
Knowledge Management in Role Based Agents

Hüseyin Kır, Erdem Eser Ekinci, and Oguz Dikenelli

Ege University, Department of Computer Engineering,
35100 Bornova, Izmir, Turkey

{huseyinkir,erdemeserekinci}@gmail.com, oguz.dikenelli@ege.edu.tr

Abstract. In multi-agent system literature, the role concept is getting
increasingly researched to provide an abstraction to scope beliefs, norms,
goals of agents and to shape relationships of the agents in the organi-
zation. In this research, we propose a knowledgebase architecture to in-
crease applicability of roles in MAS domain by drawing inspiration from
the self concept in the role theory of sociology. The proposed knowledge-
base architecture has granulated structure that is dynamically organized
according to the agent’s identification in a social environment. Thanks to
this dynamic structure, agents are enabled to work on consistent knowl-
edge in spite of inevitable conflicts between roles and the agent. The
knowledgebase architecture is also implemented and incorporated into
the SEAGENT multi-agent system development framework.

1 Introduction

In multi-agent system research domain, role concept is getting more popular
from both methodology and infrastructure perspectives in last years. The main
purpose behind using roles in MAS research domain is to provide an abstraction
to define beliefs, norms, goals of agents and to shape relationships between the
agents in the organization. But, the role concept is not new, and not firstly used
by the MAS domain researchers for modeling organizations.

The role concept was introduced within the theater in antique ages to define
behaviors and scripts of an actor in scenes of a part. But in the previous century,
sociologists converted this simple concept to a deep theory which is comprised of
systematic methods of empirical investments to predict activities of individuals,
to resolve human social relationships, stratification and interactions by analyzing
body of knowledge about human organizations[1]. As a consequence of these
researches, the role concept is explicated as designated social part to be played,
characteristic behaviors and scripts for social conduct. Albeit at a first glance
it appears like that there is not so much change in the general definition of role
through the ages, depths of the concept are theorized with many sub-theories
(role playing, role taking, role transition, role leaving, role conflict, etc.) which do
clarify the problems such as which conditions conduct a role, how an individual
plays a role and what the dynamics are behind taking or leaving a role.

When the MAS researchers import the role concept to the multi-agent sys-
tem theory, they pave the way of transferring all related sub-theories of socio-
logical role theory. Already corresponds of many role sub-theories propounded

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 181–196, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

182 H. Kır, E.E. Ekinci, and O. Dikenelli

by sociologists[2,1] can be seen in the prominent MAS researches[3,4]. But we
ascertain that the fact of the self concept’s importance in the role theory is dis-
regarded in these researches. In this paper, to increase applicability of roles in
MAS domain we propose a knowledgebase architecture by drawing inspiration
from the self concept in the role theory of sociology.

The self concept, basically, denotes the word “I”, which is the knowledge of
physical properties, beliefs, impulses, characteristic behaviors and talents, and all
other referents to the “I” [2]. But in theory, the concept is not a simple, complete
structure but granulated net that is expanded and reorganized during life long
evolution of the individual[5,6]. In daily life, each individual participates many
organizations such as family, school, and business and gains many identities by
taking different roles. In sociology, individual’s participation in an organization is
technically expressed as expansion of the self with the acceptance of all norms,
goals and beliefs, which belong to the enacted role[6]. Additionally, when the
individual moves from one participated organizations to another, the granulated
form of the self is dynamically reorganized according to the identification of the
individual with respect to its cognition about its roles[5,7].

The main contribution of the self concept to the role theory is depicted as
clarifying the problem of resolving human behaviors in conflicting positions[7].
In detail, an individual may play more than one role in the same organization
or different organizations. But, rules, norms and goals of these roles may not be
completely consistent with each other, even if they are in the same organization.
Furthermore, an individual can play a role, which is not congruent with her/his
self, by violating self’s rules and norms until reaching self goals, if there is not
another way. In such conflicting positions, by the help of granulated and alterable
form of the self concept, sociologists become capable of explaining the meaning
of individual’s behaviors[5].

Analogously to sociological role theory, in a role-based multi-agent system,
agents enact various types of roles due to desire of achieving their congenital
goals during their life time. Differently from the human case, in the MAS liter-
ature conflicts between agents and roles are formally expressed and highlighted
as an undesired situation[3,8]. But as emphasized previously, conflicts between
the roles of an organization is inevitable for the reason of looking through the
different perspectives to the organization.

In the light of this idea, to make role theory completely applicable on MAS, we
propose a knowledgebase architecture, which consists of dynamically arranged
knowledge blocks, similar to the granulated and alterable form of self concept
developed by sociologists. The proposed knowledgebase architecture has two
components; active and passive knowledge. The passive knowledge is used as
storage unit for all knowledge blocks of the agent. Besides, the active knowledge
is a subset of passive knowledge that is arrangement of knowledge blocks which
are the most relevant to the agent’s active position in the organization. While
consistency of the passive knowledge is not cared, active knowledge is obliged to
be consistent to plan deterministically at decision making time. This architecture
is implemented and incorporated into the SEAGENT multi-agent development

Knowledge Management in Role Based Agents 183

framework[9]. SEAGENT framework is based on the OWL ontologies in a way
that all artifacts of the programming paradigms are stored in the ontologies. So,
the knowledgebase is implemented to manage the knowledge handled with these
ontologies by the direction of the role theory and the self concept.

