
Incorporating BDI Agents into Human-Agent

Decision Making Research

Bart Kamphorst, Arlette van Wissen, and Virginia Dignum

Institute of Information and Computing Sciences, Utrecht University, the Netherlands

Abstract. Artificial agents, people, institutes and societies all have the
ability to make decisions. Decision making as a research area therefore
involves a broad spectrum of sciences, ranging from Artificial Intelli-
gence to economics to psychology. The Colored Trails (CT) framework is
designed to aid researchers in all fields in examining decision making pro-
cesses. It is developed both to study interaction between multiple actors
(humans or software agents) in a dynamic environment, and to study
and model the decision making of these actors. However, agents in the
current implementation of CT lack the explanatory power to help un-
derstand the reasoning processes involved in decision making. The BDI
paradigm that has been proposed in the agent research area to describe
rational agents, enables the specification of agents that reason in ab-
stract concepts such as beliefs, goals, plans and events. In this paper,
we present CTAPL: an extension to CT that allows BDI software agents
that are written in the practical agent programming language 2APL to
reason about and interact with a CT environment.

1 Introduction

Decision making has since long been an area of interest to scholars from all kinds
of disciplines: psychology, sociology, economics and more recently, computer sci-
ence. A lot of research has been done on finding, isolating and formalizing the
factors that are involved in decision making processes of both humans and com-
puter agents [18] [11] [22]. The Colored Trails (CT) framework [10] is designed
to aid researchers in this purpose. It is developed (i) to study interaction be-
tween multiple actors (humans or software agents) in a dynamic environment
and (ii) to study and model both human and agent decision making. CT allows
for a broad range of different games to be implemented, such as one-shot take-
it-or-leave-it negotiation games [7], iterated ultimatum games [27] and, of late,
dynamic games with self-interested agents [26].

Currently, CT software agents are computational agents implemented in the ob-
ject oriented programming language Java. In this paper, we will use the term ‘com-
putational agent’ to refer to software agents that determine their strategy by use of
algorithms, probabilities or game theory. We will use this term to distinguish these
agents from agents that use concepts from folk psychology to define strategies. CT
agents are usually tailored either to display one type of behavioral strategy, such
as egoism or altruism [27], or to maximize their utility for every action [16]. How-
ever, even though computational agents perform well in some scenarios, they lack

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 84–97, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Incorporating BDI Agents into Human-Agent Decision Making Research 85

the explanatory power to help understand the reasoning processes involved in deci-
sion making. Computational agents may make optimal decisions based on a clever
probabilistic algorithm, but they will generally not show you how they did it.

In order to gain more insights into the actual reasoning processes that lie behind
a decision of a software agent, the agents must be endowed with a richer model of
reasoning. Based on Bratman’s theory of rational actions in humans [2], agents
can be constructed that reason in abstract concepts such as beliefs, goals, plans
and events [3]. These types of agents are often referred to as Belief, Desire and In-
tention (BDI) agents. Ideally, agents are able to display reactivity, proactiveness
and social abilities [32]. That is, they should be able to perceive and respond to
the environment, take initiative in order to satisfy their goals and be capable to
interact with other (possibly human) actors. For an agent to have an effective bal-
ance between proactive and reactive behavior, it should be able to reason about
a changing environment and dynamically update its goals. Having social abilities
requires it to respond to other agents, for example by cooperating, negotiating or
sharing information. Working in a team for instance requires agents to plan, com-
municate and coordinate with each other. A BDI architecture lends itself well to
implement these requirements in an intuitive yet formal way [9].

The BDI approach has proved valuable for the design of agents that oper-
ate in dynamic environments. It offers a higher level of abstraction by explicitly
allowing beliefs to have a direct impact upon the agents behavior. This means
the agents can respond flexibly to changing circumstances despite incomplete
information about the state of the world and the agents in it [6]. Since BDI
uses ‘mental attitudes’ such as beliefs and intentions, it resembles the kind of
reasoning that we appear to use in our everyday lives [30]. To interact success-
fully, agents can benefit from modeling the mental state of their environment
and their opponent [23]. Additionally, BDI models provide a clear functional
decomposition with clear and retractable reasoning patterns. This can provide
more helpful feedback and more explanatory power.

