considering points in the plane. For such a point p, we denote
by x(p) and y(p) the x- and y-coordinate of p, respectively.

An Embedding of Permutation Graphs. Given a permutation π over the
set Nn = {1, 2, . . . , n}, we define and use an embedding of the vertices of the
permutation graph G[π] in the plane based on the mapping:
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Fig. 1. (a) The embedding of the permutation graph corresponding to the per-mutation
(4, 2, 6, 1, 9, 3, 7, 5, 11, 12, 8, 10); (b) A minimum paired-dominating set

vertex corresponding to integer i −→ point pi = (i, n + 1− π−1
i ). (1)

We note that similar representations have been used by other authors as well; see
[1,21]. In our representation, all the points pi, 1 ≤ i ≤ n, are located in the first
quadrant of the Cartesian coordinate system and no two such points have the
same x- or the same y-coordinate (see Figure 1(a)). Let Pπ = {p1, p2, . . . , pn}.
The adjacency condition ij ∈ E(G[π]) iff (i−j)(π−1

i −π−1
j ) < 0 (for all i, j ∈ Nn)

for the permutation graph G[π] implies that two points pi and pj are adjacent
iff
(
x(pi)−x(pj)

)
·
(
y(pi)− y(pj)

)
> 0, i.e., the one of the points is below and to

the left of the other. Thus, all the edges have a down-left to up-right direction
(Figure 1(a)).

Due to the bijection between the vertices of the permutation graph and the
points pi, with a slight abuse of notation, in the following, we will regard the
points pi as the vertices of the permutation graph.

In terms of the above embedding, a point pi dominates all points p ∈ Pπ such
that

(
x(p)− x(pi)

)
·
(
y(p)− y(pi)

)
≥ 0, i.e., p is either below and to the left or

above and to the right of pi (the shaded area in Figure 2 (left)). Then,

Definition 1. For any edge e = pipj, where pi, pj ∈ Pπ, the portion of the plane
covered by e is the portion of the plane

{ q ∈ R
2 |
(
x(q)−x(pi)

)
·
(
y(q)−y(pi)

)
≥ 0 or

(
x(q)−x(pj)

)
·
(
y(q)−y(pj)

)
≥ 0 }

dominated by pi or pj.

The part of the plane not covered by e consists of two disjoint open quadrants,
one occupying the upper left corner and the other the bottom right corner.
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To simplify our description, we introduce the following notation (see Figure 2
(right)):

Notation 1. We denote by
C(e) the portion of the plane covered by the edge e and
Q(e) the bottom right quadrant not covered by e.

Moreover, a left-to-right maximum of a permutation π defining a permutation
graph is mapped to a point p ∈ Pπ that is a vertex of the upper envelope of
the point set Pπ

(
i.e., there does not exist a point q ∈ Pπ − {p} for which

x(p) ≤ x(q) and y(p) ≤ y(q)
)
1. For example, the 5 left-to-right maxima of the

permutation defining the graph of Figure 1(a) correspond to the points (4, 12),
(6, 10), (9, 8), (11, 4), and (12, 3). Similarly, a right-to-left minimum is mapped to
a point p ∈ Pπ that is a vertex of the lower envelope of the point set Pπ (i.e., there
does not exist a point q ∈ Pπ−{p} for which x(p) ≥ x(q) and y(p) ≥ y(q)); the 5
right-to-left minima of the graph of Figure 1(a) correspond to the points (1, 9),
(3, 7), (5, 5), (8, 2), and (10, 1) of the lower envelope of Pπ . For convenience, each
point in Pπ corresponding to a left-to-right-maximum (right-to-left minimum,
resp.) of a permutation π will be called a left-to-right-maximum (right-to-left
minimum, resp.) as well.

Finally, the following result helps us focus on solutions to the paired-domina-
tion problem on permutation graphs which are of a particular form, thus enabling
us to obtain an efficient algorithm.

Lemma 1. Let G be an embedded permutation graph with no isolated vertices,
Pπ = {p1, p2, . . . , pn} the corresponding point set (determined by the mapping
in Eq. (1)), and u1, u2, . . . , u� (v1, v2, . . . , v�′ , resp.) be the left-to-right maxima
(right-to-left minima, resp.) of Pπ in order from left to right. Then, for any set A
of edges of G whose endpoints dominate the entire point set Pπ, there exists a
matching M of edges of G such that

1 When such inequalities hold for the coordinates of two points p and q, it is often
said that q dominates p; however, we will avoid using this term so that there is no
confusion with the notion of vertex domination which is central to our work.
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• the endpoints of the edges in M dominate the entire Pπ,
• |M | ≤ |A|, and
• M = {vs1ut1 , vs2ut2 , . . . , vs|M|ut|M|} where s1 < s2 < . . . < s|M| ≤ �′ and

t1 < t2 < . . . < t|M| ≤ �
(i.e., M is a matching which dominates Pπ and consists of at most |A| non-
crossing edges each of which connects a left-to-right maximum to a right-to-left
minimum of Pπ).

Lemma 1 readily implies the following corollary.

Corollary 1. Let G be an embedded permutation graph with no isolated vertices,
and Pπ = {p1, p2, . . . , pn} the corresponding point set. Then, G has a paired-
dominating set of minimum cardinality whose induced subgraph admits a perfect
matching consisting of non-crossing edges of G each of which connects a left-to-
right maximum to a right-to-left minimum.

Such a matching is of the form shown in Figure 1(b). As the edges in such a
matching do not cross, they exhibit an ordering from up-left to bottom-right.

3 The Algorithm

Corollary 1 implies that for every permutation graph with no isolated vertices
there exists a minimum-cardinality paired-dominating set whose induced embed-
ded subgraph admits a perfect matching of the form shown in Figure 1(b); for a
permutation graph G, our algorithm precisely computes a minimum matching M
of (the embedded) G of this form whose endpoints dominate all the vertices of
G. As the edges in such a matching exhibit an ordering from left to right, our
algorithm works by identifying candidates for each edge in M in order from left
to right.

In particular, regarding the leftmost edge in M , we need to have that

• for each candidate e for the leftmost edge, every point in Pπ either is domi-
nated by the endpoints of e or lies in the bottom-right non-covered
quadrant Q(e) of e, i.e,

Pπ lies in C(e) ∪Q(e). (2)

Furthermore, in order to obtain a minimum-size set M ,

• we maintain only the “usefull” partial solutions.

In order to formalize the latter condition, we give the following definition of
redundant edges.

Definition 2. Let G be an embedded permutation graph, Q an open quadrant
(bounded only from above and left) which we wish to cover, and X = { e ∈
E(G) | Q ∩ Pπ =

(
C(e) ∪Q(e)

)
∩ Pπ } (i.e., all the points of Pπ belonging to Q

lie either in C(e) or in Q(e)). Then, we say that an edge d ∈ X is redundant if
there exists another edge d′ ∈ X such that Q(d′) ⊂ Q(d).
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For example, in Figure 3, the edges e1 and e2 are redundant in light of e3.
We note that we are interested in minimizing the non-covered part of the

plane rather than minimizing the number of points that are not dominated. In
light of Definition 2, the fact that we are interested in edges e that minimize
the non-covered part Q(e) of the plane is rephrased into that we are interested
in edges e that are not redundant. The following lemma enables us to identify
redundant edges among edges incident on a left-to-right maximum and a right-
to-left minimum (see Figure 3):

Lemma 2. Let G be an embedded permutation graph and let u1, u2, . . . , u� (v1,
v2, . . . , v�′ , resp.) be the left-to-right maxima (right-to-left minima, resp.) of G
in order from left to right. Moreover, let A be a subset of edges of G which cover
the plane except for an open quadrant Q (bounded only from above and left), and
X = { e ∈ E(G) − A | Q ∩ Pπ =

(
C(e) ∪Q(e)

)
∩ Pπ }. Then, if X contains an

edge d = viuj, any edge vi′uj′ ∈ X−{d} such that i′ ≤ i and j′ ≤ j is redundant.

Lemma 2 implies that for two edges viuj, vi′uj′ ∈ X to be non-redundant, it has
to be the case that (i′ − i) · (j′ − j) < 0, that is, the non-redundant edges form
a crossing pattern like the one shown in Figure 4.

Here is an outline of our algorithm for computing a minimum matching M
such that the edges in M are of the form shown in Figure 1(b) and their end-
points dominate all the vertices of the given permutation graph G: The algo-
rithm identifies the non-redundant candidates for the leftmost edge of M and
constructs a set E1 = {e1,1, e1,2, . . . , e1,h1} of all these candidates. In the general
step, we have a set Ei = {ei,1, ei,2, . . . , ei,hi} of candidates for the i-th edge of
the matching M . Then, the algorithm constructs the set Ei+1 of candidates for
the (i + 1)-st edge by selecting the non-redundant edges among the edges in
{ e ∈

(
E(G)−

⋃i
r=1 Er

)
| ∃ j such that Q(ei,j) ∩ Pπ =

(
C(e) ∪Q(e)

)
∩ Pπ }

(i.e., among the edges e such that each of the points that belong to the un-
covered quadrant Q(ei,j) of an edge ei,j ∈ Ei is either covered by e or lies in
the quadrant Q(e) of e). This is repeated until for some i′ and j′, the quad-
rant Q(ei′,j′) contains no points of Pπ . We also ensure that each collected can-
didate edge e ∈ Ei+1 (i > 1) has a pointer back which points to an edge e′ ∈ Ei

such that Q(e′) ∩ Pπ =
(
C(e) ∪ Q(e)

)
∩ Pπ; then, starting from ei′,j′ (whose

quadrant Q(ei′,j′) contains no points of Pπ), we follow back-pointers collecting
the edges we visit, thus constructing the matching M that we seek.

The correctness of the algorithm is established by induction on the size of any
solution to the paired-domination problem on the input permutation graph G
and follows from the correctness of the procedures to compute the set E1 of
candidate edges for the leftmost edge of a solution and to compute the set Ei+1
of candidates from the corresponding set Ei. We give details on these two pro-
cedures in the following paragraphs. For simplicity, we introduce the following
additional notation:

Notation 2. For a point p ∈ Pπ, we denote by
lrmax above[p] the lowest left-to-right maximum above p and
rlmin left[p] the rightmost right-to-left minimum to the left of p.
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3.1 Computing the Set E1

The goal in the construction of the set E1 is that each edge e ∈ E1 is incident
on a right-to-left-minimum and a left-to-right maximum, is not redundant, and
satisfies Eq. (2). Let vi be a right-to-left minimum. The other endpoint of an
edge in E1 incident on vi has to be adjacent to vi and to all the points in Pπ to
the left of vi (which are not dominated by vi); therefore, it needs to be above
and to the right of the highest point, say p, among vi and all the points to the
left of vi. Then, if uqi is the lowest left-to-right maximum above p, each of the
left-to-right maxima u1, . . . , uqi will do, whereas none other will do. Yet, among
the edges viu1, . . . , viuqi , all but the last one are redundant.

More formally, our observations are summarized in the following lemma:

Lemma 3. Let G be an embedded permutation graph with no isolated vertices,
Pπ = {p1, p2, . . . , pn} the corresponding point set, and let u1, u2, . . . , u� (v1, v2,
. . . , v�′ , resp.) be the left-to-right maxima (right-to-left minima, resp.) in Pπ in
order from left to right. If vr = rlmin left[u1], we have:

(i) For each vi, i = 1, 2, . . . , r, let p(vi) be the highest among the points in Pπ

with x-coordinate ≤ x(vi), and let uqi = lrmax above[p(vi)]. Then, for any
edge eq = viuq with 1 ≤ q ≤ qi, it holds that Pπ lies in C(eq) ∪Q(eq) (i.e.,
Eq. (2) holds); this does not hold for any edge eq = viuq with q > qi.

(ii) Among the edges referred to in the statement (i) of the lemma, the edges viuq

(where 1 ≤ q < qi) are all redundant in light of the existence of the
edge viuqi .

(iii) No edge e incident on a right-to-left minimum to the right of vr satisfies
Eq. (2).

In Figure 1(a), v1 = (1, 9), v2 = (3, 7), and vr = v2; so, the edges considered
are v1u1, v1u2, v2u1 (where u1 = (4, 12) and u2 = (6, 10)), among which v1u1
is redundant. We give below the outline of this procedure: in Step 1, we use
Lemma 3 to construct a list L of edges satisfying Eq. (2) where L contains
exactly the single non-redundant edge incident on each right-to-left minimum
to the left of u1 (see statement (ii) of Lemma 3); in Step 2, we obtain the final
set E1 by removing any redundant edges from L.

Procedure Compute E1

1. highest p ← p1; {the highest point seen so far is the leftmost point}
L ← a list containing a single node storing the edge connecting p1 to
lrmax above[p1];
i ← 2; {process the points by increasing x-coordinate}
while pi does not coincide with the leftmost left-to-right maximum u1 do

if y(pi) > y(highest p)
then highest p ← pi; {update highest point seen so far}
if pi is a right-to-left minimum
then insert at the end of L the edge connecting pi to lrmax above

[highest p];
i ← i + 1;
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2. E1 ← ∅;
let the list L contain the edges e1, e2, . . . , e|L| in order and suppose that
ei = vsiuti , where vsi is a right-to-left minimum and uti is a left-to-right
maximum;
i ← 1; {i indicates position in L of edge checked for inclusion in E1}
while i < |L| do

j ← i + 1;
{ignore all edges incident on the same left-to-right maximum...}
{...except for the last one}
while j <= |L| and utj = uti do

j ← j + 1;
add the edge ej−1 in E1 with its back-pointer pointing to NIL;
i ← j;

if i = |L|
then {i = |L| ⇐⇒ e|L|−1 is last edge included in E1 and ut|L|−1 �= ut|L|}

add the edge e|L| in E1 with its back-pointer pointing to NIL;

The correctness of Step 1 follows from Lemma 3, statement (ii): for each vi, we
consider only the edge viuqi where uqi = lrmax above[p(vi)]. The correctness
of Step 2 follows from Lemma 2; for the correctness of Step 2, it is important
to note that because the y-coordinate of point highest p never decreases during
the execution of Step 1, the edges vsiuti and vsj utj located in the i-th and j-th
node of the list L (for any i < j) have si < sj and ti ≥ tj . The edges in the
resulting set E1 form a crossing pattern like the one shown in Figure 4.

3.2 Computing the Set Ei+1 from Ei

Let Ei = {ei,1, ei,2, . . . , ei,h} be the set of candidate edges for the i-th edge in
a minimum matching M such that the edges in M are of the form shown in
Figure 1(b) and their endpoints dominate all the vertices of the given permuta-
tion graph G. As shown in Figure 4, the quadrants from left to right and from
bottom to top are Q(ei,h), Q(ei,h−1), . . . , Q(ei,1), respectively.

For the construction of Ei+1, we are interested in non-redundant edges e
incident on a right-to-left minimum and on a left-to-right maximum such that
there exists ei,j ∈ Ei for which all the points in Q(ei,j) ∩ Pπ are either covered
by e or lie in the bottom right uncovered quadrant Q(e), i.e.,

Q(ei,j) ∩ Pπ =
(
C(e) ∪Q(e)

)
∩ Pπ. (3)

This case is a generalization of the case for E1; this time, however, we are deal-
ing with a number of quadrants Q(ei,j). The following lemma gives a complete
coverage of all cases.

Lemma 4. Let G be an embedded permutation graph with no isolated vertices,
Pπ = {p1, p2, . . . , pn} the corresponding point set, and let u1, u2, . . . , u� (v1, v2,
. . . , v�′ , resp.) be the left-to-right maxima (right-to-left minima, resp.) in Pπ in
order from left to right. Suppose further that the set Ei contains the edges ei,1,
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Fig. 4.

ei,2, . . . , ei,h, each incident on a right-to-left minimum and a left-to-right max-
imum. If va = rlmin left[ut1], ua′ = lrmax above[vsh

], vb = rlmin left[ua′],
and vc = rlmin left[ua′+1] (see Figure 4), we have:

(i) The edge connecting va to lrmax above[va] satisfies Eq. (3) for j = 1.
(ii) Consider vk, where k = a+1, a+2, . . . , b. Let Q(ei,r) be the rightmost2 (i.e.,

its left side is to the right of the left sides of the other quadrants) among
the quadrants that do not contain points p ∈ Pπ such that x(p) < x(vk) and
y(p) > y(vsh

), and let uqk
= lrmax above[p(vk)] where p(vk) is the highest

point in Pπ which belongs to Q(ei,r) and is not to the right of vk. Then,
Eq. (3) is satisfied for Q(ei,j) = Q(ei,r) and the edge e = vkuqk

; this does
not hold for any edge e = vkuq with q > qk.

(iii) Consider vk, where k = b + 1, b + 2, . . . , c. Suppose that there exists a quad-
rant Q(ei,r) that contains no points p ∈ Pπ such that y(p) > y(ua′+1), and
let uqk

= lrmax above[p(vk)] where p(vk) is the highest point in Pπ which
belongs to Q(ei,r) and is not to the right of vk. Then, Eq. (3) is satisfied for
Q(ei,j) = Q(ei,r) and the edge e = vkuqk

; this does not hold for any edge
eq = vkuq with q > qk.

(iv) Each edge incident on a right-to-left minimum to the left of va is redundant.
Moreover, for any edge e incident on a right-to-left minimum to the right
of vc, there does not exist ei,j ∈ Ei that satisfies Eq. (3) with e; in fact, the
same holds for any edge e incident on a right-to-left minimum vk, where
k = b, b + 1, . . . , c, if every quadrant Q( ) contains points p ∈ Pπ such that
y(p) > y(ua′+1).

As an example for statement (ii), consider vk = va+2 in Figure 4: then all 4
quadrants Q(ei,1), . . . , Q(ei,4) contain no points p ∈ Pπ such that x(p) < x(vk)

2 The quadrant Q(ei,r) is well defined, since the quadrant Q(ei,h) does not contain
points p ∈ Pπ such that x(p) < x(vk) and y(p) > y(vsh).
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and y(p) > y(vsh
); the rightmost quadrant Q(ei,r) is Q(ei,1), p(vk) = q, and

uqk
= ua′+2. On the other hand, in the case of vk = vb, the quadrants Q(ei,1)

and Q(ei,2) contain a point p ∈ Pπ such that x(p) < x(vk) and y(p) > y(vsh
);

the rightmost quadrant Q(ei,r) is Q(ei,3), p(vk) = p, and uqk
= ua′+1. As an

example for statement (iii), we may consider vk = vb+1 or vc in Figure 4: in
either case, Q(ei,r) = Q(ei,4), p(vk) = p, and uqk

= ua′+1.
Our procedure for computing Ei+1 takes advantage of Lemma 4. Similarly to

Procedure Compute E1, it works in two steps: in the first step, it constructs a
list L containing at most one edge incident on each of the right-to-left minima
from va (inclusive) to vb (inclusive), and potentially to vc (inclusive) depending
on whether the conditions of statement (iii) of the lemma hold; next, in a 2nd
step, it selects only the non-redundant edges among the edges in L. In more
detail, the procedure processes the points in Pπ to the right of uth

up to vb

or vc from left to right, and maintains in a stack only the quadrants that do
not contain any point of Pπ above the line y = y(vsh

) and stores with each of
them its highest point so far. Then, for each right-to-left minimum encountered
starting with va, it applies statement (i), (ii) or (iii) of Lemma 4.

For the case shown in Figure 4, at the end of the first step, the list L con-
tains the edges vaua′+4, va+1ua′+4, va+2ua′+2, vbua′+1, vb+1ua′+1, and vcua′+1.
Among them, the edges vaua′+4, vbua′+1, and vb+1ua′+1 are redundant, so that
the final set is {va+1ua′+4, va+2ua′+2, vcua′+1}.

3.3 Time and Space Complexity of the Algorithm

Regarding the complexity of our algorithm, we can show the following theorem:

Theorem 1. Let G be a permutation graph with no isolated vertices determined
by a permutation π over the set Nn. Then, given π, our algorithm computes a
minimum-cardinality paired-dominating set of G in O(n) time using O(n) space.
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Abstract. We give a simple and intuitive fixed parameter tractable al-
gorithm for the Odd Cycle Transversal problem, running in time
O(3k ·k·|E|·|V |). Our algorithm is best viewed as a reinterpretation of the
classical Iterative Compression algorithm for Odd Cycle Transversal

by Reed, Smith and Vetta [8].

1 Introduction

Iterative Compression is a tool that has recently been used successfully to
solve a number of problems in Parameterized Complexity. This technique was
first introduced by Reed, Smith and Vetta in order to solve the Odd Cycle

Transversal problem. In this problem we are given a graph G together with
an integer k. The objective is to find a set S of at most k vertices whose deletion
makes the graph bipartite [8], and a set S such that G \ S is bipartite is called
an odd cycle transversal of G. The method of Iterative Compression was used
in obtaining faster fixed parameter tractable (FPT) algorithms for Feedback

Vertex Set, Edge Bipartization, Chordal Deletion and Cluster Ver-

tex Deletion on undirected graphs [2,3,6,4]. The technique was also used by
Chen et al. [1] to show that the Directed Feedback Vertex Set problem is
FPT, resolving a long standing open problem in Parameterized Complexity.

While the algorithm of Reed, Smith and Vetta for Odd Cycle Transversal

was a breakthrough for parameterized algorithms, the algorithm and correctness
proof is quite hard to understand. In an attempt to remedy this, Hüffner [5]
provided an alternative algorithm for the problem. In this paper we give yet
another algorithm for OCT. We believe that our algorithm is simpler and more
intuitive than the previous versions.

2 The Method of Iterative Compression

The method of Iterative Compression was introduced by Reed et al. [8] in order
to solve the Odd Cycle Transversal (OCT) problem. The idea is to reduce
the problem in question to a modified version, where we are also given as input a
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solution that is almost good enough, but not quite. For the case of Odd Cycle

Transversal, we are given an odd cycle transversal S′ of G of size k + 1. We
call this problem the compression version of Odd Cycle Transversal. The
crux of the Iterative Compression method is that often the compression version
of a problem is easier to solve than the original one.

Suppose we could solve the compression version of the problem in O(f(k)nc)
time. We show how to solve the original problem in O(f(k)nc+1) time. Order the
vertices of V (G) into v1v2 . . . vn and define Vi = {v1 . . . vi} for every i. Notice that
if G has an odd cycle transversal S of size k then S∩Vi is an odd cycle transversal
of G[Vi] for every i ≤ n. Furthermore, if S is an odd cycle transversal of G[Vi]
then S ∪ {vi+1} is an odd cycle transversal of G[Vi+1]. Finally, Vk is an odd
cycle transversal of size k of G[Vk]. These three facts together with the f(k)nc

algorithm for the compression version of OCT give a f(k)nc+1 time algorithm
for OCT as follows. Call the algorithm for the compression version with input
(G[Vk+1], Vk+1, k). The algorithm will either report that (G[Vk+1, k]) has no odd
cycle transversal of size k or return such an odd cycle transversal, call it Sk+1.
In the first case G has no k-sized odd cycle transversal. In the second, call the
algorithm for the compression version with input (G[Vk+2], Sk+1 ∪ {vk+2}, k).
Again we either receive a “no” answer or a k-sized odd cycle transversal Sk+2
of G[Vk+2] and again, if the answer is negative then G has no k-sized odd cycle
transversal. Otherwise we call the compression algorithm with input (G, Sk+2 ∪
{vk+3}, k) and keep going on in a similar manner. If we receive a negative answer
at some step we answer that G has no k-sized odd cycle transversal. If we do not
receive a negative answer at any step, then after n− k calls to the compression
algorithm we have a k-sized odd cycle transversal of G[Vn] = G. Thus we have
resolved the input instance in time O(f(k)nc+1).

We refer to [7] for a more thorough introduction to Iterative Compression.

3 An Algorithm for Odd Cycle Transversal

We now show how to solve the compression version of Odd Cycle Transver-

sal in time O(3k · k · |E|). From the discussion in Section 2 it will follow that
OCT can be solved in time O(3k ·k · |E| · |V |). For two vertex subsets V1 and V2
of V (G) a walk from V1 to V2 is a walk with one endpoint in V1 and the other in
V2, or a single vertex in V1 ∩ V2. The following is a simple fact about bipartite
graphs.

Fact 1. Let G = (V1(V2, E) be a bipartite graph with vertex bipartition V1(V2.
Then

1. For i ∈ {1, 2}, no walk from Vi to Vi has odd length.
2. No walk from V1 to V2 has even length.

A walk in a graph is an alternating sequence of vertices and edges v0, e1, v1,
e2, . . . , vn, such that ei = (vi−1, vi) is an edge for i ∈ {1, . . . , n}. The length l of
a walk is the number of edges used in the sequence.
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Recall that we are given a graph G and an odd cycle transversal S′ of G
of size k + 1 and we have to decide whether G has an odd cycle transversal
of size at most k. If such an odd cycle transversal S exists then there exists a
partition of S′ into L ( R ( T , where T = S′ ∩ S and L and R are subsets of
the left and right bipartitions of the resulting graph. The algorithm iterates over
all 3k partitions of S into L ( R ( T . For each partition we run an algorithm
that takes as input a partition of S′ into L ( R ( T , runs in O(k · |E|) time
and decides whether there exists a set of vertices T ′ of size at most k − |T |
in G \ S′ such that G \ (T ∪ T ′) is bipartite with bipartitions VL and VR such
that L ⊆ VL and R ⊆ VR. In the remainder of this section we give such an
algorithm. This algorithm together with the outer loop over all partitions of S′

yields the O(3k · k · |E|) time algorithm for the compression step.
Before proceeding we do a simple “sanity check”. If there is an edge in G[L]

or G[R] it is clear that X can not exist since then either VL or VR can not be an
independent set. Hence if there is an edge in G[L] or G[R] we can immediately
skip to the next partition of S′. Now, since G \ S′ is bipartite, let A ( B be a
bipartition of G\S′. Let Al and Bl be the neighbors of L in A and B respectively.
Similarly let Ar and Br be the neighbours of R in A and B respectively.

Lemma 1. Let (G, S′, k) be an instance of the compression version of Odd

Cycle Transversal and let S′ = L ( R ( T . If X ⊆ (V (G) \ S′) is a set of
vertices such that G \ (T ∪X) is bipartite with bipartitions VL and VR such that
L ⊆ VL and R ⊆ VR, then in G\ (S′∪X), there are no paths between Al and Bl;
Bl and Br; Br and Ar; and, Ar and Al.

Proof. Any path from Al to Bl in G \ (S′ ∪ X) has odd length and can be
extended to a walk from L to L of odd length in G′ \ (T ∪ X), contradicting
Fact 1. A symmetric argument shows that there are no paths between Br and Ar

in G \ (S′ ∪X). Any path from Bl to Br in G \ (S′ ∪X) must be of even length
and can be extended to a walk in G \ (T ∪ X) from L to R of even length,
again contradicting Fact 1. A symmetric argument yields that there are no paths
between Ar and Al.

Lemma 2. Let (G, S′, k) be an instance of the compression version of Odd

Cycle Transversal and let S = L ( R ( T such that G[L] and G[R] are
independent sets. Let X be a set of vertices in V (G)\S′ such that in G\(S′∪X),
there are no paths between Al and Bl; Bl and Br; Br and Ar; and, Ar and Al.
Then G \ (T ∪X) is bipartite with bipartitions VL and VR such that L ⊆ VL and
R ⊆ VR.

Proof. Notice that every path from a vertex in L to another vertex in L with
inner vertices only in V (G) \ (S′ ∪ X) must have even length. Similarly every
path from a vertex in R to another vertex in R with inner vertices only in
V (G) \ (S′ ∪X) must have even length and every path from a vertex in L to a
vertex in R with inner vertices only in V (G) \ (S′ ∪X) must have odd length.
Since G[L] and G[R] are independent sets it follows that if G\(T ∪X) is bipartite
then it has bipartitions VL and VR such that L ⊆ VL and R ⊆ VR. We now prove
that G \ (T ∪X) is bipartite.
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Consider a cycle in G \ (T ∪X). If C does not contain any vertices of (L∪R)
then |E(C)| is even since G \ S′ is bipartite. Let v1, v2, . . . vt be the vertices of
(L ∪ R) ∩ C in their order of appearance along C. Let v0 = vt, then we have
that |E(C)| =

∑t−1
i=0 dc(vi, vi+1). But then E(C) must be even since the number

if indices i such that vi ∈ L and vi+1 ∈ R is equal to the number of indices j
such that vj ∈ R and vj+1 ∈ L. This concludes the proof.

To check whether G \ T has an odd cycle transversal X such that G \ (T ∪X)
is bipartite with bipartitions VL and VR such that L ⊆ VL and R ⊆ VR we
proceed as follows. Construct an auxiliary graph G̃ from G \ S′ by introducing
two special vertices s, t and connecting s to each vertex in Al ∪Br and t to each
vertex in Ar ∪ Bl. Lemmas 1 and 2 show that it is sufficient to check whether
there is an st-separator in G̃ of size at most k− |T ∪T ′|. This can be done using
max flow in time O(k · |E|). These discussions together with Lemmata 1 and 2
bring us to the following theorem.

Theorem 2. There is an algorithm that given a graph G = (V, E) and integer
k decides whether G has an OCT of size at most k in time O(3k · k · |E| · |V |).

4 Concluding Remarks

In this paper we gave an alternate algorithm for Odd Cycle Transversal

based on the Iterative Compression technique. Traditionally, algorithms that use
Iterative Compression partition the given k+1-sized solution into two parts. Our
algorithm is the first to partition this set in three parts. This is a key element in
deriving our algorithm. We believe that partitioning the given k+1-sized solution
into more than two parts will be useful in designing Iterative Compression based
algorithms.