The remainder of this paper is structured as follows: In Section 2, we detail
our knowledgebase semantics on the agent meta-model and formally declare the
effects of the role operations on the knowledge. Section 3 presents the imple-
mented architecture of the proposed knowledge approach which is incorporated
into the SEAGENT multi-agent development framework. Section 4 elaborates a
case study that emphasize the benefits of the proposed knowledge model. Finally
in Section 5, we examine the related works before concluding with Section 6.

2 Role-Based Knowledge Semantics

In the decision making phase, the knowledgebase of the agent has the responsi-
bility of providing information about how the agent reacts the events perceived
from the environment, or how it achieves proactively its goals. But beyond pro-
viding information about plans or goals, for effective planning, the knowledge-
base must also exhibit partial projection of the world encompassing the agent.
Through this direction, when the world around the agent is organized with roles,
the projection of the world in the knowledgebase takes form according to these
roles and their relationships. Since, to handle projection of the world around the
agent we define three types of knowledge blocks as granules of our knowledge-
base; self knowledge, role knowledge and role-instance knowledge blocks. If it
is required to introduce these blocks simply; the role knowledge block involves
norms, goals, rules and beliefs specific to a role in an organization and the self
knowledge block represents the agent itself in the form of congenital behaviors,
norms, goals, rules and beliefs. Differently from the other ones, the role instance
knowledge block handles the information of inferred rules, norms and beliefs
while the agent is performing under a role. Followings of this section declares
the formal semantics of these knowledge blocks.

From the point of knowledge view, the knowledge of a role r ∈ R is a tuple
Kr = 〈G, P, σr , πr, R〉 where, G is the set of goals, P is the set of plans that
are used to achieve each role goal, σr specifies the facts of the role, πr spec-
ifies the rules of the role and finally R represents the set of possible relations
between roles. To detail semantics of R we use the model proposed in [10] by
Kristensen and Osterbye. They ascertain three types of role relations: specializa-
tion, aggregation and dependency. Specialization is supported by extension and
used to built up role hierarchies. We represent specialization as Rspec(r1, r2),
where r1, r2εR , and implies that r1 extends r2. Similarly, aggregation is used
to construct role compositions and represented as Raggr(r1,{rx, ry, ...}), where
r1, rx, ry, ...εR , and defines that r1 is aggregated of given role set. Finally the
role dependency means one role is dependent on another role for the realiza-
tion of its goals[11]. In accordance with the Kristensen’s work, we examine the
reflections of these inter-role relations on the knowledge block relations.

184 H. Kır, E.E. Ekinci, and O. Dikenelli

Another knowledge block in our knowledge model is the self knowledge. The
self defines the personal attitudes of an agent a∈A. Hence, we represent the self
knowledge as a tuple Kself = 〈G, P, σself , πself , Ω〉 where, G represents the set
of congenital goals of the agent, P is the set of plans that comprise the own
capabilities of the agent, σself specifies the facts that the agent has about the
world and himself, πself specifies the rules that constraints the agent behavior
and Ω represents the identity of the self.

In our model the last knowledge block is the role instance knowledge. When
an agent enacts a role, it creates a unique entity, called role instance ri ∈ Ri, in
the organization. We specify the role instance knowledge as Kri = 〈id, roleT ype,
enactmentType, σri, πri, A〉 where id is the unique identifier of the role instance,
roleType represents the role to which the role instance belongs and enactment-
Type determines the degree of dedication of an agent on a role. The semantics of
the enactment is detailed in [11,4] and there are four types of enactment; max-
imally selfish, selfish, social and maximally social, τ= {τMaxSelfish, τSelfish,
τSocial, τMaxSocial}. If an agent enacts a role in a selfish form this means the
agent attaches higher priority to the self’s rules, goals and norms. On the con-
trary, if the enactment is social, the agent prioritizes its role responsibilities.
Finally A represents the set of role instances that the role instance aggregated
of. In this article we use the shorter form as kriroleT ype

id
∈Kri, to represent the role

instance knowledge. When a role is initiated newly, it has an empty fact(σri)
and rule(πri) sets. This knowledge is composed along the life cycle of the agent
via learning and inference. Also, these two concepts could be considered as an
extension of the role knowledge which empower agent to objectify the role.

Consequently, we represent the agent’s whole knowledge as Ka which is union
of the self knowledge kself , set of the role knowledge Kr={kr1 , kr2 , ..., krn} and set
of the role instance knowledge Kri={kri1 , kri2 , ..., krin}, kself∪Kr∪Kri⊆Ka. But,
as emphasized in the introduction, consistency of entire knowledgebase Ka can-
not be established due to unavoidable conflicts between self of agents and roles
and between enacted roles. The granulated structure of knowledgebase enables
an agent to construct the most relevant and consistent subset of the agent knowl-
edge in accordance with its active role. Even the agent enacts various roles that
are in conflict, decision making must always placed on a consistent knowledge. To
provide the consistency, we separate the knowledgebase into two constituents; ac-
tive knowledge(Kactive) and passive knowledge(Kpassive). While passive knowl-
edge is equivalent to the entire knowledge of the agent Kpassive ⊆ Ka and its
consistency is not expected, the active knowledge is a sub-set of passive knowl-
edge Kactive ⊂ Kpassive that is arranged from the relevant knowledge blocks into
a consistent form. We introduce the semantics that formally define how passive
and active knowledge are managed according to the life-cycle of role-based agents
in the following section.

