

Lecture Notes in Artificial Intelligence 5881
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Huib Aldewereld Virginia Dignum
Gauthier Picard (Eds.)

Engineering Societies
in the Agents World X

10th International Workshop, ESAW 2009
Utrecht,The Netherlands, November 18-20, 2009
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Huib Aldewereld
Virginia Dignum
Universiteit Utrecht
Institute for Computing and Information Sciences
Padualaan 14, P.O.Box 80.089
3508 TB Utrecht, The Netherlands
E-mail: {huib,virginia}@cs.uu.nl

Gauthier Picard
École Nationale Supérieure des Mines de Saint-Étienne
Industrial Engineering and Computer Sciences
158, cours Fauriel
42023 SAINT-ÉTIENNE cedex 2, France
E-mail: gauthier.picard@emse.fr

Library of Congress Control Number: 2009937937

CR Subject Classification (1998): I.2.11, I.2, D.2, K.4, D.1.3, H.3.4

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-642-10202-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-10202-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12788255 06/3180 5 4 3 2 1 0

Preface

The 10th international workshop “Engineering Societies in the Agents’ World”
(ESAW 2009), was held in Utrecht, The Netherlands, during November 18–20,
2009. In the tradition of its predecessors, ESAW 2009 was committed to the
idea of multi-agent systems (MAS) as highly interconnected societies of agents,
paying particular attention to the social aspects, methodologies and software
infrastructures that tackle the emergent complexities of MAS.

The idea for the ESAW workshop series was born 10 years ago, in 1999,
among the members of the working group on “Communication, Coordination
and Collaboration” of AgentLink, the 1st European Network of Excellence on
Agent-Based Computing, out of a critical discussion about the general mind-
set of the agents community. Central to this discussion is the need for proper
consideration of systematic aspects of MAS, acknowledging the importance of
a multi-disciplinary approach, that takes into account the social, environmental
and technological perspectives. These issues that are as actual today as they
were in 1999, which is confirmed by the steady interest in the ESAW workshop
series that previous editions took place in:

– Berlin, Germany, 2000 (LNAI 1972)
– Prague, Czech Republic, 2001 (LNAI 2203)
– Madrid, Spain, 2002 (LNAI 2577)
– London, UK, 2003 (LNAI 3071)
– Toulouse, France, 2004 (LNAI 3451)
– Kusadasi, Turkey, 2005 (LNAI 3963)
– Dublin, Ireland, 2006 (LNAI 4457)
– Athens, Greece, 2007 (LNAI 4995)
– Saint-Etienne, France, 2008 (LNAI 5485)

This 10th workshop was devoted to the discussion of technologies, methodologies
and models for the engineering of complex applications based on MAS, and
brought together researchers and contributions from both within and outside the
agents’ field – from software engineering, distributed systems, social sciences, and
others – so as to promote cross-fertilization among different research areas. By
focussing on the social aspects of MAS, ESAW 2009 concentrated on the space
of agent interaction, rather than on intra-agent issues, and on the technology
and methodology issues rather than on the pure theoretical aspects.

Taking the notion of agent a step further, to include humans and robots,
ESAW 2009 focused on heterogeneous societies where humans, artificial agents
and robots can interact in a transparent and seamless fashion. In this sense,
ESAW 2009 was pleased to host the HART Workshop on “Supporting Joint Ac-
tivity in Human-Agent-Robot Teamwork” as a satellite event, on November 21,
2009.

VI Preface

The following themes were addressed during the three-day meeting:

– Social Aspects of Agent Societies : this session drew parallels between human
and artificial societies.

– Self-Organization: this session discussed issues of adaptation, emergence and
self-organization.

– Organization and Autonomy: organizations as first-class entities are one of
the main topics in societies of agents. Papers in this session discussed nor-
mative frameworks, individual autonomy, and virtual communities.

– Software Engineering and Architectures : the presentations in this session
concerned methodologies, architectures and design approaches to agent so-
cieties.

This focus on social aspects of agent societies was also visible in the two invited
talks. Rosaria Conte, head of LABSS (Laboratory of Agent-Based Social Simu-
lation) at the ISTC (Institute for Cognitive Science and Technology) in Rome,
talked about “The Immergence of Norms in Agent Worlds”. In this talk, a nor-
mative agent architecture was presented and shown to account for a complex
bidirectional dynamics of norms as social phenomena that emerge because of
and to the extent that they immerge in the agents mind. Jacques Ferber, Profes-
sor of Computer Science at the University of Montpellier II, introduced the idea
of “Thinking Integral: How to Build Complex Systems That Live with People
and Exhibit Collective Intelligence.” In this talk, Jacques presented a model to
describe both virtual and human organizations, and how this conceptual tool
can be used to design complex architectures where collective intelligence may
arise from the collaboration of many individuals, either humans or agents.

We received 31 submissions for the workshop, of which 13 were accepted as
full papers and 5 as short contributions, after careful review by at least three
independent reviewers. During the workshop, short papers were presented as
posters.

This edition also included an demonstration session, during which 6 agent-
based technologies and works were shown. This proceedings include extended
abstracts of all demonstrations. Domain areas presented in the demonstration
session ranged from P2P applications, virtual environments, MAS tools, simu-
lation testbeds, and results from ongoing projects.

The organization of ESAW 2009 would have not been possible without the
financial help of:

– Almende, Rotterdam
– D-CIS Lab, Delft
– BNVKI: Benelux Association for Artificial Intelligence
– FIPA: IEEE Standards Organization for Agents and Multi-Agent Systems
– SIKS: Dutch Research School for Information and Knowledge Systems
– NWO: Netherlands Organization for Scientific Research
– Utrecht University, Department of Information and Computing Sciences

We would like to thank the Steering Committee for their guidance, the Pro-
gramme Committee and the additional reviewers for the insightful reviews, and

Preface VII

the Local Organizing Committee for arranging an enjoyable event. We would
also like to thank all the researchers who submitted a paper to the workshop.

September 2009 Huib Aldewereld
Virginia Dignum
Gauthier Picard

Conference Organization

Programme Chairs

Huib Aldewereld
Virginia Dignum
Gauthier Picard

Steering Committee

Marie-Pierre Gleizes IRIT Université Paul Sabatier, France
Andrea Omicini DEIS Universita di Bologna, Italy
Paolo Petta Austrian Research Institute for AI, Austria
Jeremy Pitt Imperial College London, UK
Robert Tolksdorf Free University of Berlin, Germany
Franco Zambonelli Universita di Modena e Reggio Emilia, Italy

Programme Committee

Alexander Artikis NCSR “Demokritos”, Greece
Federico Bergenti Universita di Parma, Italy
Carole Bernon IRIT Université Paul Sabatier, France
Holger Billhardt Universidad Rey Juan Carlos, Spain
Guido Boella Universita degli Studi di Torino, Italy
Olivier Boissier École des Mines de Saint-Étienne, France
Tibor Bosse VU University Amsterdam, The Netherlands
Jeff Bradshaw IHMC, USA
Cristiano Castelfranchi ISTC-CNR, Italy
Luca Cernuzzi Universidad Catolica “Nuestra Senora de la

Asuncion”, Paraguay
Rem Collier University College Dublin, Ireland
Mehdi Dastani Universiteit Utrecht, The Netherlands
Paul Davidsson Blekinge Institute of Technology, Sweden
Yves Demazeau IMAG, France
Jurriaan van Diggelen TNO, The Netherlands
Frank Dignum Universiteit Utrecht, The Netherlands
Oguz Dikenelli Ege University, Turkey
Nicoletta Fornara Università della Svizzera Italiana, Switzerland
Paul Feltovich IHMC, USA
Paolo Giorgini University of Trento, Italy
Davide Grossi University of Amsterdam, The Netherlands
Antony Karageorgos Technological Educational Institute of Larissa,

Greece

X Organization

Matthias Klusch DFKI GmbH, Germany
Eric Matson Purdue University, USA
Frédéric Migeon IRIT Université Paul Sabatier, France
Simon Miles King’s College London, UK
Tim Miller University of Melbourne, Australia
Eugénio Oliveira University of Oporto, Portugal
Sascha Ossowski Universidad Rey Juan Carlos, Spain
Julian Padget University of Bath, UK
Juan Pavon Mestras Universidad Complutense de Madrid, Spain
Loris Penserini Universiteit Utrecht, The Netherlands
Alessandro Ricci Universita di Bologna, Italy
Birna van Riemsdijk Delft University of Technology,

The Netherlands
Juan Antonio

Rodriguez-Aguilar IIIA, Spain
Jaime Simão Sichman University of São Paolo, Brazil
Leon van der Torre University of Luxembourg, Luxembourg
John Tranier Universiteit Utrecht, The Netherlands
Wamberto Vasconcelos University of Aberdeeen, UK
Laurent Vercouter École Nationale Supérieure des Mines de

Saint-Étienne, France
Mirko Viroli Universita di Bologna, Italy
Danny Weyns Katholieke Universiteit Leuven, Belgium
Pinar Yolum Bogazici University, Turkey

Local Organization

Hado van Hasselt Universiteit Utrecht, The Netherlands
Loris Penserini Universiteit Utrecht, The Netherlands
Michal Sindlar Universiteit Utrecht, The Netherlands
John Tranier Universiteit Utrecht, The Netherlands
Tom van der Weide Universiteit Utrecht, The Netherlands
Joost Westra Universiteit Utrecht, The Netherlands

Table of Contents

Part 1: Invited Talks

The Immergence of Norms in Agent Worlds . 1
Rosaria Conte, Giulia Andrighetto, and Marco Campenǹı

Thinking Integral: How to Build Complex Systems That Live with
People and Exhibit Collective Intelligence . 15

Jacques Ferber

Part 2: Self-organisation

A Space-Based Generic Pattern for Self-Initiative Load
Balancing Agents . 17

Eva Kühn and Vesna Sesum-Cavic

A Goal-Oriented Approach for Modelling Self-organising MAS 33
Mirko Morandini, Frédéric Migeon, Marie-Pierre Gleizes,
Christine Maurel, Loris Penserini, and Anna Perini

Engineering Agent Organisations in a Business Environment 49
Dimitris Traskas and Julian Padget

Peer-to-Peer Overlay Network Based on Swarm Intelligence 65
Vesna Sesum-Cavic and Eva Kühn

Part 3: Software-Engineering and Architectures

Agent Architectures for Compliance . 68
Brigitte Burgemeestre, Joris Hulstijn, and Yao-Hua Tan

Incorporating BDI Agents into Human-Agent Decision Making
Research . 84

Bart Kamphorst, Arlette van Wissen, and Virginia Dignum

Programming Organization-Aware Agents: A Research Agenda 98
M. Birna van Riemsdijk, Koen Hindriks, and Catholijn Jonker

Energy Trade-Offs in Resource-Constrained Multi-Agent Systems 113
Hugo Carr, Jeremy Pitt, Anthony Kleerekoper, and David Blancke

Part 4: Social Aspects of Agent Societies

Engineering Social Reality with Inheritance Relations 116
Huib Aldewereld, Sergio Alvarez-Napagao, Frank Dignum, and
Javier Vázquez-Salceda

XII Table of Contents

Determining the Trustworthiness of New Electronic Contracts 132
Paul Groth, Simon Miles, Sanjay Modgil, Nir Oren,
Michael Luck, and Yolanda Gil

Trust Based Evaluation of Wikipedia’s Contributors 148
Yann Krupa, Laurent Vercouter, Jomi Fred Hübner, and
Andreas Herzig

Evolutionary Role Model for Multi-Agent Systems 162
Erdem Eser Ekinci and Oğuz Dikenelli

Part 5: Organisation and Autonomy

Replication Based on Role Concept for Multi-Agent Systems 165
Sebnem Bora and Oguz Dikenelli

Knowledge Management in Role Based Agents . 181
Hüseyin Kır, Erdem Eser Ekinci, and Oguz Dikenelli

Balancing Organizational Regulation and Agent Autonomy: An
MDE-Based Approach . 197

Loris Penserini, Virginia Dignum, Athanasios Staikopoulos,
Huib Aldewereld, and Frank Dignum

Cooperative Sign Language Tutoring: A Multiagent Approach 213
İlker Yıldırım, Oya Aran, Pınar Yolum, and Lale Akarun

Assistance Layer in a P2P Scenario . 229
Jordi Campos, Maite López-Sánchez, and Marc Esteva

Navigational Web-Interfaces from Formal Tropos Specification 233
Komminist Weldemariam

Part 6: Demonstrations

ALIVE: A Framework for Flexible and Adaptive Service
Coordination . 236

J.S.C. Lam, W.W. Vasconcelos, F. Guerin, D. Corsar, A. Chorley,
T.J. Norman, J. Vázquez-Salceda, S. Panagiotidi, R. Confalonieri,
I. Gomez, S. Hidalgo, S.A. Napagao, J.C. Nieves, M. Palau Roig,
L. Ceccaroni, H. Aldewereld, V. Dignum, F. Dignum, L. Penserini,
J. Padget, M. De Vos, D. Andreou, O. Cliffe, A. Staikopoulos,
R. Popescu, S. Clarke, P. Sergeant, C. Reed, T. Quillinan, and
K. Nieuwenhuis

An Organisational Adaptation Simulator for P2P Networks 240
Jordi Campos, Marc Esteva, Maite López-Sánchez, and
Javier Morales

Table of Contents XIII

PreSage-MS: Metric Spaces in PreSage . 243
Hugo Carr, Alexander Artikis, and Jeremy Pitt

Normative Multi-Agent Organizations: A Programming Language and
Its Interpreter . 247

Mehdi Dastani

Hybrid Teams in Virtual Environments: Samurai Joins the
Training Team . 250

Jurriaan van Diggelen, Tijmen Muller, and Karel van den Bosch

Joint Activity Testbed: Blocks World for Teams (BW4T) 254
Matthew Johnson, Catholijn Jonker, Birna van Riemsdijk,
Paul J. Feltovich, and Jeffrey M. Bradshaw

Author Index . 257

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 1–14, 2009.
© Springer-Verlag Berlin Heidelberg 2009

The Immergence of Norms in Agent Worlds

Rosaria Conte, Giulia Andrighetto, and Marco Campennì

LABSS - Istituto di Scienze e Tecnologie della Cognizione - CNR,
via S. Martino della Battaglia

44, 00185 Rome, Italy
{rosaria.conte,giulia.andrighetto,marco.campenni}@istc.cnr.it

http://labss.istc.cnr.it

Abstract. In this paper, after a short review of the dichotomous view of norms
usually seen as either regular behaviors or obligations issued by authorities,
norms are proposed to be defined as recognized, represented and reasoned upon
prescriptive commands. A normative agent architecture – EMIL-A – is presented
and shown to account for a complex bidirectional dynamics of norms as social
phenomena that emerge because and to the extent that they immerge in the
agents’ minds. Simulations run using EMIL-A will be discussed to illustrate the
advantages of the present treatment of norms, over either side of the dichotomy.

1 Introduction

How build up social order in agent worlds? Are we satisfied with current approaches
to the emergence of norms? Unfortunately not, as a number of questions are still
open. In particular, it is possible to envisage a dichotomy in the scientific treatment of
norms. On one hand, social scientists view norms as regular behaviours, possibly
enforced by social expectations and sanctions. On the other hand, philosophers of law
and logicians conceptualise norms as obligations issued by definite authorities. Hence
the first set of questions, how keep normative behaviour distinct from normal conduct
on one hand and acquiescence under menace on the other?

As a flexible, adaptive form of social order is crucial in agent worlds, a second set of
questions needs to be addressed, i.e. how do norms emerge, change and get adapted to
new circumstances? In the approach presented here, norms will be conceptualised as
social and cognitive phenomena undergoing a complex dynamics, in which the social
process of emergence and the mental process of immergence are intertwined in a circu-
lar fashion. The interplay between the mental and the social dynamics allows norms to
emerge and change. Observable conformity is only the tip of the normative iceberg. The
crucial dynamics lies in the minds of the agents, beneath the line of observation. Norms
cannot emerge in society unless they previously immerge in the mind, i.e. get converted
into mental representations. Agents abiding with norms, or violating them, act on a set
of specific, norm-related, mental representations.

The mental dynamics of norms brings about a third set of questions: how should we
characterize the agents from among which norms can emerge? Current BDI models
of normative agents tackle the questions as to how people represent, reason upon,
abide with or violate norms, but they do not address an earlier problem, i.e. how can
norms emerge among BDI type of agents.

2 R. Conte, G. Andrighetto, and M. Campennì

In this paper, we intend to present an integrated and highly dynamic view of norms
showing why and how it enables to answer the three sets of questions listed above, by
means of agent based simulation.

2 The Normative Gap

Theories of norms are grounded on two, unrelated notions, regularities and obligations.
Regularities, or behavioural norms, are spontaneously emerging social phenomena. Ob-
ligations, or institutional norms, are deliberately issued prescriptions. Behavioural
norms are often found in the moral variant, as good or prosocial conduct, or in the statis-
tical variant, as frequent, normal behaviours. Institutional norms are obligation-based,
and collapse on legal norms, issued by specified institutional authorities.

Behavioural regularities and institutional obligations are complementary phenom-
ena. None or poor attempt of integration has been made so far. However, the gap is
neither desirable nor inevitable. In the rest of the paper an integrated approach will be
proposed, based on mental representations: social norms, just like legal norms, are
recognized, represented and reasoned upon as prescriptive commands. Only a theory
that explores the impact of norms on the minds of agents can explain the link between
different typologies of norms.

The work presented is based on artificial societies. Agent-based Simulation is an
ideal tool for exploring the two-way dynamics of norm emergence because it is rela-
tively free of epistemological assumptions. Thus processes of immergence and emer-
gence can be explored in a way that is very difficult in any other way. In this way the
relationship between cognition and social dynamics can start to be teased apart in a
truly dynamic manner.

3 A 2-Way Dynamics of Norms

In a view of norms as two-sided, external (social) and internal (mental) objects
([1][2][3][4]), norms come into existence only when they emerge, not only through
the minds of the agents involved, but also into their minds. In other words, they work
as norms only when the agents recognize them, reason and take decisions upon them
as norms. The emergence of norms implies their immergence into the agents’ minds.
Only when the normative, i.e. prescriptive, character of a command or other action is
recognized by the agent, a norm gives rise to a normative behaviour of that agent.
Thus, for a norm-based behavior to take place, a normative belief has to be generated
into the minds of the norm addressees, and the corresponding normative goal has to
be formed and pursued. Our claim is that a norm emerges as a norm only when it im-
merges into the minds of the agents involved; in other words, when agents recognize
it as such.

In previous works ([5][6][7][8][9]), we described the process of norm emergence
as a gradual and complex dynamics by which the macro-social effect, in our case a
specific norm, emerges in the society while immerging in the minds of the agents pro-
ducing it, generating a number of intermediate loops. Thus, before any global effect
emerges, specific local events affect the generating systems, their beliefs and goals, in

 The Immergence of Norms in Agent Worlds 3

such a way that agents influence one another into converging on one global macro-
scopic effect. Emergence of social norms is due to the agents’ behaviors, but the
agents’ behaviors are due the the mental mechanisms controlling and (re)producing
them (immergence). Of course, our view of norms calls for a cognitive architecture of
normative agents, which is not new to the field of agents and multiagent systems
(think of the BOID architecture, for example). In the next section, an analysis of our
normative architecture, EMIL-A, is presented.

4 Normative Agents

In order to model and operationalize the process of norm immergence, autonomous
intelligent agents need to be endowed with internal mechanisms and mental represen-
tations allowing norms to affect their behaviours. Such representations are commonly
realized by architectures inspired to the modular architecture of Artificial Intelligence
approaches. Nowadays, there is no unequivocal concept for the design of normative
agents. The development of normative architectures is a burgeoning research field.
However, architectures of normative agents are predominantly inspired in some way
by BDI (Belief-Desire-Intention) architectures, introduced by the pivotal work of Rao
and Georgeff ([10]), which can be regarded as the point of departure for further de-
velopments. The BDI framework is intended to model human intelligent action and
decision-making. A particular striking example of this approach is a straightforward
extension of the BDI architecture to normative reasoning, denoted as BOID (Belief-
Obligations-Intentions-Desires) agent architecture (see [11]), which includes obliga-
tions among its mental components.

The normative architecture we present in this section, EMIL-A, is inspired to
BOID as it entails the representation of normative beliefs and goals based on obliga-
tions. However, unlike BOID, EMIL-A includes a module for norm-recognition, al-
lowing the agent to process incoming inputs and possibly converting them into norms.

4.1 EMIL-A Architecture

Our normative architecture EMIL-A (see [6], for a detailed description) is meant to
show that norms not only regulate behaviour but also act on different aspects of the
mind. EMIL-A consists of mechanisms and mental representations allowing agents i)
to form normative beliefs and goals, and decide whether to realize them or not and ii)
to be more or less reactive to external inputs by means of short cuts. EMIL-A is ac-
cessed through the norm recognition module: before an input is recognized as norma-
tive, the norm cannot immerge in the minds of agents and, as a consequence, cannot
affect their behaviours and emerge in society. We consider existent normative archi-
tectures not sufficiently flexible and adaptable to be really plausible; we believe that
the future of normative architectures is closely related to the development of hybrid
architectures.

4.1.1 Normative Mental Representations
In This Section, We Shall Endeavour to Clarify Some Components of the Mental
Processing of Norms.

4 R. Conte, G. Andrighetto, and M. Campennì

Normative belief1. First of all, a norm becomes a belief, namely the belief that a given
behaviour in a given context for a given set of agents is forbidden, obligatory, permit-
ted, etc. More precisely, the belief should be that “there is a norm prohibiting, pre-
scribing, permitting that...” ([12][13][2][3]). Indeed, norms are aimed at and issued
for generating the corresponding beliefs. In other words, norms must be acknowl-
edged as such in order to properly work. Of course, a normative belief does not imply
that a given norm has in fact been deliberately issued by some sovereign. Social
norms are often set up by virtue of unwanted effects. However, once emerged, a given
social norm is believed to be based upon some normative authority, if only an anony-
mous and impersonal one (“You are wanted, expected (not) to do this…”: “It is gen-
erally expected that…”; “This is how things are done…”, etc.).

Normative Goal. However, a believer is not yet a decider: beliefs are necessary but
insufficient conditions for norms to be complied with. What is it that leads agents to
accept a norm, which by definition prescribes a costly behaviour?

In the BDI approach intentions and actions originate only from desires. On the con-
trary, a great deal of our actions are not elicited by our desires but by external pres-
sures and requests. Duties and norms are one of the external sources of our goals.
How is this possible? How can norms generate goals?

From a cognitive point of view, goals are internal representations triggering-and-
guiding action at once: they represent the state of the world that agents want to reach
by means of action and that they monitor while executing the action ([14]). Under the
effect of social inputs, goals can be generated anew via cognitive factors, as goals
relativized to other mental states (e.g., social beliefs). A goal is relativized when it
is held because and to the extent that a given world-state or event is hold to be true or
is expected ([15]). When goals are positive or pro-social, the process of generation is
called goal-adoption (see [1]). By this means, an autonomous agent (adopter) will
have another agent’s (adoptee) goal as hers, on condition that she, the adopter, comes
to believe that the adoptee’s achievement of his goal will increase the chances that the
adopter will in turn achieve one of her previous goals. I will probably lend my car to
my room mate tonight, if I want to invite my fiancé for dinner.

There seems to be a correspondence between the process from a belief about an or-
dinary request to the decision of accepting such a request, i.e. the aforementioned
process of social goal adoption, and the process leading from a normative belief to a
normative goal (norm adoption): a normative goal of a given agent x about action a is
a goal that x happens to have as long as she has a normative belief about a. More spe-
cifically, x has a normative goal only if she believes to be subject to a norm.

Norm Recognizer. The norm recognition module is the main entrance, so to speak,
to the EMIL-A architecture. Before an input is recognized as normative, the norm
cannot immerge in the minds of agents and, as a consequence, cannot emerge in
society. Agents need to be able to discriminate between norms and other social
phenomena, such as coercion, ordinary requests, conventions, etc. Our claim is that

1 In EMIL-A, normative beliefs, together with normative goals, are organized and arranged in

the normative board according to their respective salience. By salience we refer to the norm’s
degree of activation, which is a function of the number of times a given norm enters the
agent’s decision-making.

 The Immergence of Norms in Agent Worlds 5

other normative architectures did not render justice to the recognition procedure
(see [9][8]). Simplifying, a given norm is recognized if current input

− matches with a norm already stored in our (normative) memory;
− leads to a new norm being inferred or induced by the agent on the grounds of

given indicators.

In the first case, the agent is facilitated by schemata, scripts, or other pragmatic struc-
tures ([16][17][18][19]; see [20] for an overview) the norm is embedded in (see [11],
for a description). Once these are activated for any reason, the corresponding norma-
tive beliefs, expectations and behavioural rules are prompted.

The second option is followed when such scripts, and consequently the correspond-
ing pattern matching operations, are not possible. The agent has no corresponding
norm. This is why the norm recognition module is needed. Indeed, the norm-
recognizer that we are going to describe tries to answer the question as to how agents
tell new norms, not yet stored in their memory (see also [21]). Telling norms implies
agents’ ability to take an observed or communicated social input as normative, and
consequently to form a new normative belief.

EMIL-A module for norm recognition consists of a normative frame by which the
received inputs are elaborated and interpreted, and a long term memory - called nor-
mative board - where normative beliefs and normative goals once formed are stored
and ordered by salience.

The Normative Board. When EMIL-A has to deal with an external input, such as a NO
SMOKING sign, the norm recognition module will explore the N-Board. Suppose a
corresponding normative belief is found (DO NOT SMOKE WHEN PROHIBITED), a
normative belief is fired that will follow the path described previously.

The normative board is an archive in the long term memory where active norms are
stored, arranged according to the salience gained. Difference in salience has the effect
that a subset of norm-related representations interferes more frequently and strongly
with the general cognitive processes of the agent. To decide which action to execute,
the agent will search through the normative board: if more than one item is found out,
the most salient norm will be chosen.

If a norm is never adopted by the agent, its salience begins to decrease, and sooner
or later the normative belief will decay. On the contrary, a norm that is frequently
processed by the decision-maker, will increase in salience. Salience may increase to
the point that the norm becomes internalized, i.e. converted into an ordinary goal, or
even in an automated conditioned action, a routine. In such a case, the norm will exit
the normative board.

4.2 Value Added of EMIL-A

So far, the study of norm emergence has been identified with the study of behavioural
regularities. However, not all the regularities are mandatory, and not all the norms are
observed. Hence, the logical and pragmatic priority is how agents find out what are
the normative regularities. Only afterwards, it makes sense to model the reasons why
they conform to them. The value added of EMIL-A is to account for this specific as-
pect of norm-based regulation, how agents find out the norms they decide whether or
not to conform to.

6 R. Conte, G. Andrighetto, and M. Campennì

Norm recognition is an important requirement of norm-emergence. In previous
works (see also [5][7]), emergence has been defined as a gradual and complex dy-
namics by which the macro-social effect, in our case a specific norm, is brought about
in society while immerging in the minds of the agents, generating it through a number
of intermediate loops.

Unlike moral dispositions, norm-recognition is poorly sensible to subjective
variability, and rather robust. It allows us to (a) account for the universal appear-
ance of norms in human and primate societies; (b) render justice to the intuition that
humans violate norms, but have little problems in finding them out; (c) account for
the evolutionary psychological evidence (see [22][23]) that agents easily apply
counterfactual reasoning to social rules, but find it difficult to do so with logical
ones; finally, (d) explain why, as pointed out by developmental psychological data,
norm acquisition follows a stable ontogenetic pattern starting quite early in child-
hood ([24][25][26][27][28][29][30]).

In short, the intuition behind our normative architecture is twofold: on one hand,
the emergence of norms is based upon a universal capacity to tell norms; on the other,
this capacity is supported by a norm frame, an internal “model of a norm”, which
agents use as a processing instrument in norm recognition.

 The emphasis laid on the innate and universal features of EMIL-A should not be
mistaken, leading to think that no space is left to subjective variability. If norm recog-
nition is a must, equally accomplished by a vast majority of agents, moral attitudes -
i.e. the results of normative and moral experience accumulated during lifetime that
affect different normative procedures - are not. They are definitely subjective.

Furthermore, the reinforcement effects that occur on different EMIL-A procedures
vary among agents. Personal experience, for example, impacts on norm salience.
Analogously, the normative frame, being in constant interaction with the social
environment and the other procedures, is liable to their influence. In these terms, a
normative architecture is allowed to elegantly ignore the culture/nurture controversy.

5 Simulating Norm Emergence

Some simulation studies about the emergence of social norms have been carried out,
for example Epstein and colleagues’ study of the emergence of social norms ([31]),
and Sen and Airiau’s study of the emergence of a precedence rule in the traffic ([32]).
In these studies, social norms are essentially seen as conventions, that is, behavioural
conformities that do not imply explicit agreements among agents, and do emerge from
their individual interests. Within this perspective, the function of norms is found in
allowing participants in coordination games to choose one among equivalent alterna-
tive equilibriums. Agents repeatedly interact with other agents in social scenarios. Such
interactions can be formulated as stage games with multiple equilibriums ([33]), which
make coordination uncertain. Norms gradually emerge from interactional practice,
essentially through mechanisms of imitation and social learning, establishing who
should do what. So far, simulation-based studies have been applied to investigate
which norm is chosen from a set of alternative equilibriums. In this framework
agents are not provided with normative minds, but with strategic reasoning. No atten-
tion is paid to norm immergence, and therefore to the role of mental mechanisms in
norm-emergence.

 The Immergence of Norms in Agent Worlds 7

A rather different sort of question arises about the emergence of social norms when
no alternative equilibriums are available for selection. This is a matter still not widely
investigated and references are scanty if any ([34]). We propose that a possible an-
swer to the puzzling questions posed above ought to be searched for by examining the
interplay of communicated and observed behaviours, and the way these are inter-
preted and represented into the minds of the observers. If any new behaviour α is in-
terpreted as obeying a norm, a new normative belief is generated into the agent’s
mind and a process of normative influence will be activated ([35]). We suggest
that normative recognition represents a crucial requirement of norm emergence and
innovation, as processes resulting from both agents’ interpretations of one another’s
behaviours, and transmission of such interpretations to one another.

5.1 The Norm Recognition Module at Work

Our Norm Recognizer (see [9][8] for a detailed description) consists of a long term
memory, the normative board, and in a working memory, presented as a three layers
architecture. The normative board contains normative beliefs, ordered by salience.
The difference in salience between normative beliefs and normative goals has the
effect that some of these normative mental objects will be more active than others and
they will interfere more frequently and with more strength with the general cognitive
processes of the agent2. The working memory is a three layer architecture, where so-
cial inputs are elaborated. These inputs are represented on an ordered vector, consist-
ing of four elements: the source (x); the type of input through which the message is
presented (T)3; the addressee (y); the action transmitted (a). Agents observe or com-
municate social inputs. Once received the input from another agent, the agent will
compute, thanks to its norm recognition module, the information in order to gener-
ate/update her normative beliefs.