Acknowledgments. The authors would like to thank Michael Fellows, Fedor V.
Fomin, Rolf Niedermeier, Venkatesh Raman and Frances Rosamond for helpful
discussions and for suggesting to put this article in print.

References

1. Chen, J., Liu, Y., Lu, S., Razgon, I., O’Sullivan, B.: A Fixed-Parameter Algorithm
for the Directed Feedback Vertex Set Problem. Journal of the ACM 55(5) (2008)

2. Dehne, F., Fellows, M., Langston, M., Rosamond, F., Stevens, K.: An O(2O(k)n3)
FPT algorithm for the undirected feedback vertex set problem. Theory of Comput.
Syst. 41(3), 479–492 (2007)
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Abstract. Recently, several constructions of bipartite graphs of large
clique-width have been discovered in the literature. In the present pa-
per, we propose a general framework for developing such constructions
and use it to obtain new results on this topic.
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1 Introduction

Clique-width is a relatively young notion generalizing another important graph
parameter, tree-width, studied in the literature for decades. The notion of clique-
width generalizes that of tree-width in the sense that graphs of bounded tree-
width have bounded clique-width.

The importance of these graph invariants is due to the fact that numerous
problems that are NP-hard in general admit polynomial-time solutions when re-
stricted to graphs of bounded tree- or clique-width (see e.g. [1,6]). The celebrated
result due to Robertson and Seymour [13] states that for any planar graph H
there is an integer N such that the tree-width of graphs containing no H as
a minor is at most N . In other words, the planar graphs constitute a unique
minimal minor-closed class of graphs of unbounded tree-width. A special role in
this class is assigned to rectangle grids, because every planar graph is a minor of
some large enough grid and grids can have arbitrarily large tree-width. There-
fore, grids form the only “unavoidable minors” in graphs of large tree-width. In
the study of the notion of tree-width, the restriction to the graph minor rela-
tion is justified by the fact that the tree-width of a graph cannot be less than
the tree-width of its minor. This is not the case with respect to the notion of
clique-width. Therefore, in the study of this notion the restriction to the graph
minor relation is not valid anymore. Instead, we restrict ourselves to the induced
subgraph relation, because the clique-width of a graph cannot be less than the
clique-width of any of its induced subgraphs [7]. The family of graph classes
closed under taking induced subgraphs is much richer than that of minor-closed
graph classes, and we believe that the set of “unavoidable induced subgraphs” of
large clique-width is more diverse than the set of “unavoidable minors” of large
tree-width. In this paper, we restrict ourselves to bipartite graphs.
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Recently, several constructions of bipartite graphs of large clique-width have
been discovered in the literature (see e.g. [3,10,12]). In the present paper, we
propose a general framework for developing such constructions and use it to
obtain new results on this topic.

2 Preliminaries

All graphs in this paper are undirected, without loops and multiple edges. For
a graph G, we denote by V (G) and E(G) the vertex set and the edge set of
G, respectively. The neighborhood of a vertex v ∈ V (G) is the set of vertices
adjacent to v and the degree of v is the size of its neighborhood. For a bipartite
graph G = (V1, V2, E), the bipartite complement of G is the bipartite graph
G̃ = (V1, V2, V1×V2−E). Given a graph G and a subset of vertices U ⊆ V (G), two
vertices of U will be called U -similar if they have the same neighborhood outside
U . Clearly, U -similarity is an equivalence relation. The number of equivalence
classes of U will be denoted μ(U). Also, by G[U ] we will denote the subgraph of
G induced by U , i.e., the subgraph of G with vertex set U and two vertices being
adjacent in G[U ] if and only if they are adjacent in G. We say that a graph H
is an induced subgraph of G if H is isomorphic to G[U ] for some U ⊆ V (G).

The notion of clique-width of a graph was introduced in [5] and is defined as
the minimum number of labels needed to construct the graph by means of the
four graph operations: creation of a new vertex v with label i (denoted i(v)),
disjoint union of two labeled graphs G and H (denoted G ⊕ H), connecting
vertices with specified labels i and j (denoted ηi,j) and renaming label i to label
j (denoted ρi→j). The clique-width of a graph G will be denoted cwd(G).

Every graph can be defined by an algebraic expression using the four oper-
ations above. This expression will be called a k-expression if it uses k different
labels. For instance, the cycle C5 on vertices a, b, c, d, e (listed along the cycle)
can be defined by the following 4-expression:

η4,1(η4,3(4(e)⊕ ρ4→3(ρ3→2(η4,3(4(d)⊕ η3,2(3(c)⊕ η2,1(2(b)⊕ 1(a)))))))).

Alternatively, any algebraic expression defining G can be represented as a rooted
tree, whose leaves correspond to the operations of vertex creation, the internal
nodes correspond to the ⊕-operations, and the root is associated with G. The
operations η and ρ are assigned to the respective edges of the tree. Figure 1
shows the tree representing the above expression defining a C5.

As we mentioned earlier, in the study of the notion of clique-width we may be
restricted to graph classes that are closed under taking induced subgraphs. Such
classes are known in the literature as hereditary classes. If a class of graphs X is
not hereditary, we can extend it to a hereditary class by adding to it all induced
subgraphs of graphs in X . The hereditary closure of X will be denoted [X ]. It
is know that a class of graphs is hereditary if and only if it can be characterized
in terms of forbidden induced subgraphs. More formally, given a set of graphs
M , we say that a graph G is M -free if G does not contain induced subgraphs
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Fig. 1. The tree representing the expression defining a C5

from the set M . The class of all M -free graphs will be denoted Free(M). Then
a class X is hereditary if and only if X = Free(M) for a certain set M .

Recently, the clique-width has been shown to be unbounded in several hered-
itary classes of bipartite graphs, such as chordal bipartite [2], bipartite permu-
tation [3], P7-free bipartite [12], bipartite graphs of bounded vertex degree and
large girth [10]. Our goal is to identify minimal hereditary classes of graphs of
unbounded clique-width. From this perspective, the class of chordal bipartite
graphs is of no interest, because it properly contains another class of unbounded
clique-width, namely, bipartite permutation graphs. On the contrary, in any
proper hereditary subclass of bipartite permutation graphs the clique-width is
bounded by a constant (see [8] for a related result), i.e., the role of bipartite
permutation graphs in the family of hereditary classes is analogous to the role of
planar graphs in the family of minor-closed graph classes. This makes the class
of bipartite permutation graphs critically important in the study of the notion
of clique-width. In the attempt to identify more critical classes with respect to
this notion, we propose in the next section a general framework for constructing
bipartite graphs of large clique-width.

3 Building Blocks and Building Operations

In our framework for constructing bipartite graphs of large clique-width we
distinguish three basic building blocks and two building operations.

Building blocks:

Bn : the graph Bn has 2n vertices x1, . . . , xn and y1, . . . , yn and edges connect-
ing, for each i = 1, . . . , n, vertex xi to vertices yj with j ≥ i.

Mn : the graph Mn has 2n vertices x1, . . . , xn and y1, . . . , yn and edges con-
necting vertex xi to yi for each i = 1, 2, . . . , n, i.e., Mn is a collection of n
disjoint edges.

Fn : the graph Fn is the bipartite complement of Mn.

Let Xn denote any of the building blocks described above. Notice that the clique-
width of Xn is at most 3 regardless of the choice of the block. Now we define
two operations by means of which we will create graphs of large clique-width out
of Xn. In the description of the operations, we use the following terminological
convention: given a set C = {ci,j | 1 ≤ i, j ≤ n} of n2 elements, we call the
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elements ci,1, . . . , ci,n the i-th row of C, and we call the elements c1,j , . . . , cn,j

the j-th column of C.

Building operations:

* n-concatenation n∗Xn is the graph with n2 vertices C = {ci,j | 1 ≤ i, j ≤ n}
such that any two consecutive rows of C induce a copy of Xn, and there are
no other edges in the graph.

* orthogonal concatenation X
(2)
n is the graph with 2n+n2 vertices A = {a1, . . . ,

an}, B = {b1, . . . , bn} and C = {ci,j | 1 ≤ i, j ≤ n} such that
◦ A ∪B and C are independent sets;
◦ in the subgraph of X

(2)
n induced by A and C, the vertices of the same

row of C have the same neighborhood, and by contracting each row of
C to a single vertex we obtain an Xn;

◦ in the subgraph of X
(2)
n induced by B and C, the vertices of the same col-

umn of C have the same neighborhood, and by contracting each column
of C to a single vertex we obtain an Xn.

Examples

1. The graph n ∗ Bn was studied in [3,11]. In particular, in [3] it was shown
that the clique-width of n ∗ Bn is at least n/6 and that n ∗ Bn is a bipartite
permutation graph. Moreover, in [11] it was proved that n∗Bn is an n-universal
bipartite permutation graph, i.e., it contains every bipartite permutation graph
with n vertices as an induced subgraph. In other words, the role of the graph
n ∗ Bn in the class of bipartite permutation graphs is analogous to the role of
the grids in the class of planar graphs. We also repeat that the role of bipartite
permutation graphs in the family of hereditary classes is analogous to the role of
planar graphs in the family of minor closed graph classes, as [{n ∗Bn : n ≥ 1}]
is a minimal hereditary class of unbounded clique-width.

2. The graph B
(2)
n was introduced in [4] and was shown there to have clique-width

at least n. Therefore, the clique-width of graphs in the class [{B(2)
n : n ≥ 1}] is

unbounded. However, whether this is a minimal hereditary class of unbounded
clique-width is an open question.

In the next two sections we will study more constructions obtained by means of
the above operations. Not each of them leads to a graph of large clique-width.
For instance, n ∗Mn is the disjoint union of n chordless paths and therefore the
clique-width of n ∗Mn is at most 3. However, n-concatenation of the bipartite
complement of Mn, i.e., the graph n ∗ Fn, has large clique-width, as we show in
Section 4. Moreover, in the same section we show that F := [{n ∗ Fn : n ≥ 1}]
is a minimal hereditary class of unbounded clique-width.

In Section 5, we study the class M := [{M (2)
n : n ≥ 1}] and show that it is

also of unbounded clique-width. However, this class is not a minimal hereditary
class of unbounded clique-width. Moreover, we discover an infinite decreasing
sequence M1 ⊃ M2 ⊃ . . . of subclasses of M of unbounded clique-width. We
also show that the limit class of this sequence, i.e., the class

⋂
i≥1
Mi, is unique
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in the sense that by excluding any graph from this class we obtained a subclass
of M of bounded clique-width.

4 The Class F
Recall that F is the hereditary closure of the set {n ∗Fn : n ≥ 1}. Throughout
the section we denote the set of vertices of the graph n ∗Fn by V = {vi,j : 1 ≤
i, j ≤ n}. Also, the subgraph of n ∗ Fn induced by any k consecutive rows of V
will be denoted k ∗ Fn, i.e. 2 ∗ Fn = Fn.

Theorem 1. The clique-width of the graph n ∗ Fn is at least �n/2	.

Proof. Let cwd(n ∗ Fn) = t. Denote by τ a t-expression defining n ∗ Fn and by
tree(τ) the rooted tree representing τ . The subtree of tree(τ) rooted at a node
x will be denoted tree(x, τ). This subtree corresponds to a subgraph of n ∗ Fn,
which will be denoted F (x). The label of a vertex v of the graph n ∗ Fn at
the node x is defined as the label that v has immediately prior to applying the
operation x.

Let a be a lowest ⊕-node in tree(τ) such that F (a) contains a full row of V .
Denote the children of a in tree(τ) by b and c. Let us color all vertices in F (b)
blue and all vertices in F (c) red, and the remaining vertices of n ∗ Fn yellow.
Note that by the choice of a the graph n ∗ Fn contains a non-yellow row (i.e. a
row each vertex of which is non-yellow), but none of its rows is entirely red or
blue. We denote a non-yellow row of n ∗ Fn by r. Without loss of generality we
assume that r ≤ �n/2� and that the row r contains at least n/2 red vertices,
since otherwise we could consider the rows in reverse order and swap colors red
and blue.

Observe that edges of n∗Fn between different colored vertices are not present
in F (a). Therefore, if a non-red vertex distinguishes two red vertices u and v,
then u and v must have different labels at the node a. We will use this fact to
show that F (a) contains a set U of at least �n/2	 vertices with pairwise different
labels at the node a. Such a set can be constructed by the following procedure.

1. Set i = r, U = ∅ and J = {j : vr,j is red}.
2. Set K = {j ∈ J : vi+1,j is non-red}.
3. If K �= ∅, add the vertices {vi,k : k ∈ K} to U . Remove members of K

from J .
4. If J = ∅, terminate the procedure.
5. Increase i by 1. If i = n, choose an arbitrary j ∈ J , put U = {vm,j : r ≤

m ≤ n− 1} and terminate the procedure.
6. Go back to Step 2.

It is not difficult to see that this procedure must terminate. To complete the
proof, it suffices to show that whenever the procedure terminates, the size of
U is at least �n/2	 and the vertices in U have pairwise different labels at the
node a.



390 N. Korpelainen and V.V. Lozin

First, suppose that the procedure terminates in Step 5. Then U is a subset
of red vertices from at least �n/2	 consecutive rows of column j. Consider two
vertices vl,j , vm,j ∈ U with l < m. According to the above procedure, vm+1, j is
red. Since n∗Fn does not contain an entirely red row, the vertex vm,j must have
a non-red neighbor w in row m + 1. But w is not a neighbor of vl,j , trivially. We
conclude that vl,j and vm,j have different labels. Since vl,j and vm,j have been
chosen arbitrarily, the vertices of U have pairwise different labels.

Now suppose that the procedure terminates in Step 4. By analyzing Steps 2
and 3, it is easy to deduce that U is a subset of red vertices of size at least �n/2	.
Suppose that vl,j and vm,k are two vertices in U with l ≤ m. The procedure
certainly guarantees that j �= k and that both vl+1,j and vm+1,k are non-red. If
m ∈ {l, l+2}, then it is clear that vl+1,j distinguishes vertices vl,j and vm,k, and
therefore these vertices have different labels. If m /∈ {l, l + 2}, we may consider
vertex vm−1,k which must be red. Since n ∗ Fn does not contain an entirely red
row, the vertex vm,k must have a non-red neighbor w in row m − 1. But w is
not a neighbor of vl,j , trivially. We conclude that vl,j and vm,k have different
labels, and therefore, the vertices of U have pairwise different labels. The proof
is complete. ��

By Theorem 1, the clique-width of graphs in F is unbounded. Now let us show
that F is a minimal hereditary class of unbounded clique-width. To this end, we
will employ the following technical lemma proved in [8].

Lemma 1. If the vertices of a graph G can be partitioned into subsets V1, V2, . . .
in such a way that for each i,

(1) cwd(G[Vi]) ≤ l with l ≥ 2,
(2) μ(Vi) ≤ m and μ(V1 ∪ . . . ∪ Vi) ≤ m,

then cwd(G) ≤ lm.

In particular, Lemma 1 implies the following corollary.

Corollary 1. The clique-width of k ∗ Fn is at most 2k.

Proof. Denote by Vi the i-th column of k ∗ Fn. Since each column induces an
independent set, it is clear that cwd(G[Vi]) ≤ 2 for every i. Trivially, μ(Vi) ≤ k,
since |Vi| = k. Also, denoting Wi := V1 ∪ ... ∪ Vi, it is not difficult to see that
μ(Wi) ≤ k for every i, since the vertices of the same row in Wi are Wi-similar.
Now the conclusion follows from Lemma 1. ��

Now we use Lemma 1 and Corollary 1 to prove the following result.

Lemma 2. For any fixed k ≥ 1, the clique-width of k ∗ Fk-free graphs in the
class F is bounded by a function of k.

Proof. Let k be a fixed number and G be a k ∗Fk-free graph in F . By definition
of F , the graph G is an induced subgraph of n ∗Fn for some n. For convenience,
assume that n is a multiple of k, say n = tk. The vertices of n ∗ Fn that induce
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G will be called black and the remaining vertices of n ∗ Fn will be called white.
Also, we will refer to the set of vertices of G in the same row of n ∗Fn as a layer
of G.

For 1 ≤ i ≤ t, let us denote by Wi the subgraph of n ∗ Fn induced by the k
consecutive rows (i− 1)k + 1, (i− 1)k + 2, . . . , ik. For simplicity, we will use the
term ’row r of Wi’ when referring to the row (i− 1)k + r of n ∗Fn. We partition
the vertices of G into subsets V1, V2, ..., Vt according to the following procedure:

1. Set Vj = ∅ for 1 ≤ j ≤ t. Add every black vertex of W1 to V1 . Set i = 2.
2. For j = 1, . . . , n,

– if column j of Wi is entirely black, then add the first vertex of this
column to Vi−1 and the remaining vertices of the column to Vi.

– otherwise, add the (black) vertices of column j preceding the first white
vertex to Vi−1 and add the remaining black vertices of the column to Vi.

3. Increase i by 1. If i = t + 1, terminate the procedure.
4. Go back to Step 2.

Let us show that the partition V1, V2, ..., Vt given by the procedure satisfies the
assumptions of Lemma 1 with l and m depending only on k.

The procedure clearly assures that each G[Vi] is an induced subgraph of Wi∪
Wi+1. By Corollary 1, we have cwd(Wi ∪ Wi+1) = cwd(2k ∗ Fn) ≤ 4k. Since
the clique-width of an induced subgraph cannot exceed the clique-width of the
parent graph, we conclude that cwd(G[Vj ]) ≤ 4k, which shows condition (1) of
Lemma 1.

To show condition (2) of Lemma 1, let us call a vertex vm,j of Vi boundary
if either vm−1,j belongs to Vi−1 or vm+1,j belongs to Vi+1 (or both). It is not
difficult to see that a vertex of Vi is boundary if it belongs either to the second
row of an entirely black column of Wi or to the first row of an entirely black
column of Wi+1. Since the graph G is k ∗ Fk-free, the number of columns of Wi

which are entirely black is at most k− 1. Therefore, the boundary vertices of Vi

introduce at most 2(k − 1) equivalence classes in Vi.
Now consider two non-boundary vertices vm,j and vm,p in Vi from the same

row. It is not difficult to see that vm,j and vm,p have the same neighborhood
outside Vi. Therefore, the non-boundary vertices of the same row of Vi are Vi-
similar, and hence the non-boundary vertices give rise to at most 2k equivalence
classes in Vi. Thus, μ(Vi) ≤ 4k − 2 for all i.

An identical argument shows that μ(V1 ∪ ... ∪ Vi) ≤ 3k − 1 ≤ 4k − 2 for all i.
Therefore, by Lemma 1, we conclude that cwd(G) ≤ c(k) := 16k2 − 8k, which
completes the proof. ��

Theorem 2. F is a minimal hereditary class of graphs of unbounded clique-
width.

Proof. Let X be a proper hereditary subclass of F and H ∈ F−X . Since H is an
induced subgraph of k ∗Fk for some k, each graph in X is k ∗Fk-free. Therefore,
by Lemma 2, the clique-width of graphs in X is bounded by a constant. ��
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5 The Class M
Recall that M is the hereditary closure of the set {M (2)

n : n ≥ 1}. By analogy
with Theorem 1 one can prove the following result.

Theorem 3. The clique-width of M
(2)
n is at least n/4.

Theorem 3 shows that the clique-width of graphs in the class M is unbounded.
However, unlike the class F studied in the previous section, M is not a minimal
hereditary class of unbounded clique-width. To show this, let us provide an
alternative definition of the graph M

(2)
n . Let Kn,n be the complete bipartite

graph with vertices a1, . . . an in one part and vertices b1, . . . bn in the other part.
Denote by Mn,n the graph obtained from the Kn,n by subdividing each edge
aibj by a new vertex cij (i.e., by introducing vertex cij on the edge aibj). It is
not difficult to see that Mn,n coincides with M

(2)
n . Therefore, every graph in M

is obtained from a bipartite graph by subdividing each of its edges exactly once
(or an induced subgraph of such a graph). We will call the vertices of type ai or
bi in Mn,n black and the vertices of type ci,j white.

In order to see that M is not a minimal hereditary class of unbounded clique-
width, let us introduce the following notations: denote by Cn the chordless cycle
of length n and by Hn the graph in Figure 2(left). Also, denote by Sk be the
class of (C3, . . . , Ck, H1, . . . , Hk)-free bipartite graphs of vertex degree at most
3 and by Mk the intersection Sk ∩M.

Lemma 3. For any natural k, the clique-width of graphs in Mk is unbounded.

Proof. It is known that both the clique-width and tree-width are unbounded in
the class Sk for any value of k [10]. Since subdivision of an edge does not change
the tree-width of a graph (see e.g. [10]), by subdividing each edge of graphs in Sk

exactly once we obtain a class of graphs X of unbounded tree-width. Moreover,
it is known that for graphs of bounded vertex degree, the tree-width is bounded
if and only if the clique-width is bounded [7]. Therefore, the clique-width of
graphs in X also is unbounded, and obviously X ⊆ Sk ∩M, which proves the
lemma. ��
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Fig. 2. Graphs Hn (left) and Si,j,k (right)
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Lemma 3 shows that M is not a minimal hereditary class of unbounded clique-
width. Indeed, for any k, the class Mk is a subclass of M simply because in
Mk the vertex degree is bounded by 3, while in M it is not. Moreover, it is
not difficult to see that M2,2 = M

(2)
2 is a C8, i.e., M8 is a subclass of M2,2-free

graphs in M.
Let us denote the limit class of the sequence S1 ⊃ S2 ⊃ S3 . . . by S, i.e.,

S =
⋂

k≥1
Sk. It is not difficult to see that S is the class of graphs every connected

component of which is of the form Si,j,k represented in Figure 2(right). Obviously,
S is a subclass of Mk for each k. Therefore, S is a limit class of the sequence
M1 ⊃ M2 ⊃ M3 . . . as well. In the rest of the section, we show that S is a
minimal limit subclass of M, i.e., for any graph H ∈ S, the clique width of
graphs in M∩ Free(H) is bounded by a constant. This will be done through
a sequence of auxiliary lemmas. The first lemma in this sequence was proved
in [9].

Lemma 4. [9] For a class of graphs X and an integer ρ, let [X ]ρ be the class of
graphs G such that G−U belongs to X for some subset U ⊆ V (G) of cardinality
at most ρ, and let [X ]B be the class of graphs every black of which belongs to X.
If the clique of graphs in X is bounded by p, then the clique of graphs in [X ]ρ is
bounded by 2ρ(p + 1), and the clique-width in [X ]B is bounded by p + 2.

In the proofs of the next lemmas we will frequently use the following obvious
observation.

Observation 1. Any cycle in any graph G ∈ M is chordless.

Lemma 5. For each k ≥ 3, the clique width of graphs in Lk := M∩ Free(Ck,
Ck+1, . . .) is bounded by a function of k.

Proof. For k = 3, the proposition follows from the fact that every graph in L3
is a forest. For k > 3, we use the induction on k.

Let G be a graph in Lk+1. By Lemma 4 we can assume without loss of gener-
ality that G is 2-connected. If G contains no cycles of length k, then G ∈ Lk in
which case the lemma follows by induction. Now let C be a cycle of length k in
G. We will show that any other cycle C′ of length k in G (if any) has a common
vertex with C. Assume the contrary: C and C′ are vertex disjoint. Consider two
edges e ∈ C and e′ ∈ C′. Since G is 2-connected, there is a cycle containing both
e and e′. In this cycle, one can distinguish two disjoint paths P and Q, each of
which contains the endpoints in C and C′, and the remaining vertices outside
the cycles. The endpoints of the paths P and Q partition each of the cycles C
and C′ into two parts. The larger parts in both cycles together with paths P
and Q form a cycle of length at least k + 2, contradicting the assumption that
G ∈ Lk+1. This contradiction shows that any two cycles of length k in G have
a vertex in common. Therefore, removing the vertices of any cycle of length k
from H results in a graph in Lk, as required. ��

Lemma 6. For each k ≥ 1, the clique width of graphs in M∩ Free(Sk,k,k) is
bounded by a function of k.
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Proof. Let G ∈M∩Free(Sk,k,k). Consider a chordless path P of length 2k− 2
and a chordless cycle C of length at least 2k+2 in G. If G does not contain such
P or C, the the clique-width of G is bounded according to Lemma 5. Assume
P and C are vertex disjoint. Since G is connected, there must exist a chordless
path P ′ connecting C to P . Since only black vertices of C can have neighbors
outside C, the vertex of P ′ that has a neighbor on C is white, and therefore this
vertex has exactly one neighbor on C. Similarly, it is not difficult to see that the
vertex of P ′ that has a neighbor on P is adjacent to exactly one vertex of P .
But now the reader can easily find an induced Sk,k,k. This contradiction shows
that P and C contain a vertex in common. Therefore, the graph obtained from
G by deletion of the vertices of P belongs to L2k+2, and the proposition follows
from Lemmas 4 and 5. ��

Theorem 4. For any graph H ∈ S, the clique width of graphs in M∩Free(H)
is bounded by a constant.

Proof. Without loss of generality we will assume that every connected compo-
nent of H is of the form Sk,k,k for some even k ≥ 2 (obviously every graph in S is
an induced subgraph of a graph of this form). Let p be the number of connected
components of H , i.e., H = pSk,k,k. We will show that the clique-width of any
graph G in M∩ Free(H) is bounded by a function of k and p. The proof will
be given by induction on the minimum number m ≤ p such that G is mSk,k,k-
free. If m = 1, then the clique-width of G is bounded according to Lemma 6.
If G contains an induced copy of Sk,k,k, then by deleting this copy we obtain a
graph G′ which is (m − 1)Sk,k,k-free. Indeed, if G′ contains an induced copy of
(m−1)Sk,k,k, then there are no edges between this copy and the deleted copy of
Sk,k,k in G, because k is even, which means white vertices in both copies have no
neighbors outside the copies. By the induction hypothesis, the clique-width of
G′ is bounded by a function of k and p. Therefore, by Lemma 4, the clique-width
of G is bounded as well, since the number of deleted vertices is 3k + 1. ��
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Abstract. A kernel in a directed graph D(V, E) is a set S of vertices
of D such that no two vertices in S are adjacent and for every vertex u
in V � S there is a vertex v in S , such that (u, v) is an arc of D. The
problem of existence of a kernel is NP -complete for a general digraph.
In this paper we introduce the strong kernel problem of an undirected
graph G and solve it in polynomial time for circulant graphs.

Keywords: oriented graph, kernel, strong kernel number, NP -complete,
strongly connected.

1 Introduction

The concept of kernel is widespread and appears in diverse fields such as logic,
computational complexity, artificial intelligence, graph theory, game theory, com-
binatorics and coding theory [3], [4]. Efficient routing among a set of mobile hosts
is one of the most important functions in ad hoc wireless networks. Dominating-
set-based routing to networks with unidirectional links is proposed in [1], [9]. A
few years ago a new interest for these studies arose due to their applications in
finite model theory. Indeed variants of kernel are the best properties to provide
counter examples of 0− 1 laws in fragments of monadic second order logic [8].

A kernel [6] in a directed graph D(V, E) is a set S of vertices of D such that
no two vertices in S are adjacent and for every vertex u in V � S there is a
vertex v in S, such that (u, v) is an arc of D. The concept of kernels in digraphs
was introduced in different ways [10], [14]. Von Neumann and Morgenstern [14]
were the first to introduce kernels when describing winning positions in 2 person
games. They proved that any directed acyclic graph has a unique kernel. Not
every digraph has a kernel and if a digraph has a kernel, this kernel is not
necessarily unique. All odd length directed cycles and most tournaments have
no kernels [3], [4]. If D is finite, the decision problem of the existence of a kernel
is NP -complete for a general digraph [5], [13], and for a planar digraph with
indegrees ≤ 2, outdegrees ≤ 2 and degrees ≤ 3 [7]. It is further known that a
finite digraph all of whose cycles have even length has a kernel [11], and that the
question of the number of kernels is NP -complete even for this restricted class
of digraphs [12].
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In this paper we view the kernel problem from a different perspective. In the
literature, only the existence of kernel of a digraph G and its applications are
extensively studied. Our aim in this paper is to investigate all strong orientations
of G and to determine the strong kernel number of G. This number is different
from the independent domination number γi for undirected graphs where γi is
the cardinality of a minimum independent dominating set [2].

2 Kernel in Oriented Graphs

An orientation of an undirected graph G is an assignment of exactly one direction
to each of the edges of G. There are 2|E| orientations for G. Let Ox(G) denote
the set of all orientations of G. For an orientation O ∈ Ox, let G(O) denote the
directed graph with orientation O and whose underlying graph is G.

An orientation O of an undirected graph G is said to be an acyclic orien-
tation if it contains no directed cycles. Let Oa(G) denote the set of all acyclic
orientations of G.

An orientation O of an undirected graph G is said to be strong if for any two
vertices x, y of G(O), there are both (x, y)-path and (y, x)-path in G(O). Let
Os(G) denote the set of all strong orientations of G.

An orientation O of an undirected graph G is said to be weak if for any two
vertices x, y of G(O), there is either a (x, y)-path or a (y, x)-path in G(O). Let
Ow(G) denote the set of all weak orientations of G.

So far the only known problem on this topic is the kernel problem which in-
vestigates the existence of some kernel in a digraph. We introduce kernel number
(κx), acyclic kernel number (κa), strong kernel number (κs), and weak kernel
number (κw) for various orientations of a given graph.