Operational Knowledge Semantics

Through the life-cycle of a role-based agent, the agent enacts roles and performs
under these roles till reaching its goals and then deacts the roles. Concurrently,

Knowledge Management in Role Based Agents 185

Fig. 1. Role Life Cycle

the knowledgebase also evolves together with its owner agent. In order to detail
changes of the knowledgebase during the agent evolution, one must declare oper-
ations performed between an agent and a role. These operations are determined
informally by Odell et al. in [12]. But Dignum et al. articulate these operations
in a formal way[4]. We declare an enhanced version of the role operations in
Figure-1 and within the following definitions, we formally declare the effects of
these operations on the active and the passive knowledge of the agent.

Definition 1. (Deploy) An agent takes the knowledge of a role by performing
deploy operation. This operation makes agent acquainted with the organiza-
tional facts, norms and goals from the perspective of a role. By this way, the
agent obtains the knowledge about how the role can be performed. After the de-
ployment, the knowledge block of the role is installed into the passive knowledge
of the agent. The operation is represented as Odeploy(a1, r1) → K ′

passive where
r1 ∈ R, a1 ∈ A and K ′

passive is for the evolved agent knowledge after the deploy-
ment operation. Let 〈ga, pa, Σa, Πa)〉 be the agent’s passive knowledge before
deploy operation and 〈gr1 , pr1 , σr1 , πr1 , R〉 is the knowledge block of the role r1,
then the deployment operation can be detailed as follows:

Kpassive=〈ga,pa,Σa,Πa〉 kr1=〈gr1 ,pr1 ,σr1 ,πr1 ,R〉 Odeploy(a1,r1)

Kpassive ∪ kr1 ⊆ K ′
passive K ′

passive=〈ga∪gr1 ,pa∪pr1 ,Σa∪σr1 ,Πa∪πr1〉
But, in order to perform deployment operation successfully, some preconditions
that comes from the relationships of the deployed role must be satisfied. If the
role intended to deploy extends or aggregates from other roles, then the parent
or aggregated roles should be deployed as well:

Odeploy(a1,r1) ⇒ ∀rx∈ R ((Raggr(r1,rx) ∨ Rspec(r1,rx)) ∧ Odeploy(a1,rx))

Definition 2. (Enact) By performing this operation, an agent gains a new
identity and a unique instance of the role is declared to the organization. In-
stantiation of a role is represented as Oenact(a1, r1, τ)→k′

self , where r1 ∈ R,
a1 ∈ A, τ specifies the enactment type and k′

self specifies the evolved knowledge
block of the self after the enactment operation. This operation ingenerates a new

186 H. Kır, E.E. Ekinci, and O. Dikenelli

instance of the role r1 as rir1
x ∈Ri and adds this new identity to the agent’s self

knowledge block kself = 〈gself , pself , σself , πself , Ω〉.
kself=〈gself ,pself ,σself ,πself ,Ω〉 Oenact(a1,r1,τ)

k′
self=〈gself ,pself ,σself ,πself ,Ω′〉 Ω ∪ {rir1

x } ⊆ Ω′

Similar to the deployment operation, in order to perform the enactment success-
fully the agent follows the suit by enacting the aggregated roles:

Oenact(a1,r1) ⇒ ∀rx∈ R (Raggr(r1,rx) ∧ Oenact(a1,rx))

Besides, enactment does not cause only extending the identities in the self knowl-
edge block. In addition, a role instance knowledge krir1

x
=〈x, r1, τ, σri, πri, A〉 is

also created and inserted into the passive knowledge, Ka1 ∪ kr1⊆ K ′
a1

. But the
newly created role instance has an empty fact (σri) and rule (πri) sets. These
rules and facts are directly inserted into the role instance knowledge block or
generated by inference along the activation and execution of the role instance.

Definition 3. (Activate) An important point is that, an agent may enact var-
ious roles to achieve numerous goals concurrently. Hence, a role is not played
continuously. Due to the position of the agent in the organization, a role is ac-
tivated at a time. The activation operation puts forward an identity of an agent
to prepare it performing under a role instance. From the point of knowledge
view, each activation operation causes a context switch that updates the active
knowledge of the agent with respect to the activated role. The active knowledge
is constructed from the most relevant knowledge blocks stored in the passive
knowledge that literally reflects the activated role instance’s conception of the
world. Additionally, relations between roles and enactment type of the role in-
stance significantly effects the content of the active knowledge.

Before declaring semantics of the active knowledge construction in terms of the
enactment type, an important function Construct Perspective (CP) and logical
operator 	, which are intensely used in our semantics, are required to be defined.
First one is conflict resolver operator “	”, which designates the maximal subset
of the former operand that does not conflict with the latter operand. For in-
stance, let s1=〈x0, x1, x2, x3,¬x5〉 and s2=〈¬x1, x2, x4, x5〉 are set of premises,
then s1	s2=〈x0, x2, x3〉 and s2	s1=〈x2, x4〉. In order to define and eliminate
conflicts between entities, we utilize goal and rule conflict definitions made by
Dastani et al.[4] and the semantic relations between these entities.