This paper presents middleware that lets software agents with a BDI decision
structure interact with humans and other software agents in CT. The software
presented in this article, CTAPL, allows BDI software agents that are written in
the practical agent programming language 2APL to reason about and interact
with a CT environment and the actors within the environment. CTAPL is a plat-
form designed for the implementation of various interaction scenarios between
BDI agents, computational agents, humans and heterogeneous groups. Although
the framework of CTAPL has been developed, we are currently in the prelim-
inary stages of evaluating CTAPL by building BDI agents whose performance
can be compared to the performance of computational CT agents.

2 Related Work

The BDI model of agency does not prescribe a specific implementation [25]. We
therefore do not claim that 2APL is the only suitable agent language for decision
making research. There exist several different implementations that differ from



86 B. Kamphorst, A. van Wissen, and V. Dignum

each other in the logic they use and the technology they are based on. More often
than not, the logics that are used are not formally specified in the semantics
of the BDI programming language. 2APL differs from most agent languages
(e.g., JACK [28] and Jadex [21]) in that it is defined with exact and formal
semantics [3]. In addition to being theoretically well-motivated, 2APL provides
easy implementation of external environments (see Section 4.1 for a more in-
depth discussion of these environments), enabling different environments and
frameworks to be connected to it.

The study of mixed-initiative interactions requires some kind of negotiation
environment for the interactions to take place. Most environments are domain-
specific and focus on specific tasks to be evaluated. Multi-agent decision making
environments are mostly designed for agent simulation based on human per-
formance. Examples of these environments are OMAR [5] and GENIUS [14].
The CT framework is very flexible in that it can be used to implement domains
ranging from highly abstract to rich and complex scenarios. However, using BDI
agents in decision making environments is certainly not limited to CT and it
would be interesting to see how well BDI agents can be incorporated into other
negotiation environments.

Literature shows that there are frameworks constructed for BDI agents [19]
and recent work focuses on the development of a multi-agent simulation plat-
form that supports different agent-oriented programming languages [1]. However,
these frameworks are designed for very specific domains and are therefore not
broadly applicable. CTAPL allows for the implementation of a range of differ-
ent interaction domains in which BDI agents, computational agents and humans
can interact. We are not aware of any other existing generic framework that al-
lows computational agents and BDI agents to interact with each other and with
humans in negotiation environments.

3 Colored Trails

Throughout the remainder of the paper we will illustrate various aspects of the
CT framework using a decision making scenario that was presented in [27]. In
this scenario the agents do not have to cope with any uncertainties about the
world except the strategy of the opponent. Furthermore, it is a game that can
be easily be divided into goals and subgoals. That is, players can create their
own decision recipe trees that do not involve probabilities. This game is therefore
very suitable to be implemented in CT as well as in the BDI constructs of 2APL.
The game consists of an implementation of the ultimatum game (UG) [13], in
which two players (here referred to as Alice and Bob) interact to divide their
colored chips in order to take a path to the goal.

3.1 The Framework

CT [10] is a flexible research platform developed by Grosz and Kraus to investigate
decision-making in group contexts. CT implements a server-client architecture.
Figure 1 represents the conceptual design of CT: A is the set of software agents



Incorporating BDI Agents into Human-Agent Decision Making Research 87

Fig. 1. The Colored Trails framework

and {A1 . . . Ai} ∈ A. H is the set of human actors and {H1 . . . Hi} ∈ H. Through
an administrative shell a configuration file is loaded that specifies the properties
of the game. Once the configuration file is loaded, the server starts the game.

The standard CT environment consists of a board of colored squares, one or
more goals, two or more players (these can be both humans and software agents)
and a set of colored chips per player.Playersmaymove across the boardby handing
in colored chips that correspond to the colored squares of their taken path. They
are allowed to negotiate in order to obtain useful chips. The size of the board, the
colors of the squares, the number of players and the number of goals are a few
examples of the many variables that can be set in the configuration file. The con-
figuration file also specifies when and in what way players may communicate with
each other and what information each player has about the current state of the
world. CT thus allows for games of both imperfect and incomplete information. CT
also allows for the “specification of different reward structures, enabling examina-
tion of such trade-offs as the importance of the performance of others or the group
as a whole to the outcome of an individual and the cost-benefits of collaboration-
supporting actions”[10]. Given the large number of variables that can be modified,
a great variety of domains can be implemented in CT.