Notation 1. Let G(O) denote the directed graph with orientation O and whose
underlying graph is G. The kernel number of G(O) to be defined below is denoted
by κ(G(O)). For convenience we write κ(G(O)) as κ(O).

Definition 1. The kernel number κx of G is defined as

κx(G) = min {κ(O) : O ∈ Ox(G)}

Definition 2. The acyclic kernel number κa of G is defined as

κa(G) = min {κ(O) : O ∈ Oa(G)}

Definition 3. The strong kernel number κs of G is defined as

κs(G) = min {κ(O) : O ∈ Os(G)}
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Definition 4. The weak kernel number κw of G is defined as

κw(G) = min {κ(O) : O ∈ Ow(G)}

The acyclic (strong or weak) kernel problem of an undirected graph G is to find
a kernel K of G(O) for some acyclic (strong or weak) orientation O of G such
that |K| = κx(κs or κw).

In this section we exhibit the relationship among the parameters γi, κx, κs

and κw.

Theorem 1. Let G be a graph. Then γi = κx, where γi is the independent
domination number.

Proof. It is always true that γi ≤ kx, since a kernel of a directed graph is an
independent dominating set of the corresponding underlying undirected graph.
We identify a minimum independent dominating set and orient all the edges
incident at each of these vertices as incoming edges. This implies kx ≤ γi. Hence
γi = κx. �

Illustration 1. For the graph G in Figure 1(a), Γ = {3, 4} is an independent
dominating set. Thus γi = 2. Figure 1(b) shows an arbitrary orientation of G
with the edges incident at 3, 4 as incoming edges. Hence κx = 2.

1 2 3

4 5 6

1 2 3

4 5 6
(a) (b)

Fig. 1. (a): Independent domination number = 2; (b): Kernel number = 2
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(a) (b)

Fig. 2. (a): Weak kernel number = 1; (b): Strong kernel number = 2
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Illustration 2. In Figure 2(a), K = {1} is a weak kernel. Thus κw = 1. On the
other hand, in Figure 2(b) K = {2, 4} is a strong kernel. Thus κs = 2.

Lemma 1. For any graph G, Oa and Os are disjoint.

Proof. Let O be some orientation in Os and G(O), the corresponding oriented
graph. Then there exist (u, v)-path and (v, u)-path, for all u, v ∈ V (G). This
shows that there exists at least one cycle in graph G(O). Hence O /∈ Oa. Thus
Oa and Os are disjoint. �
The following result is trivial as every strong orientation of a graph G is also a
weak orientation.

Lemma 2. For any graph G, Os is a subset of Ow.

Lemma 3. Given any hamiltonian graph G, Oa ∩Ow �= φ.

Proof. It is enough to find an orientation which is both acyclic and weakly
oriented. Let C = v1v2...vnv1 be a hamiltonian cycle in G. Orient the path
v1v2...vn−1vn in the clockwise direction and the edge vnv1 in the anticlockwise
direction. Orient every other edge vivj of G from vi to vj whenever i < j. The
resulting orientation O on G is clearly weak, as there is always either a (vi, vj)-
path or (vj , vi)-path along the orientation of C. Next we claim that G(O) is
acyclic. Suppose there is a cycle vi1vi2 ...vik

vi1 . By definition i1 < i2 < ... < ik
and hence ik < i1 is not possible. Thus vi1vi2 ...vik

vi1 is not a directed cycle.
This proves that O is an acyclic orientation. �

Remark 1. If Oa ∩Ow �= φ, then it is not necessary that G is hamiltonian. See
Figure 3.

Remark 2. For an arbitrary graph G, Oa ∩ Ow may be empty. The graph G
in Figure 4(a), has an acyclic orientation O and G(O) is not weakly connected.
Thus Oa ∩Ow = φ, whereas for the graph in Figure 4(b), Oa ∩Ow �= φ.

Lemma 4. For any noncomplete graph G on 3 or more vertices, Ow is a proper
subset of Ox.

Proof. Since G is not complete, there exist two independent vertices u and
v. Consider an orientation O such that all the edges incident at u and v are
incoming edges. Then neither there is a (u, v)-path nor there is a (v, u)-path. This

1 2 3 4 5

Fig. 3. O ∈ Oa ∩ Ow but G(O) is not hamiltonian
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Fig. 4. (a): an acyclic orientation G; (b): Oa ∩ Ow �= φ

O

O O

O

s

w

a

x

Fig. 5. Relation between different orientations for hamiltonian Graphs

implies that O /∈ Ow. Since Ow is a subset of Ox and there exist an orientation
O ∈ Ox � Ow, Ow is a proper subset of Ox. �

Figure 5 depicts the set theoretical relationship among Ox, Oa, Os, Ow, for
hamiltonian graphs.

Next we exhibit the relation among the parameters such as kernel number,
acyclic kernel number, strong kernel number and weak kernel number.

The proof follows from Lemma 1 and Lemma 2.

Theorem 2. Let G be an undirected graph. Then (i) κx ≤ κw ≤ κs (ii) κx ≤ κa.

The salient feature of this paper is the following theorem where we obtain a
lower bound for the strong kernel number of regular graphs.

Theorem 3. Let G be an r-regular graph on n vertices. Then κs ≥ �n/r�.

Proof. Let O ∈ Os and K be some kernel of G(O). For any vertex v ∈ K there
are at most r − 1 incoming edges. Thus |K| ≥ �n/r�. �

3 Kernel in Oriented Circulant Graphs

In this section we obtain the strong kernel number for oriented circulant graphs,
proving that the strong kernel problem is polynomially solvable.

We begin with the definition of circulant digraph [15].
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Fig. 6. Circulant digraph(DC7(1,2))

Definition 5. A circulant digraph D(Cn(S)), where S ⊆ {1, 2, ..., n− 1} , n ≥ 2,
is defined as a digraph with vertex set V = {0, 1, 2, ..., n− 1} and the edge set
E = {(i, j)}: there is s ∈ S such that j − i ≡ s (modn)}. See Figure 6.

If S = {1, 2, ..., j} we write D(Cn(1, 2, ..., j)) instead of D(Cn(S)). We observe
that kernel does not exist for D(C7(1, 2)) in Figure 6. Thus it is interesting to
note that the directed circulant graphs do not possess kernels in certain cases.
This motivates us to consider oriented circulant graphs.

Definition6. [15] A circulant undirected graph Cn(S), where S ⊆ {1, 2, ..., �n/2	}
n ≥ 3, is defined as an undirected graph with vertex set V = {0, 1, 2, ..., n− 1} and
the edge set E = {(i, j) : there is s ∈ S such that | j − i |≡ s (modn)}.

Clearly Cn(S) is 2 |S|-regular.

Lemma 5. Let G be Cn (1, 2, ..., s) , 1 ≤ s ≤ �n/2	. Then G has at least 2m−n

strong orientations where m denotes the number of edges in G.

0 1

2

3

4

5

67
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10

11 Outer cycle

           Inner cycle I(0)

Inner cycle I(1)

Inner cycle I(2)

0 1

2

3

4

5

67

8

9

10

11

(a) (b)

Fig. 7. (a) Cycles marked in C12(1, 3); (b) C12(1, 5) has one hamiltonian cycle Γ and
exactly one inner hamiltonian cycle I (0)
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Proof. The circulant graph G contains the cycle Cn(1) on n vertices as a sub-
graph. Let it be oriented in clockwise direction. Clearly, this orientation induces
a strong orientation of G. Now the remaining m − n edges can be oriented in
2m−n ways. Hence G has at least 2m−n strong orientations. �
We proceed to prove that the strong kernel problem is polynomially solvable for
Cn (1, 2, . . . , s) , 1 ≤ s ≤ �n/2	 .

Lemma 6. Let G be Cn(1, s), 2 ≤ s ≤ �n/2	. The edge set E of Cn(1, s) is
partitioned into the following cycles:

1. The outer hamiltonian cycle Γ = (0, 1, 2,. . . , 0).
2. l number of edge-disjoint inner cycles I(k) = (k, k + s, k + 2s,. . . , k + (n

l −
1)s, k), 0 ≤ k ≤ l− 1, each of length n

l where l = g.c.d(n, s) and vertex labels
taken modulo n.

Proof. Case 1: ( s divides n )
Since s divides n, we have l = s. In addition to the outer hamiltonian cycle
Γ, Cn(1, s) has the following inner cycles: I(0) = (0, s,. . . , 0); I(1) = (1, s +
1,. . . , 1); I(2) = (2, s + 2,. . . , 2);. . . I(s − 1) = (s − 1, 2s − 1,. . . , s − 1). See
Figure 7(a). For i �= j, V (I(i)) ∩ V (I(j)) = φ, 1 ≤ i, j ≤ l and ∪V (I(k)) =
{0, 1, 2, 3,. . . , n−1}. Hence the cycles I(0), I(1), I(2),. . . , I(s−1) are edge-disjoint
and these cycles together with Γ partition the set E.

Case 2: ( s does not divide n )
If s does not divide n, then l = 1. In this case, in addition to the outer hamilto-
nian cycle Γ , there is one more hamiltonian cycle which is I(0) = 0, s, 2s,. . . , 0.
See Figure 7(b). �

Notation 2. Let Csub
n (1, s) be a subgraph of Cn(1, s) where the edge set of

Csub
n (1, s) consists of : (i) the edges of the outer cycle Γ (ii) the edges of the

inner cycle I(0).

Notation 3. A segment Π+(x) of Csub
n (1, s) is a path of consecutive vertices

x, x+1,. . . , x+ l of length l. Similarly a segment Π−(x) is a path of consecutive
vertices x, x− 1,. . . , x− l of length l, where l = g.c.d(n, s). See Figure 8.

The following Lemma gives a strong orientation of Cn (1, 2, ..., s) , 2 ≤ s ≤ �n/2	.

Lemma 7. Let Csub
n (1, s) have an orientation O satisfying the following

conditions.

1. Inner cycle I(0) is oriented clockwise
2. Π+(il) is oriented either in clockwise or in anticlockwise direction where

i = 0, 1,. . . , �n/l� − 1. Then O is a strong orientation.
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x
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x-3

x+1

x+2
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(x)

+

-

(x)

Fig. 8. l = 3, Π+(x) = x, x + 1, x + 2, x + 3; Π−(x) = x, x − 1, x − 2, x − 3

Proof. Let u, v be any two vertices of Csub
n (1, s) and let u be in Π+(il) such

that u = il+ t and v be in Π+(jl) such that v = jl+h. Both Π+(il) and Π+(jl)
are oriented either clockwise or anticlockwise. Thus there are four possible cases.

Case 1: (Π+(il) and Π+(jl) are Oriented Clockwise)
Here is a directed path from u to v : (il + t, il + t + 1,. . . , (i + 1)l, (i + 1)l +
s,. . . , jl, jl + 1,. . . , jl + h) mod n. In the same way we trace out a directed path
from v to u : (jl+h, jl+h+1,. . . , (j+1)l, (j+1)l+s,. . . , il, il+1, il+2,. . . , il+t)
mod n. See Figure 9.

Case 2: (Π+(il) is Oriented Clockwise and Π+(jl) is Oriented
Anticlockwise)
There is a directed path from u to v: (il + t, il + t + 1,. . . , (i + 1)l, (i + 1)l +
s,. . . , (j +1)l, (j +1)l−1,. . . , jl +h) mod n and there exist a directed path from
v to u : (jl + h, jl + h− 1,. . . , jl, jl + s,. . . , il, il + 1,. . . , il + t) mod n.

Case 3: (Π+(il) is oriented anticlockwise and Π+(jl) is oriented
clockwise)

Here is a directed path from u to v : (il + t, il + t− 1,. . . , il, il + s,. . . , jl, jl +
1,. . . , jl + h) mod n. In the same way we exhibit a directed path from v to
u : (jl + h, jl + h + 1,. . . , (j + 1)l, (j + 1)l + s,. . . , (i + 1)l, (i + 1)l− 1,. . . , il + t)
mod n.

Case 4: (Π+(il) and Π+(jl) are oriented anticlockwise)
Here is a directed path from u to v : (il+ t, il+ t−1,. . . , il, il+s,. . . , (j+1)l, (j+
1)l− 1,. . . , jl + h) mod n. In the same way we trace out a directed path from v
to u : (jl +h, jl +h− 1,. . . , jl, jl+ s,. . . , (i+1)l, (i+1)l− 1,. . . , il + t) mod n. �

Theorem 4. Let G be Cn(1, 2,. . . , s), 1 ≤ s ≤ �n/2	. Then κs = �n/2s� .
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Fig. 9. C21(1, 6); Π+(il) and Π+(jl) are oriented clockwise
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Fig. 10. (a) Π−(0) is oriented in clockwise direction and Π+(0) is oriented in anticlock-
wise direction in C12(1, 2, 3); (b) Inner cycle I(0) is oriented clockwise in C12(1, 2, 3)

Proof. By Theorem 3, κs ≥ �n/2s�. We claim κs ≤ �n/2s�. Two cases arise.

Case 1: (s divides n)
Subcase 1: (n/s is even)
We claim that K = {0, 2s, 4s,. . . , (n/2s− 1)2s} is a kernel of Cn(1, 2,. . . , s).

Step 1: For 0 ≤ k ≤ n/2s, Π+(2ks) is oriented anticlockwise and Π−(2ks) is
oriented clockwise. See Figure 10(a).

Step 2: Orient the inner cycle I(0) as clockwise. See Figure 10(b).
Step 3: The remaining edges at 0, 2s, 4s,. . . , (n− 2s) are oriented as incoming

edges into the respective vertices. See Figure 11.
Let u ∈ V � K such that 2k0s < u < 2(k0 + 1)s for some k0. Then either u is
adjacent to 2k0s or adjacent to 2(k0 +1)s in Cn(1, 2,. . . , s). By the construction
of strong orientation of Cn(1, 2,. . . , s), either

←−−−−−
(u, 2k0s) or

←−−−−−−−−−−
(u, 2(k0 + 1)s) is an

arc. Also K is an independent set of Cn(1, 2,. . . , s). Clearly |K| = �n/2s�.
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Fig. 11. Edges at 0, 2s, 4s,. . . , n − 2s are oriented as incoming edges in C12(1,2,3)

Subcase 2: (n/s is odd)
We claim that K = {0, 2s, 4s,. . . , (�n/2s	 − 1)2s, n − s − 1} is a kernel of
Cn(1, 2,. . . , s).

Step 1: For 0 ≤ k < �n/2s	 , Π+(2ks) is oriented anticlockwise and Π−(2ks)
is oriented clockwise.

Step 2: All other segments Π(i) are oriented in the clockwise direction.
Step 3: Orient the inner cycle I(0) as clockwise.
Step 4: The remaining edges at 0, 2s, 4s,. . . , (�n/2s	 − 1)2s, n− s− 1 are

oriented as incoming edges into the respective vertices.
Step 5: The remaining unoriented edges of Cn(1, 2,. . . , s) are oriented

arbitrarily.
When k = �n/2s	, the vertex 2s �n/2s	 is adjacent to 0. Hence we choose the
vertex n− s− 1 which is not adjacent to 0 and n− s− 1 ∈ (n− 2s, n− s).

Let u ∈ V � K such that 2k0s < u < 2(k0 + 1)s for some k0. Then either u is
adjacent to 2k0s or adjacent to 2(k0 +1)s in Cn(1, 2,. . . , s). By the construction
of strong orientation of Cn(1, 2,. . . , s), either (←−−−−u, 2k0s) or (

←−−−−−−−−−
u, 2(k0 + 1)s) is an

arc. Also K is an independent set of Cn(1,2,. . .,s). Clearly |K| = �n/2s�.

Case 2: (s does not divide n)
Subcase 1: (�n/2s	2s < n− s)
We claim that K = {0, 2s,. . . , 2s �n/2s	} is a kernel of Cn(1, 2,. . . , s).

Step 1: For 0 ≤ k ≤ �n/2s	 , Π+(2ks), is oriented anticlockwise and Π−(2ks)
is oriented clockwise.

Step 2: All other segments Π(i) are oriented in the clockwise direction.
Step 3: Orient the inner cycle I(0) as clockwise.
Step 4: The remaining edges at 0, 2s,. . . , 2s �n/2s	 are oriented as incoming

edges into the respective vertices.
Step 5: The remaining unoriented edges of Cn(1, 2,. . . , s) are oriented

arbitrarily.
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Let u ∈ V � K such that 2k0s < u < 2(k0 + 1)s for some k0. Then either
u is adjacent to 2k0s or adjacent to 2(k0 + 1)s are adjacent in Cn(1, 2,. . . , s).
By the construction of strong orientation of Cn(1, 2,. . . , s), either (←−−−−u, 2k0s) or
(
←−−−−−−−−−
u, 2(k0 + 1)s) is an arc. Also K is an independent set of Cn(1, 2,. . . , s). Clearly
|K| = �n/2s� .

Subcase 2: (n− s < �n/2s	2s ≤ n− 1)
Subcase 2(a): (n− s < �n/2s	 2s < n− 1)
We claim that K = {0, 2s, 4s,. . . , (�n/2s	 − 1)2s, n− s− 1} is a kernel of

Cn(1, 2,. . . , s).
Step 1: For 0 ≤ k < �n/2s	 , Π+(2ks) is oriented anticlockwise and Π−(2ks)

is oriented clockwise.
Step 2: All other segments Π(i) are oriented in the clockwise direction.
Step 3: Orient the inner cycle I(0) as clockwise.
Step 4: The remaining edges at 0, 2s, 4s,. . . , (�n/2s	 − 1)2s, n− s− 1 are

oriented as incoming edges into the respective vertices.
Step 5: The remaining unoriented edges of Cn(1, 2,. . . , s) are oriented

arbitrarily.

The proof is similar to that of subcase 1 of case 2.

Subcase 2(b): (�n/2s	 2s = n− 1)
We claim that l = g.c.d (n, s) = 1. If possible let l > 1. This implies that
n = k1l and s = k2l for some integers k1 and k2. But n− 1 = ks, where
k = 2 �n/2s	 . Therefore n− ks = 1. Hence g.c.d(n, s) = 1.
Therefore �n/2s	2s = n− 1 =⇒ l(k1 − 2k2 �k1/2k2	) = 1.
Since l > 1, (k1 − 2k2 �k1/2k2	) = 1

l is not an integer, a contradiction.
We next claim that the vertex (�n/2s	−1)2s is adjacent to the vertex n−s−1.
Consider

(n− s− 1)− (�n/2s	 − 1)2s = n− s− 1− �n/2s	2s + 2s
= n + s− 1− �n/2s	 2s = s

Since the distance between the two vertices (�n/2s	 − 1)2s and n− s− 1 is
s, they are adjacent to each other. Hence we choose the vertices n− s− 1
and (�n/2s	 − 1)2s− 1 in K.
We claim that K = {0, 2s− 1, 4s− 1,. . . , (�n/2s	 − 1)2s− 1, n− s− 1}.
Step 1: Mark the vertices 0, 2ks− 1, k = 1, 2,. . . , �n/2s	 − 1 and n− s− 1.
Step 2: Π+(0), Π+(2ks− 1) and Π+(n− s− 1) are oriented anticlockwise

and Π−(0), Π−(2ks− 1) and Π−(n− s− 1) are oriented clockwise.
Step 3: All other segments Π(i) are oriented in the clockwise direction.
Step 4: Orient the inner cycle I(0) as clockwise.
Step 5: The remaining edges at 0, 2s−1, 4s−1,. . . , (�n/2s	−1)2s−1, n−s−1

are oriented as incoming edges into the respective vertices.
Step 6: The remaining unoriented edges of Cn(1, 2,. . . , s) are oriented

arbitrarily.
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The proof is similar to that of subcase 1 of case2. �
Thus we have the following Theorem.

Theorem 5. The strong kernel problem for Cn(1, 2, . . . , s), 1 ≤ s ≤ �n/2	 is
polynomially solvable.

4 Conclusion

We have introduced variations of kernel number for oriented graphs and have
exhibited relations among them. We have estimated the lower bound for the
strong kernel number for regular graphs. We have also proved that the strong
kernel problem is polynomially solvable for circulant graphs. Further the various
parameters introduced in Section 2 have opened new avenues for further research
in this field.
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Abstract. The construction of covering arrays with the fewest rows
remains a challenging problem. Most computational and recursive con-
structions result in extensive repetition of coverage. While some is nec-
essary, some is not. By reducing the repeated coverage, metaheuristic
search techniques typically outperform simpler computational methods,
but they have been applied in a limited set of cases. Time constraints of-
ten prevent them from finding an array of competitive size. We examine
a different approach. Having used a simple computation or construction
to find a covering array, we employ a postoptimization technique that
repeatedly adjusts the array in order to (sometimes) reduce its number
of rows. At every stage the array retains full coverage. We demonstrate
its value on a collection of previously best known arrays by eliminating,
in some cases, 10% of their rows. In the well-studied case of strength two
with twenty factors having ten values each, postoptimization produces a
covering array with only 162 rows, improving on a wide variety of com-
putational and combinatorial methods. We identify certain important
features of covering arrays for which postoptimization is successful.

1 Introduction

Covering arrays are combinatorial models of test suites used to detect faulty
interactions among components in software, hardware, and networked systems.
They are intimately related to orthogonal arrays and related experimental de-
signs; to surjective codes; and to qualitatively independent partitions. As a con-
sequence of these and other connections, the construction of covering arrays has
been a topic of substantial interest. See [1,2] for surveys that are now somewhat
dated. Despite the extensive effort expended, finding the smallest test suites for
given testing scenarios remains an unsolved problem in general. We first intro-
duce a purely combinatorial formulation.

Let N , k, t, and v be positive integers. An N × k array, each column of which
contains v distinct symbols, is a covering array CA(N ; t, k, v) of strength t when,
for every way to select t columns, each of the vt possible tuples of symbols arises
in at least one row. When used for testing, columns of the array form factors,
and the symbols in the column form values or levels for the factor. Each row
specifies the values to which to set the factors for an experimental run. A t-tuple

J. Fiala, J. Kratochv́ıl, and M. Miller (Eds.): IWOCA 2009, LNCS 5874, pp. 408–419, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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or t-way interaction is a set of t of the factors, and an admissible level for each.
The array is ‘covering’ in the sense that every t-way interaction is represented by
at least one run. Now CAN(1, k, v) = v and CAN(t, k, 1) = 1. So to avoid trivial
cases, we suppose that k ≥ t ≥ 2 and v ≥ 2. In this paper, we always take the
value set of each factor to be {0, . . . , v − 1}.

11120211122100120202122221
00011021212221100112101122
10212221220201211010200011
01222111111121002001020002
12110110210000022022221111
21020120021102212111201120
02001022202101202000222210
10102200011011222201102102
1�000212111220221102011000
01002002020010001110121211
20220202100101101120012102
22202101002012110022110020
12121010202212001211002001
20111112010222011200022220
02121220121022020110010112
0�010022120��0210221200202
2121100020122012222�211211
�0�10�2�1��1101����121��1�

At left is shown a CA(18;2,26,3). The entries
shown as � can be chosen arbitrarily, and ev-
ery pair of columns contains each of the nine
possible pairs.

In testing applications, the fundamental
problem is to determine CAN(t, k, v). Evi-
dently, CAN(t, k, v) ≥ vt, and when equal-
ity holds the CA is an orthogonal array
OA(vt; t, k, v); see [3] for a textbook treat-
ment. Such orthogonal arrays can exist only
when k ≤ max(v+2, t+1) [3], and hence they
provide no examples beyond ‘small’ values of
k. For fixed v and t, probabilistic methods es-
tablish that CAN(v, k, t) = Θ(log k) [4]. Nev-
ertheless, only in the case when t = v = 2 is
this function of k known exactly [5, 6]. When
CAN(t, k, v) is not known exactly, most effort
has been invested in producing ‘good’ upper
bounds. This is the problem considered here.

Explicit constructions of covering arrays are needed in concrete testing applica-
tions. Recursive methods build larger covering arrays from smaller ones. Some
recursive methods are product constructions; see, for example, [7] for t = 2, [8,9]
for t = 3, [9] for t = 4, and [10,11] for t ≥ 5. Although these all rely on a similar
strategy, their use of numerous smaller covering arrays can result in substantial
duplication of coverage; the specific variants result from efforts to reduce this
duplication, and have been most successful to date when t ∈ {2, 3}. A second
class of recursive methods are column replacement constructions, which use a
second array as a pattern for selecting columns from a covering array; see [12] for
the most general one at present. Again these suffer from substantial repetition of
coverage. Every recursive method also requires that ingredient covering arrays
be known.

Direct methods construct covering arrays without recourse to smaller ingre-
dient covering arrays. Some methods employ geometric, algebraic, or number-
theoretic properties. The orthogonal arrays constructed from the finite fields [3]
provide a prototype for these. By exploiting the structure of automorphisms of the
OAs, compact representations of covering arrays accelerate computational search
[13, 14, 15, 16]. Recently, cyclotomic classes in the finite field have been shown
to provide examples of binary covering arrays, and more generally examples are
provided by certain Hadamard matrices [17]. Block designs have been used to
make a few specific covering arrays [18]. Other easily constructed examples are
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provided by taking all vectors of specified weights to form the rows of a covering
array [19,20,21]. Each of these constructions provides useful examples of covering
arrays, but each is quite restricted in its application. Therefore by far the most
popular general methods are computational techniques.

Exhaustive computation has proved ineffective except in a handful of small
cases. Therefore heuristic and metaheuristic strategies have been the norm. Tech-
niques such as simulated annealing [22], tabu search [23], and constraint satis-
faction [24] are very effective for small existence problems, but the time taken
for convergence to a solution has limited their range of application. As a conse-
quence, the most prevalent computational methods have been greedy. AETG [25]
popularized greedy methods that generate one row of a covering array at a time,
attempting to select a best possible next row; since that time, TCG [26] and
density algorithms [27,28] have developed useful variants of this approach. For
strength two, IPO [29] instead adds a factor (column) at a time, adding rows as
needed to ensure coverage; the generalization to t-way coverage in [30,31] is the
method that has been run on the largest set of parameters to date. When the
arrays to be produced are very large, just checking the properties of the array is
challenging; therefore, random methods have also been examined [32].

Unfortunately, at the present time, based on the current best known upper
bounds for CAN(t, k, v) for 2 ≤ t ≤ 6, 2 ≤ v ≤ 25, and t ≤ k ≤ 10000 at [33],
no single construction can be applied generally while yielding the best, or close
to the best, known results. This leaves the tester with the problem of how to
generate a covering array quickly that is not ‘far’ from optimum. We examine a
new approach, that of improving a covering array after it is constructed; we call
this process postoptimization. To the best of our knowledge, the only previous
effort to improve an existing covering array is the elimination of redundant rows
in CATS [34].

2 Postoptimization

In any covering array CA(N ; t, k, v), the number of t-way interactions to be cov-
ered is

(
k
t

)
vt, while the number actually covered is N

(
k
t

)
. Except possibly when

k ≤ max(v +2, t+1), some duplication of coverage is necessary. All of the recur-
sive and direct techniques attempt to limit this duplication, but cannot hope to
eliminate it completely. Our objective is to eliminate some of the duplication, if
possible. Every entry of a CAN(t, k, v) participates in

(
k−1
t−1

)
t-way interactions.

Some of these interactions may be covered elsewhere, while others may be cov-
ered only in this row. In principle, a specific t-way interaction could be covered
as many as N − vt + 1 times or as little as once. When all of the

(
k−1
t−1

)
t-way

interactions involving a specific entry are covered more than once, the entry can
be changed arbitrarily, or indeed omitted in the determination of coverage, and
the array remains a covering array. Hence such an entry is a possible don’t care
position. If we replace such an entry by � to indicate that t-way interactions
involving this entry are not to be used for coverage, we select it as a don’t care
position. This replacement can cause other possible don’t care positions to ap-
pear in t-way interactions that are now covered only once – such positions are
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no longer possible don’t care positions. On the other hand, replacing a � by an
element from {0, . . . , v−1} can result in new positions for which all of their t-way
interactions are covered more than once, i.e. new possible don’t care positions.

Our strategy is to exploit the presence of don’t care positions in covering
arrays. By choosing a specific set of such positions to change to �, and then
replacing these by elements again, we form a new covering array with a possibly
different collection of possible don’t care positions. By itself this is of no use other
than to produce many covering arrays with the same parameters. However, in
some cases we can form an entire row containing only don’t care positions. When
this occurs, the row is not needed and can be deleted. This is the sense in which
the covering array is improved, by the deletion of rows.

2.1 Finding Don’t Care Positions

To find possible don’t care positions, it suffices to determine the numbers of times
that the

(
k
t

)
vt t-way interactions are covered. For each of the Nk entries, check

whether the entry appears in any t-way interaction that is covered only once. If
not, it is a possible don’t care position. While conceptually simple, this requires
space proportional to

(
k
t

)
vt, which is too much in practice. Instead initially mark

each of the Nk entries as a possible don’t care. Then for each of the
(
k
t

)
sets of

columns in turn, use a vector of length vt to record the number of times each of
the t-way interactions arises in the t chosen columns. Then for each that arises
only once, mark all t positions in it to be no longer don’t care. This requires only
Nk + vt space, but still requires time proportional to tN

(
k
t

)
. At the same time,

one can verify that the array is in fact a covering array, by ensuring that every
t-way interaction is seen at least once. Unfortunately, if we change any one of
the possible don’t care positions to �, some recomputation is then needed.