Construct Perspective function, on the other hand, is the root function for
arranging the active knowledge from the related knowledge blocks. The function
is called when the activation operation is triggered, Oactivate(rir1

x)→CP (rir1
x)

where rir1
x ∈Ri. We define CP (rirx

y) function for the role rx∈R and role instance
rirx

y ∈ Ri, whose type is rx, as:

CP (rirx
y)

Kactive= krirx
y

∪ CP τ (rx) ∪ ∀ rirk
z ∈ A (CP (rirk

z))

where krirx
y

=〈y, rx, τ, σri, πri, A〉.

Knowledge Management in Role Based Agents 187

In order to construct the knowledge perspective of a role instance, three groups
of knowledge block are added to the active knowledge. The knowledge block of
the activated role instance(krirx

y
) is added to the active knowledge without any

hesitation of a conflict. Because, when a role is initiated for the first time, it has
empty fact (σri) and rule (πri) sets and the efforts on keeping active knowledge
consistent prevents expansion of the role instance knowledge in a conflicting way.
Also, the active knowledge constructor function recursively adds all aggregated
role instances’ knowledge, which are defined in A, to the active knowledge. And
finally, the knowledge block of the role is added to the active knowledge with
the operation CP τ (rx). Dignum[11] defines the evaluation of the goals of an
agent in accordance with the role enactment type (τ), but goals are not the only
determinant on the behavior of an agent. Hence, we extend this definitions in a
way that comprises every entity in the knowledge.

The function CP τ (rx) process in a different way for each enactment type τ
and the active knowledge varies as follows:

Case 1. (Maximally selfish enactment) The agent only uses its own goals, and
ignores any objectives of the role. But, the role enacting agent cannot try to
achieve pure self goals while playing the game by the organizational rules. Hence,
the agent should disregard the organizational rules. But, it still has to know at
least the shared organizational vocabulary in order to communicate with the
other agents. CP τ (rx) function for this type of enactment is:

CP MaxSelfish(rx)= kself ∪ prx ∪ (σrx�σself) ∪ ∀ rm∈S (CP MaxSelfish(rm))

where krx=〈grx , prx , σrx , πrx , R〉, S defines the list of specialized roles that is
inferred from the role relations R and as mentioned before σrx	σself designates
the role facts that does not conflict with facts of the self knowledge block.

Case 2. (Selfish enactment) Different from maximal selfish enactment, the en-
acting agent takes as many of its role’s goals and rules as possible into consider-
ation. But self rules still have the priority, so rules of the role that conflict with
the self rules are disregarded.

CP Selfish(rx)=kself ∪ prx∪ (σrx�σself) ∪ (πrx�πself) ∪ (grx�gself) ∪
∀rm ∈ S (CP Selfish(rm))

where krx=〈grx , prx , σrx , πrx , R〉 and S defines the list of specialized roles that is
inferred from the role relations R.

Case 3. (Maximally social enactment) Agent, even though it does not firmly
believe, may act for the sake of the organization’s benefits. For this reason, the
agent only uses objectives from the role and precisely obeys the organizational
rules. Agent ignores its self goals and rules, for the duration of the role enactment.

CP MaxSocial(rx)=krx ∪ pself ∪ (σself�σrx) ∪ ∀ rm∈S (CP MaxSocial(rm))

where krx=〈grx , prx , σrx , πrx , R〉 and S defines the list of specialized roles that is
inferred from the role relations R.

188 H. Kır, E.E. Ekinci, and O. Dikenelli

Case 4. (Social enactment) This enactment type is similar to the selfish enact-
ment, but herein the agent includes as many of its own goals and rules as possible
but the organizational rules and goals still have the priority.

CP Social(rx)=krx ∪ pself ∪ (σself�σrx) ∪ (πself�πrx) ∪ (gself�grx) ∪
∀ rm ∈ S (CP Social(rm))

where krx=〈grx , prx , σrx , πrx , R〉 and S defines the list of specialized roles that is
inferred from the role relations R.

As a special case, if there are no conflicting goals or beliefs between the self
and the activated role, then the constructed active knowledge of social enactment
is same with the selfish enacted role’s active knowledge. In other words, if there
are no conflicting rules then, πself	 πr1= πself , πr1	 πself = πr1 and the same
for the facts and goals. Hence;

Oactivate(rir1
x)→(kself∪ kr1∪ krir1

x
) ⊆Kactive

whether krir1
X

=〈x, r1, τSocial, σri, πri, A〉 or krir1
x

=〈x, r1 τSelfish, σri, πri, A 〉 .
While active knowledge construction ensures that the agent makes determin-

istic decisions, occasionally agent may need to share a role specific knowledge
or a know-how with another role that does not have direct relation. In such a
case, agent adopts that knowledge as experience and adds the knowledge to its
self knowledge. Thereby, agent can use that knowledge independent from the
life-cycle and knowledge scope of the role.