Figure 2 shows the configuration of the ultimatum game that was mentioned
earlier. The board consists of 5 × 5 colored squares and two players, Alice and
Bob, who each have full visibility of the board and of the other player’s position,
goal and chips. This means they do not have to cope with any uncertainty, other
than the strategy of the opponent. On the board, the position of both players
and their goal is visible. The chips (displayed in the ‘Player Chips Display’ at
the bottom of the screen) represent the resources the players have and can divide
amongst themselves. A player is either a proposer and required to propose the
split of the chips, or a responder and required to respond to an offered proposal.

3.2 What’s Missing?

The CT framework was specifically designed to investigate human-agent inter-
actions: “A key determinant of CT design was the goal of providing a vehicle for



88 B. Kamphorst, A. van Wissen, and V. Dignum

Fig. 2. The Configuration of a Colored
Trails Game

comparing the decision-making strategies
people deploy when they interact with
other people with those they deploy when
computer systems are members of their
groups.”[10] If a scenario focuses on an-
alyzing decision making in interactions
between humans and agents, it can be in-
teresting and helpful if the agents reason
in a similar way as humans (say they) do.
These agents help us understand how they
interact and what motivates their deci-
sions, by enabling us to look more closely
at their reasoning process. On top of that,
agents that are based on models that take
into account the same social principles
that humans also base their decision on
(such as fairness and helpfulness), were
shown to explore new negotiation oppor-
tunities [15] and find solutions that cor-
respond to solutions found by humans [4].
The information about the agent’s reason-
ing process can be used to create agents
that are able to support humans in deci-
sion making tasks.

BDI structures reflect the collaborative decision making process of humans
more closely and at a more realistic level than the more algorithmic approaches
[29]. The possibility of having BDI agents within the CT framework also allows
for comparisons between how people interact with BDI agents and with compu-
tational agents. Currently, the CT framework is only suitable for computational
agents written in Java. What is missing from CT is a way to have BDI agents
interact in CT domains.

4 2APL

4.1 The Platform

2APL (pronounced double-a-p-l) is a practical agent programming language de-
signed to implement agents that can explicitly reason with mental concepts such
as beliefs, goals (desires) and plans (intentions) [3]. Figure 3 shows the concep-
tual design of 2APL. Like CT, the 2APL platform implements a server-client
architecture, where A is the set of BDI agents written in the 2APL program-
ming language and {A1 . . . Ai} ∈ A. Each agent An can communicate with all
other agents via a send action. All communication between agents goes through
the 2APL server.

The 2APL language has both a formal syntax and a formal semantics, which
makes it possible to check programs on the satisfiability of their (formal)



Incorporating BDI Agents into Human-Agent Decision Making Research 89

Fig. 3. The 2APL platform

specifications and constraints. Furthermore, it integrates both declarative and
imperative programming styles. Goals and beliefs are stated in a declarative
way, while plans and external environments are implemented in an imperative
programming style. The declarative programming is well-suited for the imple-
mentation of reasoning and the updating of the mental states of the agents. The
imperative part enables the implementation of plans, flow of control and allows
for the interaction with existing imperative programming languages. (For a more
detailed discussion of the implementation of beliefs, goals and plans in 2APL, see
[3].) The 2APL platform also allows for external environments. These environ-
ments are modular extensions that agents can have access to through external
actions. External environments serve as an interface to the Java programming
language which allows programmers (i) to build custom environments for agents
to interact in and (ii) to easily add functionality to the 2APL Platform.