To find a set of don’t care positions that can all be simultaneously changed
to �, we use the fact that rows are recorded in a specific order. For every set of
t columns we consider the rows of the CA in order; when a t-tuple is covered for
the first time we mark its t positions as necessary. After every possible set of t
factors is treated, all positions that are not necessary can be changed to �. This
can be done in the same time and space as the identification of all possible don’t
care positions.

Once done, each row may have any number of � entries from 0 to k− t or may
consist entirely of don’t care positions. When the latter occurs, this row can be
removed without reducing the strength of the CA.

2.2 Choosing a Row to Eliminate

In some cases, simply identifying don’t care positions enables us to remove a
row, but this is atypical unless the CA is very far from optimal. Therefore we
attempt to produce more don’t care positions in one row by using don’t care
positions in others, with the objective of generating an entire row of don’t care
positions. Thus we wish to select a row that can be ‘easily’ removed. A natural
selection is a row that has the most don’t care positions already. Perhaps a more
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appropriate selection would be the row in which the number of multiply covered
t-tuples is largest. When � entries are present, however, replacing the � by a
value results in a substantial change in this statistic. For this reason, one should
calculate, for a row with � � entries, the quantity

∑�
i=1

(
�
i

)(
k−�
t−i

)
plus the number

of multiply covered t-tuples, and select a row that maximizes this quantity. This
would require substantially more computation, so a simple count of don’t care
positions is used here.

2.3 Algorithm

Having nominated a row for possible elimination, we move the nominated row
to be the last row of the CA. We now use don’t care positions in other rows in an
attempt to introduce (eventually) further don’t care positions in the nominated
row. A simple strategy is to consider each entry of the nominated row that is
not �, locate all � positions in the same column, and replace each by the entry
in the nominated row. This can result in t-way interactions that were covered
only in the last row also being covered earlier, and can therefore result in new
don’t care positions in the last row. In our experiments we found this simple
strategy to be too restrictive; while it can produce new don’t care positions in
the last row, it often fails to produce much change in the pattern of don’t care
positions in the rest of the array. We therefore adopt a less restrictive approach.
For each � position, if the nominated row does not contain � in that column,
we replace the � with the value from the nominated row; otherwise we select a
value at random to replace the �.

One iteration typically produces a different covering array from the one given
as input. However, if we simply find don’t care positions again, often the set is
very similar to the one just used, and consequently the method stalls quickly.
Instead we randomly reorder all rows except the last. Then finding don’t care
positions typically yields a different set – but in the last row, all positions that
were don’t care positions remain so. Of course, another row that previously had
fewer don’t care positions than the nominated row may now have more; if it
does, it becomes the nominated row and is moved to the bottom.

Arguably, one should be more clever in filling the don’t care positions, and in
reordering the rows. Perhaps this is so, but in our experience the randomness
of these two choices is crucial. Whatever choices are made, it can happen that
the same row is nominated at each step, but no row reordering of the remaining
rows yields a set of � positions that result in an improvement of the nominated
row (i.e., more � positions).

2.4 Escaping Local Optima

The decision that the CA is unlikely to be improved from its current state can be
done by monitoring the total number of don’t care positions in the array, or the
number in the nominated row, and abandoning the nominated row when it is ‘too
long’ since the number has improved. We use the number in the nominated row,
and set a threshold on the number of iterations permitted without improvement.
When we exceed the threshold, we take this as evidence that the search has
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converged to a local optimum. We employ a simple method of escaping. We
move the nominated row along with any other row that contains a don’t care
position to the top of the CA, fill all the � positions with random values and
start with this revised array. This could result in a major change in the state of
the CA, and indeed the next row nominated may have substantially fewer don’t
care positions than the one just abandoned.

2.5 Implementation and Scalability

The escape from local optima permits us to start from one CA and produce
a very different one. Therefore multiple processes can execute simultaneously,
all working from a single start point and exploring different areas of the search
space. Once an improvement has been made by one of the tasks the result can be
shared with the others as the new starting point. An effective way to check for
improvements among all processes uses an ‘Allgather’ operation, in which every
process shares its current number of rows with the others. If there is a difference
between the minimum and maximum of the values then the best result is broad-
cast from the lowest ranking process with the best result. A reasonable amount
of time, at least sufficient for one iteration to complete, must be dedicated to
searching for an improvement before communicating with other processes. We
have implemented the method both in a sequential setting and in a parallel one
as outlined.

3 Results

Perhaps the biggest surprise is that the algorithm works at all. Previously the
best result for CAN(6,8,5) is the upper bound 32822 from IPOG-F [31]. Starting
with this array, our method eliminates 4034 rows to show that CAN(6,8,5)≤
28788 in one minute of computation; in ten minutes it reduces to 27909 rows; in
one hour to 27772; and in five hours to 27717. While five hours may be longer
than one wishes to spend, one minute to remove 12.3% of the rows appears
well worth the effort! (All times reported here are for an 8-core Intel Xeon
processor clocked at 2.66GHz with 4MB of cache, bus speed 1.33GHz, and 16GB
of memory. Only one core is used when timing is reported. The program is coded
in C++.)

A striking example is the well studied case CA(N ; 2, 20, 10). In the announce-
ment of AETG [25], CAN(2, 20, 10) ≤ 180 is stated, but no explicit description is
given. Yet the commercial implementation of AETG reports 198 rows. A recent
paper by Calvagna and Gargantini [35] reports bounds on CAN(2,20,10) from
ten methods; other than the bound of 180 reported by AETG [25], the remain-
ing methods give bounds of 193, 197, 201, 210, 210, 212, 220, 231, and 267.
Metaheuristic search using simulated annealing [22] yields 183 rows. Two com-
binatorial constructions both using a 1-rotational automorphism [13, 14] yield
181 rows. Finally it was shown that CAN(2, 20, 10) ≤ 174 using a double pro-
jection technique [13]. In Table 1 we apply postoptimization to seven covering
arrays; we give the method used to produce a CA(Nold; 2, 20, 10), the number
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Table 1. Postoptimization on CA(N ; 2, 20, 10)s

Method Nold Nnew Poss. � �
TCG 217 198 444 256
IPO 212 196 449 285
density 203 195 170 79
AETG 198 190 195 132
annealing 183 183 13 3
1-rotational 181 181 0 0
double projection 178 162 415 146

Nnew of rows after postoptimization, and the numbers of possible don’t care
and don’t care positions. The best establishes that CAN(2, 20, 10) ≤ 162; five
of the seven improve, but those from simulated annealing and the 1-rotational
solution see no improvement. The improvement on CAN(2,20,10) is remarkable,
given the variety of methods that have been previously applied to try to improve
this bound.

We therefore consider projection further. In [13], a construction of Stevens,
Ling, and Mendelsohn [36] is generalized to a projection technique that produces
a CA(q2 − x; 2, q + 1 + x, q − x) from an OA(q2; 2, q + 1, q) when q is a prime
power and x ≥ 0. It is so named because x symbols of the OA are ‘projected’ to
form x new columns. (See [13] for details.) There it is observed that x symbols
can be projected to form 2x new columns (a ‘double projection’), but the result
is no longer a covering array. Rather it is a partial covering array that leaves
many pairs uncovered, but also contains many don’t care positions. A general
pattern to complete this partial array while adding few rows is elusive, if indeed
one exists at all. We therefore employ this partial covering array as a ‘seed’
and complete it using the density algorithm [27]. We found that treating all
uncovered pairs equally, as density does, results in the addition of many rows (for
example, for the partial CA(166; 2, 20, 10), as many as 50 new rows). Therefore
we modified the greedy selection in density to weight uncovered pairs on columns
{q + 1, . . . , q + 2x} highest, pairs with one column from {q + 1, . . . , q + 2x} next,
and pairs with neither column from {q+1, . . . , q+2x} least; then density selects
the largest total weight of uncovered pairs. This remains a greedy heuristic;
nevertheless, it adds as few as 12 rows to complete the partial CA(166; 2, 20, 10).

Using projection and double projection on the OA(q2; 2, q + 1, q) for q ∈
{13, 16, 17, 19} and completing with the weighted density method, we formed
numerous covering arrays and applied postoptimization to each. When x > 1,
each saw a reduction in the number of rows, sometimes dramatic. In Table 2 we
report the new bounds obtained. The value in parentheses is the number of rows
of the CA prior to postoptimization.

One expects that the rows added by density are less effective in the coverage
of pairs than the rows of the OA to which double projection are applied. Sur-
prisingly, postoptimization can succeed in eliminating so many rows that at the
end fewer than q2 − x remain!



Randomized Postoptimization of Covering Arrays 415

Table 2. Covering Arrays from Double Projection

t v k CAN(t, k, v) ≤ Old Bound t v k CAN(t, k, v) ≤ Old Bound
2 10 17 152 (166) 154 [14] 2 10 18 155 (178) 163 [14]
2 10 19 159 (178) 172 [14] 2 10 20 162 (178) 174 [13]
2 10 21 171 (189) 190 [14] 2 10 22 184 (195) 191 [7]
2 11 18 180 (193) 181 [14] 2 12 16 192 (219) 199 [14]
2 13 20 246 (253) 253 [14] 2 14 19 253 (254) 254 [13]
2 14 21 279 (286) 286 [13] 2 14 24 310 (387) 313 [14]
2 15 24 343 (357) 357 [13] 2 16 23 353 (358) 358 [13]

Table 3. Covering Arrays from Density

CA(N ; 4, k, 3)
k New Old k New Old k New Old k New Old k New Old
11 211 230 17 300 312 24 377 389 31 440 446 32 445 454
33 454 461 34 462 468 40 499 504 41 506 510 42 509 513
43 518 522 44 522 526 45 526 530 46 530 534 47 534 538
48 542 546 52 560 562 53 565 567 54 568 572 55 572 575
56 578 581 57 581 584 58 585 588 59 589 592 61 598 601
63 604 607 64 612 614 66 618 620 70 627 629

CA(N ; 5, k, 2)
11 82 86 12 89 92 13 95 103 14 103 110 15 110 115
16 117 123 18 127 135

CA(N ; 6, k, 2)
9 118 120 10 144 150 11 167 178 12 184 190 16 258 270
18 294 309 19 309 323 20 327 337 21 341 352 22 355 362
23 371 377 33 496 503 34 502 508 35 510 516 36 525 529
37 534 541

Now we consider arrays from the density method [28,37]. We treat a few spe-
cific values of t and v. In Table 3, each input array CA(N ; 4, k, 3), CA(N ; 5, k, 2),
and CA(N ; 6, k, 2) is from density [28, 37], and postoptimization is run for 10
minutes (on a single core). The wall clock time limit results in many more it-
erations being completed when k is small; we expect that this is the primary
reason for the larger improvements for few factors. Two of the ‘old’ bounds
(CAN(5, 12, 2) ≤ 92 and CAN(5, 14, 2) ≤ 110) are from [16]. For t = 6, the ‘old’
bounds are from [20] when k = 9, a greedy method of Kuliamin [38] when k = 10,
PaintBall [32] when k ∈ {11, 12, 16}, and density [28, 37] otherwise. All of the
new bounds are obtained by postoptimization of CAs from density.

It appears that postoptimization is applicable to covering arrays from a num-
ber of sources, but there are cases where it has no effect. Indeed we applied
postoptimization to all of the arrays found by Nurmela [23] using tabu search,
and none improved. We applied postoptimization to numerous arrays found by
Cohen [22] using simulated annealing, and none improved.
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We report one more successful application next. Colbourn and Kéri [17]
recently employed Hadamard matrices to establish that CAN(4, 20, 2) ≤ 40,
CAN(4, 32, 2) ≤ 64, and CAN(4, 36, 2) ≤ 72; previously the best known bounds
were CAN(4, 20, 2) ≤ 55 [9], CAN(4, 32, 2) ≤ 73 [38], and CAN(4, 36, 2) ≤ 95 [9].
Applying postoptimization to the Hadamard matrix solutions improve these to
establish that CAN(4, 20, 2) ≤ 39, CAN(4, 32, 2) ≤ 59, and CAN(4, 36, 2) ≤ 66.

4 Using Postoptimization in Practice

Arguably the success of postoptimization is evidence of our limited understand-
ing of covering arrays. Indeed the restrictions on applicability of combinato-
rial constructions have forced us to consider computational search for ‘small’
covering arrays both to provide best known small arrays, and to serve as in-
gredient arrays in recursions. However our ability to carry out computations
is limited. To illustrate this, consider strength t = 4 using [33]. Among the
best known arrays, only the bounds CAN(4, 13, 2) ≤ 34 [39], CAN(4, 6, 3) ≤ 111
[39], CAN(4, 7, 3) ≤ 126 [39], CAN(4, 8, 3) ≤ 153 [22], CAN(4, 6, 4) ≤ 375 [22],
CAN(4, 7, 6) ≤ 1893 [39], and CAN(4, 8, 6) ≤ 2068 [39] are produced by simu-
lated annealing. None have been produced by tabu search, constraint satisfac-
tion, or other metaheuristic search techniques. The workhorses of computation
are the greedy methods; both density [28] and IPO [30, 31] yield numerous best
known covering arrays of strength four. IPO, for example, yields the best known
CA(207; 4, 599, 2), CA(1050; 4, 445, 3), CA(3170; 4, 308, 4), CA(7145;4,208,5), and
CA(13983;4,163,6), along with many arrays with fewer columns. Some direct
constructions that limit or eliminate the computation provide sporadic results,
but the rest of our knowledge rests on recursions.

What explains the prevalence of greedy computations among the best known
results? It is very unlikely that simulated annealing or tabu search would not
yield better results, if either could be run for an adequate period of time. That
is precisely the problem, however. Neither has been implemented so as to find
competitive solutions starting from scratch within a time frame that anyone is
willing to invest. Yet neither is configured so as to take an existing covering array
and improve it by removing rows. Indeed both have been devised to improve a
partial covering array to make it cover more and more t-way interactions within
a specified number of rows. Hence if the time allocated is insufficient, these
metaheuristic search methods end with an array that is still not a covering
array. The fundamental difference in postoptimization is that at every stage we
are dealing with a covering array, not a partial one. This focuses the search much
more than is typically done with simulated annealing or tabu search.

This suggests the main merit of using postoptimization. In using a greedy
approach, or a recursion that may have poor ingredients, we do not expect to
produce a covering array whose size is close to the minimum. But we can produce
such an array quickly for a wide range of parameters. And having produced it,
we can invest time in postoptimizing the array, stopping at any time with the
assurance that a covering array is produced. This appears to be a practical
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solution to the problem of balancing the time to produce a test suite (covering
array) and the time to execute the tests. Within a total time budget for testing,
it suggests the feasibility of investing less time in the initial construction of
the tests while exploiting the (relatively) fast operation of postoptimization to
reduce the time for test execution.

Postoptimization also plays a role in producing the smallest arrays known, as
we have seen. Naturally it would be of interest to be able to predict the extent
to which postoptimization will be successful. This could help us decide when
to try postoptimization. Perhaps more importantly, it would suggest criteria to
construct covering arrays that are amenable to postoptimization. Consider Ta-
ble 1 for the widely studied case CA(N ; 2, 20, 10). Obviously the repetition of
coverage in the larger arrays is greater in total, yet the size of the input array
does not serve as a good predictor of the improvement seen. In these results,
the number of possible don’t care positions appears to be the key. Certainly the
presence of possible don’t care positions is necessary for improvement. However,
we believe that the distributions of possible don’t care positions among the rows
and columns of the array also affect the extent of improvement. Moreover, the
patterns of positions that can be realized simultaneously as don’t care positions
may be more relevant than the pattern of possible don’t care positions. Neverthe-
less, using the number of possible don’t care positions as a preliminary indicator
of the potential improvement appears worthwhile.

5 Conclusion

It comes as no surprise that many of the covering arrays that are best known at
present are far from optimal. In these cases, postoptimization provides a rela-
tively fast method for detecting and exploiting duplication of coverage in order
to improve the arrays. More surprising are the cases in which postoptimization
improves on a result that is already better than those obtained from heuristic
search, as we saw with double projection and with arrays from Hadamard ma-
trices. In these cases, the reason for success does not appear to the poor quality
of the initial array. While duplication of coverage is necessary in all arrays with
N > vt, the distributions of numbers of times that a t-way interaction is covered
can vary widely from interaction to interaction. This can result in certain cells or
rows being more effective in coverage than are others. By focusing on arrays in
which the contributions of cells or rows are quite unbalanced, postoptimization
is sometimes able to eliminate the need for a cell, and perhaps an entire row.

The main benefits of postoptimization are that it does not depend on a par-
ticular construction technique; iterations can be executed in approximately the
same time as needed to check that the array is in fact a covering array; and
that it can be executed for as many iterations as desired, with the assurance
that whenever it is stopped, the array is a covering array. At present the main
limitations are that it does not appear to be effective for certain covering arrays
such as those produced by metaheuristic search; and that the extent of improve-
ment that one can expect cannot be reliably predicted. Despite these limitations,
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postoptimization has already proved to be an easy and effective means to im-
prove a wide variety of covering arrays.
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Abstract. In the last two decades the natural language compression
made a great progress. The main step in this evolution was the intro-
duction of word-based compression by Moffat. The word-based statistical
compression algorithms are able to achieve 35% improvement in the com-
pression ratio in comparison with character-based ones. We present two
new word-based statistical compression algorithms based on dense cod-
ing idea: Two Byte Dense Code (TBDC) and Self-Tuning Dense Code
(SCDC). TBDC uses the codewords with maximal size 2 bytes and must
be implemented with some pruning technique. STDC is able to tune its
code space during the compression process and so achieve better com-
pression. Our algorithms improve the compression ratio and are con-
siderate to smaller files which are very often omitted. We present also
a generalized concept of dense coding called Open Dense Code (ODC)
which provides a frame for definition of these two and many other dense
code schemas.

Keywords: Natural language compression, Word-based compression,
Dense Code.

1 Introduction

The amount of information is rapidly growing up. Data compression helps us to
reduce two most expensive resources: time needed to transmit data and space
needed to store data. Word-based text compression is a novel approach to text
data compression proposed by A. Moffat in [1]. It belongs to the family of loss-
less data compression methods where the compression process is fully reversible
and decompressed data is identical to the original data. Word-based algorithms
use words instead of characters as the symbols of alphabet. It means that they
work with larger units (words instead of characters) and they can exploit longer
correlation in the text. Due to work with the larger units the word-based al-
gorithms are able to achieve better results in compression ratio but they have
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higher memory requirements. Word-based algorithms consider the text like a
strictly alternating sequence of words (string composed of alphanumeric char-
acters) and non-words (string composed of non-alphanumeric characters). This
is a necessary condition for input data because of the ability to split the data
stream into single symbols.

The word-based approach takes advantage of the fact that words in a natural
language are not created as a random combination of characters so the words
contain a possible coding redundancy in the text. We can use this redundancy
and implement context character-based compression methods of Markov model
of higher order or we can eliminate the redundancy by raising our approach
from character-based to word-based. In fact the set of words related to certain
context is very limited because of Heaps Law [4], which implies that we can
easily eliminate the redundancy when we will represent the words in some more
space-saving way than like a sequence of characters. Following a Zipfs Law [5]
we can see that the distribution of the words is biased, which means that the
words can be efficiently compressed using the statistical compression methods.

The rest of this paper is organized as follows. In Section 2 we discuss related
work. We present idea of Open Dense Code in Section 3. Definitions of TBDC
and SCDC are presented in Section 4 and Section 5. Our experiments are dis-
cussed in Section 6. Finally in Section 7 we present our conclusions and ideas
for future work.

2 Related Work

The statistical data compression methods are based on knowledge of probability
of each symbol. The probability of symbol is defined as a number of occur-
rences of the symbol. Suppose Compressor and Decompressor performing data
compression and decompression. They consist of two basic modules: Model and
Coder. In statistical compression methods the Model module is responsible for
collecting all necessary statistics and transforming them into the compression
model. The Coder simply uses the compression model to output a bit stream
representing the symbol.

2.1 End-Tagged Dense Code

End-Tagged Dense Code (ETDC) is a word-based compression method proposed
by Brisaboa et al. in [2]. ETDC was designed to be very fast in both compression
and decompression. Especially the fact that ETDC is byte-oriented improves
substantially the speed of compression and decompression. Byte-oriented means
that the lowest coding unit is one byte. So the coder encodes each symbol as
a sequence of bytes instead of bits as it is usual.

The idea of ETDC is very simple. The Model module collects frequency of
each word. It uses this information not to define the probability, but just to
define the rank of each word. So the main issue of the Model module is to store
all words in descending order by their frequency.
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The Coder module uses the rank information to output a codeword of each
word. It assigns shorter codeword to the word of higher rank. The structure
of code is very simple again. Codeword is represented as a sequence of blocks.
Size of the block is usually eight, which ensures the byte-oriented approach.
A combination of all bits except the most important bit of each block defines the
rank of word. The most important bit is used to define whether the current block
is the last or not. This property ensures that the code is a prefix code which
is necessary condition to be unambiguously decodable. It brings still another
advantage, that the semi-static version of ETDC allows direct searching the
compressed data as the single codewords are easy recognizable. The searched
pattern is just compressed according to dictionary and then any classical string
matching algorithm (like Boyer-Moore) is performed. Only small modification
of the algorithm is needed. The algorithm needs to check, whether the highest
bit of preceding block is set to one, and only then it can submit the hit.

Definition 1. Given source symbols with decreasing probabilities {pi}0≤i<n the
corresponding codeword using the End-Tagged Dense Code is formed by a se-
quence of symbols of b bits, all of them representing digits in base 2b−1, except
the last one which has a value between 2b−1 and 2b − 1, and the assignment is
done in a sequential fashion.

The main goal of ETDC is to achieve substantially better compression ratio
in comparison with standard character-based algorithms while the compression
and decompression times remain approximately the same. To achieve this goal it
is necessary to use some efficient data structure to store the compression model.
Such a structure was proposed by Brisaboa et al. in [2] and is shown in Figure 1.

The dictionary data structure is formed of a hash table and other two arrays.
The hash table is composed of three arrays which are indexed by hash value of
each word. Array word stores textual representation of the word, array posInVoc
stores pointer to vocabulary, which is in fact rank of the word. Array freq stores
frequency of given word. There are two other arrays. The first top array is

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 110

word
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Fig. 1. Dictionary data structure
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indexed by frequency and stores the first position of some word of given frequency
in vocabulary. The last is posInHT array (vocabulary itself), which stores the
pointers to words sorted by decreasing frequency.

The point of the dictionary data structure is that the update operation can
be performed very fast (in constant time) by swapping of just occurred word
with the top word of its original frequency. The update function is described as
Algorithm 1. Both the vocabulary data structure and the update function are
used also in our implementations (TBDC and STDC ).

Algorithm 1. Update vocabulary algorithm
1: function UpdateVoc(index)
2: posInV ocInd ← posInV oc[index]
3: posInV ocTop ← top[freq[index]]
4: posInHTInd ← index
5: posInHTTop ← posInHT [top[freq[index]]]
6: posInV oc[posInHTInd] ← posInV ocTop
7: posInV oc[posInHTTop] ← posInV ocInd
8: posInHT [posInV ocTop] ← posInHTInd
9: posInHT [posInV ocInd] ← posInHTTop

10: top[freq[index]] ← top[freq[index]] + 1
11: freq[index] ← freq[index] + 1
12: end function

2.2 (s,c) - Dense Code

Another word-based compression method proposed by Brisaboa et al. in [3] is
(s,c)-Dense Code (SCDC). The main drawback of ETDC is that it cannot adjust
its coding schema to word distribution of compressed text. SCDC unlike ETDC
does not use most important bit of each block to mark the end of codeword. It
distinguishes so called stoppers and continuers, s stands for number of stoppers,
c stands for number of continuers and s + c = 2b where b is a size of block.
The SCDC codeword is then designed as a sequence of zero or more continuers
closed by one stopper. SCDC is in fact generalization of ETDC as ETDC is
(128,128)-Dense Code. SCDC is in [3] exactly defined as follows.

Definition 2. Given source symbols with decreasing probabilities {pi}0≤i<n an
(s,c) stop-cont code (where c and s are integers larger than zero) assigns to each
source symbol i a unique target code formed by a base-c digit sequence terminated
by a digit between c and c + s− 1.

Adaptive version of SCDC is called by the authors Dynamic (s,c) - Dense Code
DSCDC. Compressor processes the input text and when new word occurs, a
special escape symbol is transmitted followed by plain text form of the word.
When already known word occurs, compressor transmits codeword assigned to
the word and updates the vocabulary (see Algorithm 1). Compressor and de-
compressor are also adjusting the values s and c = 2b − s according to word
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distribution as the compression continues. However this tuning technique does
not work for each block separetely and so it tunes the values regardless the sin-
gle blocks. Another evident drawback is that this technique is very unfriendly
to small files (with the size lower than 1 MB).

3 Open Dense Code

Let us introduce a novel concept of dense coding called Open Dense Code (ODC).
ODC attempts to cover ETDC, SCDC and other codes based on dense coding
idea. The basic motivation is to allow to define some formalized prescript of
codewords, which could be followed in combination with dense coding idea.

Definition 3. The b-ary Open Dense Code (ODC) is a couple 〈b, G〉 where b is
a size of block and G = (N, T, P, S) is a grammar defining syntax of the code.
ODC assigns to the r-th most frequent symbol (starting with r = 0) a codeword
cr of k blocks, which satisfies following conditions:

(1) cr ∈ L(G),
(2) cr is not prefix of any other codeword ci ∈ L(G),
(3)

∑k−1
i=1 Πi

j=1vji ≤ r <
∑k

i=1 Πi
j=1vji, where vji is number of combinations

which can occur as a j-th block in a codeword of length i.

The condition number one ensures that the codeword cr is defined by the gram-
mar G. The next condition ensures that the code is a prefix code, which means
that it is unambiguously decodable. The last condition provides the dense coding
property.

Accordance with Definition 3 we can define ETDC and SCDC as follows:

b = 8; G(N, T, P, S) :
N = {Codeword},
T = {s, c},
P is defined in Table 1,
S = Codeword,

Table 1. ETDC, SCDC : set of rules P

# Rule

1 Codeword → c Codeword

2 Codeword → s

where symbol c represents continuer symbol, c ∈ {0, ..., 127} for ETDC and
c ∈ {0, ..., cont − 1} for SCDC and symbol s represents stopper symbol, s ∈
{128, ..., 255} for ETDC and s ∈ {cont, ..., 255} for SCDC.

4 Two Byte Dense Code

TBDC is an adaptive compressor based on dense coding idea. The basic moti-
vation of TBDC is to improve compression ratio and keep very good compres-
sion and decompression speed of all dense compressors which is very close to
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character-based statistical compression methods (e.g. Huffman code). Suppose
that we compress only natural portions of the text. Then the set of unique words
occuring in single portion is very limited. Following Heaps Law [4] the English
version of Bible has size approximately 4 MB and contains only 13 413 unique
words. Performing ETDC on any natural language text the Compressor never
uses the codewords with size greater than 3 bytes because 1B, 2B and 3B code-
words provide code space for 128 + 1282 + 1283 = 2 113 664 unique words which
satisfies almost all natural language texts.

The facts mentioned above lead us to the idea of a code which is focused on
natural portions of the text (with size between 1 and 10 MB) and which uses
only 1B and 2B codewords. This change allows the Compressor to leave marking
of each block in any form (stopper, continuer as it is in SCDC or the highest bit
of each block as it is in ETDC ). Instead of that the Compressor needs to mark
only whether the codeword has size 1B or 2B. It means that only the first block is
affected by this marking and so the 1B and 2B codewords can cover more words
and the algorithm can achieve better compression ratio. On the other hand the
implementation of TBDC must be implemented with some pruning technique
which can prune the vocabulary in case that the input text contains more words
than the code space can cover.

To mark 1B or 2B codewords TBDC uses analogous to SCDC the idea of
stoppers and continuers. The codewords of size 1B are composed only of one
stopper and the codewords of size 2B are composed of one continuer followed by
another block in which any combination of bits is allowed. Using stoppers and
continuers in the first byte of the codeword ensures that TBDC is a prefix code.
Suppose two codewords X and Y where |X | = 1 and |Y | = 2. The codeword X
is composed of one stopper and the codeword Y is composed of one continuer
followed by another byte. It means that the codewords X and Y differ already
in the first byte and so X cannot be a prefix of Y .

Definition 4. Accordance with Definition 3 we can define TBDC as follows:

b = 8; G(N, T, P, S) :
N = {Codeword},
T = {s, c, b},
P is defined in Table 2,
S = Codeword,

Table 2. TBDC : set of rules P

# Rule

1 Codeword → c b

2 Codeword → s

where symbol s represents stopper symbol, s ∈ {1, ..., si}; symbol c represents
continuer symbol, c ∈ {si + 1, ..., 255}; symbol b represents byte in which any
combination of bits is allowed, b ∈ {0, ..., 255}. Symbol si represents the number
of stoppers in i-th step of compression. Similarly symbol ci represents number
of continuers in i-th step of compression. In every step i of the compression it
must hold: si + ci = 255. Codeword 0 is reserved for a special escape symbol.
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From Definition 4 it is evident that the number of stoppers si can change as the
compression proceeds. We adjust the number of stoppers si to actual number
of unique words in the vocabulary. In every step i of the compression it must
hold that si + (255 − si) ∗ 256 ≥ top[0]. Data structure of vocabulary is the
same as in Figure 1 and top[0] represents the number of unique words stored
in the vocabulary. Always when the previous condition is broken, the number
of stoppers si must be decremented. To avoid degradation of coding schema we
need to state a lower bound for si. When the Compressor achieves this lower
bound, the number of stoppers si is no more decremented, but some pruning
technique is applied.