Definition 4. (Suspend) Role instances goes into suspending state when none
of its goals and eventually tasks are in execution and there is nothing more to do
in the scope of instance. In this case, the entire active knowledge is committed
back to the agent knowledge and a new active knowledge is constructed with the
subsequent activation operation.

Definition 5. (Deact) Agent deacts a role instance in the case of withdrawing
from a social position. Deact operation could be triggered through the achieve-
ment of all role goals or the inexpediency of the enacted role instance. This oper-
ation deallocates the role instance from the agent and represented as: Odeact(a1,
rir1

1) → k
′
self , where rir1

1 εRi and a1εA. When the role instance’s main goal is
achieved, the instance is deallocated from the agent.

kself=〈gself ,pself ,σself ,πself ,Ω〉 Odeact(a1,rir1
1)

k′
self=〈gself ,pself ,σself ,πself ,Ω′〉 Ω′ = Ω \ rir1

x

Enacting a role and deacting the same role doesn’t always end up with the same
agent knowledge, because through the execution of the role instance, agent may
gain experience and its self knowledge may evolve. Also, as a rule, if there is an
aggregate role which is enacted by the agent, its participant roles could not be
deacted.

Knowledge Management in Role Based Agents 189

Odeact(a1,rir1
1) ⇒ ∀rx∈ R (Raggr(rx,r1) ∧ Odeact(a1,rirx))

Definition 6. (Remove) Finally, with remove operation, the agent also loses
the capability of playing the role. This operation removes the resources of a
role and every instances of it from the agent. Role remove is represented as
Oremove(a1, r1) → K ′

passive where r1εR and a1εA.

Kpassive=〈ga,pa,Σa,Πa〉 kr1=〈gr1 ,pr1 ,σr1 ,πr1 ,R〉 Oremove(a1,r1)

K ′
passive = Kpassive \ (kr1 ∪ ∀ rir1

x (k
rir1

x
))

that is K ′
passive=〈ga \ gr1 , pa \ pr1 , Σ

′
a, Π ′

a〉 where Σ′
a = Σa \ (σr1∪ ∀rir1

x (σrir1
x

))
and Π ′

a = Πa \ (πr1∪ ∀rir1
x (πrir1

x
)).

If there is an instance of the role running on the agent, the role cannot be
removed, Oremove(a1, r1) ⇒ ∀rir1

x ∈ Ri (Odeact(a1, rir1
x)). Also, in order to remove a

role which is depended on by another role with the relationship types of specifi-
cation and aggregation must be removed, Oremove(a1, r1) ⇒ ∀rx ∈ R ((Rspec(rx,r1)
∨ Raggr(rx,r1)) ∧ Oremove(a1, rx)).

3 The Architecture

We implemented a knowledgebase architecture, which supports the semantics
detailed in the previous section, and incorporated it into the SEAGENT se-
mantic web enabled multi-agent framework[9]. The SEAGENT framework han-
dles all its artifacts such as roles, goals and plans within OWL ontologies.
Since OWL is a description logic based knowledge representation language, the
SEAGENT framework provides great facilities for implementing mentioned role-
based knowledge semantics. In this section, we focus on our knowledgebase im-
plementation and position it in SEAGENT framework.

Figure-2 represents the implementation of the proposed knowledgebase archi-
tecture within the SEAGENT framework. As indicated in the figure, two vertical
layers compose the overall architecture. The first layer, called Execution Layer,
provides planning and execution infrastructure for the SEAGENT agents. The
second one, the Semantic Web Layer encapsulates the ontologies that represents
the roles, goals, rules and domain specific concepts. This layer also represents
the semantic web together with the local ontologies which imports the shared
concepts published in the internet. The proposed knowledgebase architecture
is composed of three sub-modules: Knowledge Manager, Active Knowledge and
Passive Knowledge. The Passive Knowledge module is responsible for storing all
local ontologies that are used by the agent. We provide an extensible support
for different physical passive knowledge persistence solutions and there are two
existing implementations as TDB and RDB light weight ontology storage based
on Jena API1. On the other hand, Active Knowledge module serves a complete
and consistent knowledge subset that is arranged from the passive knowledge in
accordance with the active role instance and its dependencies. In fact, this knowl-
edge is an in-memory ontology model that imports all active role instance related
1 http://jena.sourceforge.net/DB/index.html

190 H. Kır, E.E. Ekinci, and O. Dikenelli

Fig. 2. SEAGENT Knowledgebase Architecture

ontologies and accessible from the tasks of the active role. Lastly, the Knowledge
Manager module acts as a bridge between active and passive knowledge mod-
ules and has critical responsibilities such as, construction of active knowledge,
ensuring the consistency of it and synchronization of the active and passive
knowledge. To fulfill these responsibilities, the Knowledge Manager module is
composed of three sub-modules that are Perspective Constructor, Transaction
Manager and Conflict Manager. Following paragraphs detail the functionality of
the Knowledge Manager module.