Here follows a brief description of how this normative module works. Every time a
message containing a deontic (D), for example, ”You must answer when asked”, or a
normative valuation (V), for example ” It is impolite to not answer when asked”, is
received, it will directly access at the second layer of the architecture, giving rise to a
candidate normative belief ”One must answer when asked”, which will be temporally
stored at the third layer. This will sharpen agents’ attention: further messages with the
same content, especially when observed as open behaviors, or transmitted by assertions

2 At the moment, the normative beliefs’ salience can only increase, depending on how many

instances of the same normative belief are stored in the Normative Board. This feature has
the negative effect that some norms become highly salient, exerting an excessive interfer-
ence with the decisional process of the agent. We are now improving the model, adding the
possibility that, if the normative belief is inactive for a certain amount of time, its salience
will decrease.

3 It can consist either in a behaviour (B), i.e. an action or reaction of an agent with regard to
another agent or to the environment, or in a communicated message, transmitted through the
following holders: assertions (A), i.e. generic sentences pointing to or describing states of the
world; requests (R), i.e. requests of action made by another agent; deontics (D), partitioning
situations between good/acceptable and bad/unacceptable; normative valuations (V), i.e.
assertions about what it is right or wrong, correct or incorrect, appropriate or inappropriate
(i.e. it is correct to respect the queue).

8 R. Conte, G. Andrighetto, and M. Campennì

(A), for example ”When asked, Paul answers”, or requests (R), for example ”Could
you answer when asked?”, will be processed and stored at the first level of the archi-
tecture. Beyond a certain normative threshold (which represents the frequency of cor-
responding normative behaviors observed, e.g. n% of the population), the candidate
normative belief will be transformed in a new (real) normative belief, that will be
stored in the normative board. The normative threshold can be reached in several ways:
one way consists in observing a given number of agents performing the same action
(alpha) prescribed by the candidate normative belief, e.g. agents answering when
asked. If the agent receives no other occurences of the input action (alpha), after a
fixed time t, the candidate normative belief will leave the working memory.

Aiming to decide which action to produce, the agent will search through the norma-
tive board: if more than one item is found out, the most salient norm will be chosen.

6 The Simulation Model

The simulation model we designed is aimed to find out the sufficient (even if not nec-
essary) conditions for existing norms to change. In particular, we want to show if a
simple cultural or material constraint can facilitate norm innovation. We wonder if
under such a condition, agents provided with a module for telling what a norm is can
generate new (social) norms by forming new normative beliefs, irrespective of the
most frequent actions. To see this, we imagined a simple case in which subpopula-
tions are isolated in different contexts for a fixed period of time. The metaphor here is
any physical catastrophe or political upheaval that divides one population into two
separate communities. The recent European history has shown several examples of
this phenomenon.

In our simulation model, the environment consists of four scenarios, in which the
agents can produce three different kinds of actions. We define two context-specific
actions for every scenario, and one action common to all scenarios. Therefore, we
have nine actions. Suppose that the first context is a postal office, the second an in-
formation desk, the third our private apartment, and so on. In the first context the ac-
tion stand in the queue is a context-specific action, whereas in the second a specific
action could be occupy a correct place in front of the desk. A common action for all
of the contexts could be, answer when asked. Each of our agents is provided with a
personal agenda (i.e. a sequence of contexts randomly chosen), an individual and con-
stant time of permanence in each scenario (when the time of permanence is expired,
the agent moves to the next context) and a window of observation (i.e. a capacity for
observing and interacting with a fixed number of agents) of the actions produced by
other agents. Norm Recognizers are also provided with the three-layer architecture
described above, necessary to analyze the received information, and a normative
board in which the normative beliefs, once arisen, are stored. The agents can
move across scenarios: once expired the time of permanence in one scenario, each
agent moves to the subsequent scenario following her agenda. Such irregular flow
(each agent has a different time of permanence and a different agenda) generates a
complex behavior of the system, tick-after-tick producing a fuzzy definition of the
scenarios, and tick-for-tick a fuzzy behavioral dynamics.

 The Immergence of Norms in Agent Worlds 9

We have modeled two different kinds of environmental conditions. In the first set
of simulations, agents can move through contexts (following their personal agenda
and in accordance with the personal time of permanence). In the second set of simula-
tions, from a fixed time t, agents are obliged to remain in the context they have
reached, till the end of the simulation: in this case agents can explore the contexts
exchanging messages with one another and observing others’ behaviors. When they
reach the last context at time t, they can interact with same-context agents till the end
of the simulation. We hope this second setting allows us to show that the mere statis-
tical frequency is sufficient (but not necessary) to the agents’ convergence on the
common action.

At each tick, the Norm Recognizers (NRs), paired randomly, interact exchanging
messages. These inputs are represented on an ordered vector, as said above. NRs pro-
duce different behaviors: if the normative board of an agent is empty (i.e. it contains
no norms), the agent produces an action randomly chosen from the set of possible
actions (for the context in question); in this case, also the modal by means of which
the action is presented is chosen randomly. Vice versa, if the normative board con-
tains some norms, the agent chooses the action corresponding to the most salient
among these norms. In this case the action produced is presented with one of these
modals: deontic (D), normative valuation (V) or behavior (B). This corresponds to the
intuition that if an agent has a normative belief, there is a high propensity (in this
chapter, this has been fixed to 90% of cases) for her to transmit it to other agents un-
der strong modals (D or V) or open behavior (B). We run several simulations for dif-
ferent values of the threshold, testing the behaviors of the agents in the two different
experimental conditions.

6.1 Results and Discussion

We briefly summarize the simulation scheme. The process begins by producing ac-
tions (and types of inputs) at random. The process is synchronic. The process is more
and more complex runtime: agent i provides inputs to the agent who precedes her
(k=1), issuing one action and one modal. Action choice is conditioned by the state of
her normative board. When all of the agents have executed one simulation update, the
whole process restarts at the next step.

Fig. 1. (a-b). Overall number of new normative beliefs generated for each type of possible ac-
tion - with (left) and without (right) external barrier

10 R. Conte, G. Andrighetto, and M. Campennì

First of all we present the results obtained when imposing the external barrier.
Then, we present the results obtained when no barrier was imposed; finally we com-
pare the former with the latter results.

Figure 2(a) and Figure 2(b) show the trend of new normative beliefs generation
runtime for a certain value of the norm threshold (threshold = 99), which is a good
implementation of our theory: each line represents the generation of new normative
beliefs corresponding to an action (i.e. each line corresponds to the sum of different
normative beliefs present in all of the agents). To be noted, a normative belief is not
necessarily universally shared in the population. However, norms are behaviors that
spread thanks to the spreading of the corresponding normative belief. Therefore, they
imply shared normative beliefs.

Fig. 2. (a-b). New normative beliefs generated runtime - with (left) and without (right) external
barrier

Figures 3(a) and 3(b) are very similar (even if in the no-barrier variant - Figure 3(b),
we find less regularity in the end of the dash line which represent the number of per-
formed actions for the common action). In these plots, we cannot appreciate significant
differences pointing to the normative beliefs acting on the effective behaviors: we can-
not distinguish the clear effect corresponding to the agents’ convergence on a specific
norm (namely, we do not see that the dash line is significantly increasing).

Indeed, if we run longer simulations, we can appreciate the consequences of the re-
sults of our investigation: in Figures 4(a) and 4(b) we can observe two different (but
related) effects: (i) more or less at the same time both in the barrier and no barrier
condition, a convergence on the common action (dash line) is forming, much more
significant in second case than in the first one; (ii) however, in the barrier condition,
other lines of convergence are also emerging (increasing). If we observe Figure 5(a)
and Figure 5(b) we can appreciate that in the first case (the case with barriers) we find
a very very low convergence rate; but, in the second case (the case without barriers)
we find a high convergence rate.

This corresponds to what is shown in in Figure 2(a) and Figure 2(b) on one hand,
and Figure 1(a) and Figure 1(b) on the other: with external barrier, we can see that the
higher overall number of new normative beliefs generated does not correspond to the
common action (action 1) and the trend of new normative beliefs generated runtime
shows the same results.

With no external barrier, instead, only normative beliefs concerning the common
action (action 1) are generated.

 The Immergence of Norms in Agent Worlds 11

Fig. 3. (a-b). Actions performed by NRs - with (left) and without (right) external barrier. On
axis X, the number of simulation ticks (100)is indicated and on axis Y the number of performed
actions for each different type of action. The dash line corresponds to the action common to all
scenarios.

Fig. 4. (a-b). Actions performed by NRs - with (left) and without (right) external barrier. On
axis X, the number of simulation ticks (200) is indicated and on axis Y the number of per-
formed actions for each different type of action. The dash line corresponds to the action com-
mon to all scenarios.

Fig. 5. (a-b). On axis X, the flow of time is shown; on axis Y the value of convergence rate in
both cases with (left) and without (right) external barrier

We have shown how our model allows new norms, which do not corresponding to
the common action to emerge. Some rival norms now compete in the same social set-
tings. Obviously, they will continue to compete, unless some further external event or
change in the population (e.g. the barrier removal) will cause agents to start migrating
again. It would be interesting to observe how long the rival norms will survive after

12 R. Conte, G. Andrighetto, and M. Campennì

barrier removal, whether and when one will out-compete the others, and if so, which
one. It should be said that, as we observe a latency time for a normative belief to give
rise to a new normative behaviour, we also expect some time to elapse before a given
behaviour disappears while and because the corresponding belief, decreasingly fed by
observation and communication, starts to extinguish as well. We might call such a
temporal discrepancy inertia of the norm. Both latency and inertia are determined by
the twofold nature of the norm, mental and behavioural, which reinforce each other,
thus preserving agents’ autonomy: external barriers do modify agents’ behaviours, but
only through their minds.

More than emergence, our simulation shows a norm innovation process; in fact,
Figure 3(a) shows that, starting around tick=60, two normative beliefs appear in the
normative boards and the overall number of these two new normative beliefs gener-
ated is three times higher than the overall number of normative beliefs concerning the
common action 1. We might say that, if stuck to their current location by external
barriers, norm recognizers resist the effect of majority and do not converge on one
equilibrium only. Rather, they will form as many normative beliefs as there were
competing beliefs on the verge of overcoming the normative threshold before the
agents had been stuck to their locations.

No such effect is expected among agents whose behavior depends only from the ob-
servation of others. In sum, is statistical frequency sufficient for a norm to emerge?
Beside action 1, common to the four contexts, other norms seem to emerge in our simu-
lation. Normative agents can recognize a norm; infer the existence of a norm by its
occurrences in open behavior under certain conditions (see the critical role of previous
deontics); and finally spread a normative belief to other agents. Future studies are meant
to investigate on the effect of barrier removal and the inertia of normative beliefs.

7 Concluding Remarks

Does the theory presented answer the questions raised in the introduction? In princi-
ple, it allows the first set of questions to be answered, as we present a normative agent
architecture, and show by means of simulation its value added with regard to concur-
rent, simpler, but less efficient agent models. But what about the former two sets of
questions, concerning the link between different types of norms and their dynamics in
society? We believe the view we have proposed accounts for both these questions in a
rather innovative way.

As to integration, the paper presents a view of norms that discerns normal from
normative behaviour at the same time filling the gap between legal and social norms.
The solution we have proposed consists of agents’ capacity to recognize a subset of
the communicative or behavioural inputs they transmit to one another as normative,
and autonomously decide to convert them into normative outputs.

As to norm dynamics, not only the spread of behavioural regularities and good so-
cial conduct are accounted for – what is allowed also by simpler models – but also
what Ullmann-Margalit called prescribed behaviour ([36]), accounting for the manda-
tory character attributable to any norm, including conventions, as Margaret Gilbert
acutely pointed out.

Did we answer the questions posed in a conclusive manner? Did we answer all of
the interesting questions that one might pose with regard to norms? Of course, not. In

 The Immergence of Norms in Agent Worlds 13

particular, we have not taken into sufficient account the processes leading to incorpo-
rate norms into action schemata ([37]), or those leading to an automated normative
will being formed (which Josh Epstein calls thoughtless compliance), or factors and
processes leading to several different forms of norm internalization, from internalized
norms to automated normative actions. In future works, we intend to integrate these
ideas into our agent architecture in order to explore the effect of norm internalization
on norm compliance and other relevant indicators of social order.

Acknowledgments. This work was supported by the EMIL project (IST-033841),
funded by the Future and Emerging Technologies program of the European
Commission, in the frame-work of the initiative Simulating Emergent Properties in
Complex Systems.

References

1. Conte, R., Castelfranchi, C.: Cognitive and social action. University College of London
Press, London (1995)

2. Conte, R., Castelfranchi, C.: From conventions to prescriptions. Towards a unified theory
of norms. AI&Law 7, 323–340 (1999)

3. Conte, R., Castelfranchi, C.: The Mental Path of Norms. Ratio Juris 19(4), 501–517 (2006)
4. Conte, R., Castelfranchi, C.: The mental path of norms. Ratio Juris 19(4), 501–517 (2006)
5. Castelfranchi, C.: Simulating with cognitive agents: The importance of cognitive emer-

gence. In: Sichman, J.S., Conte, R., Gilbert, N. (eds.) MABS 1998. LNCS (LNAI),
vol. 1534, pp. 26–44. Springer, Heidelberg (1998)

6. Andrighetto, G., Campennì, M., Conte, R., Paolucci, M.: On the Immergence of Norms: a
Normative Agent Architecture. In: Proceedings of AAAI Symposium, Social and Organ-
izational Aspects of Intelligence, Washington, DC, November 8-11 (2007)

7. Conte, R., Andrighetto, G., Campenni’, M., Paolucci, M.: Emergent and immergent effects
in complex social systems. In: Proceedings of AAAI Symposium, Social and Organiza-
tional Aspects of Intelligence, Washington, DC (2007)

8. Campennì, M., Andrighetto, G., Cecconi, F., Conte, R.: Normal = Normative? The role of
intelligent agents in norm innovation. Mind & Society (2009), doi:10.1007/S11299-009-
0063-4

9. Andrighetto, G., Campennì, M., Cecconi, F., Conte, R.: The Complex Loop of Norm
Emergence: a Simulation Model. In: Takadama, K., Revilla, C.C., Deffuant, G. (eds.) The
Second World Congress on Social Simulation, Aspects of Intelligence, Washington, DC.
LNCS (LNAI). Springer, Heidelberg (2008) (forthcoming)

10. Rao, A.S., Georgeff, M.P.: Social plans: Preliminary report. In: Werner, E., Demazeau, Y.
(eds.) Decentralized AI 3 - Proceedings of the Third European Workshop on Modelling
Autonomous Agents and Multi-Agent Worlds (MAAMAW 1991), pp. 57–76. Elsevier
Science Publishers B.V., Amsterdam (1992)

11. Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., van der Torre, L.: The BOID architec-
ture. Conflicts between beliefs, obligations, intentions and desires. In: Proceedings of the
fifth international conference on Autonomous Agents, Montreal, Quebec, Canada,
pp. 9–16 (2001)

12. von Wright, G.H.: Norm and Action. A Logical Inquiry. Routledge and Kegan Paul,
London (1963)

13. Kelsen, H.: General Theory of Norms. Hardcover (1979)

14 R. Conte, G. Andrighetto, and M. Campennì

14. Conte, R. (ed.): Rational, goal governed agents. Encyclopedia of Complexity and Systems
Science. Springer, Heidelberg (2009)

15. Castelfranchi, C.: Prescribed mental attitudes in goal-adoption and norm adoption. Artif.
Intell. and Law 7(1), 37–50 (1999)

16. Wason, P., Johnson-Laird, P.: Psychology of Reasoning: Structure and Content. Harvard
University Press, Cambridge (1972)

17. Schank, R.C., Abelson, R.P.: Scripts, plans, goals, and understanding: An inquiry into hu-
man knowledge structures. Lawrence Erlbaum Associates, Hillsdale (1977)

18. Fiske, S.T., Taylor, S.E.: Social cognition, 2nd edn. McGraw Hill, New York (1991)
19. Barsalou, L.W.: Perceptual symbol systems. Behavioral and Brain Sciences 22, 577–660

(1999)
20. Markus, H., Zajonc, R.B.: The cognitive perspective in social psychology. In: Lindzey, G.,

Aronson, E. (eds.) Handbook of social psychology, 3rd edn., pp. 137–229. Random House,
New York (1985)

21. Sripada, C., Stich, S.: A Framework for the Psychology of Norms. In: Carruthers, P., Laur-
ence, S., Stich, S. (eds.) The Innate Mind: Culture and Cognition, pp. 280–301. Oxford
University Press, Oxford (2006)

22. Cosmides, L., Tooby, J.: Cognitive adaptations for social exchange. In: Barkow, J., Cos-
mides, L., Tooby, J. (eds.) The adapted mind. Oxford University Press, New York (1992)

23. Cosmides, L., Tooby, J.: Can evolutionary psychology assist logicians? A reply to Mallon.
In: Sinnott-Armstrong, W. (ed.) Moral psychology, pp. 131–136. MIT Press, Cambridge
(2008)

24. Bandura, A.: Social cognitive theory of self-regulation. Organizational Behavior and Hu-
man Decision Processes 50, 248–287 (1991)

25. Nucci, L.P.: Education in the Moral Domain. Cambridge University Press, Cambridge
(2001)

26. Cummins, D.D.: Evidence for deontic reasoning in 3- and 4-year olds. Memory and Cogni-
tion 24(6), 823–829 (1996)

27. Piaget, J.: The moral judgment of the child. The Free Press, New York (1965)
28. Kohlberg, L.: Justice and reversibility. In: Kohlberg, L. (ed.) Essays on Moral Develop-

ment, vol. 1. Harper and Row (1981)
29. Kohlberg, L., Turiel, E.: Moral development and moral education. In: Lesser, G. (ed.) Psy-

chology and educational practice. Scott Foresman (1971)
30. Shweder, R., Mahapatra, M., Miller, J.: Culture and moral development. In: Kagan, J.,

Lamb, S. (eds.) The Emergence of Morality in Young Children. The University of Chicago
Press (1987)

31. Epstein, J.: Generative Social Science. Studies in Agent-Based Computational Modeling.
Princeton University Press, Princeton (2006)

32. Sen, S., Airiau, S.: Emergence of norms through social learning. In: Proceedings of the
Twentieth International Joint Conference on AAAI (2007)

33. Myerson, R.B.: Game Theory: Analysis of Conflict. Harvard University Press (1991)
34. Posner, R., Rasmusen, E.: Creating and enforcing norms, with special reference to sanc-

tions. Int. Rev. Law Econ., 369–382 (1999)
35. Conte, R., Dignum, F.: From Social Monitoring to Normative Influence. JASSS 4(2)

(2001)
36. Ullmann-Margalit, E.: The Emergence of Norms. Clarendon Press, Oxford (1977)
37. Bicchieri, C.: The Grammar of Society: The Nature and Dynamics of Social Norms.

Cambridge University Press, New York (2006)

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 15–16, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Thinking Integral: How to Build Complex Systems That
Live with People and Exhibit Collective Intelligence

Jacques Ferber

LIRMM – University of Montpellier II, 161 rue Ada,
34592 Cedex 5, Montpellier, France

ferber@lirmm.fr

Multi-agent systems have been proposed for the development of complex software
systems as a way to handle complexity (Jennings 2001). It has also been advocated
that basic agent oriented systems do not have the power to cope with large software
and that it is crucial to use organizations centered multi-agent systems (OCMAS)
(Ferber et al. 2004 ; Dignum 2009).

The AGR family (Ferber & Gutknecht, 1998; Ferber et al. 2004) has been one of
the first to give a simple and detailed account of what an OCMAS should be, and has
been the conceptual basis for the MadKit platform (MadKit 2004). The Moise+ has
also shown its importance in the field by providing a general framework for groups,
roles, goal-driven agents and norms (Hübner, Sichman & Boissier, 2002). Other
OCMAS models may be seen in (Coutinho et al. 2009). It has also been shown that it
is possible to give a precise and formal semantics of organizations in an operational
form (Dastani et al. 2009).

Recently we have proposed a new conceptual framework and a generic model for
multi-agent systems called MASQ (Ferber et al. 2009, Stratulat et al. 2009), which
constitutes an abstraction of the various aspects of a MAS, generalizing the AGR
approach and incorporating the institutional work of Searle (Searle 1995). This model
is based on a 4-quadrant conceptual framework, where the analysis and design of a
system is performed along two axes: an interior/exterior dimension and an individ-
ual/collective dimension. We will give a conceptual definition of this approach and
we will show that it is possible of applying it to practical problems in the computer
science fields. We will give some ideas about its use as a methodological tool and
also how this model could be used to represent human organizations, through the
various diagrams and notations that are proposed.

Collective intelligence, which is how intelligence emerges from the interaction of
several entities, has been recently proposed as a conceptual tool to analyze and design
new decentralized forms of human collaboration through the use of electronic tech-
nologies. In this “coordinate and cultivate” form of management (Malone 2004), it is
necessary to have new conceptual models to take into account interactions of many
kind. In this talk, we will show how MASQ may be used to describe both virtual and
human organizations, and how it is possible with this conceptual tool to design com-
plex architectures where collective intelligence may arise from the collaboration of
many individuals, either humans or agents.

16 J. Ferber

References

Coutinho, L., Sichman, J., Boissier, O.: Modelling Dimensions for Agent Organization. In: Dig-
num, V. (ed.) Multi-agent Systems: Semantics and Dynamics of Organizational Models. IGI

Dastani, M., Tinnemeier, N.A.M., Meyer, J.-J.C.: A Programming Language for Normative
Multi-Agent Systems in Virginia Dignum. In: Multi-agent Systems: Semantics and Dynam-
ics of Organizational Models. IGI (2009)

Dignum, V.: The Role of Organization in Agent Systems. In: Dignum, V. (ed.) Multi-agent
Systems: Semantics and Dynamics of Organizational Models. IGI (2009)

Ferber, J., Gutknecht, O.: A Meta-Model for the Analysis and Design of Organizations in
Multi-Agent Systems. In: Proceedings of the 3rd International Conference on Multi Agent
Systems (ICMAS 1998), pp. 128–135. IEEE Computer Society, Los Alamitos (1998)

Ferber, J., Gutknecht, O., Michel, F.: From Agents to Organizations: An Organizational View
of Multi-Agent Systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.) AOSE 2003. LNCS,
vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

Ferber, J., Stratulat, T., Tranier, J.: Towards an Integral Approach of Organizations: the MASQ
approach. In: Multi-Agent Systems in Virginia Dignum (ed.), Multi-agent Systems: Seman-
tics and Dynamics of Organizational Models. IGI (2009)

FIPA, The Foundation of Intelligent Physical Agents (2005), http://www.fipa.org
Jennings, N.R.: An agent-based approach for building complex software systems. Commun.

ACM 44(4), 35–41 (2001)
Hübner, J., Sichman, J., Boissier, O.: A model for the structural, functional, and deontic speci-

fication of organizations in multiagent systems. In: Bittencourt, G., Ramalho, G.L. (eds.)
SBIA 2002. LNCS (LNAI), vol. 2507, pp. 118–128. Springer, Heidelberg (2002)

MadKit. A Multi-Agent Development Kit (2004), http://www.madkit.net
Malone, T.W.: The Future of Work: How the New Order of Business Will Shape Your Organi-

zation, Your Management Style, and Your Life. Harvard Business School Press (2004)
Searle, J.R.: The Construction of Social Reality. Free Press (1995)
Stratulat, T., Ferber, J., Tranier, J.: MASQ (2009) - Towards an Integral Approach of Agent-

Based Interaction. In: AAMAS 2009 (2009)

A Space-Based Generic Pattern for
Self-Initiative Load Balancing Agents

Eva Kühn and Vesna Sesum-Cavic

Vienna University of Technology, Institute for Computer Languages,
Space Based Computing Group, Argentinierstr. 4, 1040, Wien, Austria

{eva,vesna}@complang.tuwien.ac.at

Abstract. Load-Balancing is a significant problem in heterogeneous dis-
tributed systems. There exist many load balancing algorithms, however,
most approaches are very problem specific oriented and a comparison is
therefore complex. This paper proposes a generic architectural pattern
for a load balancing framework that allows for the plugging of different
load balancing algorithms, reaching from unintelligent to intelligent ones,
to ease the selection of the best algorithm for a certain problem scenario.
As in complex network environments there is no “one-fits-all solution”,
also the integration of several different algorithms shall be supported.
The presented pattern assumes autonomous agents and decentralized
control. It can be composed towards arbitrary network topologies, fore-
sees exchangeable policies for load-balancing, and uses a black-board
based communication mechanism to achieve high software architecture
agility. The pattern has been implemented and first instantiations of it
with three algorithms have been benchmarked.

Keywords: Load balancing, self-organization, autonomous agents, co-
ordination patterns, intelligent algorithms, complex distributed systems.

1 Introduction

The rapid growth of computer systems and their complexity imposes the neces-
sity to reconsider dynamic load balancing (LB) in order to improve the per-
formance of the overall distributed system and to achieve the highest level
of productivity. LB can be described as finding the best possible workload
(re)distribution and addresses ways to transfer excessive load from busy (over-
loaded) nodes to idle (under-loaded) nodes. LB can take place at local node level
allocating load to several core processors of one computer, as well as at net-
work level distributing the load among different nodes. At the local level, the
determining factor for load distribution is the balanced utilization of all core pro-
cessors. At the network level, one must take into consideration the time needed
for transferring data from a busy node to an idle node and estimate the priority
of transferring, especially when the transfer itself requires more time to complete
than the load assignment.

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 17–32, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

18 E. Kühn and V. Sesum-Cavic

The problem becomes even more complex in heterogeneous systems. Net-
works are growing constantly and therefore the intensive need of including self-
* properties (self-organization, self-management, self-repairing, self-configuring,
self-grouping, self-learning, self-adaptation, etc.) arise to deal with increasing
complexity. We can find a wide range of LB approaches (see section 2), however,
our objections address the lack of: Provisioning a general framework, autonomy
and self-* properties, and arbitrary configurations. Provisioning of a General
Framework: Existing LB approaches are very problem specifically oriented (see
section 2). As there is no “one-fits-all solution, in order to find a best solu-
tion for a problem, a generalized framework is needed that allows for testing
and tuning different LB algorithms for a specific problem and environment. The
framework shall support easy and dynamic exchange of algorithms as well as
combinations of different algorithms. The architecture shall be agile, so that nei-
ther new requirements on LB algorithms, nor other assumptions on the network
infrastructure, nor the dynamic joining and leaving of agents do become “archi-
tecture breakers”. Note that a framework itself doesn’t solve the LB problem
but serves as a necessary basement for LB algorithms. It abstracts the general
requirements in a flexible software architecture. Autonomy and Self-* Proper-
ties: Increased complexity of software systems, diversity of requirements, and
dynamically changing configurations, force to find new solutions based on self-
organization, autonomic computing and autonomous (mobile) agents. Intelligent
algorithms require autonomous agents which are advantageous in situations that
are characterized by high dynamics, not-foreseeable events, and heterogeneity.
Arbitrary Configurations: LB can be required to manage the load among local
core processors on one node, as well as in a network (intranet, internet, cloud).
A general LB framework must be able to cope with all these demands at the
same time and offer means to abstract hardware and network heterogeneities.

In this paper, we present an extensible coordination pattern called SILBA
(Self-Initiative Load Balancing Agents) with pluggable LB algorithms and au-
tonomic (multi) agents. The main contribution of this paper is the design of
a reusable and agile architectural pattern and its independence on the prob-
lem at hand. Section 2 gives a classification of existing LB algorithms. Section
2 describes the SILBA pattern and how it can be extended towards arbitrary
network configurations. Section 3 presents the implementation of a LB frame-
work based on the SILBA pattern, using a space-based middleware. In section
5, we choose some well-known algorithms (both unintelligent and intelligent) as
examples, map them to SILBA, and show some benchmarks. In section 6 we
summarize the results and further research work.

2 Classification of LB Algorithms

There are many different approaches that cope with the LB problem. As a first
classification, we shortly listen the most important ones and classify them ac-
cording to the underlying LB algorithm:

The first group consists of different conventional approaches without using any
kind of intelligence, e.g.: Sender Initiated Negotiation and Receiver Initiated

A Space-Based Generic Pattern for SILBA 19

Negotiation [27], Gradient Model [30], Random Algorithm [14], and Diffusion Al-
gorithm [9]. In Sender algorithm, LB is initiated by an overloaded node. This al-
gorithm has a good performance for low to moderate load level while in Receiver
algorithm, LB is initiated by an under-loaded node and this algorithm has a good
performance for moderate to heavy load level. Also the combination of these two
algorithms (Symmetric) is possible. Gradient Model is based on dynamically ini-
tiated LB requests by the under-loaded node. The result of these requests is a
system wide gradient surface. Overloaded nodes respond to requests by migrating
unevaluated tasks down the gradient surface towards under-loaded nodes. In Ran-
dom Algorithm each node checks the local workload during a fixed time period.
When a node becomes over-loaded after a certain time period, it sends the newly
arrived task to a randomly chosen node without taking in consideration whether
the target node is overloaded or not. Only the local information is used to make the
decision. The principle of diffusion algorithms is keeping the process iterate until
the load difference between any two processors is smaller than a specified value.
The second group includes theoretical improvements of LB algorithms using dif-
ferent mathematical tools and estimations [5] without focus on implementation
and benchmarks. The third group contains approaches that use intelligent algo-
rithms like evolutionary approaches [7], and ant colony optimization approaches
([20], [41]). Evolutionary approaches use the adjustment of some parameters
specific for evolutionary algorithms to achieve the goal of LB. Ant colony op-
timization approach is used in [20] for a graph theoretic problem formulated
from the task of computing load balanced clusters in ad hoc networks. These
approaches mainly try to improve only one of the components of the whole LB
infrastructure, namely the LB algorithm. In this paper we will propose a frame-
work that allows for the integration of different kinds of algorithms. However, a
particular focus is on autonomous agents based control. There exist interesting
approaches for solving the LB problem by using agent-based models. According
to multi-agent systems, LB can be either static or mobile [18]. In static LB,
tasks cannot be migrated elsewhere once they have been launched on a specific
server. In mobile LB, a task may migrate to another server, utilizing the agent’s
mobility. In [26], it is shown that mobile LB outperforms the static case with a
3-40 % improvement over the static placement scheme.

framework abstraction no framework
agents based [22](*), [42], [39], [35] [16], [38](*), [24], [19]
without agents [3], [2] [17], [45], [25], [34], [31]

[46], [43], [44](*), [33]

The above table gives another type of classification according to the criterion
whether an approach uses agents or not ([11] identifies essentials of different
multi-agent architectural styles (MAS) and shows how MAS can be character-
ized and evaluated), as well as whether an approach introduces a general frame-
work (taking in the consideration both structured P2P and unstructured P2P
networks as well as grid). Those papers that use a very specific LB algorithm are
marked with “(*)”. For example [34] puts the focus on DHT-based P2P systems

20 E. Kühn and V. Sesum-Cavic

only. First, let us discuss the articles that offer both, agents and framework : [22]
uses a very problem-specific LB algorithm and concentrates on parallel database
systems. In [42], a dynamic model of agent-based LB on grids is presented with
the goal of exploring the effects of agents’ strategies on the quality of LB. The
results describe the dynamic behavior of LB on grids as well as modeling and
predicting LB behavior. But the model used for abstraction is not very generic.
It is more an agent based LB than we can say that it is a framework in our sense.
[39] is not generic and in particular designed for parallel database systems. [35]
uses agents and states that the approach is a generic one to implement any
kind of dynamic LB algorithm in a heterogeneous cluster using software agents.
However, it strictly uses only sender-initiated algorithms and no generalization
is shown that allows plugging in also other algorithms.