We have implemented two different pruning techniques. Least Frequently Used
(LFU) is very simple and very fast as the vocabulary is sorted by frequency but
there is greater negative effect on the compression ratio as we prune the words
which were recently added and are more connected with actual context. This
negative effect can be eliminated by the other known technique Least Recently
Used (LRU). On the other hand LRU is a little bit more time-consuming.

5 Self-Tuning Dense Code

STDC is another adaptive compressor based on the dense coding idea. STDC
unlike TBDC allows codewords of arbitrary size. The code uses again the idea
of stoppers and continuers like SCDC. In fact the only difference between STDC
and SCDC is that SCDC sets the same number of stoppers and continuers
for all blocks, while STDC allows different number of stoppers and continuers
for different blocks. This seemingly insignificant change can bring interesting
improvement in compression ratio. This change allows us to change the number
of stoppers and continuers of single blocks as necessary.

Suppose that in the i-th step of the compression the codeword with size k
blocks is assigned to the last word in the vocabulary. The code space of (k− 1)-
th block is tuned by similar technique like in TBDC. In every step i of the
compression it must hold condition

∑k
a=1 sai ∗Πa−1

b=1 cbi ≥ top[0], where sai rep-
resents the number of stoppers of block a in step i, cbi represents the number of
continuers of block b in step i and finally top[0] represents the number of unique
words stored in the vocabulary. Always when the mentioned condition is broken,
the number of stoppers of the (k − 1)-th block must be decremented. Again to
avoid degradation of coding schema we need to state some lower bound for sk−1.
After exceeding of the bound, the number of blocks of last word in the vocab-
ulary k must be incremented. The code space of blocks l where 0 ≤ l < k − 1
are tuned independently using tuning technique proposed by Brisaboa et al. in
[6]. For each l there exists a unique minimum of the function which expresses
dependency between compression ratio and sl. This fact is exploited in the tun-
ing technique. Compressor and Decompressor store the size of encoded part of
file in three variables prev, curr and next. The variable curr stores the size of
encoded part of file using sl, the variable prev stores the size using sl − 1 and
the variable next stores the size using sl +1. When the difference curr−next or
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curr − prev exceeds some threshold, the sl is incremented or decremented and
curr, prev and next are set to zero.

Definition 5. Accordance with Definition 3 we can define STDC as follows:

b = 8; G(N, T, P, S) :
N = {Codeword},
T = {sa, ca},
P is defined in Table 3,
S = Codeword,

Table 3. STDC : set of rules P

# Rule

1 Codeword → ca Codeword

2 Codeword → sa

where symbol sa represents stopper symbol, for a = 1 : sa ∈ {1, ..., sai}; for a >
1 : sa ∈ {0, ..., sai − 1}; symbol ca represents continuer symbol, for a = 1 : ca ∈
{sai + 1, ..., 255}; for a > 1 : ca ∈ {sai, ..., 255}. Symbol sai represents number of
stoppers in block a in i-th step of compression. Similarly symbol cai represents
number of continuers in block a in i-th step of compression. In every step i of the
compression it must hold: for a = 1 : sai + cai = 255; for a > 1 : sai + cai = 256.
Codeword 0 is reserved for a special escape symbol.

6 Experiments

The test set of compression algorithms is very diverse in order to be able to
show advantages and disadvantages of our implementations in comparison with
the other algorithms. We have chosen both word-based and character-based,
statistical and dictionary types of compression algorithms. All tested statistical
compression algorithms use the adaptive compression model. Table 4 provides
overview of tested compression algorithms.

We performed the algorithms on various files with English natural language
content. Tested files come especially from standard corpuses (Calgary and Can-
terbury corpus) and from Project Gutenberg1. We created four larger corpora
(all1.txt, all2.txt, all3.txt and all4.txt) by concatenating many files from stan-
dard corpuses and especially from Project Gutenberg. All tested files are stated
in Table 5.

We used the spaceless word model [7] in our implementations. It means
that the vocabulary is common for alphanumeric and non-alphanumeric words.
The model takes a single space as a default separator. When alphanumeric word
is followed by a space, the Compressor encodes just the alphanumeric word.
When alphanumeric word is followed by another non-alphanumeric word (sepa-
rator), the Compressor encodes both alphanumeric and non-alphanumeric word.

We performed out our tests on an AMD AthlonTM 64 Processor 3200+, 2518
MB RAM with Fedora Linux and kernel version 2.6.23.15-80.fc7. We used com-
piler gcc version 3.4.6 with compiler optimization -O3.
1 Project Gutenberg (www.gutenberg.org) is the first and largest single collection of

free electronic books.
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Table 4. Tested algorithms

Algorithm Notation Approach Family Proposed Implemented
Huffman Coding huff cba statistical J. S. Vitter [9] D. Scott [14]

LZ77 lz77 cb dictionary A. Lempel, J. Ziv [10] M. Geelnard [13]
Arithmetic Coding cac cb statistical Moffat et al. in [8] Moffat et al. [11]

Two Byte tbdc1 wbb statistical our proposal our implementation
Dense Code(LFU)

Two Byte tbdc2 wb statistical our proposal our implementation
Dense Code(LRU)

Self-Tuning stdc wb statistical our proposal our implementation
Dense Code

Dyn. End-tagged detdc wb statistical Brisaboa et al. in [2] Brisaboa et al. [12]
Dense Code
Dyn. (s,c)- dscdc wb statistical Brisaboa et al. in [3] Brisaboa et al. [12]
Dense Code

a character-based approach.
b word-based approach.

Table 5. Tested files

File Notation Source Size [B] # words # unique words
bible.txt canL Large Cantebury 4,047,389 889,575 13,413

alice29.txt can1 Cantebury 148,460 34,040 3,210
plrabn12.txt can2 Cantebury 471,161 102,773 10,937

book1 cal1 Calgary 768,770 175,853 13,497
book2 cal2 Calgary 610,855 133,338 10,420
paper1 cal3 Calgary 53,160 11,143 2,175
paper2 cal4 Calgary 82,198 17,281 2,669

wrnpc11.txt gut1 Gutenberg 3,217,389 697,342 19,740
clarissa.txt gut2 Gutenberg 5,233,126 1,209,613 22,109

all1.txt gut3 Gutenberg 12,483,578 2,793,686 38,211
all2.txt gut4 Gutenberg 19,352,946 4,280,943 58,475
all3.txt gut5 Gutenberg 28,727,290 6,366,654 70,794
all4.txt gut6 Gutenberg 48,610,669 10,799,288 96,351

6.1 Compression Ratio

The results are summarized in Table 6. Our implementation of STDC achieved
the best compression ratio in all tested files. It can adjust the coding schema to
actual distribution of the alphabet and so achieve better compression ratio.

Performed on small and medium files (with size lower than approximately
4 MB) STDC and both TBDC variants achieve the same compression ratio.
Both STDC and TBDC apply the same tuning technique while they are using
only first two bytes to encode a symbol. In the moment when the size of two
bytes is exceeded the algoritms apply different approaches to encode a symbol.
TBDC(LFU) and TBDC(LRU) need to use some pruning technique because
their codespace is limited. TBDC(LFU) uses Least Frequently Used pruning
technique and TBDC(LRU) uses Least Recently Used pruning technique. On
the other hand STDC can continue in compression without pruning of the vo-
cabulary and it involves the third byte in its coding schema. Then the algorithm
starts to tune the second byte and the first byte is tuned by technique proposed
by Brisaboa et al. in [6].
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Table 6. Compression ratio in %

File/Alg. huff lz77 cac tbdc1 tbdc2 stdc detdc dscdc
canL 54.81 45.85 54.36 29.75 29.75 29.75 31.70 30.33
can1 57.72 57.97 56.70 43.00 43.00 43.00 47.92 67.69
can2 57.22 66.97 56.10 46.22 46.22 46.22 49.97 55.59
cal1 57.04 65.53 56.71 42.72 42.72 42.72 46.41 49.35
cal2 60.32 52.25 60.04 42.61 42.61 42.61 45.01 48.64
cal3 62.94 54.80 62.81 57.74 57.74 57.74 62.36 121.57
cal4 58.07 58.25 57.91 49.29 49.29 49.29 54.54 92.54
gut1 56.89 59.86 55.94 33.51 33.51 33.51 35.89 34.92
gut2 57.39 60.89 56.28 33.13 33.17 33.03 35.17 34.04
gut3 56.77 55.73 55.78 32.78 32.44 32.10 34.01 33.03
gut4 56.92 57.31 55.94 33.97 33.19 32.41 34.27 33.41
gut5 56.98 58.13 55.99 33.97 33.24 32.20 33.95 33.10
gut6 57.25 59.14 56.25 34.52 33.02 32.12 33.73 32.93

0 0.5 1 1.5 2 2.5 3

x 10
6

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of words

N
um

be
r 

of
 u

ni
qu

e 
w

or
ds

(a) Unique words

0 0.5 1 1.5 2 2.5 3

x 10
6

180

190

200

210

220

230

240

250

260

Number of words

s 
va

lu
e 

in
 fi

rs
t b

yt
e

(b) s in first byte

0 0.5 1 1.5 2 2.5 3

x 10
6

180

190

200

210

220

230

240

250

260

Number of words

s 
va

lu
e 

in
 s

ec
on

d 
by

te

(c) s in second byte

Fig. 2. STDC: Evolution of various parameters as the number of words grows

We can observe evolution of some tuning parameters of STDC in Figure 2.
The number of unique words is growing exactly according Heaps Law [4]. The
number of stoppers in first byte is rapidly falling down during the first phase
when only first two bytes are used. During the next phase the number of stoppers
is oscilating about the value 192. Similarly the number of stoppers in second byte
is constant during the first phase and its falling down during the second phase.
However this fall is not so fast as in the previous case because the coding space
is larger and also the number of unique words is not growing so quickly in this
phase.

Our implementations (TBDC and STDC ) are friendly to smaller files and
they achieve outstanding improvement in compression ratio in comparison with
ETDC or SCDC while performed on files like cal3, cal4, can1. SCDC is very un-
friendly to small files and sometimes even achieves compression ratio higher than
100%. Perfomed on larger files both variants of TBDC drag behind. Thanks to
pruning of the vocabulary they loose precise information about the alphabet dis-
tribution. On the other hand STDC achieves still better compression ratio: ap-
proximately 1% improvement in comparison with SCDC and approximately 2%
improvement in comparison with ETDC.

6.2 Compression and Decompression Speed

To achieve fairer comparison among the dense compressors we used the parame-
ters for dictionary data structure optimization and so we avoided useless memory
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Table 7. Compression speed in MB/s

File/Alg. huff lz77 cac tbdc1 tbdc2 stdc detdc dscdc
canL 29.99 0.03 7.15 29.69 27.57 20.32 27.18 24.59
can1 29.50 0.03 7.08 28.32 28.32 20.23 20.23 20.23
can2 29.18 0.02 8.99 24.96 24.96 22.47 19.54 18.73
cal1 29.21 0.02 7.33 24.44 24.44 18.33 20.37 9.40
cal2 28.70 0.03 7.28 25.33 25.33 19.42 21.58 7.77
cal3 26.68 0.08 7.72 25.35 25.35 25.35 16.91 1.37
cal4 29.03 0.05 7.83 26.13 26.13 26.13 19.60 19.60
gut1 29.67 0.02 7.45 21.92 20.46 18.05 23.79 21.61
gut2 29.12 0.02 7.13 21.70 20.79 16.64 24.00 21.42
gut3 29.85 0.02 7.30 22.05 20.18 14.88 23.72 20.78
gut4 29.80 0.02 7.10 20.51 17.92 14.09 22.71 19.83
gut5 29.78 0.02 7.21 20.60 18.45 13.69 22.46 19.53
gut6 29.56 0.02 7.29 19.90 18.55 13.10 21.88 19.06

Table 8. Decompression speed in MB/s

File/Alg. huff lz77 cac tbdc1 tbdc2 stdc detdc dscdc
canL 25.80 214.44 6.23 41.96 39.63 38.60 55.95 48.26
can1 24.84 202.21 7.08 47.19 47.19 47.19 47.21 23.60
can2 24.96 172.93 6.42 37.44 34.56 34.56 40.86 34.57
cal1 24.85 178.88 6.11 36.66 34.91 33.33 45.83 31.88
cal2 24.07 208.01 5.83 38.84 38.84 36.41 48.55 25.33
cal3 24.14 253.49 7.53 39.00 39.00 36.21 50.70 -
cal4 24.50 261.30 7.83 35.63 32.66 35.63 39.20 15.68
gut1 25.07 191.77 6.23 38.35 38.35 27.89 47.95 43.22
gut2 27.01 191.95 6.24 38.39 31.46 27.72 46.65 39.61
gut3 29.07 198.42 6.14 34.02 32.27 23.81 45.62 38.41
gut4 28.78 196.35 6.13 31.74 30.21 21.46 43.53 36.34
gut5 28.52 194.29 6.12 31.50 30.42 20.75 41.83 36.29
gut6 26.34 191.57 6.14 29.75 29.29 19.48 40.74 34.78

allocation. The results of compression and decompression speed are summarized
in Table 7 and Table 8. TBDC(LFU) and ETDC are the fastest algorithms
among the dense compressors in compression. TBDC(LFU) is faster than STDC
because it uses only two bytes coding space and doesn’t need to care about
tuning all bytes except the first one. It is also faster than TBDC(LRU) because
Least Frequently Used pruning technique is faster as the vocabulary is sorted by
frequency.

In decompression the fastest algorithm at all is lz77, which is very asymmetri-
cal. Among the dense compressors the fastest algorithm is ETDC which can use
bitwise operations in decompression. All our implementations are behind when
they are performed on larger files.

7 Conclusions

We introduced concept Open Dense Code which helped us to define two dense
compressors: TBDC and STDC. TBDC proved that it si very friendly to smaller
files and is able to achieve better compression ratio than existing dense compres-
sors SCDC and ETDC. STDC is in fact variant of SCDC which uses special
tuning technique and so achieves better compression ratio. It is in fact extended
TBDC and so it preserves all advantages of TBDC. All our implementations
proved to be excellent in compression speed but were a little bit behind in de-
compression speed.

In our future work we want to improve decompression performance. With the
aid of linguistic we want to focuse more on many properties of natural language
and try to exploit them in compression.
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Abstract. An edge-coloured graph G is rainbow connected if any two
vertices are connected by a path whose edges have distinct colours. The
rainbow connection number of a connected graph G, denoted rc(G), is the
smallest number of colours that are needed in order to make G rainbow
connected. In this paper we prove that rc(G) < 3n

4
for graphs with

minimum degree three, which was conjectured by Caro et al. [Y. Caro,
A. Lev, Y. Roditty, Z. Tuza, and R. Yuster, On rainbow connection, The
Electronic Journal of Combinatorics 15 (2008), #57.]

1 Introduction

We use [1] for terminology and notation not defined here and consider finite and
simple graphs only.

An edge-coloured graph G is called rainbow-connected if any two vertices are
connected by a path whose edges have different colours. This concept of rain-
bow connection in graphs was recently introduced by Chartrand et al. in [4].
The rainbow connection number of a connected graph G, denoted rc(G), is the
smallest number of colours that are needed in order to make G rainbow con-
nected. An easy observation is that if G has n vertices then rc(G) ≤ n− 1, since
one may colour the edges of a given spanning tree of G with different colours,
and colour the remaining edges with one of the already used colours.

Chartrand et al. computed the precise rainbow connection number of several
graph classes including complete multipartite graphs [4]. It is also known that
rc(G) = 1 if and only if G is a clique, that rc(G) = n − 1 if and only if G is a
tree and that a cycle with k ≥ 3 vertices has rainbow connection number �k

2 �.
Also notice that rc(G) ≥ diam(G), where diam(G) denotes the diameter of the
graph G.

Motivated by the fact that there are graphs with minimum degree 2 and with
rc(G) = n − 3 (just take two vertex-disjoint triangles and connect them by a
path of length n−5), and by the fact that cliques have rc(G) = 1, it is interesting
to study the behaviour of rc(G) with respect to the minimum degree δ(G). In
[3] Caro et al. have shown the following theorem.

Theorem 1. If G is a connected graph with n vertices and δ(G) ≥ 3 then
rc(G) < 5n

6 .

They also made the following conjecture.

J. Fiala, J. Kratochv́ıl, and M. Miller (Eds.): IWOCA 2009, LNCS 5874, pp. 432–437, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Conjecture 1. If G is a connected graph with n vertices and δ(G) ≥ 3 then
rc(G) < 3n

4 .

For 2-connected graphs Conjecture 1 is true. This follows from the following
proposition in [3].

Proposition 1. If G is a 2-connected graph with n vertices then rc(G) ≤ 2n
3 .

Corollary 1. If G is a 2-connected graph with n vertices then rc(G) ≤ 3n−1
4

for n ≥ 3.

In this paper we will prove this conjecture by proving the following theorem.

Theorem 2. If G is a connected graph with n vertices and δ(G) ≥ 3 then
rc(G) ≤ 3n−1

4 .

For 2-connected graphs Theorem 2 is true by corollary 1. Hence it remains to
proof it for graphs with connectivity 1.

2 Graphs with Connectivity 1

For connected graphs G with connectivity κ(G) = 1 we extend the concept of
rainbow connection as follows: Additionally we require that any two edges of
G have different colours whenever they belong to different blocks of G. The
corresponding rainbow connection number will be denoted by rc∗(G). Then
rc(G) ≤ rc∗(G) for every graph G and rc(G) = rc∗(G) for every 2-connected
graph G.

For graphs with connectivity κ(G) = 1 we will show the following theorem.

Theorem 3. Let G be a connected graph with n vertices, connectivity κ(G) = 1
and δ(G) ≥ 3. Then rc∗(G) ≤ 3n−10

4 .

The bound 3n−10
4 cannot be decreased since there are 3-regular connected graphs

with rc∗(G) = rc(G) = diam(G) = 3n−10
4 . One class of such graphs can be

constructed as follows: Take two vertex disjoint copies of the graph K5 − P3
and label the two vertices of degree 2 with w1 and w2k+2, where k ≥ 1 is an
integer. Next join w1 and w2k+2 by a path of length 2k+1 and label the vertices
with w1, w2, . . . , w2k+2. Now for 1 ≤ i ≤ k every edge w2iw2i+1 is replaced
by a K4 − e and we identify the two vertices of degree 2 in K4 − e with w2i

and w2i+1. The resulting graph G4k+10 is 3-regular, has order n = 4k + 10 and
rc∗(G4k+10) = rc(G4k+10) = diam(G4k+10) = 3k + 5 = 3n−10

4 .
For the proof of Theorem 3 we show some preparatory results. First we extend

Proposition 1 as follows.

Proposition 2. Let G be a 2-connected graph with n vertices and degree se-
quence 2 ≤ d1 ≤ d2 ≤ . . . ≤ dn. If d3 ≥ 3, then rc(G) ≤ 2n−2

3 for 4 ≤ n ≤ 7 and
rc(G) ≤ 2n−1

3 for n ≥ 8.
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Corollary 2. Let G be a 2-connected graph with n vertices and degree sequence
2 ≤ d1 ≤ d2 ≤ . . . ≤ dn. If d3 ≥ 3, then rc(G) ≤ 3n−4

4 .

Proof of Proposition 2. Let H be a maximal connected subgraph of G having
the property that rc(H) ≤ 2h

3 − 1, where h is the number of vertices of H. We
first claim that H exists.

Since G is 2-connected and d3 ≥ 3 we have n ≥ 4. By Dirac’s theorem [5] the
circumference c(G) of G satisfies c(G) ≥ min{n, 2δ(G)} ≥ 4. We now distinguish
several cases.

If n = 4, then rc(G) ≤ 2 ≤ 2·4−2
3 . If c(G) = 4, then G ∼= K2,n−2, which

contradicts d3 ≥ 3 for n ≥ 5. Hence we may assume c(G) ≥ 5. If c(G) = 5 = n,
then G contains C5 +e as a subgraph implying rc(G) ≤ 2 < 2·5−2

3 . If c(G) = 5 <
n, then taking H as a C5 with an attached edge we have rc(G) = 3 = 2·6

3 − 1.

If c(G) ∈ {6, 8}, then rc(Ck) = k
2 ≤

2k
3 − 1 for k = 6, 8. If c(G) = 7 = n,

then rc(C7) = 4 = 2·7−2
3 . If c(G) = 7 < n, then taking H as a C7 with an

attached edge we have rc(H) = 4 < 2·8
3 − 1. Finally, if c(G) = k ≥ 9, then

rc(Ck) = �k
2 � ≤

k+1
2 ≤ 2k

3 − 1.
We next claim that h ≥ n − 2. Indeed, assume first that there are three

distinct vertices outside of H, say w1, w2, w3, each having two neighbours in H
(the neighbours of wi do not have to be distinct from the neighbours of wj).
We can add w1, w2, w3 to H and form a larger subgraph H ′ with h + 3 vertices.
Suppose ei, fi are two edges connecting wi with H. We use only two new colours
to colour the 6 designated edges: e1, e2, e3 all get the same colour and f1, f2, f3
all get the same colour. We now have

rc(H ′) ≤ rc(H) + 2 ≤ 2h

3
− 1 + 2 =

2(h + 3)
3

− 1

contradicting the maximality of H. It follows that if there are three vertices
outside of H then at least one of these vertices, say w, has the property that a
shortest path from H to H passing through w has length at least 3 (notice that
there must be a path since the graph is 2-connected). Let uw1w2 . . . wtv be a
path with u, v ∈ V (H), w1, . . . , wt /∈ V (H), and t ≥ 2. We can add w1, . . . , wt

to H and form a larger subgraph H ′ with h + t vertices. If t is odd we can
colour the t + 1 edges of the path with t+1

2 new colours. In the first half of the
path the colours are all distinct, and the same ordering of colours is repeated
in the second half of the path. It is straightforward to verify that H ′ is rainbow
connected. If t is even, we can colour the t + 1 edges of the path with t

2 colours
as follows. The middle edge wt/2wt/2+1 receives any colour that already appears
in H. The first t/2 edges of the path all receive distinct new colours and in the
last t/2 edges of the path this colouring is repeated in the same order. Again, it
is straightforward to verify that H ′ is rainbow connected. We now have

rc(H ′) ≤ rc(H) + � t

2
� ≤ 2h

3
− 1 + � t

2
� ≤ 2(h + t)

3
− 1

contradicting the maximality of H.
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Having proved that h ≥ n− 2 we now clearly have rc(G) ≤ 2(n−2)
3 − 1 + 2 =

2n−1
3 as claimed. ��

Next we determine the structure of endblocks. Let B = {K4, K5, K5 − e, K5 −
P3, K5 − 2P2, K5 − (P3 ∪ P2)}. Then rc(K4) = rc(K5) = 1 and rc(K5 − e) =
rc(K5 − P3) = rc(K5 − 2K2) = rc(K5 − (P3 ∪ P2)) = 2.

For B ∈ B let B∪K2 be an endblock with an attached K2. If B ∈ {K4, K5, K5−
e, K5 − 2P2}, then the K2 can be attached to any vertex of B. If B ∈ {K5 −
P3, K5 − (P3 ∪P2)}, then the K2 is attached to the vertex of degree 2 in K5 −P3
or K5 − (P3 ∪ P2). Now the following claims are easily verified.

Claim. Let G be a connected graph with δ(G) ≥ 3. If G = G1 ∪ G2 with
V (G1) ∩ V (G2) = w for a cut vertex w and |V (G1)| ≤ 6, then G1 ∼= B or
G1 ∼= B ∪K2 for some B ∈ B.

Claim. Let B ∈ B be an endblock. Then rc(B) ≤ 3n−7
4 and rc(B ∪K2) ≤ 3n−6

4 .

Now we are ready to prove Theorem 3.

Proof of Theorem 3. The key idea is an induction using a cut vertex of the
graph G. For a subgraph F ⊂ G, n(F ) denotes the order of F.

Claim. Let G be a connected graph with a cut vertex w. Suppose G = G1 ∪G2
with V (G1)∩V (G2) = w, dG1(w) ≥ 2, dG2(w) ≥ 1, |V (G1)| ≥ 6 and |V (G2)| ≥ 7.
Then rc∗(G) ≤ 3n−10

4 by induction.

Proof. We construct two graphs H1 and H2 as follows: Let H1 = (K5−P3)∪G2,
where we identify the vertex of degree 2 in K5 − P3 with the vertex w of G2.
Let H2 = G1 ∪K2 ∪ (K5−P3), where we identify one vertex of the K2 with the
vertex w of G1 and the other vertex of the K2 with the vertex of degree 2 in
K5 − P3.

Then |V (H1)| = |V (K5−P3)|+ |V (G2)|−1 < |V (G1)|+ |V (G2)|−1 = |V (G)|
and |V (H2)| = |V ((K5−P3)∪K2)|+|V (G1)|−1 < |V (G2)|+|V (G1)|−1 = |V (G)|.
Hence by induction we have rc∗(H1) ≤ 3n(H1)−10

4 and rc∗(H2) ≤ 3n(H2)−10
4 im-

plying rc∗(G2) ≤ 3(n(G2)+4)−10
4 −2 = 3n(G2)−6

4 and rc∗(G1) ≤ 3(n(G1)+5)−10
4 −3 =

3n(G1)−7
4 . This gives rc∗(G) = rc∗(G1) + rc∗(G2) ≤ 3n(G1)−7

4 + 3n(G2)−6
4 =

3(n(G1)+n(G2)−1)−10
4 = 3n−10

4 . ��
We now consider the block tree T of G. Let V (T ) = {w1, w2, . . . , b1, b2, . . .},
where wi is a cut vertex of G and bi represents the block Bi of G. Then wibj ∈
E(T ) if and only if wi is incident with Bj in G. We make the following useful

Observations

1. If Bi is an endblock of G (that is bi is a leaf of T ), then |V (Bi)| ≥ 4, since
δ ≥ 3.

2. If dT (w) ≥ 4 for a cut vertex w of G, then G = G1 ∪G2 with G1 ∩ G2 = w
and G1 and G2 both contain at least two nontrivial blocks. Then |V (Gi)| ≥
2 · 4− 1 = 7 for i = 1, 2 and we can apply induction. Hence we may assume
that 2 ≤ dT (w) ≤ 3 for every cut vertex w.
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3. If a cut vertex w has degree 3, then G = G1 ∪ G2 ∪ G3. By the previous
argument (in part 2.) each Gi contains exactly one nontrivial block, which
is an endblock. We have |V (Gi)| ≤ 6 for 1 ≤ i ≤ 3, since otherwise we could
apply induction. With |V (G)| = |V (G1| + |V (G2| + |V (G3)| − 2 we obtain
rc∗(G) ≤ 3n(G1)−6

4 + 3n(G2)−6
4 + 3n(G3)−6

4 = 3n−12
4 < 3n−10

4 .
4. If a vertex b (corresponding to a block B) has degree p ≥ 3, then B is incident

with p cut vertices w1, w2, . . . , wp. Hence G = B ∪G1 ∪G2 ∪ . . . ∪Gp.

Then rc∗(G) ≤ 2n(B)
3 +

∑p
i=1

3n(Gi)−6
4 ≤ 3n(B)−1

4 + 3(n+p−n(B))−6p
4

= 3n−1−3p
4 ≤ 3n−10

4 .

Hence we may assume that Δ(T ) = 2 and thus T is a path. So finally G contains
at most one nontrivial inner block B, since otherwise we could apply induction.
Therefore, for the path T, the following graph structures (of blocks) are possible:

1. B1, B2 rc∗(G) ≤ 3n(B1)−7
4 + 3n(B2)−7

4 = 3n−11
4 < 3n−10

4 .

2. B1, K2, B2 rc∗(G) ≤ 3n(B1∪K2)−6
4 + 3n(B2)−7

4 = 3n−10
4 .

3. B1, B, B2 rc∗(G) ≤ 3n(B1)−7
4 + 3n(B)−4

4 + 3n(B2)−7
4 = 3n−12

4 < 3n−10
4 .

4. B1, K2, B, B2

rc∗(G) ≤ 3n(B1∪K2)−6
4 + 3n(B)−4

4 + 3n(B2)−7
4 = 3n−11

4 < 3n−10
4 .

5. B1, K2, B, K2, B2

rc∗(G) ≤ 3n(B1∪K2)−6
4 + 3n(B)−4

4 + 3n(B2∪K2)−6
4 = 3n−10

4 . ��
Proof of Theorem 2. If G has connectivity κ(G) = 1, then rc(G) ≤ rc∗(G) ≤
3n−10

4 < 3n−1
4 by Theorem 3. If G is 2-connected, then rc(G) ≤ 3n−1

4 by
Corollary 1. ��

3 Concluding Remarks and Open Problems

– The presented proofs provide polynomial time algorithms for edge colourings
of graphs such that rc∗(G) ≤ 3n−10

4 for graphs with connectivity 1 and
rc(G) ≤ 3n−1

4 for 2-connected graphs.

– In [3] the following upper bound for rc(G) is shown.

Theorem 4. Let G be a connected graph with n vertices and minimum de-
gree δ. Then,

rc(G) ≤ min{nln δ

δ
(1 + oδ(1)), n

4ln δ + 3
δ

}.