The Perspective Constructor module is in the charge of the construction of
active knowledge. Figure-3 represents the algorithm that constructs the active
knowledge. In accordance with the formerly proposed knowledge semantics, this
algorithm takes the activated role instance as parameter and simply identifies a
maximal related sub graph from a net of role and role instance relations. After
the specification of role and role instances that are related with the activated role
instance, their knowledge are read into active knowledge in accordance with their
enactment type. This provides a consistent and well defined knowledge context,
even agent enacts conflicting roles and participates in non-adaptive organiza-
tions. This knowledge serves agent a conception of world from the perspective
of the active role instance.

Another important function of the Knowledge Manager is the concurrency
management. Since selected storage infrastructure is a non-transactional media
and we have different atomicity requirements, we implemented our own transac-
tion management sub-system and this functionality is provided by the Transac-
tion Manager sub-module. As emphasized previously, an agent may enact several
roles concurrently (one actively at a time), and each role instance may execute
several tasks in order to achieve several goals synchronously. However, the Trans-
action Manager module ensures that only one task can modify an ontology at a

Knowledge Management in Role Based Agents 191

Fig. 3. Active Knowledge Construction Algorithm

time via transaction. In the implementation of our concurrency control infras-
tructure, two-phase locking algorithm is adopted because of its simplicity and
success in practice[13]. Also with the construction of our own transaction mech-
anism, we are enabled to redefine the atomicity of the knowledge transactions
and agent goals are the best guide for this purpose. Transaction Manager com-
mits all un-committed modifications, that are triggered by the task, in the case of
achievement of the goal that the task contributes. Or, in the case of an exception
that occurred during the execution of the task, all un-committed modifications
are aborted. In the case of long-term goals, this approach may cause long-lived
transactions that access large number of resources and this may cause deadlocks.
To cope with this problem transactions can be prematurely committed within
the tasks of the agent.

As a result of the agent’s cognitive structure, agent learns and gains experience
from its former actions. Besides, consistency of the agent knowledge shouldn’t
decay with this newly added or inferred knowledge. For each knowledge modifi-
cation, Conflict Manager checks the consistency of the active knowledge and all
suspending role instances’ knowledge perspectives. Since the SEAGENT frame-
work represents all knowledge artifacts with OWL ontologies, this consistency
check is basically an ontology validation. But from the point of agent view, a

192 H. Kır, E.E. Ekinci, and O. Dikenelli

concept’s validity is only dependent on the agent’s perception on that concept.
Hence, open world assumption based inference engines are not sufficient for our
requirements. We extended Eyeball2 tool with new inspectors in order to de-
tect and report goal and rule conflicts. When Conflict Manager distinguishes a
knowledge modification that threaten the consistency of the active knowledge,
it throws an exception and notifies the SEAGENT exception handler[14].

4 Case Study

This section presents a multi-organization application that is implemented with
SEAGENT Multi-Agent Development Framework as a case study to emphasize
and observe the benefits of the proposed knowledge architecture. In order to
provide conflicting but not totally irrelevant roles to our agents, we preferred
the barter domain. Figure-4 represents Corporate Barter and Barter Trade Ex-
change organizations’ design model. The corporate barter organization, or peer
to peer barter, is the most plain type of barter which is arranged between two
companies who have mutually agreeable goods or services to swap evenly. Par-
ticipants can openly determine the price of the goods being exchanged and offer
discounts without inviting retaliation by competitors or existing customers. This
type of organization is a free competition market, where every customer tries to
be monopoly in its area of expertise. Hence, companies aim to dominate the
market with creating competition via reducing prices and increasing product
quality. Explicit representation of the corporate barter organizational rules that
are applicable to the customer role are, (ruleSet1):

PERMITTED(customer DO overpricing(product))
PERMITTED(customer DO underpricing(product))
PERMITTED(customer DO offer_discount(product))
OBLIGED((customeri DO make_payment(customerj, producti)
IF(customerj DO make_payment(customeri, productj)
AND (customeri, customerj DO accept_trade(producti, productj)))

Similarly, barter trade exchange organization is a collection of businesses that
trade their goods and services, managed by an intermediator. In this organi-
zation, businesses do not exchange goods directly as in the bilateral form of
the corporate barter. Rather, barter trade exchanges is multilateral and partic-
ipants only interacts with an intermediator. Another difference of barter trade
exchange is the use of a form of private label currency. The customer role of
this organization stimulates enactor agents to maximize their profit via increas-
ing prices within the legal limits or reducing transportation cost by preferring
nearby barter options. The rules and norms in the role description of the Cus-
tomer role of barter trade exchange organization are, (ruleSet2):

FORBIDDEN((customer DO overpricing(product)
AND(customer DO underpricing(product) AND(customer DO offer_discount(product)
IF(customer DO violate_competition_legislation(product_price)))),
OBLIGED((customer DO make_payment(barter_manager, producti)
OR (make_payment(barter_manager, barter_dollar))
IF(customer DO accept_trade(producti, productj)
OR accept_trade(producti, barter_dollar))

2 http://jena.sourceforge.net/Eyeball/

Knowledge Management in Role Based Agents 193

Fig. 4. Organization model

Also, both Customer roles extend from a more generic Legal Customer role
that is supplied by a competent authority in order to ensure, without consider-
ing barter type, all customer roles respect the legislation. Such as, prohibiting
barter of unmarketable goods like weapons, drugs and prostitution, or obligating
companies to have appropriate license to sell goods that are permitted to be sold
only by licensed sellers(such as alcohol), (ruleSet3):