Second, one relevant representative of each other category is presented: Agents,
no framework: [19] presents an extension of the AMBLE model, an awareness
model which manages LB by means of a multi-agent based architecture, with
the aim to establish a cooperative LB model for collaborative grid environments.
This model, named C-AMBLE (Cooperative Awareness Model for Balancing the
Load in grid Environments) applies some theoretical principles of multi-agents
systems, awareness models, and third party models, to promote an efficient au-
tonomic cooperative task delivery in grid environments. No agents, framework:
In [2], the design of a flexible LB framework is described and runtime software
system for supporting the development of adaptive applications on distributed-
memory parallel computers, i.e., the Implicit Load Balancing component of the
PREMA runtime system is presented. An indication of the flexibility of the
PREMA system has been given by implementing several LB policies. The four
policies shown here scratch the surface of the scheduling methods possible. No
agents, no framework: In [33], LB at the middleware level allows more flexibil-
ity than existing solutions based at lower system levels. However, it requires an
execution infrastructure and mechanisms to be integrated seamlessly. DLBS (Dy-
namic Load Balancing Service) brings new solutions regarding large scale LB for
middleware-based applications. DLBS offers a multi-criteria and easily customiz-
able LB service. It consists of a scalable monitoring infrastructure, a connection
manager (integrated into the middleware) and customizable LB strategies.

3 SILBA Pattern

The SILBA pattern is domain independent and can be used on different levels:
local, with static and dynamic routing, and combining several routing strategies.
It is composed of several sub-patterns that are described in this section. Its basic
principle is autonomous agents that operate in a peer-to-peer network with a
dynamically changing amount of work and decide on their own when to pick up
or push back work. Let us first define the necessary notions, components, and
assumptions used for the definition of the pattern:

A peer node (or node for short) is a computing device that itself might
consist of several core processors.

A Space-Based Generic Pattern for SILBA 21

A request consists of a task to be performed given in a standard format
like XML or WSDL, a request identifier, a client identifier, a role describing the
capacities and skills a worker must have in order to be able to process the task, a
priority given in absolute terms, an informal or semantic description of the task,
a timeout date, and a URL indicating a location where the answer shall be put.

An autonomous agent (or agent for short) is a software program that is
self-responsible to be up and running. An agent implements a certain reactive
and continuous behaviour [12]. Agents can move from node to node, and they
can dynamically join and leave. So-called worker agents perform requests, decide
autonomously when they act and which request they take (first or at all). Differ-
ent roles determine which requests they may execute. At a certain point in time,
a worker agent is associated with a node. If it fails, an automatic fail-over shall
take place. Other agents occurring in SILBA are allocation agents and routing
agents (see section 3.2 and 3.3).

A client issues requests at any reachable node in the network with an indi-
cator, how it wants to be informed about the results and where the results shall
be placed. The load that is produced by the clients can vary and peak times
must be handled through the addition of resources (e.g. agents and computing
nodes). Clients may either synchronously wait for the answer, or continue their
job, picking up the answer later (asynchronicity). Thus, a client might go off-line
and get the answer later, if they are re-connected.

In this paper, we define a network to connect nodes logically thus forming
an overlay. Networks can be clustered into “super networks”. However, as we
underneath have to assume physical network links, a network can be disrupted
and become partitioned into sub-networks.

A design pattern [21] describes a recurring and reusable solution in software
design. We are mainly interested in inter-enterprise patterns for LB.

By framework we understand the implementation of a complex pattern –
typically composed of several sub-patterns – that represents a general, re-usable
architectural solution to a certain problem scenario, in our case LB. A framework
can be measured by its architecture agility.

Blackboard based communication offers a high degree of decoupling (time,
reference, space) and supports agents’ autonomy. Clients and agents need not
know each other and can act autonomously. We therefore will follow a space-
based architectural style for the design of the single SILBA patterns where the
entire communication is carried out via shared spaces. The composition of space-
based patterns will be done by using standardized entry formats and interaction
patterns in shared spaces.

In the following we describe several patterns that finally can be composed to
a LB framework.

3.1 Local Node Pattern

The local node pattern is responsible to model load generation at one node and
the execution of requests by local worker agents. Workers actively compete for
work. If a worker agent fails the work shall be taken over by another one. The

22 E. Kühn and V. Sesum-Cavic

Fig. 1. (a) Local node pattern. (b) Node classification according to transfer policy.

basic components of the local node pattern (see fig. 1 (a)) are: clients, worker
agents, load space, and answer space.

A load space is a place where new requests are put by clients, and where the
information about all worker agents’ registrations and the current load status of
the node are maintained. A load originates from client(s).The requests shall be
accessible in either the order they arrived, or by means of other criteria like e.g.
their priority, the required worker role, or their timeout date. The load space
can be queried about its current load status which can be either of under-loaded
(UL), ok-loaded (OK), or over-loaded (OL) (see fig. 1 (b)). The determination
about the load status is done according to a certain policy (see section 3.2) called
transfer policy that shall be commutable.

An answer space is a place where the answers that were computed by the
worker agents are put and where they can be picked up by the clients. The
computation result is sent directly (not routed) to the answer space.

3.2 Allocation Pattern

The arbiter pattern is responsible to decide about LB and to redirect load be-
tween the load spaces of different local nodes. The basic components of the
arbiter pattern (see fig. 2 (a)) are: load space, allocation agents, policies, and
allocation space.

There are three kinds of allocation agents: Arbiter agents, IN agents, and
OUT agents. Arbiter agents query the load of the load space and decide about
re-distribution of work. They publish this information to the routing space in
form of routing requests. Both IN and OUT agents read routing information

Fig. 2. (a) Allocation pattern. (b) Routing pattern.

A Space-Based Generic Pattern for SILBA 23

from the allocation space and pull respectively push work from/to another node
in a network to which the current node has a connection.

Transfer policy determines whether and in which form a resource should
participate in load distribution and in that sense, the classification of resources
is done [37]. A simple transfer policy would be to define two parameter values
T1 and T2 (see fig. 1 (b)) which can either be assumed to be static or can be
changed dynamically.

Location policy determines a suitable partner of a particular resource for
LB [37]. The IN and OUT allocation agents assume that the information about
the (best) partner to/from which to distribute load can be queried from the
allocation space.

The allocation space holds information about partner nodes as computed
by the location policy. This information is queried by the allocation agents and
can be either statically configured or dynamically computed by so-called routing
agents (see section 3.3). For the latter case, the allocation space can also be used
to store information about decisions and subsequent resulting routing demands
of the arbiter agent, i.e. whether load shall be get rid off or new load shall be
fetched from other nodes. This might cause routing agents to become active.

3.3 Routing Pattern

The routing pattern is responsible to execute the location policy according to
a special LB algorithm. The basic components of the arbiter pattern (see fig. 2
(b)) are: allocation space, routing agents, and routing space.

Routing agents perform a special routing strategy to implement a certain
LB algorithm. They are either always active and continuously do their jobs,
or triggered upon requests of the arbiter allocation agent. In both cases they
perform the location policy by communicating with other routing agents of the
same type, which thus form a dynamically structured overlay network [1].

The collaboration between routing agents of different nodes is carried out via
the corresponding routing spaces of this type. Each kind of routing agents
has its own routing space. Here, specific information as required by the applied
algorithm is stored and retrieved, e.g. pheromones if we use ants, or duration
of waggle dance if we use bees [36]. Eventually, the information about a best or
suitable partner node is stored in an allocation space where the corresponding
IN or OUT allocation agents can grab this information and distribute the load
between the local node and its partner node.

3.4 Pattern Composition

The above described patterns can be composed towards more complex patterns
by “hooking” them via shared spaces. They must agree on the format of entries
stored in these spaces, and on the interaction patterns on these. E.g. to combine
the local node pattern with the allocation pattern both must share the same
load space. The arbiter agent must be able to query the load information and
the IN and OUT allocation agents must understand the request entries written

24 E. Kühn and V. Sesum-Cavic

Fig. 3. (a) Network topology configuration example. (b) Pattern composition.

by the clients. This kind of composition offers more flexibility than the composi-
tion possibilities in message exchange patterns as supported by enterprise service
bus middleware, where basically assemblies of patterns are build. With SILBA
patterns, bi-directional control flows are possible and arbitrary logical network
configurations can be easily constructed (dynamically). Fig. 3 (a) depicts 7 net-
works that have different relationships to each other. Nodes can belong to one
or more networks, e.g., nodes N1 and N2 are part of one network each, whereas
N3 belongs to two networks. Fig. 3 (b) shows the composition of the mentioned
nodes N1, N2, and N3 in more detail.

4 Implementation with a Space-Based Middleware

We use a space-based architecture (extensible virtual shared memory1 [10]) that
generalizes Linda tuple based communication [15] as well as several concepts that
have been proposed in the literature to make the space extensible (e.g. reactions
[32], programmable behavior ([6], [13]), introduction of priority and probability
tags [4]) in one single concept called shared containers [28].

4.1 Shared Containers and Scheduler

A shared container is a not-nested sub-space that maintains entries. An en-
try is formally defined as a multiset of labeled values called properties [10].

1 The Java based open source implementation is available at www.xvsm.org

A Space-Based Generic Pattern for SILBA 25

A property can be used to represent either a payload or meta-data relevant for
coordination. This way the entry offers a clear separation between user data (cf.
message body) and coordination data (cf. message head). Meta-model operations
are: create-container, destroy-container; access operations are like in the Linda
model [15] (where they are termed rd, out, and in): read, write, take, and de-
stroy; transactional operations are: transaction-start, transaction-commit, and
transaction-rollback. Operations may take a timeout parameter, specifying the
time after which the operation is de-scheduled from the core with an exception,
if it was not fulfilled until then. Timeout of transaction-start is an important
feature that issues the entire transaction to abort if the timeout has expired.
Each container has one or more coordinators that define the exact semantics of
each operation. A coordinator is a user defineable coordination mechanism that
specifies how the data in the container are accessed. Typical examples include
fifo order, key selection, access via label names using the built-in relational query
operators [10], template matching (cf. Linda), RDF queries, or XML querying
facilities [40].

A shared data space is a collection of containers. A container is addressed
via its URL in the internet. A lookup mechanism resolves a published container
name to its URL. A container can refer to other (sub)containers forming a more
complex coordination data structure. The asynchronous and blackboard based
space-based communication model allows programmers to explicitly control in-
teractions among processes via shared data. It is advantageous to serve for the
collaboration of autonomic (multi) agents as it avoids a coupling through direct
interactions between the agents ([6], [32]). All interactions of an agent are carried
out via its environment [23] in a symmetric and autonomous way.

As a further extension to the classical Linda model, a scheduling mechanism
exists that can start agents at a certain, dynamically configurable time schedule.
The migration of an agent can therefore easily be mapped into requesting a new
agent that has access to the same shared containers at another site, and then
terminating the original one.

Each SILBA space is realized by an addressable container. For the imple-
mentation we assume that every container can be reached in the Internet. All
containers provide the navigational, built-in XVSM query language [10] (rela-
tional operators, sorting, and counting).

4.2 Local Node Implementation

Load space is a container with an implicit coordinator termed load coordinator,
and the answer space uses a key coordinator for the requestID. The load coor-
dinator keeps track of every request that is inserted, when it is removed, and of
all worker registrations. It implements a policy that decides about UL, OK, or
OL of this node depending on the current number of workers and requests. Of
course, more sophisticated transfer policies can be applied, that also take into
consideration statistics information as well as operating system load, and hard-
ware specifications. As the coordinator is pluggable, this policy can be changed
at any time, even dynamically.

26 E. Kühn and V. Sesum-Cavic

Fig. 4. (a) Local node agent interaction. (b) Allocation agent interaction.

Fig. 4 (a) shows a scenario of agent collaboration at local node level. First,
each worker agent must register at the load space. It will e.g. write the following
entry to the load space2: “[workerId:myID, workerRole:translator]”. Then
clients can issue requests by writing tuple like “[job:compile, params:myProg,
description:“compile a java program”, timeout:100, answerURL:myURL,
reqID:123, clientID:456,workerRole:JavaCompiler]” into the load space.

The worker agents compete for tasks but only one will be able to execute
the take operation using a new local transaction tx-i, execute the task, write
the result as answer entry of the form “[result:resultData, statusCode:ok,
reqID:123, clientID:456]” into the answer space using tx-i, and finally commit
tx-i. If a worker that fails after having called take request and before committing
the transaction tx-i, the timeout given at transaction start will fire and cause the
rollback of tx-i. Failover is achieved in that another worker can take the request.
Finally, the client takes the result from the answer container, correlating it with
its request via the request ID, using the key coordinator for that.

4.3 Allocation Implementation

Fig. 4 (b) shows an interaction scenario of an OUT allocation agent. The arbiter
agent continuously reads the load information from the load space, using the
load coordinator of the container. It writes this information into the routing
space. If the result is OL, it also generates an OUT routing request. The OUT
agent watches for outgoing routing requests, in a newly created transaction takes
a next routing request, tries to read a partner information from the allocation
space, and if found, takes k1 (k1 ≤ k) requests from its load space and transfers
them to the found partner site, and finally commits its local transaction. If no
outgoing routing request is found, or if not (yet) partner information exists, it
will abort the transaction and try later. For the case that the worker crashes, a
transaction timeout is used at transaction start.
2 Property labels that have been standardized for the LB scenario and must be know

by agents for the interoperability of the patterns are written in boldface.

A Space-Based Generic Pattern for SILBA 27

4.4 Routing Implementation

Fig. 5 shows a basic routing scheme started by node A in that an OUT routing
request is found in the allocation space. The routing agent at site A – performing
a certain strategy - reads this request, then it reads the routing information from
its dedicated routing space (it will find here one or more neighbors depending
on which algorithm it implements, e.g. ants [37], or bees ([8], [29], [36])), and
routes the request to the neighbor(s). The routing agent at site B behaves in
the same way and this goes so on until a routing agent at a site X finds out
that its local node is OK or UL and can accept a certain amount k1 (k1 ≤ k)
of requests. It will write this information directly back in a P2P manner to the
originally requesting site A. This way, the location policy that resolves requests
for partner nodes is implemented.

Fig. 5. Routing agent interaction

5 Examples and Benchmarks

5.1 Mapping Some Algorithms to SILBA

To demonstrate the agility of the SILBA pattern based framework, we show that
algorithms can be easily exchanged, and mapped some well-known LB algorithms
to SILBA:

1) Random/Round Robin Algorithm. Some neighbors of the current node are
statically stored in the routing space at initialization phase. These neighbors are
retrieved from the container, one of them is chosen randomly and the task is
scheduled. Similarly, Round Robin can be mapped.

2) Sender/Receiver/Symmetric Algorithm. For the Sender algorithm, the OL
node (Sender) initiates the routing. This can be achieved by configuring just
an OUT allocation agent, but no IN allocation agent. Analogously, for Receiver

28 E. Kühn and V. Sesum-Cavic

algorithm, where the UL starts to look for available tasks, an IN agent must
be scheduled at the corresponding local nodes XVSM runtime. The Symmetric
algorithm can be mapped by combining Sender and Receiver configurations.

3) Adapted Genetic Algorithm (GA). We adapted the algorithm suggested in
[47], i.e. we have no central coordinator. The routing agents of nodes implement
the algorithm that means we have several GAs, performed on different nodes
concurrently running. The description of the sliding window technique is remod-
ulated – we can say that the size of window(s) is the same for all GAs and fixed
to the number of nodes, where every node has the current (waiting) task as its
candidate in that window. Every GA will obtain some combination according
to the fitness function – they can be compared and the best one can be cho-
sen as the final combination (at time t). The issue who will be appointed to do
the actions of “comparing” and “choosing” is also done by the routing agents.
They take care of that, communicate and exchange this information. Therefore,
GA fires continously, i.e., every OL node and UL node can trigger GA and the
procedure is repeated until all requests are done. In our case, the sliding win-
dow should not be directly dependable on a client who can put tasks somewhere
in the network. A node has its load space for waiting (and new-coming) tasks
which will be filled with requests from its node plus from all nodes of reachable
networks each time when GA is triggered.

5.2 Benchmarks

As a proof of concept that the SILBA implementation produces reasonable re-
sults, in a first step these three different algorithms (Round Robin, Sender Ne-
gotiation, and Adapted GA) for location policies have also been implemented
and benchmarked. The transfer policy (implemented by the load coordinator)
was realized by relatively determined values T1 and T2.

The benchmarks were performed on a cluster of 4 machines. Each machine
had the following characteristics: 2*Quad AMD 2,0GHz with 16 GB RAM. We
simulated the network of 16 (virtual) nodes. At the beginning of each test runs,
the starting state was “cold start” and all nodes were UL. The maximum number
of tasks (that represented the load in the system) was 400. The obtained results
can be seen in figs. 6 and 7. The benchmark time is the makespan.

Fig. 7 shows the distribution of tasks time per node, i.e. how much each node
was active during the execution of a particular algorithm and how much load it
had. Note: many tasks have been done in parallel, so that’s why the complete
benchmark(s) time(s) is (are) less than some times in fig. 7. This figure provide an
additional information and analisys about the “behavior” of different algorithms,
but the real comparison of algorithms is shown in fig. 6.

As a result, Round Robin algorithm activates all nodes in the network, whereas
using Sender algorithm all work was done by activating only a few nodes and
the rest of the network was idle. During the execution of the location policy by
using the Round Robin algorithm, all nodes (except node 14) were in the state
OK, and node 14 changed its state from OK to OL and vice versa. During the
execution of location policy by using Sender algorithm, the majority of nodes

A Space-Based Generic Pattern for SILBA 29

Fig. 6. Benchmarking three different LB Algorithms on 16 Nodes

Fig. 7. Row 1: Round Robin. Row 2: Sender. Row 3: Adapted GA.

were not activated, node 8 participated and stayed in OK state all the time,
where nodes 1 and 14 changed their state from OK to OL and vice versa.

6 Conclusion

We presented a generic and composable load balancing (LB) pattern for worker
agents having access to either one local node, or many nodes in the intranet and
in the internet. The intention was to develop a self-organized LB architecture,
extensible towards different LB strategies and adaptable to any kind of domain-
specific problems. This objective could be solved by basing the pattern rather
on a space-based architecture style than on classical message exchange patterns.
The space-based collaboration allows for a high decoupling of the agents and
enables their autonomic behavior. Transfer and location policies can be plugged
in by means of coordinators and routing agents. Worker agents are active and
autonomously deciding whether and which task to take, and whether to execute
it or not; routing agents exhibit an autonomic behavior, if the transfer and loca-
tion policies are based on intelligent algorithms that support self-organization.
This general pattern can therefore easily be populated with a wide range of LB
algorithms. New resources can be dynamically added or removed to the resource-
pool at any time and the failure of one worker agent or node does not jeopardize
the functioning of the whole system.

We have carried out first benchmarks that proved that an approach using ac-
tive agents can be adapted to any underlying algorithm. This justifies the design
of SILBA as a pattern that supports autonomic agents. The pattern supports
nested networks at any level through composition. Even a mixed usage of strate-
gies is possible. Moreover, further tuning parameters can easily be added, as the
data entries and structures in the coordination space are also extensible. We con-
sidered only the time in our benchmarks, and intend to treat other important
aspects of load balancing (cost of communication, communication delay etc.) in
future investigations, to work on different types of metrics, to implement intelli-
gent algorithms (e.g., swarm intelligence as proposed in [36]), and to benchmark

30 E. Kühn and V. Sesum-Cavic

and compare different instantiations of SILBA with each other as well as with
other existing algorithms for load balancing.

Acknowledgements. We would like to thank Fabian Fischer for implementing
the SILBA pattern and performing the benchmarks, and Richard Mordinyi for
his helpful comments on this text.

References

1. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distri-
bution technologies. ACM Comput. Surv. 36(4), 335–371 (2004)

2. Barker, K., Chernikov, A., Chrisochoides, N., Pingali, K.: A load balancing frame-
work for adaptive and asynchronous applications. IEEE Transactions on Parallel
and Distributed Systems 15(2), 183–192 (2004)

3. Barker, K.J., Chrisochoides, N.P.: An evaluation of a framework for the dynamic
load balancing of highly adaptive and irregular parallel applications. In: SC 2003:
Proceedings of the 2003 ACM/IEEE conference on Supercomputing, p. 45 (2003)

4. Bravetti, M., Gorrieri, R., Lucchi, R., Zavattaro, G.: Quantitative information in
the tuple space coordination model. Theor. Comput. Sci. 346(1), 28–57 (2005)

5. Bronevich, A.G., Meyer, W.: Load balancing algorithms based on gradient meth-
ods and their analysis through algebraic graph theory. J. Parallel Distrib. Com-
put. 68(2), 209–220 (2008)

6. Cabri, G., Leonardi, L., Zambonelli, F.: Mars: A programmable coordination ar-
chitecture for mobile agents. IEEE Internet Computing 4(4), 26–35 (2000)

7. Chen, J.-C., Liao, G.-X., Hsie, S., Liao, C.-H.: A study of the contribution made
by evolutionary learning on dynamic load-balancing problems in distributed com-
puting systems. Expert Syst. Appl. 34(1), 357–365 (2008)

8. Chong, C.S., Sivakumar, A.I., Low, M.Y.H., Gay, K.L.: A bee colony optimization
algorithm to job shop scheduling. In: WSC 2006: Proc. of the 38th conference on
Winter simulation, pp. 1954–1961 (2006)

9. Cortés, A., Ripoll, A., Cedó, F., Senar, M.A., Luque, E.: An asynchronous and it-
erative load balancing algorithm for discrete load model. J. Parallel Distrib. Com-
put. 62(12), 1729–1746 (2002)

10. Craß, S., Kühn, E., Salzer, G.: Algebraic foundation of a data model for an ex-
tensible space-based collaboration protocol. In: 13th International Database Engi-
neering & Applications Symposium, IDEAS (to appear, 2009)

11. Davidsson, P., Johansson, S., Svahnberg, M.: Characterization and evaluation of
multi-agent system architectural styles. In: Garcia, A., Choren, R., Lucena, C.,
Giorgini, P., Holvoet, T., Romanovsky, A. (eds.) SELMAS 2005. LNCS, vol. 3914,
pp. 179–188. Springer, Heidelberg (2006)

12. Dobson, S., Denazis, S., Fernández, A., Gäıti, D., Gelenbe, E., Massacci, F., Nixon,
P., Saffre, F., Schmidt, N., Zambonelli, F.: A survey of autonomic communications.
ACM Trans. Auton. Adapt. Syst. 1(2), 223–259 (2006)

13. Ducasse, S., Hofmann, T., Nierstrasz, O.: Openspaces: An object-oriented frame-
work for reconfigurable coordination spaces. In: Porto, A., Roman, G.-C. (eds.)
COORDINATION 2000. LNCS, vol. 1906, pp. 1–18. Springer, Heidelberg (2000)

14. Eager, D.L., Lazowska, E.D., Zahorjan, J.: Adaptive load sharing in homogeneous
distributed systems. IEEE Trans. Softw. Eng. 12(5), 662–675 (1986)

A Space-Based Generic Pattern for SILBA 31

15. Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-
mun. ACM 35(2), 97–107 (1992)

16. Georgousopoulos, C., Rana, O.F.: Combining state and model-based approaches
for mobile agent load balancing. In: SAC 2003: Proceedings of the 2003 ACM
symposium on Applied computing, pp. 878–885 (2003)

17. Godfrey, B., Lakshminarayanan, K., Surana, S., Karp, R., Stoica, I.: Load balancing
in dynamic structured P2P systems. In: Proc. IEEE INFOCOM (2004)

18. Gomoluch, J., Schroeder, M.: Information agents on the move: A survey with load
balancing with mobile agents. Software Focus 2(2) (2001)

19. Herrero, P., Bosque, J.L., Pérez, M.S.: An agents-based cooperative awareness
model to cover load balancing delivery in grid environments. In: OTM Workshops
(1), pp. 64–74 (2007)

20. Ho, C.K., Ewe, H.T.: Ant colony optimization approaches for the dynamic load-
balanced clustering problem in ad hoc networks. In: Swarm Intelligence Sympo-
sium, Hawaii, pp. 76–83. IEEE, Los Alamitos (2007)

21. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley, Reading (2003)

22. Hu, T.-L., Chen, G., Chen, K., Dong, J.-X.: An adaptive load balancing framework
for parallel database systems based on collaborative agents, vol. 1, pp. 464–468.
IEEE, Los Alamitos (2005)

23. Janssens, N., Steegmans, E., Holvoet, T., Verbaeten, P.: An agent design method
promoting separation between computation and coordination. In: SAC 2004: Pro-
ceedings of the 2004 ACM symposium on Applied computing, pp. 456–461 (2004)

24. Johansson, S., Davidsson, P., Kristell, M.: Four multi-agent architectures for in-
telligent network load management. In: Karmouch, A., Magedanz, T., Delgado, J.
(eds.) MATA 2002. LNCS, vol. 2521, pp. 239–248. Springer, Heidelberg (2002)

25. Karger, D.R., Ruhl, M.: Simple efficient load balancing algorithms for peer-to-peer
systems. In: SPAA 2004: Proceedings of the sixteenth annual ACM symposium on
Parallelism in algorithms and architectures, pp. 36–43 (2004)

26. Keren, A., Barak, A.: Adaptive placement of parallel java agents in a scalable
computing cluster, vol. 10, pp. 971–976 (1998)

27. Krueger, P., Shivaratri, N.G.: Adaptive location policies for global scheduling.
IEEE Trans. Softw. Eng. 20(6), 432–444 (1994)

28. Kühn, E., Mordinyi, R., Keszthelyi, L., Schreiber, C.: Introducing the concept of
customizable structured spaces for agent coordination in the production automa-
tion domain. In: The 8th Int.Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2009 (2008)

29. Lemmens, N., de Jong, S., Tuyls, K., Nowé, A.: Bee behaviour in multi-agent
systems, pp. 145–156 (2008)

30. Lin, F.C.H., Keller, R.M.: The gradient model load balancing method. IEEE Trans.
Softw. Eng. 13(1), 32–38 (1987)

31. Murata, Y., Takizawa, H., Inaba, T., Kobayashi, H.: A distributed and cooperative
load balancing mechanism for large-scale p2p systems. In: SAINT-W 2006: Pro-
ceedings of the International Symposium on Applications on Internet Workshops,
pp. 126–129. IEEE, Los Alamitos (2006)

32. Pietro Picco, G., Murphy, A.L., Roman, G.-C.: Lime: Linda meets mobility. In:
ICSE 1999: Proceedings of the 21st international conference on Software engineer-
ing, pp. 368–377. IEEE, Los Alamitos (1999)

33. Putrycz, E.: Design and implementation of a portable and adaptable load balancing
framework. In: CASCON 2003: Proceedings of the 2003 conference of the Centre
for Advanced Studies on Collaborative research, pp. 238–252. IBM Press (2003)

32 E. Kühn and V. Sesum-Cavic

34. Rahman, M.A.: Load balancing in dht based p2p networks. In: 5th Int. Conference
on Electrical and Computer Engineering, ICECE 2008, pp. 164–171 (2008)

35. Rajagopalan, A., Hariri, S.: An agent based dynamic load balancing system,
pp. 164–171 (2000)

36. Sesum-Cavic, V., Kühn, E.: Instantiation of a generic model for load balancing with
intelligent algorithms. In: Hummel, K.A., Sterbenz, J.P.G. (eds.) IWSOS 2008.
LNCS, vol. 5343, pp. 311–317. Springer, Heidelberg (2008)

37. Stützle, T., Hoos, H.: Max-min ant system. Future Generation Comput. Syst. 16(9),
889–914 (2000)

38. Thant, H., San, K., Tun, K., Naing, T., Thein, N.: Mobile agents based load bal-
ancing method for parallel applications. In: 6th Asia-Pacific Symposium on Infor-
mation and Telecommunication Technologies, APSITT 2005 (2005)

39. Tian, J., Liu, Y., Yang, X.-H., Du, R.: Design and analysis of a novel load-balancing
model based on mobile agent. In: Yeung, D.S., Liu, Z.-Q., Wang, X.-Z., Yan, H.
(eds.) ICMLC 2005. LNCS (LNAI), vol. 3930, pp. 70–80. Springer, Heidelberg
(2006)

40. Tolksdorf, R., Menezes, R.: Using swarm intelligence in linda systems. In: Omicini,
A., Petta, P., Pitt, J. (eds.) ESAW 2003. LNCS (LNAI), vol. 3071, pp. 49–65.
Springer, Heidelberg (2004)

41. Une, H., Qian, F.: Network load balancing algorithm using ants computing. In:
IAT 2003: Proceedings of the IEEE/WIC International Conference on Intelligent
Agent Technology, p. 428 (2003)

42. Wang, Y., Liu, J.: Macroscopic model of agent-based load balancing on grids. In:
AAMAS 2003: Proceedings of the second international joint conference on Au-
tonomous agents and multiagent systems, pp. 804–811. ACM, New York (2003)

43. Xu, M., Guan, J.: Routing based load balancing for unstructured p2p networks.
Future Generation Communication and Networking 2, 332–337 (2007)

44. Xu, Z., Bhuyan, L.: Effective load balancing in p2p systems. In: CCGRID 2006:
Proceedings of the Sixth IEEE International Symposium on Cluster Computing
and the Grid, pp. 81–88. IEEE, Los Alamitos (2006)

45. Zhu, Y., Hu, Y.: Efficient, proximity-aware load balancing for dht-based p2p sys-
tems. IEEE Trans. on Parallel and Distributed Systems 16(4), 349–361 (2005)

46. Zoels, S., Despotovic, Z., Kellerer, W.: Load balancing in a hierarchical dht-based
p2p system, pp. 353–361. IEEE, Los Alamitos (2007)

47. Zomaya, A.Y., Teh, Y.-H.: Observations on using genetic algorithms for dynamic
load-balancing. IEEE Transactions on Parallel and Distributed Systems 12(9),
899–911 (2001)

A Goal-Oriented Approach for Modelling
Self-organising MAS

Mirko Morandini1, Frédéric Migeon3, Marie-Pierre Gleizes3, Christine Maurel3,
Loris Penserini2, and Anna Perini1

1 FBK IRST, Via Sommarive 18, I-38100 Trento, Italy
2 University of Utrecht, Padualaan 14, Utrecht, The Netherlands

3 IRIT, 118 Route de Narbonne, 31062 Toulouse, France
{morandini,perini}@fbk.eu, loris@cs.uu.nl,

{migeon,gleizes,maurel}@irit.fr

Abstract. Autonomous software agents provide a promising solution to the
needs of decentralised networked systems, able to adapt their behaviour in a com-
plex and dynamically changing environment.

Current agent-oriented software engineering methodologies tend to focus on
different levels to realise such a self-adapting behaviour, namely the agent individ-
ual level and the global system level. The first requires to design a goal-directed
agent behaviour, the second to design agents able to optimize their coordination
with other peer agents in the organization, giving rise to system-level adaptation.