As mentioned in [3], already for δ = 18, Theorem 4 gives a better bound
0.81 for rc(G) than the bound 0.833 from Theorem 1. It is not known how
far this bound is from being tight, but in any case it cannot be improved
below 3n

δ+1 −
δ+7
δ+1 as there are connected graphs with minimum degree δ and

this diameter. Very recently Krivelevich and Yuster [6] have shown that a
connected graph G with n vertices and minimum degree δ has rc(G) < 20n

δ .

– The presented results motivate the following challenging problem.
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Problem 1. For every k ≥ 2 find a minimal constant ck with 0 < ck ≤ 1 such
that rc(G) ≤ ck · n for all graphs G with minimum degree δ(G) ≥ k. Is it
true that ck = 3

k+1 for all k ≥ 2?

This is true for k = 2, 3 as shown before (c2 = 1 and c3 = 3
4 ).

– The computational complexity of rainbow connectivity has been studied in
[2]. It is proved that the computation of rc(G) is NP-hard. In fact it is already
NP-complete to decide if rc(G) = 2, and in fact it is already NP-complete
to decide whether a given edge-coloured (with an unbounded number of
colours) graph is rainbow connected.

After the presentation of this paper at the IWOCA workshop the following
questions were posed by workshop participants.

– Hajo Broersma
What happens with the value rc(G) for graphs with higher connectivity?

– Jan Kratochvil
Let the edges of a graph be coloured with a fixed number of colours, say k.
What is the complexity of deciding whether G is rainbow connected? Is this
a FPT problem?
The answer to the second question is YES as indicated by Travis Gagie.

– Jack Edmonds
What is the complexity of deciding whether a given edge-coloured graph G
has a rainbow spanning tree?

Remark. Zsolt Tuza has told us at the Hereditarnia workshop in Herlany,
June 2009, that he has also verified conjecture 1. However, his proof is still
unpublished.

Acknowledgement. We thank the referees for some valuable comments.
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Abstract. In this paper we prove that the problem APM(k, r, c) of de-
ciding whether a given k−uniform hypergraph H , with minimum (k −
1)−wise vertex degree at least c|V (H)|, contains a matching missing
exactly r vertices, that is, a set of disjoint edges of size at least (|V (H)|−
r)/k, is NP-complete for c < 1

k
, while for c > 1

k
, and r > 0 we provide a

polynomial time algorithm for the corresponding search problem.

1 Introduction

A hypergraph H = (V, E) is a finite set of vertices V together with a family E of
distinct, nonempty subsets of vertices called edges. In this paper we consider k-
uniform hypergraph in which, for a fixed k ≥ 2, each edge is of size k. A matching
in a hypergraph is a set of disjoint edges. The number of edges in a matching
M is called the size of the matching, while the number of vertices missing from
M , that is, the number |V (H) \ V (M)| is called the deficiency of M in H . A
matching is perfect if its deficiency is 0, or equivalently if its size is |V (H)|/k.
Hence, a necessary condition for the existence of a perfect matching in H is that
|V (H)| ≡ 0 (mod k).

1.1 Background

For k ≥ 2, by PM(k) we denote the problem of deciding whether a k−uniform
hypergraph contains a perfect matching. The problem PM(2) is the classical
problem of deciding the existence of a perfect matching in a graph, has a complete
structural characterization (Tutte’s and Hall’s theorems), and is known to be in
class P since the paper by Edmonds [6].

However, like for many other graph problems, the analogous question for
hypergraphs turned out to be of a far more complex nature. One reason for that
is that there is no known characterization of hypergraphs containing perfect
matchings. Also, there are very few sufficient conditions for the presence of a
perfect matching in a hypergraph. One such result, proved in [2] (see also [9]),
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can be viewed as an analog of Hall’s theorem. Another, Dirac-type sufficient
condition will be described in Sect. 1.2.

As for the complexity, the k-dimensional matching problem, known to be NP-
hard for every k ≥ 3 ([11], [15]) is a special case of PM(k). Moreover, another
optimization problem called exact cover by k-sets, which is equivalent to PM(k),
is known to be NP-complete for k ≥ 3 [7].

In fact, the latter problem is a special case of a more general, set packing
problem, in which a family of sets is given and the task is to find a maximum
size sub-family of sets that are pairwise disjoint. A version with the restriction to
k-element sets is referred to as k−set packing and is equivalent to the problem of
finding a largest matching in a k-uniform hypergraph. The k-set packing problem
is included in Karp’s list of twenty one NP-complete problems [11].

A special instance of the decision version of the k-set packing problem is the
following problem of deciding the existence of an almost perfect matching. Given
a k-uniform hypergraph on n vertices, and a nonnegative integer r, a matching
M in H of deficiency r will be called an r-deficient matching. An r-deficient
matching M is thus a set of exactly (n− r)/k disjoint edges in E(H). Clearly, if
n �≡ r (mod k) then the presence of an r-deficient matching in H is impossible.

For integers k ≥ 2 and r ≥ 0, let APM(k, r) denote the problem of deciding
whether a k−uniform hypergraph H = (V, E) contains an r-deficient matching.
When 0 < r < k, APM(k, r) asks for a matching in H which is as perfect as one
can get.

1.2 Motivation

The main goal of this paper is to study the computational complexity of APM
(k, r) on subclasses of instances. Our choice of these subclasses has been moti-
vated by two lines of research, the first of which concentrates around the following
graph theoretic problem. Given two graphs F and G, an F−packing in G is a
collection of vertex-disjoint copies of F in G. An F−packing is called perfect if
it covers all vertices of G (setting F = K2, we recover the problem PM(2)). The
decision version of this problem is known to be NP-complete if and only if F has
a component containing at least three vertices [12].

However, things look better for dense instances, in particular, with suffi-
ciently high minimum degree δ(G) [3]. In [13], Kühn and Osthus investigated
this problem further and discovered an interesting “phase transition”. Namely,
they proved algorithmically that for every non-bipartite graph F and every
γ > 0, there is a constant τF > 0 such that the problem of finding a maximum
F−packing is polynomially solvable for graphs G with δ(G) ≥ (τF + γ)|V (G)|.
On the other hand, they showed that for any γ > 0 this decision problem be-
comes NP-complete for the class of graphs G with δ(G) ≥ (τF − γ)|V (G)| for
infinitely many non-bipartite graphs F.

The results of this paper deal, in some sense, with an analogue of the F -
packing problem for k-uniform hypergraphs, where F is a single hyperedge.
According to our knowledge, there are very few algorithmic results on per-
fect packings in k-uniform hypergraphs. For instance, the structural result from
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[9] has been recently turned into a local search algorithm for finding perfect
matchings in a class of hypergraphs [4].

For F other than a single edge, Kühn et al. showed [14] that all n-vertex,
3-uniform hypergraphs, where n is divisible by 4, in which every pair of vertices
belongs to at least n/4 + εn edges, contain a perfect C4-packing, where C4 is the
3-uniform hypergraph on four vertices containing two edges. Although no algo-
rithm is mentioned there, it is plausible that their proof can be made algorithmic.
Czygrinow and Nagle [5] and, more recently Pikhurko [16] studied almost perfect
K

(3)
4 -packings of 3-uniform hypergraphs satisfying similar codegree conditions.
The second source of motivation comes from recent investigations of the struc-

tural properties of k-uniform hypergraphs satisfying the so called Dirac-type
conditions. Dirac in 1952 proved that the otherwise NP-complete problem of
the existence of a Hamilton cycle in a graph becomes trivial for graphs with
δ(G) ≥ |V (G)|/2. For a k-uniform hypergraph, the graph minimum degree
δ(G) can be replaced by the minimum (l-wise) degree denoted by δl(H), for
1 ≤ l ≤ k − 1, which is the largest integer d such that every l-element set of
vertices of H is contained in at least d edges of H . In [17] the authors considered
the parameter δl(H), for l = k − 1 and proved asymptotically a generalization
of Dirac’s result to k-uniform hypergraphs conjectured in [10].

But more importantly for us, recently, Rödl et al. gave in [18] a sufficient
condition for the existence of a perfect matching in a k-uniform hypergraph H
in terms of δk−1(H). Let t(k, l, n) be the smallest integer t such that every k-
uniform hypergraph on n vertices and with δl(H) ≥ t contains a matching of
size �n/k	. For large n divisible by k, they completely determined the values of
t(k, n) := t(k, k − 1, n), which tend to be very close to n/2− k. For example, if
k is odd and n is large and even, then t(k, n) = n/2− k + 2.

A slightly weaker result but with a significantly simpler proof was given in
[19]. Inspired by the idea from [1], the authors showed that for all k ≥ 3 and
n divisible by k, t(k, n) ≤ n/2 + k/4. Further results forcing the presence of a
perfect matching by a condition on δl(H) were recently obtained in [8]. They
showed that t(3, 1, n) = (5

9 + o(1))
(
n
2

)
and their result is asymptotically tight. In

addition, they upper bounded t(k, l, n) by
(
max

{1
2 , k−l

k

}
+ o(1)

) (
n

k−l

)
for any

0 < l < k.
In contrast to the divisible case, another result from [18] states that for n not

divisible by k, t(k, n) ≤ n/k + O(log n), much less than before. This means that
the presence of r-deficient matchings with 0 < r < k is forced by a much weaker
codegree condition than in the case r = 0. This has been a starting point of the
research described in this paper.

1.3 Results

Motivated by the results in [13], [18] and [8], we will consider the following class
of decision problems. Given integers k ≥ 3, 0 < l < k and r ≥ 0 and a real
c > 0, by APMl(k, r, c) we denote a restricted version of APM(k, r), in which
we ask whether a k−uniform hypergraph H = (V, E) with minimum degree
δl(H) ≥ c

(|V (H)|
k−l

)
contains an r-deficient matching M , that is, a matching M
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of order |V (M)| = |V (H)| − r. In the case l = k − 1 we will use a simplified
notation APM(k, r, c) := APMk−1(k, r, c).

An immediate consequence of the results in [18] is that the decision problem
APM(k, 0, c) is trivial for every c > 1

2 , while APM(k, r, c), r > 0, is trivial already
for c > 1

k .
In this paper we prove the following hardness result which, combined with

the results in [18] establishes a “phase transition” at 1/k for r ≥ 1, and leaves a
hardness gap of (1/k, 1/2) for r = 0.

Theorem 1. For all k ≥ 3, r ≥ 0, and every constant c < 1
k , APM(k, r, c) is

NP-complete.

Moreover, for r > 0, we solve the corresponding search problem, by providing
a polynomial time algorithm, which finds an r-deficient matching in every k-
uniform hypergraph H with δk−1(H) sufficiently large. The case r ≥ (k − 2)k
(say, large deficiency) is slightly easier.

Proposition 2. For every k ≥ 3 and r ≥ (k − 2)k there exists an algorithm,
called LDMatching, which in every k-uniform hypergraph on n ≥ k vertices,
where n ≡ r (mod k) and δk−1(H) ≥ (n − r)/k, finds an r-deficient matching
in H in time O(n2).

The remaining positive values of r (small deficiency) are covered by our next
result.

Theorem 3. For every k ≥ 3 and 0 < r < (k− 2)k there exist constants C and
n0, and an algorithm, called SDMatching, which in every k-uniform hypergraph
on n ≥ n0 vertices, where n ≡ r (mod k) and δk−1(H) ≥ n

k + C log n finds an
r-deficient matching M in H, in time O(log n · nk2−k+1).

Finally, let us mention that although the proofs in [18] and [19], as described
there, are not constructive, they can be turned into efficient algorithms finding
perfect matchings under respective degree conditions. In particular, the proof in
[19] yields in a straightforward way a polynomial time algorithm which constructs
a perfect matching in every k−uniform hypergraph H , with |V (H)| = n ≡ 0
(mod k) and δk−1(H) ≥ n/2 + k/4.

Also, the key concepts of the proof of the divisible case in [18] can be adopted
to yield deterministic, polynomial time procedures, in a similar but more complex
way than in the proof of Theorem 3. For completeness, we include this result
here without proof. Recall that the value of t(k, n) determined in [18] is close to,
but always less than n/2.

Theorem 4. For every k ≥ 3 there exists constant n0, and an algorithm, called
PMatching, which in every k-uniform hypergraph on n ≥ n0 vertices with n
divisible by k and δk−1(H) ≥ t(k, n) finds a perfect matching M in H in time
O(log4 n · nk2+2k).

All the above mentioned results are summarized in Table 1.
Finally, it is worth mentioning that our method yields a more general hardness

result.
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Table 1. The complexity of APM(k, r, c) with k ≥ 3. For every trivial problem there
exists a polynomial time algorithm finding an r-deficient matching.

c < 1
k

c = 1
k

c ∈ ( 1
k
; 1

2
] c > 1

2

r ≥ (k − 2)k NP-complete trivial trivial trivial
0 < r < (k − 2)k NP-complete ? trivial trivial

r = 0 NP-complete ? ? trivial

Theorem 5. For all k ≥ 3, 0 < l < k , r ≥ 0, and every constant c < 1 −(
k−1

k

)k−l
, APMl(k, r, c) is NP-complete.

For k = 3, � = 1 and r = 0 the above result, combined with the result of [8], has
the following consequence.

Corollary 6. APM1(3, 0, c) is

{
trivial for c > 5

9 ,

NP-complete for c < 5
9 .

In Sect. 2 we prove the hardness result (Theorem 1) and sketch the proof of
Theorem 5, while Sect. 3 contains the description and analysis of the poly-
nomial algorithms LDMatching from Proposition 2 and SDMatching from
Theorem 3.

2 Proof of Hardness

In this section we prove the hardness result for the APM(k, r, c) problem stated
in Theorem 1.

Proof (of Theorem 1). It is easy to see that APM(k, r, c) ∈ NP. The theorem
will be shown by a reduction from the PM(k) problem, which is known to be
NP-complete (see Sect. 1.1).

Given k, r, and c < 1/k, for every hypergraph H, which is an instance of
PM(k), we will construct a hypergraph H ′, an instance of the APM(k, r, c) prob-
lem (a gadget), in such a way that H has a perfect matching if and only if H ′

has an r-deficient matching. The starting point for our construction is a critical
hypergraph H0 (see Fig. 1(a)).

Put γ = 1
k−c and note that γ > 0. Setting n = |V (H)|, let H0 = H0(k, r, n, γ)

be a k−uniform hypergraph, in which the vertex set is the union of two disjoint
sets A ∪ B, such that |A| = �n

γ � and |B| = (k − 1)|A| + r. The edge set of H0
consists of all k−element subsets of A ∪B which have a non-empty intersection
with the set A. It is easy to see that δk−1(H0) = |A| = �n

γ � and that H0 has an
r-deficient matching.

The hypergraph H ′ is obtained by taking a vertex-disjoint union of H and
H0 with some additional edges (see Fig. 1(b)). More precisely, let V (H ′) = V ′ =
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B

�= ∅

A

(a) H0

B

�= ∅

�= ∅

A

�= ∅

H

(b) H ′

Fig. 1. Gadget construction

A ∪ B ∪ V (H) and E(H ′) = E(H0) ∪ E(H) ∪ E∗, where E∗ is the set of all
k-element subsets e of V ′ such that e ∩ V (H) �= ∅ and e ∩ A �= ∅. This means
that for every e ∈ E∗ we have |e ∩B| ≤ k − 2.

First, we will show that H ′ is indeed an instance of APM(k, r, c), that is, that
δk−1(H ′) ≥ c|V ′|. To see this, assume that S is an arbitrary (k − 1)−element
subset of V ′. Consider the following cases with respect to the location of S:

i) S ∩ A �= ∅. Then S ∪ {v} is an edge of H ′ for every v �∈ S, and thus
degH′(S) = |V ′| − k + 1.

ii) S ∩A = ∅. Then S ∪ {v} is an edge of H ′ only for v ∈ A, and, if S ⊂ V (H),
also for all v ∈ V (H) which form an edge in H . Thus, setting degH(S) = 0
if S �⊂ V (H), we have degH′(S) = |A| + degH(S) ≥ |A|, and this bound is
achieved by several sets S.

Consequently,

δk−1(H ′) = |A| =
⌈

n

γ

⌉
≥ c

(
k

⌈
n

γ

⌉
+ n + r

)
because, recalling that c = 1

k − γ, this inequality is equivalent to

n + r

k
≤ γk

⌈
n

γ

⌉
+ γ(n + r) (1)

and the right-hand-side of (1) is greater than kn, which, in turn, is greater than
(n + r)/k with a big margin.

It remains to show that H has a perfect matching if and only if H ′ has
an r-deficient matching. First note that if H has a perfect matching then this
perfect matching, together with an r-deficient matching of H0 form an r-deficient
matching of H ′. Now suppose that H does not have a perfect matching, but H ′

has an r-deficient matching M.
Let us split M = MH ∪M0 ∪M∗, where MH = M∩H , M0 = M∩H0,

and M∗ = M∩ E∗. By our assumption on H , M∗ �= ∅. Recall that for each
edge e ∈M∗, we have e ∩A �= ∅ and e ∩ V (H) �= ∅ and set |M∗| = x.
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Let A′ = A \ V (M∗) and B′ = B \ V (M∗). Then |A′| ≤ |A| − x and |B′| ≥
|B| − x(k − 2). Since x > 0, this implies that |B′| − (k − 1)|A′| > r. Note that
V (M0) ⊆ A′ ∪ B′. Since the largest matching in the subhypergraph H0[A′, B′]
has size |A′|, its deficiency in H0[A′, B′] is precisely |B′| − (k − 1)|A′| > r. So
is the case of M0, and, since V (MH) ⊆ V (H), this is a contradiction with the
assumption that M is r-deficient. ��

The above construction does not work for c = 1
k . Except for that, in view of the

results in [18], it is optimal for the case r > 0, but we have a hardness gap for
the case r = 0, in which the decision problem APM(k, 0, c) becomes trivial only
for c ≥ 1/2. To close this gap, one would need to come up with a gadget which
is very sensitive to the parity of both n and k (cf. the critical hypergraphs given
in [18] for the divisible case).

However, the above proof can be generalized to yield Theorem 5.

Proof (of Theorem 5). It is again a reduction from the PM(k) problem with the
same gadget and a different parameter γ = 1− (k−1

k )k−l − c. ��

3 The Search Algorithm

In this section we will describe two polynomial time algorithms LDMatching

and SDMatching which find r-deficient matchings in hypergraphs with the
minimum codegree as specified in Proposition 2 and Theorem 3, respectively.

3.1 Large Deficiency

Here we prove Proposition 2 and make some preparations toward the proof of
Theorem 3. Proposition 2 will follow immediately from the next fact, whose exis-
tential version was proven in [18]. We do not describe the algorithm
LDMatching explicitly.

Fact 7. Let n ≥ k ≥ 2. For every k-uniform hypergraph H on n vertices, there
exists a matching M of size at least

min
{⌊n

k

⌋
− k + 2, δk−1(H)

}
which can be constructed in time O(n2).

Proof. We will build M by adding edges stepwise. Set |M | = m and suppose
that m ≤ δk−1(H) − 1 and m ≤

⌊
n
k

⌋
− k + 1. We will next extend M to size⌊

n
k

⌋
− k + 2 by the following augmenting procedure. Note that there are at least

(k− 1)k vertices outside M . Arbitrarily select disjoint sets S1, S2, . . . , Sk of size
|Si| = k − 1 from V (H) \ V (M). If any of the sets Si forms an edge e with a
vertex v ∈ V (H) \ V (M) \

⋃k
i=1 Si then add e to M. After exhausting all such

edges consider an auxiliary bipartite graph B with a vertex set X ∪ Y, where X
consists of vertices uj representing the edges ej of M , j = 1, . . . , m′, m′ ≥ m, and
Y consists of vertices si representing the sets Si, i = 1, . . . , k′ with k′ ≤ k. There
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is an edge (uj , si) in B if there is a vertex v ∈ ej such that Si∪{v} ∈ E(H). Since
each set Si has all its neighbors in V (M) (other edges were already added to
M), the degree of si in B, degB(si), is at least δk−1(H). Thus, the total number
of edges in B is at least kδk−1(H), and, by averaging and the assumption that
m′ ≤ m < δk−1(H), we can find a vertex uj ∈ Y such that degB(uj) ≥ k + 1.
Constructing the graph B and finding the vertex uj takes O(n) steps.

The choice of uj guarantees that the k vertices of the edge ej ∈ M form
at least k + 1 edges with the sets S1, . . . , Sk. This, in turn, implies that ej

contains two distinct vertices v, v′ such that two sets S′ and S′′ from among
{S1, . . . , Sk} form with, respectively, v′ and v′′, two disjoint edges e′ and e′′.
Note that V (M) ∩ e′ = ej ∩ e′ = {v′}, V (M) ∩ e′′ = ej ∩ e′′ = {v′′}. Hence,
e′, ej, e

′′ forms an M -alternating hyperpath and M can be enlarged by swapping
ej for e′ and e′′, that is, by resetting M := (M \ {ej})∪ {e′, e′′}. Obviously, the
edges e′ and e′′ can be found in constant time. Iterating this procedure at most
n/k times, we extend the initial matching M to eventually have size

⌊
n
k

⌋
− k + 2

edges. ��

Note that as the threshold for δk−1(H) in Theorem 3 does not depend on r, we
may assume that 0 < r ≤ k, because if r1 < r2 and ri ≡ n (mod k), i = 1, 2,
then an r1-deficient matching contains an r2-deficient matching.

Moreover, we can reduce the range of r even further to the single case r = 1.
Indeed, suppose that algorithm SDMatching on every hypergraph H ′ with
n′ ≡ 1 (mod k) and δk−1(H ′) ≥ n′

k + C log n′ returns a 1-deficient matching in
H ′. Now consider an input H with n ≡ r (mod k), 2 ≤ r ≤ k and δk−1(H) ≥
n
k + C log n + r− 1, remove r − 1 vertices of H obtaining a hypergraph H ′ with
n′ = n− r + 1 vertices, where n′ ≡ 1 (mod k). Then, δk−1(H ′) ≥ n

k + C log n >
n′
k +C log n′, and algorithm SDMatching returns a 1-deficient matching in H ′

which is, of course, an r-deficient matching in H . So, assume from now on that
n ≡ 1 (mod k) and δk−1(H) ≥ n

k + C log n, and that we are after a 1-deficient
matching in H .

For n ≡ 1 (mod k) we have the following consequence of Fact 7.

Corollary 8. If δk−1(H) ≥ n
k , then algorithm LDMatching finds a [(k−2)k+

1]-deficient matching M in H.

In order to reduce this deficiency to 1, that is, to enlarge the size of that matching
by k − 2, a significant effort is required. Following the proof in [18], we initiate
the construction by preparing a special small matching which will be able to
absorb all but one vertex left after the greedy procedure given in Fact 7. This
special matching will be called powerful and its building blocks will be called
absorbing edges.

In the following subsection we will first define absorbing edges and show how
to construct powerful matchings. Then, in the final subsection we will present
the SDMatching algorithm.



446 E. Szymańska

3.2 Absorbing Edges and Powerful Matchings

Let H be a k−uniform hypergraph on n vertices. A matching of size � in H will
be called an �−matching. Our absorbing technique benefits from the fact that
as long as the matching under construction still needs to be enlarged, there are
at least k + 1 loose vertices available. (This is not the case when r = 0, which
makes the proof of Theorem 4 so much longer and more technical.)

Definition 9 (absorbing edge). Given a set S of k+1 vertices, an edge e ∈ H
is called S-absorbing if there are two disjoint edges e′ and e′′ in H such that
|e′ ∩ S| = k − 1, |e′ ∩ e| = 1, |e′′ ∩ S| = 2 and |e′′ ∩ e| = k − 2.

Clearly, if the set S is outside a matching M which contains an S-absorbing
edge e, then M can “absorb” S by swapping e for e′ and e′′ (one vertex of e will
become unmatched).

The key feature of the absorbing edge is that there are many of them for every
set S in the input hypergraph H.

Fact 10. There exists a constant ck > 0 such that for every (k + 1)-element set
S of vertices of H there are at least cknk of S-absorbing edges e in H.

Proof. Fix S. Any initial k − 3 vertices of an S-absorbing edge e can be chosen
arbitrarily, and thus in Ω(nk−3) ways. The last three vertices, each must close
an edge with a specified set of k − 1 vertices. Hence, the number of choices of
each such vertex is δk−1 − O(1). Altogether, there are Ω(δ3

k−1n
k−3) = Ω(nk)

choices of an S−absorbing edge e. ��

For the absorbing technique to work, we need a small matching M contain-
ing enough absorbing edges for each set S. It will be then altered in the ab-
sorbing procedure, extending any sufficiently large matching so that it becomes
1-deficient. We call such a matching M powerful and define it formally below.

Definition 11. A matching M in H with n �≡ 0 (mod k) is called powerful if
for every set S ⊂ V of size k + 1 the number of S-absorbing edges in M is at
least k − 2.

The existence and construction of small powerful matchings in hypergraphs hav-
ing large degree is implied by the following, quite general statement. The gen-
erality of this statement allows us to treat the divisible case too, in which the
absorbing devices are much more complicated.

Proposition 12. Let � and k be positive integers, let m = m(n) be a polynomial
function of n, and let α = α(n) such that 1

α = o
( √

n
log n

)
. There exist constants

n0 > 0 and C′ > 0 such that the following holds. Let H be a k-uniform hypergraph
with n ≥ n0 vertices, and let F1, . . . ,Fm be families of �-matchings in H of sizes
|Fi| ≥ αn�k, i = 1, . . . , m. Then one can construct in polynomial time a matching
M ′ in H of size |M ′| ≤ C′(log n)/α such that for every i = 1, . . . , m there is an
�−matching in M ′ which belongs to Fi.
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The original proof of an existential version of the above proposition in [18] was
probabilistic, but for the purpose of this paper we will give a deterministic ar-
gument which can be translated into a O( log n

α nk�m)-time algorithm.

Proof. Given the families of �-matchings, the goal is to construct a matching
M ′ =

⋃s
q=1 Mq, s ≤ 1

� C′ log n
α , which contains an �-matching from each family.

This can be accomplished by choosing disjoint �-matchings Mq sequentially in
such a way that ∀i = 1, . . . , m ∃ 1 < j < s Fi ,Mj .

Since the number of �-matchings in H is at most n�k, while each Fi contains
at least αn�k of them, there is an �-matching M1 contained in at least αm
families Fi.

Suppose that �-matchings M1, . . . , Mq, q ≥ 1, with all q� edges pairwise dis-
joint have been already selected in such a way that

mq ≤ (1− α/2)qm

families Fi contain none of M1, . . . , Mq. Without loss of generality we assume
for convenience that these are F1, . . . ,Fmq .

Since M1, . . . , Mq contain together �kq vertices of H , there are at most
�kqn�k−1 of �-matchings M in H intersecting the vertex set of at least one of
M1, . . . , Mq. We discard these matchings M and observe that, by our assumption
on α, each Fi still contains at least

αn�k − �kqn�k−1 ≥ 1
2
αn�k

remaining �-matchings in H . In fact, here we need only to assume that
1
α = o

(√
n

log n

)
.

Hence, as before, there is an �-matching Mq+1 which is contained in at least
1
2αmq families Fi with 1 ≤ i ≤ mq. Consequently, there are only at most

(1− α/2)mq ≤ (1− α/2)q+1m

families Fi which do not contain any of M1, . . . , Mq+1.
This process terminates in at most s steps, where

(1− α/2)sm ≤ e−αs/2m < 1,

which implies that s ≤ 2 logm/α ≤ 1
� C′(log n)/α, for a suitably chosen C′. ��

To obtain from Proposition 12 a powerful matching, number all (k + 1)-element
sets in V (H) by consecutive integers, S1 . . . , Sm, and consider the following
choice of parameters: � = k − 2, m =

(
n

k+1

)
, α = 1

2ck−2
k , where ck has been

defined in Fact 10, and for every i, define Fi as the family of all (k−2)-matchings
consisting exclusively of Si−absorbing edges. Note that, by Fact 10, for every
i = 1, . . . , m, there are at least cknk of Si-absorbing edges, one can choose a
(k − 2)-matching out of them in at least ck−2n(k−2)k(1 − O(1/n)) ways. Thus,
indeed,

|Fi| ≥
1
2
ck−2
k n(k−2)k = αn(k−2)k.
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Also, we have

|M ′| ≤ C′

α
log n =

2C′

ck−2
k

log n := C′′ log n.

Note that, with the values of parameters specified above, the procedure finding
a small powerful matching takes O(log n · nk2+2k) steps.

3.3 The SDMatching Algorithm

Having defined the absorbing edges and the powerful matching, we are ready
to formulate the algorithm. In short, the idea is the following. First, we find a
powerful matching M ′ of a small size. This is done via the construction described
in Proposition 12. At the same time, the absorbing edges contained in M ′ can
be stored for further use. Since |M ′| ≤ C′′ log n, after removing it from H we
are left with a hypergraph H ′, still of a large degree. Indeed, with the choice of
C = kC′′, by the assumption that δk−1(H) ≥ n/k + C log n, we have δ(H ′) ≥
δ(H)− C′′k log n ≥ n/k > |V (H ′)|/k.

This allows us to apply the greedy procedure from Corollary 8 and find a
matching M ′′ in H ′ covering all but (k − 2)k + 1 vertices of H ′, and thus, the
matching M ′∪M ′′ has deficiency (k−2)k+1 in H . At the end, we absorb (k−2)k
of the remaining vertices by considering sets of k + 1 vertices stepwise, in any
order, and incorporate them into the current matching using absorbing edges
from M ′. Since this loop (cf. Step 5 of the algorithm) is performed k − 2 times,
we need k − 2 of S absorbing edges for any set S, although a set is absorbed
at most once. Indeed, in the worst scenario, a set S0 could be the last one to
incorporate, and some k − 3 of the S0-absorbing edges could have been already
used in earlier rounds, when absorbing other sets S.