FORBIDDEN(customer DO barter(weapon, drug, ...)),
OBLIGED(customer DO have(license) IF(customer DO barter(product)
AND(product DO require_license(license)))

In order to affirm the expediency of our approach, we will examine a case where
a company agent participates Corporate Barter Organization and Barter Trade
Exchange Organization by socially enacting both Customer Roles in order to
achieve his self goal of consuming the company’s unused stocks. Also, the self
knowledge has a rule in sales as applying a fixed price to all goods and not
making discounts regardless of the amount of the purchase. Similarly, he has a
self rule in buying as only trading the indispensable goods, (ruleSet4):

PERMITTED(self DO barter(product) IF(self DO demand(product))),
FORBIDDEN(self DO discount(product))

While existing agent cognitive models refuse the simultaneous enactment of both
customer roles because of their conflicting rules on pricing policies, it could
be easily seen that this is not an uncommon and avoidable case. As a part of
the solution that we proposed for this problem, SEAGENT agents stores both
rules, as SWRL rules, and goals, as goal ontologies, into his passive knowledge.
In a case where another agent, which is also participated in Corporate Barter
Organization, makes a barter offer with a very low profit margin and even quite

194 H. Kır, E.E. Ekinci, and O. Dikenelli

under the product’s fair market value, our agent activates the appropriate role
instance and evaluates his knowledge in order to make a decision.

With a traditional knowledgebase, both rule sets would be included in an
aggregate agent knowledge and agent would query whole related and unrelated
knowledge in order to make a decision. Correspondingly, while this very low
profited barter is permitted by the Corporate Barter Organization, underpricing
which violates competition legislation are banned in the Barter Trade Exchange
Organization. Also, while Corporate Barter Organization permits offering dis-
count, self of the agent adopts one-price policy:

PERMITTED(customer DO underpricing(product) - from ruleSet1
FORBIDDEN((customer DO underpricing(product) - from ruleSet2
IF(customer DO violate_competition_legislation(product_price))))
PERMITTED(customer DO offer_discount(product)) - from ruleSet1
FORBIDDEN(self DO discount(product)) - from ruleSet4

On the other hand, in our approach with the activation of the customer role
instance of the Corporate Barter Organization, the knowledge manager of the
agent reconstitutes the active knowledge. In accordance with active knowledge
construction semantics defined in previous section, this knowledge contains the
active role instance’s knowledge and since the enactment type is social, Corporate
Barter Organization’s Customer role’s knowledge, Legal Customer’s knowledge
and the subset of the self knowledge that does not conflict with the role knowl-
edge. In the following rule-set, content of the active knowledge is shown.

PERMITTED(customer DO overpricing(product)),
PERMITTED(customer DO underpricing(product)),
PERMITTED(customer DO offer_discount(product)),
OBLIGED((customeri DO make_payment(customerj, producti)
IF(customerj DO make_payment(customeri, productj)
AND (customeri, customerj DO accept_trade(producti, productj))),
FORBIDDEN(customer DO barter(weapon, drug, ...)),
OBLIGED(customer DO have(license)
IF((customer DO barter(product)) AND(product DO require_license(license)))),
PERMITTED(self DO barter(product) IF(self DO demand(product)))

The constituted active knowledge that is clarified from conflicting and irrelevant
knowledge represents the exact perception of the world of the activated role in-
stance. Hence, this approach makes enactment of the roles which have conflicting
knowledge possible and ensures the integrity of the global identity.

5 Related Work

In the agent research domain, there are some approaches which are motivated
to handle inconsistent knowledge of agent by the approach of clustering[15,16].
In [16], Halpern and Fagin presents a model of local reasoning, where an agent’s
knowledge is handled as a “society of minds”, each with its own cluster of beliefs,
which may contradict with each other. In each frame of mind, the agent beliefs
are consistent, but the conclusion that the agent draws in different frames of mind
may be inconsistent. Differently from our role-based approach, in the model of
this research, knowledge clusters are defined as non-interacting and agent can
utilize only one cluster at a time. So, they develop a new modal operator to be
able to define axioms that are true in all frames of the mind.

Knowledge Management in Role Based Agents 195

On the other hand Wassermann[15], similarly, proposes a belief base struc-
ture that simulate commonsense reasoning in an psychologically way, that am-
plify the RABIT system. This system consists of four modules: LTM(Long-Term
Memory) that all agent beliefs are stored, STM(Short-Term Memory) which
is a small subset of LTM where the reasoning (decision making) takes place,
ITM(Intermediate-Term Memory) that stores the history of the reasoning pro-
cess and finally RTM(Relevant-Term Memory) which is a kind of context, storing
the relevant concepts. Also, an heuristic algorithm to retrieve the most relevant
beliefs from a structured belief base(LTM) into the STM is introduced. But,
because of the absence of a well defined context scope, we cannot affirm that the
constructed STM embody the exact mental state of the agent.