Example 1 illustrates a specific reasoning pattern of the UG example in 2APL.
Alice might have a different strategy of reacting to proposals received from Bob
than Bob has of reacting to Alice’s proposals. It might be the case that Alice
is egoistic and only accepts proposals if it leaves herself better but Bob worse
off, while Bob is more altruistic and also accepts proposals that favor Alice.
In 2APL this can be expressed in terms of goals, subgoals and belief updates.
This example shows what happens if Alice receives a proposal. The method
‘makeResponse(MSGID)’ is called when Alice receives a new proposal and she
has an ID. If Alice has the goal to win and to respond to proposals (meaning
that she is currently the responder in the game), then she will check whether
accepting an offer that Bob has proposed is both beneficial for her and harm-
ful for Bob. If this condition is met, she will accept the proposal and put this
in her belief base. Otherwise, she will reject the proposal and put this in her
belief base. Statements that transfer knowledge to the belief base can be iden-
tified by the first letter of the name of the method, which is always a capitol.
In this case, the statement ‘Responded(TYPE, MSGID, accept)’ is a belief up-
date rule (as defined in 2APL), which will update the belief base with the fact
that the agent responded with ’accept’ to a particular proposal. Since in the
following round Alice will be a proposer, she now updates her goal base by drop-
ping the subgoal of responding to proposals and accepting the goal of making
proposals.



90 B. Kamphorst, A. van Wissen, and V. Dignum

Example 1 (Performing high level task-specific reasoning:
makeResponse(MSGID))

makeResponse (MSGID) <− r e c e i v e d (TYPE,MSGID, open ) and
agent Id (MYID) | {

i f ( G( win ) and G( respond ) ) then {
i f ( B( scoreAf te rExchange (MYID,SCORE) >

scoreCurren tCh ips (MYID) )
and B( scoreAf terExchange (BOBID,SCORE) <
scoreCurren tCh ips (BOBID) ) then {

response (MSGID, accep t ) ;
Responded (TYPE,MSGID, accep t )

} e lse {
response (MSGID, r e j e c t ) ;
Responded (TYPE,MSGID, r e j e c t )

}
dropGoal ( respond ) ;
adopta ( propose )

}
}

4.2 What’s Missing?

Although the 2APL platform in principle allows external environments to have
a graphical user interface (GUI) with which humans can interact with the 2APL
agents, external environments are in practice mostly designed to examine the
agents’ behavior and reasoning processes. The environments provided by 2APL
are not very well-suited to study human-agent interaction, because the scenario
often focuses on helping the agent to learn or display certain behavior. How-
ever, since BDI systems have the advantage that they use similar concepts of
reasoning as humans do, it would be very interesting to study their behavior in
heterogeneous settings comprising of both agents and humans. This requires a
empirical testbed that enables the implementation of both abstract and more
real-world domains in which humans and agents can interact. CT is very suitable
for this purpose.

In many scenarios, the BDI model has proven to be a useful tool and several
successful applications use BDI structures [29] [20]. According to Georgeff, “the
basic components of a system designed for a dynamic, uncertain world should
include some representation of Beliefs, Desires, Intentions and Plans [. . . ]” [8].
However, one of the main criticisms against BDI systems is that it cannot deal
properly with learning and adaptive behavior. However, recent attempts have
been made to extend BDI languages with learning components [12]. Extensions
to the existing BDI framework can be easily evaluated in CT, since agents have
to adapt to a dynamic environment and can learn from interactions with humans.
“The CT architecture allows games to be played by groups comprising people,
computer agents, or heterogenous mixes of people and computers. [. . . ] As a



Incorporating BDI Agents into Human-Agent Decision Making Research 91

result, CT may also be used to investigate learning and adaptation of computer
decision-making strategies in both human and computer-agent settings” [10].
Another criticism concerns the gap between the powerful BDI logics and practical
systems [17].

To conclude, the 2APL platform is currently missing a uniform way to let hu-
mans interact with the BDI agents. Combining 2APL and CT enables researchers
to study BDI agents in a setting of human-agent interaction.