Algorithm SDMatching

In: a hypergraph H with δk−1(H) ≥ n
k +kC′′ log n and n ≥ n0, n ≡ 1 (mod k).

Out: a 1-deficient matching M

1. Find a powerful matching M ′ (as in Definition 11) using Proposition 12.
2. H ′ := H − V (M ′), (notice that δk−1(H ′) ≥ |V (H′)|

k )
3. Greedily find a [(k − 2)k + 1]-deficient matching M ′′ in H ′ using procedure

LDMatching from Corollary 8.
4. T := V (H) \ V (M ′ ∪M ′′)
5. Repeat until |T | = 1 ((k − 2) iterations)

(a) absorb a set S ⊆ T, such that |S| = k + 1 using one S−absorbing edge
e ∈M ′ to get M ′

S

(b) M ′ := M ′
S

(c) T := V (H) \ V (M ′ ∪M ′′)
6. Return M = M ′ ∪M ′′.

The running time of the above procedure is dominated by Step 1 and equals
O(log n · nk2−k+1).
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Abstract. The notion of submodular partition functions generalizes
many of well-known tree decompositions of graphs. For fixed k, there
are polynomial-time algorithms to determine whether a graph has tree-
width, branch-width, etc. at most k. Contrary to these results, we show
that there is no sub-exponential algorithm for determining whether the
width of a given submodular partition function is at most two. In ad-
dition, we also develop another dual notion for submodular partition
functions which is analogous to loose tangles for connectivity functions.

1 Introduction

Graph decompositions and width-parameters play a very important role in algo-
rithmic graph theory (as well as structural graph theory). The most well-known
and studied notions include the tree-width, branch-width and clique-width of
graphs. The importance of these notions lie in the fact that many NP-complete
problems can be decided for classes of graphs of bounded tree-/branch-width
in polynomial time. A classical result of Courcelle [5] and Arnborg, Lagergren,
and Seese [2] asserts that every problem expressible in the monadic second-order
logic can be decided in linear time for the class of graphs with bounded tree-
/branch-width. An analogous result for matroids with bounded branch-width
representable over finite fields have been established by Hliněný (see [6] and
[7]) and generalized using a more specialized notion of width to all matroids by
Král’ [9].

Most of the algorithms for classes of graphs of bounded width require a
decomposition of an input graph as part of input. Fortunately, optimal tree-
decompositions of graphs can be computed in linear time [3] if the width is fixed
and there are even simple efficient approximation algorithms [4]. For branch-
width, Oum and Seymour [10] recently established that the branch-decomposi-
tions of a fixed width of graphs and matroids can be computed in polynomial-
time (or decided that they do not exist). Their algorithm actually deals with
a more general notion of connectivity functions which are given by an oracle.
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A fixed-parameter algorithm for computing optimal branch-decompositions for
matroids represented over finite fields was designed by Hliněný and Oum [8].

In this paper, we study submodular partition functions introduced by Amini
et al. [1]. This general notion includes both graph tree-width and branch-width
as special cases. We postpone the formal definition to Sect. 2. In their paper,
Amini et al. [1] presented a duality theorem that implies the known duality
theorems for graph tree-width and graph/matroid branch-width of Robertson
and Seymour [11].

Since the duality, an essential ingredient for some of the known algorithms for
computing decompositions of small width, smoothly translates to this general
setting, it is natural to ask whether decompositions of submodular partition
functions with fixed width can be computed in polynomial-time. In this paper,
we show that such an algorithm cannot be designed in general. In particular, we
present an argument that every algorithm deciding whether a partition width
of an n-element set is at most two must ask an oracle the number of queries
exponential in n. On a positive side, we were able to develop a notion of loose
tangles, a key ingredient of the algorithm of Oum and Seymour [10], for this
more general concept which we hope to be of some use to design algorithms for
special classes of submodular partition functions.

2 Notation

In this section, we introduce the notation and concepts used in this paper. A
function f : 2E → N for a finite set E is said to be submodular if the following
holds for every pair of subsets X, Y ⊆ E:

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) . (1)

A submodular function f is symmetric if f(X) = f(X), for all subsets X of E.
Finally, a connectivity function is a submodular function that is symmetric and
f(∅) = 0.

For a connectivity function f on a ground set E, a branch-decomposition of f
is a pair (T, σ) where T is a ternary tree and σ is a bijection between the set of
leaves of T and E. Every edge e of T naturally defines a bipartition (Ae, Ae) of
the ground set E, i.e., Ae consists of all elements that corresponds to leaves of
T in one of the two components of T \ e. The order of an edge e of T is the value
f(Ae) and the width of a branch-decomposition (T, σ) is the maximum order
of an edge of T . The branch-width of f is the minimum width of all branch-
decompositions of f . This notion includes the notion of the usual branch-width
of graphs and matroids.

There is a dual object to branch-decompositions called a tangle, introduced
by Robertson and Seymour [11]. A set T of subsets of E is called an f -tangle of
order k + 1 if T satisfies the following three axioms:

(T1) For all A ⊆ E, if f(A) ≤ k, then either A ∈ T or A ∈ T .
(T2) If A, B, C ∈ T , then A ∪B ∪ C �= E.
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(T3) For all e ∈ E, we have E \ {e} �∈ T .

Robertson and Seymour [11] proved the following duality theorem between
branch-decompositions and tangles.

Theorem 1 (Robertson and Seymour [11]). Let f be a connectivity func-
tion on a ground set E. There is no f -tangle of order k + 1 if and only if the
branch-width of f is at most k.

We now introduce the concept of submodular partition functions that provides
a unified view on branch-decompositions of connectivity functions and tree-
decompositions of graphs. Throughout the paper, Greek letters will be used
for collections of subsets, i.e., α can stand for a collection A1, . . . , Ak of subsets
of a set E. Note, that the sets in a collection are not ordered in any way and a
set can occur more than once in a collection. The collection α is a partition if
the sets Ai are mutually disjoint and their union is the whole set E.

There are shorthands for operations with collections of subsets we want to
use: if α is such a collection A1, . . . , Ak and A is another subset, then α ∩ A
stands for the collection A1 ∩ A, . . . , Ak ∩ A. We use α \ A in a similar way.
Finally, [A, α] stands for the collection obtained from α by inserting A to the
collection. Note that empty sets are allowed in the collections.

A partition function is a function from the set of all partitions to non-negative
integers that satisfies ψ([∅, α]) = ψ(α) for every partition α, i.e., inserting an
empty set to a collection does not change the value of the partition function. A
partition function ψ is submodular if the following holds for every two partitions
[A, α] and [B, β]:

ψ([A, α]) + ψ([B, β]) ≥ ψ([A ∪B, α ∩B]) + ψ([B ∪A, β ∩A]) (2)

Similarly to branch-decompositions, Amini et al. [1] defined a decomposition tree
of a partition function ψ. A decomposition tree on a finite set E is a tree T with
a bijection σ between its leaves and E. Every internal node v of T corresponds
to the partition of E whose parts are the leaves contained in subtrees of T \ v. A
decomposition tree is compatible with a set of partitions P of E if all partitions
corresponding to the internal nodes of T belong to P .

Let Pk[ψ] denote the set of partitions α of E such that ψ(α) ≤ k. The width
of a submodular partition function ψ is the smallest integer k such that there
exists a decomposition tree compatible with Pk[ψ]. The concepts of submod-
ular partition functions and decomposition trees include graph tree-width and
branch-width as special cases.

There is a dual object to the decomposition tree called a bramble introduced
by Amini et al. [1]. A P-bramble B on E is a set of pairwise intersecting sub-
sets of E which contains a part of every partition of P . A P-bramble is called
non-principal if it contains no singleton. The duality theorem for submodular
partition functions asserts the following.

Theorem 2 (Amini et al. [1]). Let ψ be a submodular partition function.
There is no decomposition tree compatible with Pk[ψ] if and only if there is a
non-principal Pk[ψ]-bramble.
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Note that Theorem 2 is proven in [1] for a larger class of weakly submodular
partition functions. In this paper, we restrict our attention only to the class of
submodular partition functions. In particular, the loose tangles defined in the
next section are studied only for submodular partition functions.

3 Loose Tangles

A key ingredient of the algorithm of Oum and Seymour [10] for deciding whether
a connectivity function has branch-width k (k is fixed) is the notion of a loose
tangle which we now recall. For a connectivity function f on a ground set E, a
loose f -tangle of order k + 1 is a set T of subsets of E satisfying the following
three axioms:

(L1) ∅ ∈ T and {e} ∈ T for every e ∈ E such that f({e}) ≤ k.
(L2) If A, B ∈ T , C ⊆ A ∪B, and f(C) ≤ k, then C ∈ T .
(L3) E �∈ T .

The following theorem by Oum and Seymour [10] states that the loose f -tangles
are also dual objects to branch-decompositions of connectivity functions.

Theorem 3 (Oum and Seymour [10]). Let f be a connectivity function on
a ground set E. Then, no loose f -tangle of order k + 1 exists if and only if the
branch-width of f is at most k.

Using loose tangles Oum and Seymour [10] managed to construct an algorithm
for deciding whether the branch-width of a connectivity function is at most k
for a fixed k in polynomial time when f is given by an oracle.

Similarly to the loose tangles of Oum and Seymour we introduce loose tangles
for submodular partition functions. A loose P-tangle is a set T of subsets of E
closed under taking subsets satisfying the following three axioms.

(P1) ∅ ∈ T , {e} ∈ T , for all e ∈ E such that the partition [{e}, {e}] belongs
to P .

(P2) If A1, A2, . . . , Ap ∈ T , Ci ⊆ Ai, for i = 1, . . . , p, [C1, . . . , Cp,∪p
i=1Ci] ∈ P ,

then ∪p
i=1Ci ∈ T .

(P3) E �∈ T .

To prove the main theorem of this section, we need a lemma.

Lemma 1. Let ψ be a submodular partition function and [A, α] a partition.
Then ψ([A, α]) ≥ ψ([A, A]).

Proof. Suppose that the partition [A, α] has at least three non-empty parts and
let [A, B, β] = [A, α]. By submodularity,

ψ([A, α]) + ψ([B, B]) ≥ ψ([A ∪B, α ∩B]) + ψ([B ∪A, B ∩A])

= ψ([B, B]) + ψ([A, A]).

The result follows. ��
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In the following theorem, we show that for classes of partitions of bounded width,
the loose tangle is a dual object to the decomposition tree.

Theorem 4. Let ψ be a submodular partition function. There is no decomposition
tree compatible with Pk[ψ] if and only if there is a loose Pk[ψ]-tangle.

Proof. Suppose there is a decomposition tree (T, σ) compatible with Pk[ψ] and
a loose Pk[ψ]-tangle T . We will show that T violates (P3). Choose an arbitrary
leaf x of T as a root. Every internal node v of T corresponds to a partition αv.
Let Cv be a union of all parts of αv except the one containing x. Define Cv

of a leaf v as the singleton σ(v). We will show by backward induction on the
distance from x that for every node v of T , the set Cv belongs to T . Since T is
a decomposition tree of E compatible with Pk[ψ], there is a partition [{e}, αe]
in Pk[ψ], for each e ∈ E. By Lemma 1, ψ([{e}, {e}]) ≤ ψ([{e}, αe]). Hence,
[{e}, {e}] belongs to Pk[ψ] and {e} is in T by (P1). For an inner node v, all
his children u1, . . . , up are farther from x than v and therefore all Cui are in T .
By (P2), since [Cui ,∪Cui ] belongs to Pk[ψ], Cv ≡ ∪Cui ∈ T . Finally, let v be
the only child of x. Since Cv ∈ T and {σ(x)} ∈ T , by (P2), Cv ∪ {σ(x)} = E
also belongs to T . (P3) is now violated.

A partial decomposition tree for A ⊆ E is a decomposition tree for a partition
function ψ′ on A∪{a} defined as ψ′([B, β]) = ψ(((B\{a})∪A, β)) for a partition
[B, β] where B contains a. We say that a set A ⊆ E is k-branched if there is a
partial decomposition tree for A compatible with Pk[ψ].

Define T to be a subset of 2E closed under taking subsets, containing all
singletons and all k-branched sets. We will show that T is a loose tangle. (P1)
trivially holds since all k-branched singletons are in T . Let A1, . . . , Ap ∈ T and
Ci ⊆ Ai, i = 1, . . . , p, such that [C1, . . . , Cp,∪Ci] ∈ Pk[ψ]. We can assume that
Ai are k-branched (otherwise take such a superset of it instead). Let Y1, . . . , Yp,
Yi ⊆ Ai, be such sets that ∪Ci ⊆ ∪Yi and ψ([Y1, . . . , Yp,∪Yi]) is minimum. We
will show that the set ∪Yi is k-branched.

To this end, we modify the partial decomposition tree Ti for Ai to be a partial
decomposition tree for Yi. At first, we delete from Ti all leaves corresponding to
elements not in Yi. We then repeatedly contract all nodes of degree two or less
until we get a ternary tree T ′

i . We claim T ′
i is compatible with Pk[ψ]. Suppose

for a contradiction that there is an internal node v′ of T ′
i corresponding to an

internal node v of Ti such that αv′ �∈ Pk[ψ]. Assume i = 1 since we can relabel
the parts so. Let [A, α] = αv such that A is the part of αv that contains A1. We
infer from the submodularity of the function ψ that

ψ([A, α]) + ψ([Y1, Y2, . . . , Yp,∪Yi]) ≥ ψ([A ∪ Y 1, α ∩ Y1])

+ ψ([Y1 ∪A, Y2 ∩A, . . . Yp ∩A,∪Yi ∩A])

The choice of Y1, . . . , Yp yields that

ψ([Y1 ∪A, Y2 ∩A, . . . , Yp ∩A,∪Yi ∩A]) ≥ ψ([Y1, . . . , Yp,∪Yi]).

Hence, ψ([A ∪ Y 1, α ∩ Y1]) ≤ ψ([A, α]) ≤ k and T ′
1 is compatible with Pk[ψ].
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Now, construct a partial decomposition tree T by connecting T ′
i to a sin-

gle node corresponding to a partition [Y1, . . . , Yp,∪Yi]. This partition belongs
to Pk[ψ] since ψ([Y1, . . . , Yp,∪Yi]) ≤ ψ([C1, . . . , Cp]) ≤ k by the minimality of
ψ([Y1, . . . , Yp,∪Yi]). Therefore T is a partial decomposition tree for ∪Yi compat-
ible with Pk[ψ] and thus ∪Yi ∈ T . Since ∪Ci ⊆ ∪Yi, also ∪Ci ∈ T as required.

If E ∈ T , then E is k-branched and the partial decomposition tree for E is
actually a decomposition tree for ψ. This contradicts the fact that ψ does not
have a decomposition tree compatible with Pk[ψ]. Therefore, E �∈ T and (P3)
holds. We conclude that T is a loose Pk[ψ]-tangle. ��

4 Hardness of Submodular Partition Functions

We first have to define several auxiliary functions before we can establish our
hardness result. Let gn be the function gn : 2E → N for E = {1, . . . , 2n} defined
as gn(X) = min{|X |, |X|}. We start our exposition with showing that gn is
submodular.

Lemma 2. The function gn is submodular for every n.

Proof. Consider two subsets X and Y . If both |X | ≤ n and |Y | ≤ n, then

gn(X) + gn(Y ) = |X |+ |Y | = |X ∩ Y |+ |X ∪ Y |
≥ gn(X ∩ Y ) + gn(X ∪ Y ).

If both |X | > n and |Y | > n, we get the same result by the symmetry of g.

gn(X) + gn(Y ) = gn(X) + gn(Y ) ≥ gn(X ∩ Y ) + gn(X ∪ Y )
= gn(X ∪ Y ) + gn(X ∩ Y )

So suppose that |X | > n and |Y | ≤ n. We get

gn(X) + gn(Y ) = |X|+ |Y | = |X \ Y |+ |Y \X|+ 2|X ∩ Y |
≥ gn(X \ Y ) + gn(Y \X) = gn(X ∩ Y ) + gn(X ∩ Y )
= gn(X ∪ Y ) + gn(X ∩ Y ).

This finishes the proof. ��

The function gn can be extended to a partition function φn on the ground set
E = {1, . . . , 2n} by setting

φn(α) = max
i∈I

gn(Ai).

A part Ai of α is dominating if gn(Ai) = φn(α). Note that, if α has a part with
at least n elements, then that part is dominating.

We proceed by showing that the function φn is submodular.

Lemma 3. The function φn is submodular for every n.
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Proof. We check the following inequality for all partitions [A, α] and [B, β]:

φn([A, α]) + φn([B, β]) ≥ φn([A ∪B, α ∩B]) + φn([B ∪A, β ∩A]).

Since one of A, A and one of B, B has at least n elements, at least one of the
parts A ∪ B or B ∪ A in this inequality has at least n elements and hence it is
dominating. If both A ∪ B and B ∪ A are dominating, then the submodularity
of φn follows from the submodularity of g:

φn([A, α]) + φn([B, β]) ≥ gn(A) + gn(B) = gn(A) + gn(B)

≥ gn(A ∩B) + gn(A ∪B) = gn(A ∪B) + gn(A ∪B)

= φn([A ∪B, α ∩B]) + φn([B ∪A, β ∩A])

Suppose that A ∪ B is not dominating, so take an Ai ∈ α such that Ai ∩ B is
dominating. Since |B| ≥ n and Ai ⊆ A, it holds that gn(Ai ∪ B) ≥ gn(B ∪ A).
We use this inequality to prove the submodularity as follows:

φn([A, α]) + φn([B, β]) ≥ gn(Ai) + gn(B) ≥ gn(Ai ∩B) + gn(Ai ∪B)

≥ gn(Ai ∩B) + gn(B ∪A)

= φn([A ∪B, α ∩B]) + φn([B ∪A, β ∩A])

The case when B ∪A is not dominating follows by symmetry. ��

Values of the function φn range between 0 and n. We now truncate the function
and define the following partition function φn,k on E = {1, . . . , 2n} as follows:

φn,k(α) = min{φn(α), k}.

Next, we show that the function φn stays submodular after the truncation.

Lemma 4. The function φn,k is submodular for every n and k.

Proof. Let us consider two partitions [A, α] and [B, β] that violates the
inequality (2):

φn,k([A, α]) + φn,k([B, β]) ≥ φn,k([A ∪B, α ∩B]) + φn,k([B ∪A, β ∩A]).

Since φn,k(γ) ≤ φn(γ) for all partitions γ, at least one of φn([A, α]) or φn([B, β])
is larger than k. If both of them are, then the inequality trivially holds. Suppose
that φn([A, α]) < k. We will show that at least one of φn([A ∪ B, α ∩ B]) or
φn([B ∪A, β ∩A]) is smaller or equal to φn([A, α]).

If |A| ≥ n, then φn([A∪B, α∩B]) ≤ φn([A, α]) since A∪B is the dominating
part and gn(A ∪ B) ≤ gn(A) ≤ φn([A, α]). If |A| < n, then φn([B ∪ A, β ∩
A]) ≤ φn([A, α]) since B ∪A is the dominating part and gn(B ∪ A) ≤ gn(A) ≤
φn([A, α]). This finishes the proof. ��
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Now, we use the function φn,3 to construct partition functions φ∗
n and φ∗

n,β which
appear in our hardness result. The function φ∗

n is defined as

φ∗
n(α) =

{
φn,3(α) if α has at most three non-empty parts, and
3 otherwise.

For a partition β of {1, . . . , 2n} into n two-element subsets, the function φ∗
n,β is

then defined as

φ∗
n,β(α) =

⎧⎨⎩
φn,3(α) if α has at most three non-empty parts,
2 if α = β, and
3 otherwise.

First, we show that these functions are submodular.

Lemma 5. The function φ∗
n is submodular for every n.

Proof. Observe the following:

– If φn,3(α) = 0, then also φ∗
n(α) = 0.

– If φn,3(α) = 1, then φ∗
n(α) = 1 unless α is a set of singletons where φ∗

n(α) = 3.
– If φn,3(α) = 2, then φ∗

n(α) = 2 unless α has more than three non-empty
parts. In this case, every part of α is a pair or a singleton.

Therefore the functions φn,3 and φ∗
n differ only on partitions consisting of sin-

gletons and pairs.
Let us assume for a contradiction that φ∗

n is not submodular. Since φ∗
n(α) ≥

φn,3(α) for all partitions α, the violation of the submodularity is caused by
an increase on the right-hand side of (2). Consider partitions [A, α] and [B, β]
violating (2). Hence, say, γ = [A ∪ B, α ∩ B] is that partition containing only
singletons and pairs. Since γ has all parts of size at most two, |B| ≤ 2. If
A∩B = ∅, then B ⊆ A and A ⊆ B. Therefore γ = [A, α], [B∪A, β ∩A] = [B, β]
and the inequality trivially holds. So we can assume that |B∪A| > |B| and since
2n− 2 ≤ |B| < 2n, by the definition of φ∗

n

φ∗
n([B, β]) > φ∗

n([B ∪A, β ∩A]) . (3)

Since the number of non-empty parts of γ is at least 4, the number of non-empty
parts of [A, α] is at least 3 and therefore φ∗

n([A, α]) ≥ 2 by the definition of φ∗
n.

The submodularity follows from (3) and the fact that φ∗
n(γ) ≤ 3 ≤ φ∗

n([A, α])+1.
��

Lemma 6. The function φ∗
n,β is submodular for every n ≥ 4 and for every

partition β consisting only of two-element sets.

Proof. Since φ∗
n and φ∗

n,β differ only on the partition β where φ∗
n(β) ≥ φ∗

n,β(β),
β has to be on the left-hand side of the inequality (2) to violate it. Let [A, α]
and β = [C, γ] be the partitions violating (2):

φ∗
n,β([A, α]) + φ∗

n,β([C, γ]) ≥ φ∗
n,β([A ∪ C, α ∩ C]) + φ∗

n,β([C ∪A, γ ∩A])
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Since |C| = 2, φ∗
n,β([A ∪ C, α ∩ C]) ≤ 2. Hence φ∗

n,β([A, α]) ≤ 2. If |A| ≤ 2,
then |C ∪ A| ≥ 2n − |A| and φ∗

n,β([C ∪ A, γ ∩ A]) ≤ φ∗
n,β([A, α]), contradicting

the assumption. Therefore A has to have at least 2n− 2 elements and φ∗
n,β([A∪

C, α ∩ C]) ≤ φ∗
n,β([A, α]).

If C ⊆ A, then A ⊆ C and φ∗
n,β([C∪A, γ∩A]) = φ∗

n,β([C, γ]), contradicting the
assumption. Therefore |A ∪C| > |A| giving φ∗

n,β([A, α]) > φ∗
n,β([A ∪ C, α ∩ C]).

Since φ∗
n,β(β) + 1 = 3 ≥ φ∗

n,β([C ∪ A, γ ∩ A]), the inequality (2) holds — a
contradiction. ��

In the proof of the main theorem we will use the fact that the width of the
function φ∗

n is three while the width of the modified function φ∗
n,β is two. To see

that width of φ∗
n,β is at most two, just consider the following decomposition tree

T of φ∗
n,β . T has a root x with n children v1, . . . , vn each vi connected to two

leaves corresponding to the two elements in βi. Since φ∗
n,β(αx) = φ∗

n,β(β) = 2
and φ∗

n,β(αvi) = 2, for i = 1, . . . , n, the decomposition tree T has width two. In
the next lemma, we show that the width of φ∗

n is three.

Lemma 7. For n ≥ 4, the width of φ∗
n is three.

Proof. Let T be a decomposition tree of φ∗
n of width smaller than three. We as-

sume there are no nodes of degree two in T since we can contract them obtaining
a smaller decomposition tree of the same width. Since every internal node v of
T of degree larger than three corresponds to a partition αv of E with more than
three parts (thus φ∗

n(αv) = 3), there are no such vertices in T and T is a ternary
tree. Consider an arbitrary internal node v of T with less than two leaves as
neighbors. There have to be such a vertex v since there are at most n vertices
with two leaves as neighbors but there are 2(n − 1) internal nodes. For such a
vertex v, αv contains a part with at least three elements and at most 2n − 3
elements implying φ∗

n(αv) = 3. This finishes the proof. ��

We are now ready to establish our hardness result. We assume the existence of
an algorithm and show that it cannot discover a small discrepancy between a
submodular partition function having width three and two.

Theorem 5. There is no sub-exponential algorithm for determining whether the
width of an oracle-given submodular partition function on a set with 2n elements
is at most two.

Proof. Assume that there exists such a sub-exponential algorithm A and run A
for the submodular partition function φ∗

n. The algorithm A must clearly output
that the width φ∗

n is at least three. Since the running time of the algorithm is
sub-exponential, for n sufficiently large, there exists a partition β of {1, . . . , 2n}
into n two-element subsets such that A never queries β since the number of such
partitions is

(2n)!
n!2n

= (2n− 1)(2n− 3) · · · 3 · 1 ≥ n!
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and A cannot query all of them because of its running time. However, the algo-
rithm A for φ∗

n,β performs the same steps and thus it outputs that the width of
φ∗

n,β is at least three which is not correct. ��

Using Yao’s principle, Theorem 5 also implies the following lower bound for
randomized algorithms:

Corollary 1. For every randomized algorithm determining whether the width
of an oracle-given submodular partition function on a set with 2n elements is at
most two, there exists a submodular partition function ψ such that the expected
running time of the algorithm for ψ is exponential in n.
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Abstract. Let G = (V, E) be the given graph and GR = (VR, ER) and
GC = (VC , EC) be the sub graphs of G such that VR ∩ VC = ∅ and
VR ∪ VC = V . GC is referred to as the cops region and GR is called as
the robber region. Initially a robber is placed at some vertex of VR and
the cops are placed at some vertices of VC . The robber and cops may
move from their current vertices to one of their neighbours. While a cop
can move only within the cops region, the robber may move to any neigh-
bour. The robber and cops move alternatively. A vertex v ∈ VC is said
to be attacked if the current turn is the robber’s turn, the robber is at
vertex u where u ∈ VR, (u, v) ∈ E and no cop is present at v. The guard-
ing problem is to find the minimum number of cops required to guard
the graph GC from the robber’s attack. We first prove that the deci-
sion version of this problem when GR is an arbitrary undirected graph is
PSPACE-hard. We also prove that the complexity of the decision version
of the guarding problem when GR is a wheel graph is NP-hard. We then
present approximation algorithms if GR is a star graph, a clique and a
wheel graph with approximation ratios H(n1), 2H(n1) and

(
H(n1) + 3

2

)
respectively, where H(n1) = 1 + 1

2
+ ... + 1

n1
and n1 = |VR|.

Keywords: Approximation Algorithms, PSPACE-complete, QBF
(Quantified Boolean Formula), QSAT (Quantified Satisfiability).

1 Introduction

Let G = (V, E) be a graph with GR = (VR, ER) and GC = (VC , EC) being
induced subgraphs of G where VR ∩ VC = ∅, VR ∪ VC = V . We call GR the
robber’s region and GC the cops region. Initially a robber is placed at one of the
vertices in GR and cops are placed at the vertices of GC . A move of the cop or
the robber consists of moving from the current vertex position to a neighbouring
vertex. While the robber can move to any of his neighbour, the cops can move
only to their neighbours in GC . The game starts with the robber making the first
move, followed by the cops and this process repeats. In their respective turns,
the cop or the robber may stay where they are or move to a neighbour. Both the
cops and the robber know each others positions. Multiple cops are allowed per
vertex. A vertex v ∈ VC is said to be attacked if the current turn is the robber’s

J. Fiala, J. Kratochv́ıl, and M. Miller (Eds.): IWOCA 2009, LNCS 5874, pp. 460–470, 2009.
� Springer-Verlag Berlin Heidelberg 2009
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turn, the robber is at vertex u where u ∈ VR, (u, v) ∈ E and no cop is present at
vertex v. The robber always tries to move in such a way that at some point of
time he can attack some vertex of VC . The guarding game is called a robber-win
game if there exists a strategy for the robber where he can attack a vertex in
VC . The guarding game is called a cop-win game if the cops are able to guard
GC for all strategies of the robber. The state of the game is represented by the
current positions of the cops and robber.

Given a graph G (along with subgraphs of G, GR and GC) and a positive
integer c, deciding whether c cops can guard GC or not is the decision version of
the guarding problem. In the optimization version, we have to find the minimum
number of cops required to guard the graph GC .

The Guarding problem was introduced by Fomin [1]. They have given a poly-
nomial time solution for the guarding problem if GR is a path graph. They proved
that the decision version of the guarding problem will become NP-complete if
GR is a tree graph. They also proved that this problem will become PSPACE-
complete if the robber is allowed to move in a Directed Acyclic Graph (DAG).
Deciding whether guarding the graph GC is PSPCAE-hard when GR is an ar-
bitrary undirected graph is left open in [1].

In this paper we prove that the complexity of the decision version of the
guarding problem when GR is an arbitrary undirected graph is PSPACE-hard
by reducing Quantified Satisfiability (QSAT) problem to the guarding problem.
We also prove that the complexity of the decision version of the guarding prob-
lem when GR is a wheel graph is NP-hard by giving reduction from Set Cover.
We also present approximation algorithms for the guarding problem when GR is
a star graph, a clique or a wheel graph with approximation ratios H(n1), 2H(n1)
and

(
H(n1) + 3

2

)
respectively, where H(n1) = 1 + 1

2 + ... + 1
n1

and n1 = |VR|.
The results reported in [1] and [2] are the only known results on this problem

prior to our work.