In this paper we propose to extend a goal-oriented engineering methodology
to deal with the modelling of organisations that are able to self-organise in order
to reach their goals in a changing environment. To deliver on this aim, we com-
bine Tropos4AS, an extension of TROPOS for adaptive systems, with concepts,
guidelines and modelling steps from the ADELFE methodology, which provides
a bottom-up approach for engineering collaborative multi-agent societies with an
emergent behaviour.

The resulting MAS has self-adaptation properties, having agents that are able
to change their behaviour according to changes in the environment, and having
organisations that adapt themselves to changing needs. The approach is illustrated
by modelling a collaborative multi-agent system for conference management.

1 Introduction

Nowadays, networked systems require decentralized and flexible configurations, which
are able to support mediated services (e.g. flight booking systems) as well as peer-to-
peer business/social relationships (e.g. eBay, social networking). Such software sys-
tems need to exhibit an increasing level of self-adaptivity, at the system or component
level, in order to operate efficiently in a dynamically changing environment. Engineer-
ing such decentralized, self-adapting networked systems poses challenging issues for
the software engineering methodologies research.

Autonomous software agents have been largely studied for their property to exhibit
self-adaptive behaviours at different levels. At the level of the individual agent, the agent
has ability to perceive the surrounding environment, to interpret collected information

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 33–48, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

34 M. Morandini et al.

and to reason on it. This enables it to decide which behaviour to adopt in a context-aware
manner. At the level of global (multi-agent) system, agent cooperation mechanisms can
give raise dynamically to an emergent behaviour of the system.

Agent-Oriented Software Engineering methodologies propose methods and tech-
niques to build this type of systems, but typically they tend to focus on a specific level
of self-adaptivity. So, for instance the TROPOS methodology [3], and its extension for
self-adaptivity Tropos4AS [13], focus on building software agents that behave in a goal-
directed way and are able to dynamically switch from a behaviour to another one to
avoid failure in achieving their own goals or to better meet quality requirements. On
the other side, ADELFE [2] is an agent-oriented methodology tailored to engineer self-
adaptive multi-agent societies by cooperative agents based on the AMAS theory [1].
ADELFE enables with a bottom-up approach to define the nominal and cooperative
behaviour of the agents which leads to self-organisation and system’s self-adaptation.

We study here how to engineer agent systems which can adapt autonomously to a
changing environment. This system should exhibit a self-adaptive behaviour of single
agents as well as a self-organising behaviour of the agent society.

In this paper, we investigate benefits from extending the Tropos4AS agent modelling
framework with ADELFE modelling activities, along two main lines: 1) extending the
Tropos4AS modelling language meta-model by including concepts from the ADELFE
meta-model; and 2) revisiting the Tropos4AS design process by including ADELFE
activities. For illustration, the process is applied to a conference management system
example, giving a first evidence for its benefits.

The paper is organised as follows: in Section 2, the two methodologies TROPOS with
the Tropos4AS extension, and ADELFE are briefly recalled and compared. Section 3
describes the Tropos4AS extension at the level of the meta-model and at the level of
the design process. Section 4 illustrates the application of the resulting design approach
to the conference management system example and discusses main findings from this
experience. Related work is presented in Section 5, conclusions and future work in
Section 6.

2 Methodological Background

2.1 Tropos and Tropos4AS: Goal-Oriented Modelling

The agent-oriented software engineering methodology TROPOS [3] adopts ideas from
the MAS paradigm and from i*, an organizational modelling framework for require-
ments analysis, founded on the ’mentalistic’ notions of actor, goal, softgoal, task, re-
source, and social dependency between actors. The TROPOS modelling language is used
along the whole development process: in Early Requirements Analysis (ER) the human
organisational settings in which the system will be used are analysed; in Late Require-
ments Analysis (LR) the system-to-be is introduced and its requirements are modelled in
terms of dependencies between stakeholders and the system itself; in Architectural De-
sign (AD) the system actor is decomposed into components (sub-system actors), each
having responsibility for the achievement of a part of the system’s goals; in Detailed
Design (DD) the system components and their interactions are further specified. The

A Goal-Oriented Approach for Modelling Self-organising MAS 35

Fig. 1. The Tropos4AS metamodel, showing the composition of an agent (simplified view of the
goal model)

modelling process follows a top-down approach, refining the global goals, which were
delegated from the stakeholders to the system-to-be.

For the aim of this work, we give more details on the LR and AD phases. At the end
of the LR phase, the system’s requirements are modelled by delegation of goals and
tasks from the stakeholders and users in the organisation, to the system, itself modelled
as an actor. The delegated goals are then organised in the system’s goal model, decom-
posed into more concrete goals and possibly operationalised by plans. Subsequently, as
key step in AD, the system actor is decomposed into sub-actors, which will become the
software agents at the implementation (in Fig. 1). This decomposition is usually done
by distributing system functionalities to single subactors and gathering similar func-
tionalities. Different architectural patterns can be applied to it, e.g. [4]. As next step,
the single sub-agents’ goal models are detailed, by goal analysis, decomposition and
delegation.

Tropos4AS [13] extends TROPOS goal models to enable the description of systems
that shall be able to adapt to environmental changes. Tropos4AS introduces modelling
of an actor’s perceived environment and of possible failures that can be identified and
prevented by recovery activities. Moreover, goals can be annotated to define the run-
time goal achievement behaviour, with various goal types and conditions related to the
environment, for goal creation, achievement and failure. The resulting design model is
mapped into implementation language constructs to derive a code skeleton.

Fig. 1 shows details from the Tropos4AS metamodel, illustrating the composition of
a single Tropos4AS agent, an actor identified as sub-system actor at TROPOS detailed
design.

36 M. Morandini et al.

2.2 ADELFE: Cooperative Agents

ADELFE1 is an agent-oriented methodology for designing Adaptive Multi-Agent Sys-
tem (AMAS) [1]. MAS developed according to ADELFE provide an emergent global
function [10]. It is qualified as emergent because it is not coded inside the agent. To
obtain this emergent behaviour, the AMAS theory [5] propones to design agents with
the ability to autonomously and locally modify their interactions in order to react to
changes in their environment. This system is self-organising and is able to adapt to its
environment. According to the AMAS principles, interactions between agents depend
on their local view and on their ability to ”cooperate” with each other. Every internal
part of the system (agent) pursues an individual objective and interacts with agents it
knows by respecting cooperative techniques which lead to avoid or to remove Non Co-
operative Situations (NCS) like conflict, concurrence etc. Facing a NCS, a cooperative
agent acts to come back to a cooperative state and permanently adapts itself to unpre-
dictable situations while learning on others.

The ADELFE methodology covers the phases of usual software design from the
requirements to the implementation, with the addition of specific activities to support
the design of adaptive multi-agent systems.

The modelling process follows a bottom-up approach, defining the cooperation rules
and activities of the single agents, leading to an emergent behaviour of the system.

In the analysis phase, ADELFE gives guidelines to decide if the application is
adapted to an implementation following the AMAS principles. Furthermore, it pro-
vides guidance to identify cooperative agents among all the entities defined during the
final requirements. Concerning the design phase, three activities are added. The first
concerns the relationships between agents. The second is about the agent design. In this
activity, the cooperation failures are defined. Third, a fast prototyping activity helps to
build and verify the agent behaviour. Moreover, the implementation phase uses Model-
Driven Engineering principles to produce code skeletons for the MAY2 middleware.

The design phase is based on a AMAS metamodel characterising as precisely as pos-
sible the concepts involved in the AMAS principles and mandatory for ADELFE such
as Perceptions, Actions, Aptitudes, Cooperations Rules, Non Cooperative Situations,
Representations, Skills, etc. Figure 2 shows that a cooperative agent is defined with a
PerceptionModule, a DecisionModule and an ActionModule. Decision is implemented
with Rules tha trigger an action or a skill. These rules describe either standard behavior
(with StandardRules) or cooperation (with CooperativeRule) according to NonCooper-
ativeSituation type.

2.3 Comparing the Two Methodologies

Up to now, in this section we described two AOSE methodologies founding on very
different principles and having a different scope. While ADELFE is tailored to decen-
tralised, adaptive complex systems and follows a bottom-up approach to eventually

1 ADELFE is a French acronym for ”Atelier de Dveloppement de Logiciels Fonctionnalit Emer-
gente”, see http://www.irit.fr/ADELFE

2 http://www.irit.fr/MAY

http://www.irit.fr/ADELFE
http://www.irit.fr/MAY

A Goal-Oriented Approach for Modelling Self-organising MAS 37

Fig. 2. Portion of the ADELFE metamodel concerning the cooperative agent

reach the global goal of the system in an emergent way through agent cooperation, TRO-
POS claims to be a general methodology, where the system goals elicited by analysing
the organisational settings, through steps of refinement and decomposition lead to pro-
gram components implementable in software agents.

Albeit in both methodologies, agents are a metaphor for an autonomous entity with
own goals and abilities, trying to achieve their local goals, the process of obtaining the
single agent’s goals presents conceptual differences: ADELFE agents are identified and
their behaviour specified, analysing the domain entities, their role in the system and the
relationships between them. They create a complex organisation by having at run-time
a high number of instances for each agent type. The global goal of the system, which
the stakeholders want to obtain from the software system, is modelled in use cases, but
this global goal is not coded by the single agents and can only be observed, emerging
from the collective behaviour.

The TROPOS development process starts with requirements elicitation and analysis,
to capture the objectives of the stakeholders. The MAS architecture is then obtained by
analysing the organisational settings with the goals and tasks delegated to the system,
decomposing them and delegating their satisfaction to single roles or agents, following
general engineering rules to achieve low coupling and high correlation between the
tasks to be achieved by a single agent.

Next, the structure and abilities of the single agents have to be defined. In ADELFE,
a central role is given to agent interaction and coordination, specifying behaviour rules
and associated activities both for the agent’s nominal behaviour (i.e. the ordinary be-
haviour exhibited by the agent in a working situation without problems and failures)
and its cooperative behaviour (Especially focusing on how to react to collaboration
problems). Moreover, the agent’s belief (representation) of the outside world, and its
sensors and actuators are defined.

TROPOS agents are characterised both by the goals delegated from the stakehold-
ers, and the dependencies to other agents; the nominal behaviour is defined by its goal
model, which includes plans to perform and resources to provide, to achieve goals.

38 M. Morandini et al.

By the Tropos4AS extensions, the goal runtime behaviour can be further specified,
defining goal types and conditions on to the environment perceived by the agent. Ex-
ceptional behaviour can be defined by modelling possible failures, causing errors, and
recovery activities.

Finally, In the design phase, in both TROPOS and ADELFE, further details on the
implementation can be given by UML2.0 diagrams.

3 Modelling of Self-organising MAS

Tropos4AS follows a top-down approach from the system to the single agents and their
behaviour, and achieves traceability by decomposition and delegation of goals through
the design phases.

TROPOS requirements modelling is prominent for it’s ability to capture the organi-
sational settings where the system to develop will be integrated and the dependencies
and responsibilities of the agents in the system and the actors playing different roles in
the organisation.

However, TROPOS, as well as Tropos4AS, lack of support for agent organisations,
i.e. for modelling the dynamics of collaboration between software agent instances in a
multi-agent organisation where each modelled agent has various instances, which can
also be dynamically added and removed.

The ADELFE methodology was created specifically for the development of such
agent organisations. However, it adopts a bottom-up approach, to achieve the system’s
goal in an emergent way; the relationship between global goal and single agent’s be-
haviour is not modelled and the global goal can only be observed from action and
interaction of the parts.

Integrating ideas and modelling steps from ADELFE we enrich Tropos4AS for the
modelling of agent organisations.

A bottom-up addition of ADELFE cooperation rules (which fit well into the actual
concept of failure modelling) will give to the run-time agent instances the knowledge
for selection of and cooperation with their peers, and thus achieve an emergent self-
organising behaviour to adapt to a changing environment.

3.1 Metamodel Extension

Here, we investigate how to extend the Tropos4AS meta-model with concepts taken
from the ADELFE meta-model, and revise the Tropos4AS design process including
steps that belong to the ADELFE approach.

To improve modelling the interplay of an agent with the entities and actors inside
and outside the software system under development, we explicitly add the concept of
agent’s knowledge about itself and about its environment.

ADELFE provides modelling of the agent’s knowledge by characteristics (facts the
agent is sure about), representations of the environment as perceived through sensors, and
the agent’s skills (Fig. 2). We integrate characteristics and representations (corresponding
to the agent’s belief) in the extended model. Information captured by Skills, Aptitudes,
the agents Actions and its nominal behaviour, encoded in Rules, is mainly covered by the
TROPOS goal model, a main component of the Tropos4AS metamodel (Fig. 1).

A Goal-Oriented Approach for Modelling Self-organising MAS 39

Fig. 3. Metamodel for adaptive, cooperative agents, which extends the TROPOS4AS meta-model
with ADELFE concepts (simplified view of the goal model)

Understanding the interplay between the agent and its environment is of major im-
portance to understand and model a system’s self-adaptivity. To model the agent’s en-
vironment we integrate ideas from the Agents and Artifacts approach [15]. Artifacts
represent the non-intentional entities (ADELFE passive entities), in- and outside the
boundary of the system to develop. They provide an interface to the external world, to
the users and also to other agents, through social artifacts such as a whiteboard or a
communication channel.

The extended metamodel is shown in Fig. 3 and defines an agent in the system (rep-
resented as a TROPOS system actor) with its components: goal model, knowledge (the
“belief base”), the system and the external environment.

Regarding the aim of this paper, the most important step from ADELFE, integrated
in the methodology, will be the elicitation of non-cooperative situations and modelling
of the discovered so-called cooperation rules. We enhance Tropos4AS failure modelling
by allowing to specify failure recovery with rules (class Failure recovery rule in Fig. 3).
Cooperation rules are considered s specialization of failure recovery rules, with a well
defined scope. Such failure recovery rules are composed by conditions to the agent’s
knowledge (on itself and its environment) and by recovery activities composed by rep-
resent a goal model fragment — a single TROPOS Plan (which corresponds to an
ADELFE Action) or a more complex goal model.

3.2 Modelling Steps

We adapt the TROPOS modelling process to modelling of the newly introduced con-
cepts. The proposed modelling steps are placed after the TROPOS Early (LR) and Late

40 M. Morandini et al.

Requirements (LR) phases, described in [17]. As result of the LR phase, the require-
ments are modelled in terms of strategic dependencies between stakeholders, such as
users and other external actors, to the software system, which is also modelled as an ac-
tor. The system actor has its own goals, plans, resources which are derived along these
dependencies. This model is given as input to the following modelling steps.

Step 1. With the LR model in input (an example in Fig. 4), define the system from
the ADELFE viewpoint (ADELFE activity 12): identify passive and active enti-
ties in- and outside the system to develop, and identify from the active entities
the autonomous agents participating in the collective task. Output: an AMAS-ML
System-Environment diagram (Fig. 5).

Step 2. In the TROPOS AD phase, guide the decomposition of the system actor iden-
tified in the LR diagram, into sub-actors (the agents in the system), according to
the agents identified in the AMAS-ML system-environment diagram. The TROPOS
system will include agents participating to this global task and agents achieving non-
collective goals delegated by some stakeholder, or that have to supervise the collec-
tive task. The actors participating in self-organisation are highlighted (Fig. 6).

Step 3. With the TROPOS model resulting from Step 2 in input, detail the high-level
nominal behaviour of the single agents in the system by defining their goal and
plan dependencies, and detailing their goal models by TROPOS goal analysis, until
finding the plans to achieve the goals. The environment perceived by the agent
is modelled considering the passive entities identified in the previous step, and the
resources modelled in Tropos LR. From the dependencies and interactions between
entities, the perception and action functionalities of the artifacts in the environment
can be identified. Beliefs describe the agent’s perception of these artifacts. This step
is no more detailed here as it is not central to self-organisation.

Step 4. With the Tropos4AS model of Step 3 in input, which includes the dependen-
cies between agents, focus on the collective task and define the necessary inter-
actions, following ADELFE activity 13. Give special attention to failures that can
arise from perturbations in the interaction between agents (which are cooperative
by definition). The exceptional behaviour of each agent is now detailed by identi-
fying non-cooperative situations that can arise. It is captured by conditions on the
agent’s knowledge together with the recovery activities to execute (an example in
Table 1). These rules guide the single agent’s self-organising behaviour, with activ-
ities that can be categorised in three groups: change of the own behaviour (tuning),
change of partnership (reorganisation), and creation/deletion of agents (evolution).

Next, following the Tropos4AS process, the goal model built in step 3 can be detailed,
adding conditions, goal types and relationships, to define a more detailed nominal be-
haviour, and modelling possible failures not ascribed to collaboration. Modelling can
continue with TROPOS Detailed Design (DD), detailing plans (capability level) and
low-level interactions by UML diagrams [17], obtaining models that can be directly
used as input for the implementation phase. For example, following a mapping as
in [12], goal models can be mapped to Jadex agent code, artifacts to Java classes and
failure conditions, including cooperation rules, to goal conditions.

A Goal-Oriented Approach for Modelling Self-organising MAS 41

4 Application to an Example

The design process is shown on a conference management system (CMS) example, de-
scribed in [6], a case study used several times for agent systems developed with different
agent-oriented software engineering methodologies [7].

A conference management system involves several stakeholders and has to satisfy
users playing various roles, such as authors, reviewers, program committee members and
the publisher. In the submission phase, authors need to be supported, and subsequently,
R4P suitable reviewers have to be found for each paper, distributing the workload evenly.
For this, each paper is described by KP keywords providing its main expertise area. Each
reviewer describes its expertise fields with KR keywords and should review at most P4R
papers.

Reviews have to be collected and evaluated to decide about acceptance or rejection
of each submission, and finally the authors have to be notified, and the corrected camera
ready papers collected and formatted. The prepared proceedings have then to be handed
out to the publisher for printing. Fig. 4 shows the corresponding TROPOS LR diagram.

We want to obtain a system composed by agents associated to each physical entity
or role that has the need of autonomous decision and interaction, e.g. one for each
paper, reviewer, etc. These agents are not “personal agents” acting selfish for the benefit
of their relative stakeholder, but agents belonging to the system that are trusted and
cooperative.

Interesting phases from the point of view of self-organisation between agents (which
will then result in a system-mediated collaboration between physical actors or entities)
are the assignment of papers to reviewers, the collection of reviews and the decision
of paper acceptance. We focus on the scenarios involving the reviewers. The reviewing
process can possibly also be exposed to different kinds of unwanted perturbations. For
example, unavailable reviewers, an unbalanced amount of papers in a particular area
with a small number of competent reviewers, or withdrawn for any reason. Despite
these eventualities could, in this small example, also be handled deterministically, they
give a good example to show how a robust system should self-adapting, to meet its

Fig. 4. TROPOS Late Requirements (LR) analysis: Definition of the system’s objectives. Notice,
that dependencies between actors entail a flow of information in the opposite direction.

42 M. Morandini et al.

objectives. We now show the modelling process, going through the steps defined in
Section 3.2.

4.1 Architecture

Following Step 1, we analyse the diagram in output of the TROPOS LR phase (Fig. 4).
We identify 7 active and 2 passive entities. The active entities participating in the sys-
tem’s collective task are the paper and reviewer agents, representing the single
submitted papers and the reviewers (Fig. 5).

We give to the PC chair agent – an agent in TROPOS, and an active entity in ADELFE
(but not one participating to the collective task) – the charge to observe the society and
to decide when a stable and optimal state is reached, in which all papers are assigned to
reviewers. It will also be able to advise reviewer agents to relax some constraints (e.g.,
allocation of more than P4R papers per reviewer).

Fig. 5. Adelfe system-environment diagram showing the participating entities and the cooperative
agents, inside the system boundary, related to the review assignment scenario

Guided by the agents and active entities identified in Fig. 5, following Step 2 we
decompose the CMS system in (Fig.4) into four sub-actors: paper agent and
reviewer agent, which take part in the collective task of paper-review assignment,
will be associated to the single physical papers and reviewers. The program chair
agent and the proceedings agent get their goals delegated from the physical ac-
tors playing the respective role in the organisation where the system is deployed and
have thus also to be part of the software system (Fig. 6).

4.2 Detailed Design

In Step 3, the goals delegated from the stakeholders to the system are refined in the goal
models of each sub-actor. Goals are decomposed until they can be operationalised by
plans. Also, new dependencies between the different sub-actors arise (Fig. 7).

Tropos4AS provides the means for capturing the nominal goal achievement be-
haviour, defining when a goal will be activated, achieved, or dropped, capturing its

A Goal-Oriented Approach for Modelling Self-organising MAS 43

Fig. 6. TROPOS diagram of the multi-agent architecture

Fig. 7. Details form the goal models of the sub-actors paper and reviewer. Key in Fig. 6.

representation of the environment and linking its execution to environmental changes.
For example, the goal get approp review is created after R4P reviewers were as-
signed to a paper; achieved when R4P reviews are collected; and failed if a review is
missing at the deadline.

Individual goals/objectives of agents. In order to give a detailed view, we limit to the
scenario of paper assignment to reviewers. Without a centralised distribution of papers
to reviewers, the relative agents have to find a relevant allocation between papers and
reviewers by self-organising to achieve an optimal distribution of papers and a timely
collection of appropriate reviews, being robust for possible perturbations.

In Step 4, from the TROPOS model in output of step 3, we refer the local goals and
the interactions (goal, task and resource dependencies) of the agents participating in

44 M. Morandini et al.

the collective task, whose details will now be further modelled following the ADELFE
process.

In order for any paper to meet reviewers, we design the system environment as a big
room (a grid in practice) where reviewers can stand on at most one square. Paper agents
can move on it to find matching reviewers. This approach was already experimented
for a dynamic time-tabling elaboration with good results [18]. Furthermore, we define
the notion of criticality of the paper agent, which is a criteria to know which one
is under greatest number of constraints. It describes its difficulty to find a reviewer; it
corresponds to the number of reviewers who have been met but are not relevant.

Nominal behaviour. Reviewer agents are placed on the grid and don’t move. Paper
agents are initially placed randomly on the grid and move in order to find reviewers and
store their place under some constraints such as a reviewer cannot accept a paper if he
is also author of the paper. Each paper agent remembers last N reviewer agents that it
met, where it met them and what are the keywords associated to each.

Cooperative behaviour. The behaviour for the cooperation between the agent instances
at run-time is defined by defining the agent’s reaction to situations that are recognised
to be “non-cooperative”. This behaviour is expressed by collaboration rules containing
activating conditions and associated recovery activities. Table 1 contains possible non-
cooperative situations, and the collaboration rules, composed by a state and conditions,
and the recovery activity to perform.

Take the example of the paper agent (Non-cooperative situation PaperNCS3 in
Table 1): If a paper finds a reviewer that fits to its keywords but is already associated to
P4R papers, the less critical of them is asked to find a new reviewer (reviewer conflict).

Table 1. Description of main NCS for Paper-agents and Reviewer-agents. They will be modelled
by cooperation rules.

Name State Description Conditions Recov. Activities
PaperNCS1 Exploration A paper is getting closer to a re-

viewer already busy with another
paper

Searching
reviewer

Move in a differ-
ent direction to find
another reviewer

PaperNCS2 Exploration Two reviewers are perceived One of them is
already busy

Move towards the
reviewer that is
free

PaperNCS3 Reviewer
conflict

A paper found a reviewer that is
already associated to P4R papers

Reviewer asso-
ciated to P4R
papers

Ask the less critical
paper to search for
another reviewer

PaperNCS4 Highly
Critical

Paper agent is very critical and ad-
equacy with reviewer is not null
(but < KP)

High criticality
and 0 < ade-
quacy < KP

Association with
reviewer is con-
cluded

RevNCS1 No Match-
ing

Matching keywords with an arriv-
ing paper is not obtained

Not enough
matching key-
words

Reviewer gives
links to relevant
neighbour agents

RevNCS2 Search
Promotion

Reviewer agent promotes ”mu-
tual search” by asking paper agent
what reviewers were already met

No match-
ing keywords
between the two

Remember paper
agent’s reviewers
met.

A Goal-Oriented Approach for Modelling Self-organising MAS 45

So, if a paper agent is very critical and adequacy (keywords matching) is not null, the
association with the reviewer must be established. At the reviewers side, when a paper
agent arrives, adequacy is computed. If matching is not obtained, the reviewer gives hints
for other reviewers in its neighbourhood which could have enough matching keywords.

To conclude self-organisation at a point that a suitable configuration is achieved, the
(single instance) PC chair agent observes the papers, which expose their criticality
and their state, ranging from satisfied to unsatisfied.

4.3 Discussion

The resulting design can be compared with a standard TROPOS, Prometheus and O-
MaSE design of the CMS, as published in [7]. Despite it is divided into different agents,
the TROPOS architecture achieved by a top-down decomposition of the system to sub-
systems is centralised and not a MAS of collaborating agents, as specified also in the re-
quirements. For the same example, also the Prometheus methodology provides a similar
solution, while O-MaSE gives a MAS architecture similar to ours, with personal agents
to support the stakeholders, but centralised review assignment and paper selection.

If the system to develop is adapted to an AMAS approach (as verified in the first
steps of ADELFE), such as this example, the proposed combined approach promotes
the development of decentralised, distributed MAS for problem solving, and gives the
possibility to deal with self-organisation of the collaboration links between agent in-
stances, at a class (agent or role) level, which is not clearly representable in TROPOS.

The application of this approach combining the two modelling paradigms and meta-
models is therefore restricted to a particular subset of systems, but provides higher
expressivity; modelling also gains from the detailed guidelines available in ADELFE to
identify system entities and agents and to define inter-agent cooperation.

However, there are different drawbacks. The emergent behaviour coming from the
bottom-up approach to self-organisation, performed by modelling the single reactions
to non-cooperative situations, can be validated only by empirical study, which is out of
scope of this paper. Thus, the link between this bottom-up approach and the objective of
the system is still not straight-forward. Still, we think that by combination with the top-
down TROPOS goal analysis and decomposition, we are able to shrink the gap between
global system goals and cooperation rules.

A verification of such systems, particularly a verification of the emergent behaviour
arising from cooperation rules, can only be achieved by testing. The approach proposed
by Nguyen et al [14] derives testing goals from TROPOS goals and generates test sce-
narios by an automated, evolutionary technique.

5 Related Work

Currently, the works on methodologies focusing on self-organisation in multi-agent sys-
tems tends to increase. Tom de Wolf and Tom Holvoet have proposed a full lifecycle
methodology customising the Unified Process [19]. At the requirement analysis phase,
identification of macroscopic properties which must be shown by the running system is
added to the classical steps. Then, the design phase is customised with two steps: one

46 M. Morandini et al.

for deciding whether or not it is relevant to use a self-organising system and the other for
exploiting existing practices and experiments. At the verification and testing phase, an
empirical approach based on iterative development feedback is proposed. This method
does not provide tools in order to choose existing approach to code self-organisation.
The interesting and original part of this method is that it focuses on the system
validation.

In [4] the authors present a case study of a decentralised multi-agent system for
ambient intelligent scenarios, motivating the need of novel organizational structures of
agents that result more flexible than traditional ones, e.g. broker and matchmaker, in
order to deal with context changes. The architectural design phase has been conducted
by the TROPOS modelling language in order to include the social surroundings needed
to better characterize MAS architectural requirements. The resulting structure, Implicit
Organisation, includes the self-organising property for the reassignment of the mediator
role, i.e., the architectural requirement of disintermediation. Nevertheless, [4] does not
detail the agent coordination level.

Gerhenson [11] proposes a domain-independent methodology for designing and
controlling self-organizing systems. This iterative and incremental methodology
includes several steps: Representation, Modelling, Simulation, Application and Eval-
uation, which are interrelated. The main point of this method is that the distributed
control is also specified in order to always influence (by reducing friction and promot-
ing synergy) the system and ensuring it will produce the desired behaviour. The work
is more a philosophical work aiming at understanding these complex systems but also
at designing them.

Another example of framework for engineering self-adaptive and self-organising
systems is MetaSelf [8] which takes into account the design and the run-time levels.
At the analysis phase, the requirements related to the properties of the components of
the studied systems, the rules (local and global) that guide their behaviour and how the
process development has to be carried out are identified. Depending on these properties,
the relevant self-* architectural patterns and adaptation mechanisms are selected during
the design phase. During the implementation phase, the run-time infrastructure, com-
ponents, policies and metadata are developed. These frameworks rely on established
general principles that fit any kind of self-* system but some guides for developers are
missing.

Gardelli [9] presents an approach to engineer self-organising MAS from the early de-
sign phases. The architectural pattern adopted is based on the Agents and Artefacts meta-
model. Designing a self-organising MAS consists in embedding the self-organisation
mechanisms in environmental agents and properly designing their interactions with the
artefacts of the environment. The design approach comprises three-steps. Modelling first
provides an abstract model of the system in which user agents, artefacts and environ-
mental agents are characterised. The second step uses stochastic simulation to study the
system dynamics through statistical analysis of results, considering that proper parame-
ters are provided for artefacts and agents. The last step consists in tuning them until the
desired dynamics appears. This proposal is mainly a guide for early-designing systems
based on self-organising patterns that already exist such as natural ones.

A Goal-Oriented Approach for Modelling Self-organising MAS 47

6 Conclusion and Future Work

To promote the development of a decentralized, collaborative MAS, this work pro-
poses to enhance the goal-driven AOSE methodology TROPOS with concepts and mod-
elling steps from ADELFE methodology. The synergy of both software engineering
methodologies allows the characterisation of a decentralised MAS by the definition
of intra-agent coordination properties and enhances the expressivity of the TROPOS
modelling language. The designer is now guided along a top-down goal-oriented mod-
elling process analysing the intentions of the system’s stakeholders, which is enhanced
with specific design steps devoted to the bottom-up specification of agent coordination.
The resulting agents are able to rearrange their cooperations, leading the MAS to opti-
mise the achievement of its current organisational goal, bringing forth global emergent
behaviour.

Traceability of requirements through the design phases until the definition of the
agents behaviour is improved, reducing the conceptual gap by maintaining the concept
of goal until detailed design and –if a BDI platform is used for the implementation, e.g.
by a mapping as in [16]– even until run-time. This traceability is important especially
if requirements change during system development and maintenance.

Future work concerns detailing the complete modelling process, leading to a goal-
oriented methodology where the requirements analysis for adaptive systems can be
conducted both at agent level and at organisation level. Besides, we want to further
investigate on the benefits of including TROPOS goal modelling steps in the ADELFE
methodology in order to improve the traceability of requirements through the design
phases.