5 CTAPL

From the previous sections, two issues can be distilled. The first is that the CT
framework in its current state lacks a clear-cut way to build agents with a rich
model of reasoning needed to help better understand the reasoning processes
involved in decision making. Secondly, although the 2APL platform offers a
BDI agent programming language that provides agents with such a rich model
of reasoning, the 2APL platform is in itself not very suitable for human-agent
interaction experiments. CTAPL is designed to overcome both problems. CTAPL
is middleware that allows BDI agents, written in 2APL, to participate in a CT
environment in which heterogeneous actors can interact. CTAPL allows for both
the interaction between BDI agents and humans and between BDI agents and
computational agents. It is even possible to have a mixed group of BDI agents,
computational agents and humans interact. Because of this, CTAPL is a very
suitable platform to evaluate the performance of BDI agents.

5.1 Conceptual Design

Figure 4 shows the conceptual design of CTAPL. The top layer represents the
2APL platform. As with any 2APL setup, it consists of a server and one or
more BDI agents (A1 . . . Ai). The bottom layer represents the CT framework,
with software agents and human actors. In CTAPL however, the CT agents are
not fully functional, reasoning agents. Instead, GA1 . . . GAi are mere hooks for
the BDI agents to communicate with the CT environment. Each agent An thus
corresponds with hook GAn. The 2APL platform is extended by an external
environment that instantiates (i) the hooks for each 2APL agent and (ii) a Java
Thread that continually listens whether agents have received any new messages
from the server. In CTAPL the communication between agents flows through
the CT messaging system instead of directly through the 2APL server.

5.2 Implementation

CTAPL consists of four major components: a 2APL external environment, a
MessageListener class, a set of hooks in CT in the form of generic Java CT
agents and higher level 2APL code that 2APL agents have to use in order to
communicate with the CT framework. In the upcoming subsections the four
components will be discussed individually.



92 B. Kamphorst, A. van Wissen, and V. Dignum

Fig. 4. The conceptual design of CTAPL

2APL Agents. The 2APL agents are designed to perform all higher level rea-
soning about the game. Through external actions the agents can pass informa-
tion to and request information from the CT environment. CTAPL provides a
2APL API that defines BDI constructs for all external actions that are avail-
able in the CTAPL external environment (see Section 5.2). For instance, the
procedural rule1 getPosition(ID), shown in Example 2, allows agents to retrieve
the position of another actor on the board. This method can be called without
restrictions, as demonstrated by the guard of this method, which is ‘true’. First,
the method calls upon the ‘getPosition(ID)’ method in the CT environment.
The environment returns the result of this call, which is captured in the variable
POS. Subsequently, it is checked whether the POS value meets the required form
of two coordinates. These coordinates are then put in the belief base with the
belief update rule ‘Position(ID,X,Y)’.

Example 2 (Requesting information from the external environment:
getPosition(ID))

g e tPo s i t i o n ( ID) <− true | {
@ctenv ( g e tPo s i t i o n ( ID) , POS) ;
B(POS=[X,Y] ) ;
Po s i t i on (ID ,X,Y)

}

1 For more on procedural rules in 2APL, see [3].



Incorporating BDI Agents into Human-Agent Decision Making Research 93

The agent programmer can include the constructs from the API by putting an
Include: filename statement on the first line of the 2APL file that defines the
reasoning patterns of the specific BDI agent. This statement creates a union
between the code from the API and the agent code designed by the agent pro-
grammer. Other extensions such as general beliefs and plans specified by the
programmer may also be put into separate files that can then be included by all
agents.

The External Environment. The external environment consists of several
classes, written in Java with the 2APL API, that have been packaged as a Java
archive (jar). External environments are the default way in the 2APL platform of
providing agents with an environment in which to interact. Normally, an external
environment is a closed system that defines all the external actions an agent can
perform within the environment. In CTAPL however, the external environment
functions as a proxy between the 2APL agents and the hooks in CT. For instance,
the environment ensures that the procedural rule getPosition(ID) from Example
2 will call the getPosition(ID) method of the CT hook that corresponds with
the 2APL agent in question and returns the value to the 2APL agent. If Alice –
programmed in 2APL – wants to know Bob’s position, the 2APL code will call
the CT environment to extract this information.