2 Complexity Results

We now show that the decision version of the guarding problem, when robber
region is an arbitrary undirected graph, is PSPACE-hard by reducing QSAT
problem to the guarding problem.

Theorem 1. The problem of deciding whether c cops can guard the graph GC

when robber region is an arbitrary undirected graph is PSPACE-hard.

Proof. We now give a reduction from QSAT. A Quantified Boolean Formula
(QBF) is a Boolean Formula in which both existential quantifiers and universal
quantifiers are applied to variables in the formula.

Following well known forms used in the literature [3], we assume that an
arbitrary QBF is of the form ∃x1∀x2∃x3...∃xnφ (x1, x2, ..., xn) where the formula
starts with ∃ and alternatively we have ∃ and ∀, n is odd and φ is an n variable
boolean function over x1, x2, ..., xn. We further assume that φ is in Conjunctive
Normal form (CNF ) with k clauses.
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Fig. 1. Notations

We first provide the construction and details of the graph G. After that we
explain the separation of the cops and robber region in the graph G. After that in
lemma 1 we give a winning strategy for robber if QBF is false. Finally in lemma
2, if QBF is true, we provide the strategy that the cops follow for guarding GC

against all strategies of the robber.
In our construction, we encounter certain patterns of connections so often.

We introduce some simple notations to refer these patterns of connectivity. This
helps in providing simple description of a complex structure. First we describe
the basic building blocks used in construction of the graph G. They are labeled
as S block, αi block and βi block, where 1 ≤ i ≤ n. The notations used in the
construction of these three blocks are shown in figure 1.

The S block, αi block and βi block are shown in figures 2 and 3. The connec-
tivity between these blocks is shown in figures 4 and 5.

We now specify the cop and robber regions associated with S, αi and βi

blocks. In the S block, the vertex rs belongs to robber region and the set of n
independent vertices N0 belongs to cop region. In the βi block the vertices βi

a,
βi

b, βi
c, and βi

d, and the set of n independent vertices Ai belongs to robber region
and other vertices belong to the cop region. In the αi block the vertices αi

a, αi
b,

and αi
c and the set of n independent vertices Ai belongs to robber region and

other vertices belongs to cop region. In the final block the vertex rf , the set of
k independent vertices Z and the set of n independent vertices An+1 belongs to
robber region and other vertices belongs to cop region.

Given QBF with n variables, we have to prove that QBF is satisfiable if and
only if n cops can guard G. For this we are proving if QBF is satisfiable then n
cops can successfully guard GC for all strategies of the robber otherwise there
exists a strategy for the robber such that he can attack some vertex of VC . Now
we look at the robber and cops strategies if QBF is false and if QBF is true
respectively.
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Fig. 2. (a) S block (b) αi block

Lemma 1. If the QBF is false then there exists a winning strategy for the
robber when the number of cops is n.

Proof. Let QBF = ∃x1∀x2∃x3...∃xnφ is false. As QBF is false there is a truth
assignment for boolean variables x1, x2, ..., xn such that at least one of the clauses
of QBF contain all false literals. Let us denote this assignment as D.

Now we provide a winning strategy for the robber. Let the robber be at vertex
rs of S block, the only one vertex available for him in S. When the robber is
at rs then n cops must be there at N0. Now the robber may move forward and
reach other blocks. First, the robber may move to any one of β1

a or β1
b from

rs. When the robber moves to β1
a, one cop moves to u1 from the first vertex of

N0 and the remaining cops must move to N1 from N0. If cops do not move in
this way, then robber can attack corresponding vertex of B1. Thus the cops are
constrained to move from N0 to u1 and N1. In a similar way we can handle the
case when robber moves to β1

b . Also, the robber may choose to visit β1
a or β1

b

in an arbitrary way. In the β1 block, the robber moves to β1
c (β1

d) from β1
a (β1

b ).
When the robber moves to β1

c , the cop at u1 moves to t1 or f1 and the cops
at N0 move to NN1. If cops do not move in this way then robber can attack
corresponding vertex of B1. Thus the cops are constrained to move t1 or f1 from
u1 and NN1 from N1. In a similar way we can handle the case when robber
moves to β1

d.
Now the robber moves from β1

c (β1
d) to α2

a and enters α2 block. When the
robber moves from β1

c (β1
d) to α2

a, if there is a cop at t1 (f1) then this cop moves
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Fig. 3. (a) βi block (b) Final block

to last vertex of T2 (F2), the cop at first vertex of NN1 moves to u2 and the
remaining cops at NN1 move to N2. If cops do not move then robber can attack
corresponding vertex of B2. In α2 block the robber makes a move depending on
the value of x2 in D. If x2 is set to true in D, then the robber moves from α2

a

to α2
b . If x2 is false in D, then the robber moves from α2

a to α2
c . This constrains

the cop to move from u2 to t2 or f2 depending on x2 is true or false. We now
describe cops movement when robber has moved from α2

a to α2
b . In this case one

cop moves from u2 to t2 as mentioned earlier and other cop in T2, F2 and N2
move to TT2, FF2 and NN2 respectively. If cops do not move in this way then
robber can attack corresponding vertex of B2. When robber moves from α2

a to
α2

c , one cop moves from u2 to f2 as mentioned earlier and other cops in T2, F2
and N2 move to TT2, FF2 and NN2 respectively. If cops do not move in this
way then robber can attack corresponding vertex of B2.

Inductively assume that the robber is at rf and cops are constrained to be at
Tn+1 and Fn+1 in the final block. A cop at jth vertex of Tn+1 represents setting
true to xj in φ. Similarly a cop at jth vertex of Fn+1 represents setting false to
xj in φ. Remember that robber followed the assignment D. If the variable xi,
∀xi, set to true in D then there is a cop at ith vertex of Tn+1. Similarly if the
variable xi, ∀xi, set to false in D then there is a cop at ith vertex of Fn+1.

So if the robber is at vertex rf then the current positions of n cops represent
the truth assignment of boolean variables x1, x2, ..., xn. As we already discussed
above Z and Y contain a vertex for every clause of φ and ith vertex of Y is
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Fig. 4. (a) shows the connectivity between S block and βi block and (b) shows the
connectivity between βi−1 block and Final block

connected to ith vertex of Z. Let the jth clause of QBF has all literals assigned
false. Now the robber will move from the vertex rf to the jth vertex of Z.
However, in the cops turn no cop can move to the jth vertex of Y as the jth

clause of φ has all literals assigned false. So the jth vertex of Y is under attack
and the robber wins the game. �

Lemma 2. If the QBF is true then the n cops can guard the graph for any
strategy of the robber.

Proof. Please refer extended version [4].

From lemma 1 and lemma 2 the theorem holds. �

Theorem 2. The decision version of the guarding problem when robber region
is a wheel graph is NP-hard.

Proof. Please refer extended version [4].

3 Approximation Algorithms

We now provide approximation algorithms for guarding against a star graph, a
clique and a wheel graph with approximation ratios H(n1), 2H(n1) and (H(n1)
+ 3

2 ) respectively, where H(n1) = 1 + 1
2 + ... + 1

n1
. Before going to details of

Algorithms we first look at the details of the notations and definitions used in
these algorithms.
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Fig. 5. Connectivity between βi−1 block, αi block and βi+1 block

Let G = (V, E) be the given graph with GR = (VR, ER) and GC = (VC , EC)
be induced subgraphs of G where VR ∩ VC = ∅, VR ∪ VC = V . Let |VR| = n1
and {v1, v2, v3, ...vn1} be the vertices of GR. For any vertex v ∈ V , NR(v) is the
open neighbourhood of v in GR i.e., NR(v) = N(v)∩ VR, similarly NC(v) is the
open neighbourhood of v in GC i.e., NC(v) = N(v) ∩ VC , NR [v] is the closed
neighbourhood of v in GR i.e., NR [v] = NR(v) ∪ {v} and NC [v] is the closed
neighbourhood of v in GC i.e., NC [v] = NC(v) ∪ {v}. G(S) is the sub graph of
G with vertex set S, where S ⊆ VR ∪ VC .

Definition 1. Given G = (V, E) and let the graph GR be a star graph or a
wheel graph. Define a set Si for every vertex vi ∈ VR as Si = NC(vi), where
1 ≤ i ≤ n1.

Definition 2. Let GR be a star graph or a wheel graph and let the vertex v1
be the center vertex. Let x be a fixed but arbitrary element in Sj ∩NC [v] when
Sj ∩ NC [v] is nonempty. Define GU(v) for all v ∈ VC as GU(v) = {xj | x ∈
Sj ∩ NC [v] and 2 ≤ j ≤ n1}. Remember that x ∈ Sj ∩ NC [v] but xj ∈ GU(v)
i.e., in GU(v) each element is suffixed by its set name.

Definition 3. Let G(VR) be a wheel graph with the center vertex v1. The graph
G(VR \ {v1}) is a cycle graph. Consider a vertex vj, vj ∈ VR \ {v1}. Let the
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neighbours of the vertex vj in the graph G(VR \ {v1}) be va and vb. Let x be
a fixed but arbitrary element in Sk ∩ NC [v] when Sk ∩ NC [v] is non empty.
Define WGUj(u) for all u ∈ VC as WGUj(u) = {xk | x ∈ Sk ∩ NC [u] and
k ∈ {2, 3, ..., n1} \ {a, b}}. Remember that x ∈ Sk ∩ NC [u] but xk ∈ WGUj(u)
i.e., in WGUj(u) each element is suffixed by its set name.

3.1 Guarding against Star

Guarding the graph GC when the graph GR is a star graph is NP-Complete [1].
We now present a H(n1) approximation algorithm for guarding against a star
graph, where n1 = |VR|.

Algorithm 1. Algorithm to compute the number of cops required to guard GC

if GR is a star graph.
Require: A graph G = (V , E).

c ← 0
if S1 �= ∅ then

let S1 = {u1, u2, ..., u|S1|}
for i = 1 to |S1| do

for j = 2 to n1 do
if Sj ∩ NC [ui] �= ∅ then

choose an element xj from the set Sj ∩ NC [ui]
Sj ← Sj − {xj}

end if
j ← j + 1

end for
i ← i + 1

end for
c ← |S1|

end if
while S2 �= ∅ or S3 �= ∅ or S4 �= ∅ . . . or Sn1 �= ∅ do

∀v ∈ VC compute mv as in Algorithm2 given below.
m ← Max

v∈VC

{mv}
place a cop any one of the vertex u whose mu is m
for j = 2 to n1 do

if Sj ∩ NC [u] �= ∅ then
choose an element xj from the set Sj ∩ NC [u]
Sj ← Sj − {xj}

end if
end for
c ← c + 1

end while
return c {c is the number of cops needed to guard the graph}
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Algorithm 2. Algorithm to compute mv.
Require: A graph G = (V , E) and a vertex v.

mv ← 0
for j = 2 to n1 do

if Sj ∩ NC [v] �= ∅ then
mv = mv + 1

end if
end for
return mv {mv is the number of sets in {S2, S3, ..., Sn1} that has non empty
intersection with NC [v]}

Theorem 3. The number of cops return by Algorithm 1, c, is sufficient for
guarding GC against a star graph.

Proof. First we prove that c cops can guard GC for all strategies of the robber
starting from the center vertex. Then we show that how these c cops are sufficient
for guarding GC for all strategies of the robber. Let u1, u2, u3, ..., uc be the vertex
positions chosen in Algorithm 1 to place cops. Let us suppose that initially the
robber is at the center vertex. Place c cops, one cop per vertex, at u1, u2, ..., uc.
Now the robber can move from the center vertex to any of its neighbour vertices.
Let us suppose that the robber moved from the center vertex to one of the
neighbour vertex, say vk. Consider the removal of the set Sk elements in the
while loop. Let u′

1, u
′
2, ..., u

′
|Sk| be the vertices belongs to VC and let u′

i deleted
αi ∈ Sk. Now the strategy for the cops is : the cop at u′

i move to αi. Now the
robber cannot move to any vertex other than the center vertex. If the robber
moves back to the center vertex then the cops also moves back to previous
positions and the process repeats. As all the sets Sj, where 2 ≤ j ≤ n1, are
empty after execution of Algorithm 1, c cops can guard GC for any strategy of
the robber starting from the center vertex.

We have given the scheme for defending the attacks when the robber starts
at v1. This scheme has cops configuration for every vertex reachable from v1
by robber. Let Ci be the configuration of cops for vertex vi ∈ VR in the above
scheme. If the robber starts at a vertex, say vi, other than the center vertex then
cops set their initial configuration to Ci. �

Theorem 4. Algorithm 1 is a H(n1) approximation algorithm for guarding GC

against a star graph.

Proof. Let us suppose that the while loop of Algorithm 1 is executed for c times.
If the robber is at r1 and if the set S1 is not empty then one cop should be
present at every vertex of S1 in any solution. We are considering the worst case
that the set S1 is empty.

Let u1, u2, u3, ..., uc be the vertices chosen in while loop for placing cops.
When the cop position ui is chosen, as many as mui elements are deleted from
S2, S3, ..., Sn1 and these elements form the set GU(ui). For each deleted element
x we assign a value called val(x), where val(x) = 1

mui
. Each element of Si is
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deleted once and only once and we keep on deleting until all Si sets become
empty. Let X be the set of vertices chosen to place cops in Algorithm 1 i.e.,
X = {u1, u2, ..., uc} and let X∗ be the set of vertex positions of optimal solution
when robber is at center vertex of GR.

Now we describe the procedure to compute the set GU(v), ∀v ∈ X∗. Let v1
be the center vertex of GR and the robber moves from v1 to vj . Now some of the
cops at positions X∗ move to positions Sj . If the cop at vertex v ∈ X∗ moves to
x ∈ Sj then add xj to GU(v).
|X | is the solution given by Algorithm 1 and |X∗| is the optimal solution. We

have,

n1∑
i=2

∑
x∈Si

val(x) = c = |X |. (1)

Now consider the optimal solution X∗. For all x ∈ Sj , where 2 ≤ j ≤ n1, there
exists a cop position v ∈ X∗ such that x ∈ GU(v), so

∑
v∈X∗

∑
x∈GU(v)

val(x) ≥
n1∑
i=2

∑
x∈Si

val(x) = |X |. (2)

We will prove that
∑

x∈GU(v)

val(x) is upper bounded by H(n1).

Define αi as: for any vertex v ∈ VC , consider any GU(v), αi is the number of
elements left unguarded in GU(v) after ith cop position has been selected by
Algorithm 1. Let α∗

i is the αi value of v ∈ X∗. So for every v ∈ X∗ we have

∑
x∈GU(v)

val(x) ≤
k∑

i=1

(
α∗

i−1 − α∗
i

) 1
|GU(ui)|

≤
k∑

i=1

(
α∗

i−1 − α∗
i

) 1
α∗

i−1

since the algorithm chooses ui such that |GU(ui)| is maximum; in particular,
|GU(ui)| ≥ α∗

i−1. By using the proof similar to the proof of approximation
bounds for Set Cover problem given in [5], we obtain

|X | ≤ |X∗| ·H(n1) �

By modifying Algorithm1 we can obtain Approximation algorithms for guarding
against clique and wheel. For detailed algorithms and proofs please refer [4].
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Ďumbierska 1, 974 11, Banská Bystrica, Slovak Republic
torok@savbb.sk

2 Institute of Mathematics, Slovak Academy of Sciences
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Abstract. The antibandwidth problem is to label vertices of a graph
G = (V, E) bijectively by 0, 1, 2, , ..., |V |−1 such that the minimal differ-
ence of labels of adjacent vertices is maximised. In this paper we discuss
the antibandwidth of d-dimensional meshes. We provide labelling algo-
rithm giving antibandwidth value matching the upper bound up to the
third order term. This work is a continuation of our previous results for
antibandwidths of two and three-dimensional meshes and hypercubes.

1 Inroduction

The antibandwidth problem is to label vertices of a graph G = (V, E) bijectively
by 0, 1, 2, , ..., |V |−1 such that the minimal difference of labels of adjacent vertices
is maximised. The problem was originally introduced in [15] in a connection with
multiprocessor scheduling problems. It can be understood as a dual problem
to the well known bandwidth problem [10] in which the maximum distance of
adjacent vertices in the linear layout is minimised. Another motivation comes
from the area of radio frequencies assignment problem [13] and obnoxious facility
location problem [7]. According to a survey [11] this problem is an another
labelling problem. The problem was originally studied under the term separation
number [15]. In the meantime, this name was also used for another linear layout
problem [10]. Lin and Yuan called it dual bandwidth. In our older paper [18] we
proposed a new term for the problem (the most appropriate according to our
opinion), antibandwidth.

The antibandwidth problem is NP-complete [15]. So far it is polynomially
solvable for 3 classes of graphs: the complements of interval, arborescent com-
parability and treshold graphs [9,14]. Known results include simple relations of
the antibandwidth invariant to the minimum, maximum degree, chromatic index
and powers of hamiltonian paths in the complement graph [15,16,17]. Exact re-
sults are known for paths, cycles, special trees, complete and complete bipartite
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graphs [16,17,22]. The class of n-vertex forests with ab(F) = �n/2	 is character-
ized in [17], which covers, e.g., complete binary trees. The invariant for complete
k-ary trees is discussed in [6,19].

This paper extends our previous results for 2- and 3-dimensional meshes and
hypercubes [18,20] where we proved for the two-dimensional mesh M2 of type
n× n

ab(M2) =
n2

2
− n

2
.

For the three-dimensional mesh M3 of type n× n× n

ab(M3) =
n3

2
− 3n2

8
+ O(n),

and for the d-dimensional hypercube Qd

ab(Qd) = 2d−1 − 2d

√
πd

(1 + o(1)).

Note that this value has been recently improved [21] to

ab(Qd) = 2d−1 −
d−2∑
m=0

(
m

�m
2 	

)
.

For the d-dimensional mesh Md of type n× n× . . .× n we show:

Theorem 1. For n →∞ and d ≥ 3 fixed

ab(Md) =
nd

2
− cd

nd−1

2
√

d
(1 + o(1))

where cd =
√

d
2d−1(d−1)!

∑�d/2�
j=0 (−1)j

(
d
j

)
(d− 2j)d−1, and 1/2 ≤ cd ≤ 2

√
11.

2 Preliminaries

Let Pn be an n vertex path on vertices {0, 1, 2, ..., n−1} with edges {(i, i+1)|i =
0, 1, 2, ..., n − 1}. Define the d-dimensional mesh Md =

∏d
i=1 Pn by means of

cartesian product. The diameter of Md is d(n− 1) and it has nd vertices.
For r = 0, 1, 2, ..., d(n − 1), let B(r) denote the set of vertices of Md in the

distance r from (0, 0, 0, ..., 0). It is known [2] that for r = 0, 1, 2, ..., d(n− 1)

|B(r)| = |B(d(n− 1)− r)|. (1)

Moreover for fixed d and n, |B(r)| is strictly increasing for r ≤ �d(n− 1)/2	 and
strictly decreasing for r ≥ �d(n− 1)/2�. Further we claim that

d(n−1)∑
r=0

(−1)r|B(r)| = (n mod 2). (2)
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First observe that

V1 =
d(n−1)⋃

r=0
r even

B(r).

Hence (2) is equivalent to |V1| − |V2| = n mod 2. We have V1 = ∪n−1
i=0 Zi, where

Zi = {(x1, x2, ..., xd−1, i) : (x1 + x2 + ... + xd−1 + i) mod 2 = 0}. Realize, that
|Zi| = �nd−1/2�, for even i and �nd−1/2	, otherwise. Then

|V1| =
⌈n

2

⌉ ⌈nd−1

2

⌉
+
⌊n

2

⌋ ⌊nd−1

2

⌋
=
⌈

nd

2

⌉
,

which proves the claim.
The number of vertices in the ”central slice”, i.e. |B(�d(n− 1)/2	)| is of special

interest. It was intensively studied in the past, see [8]. For our purposes we use
an estimation mentioned in Akhtar et al. [1]: For n →∞ and d ≥ 3 fixed

|B(�d(n− 1)/2	)| = cd
nd−1
√

d
+ O(nd−2) (3)

where cd is defined by

cd =

√
d

2d−1(d− 1)!

�d/2�∑
j=0

(−1)j

(
d

j

)
(d− 2j)d−1, and 1/2 ≤ cd ≤ 2

√
11.

Define a simplicial order on Md according to [4]. Let x = (x1, x2, x3, ..., xd) and
y = (y1, y2, y3, ..., yd). Then x < y if either

∑
xi <

∑
yi, or

∑
xi =

∑
yi, and

for some j we have xj > yj and xi = yi for all i < j.
Let V1, V2 be a partitions of a vertex set of a bipartite graph G = (V, E) such

that V1 ∪ V2 = V, V1 ∩ V2 = 0. Minimal bipartite vertex boundary ∂b(A) of a set
A ⊆ V1 is a set of all vertices from V2 having neighbour in V1.

3 Upper Bound Proof

Assume n = 1 (mod 4). Other cases are similar. Denote t = d(n− 1)/4. In this
case (1) and (2) imply

|B(0)|+ |B(2)|+ |B(4)|+ ... + |B(2t− 2)|+ 1
2
|B(2t)| = nd

4
. (4)

Consider an optimal linear layout of Md. Denote k = ab(Md). If

k ≤ nd − |B(2t)|
2

+ 2,

then we are done. Suppose indirectly that

k ≥ nd − |B(2t)|
2

+ 3,
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We know that k < nd/2. Let S be a set of consecutive k vertices on the line.
Denote Ai = Vi ∩ S, for i = 1, 2. Denote by J = [L, R], an interval with

L =
nd

4
− 1

2
|B(2t)|+ 1, R =

nd

4
.

Distinguish two cases.
Case 1. Assume that there exist S such that the corresponding A1 satisfies
|A1| ∈ J. Observe that ∂b(A1) ∩A2 = ∅ and ∂b(A1) ∪A2 ⊆ V2. Then

|∂b(A1)|+ |A2| = |∂b(A1)|+ k − |A1| ≤ |V2|.

Hence

k ≤ nd − 1
2

− (|∂b(A1)| − |A1|).

In what follows we will show that |∂b(A1)| − |A1| ≥ |B(2t)|/2− 2, which imme-
diately gives a contradiction. The equation (4) implies that

|A1| = |B(0)|+ |B(2)|+ |B(4)|+ ... + |B(2t− 2)|+ α|B(2t)|,

for some constant 0 < α ≤ 1/2. Let I1 be the set of the first |A1| vertices from
V1 in the simplicial order. Bezrukov and Piotrowski [3] proved that

|∂b(A1)| ≥ |∂b(I1)|. (5)

Let A ∈ V1 ∪ V2 be a set of cardinality

|A| = |B(0)|+ |B(1)|+ |B(2)|+ ... + |B(2t− 1)|+ α|B(2t)|.

Let I be the set of the first |A| vertices from V1 ∪ V2 in the simplicial order.
Bollobás and Leader [4] proved

|∂b(A)| ≥ |∂b(I)|. (6)

From the definitions of I1 and I we have

|∂b(I1)| = |B(1)|+ |B(3)|+ |B(5)|+ ...+ |B(2t−1)|+ |∂(I)|− (1−α)|B(2t)| (7)

We claim that:
|∂(I)| ≥ (1− α)|B(2t)| + α|B(2t + 1)|. (8)

Denote P = �(1 − α)|B(2t)|�, Q = �α|B(2t + 1)|�. To prove the claim we have
to show that there exists P vertices in B(2t) having at least one neighbour in
B(2t − 1) and that there exists Q vertices in B(2t + 1) having at least one
neighbour in B(2t). We find the neighbours using the following construction.
Consider the simplicial order of vertices in B(2t). For every v(x1, x2, ..., xd) ∈
B(2t) find j = min(i) : xi > 0. Then its neighbour in B(2t− 1) has coordinates
(0, 0, ..., xj−1, ..., xd). We find the neighbours of vertices in B(2t+1) in a similar
way. From the defintion of the mesh for every v ∈ B(k), k = 1, 2..., d(n−1) there
exists at least one neighbour in B(k − 1); what proves the claim.
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Combining (5),(6),(7) and (8) we obtain

|∂b(A1)| − |A1| ≥ |∂b(I1)| − (|B(0)|+ |B(2)|+ ... + |B(2t− 2)|+ α|B(2t)|)

≥
2t−1∑
i=0

(−1)i+1|B(i)| − α(|B(2t)| − |B(2t + 1)|)

= −1
2

+
1
2
|B(2t)| − α(|B(2t)| − |B(2t + 1)|)

≥ 1
2
|B(2t)| − 3

2
.

Case 2. Assume that for all sets S, |A1| /∈ J. We show that this leads to a
contradiction. Distinguish 3 cases.

1. There exist S, S′ such that |A1| < L and |A′
1| > R. Then one can easily

compute that |A1| < |A2| and |A′
1| > |A′

2|. This forces the existence of S′′

such that ||A′′
1 | − |A′′

2 || ≤ 1 which gives

k − 1
2

≤ |A′′
1 | ≤

k + 1
2

.

Comparing this interval with J we conclude that |A′′
1 | ∈ J, a contradiction.

2. Assume that for all S, |A1| < L. Then |A2| = k − |A1| > k − L. Take two
disjoint S and S′ with |A2| > k− L and |A′

2| > k −L. We get |A2|+ |A′
2| >

2k − 2L ≥ nd

2 + 4 a contradiction.
3. Assume that for all S, |A1| > R. This case is symmetric to the previous case.

Finally, for |B(�d(n− 1)/2	)| use the estimation from (3).

4 Lower Bound

The labeling of vertices of Md proceeds in two phases. In the first phase we
label sets B(r), for even r as follows: The single vertex in B(0) gets label 0, the
vertices of B(2) are labelled by 1, 2, 3, ...|B(2)|, the vertices in B(4) by |B(2)|+
1, ..., |B(2)|+|B(4)| and so on. The labelling in every B(r) is given by the induced
simplicial order, i.e., x = (x1, x2, ..., xd) preceeds y = (y1, y2, ..., yd) if for some j
we have xj > yj and xi = yi for all i < j. In the second phase we label B(r), for
odd r, similarly. Now we analyze the labeling algorithm.

Let d(n − 1) be divisible by four. The remaining cases are similar. Let r be
even, the odd case is similar. Let v1 and v2 be two neighbouring vertices, such
that v1 ∈ B(r) and v2 ∈ B(r − 1). Due to symmetry, we may assume that
r ≤ d(n− 1)/2. Then

f(v1) = |B(0)|+ |B(2)|+ . . . + |B(r − 2)|+ c(v1)

f(v2) =
nd

2
+ |B(1)|+ |B(3)|+ . . . + |B(r − 3)|+ c(v2)
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where c(v1) and c(v2) stand for ranks of v1 and v2 in simplicial orders in B(r)
and B(r − 1) respectively. Clearly f(v2) > f(v1). Compute

f(v2)− f(v1) =
nd

2
−B(0) + |B(1)| − |B(2)|+ . . . + |B(r − 3)| − |B(r − 2)|

+ c(v2)− c(v1). (9)

Further, we estimate the term c(v2)− c(v1). Let g be the simplicial labelling of
vertices of Md. Then

g(v1) = |B(0)|+ |B(1)|+ ... + |B(r − 1)|+ c(v1),

g(v2) = |B(0)|+ |B(1)|+ ... + |B(r − 2)|+ c(v2),

which gives
g(v2)− g(v1) = −|B(r − 1)|+ c(v2)− c(v1)

We use the following fact proved in [1] (Lemma 4.4, last line of the proof):

|g(v2)− g(v1)| ≤ 2|Bd−1(�(d− 1)(n− 1)/2	)| − 1 + |B(r)|

where |Bd−1(r)| stands for the value of |B(r)| in the mesh of dimension d − 1
and it is known [1] that |Bd−1(�(d− 1)(n− 1)/2	)| = O(nd−2/

√
d− 1). Hence

c(v2)− c(v1) ≥ g(v2)− g(v1) + |B(r − 1)|
≥ −2|Bd−1(�(d− 1)(n− 1)/2	)|+ 1− |B(r)| + |B(r − 1)|

= O(
nd−2
√

d− 1
)− |B(r)| + |B(r − 1)|.

Substituting into (9) we get

f(v2)−f(v1) =
nd

2
−|B(0)|+|B(1)|−|B(2)|+. . .+|B(r−1)|−|B(r)|+O(

nd−2
√

d− 1
).

Because |B(i)| is increasing till d(n− 1)/2 and then decreasing, the alternating
sum of |B(i)|’s achieves its minimum when r = r∗ = d(n− 1)/2. We have

2(−|B(0)|+ |B(1)| − |B(2)|+ . . . + |B(r∗ − 1)| − |B(r∗)|)

= −
d(n−1)∑

r=0

(−1)r|B(r)| − |B(r∗)| = −n mod 2− |B(r∗)|

Substituting this back we get the minimal difference of two labels in this
labelling:

f(v2)− f(v1) =
nd

2
− B(�d(n− 1)/2	)

2
+ O(

nd−2
√

d− 1
).

Where the estimation for B(�d(n− 1)/2	) is given by (3).
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Szymańska, Edyta 438

Takeda, Masayuki 312
Telle, Jan Arne 113
Thomas, Robin 19
Török, L’ubomı́r 471

Valtr, Pavel 356
Vatshelle, Martin 113
Vrt’o, Imrich 471
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