References

1. Bernon, C., Camps, V., Gleizes, M.-P., Picard, G.: Engineering Adaptive Multi-Agent Sys-
tems: The ADELFE Methodology. In: Henderson-Sellers, B., Giorgini, P. (eds.) Agent-
Oriented Methodologies, pp. 172–202. Idea Group, NY (2005)

2. Bernon, C., Gleizes, M., Peyruqueou, S., Picard, G.: ADELFE: A Methodology for Adaptive
Multi-agent Systems Engineering. In: Petta, P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW
2002. LNCS (LNAI), vol. 2577, pp. 156–169. Springer, Heidelberg (2003)

3. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos: An Agent-
Oriented Software Development Methodology. Autonomous Agents and Multi-Agent Sys-
tems 8(3), 203–236 (2004)

4. Bresciani, P., Penserini, L., Busetta, P., Kuflik, T.: Agent Patterns for Ambient Intelligence.
In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp.
682–695. Springer, Heidelberg (2004)

5. Capera, D., Georgé, J.-P., Gleizes, M.-P., Glize, P.: The AMAS Theory for Complex Problem
Solving Based on Self-organizing Cooperative Agents. In: TAPOCS 2003 at WETICE 2003,
Linz, Austria, June 9-11. IEEE CS, Los Alamitos (2003)

6. DeLoach, S.A.: Modeling organizational rules in the multi-agent systems engineering
methodology. In: Canadian Conference on AI, pp. 1–15 (2002)

7. DeLoach, S.A., Padgham, L., Perini, A., Susi, A., Thangarajah, J.: Using three aose toolkits
to develop a sample design. Int. J. Agent-Oriented Softw. Eng. 3(4), 416–476 (2009)

48 M. Morandini et al.

8. Frei, R., Serugendo, G.D.M., Barata, J.: Designing self-organization for evolvable assem-
bly systems. In: Brueckner, S.A., Robertson, P., Bellur, U. (eds.) SASO, pp. 97–106. IEEE
Computer Society, Los Alamitos (2008)

9. Gardelli, L., Viroli, M., Casadei, M., Omicini, A.: Designing self-organising environments
with agents and artefacts: a simulation-driven approach. IJAOSE 2(2), 171–195 (2008)

10. Georgé, J.-P., Edmonds, B., Glize, P.: Making self-organising adaptive multiagent systems
work. In: Bergenti, F., Gleizes, M.-P., Zombonelli, F. (eds.) Methodologies and Software En-
gineering for Agent Systems, pp. 319–338. Kluwer Academic Publishers, Dordrecht (2004)

11. Gershenson, C.: A general methodology for designing self-organizing systems. CoRR,
abs/nlin/0505009 (2005)

12. Morandini, M., Penserini, L., Perini, A.: Automated mapping from goal models to self-
adaptive systems. In: Demo session at the 23rd IEEE/ACM International Conference on
Automated Software Engineering (ASE 2008), September 2008, pp. 485–486 (2008)

13. Morandini, M., Penserini, L., Perini, A.: Towards goal-oriented development of self-adaptive
systems. In: SEAMS 2008: Workshop on software engineering for adaptive and self-
managing systems, Leipzig, Germany, pp. 9–16. ACM, New York (2008)

14. Nguyen, C.D., Miles, S., Perini, A., Tonella, P., Harman, M., Luck, M.: Evolutionary testing
of autonomous software agents. In: The Eighth International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2009), pp. 521–528. IFAAMAS (2009)

15. Omicini, A., Ricci, A., Viroli, M.: Agens Faber: Toward a theory of artefacts for MAS. Electr.
Notes Theor. Comput. Sci. 150(3), 21–36 (2006)

16. Penserini, L., Perini, A., Susi, A., Morandini, M., Mylopoulos, J.: A Design Framework for
Generating BDI-agents from Goal Models. In: 6th Int. Conf. on Autonomous Agents and
Multi-Agent Systems (AAMAS 2007), Honolulu, Hawaii, pp. 610–612 (2007)

17. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: High variability design for software agents:
Extending tropos. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 2(4)
(2007)

18. Picard, G., Bernon, C., Gleizes, M.-P.: ETTO: Emergent Timetabling Organization. In:
Pěchouček, M., Petta, P., Varga, L.Z. (eds.) CEEMAS 2005. LNCS (LNAI), vol. 3690,
pp. 440–449. Springer, Heidelberg (2005)

19. Wolf, T.D., Holvoet, T.: Towards a methodology for engineering self-organising emergent
systems. In: Czap, H., Unland, R., Branki, C., Tianfield, H. (eds.) SOAS. Frontiers in Artifi-
cial Intelligence and Applications, vol. 135, pp. 18–34. IOS Press, Amsterdam (2005)

Engineering Agent Organisations in a Business
Environment

Dimitris Traskas and Julian Padget

Department of Computer Science
University of Bath, BATH BA2 7AY, UK

dtraskas@googlemail.com, jap@cs.bath.ac.uk

Abstract. Motivated by demands from the commercial world for software sys-
tems that can assist in the reorganisation of processes for the purpose of reducing
business complexity, we discuss the benefits and challenges of the multi-agent
approach. We concentrate on the engineering aspects of large scale multi-agent
systems and begin our exploration by focusing on a real world example from
the call centre industry. The critical call routing process seems appropriate and
useful in presenting our ideas and provides a good starting point for the develop-
ment of agent organisations capable of self-management and coordination. The
main contributions of this work can be summarised as the demonstration of the
value of agent organisational models that do not replicate the typical hierarchical
structures observed in human organisations and that a quite basic peer-to-peer
structure produces very similar performance indicators to a mature simulator that
uses conventional techniques, suggesting further improvements may readily be
realized.

1 Introduction

Over the last few decades the commercial world has become increasingly complex in
an attempt to respond to rising consumer demands for more competitive products and
services. Existing systems need to adapt and evolve rapidly in order to become more ef-
fective and flexible resulting in highly dynamic environments. Many businesses attempt
to solve the complexity problem with simplification; essentially reducing the number
of products and services offered or even the size of their customer base. The desired
outcome of this approach is to simplify the processes and systems in place—however
reduced performance and profits can also result.

In this paper we attempt to tackle the problems identified directly using multi-agent
systems as the base technology and formal models of organisations as the informing
theory in order to develop prototype solutions capable of operating in such dynamic
environments. Our long term goal is the development of large scale agent societies
interconnecting different areas of the business and capable of delivering their inher-
ent benefits. The effective application of these systems in the business world depends
heavily on three key factors: (i) the general framework that will be used to develop
and deploy them, (ii) the modeling approach followed during the design process, and
(iii) the organisational models used.

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 49–64, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

50 D. Traskas and J. Padget

We explore the multi-agent approach using a real world example from the call cen-
tre domain and client data provided by our sponsor. Concentrating on the critical call
routing process we provide a brief analysis of the problem and the key business ob-
jectives. Since agents are well suited to represent self-contained, autonomous modules
of software capable of making independent decisions and taking actions proactively
we investigate their use in developing the dynamic organisations required. An initial
architecture is modeled based on the obvious hierarchical structure of call centres and
compared by means of simulation with a decentralised alternative using the key perfor-
mance indicators (KPIs) common in this domain. The hierarchical model is required
to establish a baseline with which we can develop comparisons when working with
alternative designs.

The remainder of this paper is laid out as follows: in the next section (2) we outline
the business case for a multi-agent system in the call centre domain succeeded by (3)
the modeling approach followed and the organisational models developed. In section (4)
we present the experiments and metrics used to validate and present the performance of
the agent systems developed. Section (5) presents comparisons of the various metrics
derived from running the simulations on synthetic and real-world datasets and discusses
our findings. Finally section (7) summarises the main conclusions of the paper and
outlines future work.

2 Call Centre Case Study

Call centres are fundamental to the operation of numerous large organisations, emer-
gency and government agencies and all types of customer service providers[9]. They
constitute a vital component of and interdependency between many economies around
the world, employing millions of people. As such, improvements in their management
and performance would seem likely to have a significant impact. WorkForce Manage-
ment (WFM) systems and a number of techniques borrowed from queueing theory
through to artificial intelligence and simulation are used to forecast future inbound call
volumes, allocate shifts efficiently or experiment with alternative business models. All
along, the aim is to optimise performance and maintain the desired service level while
preserving a balance between costs and service.

However call centre management and critical aspects of it such as the call routing
process which we focus on in this paper, are becoming increasingly complicated due
to the growing complexity of businesses. Call centres are getting bigger, physical co-
location is becoming impractical and there are more interacting factors that complicate
decision-making. Often the effects of poor call centre management are perceived as
unsatisfactory levels of service offered to customers, inefficient allocation of resources
which leads to increased running costs or high staff turnover.

We believe an appropriate response to these problems is to enable the construction of
distributed virtual call centres, that take on much of the responsibility for their organi-
sation and management and are able to adapt both to changes in load (environment) and
changes in requirements. Control should become expressible through KPIs and QoS re-
lationships and not by directly modifying the rules of the processes in place. Furthemore
evaluation of alternative business models should become practical and cost effective

Engineering Agent Organisations in a Business Environment 51

with the virtual call centre serving the purpose of an experimentation testbed capable
of simulation and application. The overall characteristics of multi-agent systems moti-
vated us to investigate their use as the base technology for implementing the software
systems required. In addition the MAS paradigm seems appropriate for conceptualiz-
ing and designing highly dynamic models that can operate across multiple business and
technology domains.

In the next few sections we analyse the call routing process and discuss its role in
meeting business objectives. We subsequently demonstrate the agent-based modeling
approach to the problem followed by the implementation of the prototype systems.

2.1 Call Routing Process

The term ‘call-routing’ is probably most commonly associated with telecommunica-
tions networks, where the task is to avoid hot-spot creation, maximise throughput and
minimise latency. Popular approaches to this problem to include swarm routing [4] and
stigmergic optimisation [5].

Call-routing in call centres is a somewhat different problem that is more akin to
distributed resource discovery and allocation. Conventional implementations of call-
routing in call centres are tightly controlled, centralised systems of asynchronous com-
ponents, where all the decision-making is embedded in a single element—the call
router—that communicates with the call-handlers (typically known as agents in the
call-centre literature: here we use the term “handler” to alleviate confusion with the
term (software) agent).

During the call routing process a call arrives from the telecommunications network
and is ready for allocation by the ‘Automatic Call Distributor’ (ACD) part of the ‘Com-
puter Telephony Integration’ (CTI) system. The ACD processes a set of business rules
which determine which call has the highest priority. These rules use the call type or
skill – as it is usually referred to in this industry – to identify the work with the highest
criticality for the business in terms of performance. Another parameter used is handler
availability, the resources waiting the longest without work will be at the top of the
allocation list excluding those on breaks. The ‘longest available handler’ algorithm is
common in most call centres although the simpler random allocation is not unusual ei-
ther. If there is no available handler the call is inserted into a queue of calls that are
ordered by waiting time and skill priority. Whenever a new resource becomes available
the ACD gets notified and begins the allocation process for the list of calls currently
in the queue. If customers wait too long and terminate their link with the ACD the call
gets registered as abandoned and removed from the queue.

It becomes apparent that the ACD is a critical component of the call centre and any
change requires expert knowledge and experience. Resource planning teams are able
to manipulate the call routing scripts in order to improve performance and employ a
number of techniques such as simulation and queueing theory (Erlang-C) to experiment
with alternative operational models. However we have observed a number of problems
through personal experience in this industry. Many call centres operate within tight time
scales and budgets and are managed by poorly trained management staff. Collecting
accurate data that will assist managers during the planning process is a difficult task and
depends heavily on reliable data sources and reporting tools. It is common to have data

52 D. Traskas and J. Padget

misinterpretations or encounter legacy software that cannot coexist with newly installed
systems. As a result it is harder to develop precise simulation models and inform the
decision making process. Additionally the centralised nature of the Call Router presents
a single point of failure and a bottleneck with the increased demand of requests by the
business.

We aim to address the problem from the MAS perspective and adopt agents in rep-
resenting the key elements of the call routing process. Our objective is to implement a
prototype system that can operate for application and simulation while using the same
rules for resource discovery and allocation. Essentially business logic and rules in the
form of java classes are injected within the agents and the mode of operation – applica-
tion or simulation – does not affect that logic. Thus we expect improved data collection
and accuracy while planning teams will have available an environment to experiment
with the distribution of resources and skills or allocation rules.

3 Modelling Approach

We have encountered a number of challenges in engineering the prototype agent-based
solutions we are presenting here primarily due to their scale. Borrowing techniques
from the object-oriented methodology we identified the key elements of the call centre
to develop a conceptual model whilst satisfying our goal of a scalable, autonomous
system. The key characteristics of the call centre model are summarised below:

– The Call Centre consisting of customer calls, handlers and routing information.
– The Call Distributor or Router which receives calls and routes them to the human

agents.
– The Call which is a packet of information used by the Call Distributor and which

contains customer details, type of call and time of arrival.
– The Skill which is the type of call that a call handler can handle, e.g technical

support.
– The Skill Group a grouping mechanism used to define the different skills call

handlers may have e.g an insurance skill group consists of motor, home and pet
insurance.

– And finally the Call Handler a trained worker with a set of skills or skill group able
to answer customer requests.

Using this model we then designed and implemented an initial prototype multi-agent
system. It is clear that the fundamental parts of the call routing process are the handler
and router. These two key elements can be represented by an agent and interact as
they would in the real world. An agent operating in this environment communicates
using a simple set of messages such as ‘accept call offer’, ‘reject call offer’ or ‘send
confirmation’. Within those messages we include useful information about the caller,
the time or type of call and propagate it using the message transport mechanism.

Early on we identified a number of problems with the hierarchical approach mainly
due to the large number of messages being sent. For all agents to perceive the current
state of their environment it was necessary to propagate information to each and every
one of them. This introduces two problems, the design depends heavily on the router

Engineering Agent Organisations in a Business Environment 53

agent which now becomes a bottleneck and a single point of failure and also the number
of messages required is now increased dramatically.

A decentralised architecture however could potentially consist entirely of handlers
and not require the router agent. Handlers in this design are servers and can route the
calls to the appropriate agent colleague if they behave in an unselfish manner. Nonethe-
less with this design there are important questions to be answered:

– Where can we store and maintain the queue of calls?
– How do we ensure that the last available handler receives the highest priority call?
– What happens when a call gets abandoned? Can we inform all the handlers of that

event?
– What if two handlers decide to handle a call at the same time? Which is the entity

that will prioritise?

The research area of peer to peer networks [1] provided us with a number of ideas
although not directly applicable to our problem. The concept of a peer is almost in-
distinguishable from that of an agent so any design patterns used in this area could be
useful to us too. An interesting concept is that of peer rings where information prop-
agates in a cyclical manner. Potentially call information could be propagated this way
and system integrity ensured. Another area we had some inspiration from was the work
on semantic overlay networks [3] and the idea of cluster formations based on certain
agent properties. A handler agent that can only answer calls of a specific type seems
like a reasonable property to use for that purpose. Using the skill information we tag
agents and during an initial bootstrapping phase allow them to self-organise in skill-
based clusters.

In the next two sections we present both architectures in detail and present their key
concepts. For the purpose of this paper we largely omit implementation details as we
only need to expose a high level view of the systems developed.

3.1 The Hierarchical Model

The initial and apparently obvious architecture for the call routing process is essentially
a consequence of earlier human organisational structures: a telephone operator receives
calls and then routes them to the longest available handler. However, the pattern it im-
plements is intrinsically a function of the strengths and weaknesses of human agents.
Nevertheless, an architecture that does not conform to the expectations of stakeholders
may face difficulties in being accepted.

The hierarchical model mimics the current allocation process and requires three core
agents: Administrator, Router and Handler. The Intelligent Call Distributor (ICD) as
it was initially termed, is potentially capable of operating for application and simulation.
The difference lies heavily on the deployment process and the capabilities of the agent
platform used.

Exploring the routing process even further we identify a Router agent receiving cus-
tomer calls in random intervals and using the routing information defined in the model
to search for an available handler. This routing information is in the form of skills, skill
groups and priorities as defined by the business. Once an appropriate handler agent is

54 D. Traskas and J. Padget

Fig. 1. Overview of the ICD architecture

found a negotiation begins with a proposal. This negotiation either leads to an allo-
cation or the continuation of the resource discovery process. The Router queues calls
that it cannot allocate to a handler and waits for the next cycle of processing. In a real
world scenario a customer waiting too long will abandon the call. We account for this
behaviour using a patience time model which we have developed based on the expo-
nential distribution [10] appropriate for this kind of simulation delays. For each call that
arrives we generate randomised abandonment times using the formula below:

Time in seconds = (− ln(1 − r)σ)

where r is a random number between 0 and 1 and σ is the average patience time. The
same model is considered suitable to generate the handling times of agent handlers.
Eventually the Router will check for calls that have reached their patience time and
abandon them. Our design requires the Router and Handler agents to be synchronised
once an event such as a customer call arrives, achieved with the use of Finite State Ma-
chines (FSM). Below we describe in summary the key states of the Router and Handler
agents.

Router Agent

1. Receive model: The Administrator sends skill / skill group definitions and the total
number of handlers in a message.

2. Receive call: The Router waits for an incoming call from the Administrator.
3. Receive work requests: Handler agents send work requests to the Router with at-

tached current availability, working hours and the set of skills available. The Router
requires work requests from the total number of Handlers to be received in order to
proceed to the call allocation phase.

4. Allocate call: Once all work requests are received, the Router orders the list of
Handlers by availabiltiy and attempts to allocate the top call in the queue by sending
a proposal message to the Handler.

Engineering Agent Organisations in a Business Environment 55

Fig. 2. An example IRN with two skill groups and clusters

5. Receive confirmation: If a Handler is able to handle the work proposed and avail-
able – not on a break – will send back a confirmation message otherwise a rejection.
In the latter case the Router will attempt to allocate the work to a different agent
following the procedures of state (4). Calls that cannot be handled are added in a
waiting queue.

6. Check abandonment: In this final state the list of abandoned calls is checked and
any call where patience time has been reached becomes abandoned.

Handler Agent

1. Initialise: Similar to the initial state of the Router the agent requests skill and shift
information.

2. Request work: Handlers send work requests to the Router even if there is a possi-
bility that they will still be busy when the next call arrives.

3. Confirm or Reject: If a proposal message is received, the Handler will evaluate the
work offered and reply either with a confirmation or a rejection message.

3.2 A Decentralised Approach

In the absence of a Router, the Intelligent Routing Network (IRN) requires Handler
agents to coordinate and find the longest available handler with the right skill to handle
a call. IRN uses a semantic overlay network of skill group based clusters to allocate
calls. Clusters and connections are formed during an initial bootstrapping sequence
using the tagging mechanism first proposed by Holland [8]. Essentially handlers are
tagged based on their skill information and grouped in clusters.

The system uses two core agents: Administrator and Handler. The key character-
istics of this architecture are: (i) the formation of clusters able to handle different skills,
(ii) call queues per cluster, (iii) a negotiation cycle required to process every event, (iv) a
forward list used to transfer information from one agent to another, (v) state replication

56 D. Traskas and J. Padget

across all agents in a cluster. Handlers are linked in a circular list where one agent is
assigned the role of the first agent in the cycle. This agent is required to receive a new
call from the Administrator and complete a cycle for every action. When a call arrives
the first Handler will ensure to update the local queue of calls and thus maintain the
same state across all agents in the cluster. This is to prevent loss of useful routing infor-
mation when an agent or host fail and become disconnected from IRN. The forward list
is a simple mechanism which allows agents to wrap any information required for state
updates, call allocation and call abandonment. On completion of the update process the
agent will check availability and immediately send the forward list and current call to
the next Handler. Once the message arrives back to the first Handler a cycle is complete
and the information contained in the forward list provides the longest available agent
and call to be allocated. This cyclic processing of events is required to gather all infor-
mation necessary to allocate, queue or abandon a call and ensure that queues of calls are
replicated across all agents in the cluster. For the purpose of page economy we present
only the key states of the Handler agent below.

Handler Agent

1. Initialise: The agent requests initialisation data.
2. Ping: The agent starts sending ping messages to all agents in the network.
3. Pong: On receipt of a ping message the agent replies with pong and its skill group

attached.
4. Cluster formation: Once all agents in the network have replied the agent uses skill

group information to form a cluster.
5. Process new call: The first Handler in the negotiation cycle receives a new call and

checks the skill and current availability. The local waiting queue gets updated ac-
cordingly and ordered by the longest waiting call. All this information is forwarded
to the next agent in the cycle.

6. Allocate call: When a call completes one negotiation cycle information collected
is used to determine who is the longest available Handler. A new negotiation cycle
begins to clear all local queues from the call and allocate it. If there are more calls
to handle and available agents a new cycle begins to allocate it, otherwise calls are
tested for abandonment. A negotiation cycle is also required to abandon-clear calls
from all queues.

7. Process forwarded call: On receipt of a forwarded call Handler availability is tested
and added to the forward list. If this is the last agent in the cycle then the information
collected is used to allocate the call.

8. Abandon call: When a customer’s patience time is reached a call becomes aban-
doned and added in the forward list which is forwarded to the cluster.

4 Experiments

For validation purposes we conducted a number of simulation experiments with dif-
ferent scales and using synthetic and empirical data. We compared the performance of
the two solutions with that of an industry-standard call centre simulator from CACI

Engineering Agent Organisations in a Business Environment 57

Ltd1 called Call Centre Workshop (CCW) and actual data provided by one of CACI’s
clients. CCW is a commercial product used by a significant number of clients from the
software, retail, banking, insurance and mobile phone sectors. For our experiments we
used a set of performance metrics to validate and compare the results such as Service
Level (SL%), Calls Handled and Calls Abandoned, Queue Length and handler Util-
isation per interval [9]. These are the standard metrics used by call centre managers
and planning teams to measure business performance and assist in the decision making
process. Service Level is the percentage of calls answered within a business-specific
time frame. This time frame is called Telephone Service Factor (TSF) and is usually in
the range of 20-30 seconds. Service Level can be used to measure intra-day, daily and
weekly performance and is normally defined as:

SL% =
Calls Answered before TSF

Calls Answered + Calls Abandoned
× 100

Utilisation is defined as the percentage of time handlers that are busy per interval in a
day and Queue Length defined as the number of calls queued per interval. Other metrics
that are common in the call centre domain are Average Handle Time (AHT), Average
Patience Time (APT) which is the average time customers wait on the phone before they
abandon and Average Answer Time (ASA). We created synthetic datasets with an aim
to test the agent prototypes and allow all different scenarios to be handled by the agents.
An example synthetic model used has four skills, variable call density and shift breaks
during afternoon hours in order to demonstrate the expected drop in service level and
the increase of abandonment. The attributes of the model used can be seen in table 1.

Table 1. Synthetic Model (4 skills, 10 handlers, 1420 calls)

Skills TSF
(secs)

Priority AHT
(secs)

APT
(secs)

LOANS 20 1 120 180
MORTGAGES 20 1 180 240
PET INSURANCE 20 1 120 360
MOTOR INSURANCE 20 1 240 120

The second phase of the experimentation process was the use of real customer data.
We have data available from a number of clients but in many cases the computational
cost of running such simulations is prohibitive. Typical scenarios require 5,000 handler
agents and 400,000 calls in a day just to simulate one run of the call allocation process.

The call centre selected for our experiments is significantly smaller and part of one of
the UK’s leading mobile phone retailers. The client provided us with actual data from
one of their main call centres which we use to simulate one day with 560 Handlers,
43,365 incoming calls and 13 different skills. Calls received are considered to be within
service level if they have been answered within 20 seconds from the time of arrival.
Skill handling times were varied through the day, while customer patience times are
estimated on average to be 180 seconds.

1 http://www.caci.co.uk

http://www.caci.co.uk

58 D. Traskas and J. Padget

For the purpose of this work we set-up a very simple call routing model with no
skill priorities and a direct mapping of skills to skill groups. We then loaded the data
mentioned above in ICD and IRN and repeated the exact same process in CCW. The
average handling and patience times were used to generate randomly the time it takes
for a handler to handle a call and a customer to abandon it using the exponential distri-
bution models discussed earlier. We executed the simulation for 5 runs and compared
our results with those of CCW as well as the actual service level values. The client’s
resource planning team calculated the actual service level values after collecting all
the data necessary stored for that day in the ACD database and using the same routing
model with us. Unfortunately they were not able to provide other performance metrics
such as utilisation or queuelength that would be very useful for our experimentation
thus we only demonstrate a comparison of service level.

4.1 Call Centre Workshop (CCW)

CCW allows the user to develop simulation models of call centres and specify through
its user interface skills and skill groups, the number of handlers working on every pe-
riod, average handling and patience times and call allocation rules. Using a standard
workflow language CACI has developed a library of workflows for call centre processes
that are used in the simulation depending on the routing and queueing selected. When
the simulation begins: (i) handler resources are created, (ii) random calls generated for
each interval based on the specified call density, (iii) a routing workflow selected and
(iv) a simulation loop initialised. Each new call from the list is treated as a discrete event
and sent to the workflow for further processing. Through that process the call is checked
for skill, skill priority and sent to the longest available handler for allocation. Any call
that has not been allocated is queued until the next event comes and the clock moves
forward. An important step in the workflow is the check for abandonment, essentially
if the customer has reached her patience limits the call becomes abandoned. During the
simulation a Data Collector retrieves low level raw data that is subsequently parsed to
produce the performance metrics described in earlier sections. The routing workflows
used are standard for most simulations however CCW allows modelers to customise
the process based on business requirements. The ICD, IRN and CCW simulators follow
exactly the same business rules and constraints required for our experiments in order to
prove that the agent approach is equally effective.

5 Results and Discussion

Below we present comparisons with the metrics produced from the synthetic model
experiments. The graph in figure 3 shows changes in service level throughout the day
with a target service level of 80% represented by the green (horizontal) line, a common
target across many businesses and sectors. We wanted to demonstrate that the systems
behave as expected when incoming call volumes remain at high levels at certain periods
in the day while at the same time agents start their breaks. As it was anticipated we
notice a dramatic decrease of service during early morning and afternoon hours. The
overall variance of the daily average of service level between the ICD and CCW was

Engineering Agent Organisations in a Business Environment 59

Fig. 3. Service Level plot of hierarchical and decentralised agent-based systems compared with
CCW

3% and between IRN and CCW 9.6% which we believe is within the acceptable range
of 3%-10% of an operational model[11].

To further validate our model and confirm that the systems behave as they should we
also calculated the number of calls handled and abandoned through the day as we can
see in figure 4. We notice that between 13:00 and 14:30 the number of calls handled
drops significantly, that is because we have reduced the number of available agents by
60% at a very busy time in our hypothetical call centre. However the number of calls
abandoned increases during that same period reflecting the inability of the business to
service customers queueing for a very long time. The Resource utilisation plot demon-
strates that agents are generally very busy due to high volume of inbound calls and, as
expected, their availability drops between 13:00 and 14:30.

Finally the results shown in figure 5 demonstrate the performance of ICD and IRN
using the real world model and, we believe, they show a satisfying variance of 7.5%
between the daily average service level of the ICD and actuals and 5.8% between the
IRN and actuals. The prototypes appear to have sufficient accuracy considering the
complexity of the problem, the volume of data and the unknown parameters of the
client’s routing process. It would be very useful of course to use more metrics as service
level is a high level indicator and can sometimes hide some of the detail required.

The results presented in this section confirm that the multi-agent prototypes devel-
oped are effective and inspire us to further experimentation. There are however ineffi-
ciencies that became apparent during the course of this study. The frameworks available
for the development of large scale multi-agent systems are limited. We begun our devel-
opment with an object-oriented design of the call centre which allowed us to identify
the key agents. It would be useful during that phase to model the interactions of the
agents outside the agent platform and detect problems with the logic and state of the
agents that could bring the system to a deadlock or race condition. We lack the mod-
eling tools and methods that will allow not only us but also high level users of such
systems to manipulate and investigate the agents without coming into contact with the
low level implementation details.

Our first hierarchical prototype was developed using the JADE [2] agent platform
but due to scalability problems we continued our work with Cougaar which stands for

60 D. Traskas and J. Padget

Fig. 4. Calls Handled, Abandoned and Utilisation comparison plots

‘Cognitive Agent Architecture’ [7]. Cougaar is the product of an eight-year DARPA-
funded research project and developed to meet demanding scalability, reliability and
survivability needs. Agents in Cougaar contain plug-in components — rather than be-
haviours — and interact with each other via a blackboard-based publish and subscribe
mechanism — rather than messaging. The blackboard encourages the use of events for
agent interaction and is the primary mechanism for state management and message ex-
change. The plug-in software components provide a domain-specific behaviour to the
agent and can be added or removed at design or run-time. A simple relay mechanism

Engineering Agent Organisations in a Business Environment 61

Fig. 5. Service Level plot of hierarchical, decentralised, CCW and actuals

allows the communication across agents spawned within different host machines and
through the blackboard. For the purpose of our work we created different types of mes-
sages and packets of information that could be wrapped in a single message. Each agent
has to subscribe to the different message types and listen for incoming messages. The
platform so far has proven to be highly scalable and allowed us to deploy the real world
call centre model with 560 Agent Handlers. Its threading pool model and resource han-
dling is more rigorous than other platforms that we have examined and encourages
future use. Below we provide a summary of our findings:

– We have shown that a multi-agent architecture can be used effectively to manage
a business process with a real world example from the call centre industry. The
agent systems can allocate inbound call volumes to resources while adhering to
business rules and constraints. An inherent advantage of the proposed solutions
is their dual purpose. They can operate for application and simulation offering to
businesses an experimentation framework that will assist in the decision making
process by evaluating alternative operational models without the imposed risk and
cost of current approaches.

– We have demonstrated an approach where system architecture does not need to
follow human intuition which encourages the use of a hierarchical model. Instead
the solution should take advantage of the properties of agent-based organisations
of self-coordination and self-management.

– The inefficiencies that become apparent with the scale of the experiments con-
ducted indicate the need for further investigation of organisational models and
frameworks. The current state of MAS technology prohibits the deployment of
such systems within a commercial environment with the aim of upgrading exist-
ing infrastructure.

In general we believe that the multi-agent paradigm has many benefits to offer to the
corporate world but it is imperative to look into the problems and challenges of the

62 D. Traskas and J. Padget

technology and devise new methodologies and organisational models. Although the
domain of MAS advocates scalability as one of its benefits it is very difficult to find the
frameworks, supporting methodologies and tools required to develop these large scale
systems.

6 Related Work

Multi-Agent Systems have long been identified as a suitable framework for the develop-
ment of the virtual enterprise [14]. The effective application of agents in the commercial
world however has been minimal and even today with the advance of internet technolo-
gies and increase in computational power we have few examples to demonstrate. We
haven’t found many examples of MAS in the call centre sector and much of the re-
search work discusses agents as a useful abstraction for modeling business processes.

The work described in [13] concentrates on the ADEPT multi-agent architecture
which allows the coordination of agents across different business domains using nego-
tiation. ADEPT operates on the basis of transforming existing business processes into
a number of agencies under a hierarchy. The hierarchical structuring of agencies en-
ables the encapsulation and abstraction of services. The example used does not need to
identify the key performance indicators that are critical in the business process simu-
lated compared to ours and does not discuss how agent societies would organise in large
scale corporate environments.

In [12] the authors discuss the use of a meta-layer to assist in system adaptation
without requiring any global information. A semantic overlay network is created on top
of the lower level agents, however the specific tasks and roles agents can have are not
necessary to establish their organisation. This is a useful approach for some problems
but in the demanding business environment it is crucial to specify the exact business
rules and tasks of resources such as the Call Handler. Any system deployed in a corpo-
rate scale would have to deliver good measurable performance whilst being capable of
satisfying business rules and constraints and adapting to ever changing demands.

Finally in [6] we are presented with an overlay system of controller agents associated
with application agents. Controllers can detect rule violations based on their observa-
tions and sanction the violators by using reputation. The main difference with the call
centre example is that in our designs agents are tightly controlled and have limited free-
dom in their decision making process, as it is required by the business. We plan however
to experiment with alternative organisational models in the future where agents have a
lot more freedom to interact with each other whilst delivering good overall system per-
formance.