CT Generic Agents. The generic agent functions solely as a hook for 2APL to
communicate with the CT server. The class GenericAgentImpl contains all the
basic functionality that CT offers its regular agents. Examples of basic meth-
ods are getChips(), getPosition() and setClientName(String name). Example 3
shows the getPosition(ID) method in CT, to give an impression of the function-
ality. First, the set of players is collected by the method ‘getPlayers()’, which is
defined in the CT API. The method then cycles through the set of all players to
find the one with the right ID. Then the position of this player is collected by
‘getPosition()’, which is also defined in the CT source code. The method now
stores this position value and returns it to the environment, where the method
was called.

Because the agent functions as a hook to the 2APL platform, GenericA-
gentImpl also implements higher level methods such as getBoard(), getPlayers()
and getPlayerByPerGameId(int pergameid). If CT is extended by new methods
specifically designed for a specific experiment, the generic agent class can be
subclassed to implement the additional methods.

The Message Listener. The Message Listener component is a Java Thread in-
stantiated by the external environment that continuously polls each CT Generic
Agent for new messages that the agent may have received.2 This information is
then passed through the external environment onto the 2APL agents using the

2 Technically, the Message Listener is part of the external environment. However,
because it is a Threaded class and serves a very specific purpose, it is considered a
separate component of CTAPL.



94 B. Kamphorst, A. van Wissen, and V. Dignum

Example 3 (The CT functionality: getPosition(ID))

public RowCol g e tPo s i t i o n ( int i d ) {
Set<PlayerS ta tus > p l a y e r s = c l i e n t . g e tP l a y e r s ( ) ;
RowCol p o s i t i o n = nul l ;
for ( P l ay e rS t a tu s p l a y e r : p l a y e r s ) {

i f ( p l a y e r . getPerGameId () == id ) {
// the g e tPo s i t i o n () method i s d e f i n ed in

the CT API
po s i t i o n = p l ay e r . g e tPo s i t i o n () ;
break ;

}
}
return p o s i t i o n ;

}

2APL built-in construct throwEvent(APLFunction event, String ... receivers).
This construction allows the BDI agents to passively gain knowledge about mes-
sages that have been sent to them. The 2APL agent code specifies what to do
when messages are received.

6 Discussion

Currently, the authors are in the process of implementing an egoistic BDI agent
in 2APL that interacts within a scenario similar to the one described in [27].
A proof of concept has already been developed that shows that the framework
of CTAPL functions properly by relaying information from 2APL to CT and
visa versa. Once the implementation of the egoistic BDI agent is complete, the
authors will evaluate it by comparing its performance with that of the egoistic
agent from [27]. We expect the BDI agent to perform at least as well as the
original agent.

CT allows for environments in which uncertainties, probabilities and utilities
play an important role. Due to the highly abstract philosophical origins of BDI,
such concepts are typically not included in BDI models. One might therefore
object against the use of 2APL in CT by raising the question how 2APL would
handle such concepts. In defense of CTAPL two things may be said. The first
is that this objection holds for almost all approaches that use BDI structures.
The question posed brings forth a long-existing tension between those who favor
BDI models and those who favor computational (decision and game theoretic)
approaches to building software agents [31]. The burden of solving this tension
does not lay with CTAPL because it is written as an extension to the already
existing framework of CT. The authors of this paper do not claim that BDI
agents should be preferred over computational agents in all cases. Instead, we
have argued that BDI agents can be a valuable addition to decision making
research with CT when the focus is on understanding the reasoning processes
involved.



Incorporating BDI Agents into Human-Agent Decision Making Research 95

Second, the 2APL platform does offer a clear, modular way to capture uncer-
tainties, probabilities and utilities. External environments may be written that
provide computational methods. By allowing BDI agents access to these envi-
ronments, the agents can request a certain value to be calculated. The agents
can then reason with the outcome. Consider the case in which Alice does not
know what chips Bob has. Alice may now access an external environment to
calculate the probability of Bob having the chips Alice needs. Alice can then use
this information to make her offer. So even though the probability is calculated
using a computational algorithm, Alice uses her own beliefs, desires and inten-
tions to interpret that value. In this way the 2APL agents are able to reason
about uncertainties, probabilities and utilities.