Another research, that must be touched on here due to its conceptually simi-
larity with our approach, is the VIKEF project[17]. The VIKEF project aims to
create large-scale information systems that base on Semantic Web Technology.
At the center of the system there is an RDF knowledge base which contains a
large amount of information about documents and their contents. But, as a result
of the nature of web, it is obvious that conflicting information will arise. To cope
with this problem, they propose a context-based system to store semantically
contradictory statements in the knowledge base. But they use relations between
contexts, called compatibility relations, to gather related contexts differently
from our role-based approach.

6 Conclusion

In this paper we propose a knowledgebase approach to increase applicability of
role concept in the MAS research domain. While developing this role-based agent
knowledgebase architecture, we dive into the depths of the role theory which is
developed in consequence of sociological empirical researches. By the help of role
theory, sociologists also use roles to predict human behaviors according to the
body of knowledge about human organizations[1]. In the development of our
knowledgebase approach, we inspire from the self concept that has an important
place in the sociological role theory to resolve human behaviors in conflicting
social positions.

We also implement this knowledge approach and integrate it into the
SEAGENT multi-agent development framework[9]. The proposed knowledge-
base architecture is separated into two parts; active and passive knowledge. Both
knowledge parts consist of knowledge blocks each of which contains consistent
information about agent, role or role instance. While in the passive knowledge
persistence of knowledge blocks are provided, on the other hand, in the active
knowledge related knowledge blocks are arranged in a consistent form to provide
consistent knowledge to the agent for deterministic decision making. In Section
2, we declare the semantics of these knowledge blocks and how active and passive
knowledge evolve in the life-cycle of role-based agent. To measure applicability
of our approach and ensure the implemented architecture, we also develop a
case study in electronic barter domain application in Section 4. Within the case

196 H. Kır, E.E. Ekinci, and O. Dikenelli

study, we observe that an agent can play roles which have conflicting knowledge.
In the further steps of this research, we aim to cope with management of the
knowledge from the organizational perspective.

References

1. Biddle, B.J.: Recent developments in role theory. Annual Review of Sociology 12,
67–92 (1986)

2. Allen, V.L., van de Vliert, E.: A role theoretical perspective on transitional pro-
cesses. Role Transitions: Explorations and Explanations, 3–18 (1984)

3. Dastani, M.M., van Riemsdijk, M.B., Hulstijn, J., Dignum, F.P.M., Meyer, J.-J.C.:
Enacting and deacting roles in agent programming. In: Odell, J.J., Giorgini, P.,
Müller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382, pp. 189–204. Springer, Heidelberg
(2005)

4. Dastani, M., Dignum, V., Dignum, F.: Role-assignment in open agent societies. In:
Autonomous agents and multiagent systems (AAMAS), pp. 489–496. ACM, New
York (2003)

5. Marks, M.S.M., Stephen, R.: Multiple roles and the self: a theory of role balance.
Journal of Marriage and the Family (1996)

6. Goffman, E.: The Presentation of Self in Everyday Life. Anchor (June 1959)
7. Stryker, S., Serpe, R.T.: Identity salience and psychological centrality: Equivalent,

overlapping, or complementary concepts? Social Psychology Quarterly 57, 16–35
(1994)

8. Zhang, X., Xu, H., Shrestha, B.: An integrated role-based approach for modeling,
designing and implementing multi-agent systems. Journal of the Brazilian Com-
puter Society (JBCS) 13, 45–60 (2007)

9. Dikenelli, O.: Seagent mas platform development environment. In: Autonomous
Agents and Multiagent Systems, pp. 1671–1672 (2008)

10. Kristensen, B.B., Osterbye, K.: Roles: conceptual abstraction theory and practical
language issues. Theor. Pract. Object Syst. 2(3), 143–160 (1996)

11. Vázquez-Salceda, J., Dignum, V., Dignum, F.: Organizing multiagent systems. Au-
tonomous Agents and Multi-Agent Systems 11(3), 307–360 (2005)

12. Giorgini, P., Müller, J.P., Odell, J.J. (eds.): AOSE 2003. LNCS, vol. 2935. Springer,
Heidelberg (2004)

13. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency control and recovery
in database systems. Addison-Wesley Longman Publishing Co., Inc., Amsterdam
(1987)

14. Cakirlar, I., Ekinci, E.E., Dikenelli, O.: Exception handling in goal-oriented multi-
agent systems. In: Proceedings of the workshop Engineering Societies in the Agents
World IX. Springer, Heidelberg (2009)

15. Wassermann, R.: On structured belief bases. In: Frontiers in Belief Revision. Ap-
plied Logic Series, vol. 22, pp. 349–369. Kluwer Academic, Dordrecht (2001)

16. Fagin, R., Halpern, J.Y.: Belief, awareness, and limited reasoning. Artificial Intel-
ligence 34(1), 39–76 (1987)

17. Stoermer, H., Palmisano, I., Redavid, D., Iannone, L., Bouquet, P., Semeraro, G.:
Contextualization of a RDF knowledge base in the VIKEF project. In: Sugimoto,
S., Hunter, J., Rauber, A., Morishima, A. (eds.) ICADL 2006. LNCS, vol. 4312,
pp. 101–110. Springer, Heidelberg (2006)

	Knowledge Management in Role Based Agents
	Introduction
	Role-Based Knowledge Semantics
	The Architecture
	Case Study
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