7 Conclusions and Future Work

This paper advocates the multi-agent approach in the corporate environment in order to
create software systems that are capable of self-organisation and management, adapt-
able to the ever changing requirements of businesses. More specifically we support the
case for an alternative model in call centre management and investigate the call routing
process, a critical operation in this domain. We develop two prototypes, a hierarchical

Engineering Agent Organisations in a Business Environment 63

system as a baseline model that mimics the current routing process and a decentralised
one that consists of self-organising and coordinating handler agents. Using synthetic
and empirical data we conduct a number of simulation experiments and show that the
hierarchical prototype is capable of performing equally well with the conventional call
router. The centralised manner of this design however exhibits a number of problems
such as inability to scale better, a single point of failure – the Router – and incapable of
adapting to changes in the process. Influenced by ideas from peer to peer computing and
semantic overlay networks we progress our work and implement a decentralised routing
network capable of handling call and handler prioritisation and queueing calls without
the need for a central control entity. Following the same experimentation methodology
we prove that this design is also equally effective when compared to our initial attempt
although it presents a number of challenges.

Future work includes the investigation of alternative decentralised architectures that
are flexible and efficient in tackling the problems mentioned in this study. We wish to
relax the constraints and rules of our designs and experiment with agents that respond
to changes in their environment using probabilistic models rather than the rule-based
approach we currently employ. We also plan to conduct further research work on the
methodologies and tools that will allow us to decrease development and debugging
time. It is necessary to have a modeling framework that will help us produce and test
new designs. Furthermore such a framework could be extended to become a high level
tool for business managers who do not require to be aware of all the implementation
details but wish to manipulate the logic and interactions of agents.

Acknowledgements

We wish to thank CACI Ltd for their support and for providing access to client data and
the Call Centre Workshop software. We would also like to note that our findings and
conclusions do not necessarily reflect those of the sponsor.

References

1. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distribution tech-
nologies. In: ACM Computing Surveys (CSUR), vol. 36, pp. 335–371. ACM Press, New
York (2004)

2. Bellifemine, F., Poggi, A., Rimassa, G.: Jade: a fipa2000 compliant agent development en-
vironment. In: AGENTS 2001: Proceedings of the fifth international conference on Au-
tonomous agents, pp. 216–217. ACM, New York (2001)

3. Crespo, A., Molina, H.G.: Semantic overlay networks for p2p systems. In: Agents and Peer-
to-Peer Computing, pp. 1–13. Springer, Heidelberg (2002)

4. Di Caro, G., Ducatelle, F., Gambardella, L.: Swarm intelligence for routing in mobile ad
hoc networks. In: Proceedings IEEE Swarm Intelligence Symposium 2005, pp. 76–83. IEEE
Computer Society, Los Alamitos (2005)

5. Dorigo, M., Caro, G.D., Gambardella, L.M.: Ant algorithms for discrete optimization. Arti-
ficial Life 5(2), 137–172 (1999)

64 D. Traskas and J. Padget

6. Grizard, A., Vercouter, L., Stratulat, T., Muller, G.: A peer-to-peer normative system to
achieve social order. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum,
V., Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, pp. 274–289.
Springer, Heidelberg (2007)

7. Helsinger, A., Thome, M., Wright, T.: Cougaar: a scalable, distributed multi-agent ar-
chitecture. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 2,
pp. 1910–1917. IEEE, Los Alamitos (2004)

8. Holland, J.H.: Hidden Order: How Adaptation Builds Complexity. The Perseus Books Group
(1995) ISBN-13: 9780201407938

9. Koole, G.: Call center mathematics: A scientific method for understanding and improving
contact centers, http://www.math.vu.nl/˜koole/ccmath/book.pdf (Verified
20080520)

10. Lilja, D.J.: Measuring computer performance: a practitioner’s guide. Cambridge University
Press, New York (2000)

11. Michael, C.M.M., North, J.: Managing Business Complexity — Discovering Strategic Solu-
tions with Agent-Based Modelling and Simulation. Oxford University Press, Oxford (2007)

12. Miralles, J.C., López-Sánchez, M., Esteva, M.: Multi-agent system adaptation in a peer-to-
peer scenario. In: SAC 2009: Proceedings of the 2009 ACM symposium on Applied Com-
puting, pp. 735–739. ACM, New York (2009)

13. Norman, T., Jennings, N.R., Faratin, P., Mamdani, E.H.: Designing and implementing a
multi-agent architecture for business process management. In: Jennings, N.R., Wooldridge,
M.J., Müller, J.P. (eds.) ECAI-WS 1996 and ATAL 1996. LNCS, vol. 1193, pp. 261–275.
Springer, Heidelberg (1997)

14. Petrie, C., Bussler, C., Survey, A.: Service agents and virtual enterprises: A survey. Survey,
Internet Computing, 7 (July/August 2003)

http://www.math.vu.nl/~koole/ccmath/book.pdf

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 65–67, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Peer-to-Peer Overlay Network Based on Swarm
Intelligence

Vesna Sesum-Cavic and Eva Kühn

Vienna University of Technology, Institute of Computer Languages
Space Based Computing Group, Argentinierstr. 4, 1040 Wien, Austria

{vesna,eva}@complang.tuwien.ac.at

Abstract. As the number of information in the Internet constantly increases and
the complexity of systems rapidly grows, locating and manipulating complex
data has become a difficult task. We propose a self-organizing approach that
combines purely decentralized unstructured peer-to-peer (P2P) with space
based computing in order to effectively locate and retrieve information from a
network. The approach is inspired by swarm intelligence, is distributive and
autonomous. As the scalability is a common open issue both for unstructured
P2P networks and for coordination models, our approach successfully copes
with that by using a biologically inspired multi-agent system. Benchmarks
demonstrate powerful query capabilities with a good scalability.

Keywords: swarm intelligence, unstructured P2P, space based computing,
lookup mechanisms.

1 Introduction

The highly dynamic nature of the Internet, characterized by a huge number of infor-
mation often expressed as complex data, imposes the necessity for new and advanced
ways for locating and retrieving of information. We propose a self-organizing archi-
tecture as a combination of unstructured P2P [1] and space based computing ([4], [9])
for searching and retrieving data concurrently. It intends to use the benefits of both
paradigms. The lookup mechanism is inspired by swarm intelligence ([6], [8], [12]).

2 Architecture and Design

In our approach, a space-based architecture, called XVSM (extensible virtual shared
memory)1, based on a formal model [7], is used . It generalizes Linda tuple space
communication ([4], [9]) by introducing customizable, shared data structures (shared
containers [10]). A container stores entries that generalize tuples. Each container
possesses so-called coordinators (e.g. fifo, random, template matching, key, label),
and can be located and accessed via a URL. All operations on it (read, take, write)
use this URL to refer to the container. When a container is created, it can be made
publicly accessible by a name. [2] combines a structured P2P system with XVSM. In
contrast, in this paper, we propose the creation of an overlay network that consists of

1 Project and open source download site: www.xvsm.org

66 V. Sesum-Cavic and E. Kühn

lookup containers. A container can be published under one or more public names.
The discovery of data is performed by means of swarm intelligence. For the struc-
ture of the overlay network, we use the scale-free network approach [3] for an initial
construction. Software agents realize the algorithms of the overlay network acting in
swarms and performing the role of artificial ants. The multi-agent system is inspired
by ant colony that is distributed, self-organizing, with a high level of autonomy.

Writing of information. An ant can put the content (i) randomly (no need for swarm
intelligence algorithms), or (ii) using brood sorting [5]: entries are distributed on the
basis of their type (similar entries stay closer to each other). In this case, the similarity
function δ is based on spatial locality. Retrieving of information. We implemented
two different ant algorithms, an adaptation of MMAS that is combined with Local
Search (2.5-Opt) and an adaptation of AntNet. We introduced the following changes:
In the ConstructSolution procedure [8], heuristic values from the random proportional
rule are interpreted as a quality of the used links, expressed in time needed to traverse
a particular path from lookup container A to lookup container B by using a particular
link. The possible resulting situations of ants’ search for the particular data are: no
data found, exact data found, and acceptable data found with the accuracy/error rate
< ε, where ε is a parameter given in advance, connected to the definition of δ. The
DepositPheromone procedure [8] is changed as follows: If an ant on its trip *) found
exact data, it deposits pheromone; *) found acceptable data, it deposits less amount of
pheromone, *) did not find data, then skip depositing pheromones on its trip (i.e., the
values on arcs it traversed will be the same as the values on the rest of unvisited arcs
in the network). String comparison (representing URLs) uses a similarity function δ,
based on a spatial locality. A different amount of pheromones is deposited according
to the quality of solution found. The general form δ is: δ = δ (currentSolution, exact-
Solution), that describes how good (acceptable) the found solution is, δ ∈ [0,1]. In
case of changing the type of δ, its value can be scaled into the same segment [0,1].
DepositPheromone procedure is changed: 1) for MMAS algorithm: Δτ =1/MCbest
where M=1/δ; 2) for AntNet algorithm: τ := r⋅(1-τ)⋅δ.

3 Simulation Results

We implemented two ways respectively of writing data into containers and of perform-
ing lookup and retrieval of data from containers on a cluster of 4 computers (2*Quad
AMD 2,0 GHz, 16 GB RAM). A first group of benchmarks investigates the behavior of
the algorithms in different combinations (Table 1) and different parameter settings [8]
while trying to find the best possible combination of parameters. When comparing the
two kinds of lookup, AntNet supplies the best performance in case of retrieving only
one query (Fig. 1). A second group of benchmarks investigates the query capability of
our system and compares it with Gnutella’s lookup mechanism [1]. We can conclude
that the adapted intelligent algorithms cope successfully with an increasing number of
queries, compounded of several simple queries. We used the possibility of increasing
the number of concurrently working ants. Our approach outperformed the Gnutella
lookup by means of the obtained performance. Fig. 1 represents one test case using 80
containers.

 Peer-to-Peer Overlay Network Based on Swarm Intelligence 67

Table 1. Possible combinations

 MMAS AntNet
Random case 1 case 2

Brood sorting case 3 case 4

 Fig. 1. Different lookup mechanisms

4 Conclusion

Locating and retrieving of data in a global network implies the necessity for effective
lookup mechanisms. We introduced a self-organizing approach combining decen-
tralized unstructured P2P with space based computing, that focuses on the quality of
the solutions and the time needed to obtain that solution, applies a learning principle
from the nature, and outperforms Gnutella lookup. Future work will consider large
size benchmarks, and other intelligent approaches, like bee intelligence [11].

References

1. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distribution
technologies. ACM Computer Survey 36, 335–371 (2004)

2. Bessler, S., Fischer, A., Kühn, E., Mordinyi, R., Tomic, S.: Using Tuple-Spaces to manage
the Storage and Dissemination of Spatial-temporal Content. Journal of Computer and Sys-
tem Sciences (to appear, 2009)

3. Caldarelli, G.: Scale-Free Networks. Oxford University Press, Oxford (2007)
4. Carriero, N., Gelernter, D.: Linda in Context. CACM 32(4), 444–458 (1989)
5. Casadei, M., Menezes, R., Viroli, M., Tolksdorf, R.: A Self-organizing Approach to Tuple

Distribution in Large-Scale Tuple-Space Systems. In: Hutchison, D., Katz, R.H. (eds.)
IWSOS 2007. LNCS, vol. 4725, pp. 146–160. Springer, Heidelberg (2007)

6. Di Caro, G., Dorigo, M.: AntNet: Distributed Stigmergetic Control for Communications
Networks. JAIR 9, 317–365 (1998)

7. Craß, S., Kühn, E., Salzer, G.: Algebraic Foundation of a Data Model for an Extensible
Space-Based Collaboration Protocol. In: IDEAS, Calabria, Italy (to appear, 2009)

8. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2005)
9. Kühn, E.: Virtual Shared Memory for Distributed Architectures. Nova Science Publ. (2001)

10. Kühn, E., Mordinyi, R., Keszthelyi, L., Schreiber, C.: Introducing the Concept of Custom-
izable Structured Spaces for Agent Coordination in the Production Automation Domain.
In: AAMAS, Budapest, Hungary (2009)

11. Sesum-Cavic, V., Kühn, E.: Instantiation of a Generic Model for Load Balancing with In-
telligent Algorithms. In: Hummel, K.A., Sterbenz, J.P.G. (eds.) IWSOS 2008. LNCS,
vol. 5343, pp. 311–317. Springer, Heidelberg (2008)

12. Tolksdorf, R., Menezes, R.: Using Swarm Intelligence in Linda Systems. In: Omicini, A.,
Petta, P., Pitt, J. (eds.) ESAW 2003. LNCS (LNAI), vol. 3071. Springer, Heidelberg
(2004)

Agent Architectures for Compliance

Brigitte Burgemeestre1, Joris Hulstijn1, and Yao-Hua Tan1,2

1 Faculty of Economics and Business Administration, Vrije Universiteit, Amsterdam
2 Department of Technology, Policy and Management, Delft University of Technology

{jhulstijn,cburgemeestre,ytan}@feweb.vu.nl

Abstract. A Normative Multi-Agent System consists of autonomous agents who
must comply with social norms. Different kinds of norms make different assump-
tions about the cognitive architecture of the agents. For example, a principle-based
norm assumes that agents can reflect upon the consequences of their actions; a
rule-based formulation only assumes that agents can avoid violations. In this pa-
per we present several cognitive agent architectures for self-monitoring and com-
pliance. We show how different assumptions about the cognitive architecture lead
to different information needs when assessing compliance. The approach is val-
idated with a case study of horizontal monitoring, an approach to corporate tax
auditing recently introduced by the Dutch Customs and Tax Authority.

1 Introduction

A Normative Multi-agent System consists of autonomous agents who must comply
to social norms [3,13,6]. Normative multi-agent systems are used to design electronic
institutions [31], but can also be used to understand compliance schemes in human
society. Interesting new forms of auditing and norm enforcement are horizontal moni-
toring [15] and responsive regulation [2,4]. Such forms of auditing are based on mutual
trust and understanding, and do not only monitor compliance behaviour, but also take
the underlying motivation and corporate culture into account. This may lead to more ro-
bust compliance behaviour and can save all parties a lot of effort. However, it requires
different kinds of evidence than a traditional command and control approach. What are
the information needs for assessing compliance using such ‘horizontal’ approaches?

How a norm is adopted and followed by an agent depends on the cognitive architec-
ture of the agent. By a cognitive architecture we mean a structured model of the various
components or modules which generate the agent’s behaviour. Different ways of formu-
lating norms make different assumptions about the underlying cognitive capabilities.

For example, in the accounting profession there is a long standing debate between
advocates of rule-based and principle-based ways of formulating norms. A principle-
based formulation of norms assumes that agents can reflect upon the outcomes of their
actions; a rule-based formulation of norms only assumes that agents can follow proce-
dure. Therefore agents can ‘hide behind the rules’ and pretend not be responsible for
the consequences: “... rule-based traditions of auditing became a convenient vehicle that
perpetuated the unethical conduct of firms such as Enron and Arthur Andersen” [28].
The Sarbanes-Oxley act [27] was introduced in 2002 to avoid such accounting scandals.
Although originally a principle-based norm, in practice it has been given a rule-based

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 68–83, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Agent Architectures for Compliance 69

interpretation. Our working hypothesis is that principle-based norms only work when
a subject has adequate capabilities for norm adoption and compliance. Using cogni-
tive agent architectures we hope to make such assumptions explicit. Sanctions form
another example. The use of sanctions assumes that agents ‘care’ about the negative
consequences and are actually able to adjust their behaviour. These assumptions are
not true in all cases. For instance, artificial agents typically do not ‘care’; only their
owners do. Also, when agents lack expertise to improve their behaviour, sanctions are
counterproductive. In such cases it is better to provide advice [2].

In this paper we investigate how agent architectures can account for compliance. We
discuss several cognitive agent architectures taken from the literature. We show how
the architectures can implement normative behaviour, namely by filtering or adjusting
the data structures which generate behaviour (policy, plans or goals). Moreover, we
show how different architectures lead to different information needs to assess whether
an agent is compliant. Such information needs are required for the design of ‘auditing
tools’ to support human auditors when assessing compliance of companies. Through-
out the paper we will therefore compare agent architectures to practices in the business
world. Another application is in the design of electronic institutions. There too, assump-
tions about the underlying agent architecture will influence compliance monitoring.

Consider an electronic service broker. Compare [31] for similar such applications.
There are two kinds of artificial agents: service providers and service consumers. Agents
are ‘scripts’ written in a programming language, which is run by the broker environ-
ment. The environment provides primitive actions for paying, communicating and de-
livering services. The purpose of the broker is to help consumers find providers and to
help them negotiate, implement and maintain a service level agreement. Owners of par-
ticipating agents pay a fixed membership fee and a percentage for each successful deal.
The broker tries to make sure that (owners of) agents comply with the rules of the insti-
tution, i.e. follow the protocol and honour the service level agreements. This assurance
is part of the added value of a broker. The broker must therefore monitor communi-
cations and transactions as they take place in the environment. Upon complaints or
other evidence of fraud, a human investigation may be started. The main sanction is to
evict perpetrators. However, sanctions always come after the fact. Therefore the broker
should assess the compliance attitude of the owner of a participating agent before en-
trance, and do a code review of the scripts. Our information needs analysis can be used
as a guideline for the set-up of such an assessment.

Our findings about information needs are illustrated and validated with a real life
case study of horizontal monitoring, a form of auditing recently introduced by the Dutch
Customs and Tax Authority (DTCA) [15]. The tax office relies as much as possible on
the company’s internal control system. Tax auditors only have to assess reliability of
the company’s internal control system, instead of the tax declarations themselves. This
saves the tax office a lot of effort. To participate, the company must give tax auditors
access to its records and policies. The tax office in return can give the company more
certainty, for instance that a tax declaration for a preceding year is settled. The new audit
approach requires different kinds of evidence and a different way of communicating.

70 B. Burgemeestre, J. Hulstijn, and Y.-H. Tan

The paper is structured as follows. In Section 2 we present three cognitive agent
architectures for compliance. In Section 3 we outline the information needs for estab-
lishing compliance. In Section 4 we present the case study on horizontal monitoring.

2 Cognitive Agent Architectures

Below we discuss a number of general cognitive agent architectures. We determine what
it means to be compliant given the capabilities offered by each architecture.

2.1 Perception and Action

The most simple agent architecture consists of two modules: perception and action [26].
These are linked in a feedback-control loop (Figure 1). Therefore this architecture is
called a reactive agent architecture. The agents behaviour is determined by a data struc-
ture called policy π: a set of situation-action pairs s → a, which specify for each pos-
sible situation s, what appropriate actions a would be. The policy is non-deterministic:
several actions may be possible in a situation. The perception module determines on
the basis of observations what situation the agent is likely to be in. Perception may be
wrong. The agent has a (limited) memory of the previous situations it has been in. These
may be called its beliefs. The action module simply executes the action suggested by
the policy. Not all actions will be successful.

If we compare this to the business world, there are similarities with the way a com-
pany is run. The daily operations are usually determined by business processes and
standardised operating procedures. Like the policy data structure, processes and proce-
dures outline for known situations what to do.

What does it mean to be compliant given this architecture? In a reactive architecture,
being compliant to a norm can in principle be implemented in two ways:

1. Adapt the perception module to send a warning signal when the next move is likely
to lead to a violation, and to send an alert when detecting an actual violation. This
is called self monitoring. Adapt the action module to suspend all actions after a
warning and undo the previous move after an alert. This is called self control.

2. Adapt the policy data-structure and filter out all situation-action pairs which are
known to lead to a violation. Depending on the computational complexity, such
readjustment can be done either immediately after a warning or an alert, or off-line.

perception

action

world

policy

control beliefs
+/-

Fig. 1. Perception and Action

Agent Architectures for Compliance 71

In an ideal world adjusting the policy is enough, but self monitoring and self control are
necessary when, due to inaccurate beliefs or unsuccessful actions, the agent may find
itself in or close to a violation despite the adapted policy.

The ability to monitor, evaluate and adjust future behaviour is crucial for being com-
pliant. That means we need a reflective agent: an agent who has a representation of itself
and can alter this representation in order to adjust its behaviour [22]. In Figure 1 this
function is performed by a separate control module. Adjustments are indicated with an
open arrow: −�. There are many ways to implement a reflective agent; see [29] for a sur-
vey. A very basic one would make use of reinforcement learning: adjusting the policy
through signals from the environment [19]. After each action, the agent gets a rein-
forcement signal r. Violations receive a punishment (r = −1); other states get a reward
(r = 1). The agent must optimise its policy π to increase the sum of reinforcement sig-
nals over a certain period. Many algorithms can solve such optimisation problems [19].
We mention a simple one as illustration (linear reward-inaction algorithm). Let pi be the
relative likelihood of taking action ai in some given situation s according to the policy,
and let α be a learning rate (0 ≤ α ≤ 1). For all actions ai, aj which are possible in s,
if action ai succeeds (r = 1), then pi := pi + α(1 − pi) and pj := pj − αpj for j �= i.
When action ai fails (r = −1), pj remains unchanged for all j.

2.2 Perception, Planning and Action

The second architecture contains an additional module: planning. This module deter-
mines by what sequence of actions the agent can best achieve its goals. Therefore, this
architecture is also called a deliberative architecture. A well known example is the BDI
architecture [25]. The planning module takes two kinds of input: (1) the information
produced by the perception module about the current state the agent is likely to be in,
enriched with background knowledge on how to interpret situations. Again, this may be
called the beliefs of the agent. (2) The desires of the agent, i.e. preferred future states of
affairs, which function as potential goals. Desires may be mutually incompatible. The
output of the planning module is the set of goals the agent has decided to pursue, and
for which a particular plan has been adopted. These adopted goals are called intentions.
Intentions must be mutually compatible. Following Pollack [24] and many subsequent
BDI architectures, we suppose each agent is equipped with a plan library with useful
recipes: pre-stored plans for different kinds of situations. When there are no recipes for
a particular goal, a new plan must be generated from first principles.

In the business world, goals would correspond to objectives of an enterprise. Desires
correspond to long term objectives, such as increasing market share or reducing time-
to-market. Intentions can be compared to those objectives which have been aligned
in a consistent strategy and for which processes, procedures and projects have been
implemented. Plans or recipes correspond to business processes and procedures (for
routine plans) or to projects (for one-off plans).

Again, such architectures are reflective: agents must be able to learn and adjust their
behaviour. So when a plan fails to achieve its goals, it must be dropped or adjusted along
with the plan library. This function is again performed by a separate control module.
Desires or goals define the success of a plan, similar to the reinforcement signals in the
previous section. The control module therefore takes goals as input.

72 B. Burgemeestre, J. Hulstijn, and Y.-H. Tan

perception

world

adopted
goals

(intentions)

action

beliefs

planning

goals
(desires)

plan

plan
library

control
+/-

Fig. 2. Perception, planning and action

When we compare such reflective capabilities to the business world, the so called
Deming Cycle comes to mind: plan-do-check-act [12]. Variants of this management
control cycle are very influential in management approaches to quality control, risk
management or information security. Plan and do correspond to our planning and ac-
tion. Check (or study) refers to all kinds of learning and evaluation. This corresponds to
our perception. Act refers to making decisions: altering the plan, based on the outcome
of the evaluation. This is modelled here by the control module. Learning is also one of
the cornerstones of capability maturity models [17]. In other words: mature organisa-
tions have the ability to learn, evaluate and adjust their behaviour.

What does it mean to be compliant in a deliberative architecture? Again, we can
adjust execution by adding self monitoring and self control to the perception and action
modules, or we can adjust the data-structures which generate the behaviour. The policy
data structure is now replaced by goals and plans. In general, there are two ways of
adjusting plans and goals to address compliance: by filtering out potential violations
from existing plans and goals [23], or by adopting a norm as a new goal [6,8,13].

Filtering. We can deal with compliance in three different ways: (1) filter the plan li-
brary (no capability to violate), (2) filter the adopted plans and goals (no intention to
violate), and (3) filter the potential goals (no desire to violate). Filtering the plan library
(option 1) can be done off-line. It needs an algorithm to scan all recipes for potential
violations. Such recipes are then suppressed: they receive a special status such that they
will never be adopted. This is essentially the compliancy approach of Meneguzzi and
Luck [23], implemented in the AgentSpeak programming language.

Option 1 assumes that possible violations can be detected out of context. But in
general violations are context dependent. Consider an agent intending to “go as fast as
possible given the condition of the terrain”. We can’t decide off-line if this plan would
violate a speed limit of 30 km/h. Or consider a budget of $20. Buying fuel ($8), tires
($11) and a new mirror ($3) will add up to a violation, but it is unclear which goal con-
stitutes ‘the’ violation. Therefore potential violations need to be assessed in conjunction
with current beliefs and relevant other goals. This can be done under option 2. Option 3
suffers from a similar problem: potentially illegal desires cannot be detected off-line.

Agent Architectures for Compliance 73

Norm Adoption. Instead of filtering, we can also produce compliant behaviour by
adopting a norm as a source of potential goals similar to a desire. This approach is
developed by [9], see also [6,13]. Adopted norms will often correspond to maintenance
goals: goals to make sure that a desirable state of affairs subsists or that an undesirable
state is avoided, by contrast to achievement goals, which are about reaching a new state
of affairs. For example, our agent could adopt a maintenance goal to obey the speed
limit. A cognitive architecture which can deal with maintenance goals contains a kind
of feedback-control loop [16]. Similar to what we discussed in Section 2.1, trigger con-
ditions will produce a warning or an alert when the goal is likely not to be maintained
(self monitoring), which will lead to the blocking of current actions or repair actions
being executed (self control). Moreover, any new goal about to be adopted must be
filtered, to verify whether it does not conflict with current maintenance goals.

Norm adoption will often lead to conflicts. Consider an agent who is late for an ap-
pointment and must drive to as fast as possible. Which goal should get priority: keeping
the appointment (achievement goal) or obeying the speed limit (maintenance goal)? Of-
ten such conflicts will have to be resolved by the designer of the system; priorities are
build-into the agent. Our next architecture can deal with conflicts explicitly.

2.3 Perception, Goal Generation, Planning and Action

The third architecture adds a separate module for goal generation. Goal generation was
introduced by Thomason [32], who observed that until then in AI, goals were simply
given. Thomason realised that even before planning, it makes sense to filter goals. Goals
which are incompatible with current beliefs are impossible to achieve and may lead to
wishful thinking. Such goals should never even be generated. The idea was taken over
by the BOID architecture, which distinguishes between two kinds of goals: internal
motivations (desires), representing individual wants or needs, and external motivations
(obligations) to model social commitments and norms [5]. All these potential goals may
conflict with each other. New potential goals may also conflict with previously adopted
goals (intentions). To resolve conflicts among the sets of beliefs, obligations, intentions
and desires, some sort of priority order is needed. In the BOID, such a (partial) ordering
is provided by the agent type. For instance, a so called realistic agent values beliefs
over any kind of goals: B > D, B > I, B > O. This avoids wishful thinking, over-
commitment or dogmatism. A stable agent values previously adopted goals (intentions)
over new goals (desires; obligations): I > D, I > O. A selfish agent values its desires
over social obligations, D > O, whereas an obedient agent will value obligations over
desires: O > D. These orderings produce caricatures of agent behaviour. In practice,
more detailed distinctions will be necessary. For instance, a stable agent might make
an exception for life-saving obligations. The priority should be based on a classifica-
tion of goals based on their relative value for the agent. In the business world, such a
classification is often done by a risk assessment [10].

Again, the architecture is reflective: it can adjust its behaviour based on an evalua-
tion of its relative success. What does it mean to be successful? For actions and plans,
success is defined in terms of the underlying goals (desires, obligations). For selecting
one goal over another, success depends on the agent type. Agent types are basic; they
have no external motivation.

74 B. Burgemeestre, J. Hulstijn, and Y.-H. Tan

perception

world

adopted

goals
(intentions)

action

beliefs

planning
individual
goals
(desires)

plan

plan library

control+/-

goal
generation

social goals
(obligations)

priority
(agent type)

control +/-

Fig. 3. Perception, goal generation, planning and action

What does it mean to be compliant in such an architecture? All previously mentioned
ways of being compliant will work here too: self monitoring and self control, as well as
adjusting the plans and goals or even the priority order guiding decision making. Given
that resources (money, energy, time) are limited, adopting a norm as a goal means that
other goals can no longer be achieved. Norms may conflict with individual desires,
with reality, with previous intentions or with other norms. So norm adoption creates
dilemmas; it requires a form of conflict resolution. Because agents are autonomous, we
cannot ensure an agent will always adopt a norm. At least the agent should be aware of
the consequences of possible violations such as sanctions or loss of reputation. When
an agent nevertheless decides to violate a norm this should be a conscious decision.

How can dilemmas be resolved? A priority order determines how an agent will make
choices. In the BOID, priorities are fixed by agent type. In general, the relative impor-
tance of goals is linked to social values [30]. In the business world, consider values
like profit, safety, or quality. Such values are embedded in the corporate culture. For
example, a culture which values short term profits over security – as apparent from pay-
ment and incentive schemes – will be more likely to lead to behaviour which violates a
security norm, than a culture which values security over profits.

Social values may look vague, but fortunately, there has been progress in the com-
putational representation of argumentation systems based on social values, see Atkin-
son et al [1]. Decision making is a form of practical reasoning. Crucial is what counts
as a justification for an action. In a BDI architecture justification is essentially based
on goals.But how are goals justified? Social values account for the fact that people
may disagree upon an issue even though it would seem to be rational [30]. That means
that justification becomes a matter of debate. Like in legal theory, it doesn’t matter
who is right; what matters is who can construct the most convincing argument and de-
fend against counter arguments. An argument starts with a position [1]: “In the current
circumstances s, we should perform action a, to achieve consequences s′, which will
realise some goal g, which will promote some value v.” A position can be attacked
by critical questions, which seek to undermine the underlying assumptions (Table 1).
Critical questions provide a kind of quality test for the justification of a decision.

Agent Architectures for Compliance 75

Table 1. Critical Questions (Atkinson et al [1])

CQ1 Are there alternative ways of realising consequences s′, goal g or value v ?
CQ2 Is it possible to do action a?
CQ3 Would doing action a promote some other value ?
CQ4 Does doing action a have a side effect which demotes the value v, or some other value?
CQ5 Are the circumstances s such that doing action a will bring about goal g?
CQ6 Does goal g promote value v? Is value v a legitimate value?
CQ7 Is goal g achievable?

3 Information Needs

In this section we are concerned with the assessment of whether an agent is compliant
or not. As we have seen compliance can be realised in many different ways. To demon-
strate compliance to a norm, both subjects and auditors therefore need different kinds
of evidence, based on the underlying cognitive architecture.

1. perception, action. First, evidence of the behaviour itself, i.e. original records, data
and log-files testifying that violations did not occur. This is the only way to show
effectiveness of monitoring. Second, evidence of the policy avoiding violations, and
evidence showing that the policy is instrumental in actually producing behaviour.
This can be a review of the policy specification, or data-mining techniques dis-
covering patterns of behaviour to indicate that there is a consistency in behaviour
which suggests a policy is followed. Third, evidence of changes in behaviour af-
ter sanctions or rewards were administered. Again, this would be pattern detection,
showing that certain non-compliant patterns ease after the sanctions were applied.