7 Future Work

Currently no work has been done to deploy BDI agents in CT scenarios in which
agents have to deal with (i) utilities and (ii) uncertainties about the world. As we
discussed in section 6 traditional BDI systems are not well equipped to cope with
uncertainties. Current BDI approaches simply do not provide tools for quantita-
tive performance analysis under uncertainty. Future research will have to show
whether these difficulties can be overcome by either using external environments
to implement computational features that BDI agents can utilize, or by using hy-
brid approaches such as BDI-POMDP to deal with uncertainty [24].

As mentioned in section 6, the authors will use CTAPL to compare the perfor-
mance of an egoistic BDI agent with that of an egoistic computational agent in a
negotiation scenario similar to the one presented in [27]. Because CTAPL allows
for the interaction between both types of agents, the platform is very suitable for
empirically comparing BDI agents with computational agents in terms of speed,
performance and explanatory power in various settings. Future work will provide
more empirical insights into the advantages and disadvantages of the BDI ap-
proach. Future research with CTAPL also includes (i) building BDI agents that
model human decision making processes in a setting of coalition formation with
self-interested agents [26] and (ii) improving the planning mechanism of agents
in a collaborative setting with uncertainty [16].

8 Conclusions

In this paper the authors have proposed a technical solution for dealing with the
explanatory gap that exists when computational agents are used to investigate
decision making. We have proposed that BDI based agents can assist in filling
the gap because they use clear and retractable reasoning patterns. This paper
has described new middleware called CTAPL that is designed to combine the
strengths of a BDI-based agent approach with the Colored Trails testbed for
decision making.

CTAPL makes three major contributions. First, CTAPL opens up the possi-
bility for BDI researchers to explore existing research domains developed in CT



96 B. Kamphorst, A. van Wissen, and V. Dignum

for agent-agent interaction. Secondly, it gives BDI researchers the opportunity
to have BDI agents that perform optimally in a certain environment interact
with human players. Lastly, it creates the possibility for CT researchers to write
agents that can qualitatively reason in terms of beliefs, goals and plans by using
the 2APL agent programming language.

Acknowledgements. We thank Ya’akov (Kobi) Gal and Maarten Engelen for
helpful comments and assistance with the initial setup of CTAPL. This research
is funded by the Netherlands Organization for Scientic Research (NWO), through
Veni-grant 639.021.509.

References

1. Bordini, R., et al.: Mas-soc: a social simulation platform based on agent-oriented
programming. Journal of Artificial Societies and Social Simulation 8(3) (2005)

2. Bratman, M.: Intentions, Plans and Practical Reason. Harvard University Press
(1987)

3. Dastani, M.: 2apl: a practical agent programming language. Autonomous agents
and multi-agent systems 16(3), 214–248 (2008)

4. de Jong, S., Tuyls, K., Verbeeck, K.: Fairness in multi-agent systems. The Knowl-
edge Engineering Review (2008)

5. Deutsch, S., Adams, M.: The operator-model architecture and its psychological
framework. In: 6th IFAC Symposium on Man-Machine Systems. MIT, Cambridge
(1993)

6. Dignum, F., Morley, D., Sonenberg, E., Cavedon, L.: Towards socially sophisticated
bdi agents. In: Proceedings of the Fourth International Conference on MultiAgent
Systems, Boston, MA (2000)

7. Gal, Y., Pfeffer, A.: Predicting people’s bidding behavior in negotiation. In:
AAMAS (2006)

8. Georgeff, M., Pell, B., Pollack, M., Tambe, M.: The belief-desire-intention model
of agency. LNCS. Springer, Heidelberg (1999)

9. Grosz, B., Kraus, S.: Collaborative plans for complex group action. Artificial In-
telligence 86(3), 269–357 (1996)

10. Grosz, B., Kraus, S., Talman, S., Stossel, B., Havlin, M.: The influence of social de-
pendencies on decision-making: Initial investigations with a new game. In: AAMAS
(2004)

11. Grosz, B., Pfeffer, A., Shieber, S., Allain, A.: The influence of task contexts on the
decision-making of humans and computers. In: Proceedings of the Sixth Interna-
tional and Interdisciplinary Conference on Modeling and Using Context (2007)