2. perception, planning, action. In addition to the kinds of evidence listed above, for
deliberative agents we can also look for evidence of plans and goals being com-
pliant. Having such higher cognitive attitudes makes agents’ behaviour predictable
even in unforeseen situations. As evidence we need documentation on goals, plans
and evidence that these goals plans are actually implemented and effective in pro-
ducing behaviour.

3. perception, planning, goal generation. In addition to the kinds of evidence listed
above, now we also look for evidence of the agents’ priorities in decision making:
are obligations preferred over desires? Moreover, it must be assessed whether these
preferences are used for day-to-day decisions and do not comprise a paper reality.
Addition evidence may concern embedded social values.

How can such evidence be collected in practice? For all architectures, evidence of be-
haviour is needed. This is the only way to demonstrate effectiveness of the agent’s
internal monitoring and control. In auditing, such evidence corresponds to statistical
samples from a pool of relevant events recorded in the company’s information systems
or log-files. Note that taking samples requires that the company is collaborating. In an
electronic institution such as the service broker discussed in the introduction, we ex-
pect that log-files and traces of interaction and (relevant aspects) of transactions are
accessible for monitoring by the institution.

76 B. Burgemeestre, J. Hulstijn, and Y.-H. Tan

For the more complex architectures, evidence about the cognitive ‘data structures’
which generate behaviour can be used in addition to evidence of behaviour. In practice,
that means evidence of policies and procedures. In auditing theory, one distinguishes
three audit aspects: design, implementation and operational effectiveness [18]. The de-
sign of a policy or procedure should guarantee that it will prevent, detect or correct
undesirable behaviour. Evidence of implementation of a policy or procedure checks
whether it has been adopted by the board, and whether employees know about it. Fi-
nally, evidence of operating effectiveness of a procedure should establish whether the
procedure was followed in all relevant cases for the period under investigation. Note
that this differs from the usual notion of effectiveness, i.e. meeting objectives. In an
electronic institution, these aspects also make sense. Auditing the design would corre-
spond to analysing the agents’ specification. Auditing implementation corresponds to
verifying the way agents have been programmed. Also the security of the electronic
environment matters, whether it prevents unauthorised modifications to agent scripts.
Auditing operating effectiveness corresponds to analysing log-files of agents behaviour.
It also depends on the continued security of the electronic environment.

To summarise, we can demonstrate compliance by:

– evidence of compliant behaviour. This can be established by logging and monitor-
ing the behaviour itself. In auditing, typically representative statistical samples are
taken from a set of records of events. Logging and monitoring are greatly enhanced
by tools for data mining and pattern recognition.

– evidence of norm implementation. This can be established by reviewing the policy
or the plans in a plan-base. In a company this amounts to interviews, dossier re-
search and reviews of documentation or board meeting minutes with the purpose
of verifying the existence of relevant business processes and standard operating
procedures. Implementation of a procedure is typically verified by a so called line
control: for one or two representative cases, follow the procedure from the “cradle
to the grave” and verify whether all relevant steps have been taken. In addition, one
needs to establish whether the procedure has been operationally effective for the
whole period (i.e. was not temporally switched off). This can be done by selecting
a representative sample of cases (e.g. incidents or events), to verify whether in all
those cases the procedure has been followed.

– evidence of norm adoption. This is hardest to establish. It means that norms have af-
fected decision making. Presence of adopted norms in the form of objectives can be
established by a dossier review combined with interviews with management (tone
at the top). For those procedures, processes and projects implemented to meet these
objectives, we must then verify the appropriateness of their design: would they in-
deed meet the objectives generated by the norm? Critical questions, similar to the
ones mentioned by Atkinson et al [1] may be used to challenge the assumptions of a
decision. Also the corporate culture may be a factor to support true norm adoption.

Discussion. One may wonder why all of this is needed. After all, evidence of an
agent’s behaviour should be enough to determine whether the agent is compliant with
the system norms. There are some reasons that evidence of norm adoption and norm
implementation may be preferred. First, determining compliance through monitoring

Agent Architectures for Compliance 77

behaviour may take a lot of effort. In particular, for tax monitoring, this would involve
large statistical samples from past behaviour (See Section 4). In the ‘horizontal’ ap-
proaches some of this effort is delegated to the subject of the norm. Second, log-files
can establish that behaviour is compliant, but not why. By contrast, compliance en-
forced through self regulation is said to be more robust [2]. So it makes sense to collect
evidence about the way in which norms have been adopted and implemented. Third,
monitoring behaviour can only lead to sanctions after the fact; there is no way of pro-
viding assurance beforehand. For example, in the case of the electronic service broker,
mentioned in the introduction, the broker needs to provide some kind of assurance that
agents will not violate norms. This can be done by an assessment of the intentions of
the owner (evidence of norm adoption), and a code review (evidence of norm imple-
mentation).

Principle-based versus rule-based. What can we say about the relative merits of
principle-based or rule-based formulations of a norm? To make a comparison, we first
need a concrete example of a principle and a rule. Consider the auditing principle of
‘need to know’: “only those people who need access to a document for their work,
should be given access”. When applying the principle to a specific situation, detailed
models are needed of the organisational roles assigned to people, the tasks assigned to
organisational roles, and the information needs associated with those tasks. In large en-
terprises such models are often unavailable or out of date. When they are available the
models may be too restrictive, because there is a hidden trade-off between security and
flexibility of the organisation. By contrast, a rule-based version of access control mea-
sures, would give a predefined checklist of those access rights which are not allowed for
many common organisation roles. For instance, database administrators are not allowed
to access the content of the database they manage. The problem is that a large part of
such checklists is not relevant: there may not be any database administrators. Moreover,
rules can be either too lenient or too strict for the situation. Still, rule-based norms are
much more easy to implement and monitor.

It turns out that rule-based norms can be followed by all kinds of agents, including
reactive agents. Principle-based norms, however, can only be followed by deliberative
agents. When a principle is interpreted as a general (declarative) goal, which must still
be adapted to the context, some form of planning is needed. When the principle involves
a trade-off or dilemma, some form of ethical decision making is needed.

Sanctions. What can we say about the effectiveness of sanctions as a way of enforcing
norms? For reactive agents, it is important that sanctions follow immediately after the
action that caused a violation. If there is a delay, the agent will not be able to adjust
the relative weights for the right action in the policy data-structure. For deliberative
agents, the goals (desires) are used to evaluate the success of an action or plan. Based
on this evaluation, plans may be adjusted. So to have an impact, sanctions must actually
be undesired; rewards must actually be desired. Sanctions are not necessarily monetary
fines. For example, for many companies, certainty about the financial situation is more
important than the possibility of a fine (Section 4). Empirical research among humans
has shown that external sanctions can be counterproductive [14]. In a number of day
care centres, they studied the introduction of a fine for parents being late to pick up

78 B. Burgemeestre, J. Hulstijn, and Y.-H. Tan

their kids. After the fine was introduced, more parents were late. Apparently, they inter-
preted the fine as a kind of price, which made it morally acceptable to be late: the fine
removed their guilt. Removing the fine never restored original levels. For such reasons,
non-instrumental motivations for following a norm, such as recognition of the authority,
may lead to more robust compliance behaviour [7]. This is also one of the motivations
behind responsive regulation approaches [15,2]. Finally, sanctions assume agents have
the ability and expertise to improve their behaviour. But not all architectures have capa-
bilities for generating a plan, say, from first principles. Similarly companies often lack
expertise concerning compliance issues. So even if they have the ability to change the
do not know in which direction to change. Also in such circumstances, sanctions may
be counterproductive. It is much more effective to provide guidance and advice on how
to improve compliance [2].

4 Case Study: Horizontal Monitoring

Horizontal monitoring is introduced as the new compliance approach for tax audits
concerning company taxation by the Dutch Customs and Tax Authority (DTCA) [15].
Companies which have shown that they have a reliable ‘tax control framework’, may
voluntarily enter into horizontal monitoring. This is an auditing approach based on a
relationship of mutual trust and understanding. Consider the following text from the
brochure issued by the tax office [33]:

“Horizontal monitoring entails mutual trust between tax payer and the Tax and
Customs Administration, indicating more clearly everyone’s responsibilities
and abilities in order to do what is right, as well as laying down and observ-
ing reciprocal agreements. Horizontal monitoring is in line with developments
in society, where the individual responsibilities of corporate and government
managers and administrators are defined more clearly and upheld through su-
pervision. Businesses must be transparent for stakeholders about the degree to
which they achieve operational targets and the extent to which they are in con-
trol of the processes involved. The government is an example of a stakeholder.”

Data Collection. Our case study is in an initial stage. We are exploring hypotheses con-
cerning changing information needs. The following findings concerning the tax control
framework and the horizontal monitoring philosophy are based on two interviews with
experts of horizontal monitoring within Dutch Tax and Customs Administration, as well
as on publicly available policy documents [33]. Moreover, as part of previous research
we have conducted several interviews with experts on AEO self-assessment, a compli-
ance scheme used in customs, which is also based on Horizontal Monitoring.

The general idea of horizontal monitoring is that the tax office relies as much as pos-
sible on the company’s internal controls. This is illustrated by the audit layer model of
Dutch Tax shown in Figure 4. The model is nicknamed the ‘onion model’ because it
represents auditing effort as consecutive layers which can be peeled off. The kernel is
formed by the business processes. Reliability of the business processes is mostly estab-
lished by the internal control framework. Reliability of the internal control framework

Agent Architectures for Compliance 79

25%
25%

Internal
control

3%

Business
process

Internal control

External
audit Tax

auditTax audit

Fig. 4. Audit layer model (Dutch Tax and Customs Administration)

is maintained by the internal audit department of the company. The internal controls
are audited yearly by the external accountant as part of the financial audit. This means
that the tax office now only has to assess reliability of the company’s internal con-
trols, internal auditing and external auditing, rather than having to establish reliability
of the original records and business processes underlying the tax declarations. Only for
specific tax issues do tax officers need to make visits and collect full evidence. To facil-
itate such ‘meta-auditing’, the company must provide access to all kinds of information
about business processes and internal controls. The tax office in return can give the
company more certainty, for instance that a tax declaration for a certain year is settled.

Mutual trust and understanding may sound nice, but there are real changes in the
way companies are being treated. Below we list a number of illustrative changes.

1. Demonstrating to be ‘in control’. When entering into a horizontal monitoring re-
lationship, the tax office must establish the reliability of the company’s internal
control framework. This forms the basis for their ‘trust’ in the company’s record
keeping. COSO provides a well known standard for setting up an internal control
framework [10]. The standard recommends: (1) a control environment where in-
tegrity and ethical values are supported from the top management throughout the
organisation. (2) risk assessment is performed to identify and manage risks relevant
to the organisation. (3) Control activities such as policies, procedures and processes
are implemented to ensure a company carries out management directives. Examples
include approvals, verifications, reconciliations, reviews of operating performance,
security of assets and segregation of duties. (4) Relevant company data contained
in the information system should be communicated in the organisation and to the
relevant stakeholders. (5) Ongoing monitoring to assess the quality of a companys
internal control systems. When a company has implemented a control framework
like COSO it can demonstrate to the tax administration that it is in control of its
business processes.

2. No hunt for mistakes. Under the tax control framework the tax office will not try
and find as many mistakes as possible in a company’s tax declaration; given the
complexity of the legislation this is not difficult to do. Confronting a well meaning
company year after year with the mistakes they have made, is counterproductive.
Instead the tax office will try to help companies avoiding such mistakes in the
future. This involves clear communication about what is expected of a company.

80 B. Burgemeestre, J. Hulstijn, and Y.-H. Tan

3. Open communication. Another issue regards the interpretation of the tax code. The
Dutch corporate tax – by design – contains some space for interpretation. Compa-
nies are allowed to interpret the rules in their favour. However, grossly unreasonable
interpretations are not considered acceptable. What is considered acceptable, dif-
fers from case to case. Currently, this creates uncertainty for companies. Under the
new tax control framework, companies may seek advice with their tax office, to find
out in advance whether their interpretation is considered acceptable. Such advance
information sharing can save both parties a lot of work.

4. Up to date tax assurance. In corporate taxes it is customary to audit retrospectively.
The tax officials are entitled to look back in the records to check for tax violations.
A company can be fined by the tax administration for an error that occurred a few
years ago. Resolving disputes is a long process resulting in high costs for both
parties. In horizontal monitoring the company and the tax office agree to solve all
historical issues when they start the relation. New issues are supposed to be solved
immediately when they occur. A company no longer needs to worry about past tax
issues and is assured that sanctions for historical violations will not be imposed.

These examples show that a relation based on mutual trust and understanding imposes
requirements on the interaction between both parties as well as on the internal processes
of the company. A company can demonstrate compliance by the implementation of an
internal control system and open communication of the results. We show how different
assumptions about the cognitive architecture(internal control system, ability to differ-
entiate between compliant and violating behaviour, embedded plan-do-check-act cycle)
lead to different information needs (emphasis on advice on norm interpretation instead
of norm violations, new and timely data instead of historical data, information on imple-
mentation of norms, control procedures) when assessing compliance (principle based
instead of rule based). We thus observe that a more mature agent architecture is needed
to handle the new control approach of Dutch tax.

As part of the case study, we have looked at the internal auditing guidelines used by
Dutch Tax to instruct auditors on the tax control framework [33]. It turns out that au-
ditors are instructed to use evidence regarding decision making and implementation of
decisions, in addition to the usual transaction based evidence. To demonstrate compli-
ance, evidence about the design, implementation and operational effectiveness of cog-
nitive data structures like procedures is needed. In practice this means that a company
should provide tax auditors with detailed process descriptions, working procedures as
they are implemented, and evidence that the procedures are known and applied.

5 Related Research

There is a growing body of research about compliance. We can only mention a few
works that may be of interest.

In the field of multi-agent systems, the work by Meneguzzi and Luck [23] is similar
to our work. They understand compliance as a filter of the plan library, implemented
in AgentSpeak. The norm adoption approach has been advocated both Conte and by
Dignum [8,9,13]. These architectures have influenced the BOID architecture of Sec-
tion 2.3. Moreover, we believe that any architecture for norm adoption should be able
to handle maintenance goals, see Hindriks and Van Riemsdijk [16].

Agent Architectures for Compliance 81

Regarding reflective programming, there has been progress on systems for automated
reconfiguration [11]. This work focuses on mechanisms for monitoring and diagnosis,
in order to reconfigure its activities. They also need a declarative specification of objec-
tives (i.e. goals) to evaluate the ‘success’ of an activity against.

Compliance can often be guaranteed by the design of business processes. Lu et al [21]
discuss how to use business process management systems (BPMs) to automatically
monitor and enforce compliance to norms and standards. Like us, this work combines
formal reasoning and the agent metaphor with the actual practice of companies.

Finally, there is an interesting parallel between our information needs and the work of
Lewicki and Bunker [20] who distinguish three sequential stages of trust. Calculus-based
trust is based on the consistency of behaviour and involves a continuous evaluation by the
actors of the punishment for violating trust and the rewards for preserving it. Knowledge-
based trust occurs when one has enough knowledge about the other party’s needs and
preferences to understand them and to predict their likely behaviour. Identification-based
trust is based on identification with the others’ desires and intentions. There is a mutual
understanding and appreciation of each others’ wants, such that parties are able to act to
the benefit and on behalf of the other.

One would expect a correspondence between the information needs for trust estab-
lishment and for assessing compliance. There are indeed many similarities, but a full
mapping is not possible. For instance, Lewicki and Bunker put adoption of the other’s
intentions and desires under identification-based trust, where we would expect this to
be part of the goal-based model. Social values or cultural cues, which we would expect
under identification-based trust, are not mentioned by Lewicki and Bunker.

6 Conclusions

Compliance of agents has mostly been discussed at the inter-agent level; however, the
intra-agent level is also important. After all, different kinds of norms make different
assumptions about the cognitive architectures of the agents who must comply with the
norm. In this paper we have tried to make such assumptions explicit by presenting three
cognitive agent architectures from the literature and by indicating in which ways com-
pliance can be implemented in these architectures. The architectures are: perception-
action, perception-planning-action and perception-goal-generation-planning-action.All
of these architectures also require reflective capabilities: to learn, evaluate and adjust
behaviour based on experience.

Conceptually, compliance can be implemented either

– by a filter, restricting cognitive ‘data-structures’ like policies, plans and goals so
that no violations will occur, or

– by norm adoption, where the norm itself is added as a goal or plan, so that the rest
of the agent architecture will ensure execution.

The cognitive architecture of an agent has an impact on the evidence needed to assess
whether the agent is compliant.

– For reactive architectures, we need log-files of behaviour, to demonstrate that the
agent behaves consistently, manages to avoid violations and seek preferred states.

82 B. Burgemeestre, J. Hulstijn, and Y.-H. Tan

– For goal-based architectures, also evidence of the plans and goals may be used in
establishing compliance. In particular, when an agent states that it has as a goal to
be compliant, and when evidence about its plans and actual behaviour demonstrate
that the agent is ‘in control’ of its own behaviour, we may trust that the agent will
indeed behave in a compliant way.

– Finally, for value-based architectures that allow for ethical decision making, we
may also use evidence of the social values of the agent, and how they are effective
in actual decision making. However, the causal influence of stated values on actual
decisions is hard to demonstrate. Therefore, such compliance is similar to the es-
tablishment of trust. Similar to identification-based trust [20], identification of the
values of an agent may be based on cultural ‘cues’.

Regarding the debate between rule-based versus principle-based norms, principle-based
systems are much harder to implement and monitor. Principle-based systems require
that subjects and auditors have a deliberative agent architecture, and often also the
possibility to deal with trade-offs by ethical decision making. This could explain why
principle-based norm systems may degenerate into rule-based systems.

Regarding the use of sanctions, we can say that sanctions assume agents are both
willing and able to adjust their behaviour. This means that sanctions must really be un-
desired; also internal sanctions (guilt) may work. When agents lack expertise to improve
their behaviour, giving advice may be more effective than sanctions.

The analysis has been validated in a case study of horizontal monitoring, a new au-
diting approach established by Dutch Tax. This auditing approach is based on mutual
trust and understanding. It assumes companies have an interest in being compliant. Tra-
ditional command and control often works counterproductive. Instead of hunting mis-
takes in tax declarations, auditors must now give advice to companies on how to avoid
misstatements. However, because it is principle-based, horizontal monitoring assumes
that companies have an internal decision making structure which is at least goal-based
and preferably also allows for ethical decision making. The case study shows that, in
addition to evidence of behaviour, horizontal monitoring also requires evidence that
compliance issues are taken into account during internal decision making.

References

1. Atkinson, K., Bench-Capon, T., McBurney, P.: Computational representation of practical
argument. Synthese 152(2), 157–206 (2006)

2. Ayres, I., Braithwaite, J.: Responsive Regulation: Transcending the Deregulation Debate.
Oxford University Press, Oxford (1992)

3. Boella, G., Verhagen, H., van der Torre, L.: Introduction to the special issue on normative
multiagent systems. Journal of Autonomous Agents and Multi Agent Systems 17(1), 1–10
(2008)

4. Braithwaite, V.: Responsive regulation and taxation: Introduction. Law and Policy 29(1),
3–10 (2007)

5. Broersen, J., Dastani, M., Hulstijn, J., Van der Torre, L.: Goal generation in the BOID archi-
tecture. Cognitive Science Quarterly 2(3-4), 431–450 (2002)

6. Conte, R., Castelfranchi, C.: Cognitive and Social Action. UCL Press, London (1995)
7. Castelfranchi, C.: Prescribed mental attitudes in goal-adoption and norm-adoption. Artificial

Intelligence and Law 7(1), 37–50 (1999)

Agent Architectures for Compliance 83

8. Conte, R., Castelfranchi, C.: From conventions to prescriptions: towards an integrated view
of norms. Artificial Intelligence and Law 7(4), 323–340 (1999)

9. Conte, R., Castelfranchi, C., Dignum, F.: Autonomous norm acceptance. In: Rao, A.S.,
Singh, M.P., Müller, J.P. (eds.) ATAL 1998. LNCS (LNAI), vol. 1555, pp. 99–112. Springer,
Heidelberg (1999)

10. COSO. Internal control integrated framework. Technical report, Committee of Sponsoring
Organizations of the Treadway Commission, COSO (1992)

11. Dalpiaz, F., Giorgini, P., Mylopoulos, J.: An architecture for requirements-driven self-
reconfiguration. In: van Eck, P., et al. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 246–260.
Springer, Heidelberg (2009)

12. Deming, W.E.: Out of the Crisis. MIT Center for Advanced Engineering Study (1986)
13. Dignum, F.: Autonomous agents with norms. Artificial Intelligence and Law 7, 69–79 (1999)
14. Gneezy, U., Rustichini, A.: A fine is a price. Journal of Legal Studies 29(1), 1–17 (2000)
15. Gribnau, H.: Soft law and taxation: The case of the Netherlands. Legisprudence 1(3) (2008)
16. Hindriks, K., van Riemsdijk, M.B.: Satisfying maintenance goals. In: Baldoni, M., Son, T.C.,

van Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2007. LNCS (LNAI), vol. 4897, pp. 86–103.
Springer, Heidelberg (2008)

17. Humphrey, W.S.: Characterizing the software process: A maturity framework. Technical Re-
port CMU/SEI-87-TR-11, Carnegie Mellon University (1987)

18. IAASB. Audit sampling: Redrafted international standard on auditing (ISA 530). Interna-
tional Federation of Accountants, IFAC (2008)

19. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of
Artificial Intelligence Research 4, 237–285 (1996)

20. Lewicki, R.J., Bunker, B.B.: Developing and maintaining trust in work relationships. In:
Trust in organizations, pp. 114–139. Sage Publications, Thousand Oaks (1996)

21. Lu, R., Sadiq, S., Governatori, G.: Measurement of compliance distance in business work
practice. Information Systems Management 25(4), 344–355 (2009)

22. Maes, P.: Concepts and experiments in computational reflection. In: Proceedings OOPSLA,
pp. 147–155 (1987)

23. Meneguzzi, F., Luck, M.: Norm-based behaviour modification in BDI agents. In: Proceedings
of AAMAS 2009, pp. 177–184 (2009)

24. Pollack, M.E.: Plans as complex mental attitudes. In: Cohen, P., Morgan, J., Pollack, M.
(eds.) Intentions in Communication, pp. 77–103. MIT Press, Cambridge (1990)

25. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In: Allen, J.,
et al. (eds.) Proceedings of KR 1991, pp. 473–484 (1991)

26. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall,
New York (2003)

27. Sarbanes, Oxley: Sarbanes-oxley act of 2002. Public Law 107 - 204, Senate and House of
Representatives of the United States of America (2002)

28. Satava, D., Caldwell, C., Richards, L.: Ethics and the auditing culture: Rethinking the foun-
dation of accounting and auditing. Journal of Business Ethics 64, 271–284 (2006)

29. Schut, M.C.: Scientific Handbook for Simulation of Collective Intelligence, version 2. Avail-
able under Creative Commons License (2007), www.sci-sci.org

30. Searle, J.: The Construction of Social Reality. The Free Press, New York (1995)
31. Sierra, C.: Agent-mediated electronic commerce. Journal Autonomous Agents and Multi-

Agent Systems 9(3), 285–301 (2004)
32. Thomason, R.: Desires and defaults: A framework for planning with inferred goals. In: Cohn,

A.G., et al. (eds.) Proceedings of the International Workshop on Knowledge Representation
(KR 2000), pp. 702–713. Morgan Kaufmann, San Mateo (2000)

33. Visser, E.: Tax control framework. Dutch Tax and Customs Administration (2008)

www.sci-sci.org

Incorporating BDI Agents into Human-Agent
Decision Making Research

Bart Kamphorst, Arlette van Wissen, and Virginia Dignum

Institute of Information and Computing Sciences, Utrecht University, the Netherlands

Abstract. Artificial agents, people, institutes and societies all have the
ability to make decisions. Decision making as a research area therefore
involves a broad spectrum of sciences, ranging from Artificial Intelli-
gence to economics to psychology. The Colored Trails (CT) framework is
designed to aid researchers in all fields in examining decision making pro-
cesses. It is developed both to study interaction between multiple actors
(humans or software agents) in a dynamic environment, and to study
and model the decision making of these actors. However, agents in the
current implementation of CT lack the explanatory power to help un-
derstand the reasoning processes involved in decision making. The BDI
paradigm that has been proposed in the agent research area to describe
rational agents, enables the specification of agents that reason in ab-
stract concepts such as beliefs, goals, plans and events. In this paper,
we present CTAPL: an extension to CT that allows BDI software agents
that are written in the practical agent programming language 2APL to
reason about and interact with a CT environment.

1 Introduction

Decision making has since long been an area of interest to scholars from all kinds
of disciplines: psychology, sociology, economics and more recently, computer sci-
ence. A lot of research has been done on finding, isolating and formalizing the
factors that are involved in decision making processes of both humans and com-
puter agents [18] [11] [22]. The Colored Trails (CT) framework [10] is designed
to aid researchers in this purpose. It is developed (i) to study interaction be-
tween multiple actors (humans or software agents) in a dynamic environment
and (ii) to study and model both human and agent decision making. CT allows
for a broad range of different games to be implemented, such as one-shot take-
it-or-leave-it negotiation games [7], iterated ultimatum games [27] and, of late,
dynamic games with self-interested agents [26].

Currently, CT software agents are computational agents implemented in the ob-
ject oriented programming language Java. In this paper, we will use the term ‘com-
putational agent’ to refer to software agents that determine their strategy by use of
algorithms, probabilities or game theory. We will use this term to distinguish these
agents from agents that use concepts from folk psychology to define strategies. CT
agents are usually tailored either to display one type of behavioral strategy, such
as egoism or altruism [27], or to maximize their utility for every action [16]. How-
ever, even though computational agents perform well in some scenarios, they lack

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 84–97, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Incorporating BDI Agents into Human-Agent Decision Making Research 85

the explanatory power to help understand the reasoning processes involved in deci-
sion making. Computational agents may make optimal decisions based on a clever
probabilistic algorithm, but they will generally not show you how they did it.

In order to gain more insights into the actual reasoning processes that lie behind
a decision of a software agent, the agents must be endowed with a richer model of
reasoning. Based on Bratman’s theory of rational actions in humans [2], agents
can be constructed that reason in abstract concepts such as beliefs, goals, plans
and events [3]. These types of agents are often referred to as Belief, Desire and In-
tention (BDI) agents. Ideally, agents are able to display reactivity, proactiveness
and social abilities [32]. That is, they should be able to perceive and respond to
the environment, take initiative in order to satisfy their goals and be capable to
interact with other (possibly human) actors. For an agent to have an effective bal-
ance between proactive and reactive behavior, it should be able to reason about
a changing environment and dynamically update its goals. Having social abilities
requires it to respond to other agents, for example by cooperating, negotiating or
sharing information. Working in a team for instance requires agents to plan, com-
municate and coordinate with each other. A BDI architecture lends itself well to
implement these requirements in an intuitive yet formal way [9].

The BDI approach has proved valuable for the design of agents that oper-
ate in dynamic environments. It offers a higher level of abstraction by explicitly
allowing beliefs to have a direct impact upon the agents behavior. This means
the agents can respond flexibly to changing circumstances despite incomplete
information about the state of the world and the agents in it [6]. Since BDI
uses ‘mental attitudes’ such as beliefs and intentions, it resembles the kind of
reasoning that we appear to use in our everyday lives [30]. To interact success-
fully, agents can benefit from modeling the mental state of their environment
and their opponent [23]. Additionally, BDI models provide a clear functional
decomposition with clear and retractable reasoning patterns. This can provide
more helpful feedback and more explanatory power.

This paper presents middleware that lets software agents with a BDI decision
structure interact with humans and other software agents in CT. The software
presented in this article, CTAPL, allows BDI software agents that are written in
the practical agent programming language 2APL to reason about and interact
with a CT environment and the actors within the environment. CTAPL is a plat-
form designed for the implementation of various interaction scenarios between
BDI agents, computational agents, humans and heterogeneous groups. Although
the framework of CTAPL has been developed, we are currently in the prelim-
inary stages of evaluating CTAPL by building BDI agents whose performance
can be compared to the performance of computational CT agents.

2 Related Work

The BDI model of agency does not prescribe a specific implementation [25]. We
therefore do not claim that 2APL is the only suitable agent language for decision
making research. There exist several different implementations that differ from

86 B. Kamphorst, A. van Wissen, and V. Dignum

each other in the logic they use and the technology they are based on. More often
than not, the logics that are used are not formally specified in the semantics
of the BDI programming language. 2APL differs from most agent languages
(e.g., JACK [28] and Jadex [21]) in that it is defined with exact and formal
semantics [3]. In addition to being theoretically well-motivated, 2APL provides
easy implementation of external environments (see Section 4.1 for a more in-
depth discussion of these environments), enabling different environments and
frameworks to be connected to it.

The study of mixed-initiative interactions requires some kind of negotiation
environment for the interactions to take place. Most environments are domain-
specific and focus on specific tasks to be evaluated. Multi-agent decision making
environments are mostly designed for agent simulation based on human per-
formance. Examples of these environments are OMAR [5] and GENIUS [14].
The CT framework is very flexible in that it can be used to implement domains
ranging from highly abstract to rich and complex scenarios. However, using BDI
agents in decision making environments is certainly not limited to CT and it
would be interesting to see how well BDI agents can be incorporated into other
negotiation environments.

Literature shows that there are frameworks constructed for BDI agents [19]
and recent work focuses on the development of a multi-agent simulation plat-
form that supports different agent-oriented programming languages [1]. However,
these frameworks are designed for very specific domains and are therefore not
broadly applicable. CTAPL allows for the implementation of a range of differ-
ent interaction domains in which BDI agents, computational agents and humans
can interact. We are not aware of any other existing generic framework that al-
lows computational agents and BDI agents to interact with each other and with
humans in negotiation environments.

3 Colored Trails

Throughout the remainder of the paper we will illustrate various aspects of the
CT framework using a decision making scenario that was presented in [27]. In
this scenario the agents do not have to cope with any uncertainties about the
world except the strategy of the opponent. Furthermore, it is a game that can
be easily be divided into goals and subgoals. That is, players can create their
own decision recipe trees that do not involve probabilities. This game is therefore
very suitable to be implemented in CT as well as in the BDI constructs of 2APL.
The game consists of an implementation of the ultimatum game (UG) [13], in
which two players (here referred to as Alice and Bob) interact to divide their
colored chips in order to take a path to the goal.

3.1 The Framework

CT [10] is a flexible research platform developed by Grosz and Kraus to investigate
decision-making in group contexts. CT implements a server-client architecture.
Figure 1 represents the conceptual design of CT: A is the set of software agents

Incorporating BDI Agents into Human-Agent Decision Making Research 87

Fig. 1. The Colored Trails framework

and {A1 . . . Ai} ∈ A. H is the set of human actors and {H1 . . . Hi} ∈ H. Through
an administrative shell a configuration file is loaded that specifies the properties
of the game. Once the configuration file is loaded, the server starts the game.