12. Guerra-Hernández, A., Fallah-Seghrouchni, A.E., Soldano, H.: Learning in BDI
multi-agent systems. In: Dix, J., Leite, J. (eds.) CLIMA 2004. LNCS (LNAI),
vol. 3259, pp. 218–233. Springer, Heidelberg (2004)

13. Guth, W., et al.: An experimental analysis of ultimatum bargaining. Journal of
Economic Behavior and Organization 3, 367–388 (1982)

14. Hindriks, K., Jonker, C., Kraus, S., Lin, R., Tykhonov, D.: Genius - negotiation
environment for heterogeneous agents, Budapest, Hungary (May 2009)

15. Hogg, L., Jennings, N.: Socially intelligent reasoning for autonomous agents. IEEE
Trans. on Systems, Man and Cybernatics - Part A, 381–399 (2001)



Incorporating BDI Agents into Human-Agent Decision Making Research 97

16. Kamar, E., Gal, Y., Grosz, B.: Incorporating helpful behavior into collaborative
planning. In: AAMAS (2009)

17. Mora, M., Lopes, J., Viccari, R., Coelho, H.: BDI models and systems: Reducing
the gap. In: Rao, A.S., Singh, M.P., Müller, J.P. (eds.) ATAL 1998. LNCS (LNAI),
vol. 1555, pp. 11–27. Springer, Heidelberg (1999)

18. Newell, A., Simon, H.A.: Human Problem Solving. Prentice-Hall, Englewood Cliffs
(1972)

19. Nguyen, M., Wobcke, W.: A flexible framework for sharedplans. In: Sattar, A.,
Kang, B.-h. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 393–402. Springer,
Heidelberg (2006)

20. Onken, R., Walsdorf, A.: Assistant systems for vehicle guidance: Cognitive man-
machine cooperation. Aerospace Science Technology 5, 511–520 (2001)

21. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A bdi reasoning engine.
In: Multi-Agent Programming: Languages, Platforms and Applications. Kluwer,
Dordrecht (2005)

22. Sanfey, A., Rilling, J., Aronson, J., Nystrom, L., Cohen, J.: The neural basis of
economic decision-making in the ultimatum game. Science (300), 1755–1758 (2003)

23. Sindlar, M.P., Dastani, M., Dignum, F., Meyer, J.-J.C.: Mental state abduction
of BDI-based agents. In: Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff,
M. (eds.) DALT 2008. LNCS (LNAI), vol. 5397, pp. 161–178. Springer, Heidelberg
(2009)

24. Tambe, M., et al.: Conflicts in teamwork: Hybrids to the rescue. In: AAMAS,
pp. 3–11 (2005)

25. van der Hoek, W., Wooldridge, M.: Towards a logic of rational agency. Logic Jour-
nal of the IGPL 11(2), 135–159 (2003)

26. van Wissen, A., Kamphorst, B., Gal, Y., Dignum, V.: Coalition formation between
self-interested heterogeneous agents (forthcoming)

27. van Wissen, A., van Diggelen, J., Dignum, V.: The effects of cooperative agent
behavior on human cooperativeness. In: AAMAS (2009)

28. Winikoff, M.: JackTM intelligent agents: An industrial strength platform. In: Multi-
Agent Programming: Languages, Platforms and Applications. Kluwer, Dordrecht
(2005)

29. Wolfe, S., Sierhuis, M., Jarvis, P.: To bdi or not to bdi, design choices in an agent-
based traffic flow management simulation. In: Proceedings of the 2008 Spring Sim-
ulation Multiconference (2008)

30. Wooldridge, M.: Intelligent agents. In: Weiss, G. (ed.) Multiagent Systems. MIT
Press, Cambridge (1999)

31. Wooldridge, M.: Reasoning about Rational Agents. MIT Press, Cambridge (2000)
32. Wooldridge, M., Jennings, N.: Intelligent agents: Theory and practice. The Knowl-

edge Engineering Review 10(2), 115–152 (1995)


	Incorporating BDI Agents into Human-Agent Decision Making Research
	Introduction
	Related Work
	Colored Trails
	The Framework
	What's Missing?

	2APL
	The Platform
	What's Missing?

	CTAPL
	Conceptual Design
	Implementation

	Discussion
	Future Work
	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