The standard CT environment consists of a board of colored squares, one or
more goals, two or more players (these can be both humans and software agents)
and a set of colored chips per player.Playersmaymove across the boardby handing
in colored chips that correspond to the colored squares of their taken path. They
are allowed to negotiate in order to obtain useful chips. The size of the board, the
colors of the squares, the number of players and the number of goals are a few
examples of the many variables that can be set in the configuration file. The con-
figuration file also specifies when and in what way players may communicate with
each other and what information each player has about the current state of the
world. CT thus allows for games of both imperfect and incomplete information. CT
also allows for the “specification of different reward structures, enabling examina-
tion of such trade-offs as the importance of the performance of others or the group
as a whole to the outcome of an individual and the cost-benefits of collaboration-
supporting actions”[10]. Given the large number of variables that can be modified,
a great variety of domains can be implemented in CT.

Figure 2 shows the configuration of the ultimatum game that was mentioned
earlier. The board consists of 5 × 5 colored squares and two players, Alice and
Bob, who each have full visibility of the board and of the other player’s position,
goal and chips. This means they do not have to cope with any uncertainty, other
than the strategy of the opponent. On the board, the position of both players
and their goal is visible. The chips (displayed in the ‘Player Chips Display’ at
the bottom of the screen) represent the resources the players have and can divide
amongst themselves. A player is either a proposer and required to propose the
split of the chips, or a responder and required to respond to an offered proposal.

3.2 What’s Missing?

The CT framework was specifically designed to investigate human-agent inter-
actions: “A key determinant of CT design was the goal of providing a vehicle for

88 B. Kamphorst, A. van Wissen, and V. Dignum

Fig. 2. The Configuration of a Colored
Trails Game

comparing the decision-making strategies
people deploy when they interact with
other people with those they deploy when
computer systems are members of their
groups.”[10] If a scenario focuses on an-
alyzing decision making in interactions
between humans and agents, it can be in-
teresting and helpful if the agents reason
in a similar way as humans (say they) do.
These agents help us understand how they
interact and what motivates their deci-
sions, by enabling us to look more closely
at their reasoning process. On top of that,
agents that are based on models that take
into account the same social principles
that humans also base their decision on
(such as fairness and helpfulness), were
shown to explore new negotiation oppor-
tunities [15] and find solutions that cor-
respond to solutions found by humans [4].
The information about the agent’s reason-
ing process can be used to create agents
that are able to support humans in deci-
sion making tasks.

BDI structures reflect the collaborative decision making process of humans
more closely and at a more realistic level than the more algorithmic approaches
[29]. The possibility of having BDI agents within the CT framework also allows
for comparisons between how people interact with BDI agents and with compu-
tational agents. Currently, the CT framework is only suitable for computational
agents written in Java. What is missing from CT is a way to have BDI agents
interact in CT domains.

4 2APL

4.1 The Platform

2APL (pronounced double-a-p-l) is a practical agent programming language de-
signed to implement agents that can explicitly reason with mental concepts such
as beliefs, goals (desires) and plans (intentions) [3]. Figure 3 shows the concep-
tual design of 2APL. Like CT, the 2APL platform implements a server-client
architecture, where A is the set of BDI agents written in the 2APL program-
ming language and {A1 . . . Ai} ∈ A. Each agent An can communicate with all
other agents via a send action. All communication between agents goes through
the 2APL server.

The 2APL language has both a formal syntax and a formal semantics, which
makes it possible to check programs on the satisfiability of their (formal)

Incorporating BDI Agents into Human-Agent Decision Making Research 89

Fig. 3. The 2APL platform

specifications and constraints. Furthermore, it integrates both declarative and
imperative programming styles. Goals and beliefs are stated in a declarative
way, while plans and external environments are implemented in an imperative
programming style. The declarative programming is well-suited for the imple-
mentation of reasoning and the updating of the mental states of the agents. The
imperative part enables the implementation of plans, flow of control and allows
for the interaction with existing imperative programming languages. (For a more
detailed discussion of the implementation of beliefs, goals and plans in 2APL, see
[3].) The 2APL platform also allows for external environments. These environ-
ments are modular extensions that agents can have access to through external
actions. External environments serve as an interface to the Java programming
language which allows programmers (i) to build custom environments for agents
to interact in and (ii) to easily add functionality to the 2APL Platform.

Example 1 illustrates a specific reasoning pattern of the UG example in 2APL.
Alice might have a different strategy of reacting to proposals received from Bob
than Bob has of reacting to Alice’s proposals. It might be the case that Alice
is egoistic and only accepts proposals if it leaves herself better but Bob worse
off, while Bob is more altruistic and also accepts proposals that favor Alice.
In 2APL this can be expressed in terms of goals, subgoals and belief updates.
This example shows what happens if Alice receives a proposal. The method
‘makeResponse(MSGID)’ is called when Alice receives a new proposal and she
has an ID. If Alice has the goal to win and to respond to proposals (meaning
that she is currently the responder in the game), then she will check whether
accepting an offer that Bob has proposed is both beneficial for her and harm-
ful for Bob. If this condition is met, she will accept the proposal and put this
in her belief base. Otherwise, she will reject the proposal and put this in her
belief base. Statements that transfer knowledge to the belief base can be iden-
tified by the first letter of the name of the method, which is always a capitol.
In this case, the statement ‘Responded(TYPE, MSGID, accept)’ is a belief up-
date rule (as defined in 2APL), which will update the belief base with the fact
that the agent responded with ’accept’ to a particular proposal. Since in the
following round Alice will be a proposer, she now updates her goal base by drop-
ping the subgoal of responding to proposals and accepting the goal of making
proposals.

90 B. Kamphorst, A. van Wissen, and V. Dignum

Example 1 (Performing high level task-specific reasoning:
makeResponse(MSGID))

makeResponse (MSGID) <− r e c e i v e d (TYPE,MSGID, open) and
agent Id (MYID) | {

i f (G(win) and G(respond)) then {
i f (B(scoreAf te rExchange (MYID,SCORE) >

scoreCurren tCh ips (MYID))
and B(scoreAf terExchange (BOBID,SCORE) <
scoreCurren tCh ips (BOBID)) then {

response (MSGID, accep t) ;
Responded (TYPE,MSGID, accep t)

} e lse {
response (MSGID, r e j e c t) ;
Responded (TYPE,MSGID, r e j e c t)

}
dropGoal (respond) ;
adopta (propose)

}
}

4.2 What’s Missing?

Although the 2APL platform in principle allows external environments to have
a graphical user interface (GUI) with which humans can interact with the 2APL
agents, external environments are in practice mostly designed to examine the
agents’ behavior and reasoning processes. The environments provided by 2APL
are not very well-suited to study human-agent interaction, because the scenario
often focuses on helping the agent to learn or display certain behavior. How-
ever, since BDI systems have the advantage that they use similar concepts of
reasoning as humans do, it would be very interesting to study their behavior in
heterogeneous settings comprising of both agents and humans. This requires a
empirical testbed that enables the implementation of both abstract and more
real-world domains in which humans and agents can interact. CT is very suitable
for this purpose.

In many scenarios, the BDI model has proven to be a useful tool and several
successful applications use BDI structures [29] [20]. According to Georgeff, “the
basic components of a system designed for a dynamic, uncertain world should
include some representation of Beliefs, Desires, Intentions and Plans [. . .]” [8].
However, one of the main criticisms against BDI systems is that it cannot deal
properly with learning and adaptive behavior. However, recent attempts have
been made to extend BDI languages with learning components [12]. Extensions
to the existing BDI framework can be easily evaluated in CT, since agents have
to adapt to a dynamic environment and can learn from interactions with humans.
“The CT architecture allows games to be played by groups comprising people,
computer agents, or heterogenous mixes of people and computers. [. . .] As a

Incorporating BDI Agents into Human-Agent Decision Making Research 91

result, CT may also be used to investigate learning and adaptation of computer
decision-making strategies in both human and computer-agent settings” [10].
Another criticism concerns the gap between the powerful BDI logics and practical
systems [17].

To conclude, the 2APL platform is currently missing a uniform way to let hu-
mans interact with the BDI agents. Combining 2APL and CT enables researchers
to study BDI agents in a setting of human-agent interaction.

5 CTAPL

From the previous sections, two issues can be distilled. The first is that the CT
framework in its current state lacks a clear-cut way to build agents with a rich
model of reasoning needed to help better understand the reasoning processes
involved in decision making. Secondly, although the 2APL platform offers a
BDI agent programming language that provides agents with such a rich model
of reasoning, the 2APL platform is in itself not very suitable for human-agent
interaction experiments. CTAPL is designed to overcome both problems. CTAPL
is middleware that allows BDI agents, written in 2APL, to participate in a CT
environment in which heterogeneous actors can interact. CTAPL allows for both
the interaction between BDI agents and humans and between BDI agents and
computational agents. It is even possible to have a mixed group of BDI agents,
computational agents and humans interact. Because of this, CTAPL is a very
suitable platform to evaluate the performance of BDI agents.

5.1 Conceptual Design

Figure 4 shows the conceptual design of CTAPL. The top layer represents the
2APL platform. As with any 2APL setup, it consists of a server and one or
more BDI agents (A1 . . . Ai). The bottom layer represents the CT framework,
with software agents and human actors. In CTAPL however, the CT agents are
not fully functional, reasoning agents. Instead, GA1 . . . GAi are mere hooks for
the BDI agents to communicate with the CT environment. Each agent An thus
corresponds with hook GAn. The 2APL platform is extended by an external
environment that instantiates (i) the hooks for each 2APL agent and (ii) a Java
Thread that continually listens whether agents have received any new messages
from the server. In CTAPL the communication between agents flows through
the CT messaging system instead of directly through the 2APL server.

5.2 Implementation

CTAPL consists of four major components: a 2APL external environment, a
MessageListener class, a set of hooks in CT in the form of generic Java CT
agents and higher level 2APL code that 2APL agents have to use in order to
communicate with the CT framework. In the upcoming subsections the four
components will be discussed individually.

92 B. Kamphorst, A. van Wissen, and V. Dignum

Fig. 4. The conceptual design of CTAPL

2APL Agents. The 2APL agents are designed to perform all higher level rea-
soning about the game. Through external actions the agents can pass informa-
tion to and request information from the CT environment. CTAPL provides a
2APL API that defines BDI constructs for all external actions that are avail-
able in the CTAPL external environment (see Section 5.2). For instance, the
procedural rule1 getPosition(ID), shown in Example 2, allows agents to retrieve
the position of another actor on the board. This method can be called without
restrictions, as demonstrated by the guard of this method, which is ‘true’. First,
the method calls upon the ‘getPosition(ID)’ method in the CT environment.
The environment returns the result of this call, which is captured in the variable
POS. Subsequently, it is checked whether the POS value meets the required form
of two coordinates. These coordinates are then put in the belief base with the
belief update rule ‘Position(ID,X,Y)’.

Example 2 (Requesting information from the external environment:
getPosition(ID))

g e tPo s i t i o n (ID) <− true | {
@ctenv (g e tPo s i t i o n (ID) , POS) ;
B(POS=[X,Y]) ;
Po s i t i on (ID ,X,Y)

}

1 For more on procedural rules in 2APL, see [3].

Incorporating BDI Agents into Human-Agent Decision Making Research 93

The agent programmer can include the constructs from the API by putting an
Include: filename statement on the first line of the 2APL file that defines the
reasoning patterns of the specific BDI agent. This statement creates a union
between the code from the API and the agent code designed by the agent pro-
grammer. Other extensions such as general beliefs and plans specified by the
programmer may also be put into separate files that can then be included by all
agents.

The External Environment. The external environment consists of several
classes, written in Java with the 2APL API, that have been packaged as a Java
archive (jar). External environments are the default way in the 2APL platform of
providing agents with an environment in which to interact. Normally, an external
environment is a closed system that defines all the external actions an agent can
perform within the environment. In CTAPL however, the external environment
functions as a proxy between the 2APL agents and the hooks in CT. For instance,
the environment ensures that the procedural rule getPosition(ID) from Example
2 will call the getPosition(ID) method of the CT hook that corresponds with
the 2APL agent in question and returns the value to the 2APL agent. If Alice –
programmed in 2APL – wants to know Bob’s position, the 2APL code will call
the CT environment to extract this information.

CT Generic Agents. The generic agent functions solely as a hook for 2APL to
communicate with the CT server. The class GenericAgentImpl contains all the
basic functionality that CT offers its regular agents. Examples of basic meth-
ods are getChips(), getPosition() and setClientName(String name). Example 3
shows the getPosition(ID) method in CT, to give an impression of the function-
ality. First, the set of players is collected by the method ‘getPlayers()’, which is
defined in the CT API. The method then cycles through the set of all players to
find the one with the right ID. Then the position of this player is collected by
‘getPosition()’, which is also defined in the CT source code. The method now
stores this position value and returns it to the environment, where the method
was called.

Because the agent functions as a hook to the 2APL platform, GenericA-
gentImpl also implements higher level methods such as getBoard(), getPlayers()
and getPlayerByPerGameId(int pergameid). If CT is extended by new methods
specifically designed for a specific experiment, the generic agent class can be
subclassed to implement the additional methods.

The Message Listener. The Message Listener component is a Java Thread in-
stantiated by the external environment that continuously polls each CT Generic
Agent for new messages that the agent may have received.2 This information is
then passed through the external environment onto the 2APL agents using the

2 Technically, the Message Listener is part of the external environment. However,
because it is a Threaded class and serves a very specific purpose, it is considered a
separate component of CTAPL.

94 B. Kamphorst, A. van Wissen, and V. Dignum

Example 3 (The CT functionality: getPosition(ID))

public RowCol g e tPo s i t i o n (int i d) {
Set<PlayerS ta tus > p l a y e r s = c l i e n t . g e tP l a y e r s () ;
RowCol p o s i t i o n = nul l ;
for (P l ay e rS t a tu s p l a y e r : p l a y e r s) {

i f (p l a y e r . getPerGameId () == id) {
// the g e tPo s i t i o n () method i s d e f i n ed in

the CT API
po s i t i o n = p l ay e r . g e tPo s i t i o n () ;
break ;

}
}
return p o s i t i o n ;

}

2APL built-in construct throwEvent(APLFunction event, String ... receivers).
This construction allows the BDI agents to passively gain knowledge about mes-
sages that have been sent to them. The 2APL agent code specifies what to do
when messages are received.

6 Discussion

Currently, the authors are in the process of implementing an egoistic BDI agent
in 2APL that interacts within a scenario similar to the one described in [27].
A proof of concept has already been developed that shows that the framework
of CTAPL functions properly by relaying information from 2APL to CT and
visa versa. Once the implementation of the egoistic BDI agent is complete, the
authors will evaluate it by comparing its performance with that of the egoistic
agent from [27]. We expect the BDI agent to perform at least as well as the
original agent.

CT allows for environments in which uncertainties, probabilities and utilities
play an important role. Due to the highly abstract philosophical origins of BDI,
such concepts are typically not included in BDI models. One might therefore
object against the use of 2APL in CT by raising the question how 2APL would
handle such concepts. In defense of CTAPL two things may be said. The first
is that this objection holds for almost all approaches that use BDI structures.
The question posed brings forth a long-existing tension between those who favor
BDI models and those who favor computational (decision and game theoretic)
approaches to building software agents [31]. The burden of solving this tension
does not lay with CTAPL because it is written as an extension to the already
existing framework of CT. The authors of this paper do not claim that BDI
agents should be preferred over computational agents in all cases. Instead, we
have argued that BDI agents can be a valuable addition to decision making
research with CT when the focus is on understanding the reasoning processes
involved.

Incorporating BDI Agents into Human-Agent Decision Making Research 95

Second, the 2APL platform does offer a clear, modular way to capture uncer-
tainties, probabilities and utilities. External environments may be written that
provide computational methods. By allowing BDI agents access to these envi-
ronments, the agents can request a certain value to be calculated. The agents
can then reason with the outcome. Consider the case in which Alice does not
know what chips Bob has. Alice may now access an external environment to
calculate the probability of Bob having the chips Alice needs. Alice can then use
this information to make her offer. So even though the probability is calculated
using a computational algorithm, Alice uses her own beliefs, desires and inten-
tions to interpret that value. In this way the 2APL agents are able to reason
about uncertainties, probabilities and utilities.

7 Future Work

Currently no work has been done to deploy BDI agents in CT scenarios in which
agents have to deal with (i) utilities and (ii) uncertainties about the world. As we
discussed in section 6 traditional BDI systems are not well equipped to cope with
uncertainties. Current BDI approaches simply do not provide tools for quantita-
tive performance analysis under uncertainty. Future research will have to show
whether these difficulties can be overcome by either using external environments
to implement computational features that BDI agents can utilize, or by using hy-
brid approaches such as BDI-POMDP to deal with uncertainty [24].

As mentioned in section 6, the authors will use CTAPL to compare the perfor-
mance of an egoistic BDI agent with that of an egoistic computational agent in a
negotiation scenario similar to the one presented in [27]. Because CTAPL allows
for the interaction between both types of agents, the platform is very suitable for
empirically comparing BDI agents with computational agents in terms of speed,
performance and explanatory power in various settings. Future work will provide
more empirical insights into the advantages and disadvantages of the BDI ap-
proach. Future research with CTAPL also includes (i) building BDI agents that
model human decision making processes in a setting of coalition formation with
self-interested agents [26] and (ii) improving the planning mechanism of agents
in a collaborative setting with uncertainty [16].

8 Conclusions

In this paper the authors have proposed a technical solution for dealing with the
explanatory gap that exists when computational agents are used to investigate
decision making. We have proposed that BDI based agents can assist in filling
the gap because they use clear and retractable reasoning patterns. This paper
has described new middleware called CTAPL that is designed to combine the
strengths of a BDI-based agent approach with the Colored Trails testbed for
decision making.

CTAPL makes three major contributions. First, CTAPL opens up the possi-
bility for BDI researchers to explore existing research domains developed in CT

96 B. Kamphorst, A. van Wissen, and V. Dignum

for agent-agent interaction. Secondly, it gives BDI researchers the opportunity
to have BDI agents that perform optimally in a certain environment interact
with human players. Lastly, it creates the possibility for CT researchers to write
agents that can qualitatively reason in terms of beliefs, goals and plans by using
the 2APL agent programming language.

Acknowledgements. We thank Ya’akov (Kobi) Gal and Maarten Engelen for
helpful comments and assistance with the initial setup of CTAPL. This research
is funded by the Netherlands Organization for Scientic Research (NWO), through
Veni-grant 639.021.509.

References

1. Bordini, R., et al.: Mas-soc: a social simulation platform based on agent-oriented
programming. Journal of Artificial Societies and Social Simulation 8(3) (2005)

2. Bratman, M.: Intentions, Plans and Practical Reason. Harvard University Press
(1987)

3. Dastani, M.: 2apl: a practical agent programming language. Autonomous agents
and multi-agent systems 16(3), 214–248 (2008)

4. de Jong, S., Tuyls, K., Verbeeck, K.: Fairness in multi-agent systems. The Knowl-
edge Engineering Review (2008)

5. Deutsch, S., Adams, M.: The operator-model architecture and its psychological
framework. In: 6th IFAC Symposium on Man-Machine Systems. MIT, Cambridge
(1993)

6. Dignum, F., Morley, D., Sonenberg, E., Cavedon, L.: Towards socially sophisticated
bdi agents. In: Proceedings of the Fourth International Conference on MultiAgent
Systems, Boston, MA (2000)

7. Gal, Y., Pfeffer, A.: Predicting people’s bidding behavior in negotiation. In:
AAMAS (2006)

8. Georgeff, M., Pell, B., Pollack, M., Tambe, M.: The belief-desire-intention model
of agency. LNCS. Springer, Heidelberg (1999)

9. Grosz, B., Kraus, S.: Collaborative plans for complex group action. Artificial In-
telligence 86(3), 269–357 (1996)

10. Grosz, B., Kraus, S., Talman, S., Stossel, B., Havlin, M.: The influence of social de-
pendencies on decision-making: Initial investigations with a new game. In: AAMAS
(2004)

11. Grosz, B., Pfeffer, A., Shieber, S., Allain, A.: The influence of task contexts on the
decision-making of humans and computers. In: Proceedings of the Sixth Interna-
tional and Interdisciplinary Conference on Modeling and Using Context (2007)

12. Guerra-Hernández, A., Fallah-Seghrouchni, A.E., Soldano, H.: Learning in BDI
multi-agent systems. In: Dix, J., Leite, J. (eds.) CLIMA 2004. LNCS (LNAI),
vol. 3259, pp. 218–233. Springer, Heidelberg (2004)

13. Guth, W., et al.: An experimental analysis of ultimatum bargaining. Journal of
Economic Behavior and Organization 3, 367–388 (1982)

14. Hindriks, K., Jonker, C., Kraus, S., Lin, R., Tykhonov, D.: Genius - negotiation
environment for heterogeneous agents, Budapest, Hungary (May 2009)

15. Hogg, L., Jennings, N.: Socially intelligent reasoning for autonomous agents. IEEE
Trans. on Systems, Man and Cybernatics - Part A, 381–399 (2001)

Incorporating BDI Agents into Human-Agent Decision Making Research 97

16. Kamar, E., Gal, Y., Grosz, B.: Incorporating helpful behavior into collaborative
planning. In: AAMAS (2009)

17. Mora, M., Lopes, J., Viccari, R., Coelho, H.: BDI models and systems: Reducing
the gap. In: Rao, A.S., Singh, M.P., Müller, J.P. (eds.) ATAL 1998. LNCS (LNAI),
vol. 1555, pp. 11–27. Springer, Heidelberg (1999)

18. Newell, A., Simon, H.A.: Human Problem Solving. Prentice-Hall, Englewood Cliffs
(1972)

19. Nguyen, M., Wobcke, W.: A flexible framework for sharedplans. In: Sattar, A.,
Kang, B.-h. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 393–402. Springer,
Heidelberg (2006)

20. Onken, R., Walsdorf, A.: Assistant systems for vehicle guidance: Cognitive man-
machine cooperation. Aerospace Science Technology 5, 511–520 (2001)

21. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A bdi reasoning engine.
In: Multi-Agent Programming: Languages, Platforms and Applications. Kluwer,
Dordrecht (2005)

22. Sanfey, A., Rilling, J., Aronson, J., Nystrom, L., Cohen, J.: The neural basis of
economic decision-making in the ultimatum game. Science (300), 1755–1758 (2003)

23. Sindlar, M.P., Dastani, M., Dignum, F., Meyer, J.-J.C.: Mental state abduction
of BDI-based agents. In: Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff,
M. (eds.) DALT 2008. LNCS (LNAI), vol. 5397, pp. 161–178. Springer, Heidelberg
(2009)

24. Tambe, M., et al.: Conflicts in teamwork: Hybrids to the rescue. In: AAMAS,
pp. 3–11 (2005)

25. van der Hoek, W., Wooldridge, M.: Towards a logic of rational agency. Logic Jour-
nal of the IGPL 11(2), 135–159 (2003)

26. van Wissen, A., Kamphorst, B., Gal, Y., Dignum, V.: Coalition formation between
self-interested heterogeneous agents (forthcoming)

27. van Wissen, A., van Diggelen, J., Dignum, V.: The effects of cooperative agent
behavior on human cooperativeness. In: AAMAS (2009)

28. Winikoff, M.: JackTM intelligent agents: An industrial strength platform. In: Multi-
Agent Programming: Languages, Platforms and Applications. Kluwer, Dordrecht
(2005)

29. Wolfe, S., Sierhuis, M., Jarvis, P.: To bdi or not to bdi, design choices in an agent-
based traffic flow management simulation. In: Proceedings of the 2008 Spring Sim-
ulation Multiconference (2008)

30. Wooldridge, M.: Intelligent agents. In: Weiss, G. (ed.) Multiagent Systems. MIT
Press, Cambridge (1999)

31. Wooldridge, M.: Reasoning about Rational Agents. MIT Press, Cambridge (2000)
32. Wooldridge, M., Jennings, N.: Intelligent agents: Theory and practice. The Knowl-

edge Engineering Review 10(2), 115–152 (1995)

Programming Organization-Aware Agents
A Research Agenda

M. Birna van Riemsdijk, Koen Hindriks, and Catholijn Jonker

Technische Universiteit Delft, The Netherlands
{m.b.vanriemsdijk,k.v.hindriks,c.m.jonker}@tudelft.nl

Abstract. Organizational notions such as roles, norms (e.g., obligations
and permissions), and services are increasingly viewed as natural con-
cepts to manage the complexity of software development. In particu-
lar in the context of multi-agent systems, agents are expected to be
organization-aware, i.e., to understand and reason about the structure,
work processes, and norms of the agent organization in which they oper-
ate. In this paper, we analyze which kinds of reasoning an agent should
be able to do to function in an organization. We categorize these kinds
of reasoning with respect to several dimensions, and distinguish three
general approaches on how these might be integrated in existing agent
programming languages. Through this, we provide a research agenda on
what needs to be addressed when developing techniques for programming
organization-aware agents.

1 Introduction

Software systems are becoming increasingly complex. One of the main challenges
in the field of software engineering is to develop tools and techniques for manag-
ing this complexity [41]. A central role is played by development methodologies
and programming languages, which can help managing complexity by provid-
ing appropriate concepts and abstractions in terms of which an application can
be analyzed, designed, and implemented. Searching for the “most appropriate”
(most convenient, most natural, most succinct, most efficient, most comprehen-
sible, ...) programming concepts and abstractions is addressed in programming
language design [5, Foreword].

In the field of multi-agent systems (MAS), several dedicated agent program-
ming languages have been proposed [5] to support the implementation of MAS.
The programming abstractions on which many of these languages focus, are aimed
at programming how an agent can reach certain goals, how it should react to events
occurring in its environment, and how it should communicate with other agents.

A line of research in the MAS field that has received increasing attention in
the last years, is to assign an organization to the MAS with the aim of organizing
and regulating it (see, e.g., [17,4,31,3,54]), in a similar way as done in human
organizations. Using an organizational specification to organize a MAS should
make the agents more effective in attaining their purpose, or prevent certain
undesired behavior from occurring. An organizational specification may define

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 98–112, 2009.
� Springer-Verlag Berlin Heidelberg 2009

Programming Organization-Aware Agents 99

the structure of the agent organization in terms of roles and the relations between
roles, and specify the norms (e.g., obligations and prohibitions) that are to be
followed by the agents of the MAS.

Agents that operate in such an organized MAS are expected to take the spec-
ification of the organization, as well as their own position in the organization,
into account when deciding what to do. For example, an agent playing the role of
supervisor can typically delegate tasks to its subordinates, but not the other way
around. Agents playing the role of supervisor or subordinate should be aware of
this and take this into account when deciding on action, if they are to operate
effectively in the organization. While there is a growing body of work addressing
the modeling and implementation of organizational specifications, little research
has been done on how to program agents that use these specifications for decid-
ing on action (see [57,11,18,12,31,40] for a few papers that do address various
aspects of this). We call agents that are capable of such organizational reasoning
and decision making organization-aware agents.

It is the aim of this paper to analyze which kinds of reasoning an agent should
be able to do to function in an organization and how this might be programmed,
thereby providing a starting point for research on how to program an agent’s
organizational reasoning.

2 Motivation and Background

In this section, we explain in more detail why we believe that it is important
that agents are capable of organizational reasoning and decision making, and we
provide more background on the subject.

One of the main application areas that we believe would benefit from
organization-aware agents, is simulation and training of human organizations.
Agent-based simulation is important for analyzing and training organizations, es-
pecially where learning is dangerous or where teaching is expensive
[50,48,28,14,1,42,49]. The more realistic the behavior of the agents is, the better
the training results will most likely be.

For example, since 9/11 a lot of research has been put into the improvement
of crisis management. Agent technology plays an important role in creating com-
puter simulations for analysis support and in developing training environments
for this domain [44,46,26,49,28,27]. Software agents form a natural programming
metaphor: there is a relatively close correspondence between real-world crisis
management organizations and collections of autonomous agents that interact
in a dynamic environment, usually with some individual or collective purpose.

As an example of the kind of organizational reasoning that is required in crisis
management, consider the following scenario:

An explosion has occurred in a chemical plant and hazardous chemicals
have leaked into the area. To prevent further injuries, it is essential that
the emergency response team secures the area by setting up road blocks.
Normally, this is the task of policemen, but firefighters are the first to
arrive on the scene. Should the firefighters set up the road blocks?

100 M.B. van Riemsdijk, K. Hindriks, and C. Jonker

The firefighters operate in the context of a larger emergency response orga-
nization, for which operating procedures and role responsibilities are (partly)
described in a disaster plan. The firefighters have to decide whether to take on a
role that is normally played by other members of the organization (according to
the disaster plan), or whether to give priority to their own goal of fighting the
fire. This kind of organizational reasoning and decision making takes place fre-
quently in organizations such as those for crisis management. Endowing agents
with similar capabilities is thus highly relevant.

Other application areas where organizational reasoning can be useful, are
human-agent teamwork and open systems. In human-agent teamwork, humans
and agents work together to achieve joint goals. It is essential for the effective
operation of a (human-agent) team to create a shared understanding between
teammates [52,39,36]. This is facilitated by making agents understand how to
function as part of an organization. Open systems allow agents to enter and leave
the system as it operates [19,2,15]. Typical examples are e-institutions such as
market places on the internet. An open system is organized by an organizational
specification that is to be followed by the participating agents. Organizational
reasoning and decision making facilitates the functioning of agents as part of an
open system.

Existing research on organizational modeling languages supports the speci-
fication of organizations using the notion of “role” (see, e.g., [19,21,17,58,30,4]
[31,54,33]). In this way, an organizational specification abstracts from the indi-
vidual agents that will eventually play the roles, comparable to a disaster plan in
crisis management: a disaster plan describes the desired structure and function-
ing of the crisis management organization without specifying which individuals
will play the roles of policeman and firefighter in case of a crisis. Some orga-
nizational modeling languages come with implementation frameworks [20,31,45]
that, for example, allow agents to access and modify the state of the organiza-
tion and enforce organizational constraints by applying sanctions in case of their
violation.

Given an organizational specification, it is up to the agents to operational-
ize it by playing the roles of the organization. A few abstract models exist
on how aspects of an organizational specification may influence agent behav-
ior [16,7,38,18,8], but little is understood on how to operationalize and combine
them on the level of agent programming. First steps towards this have been made
[57,11,18,12,31,40]. However, in order to program agents that take reasoned de-
cisions on how to play their part in the organization, more advanced forms of
organizational reasoning and decision making are needed as discussed in the rest
of this paper.

3 Dimensions of Organizational Reasoning

In this section, we categorize forms of organizational reasoning along three main
dimensions: the phases of organizational participation of the agent, the elements
of organizational specifications that agent should understand, and the direction

Programming Organization-Aware Agents 101

of organizational reasoning (top-down starting from an organizational specifica-
tion, or bottom-up where the agents have to figure out amongst themselves how
to organize). It is the aim of this section to provide a reasoned overview of kinds
of organizational reasoning. We have included references that can be used as a
starting point if a certain kind of organizational reasoning is studied, and we
provide several examples of organizational reasoning for each of the categories,
such as deciding whether to take on a role (weighing possibly conflicting interests
as in the firefighter scenario), reasoning about how to fulfill norms imposed by
the organization and deciding when to go against them (even though sanctions
might be applied), reasoning about how to change the organization, etc.

3.1 Phases of Organizational Participation

Organizations are operationalized through the agents that play roles in the or-
ganization. In the case of open organizations where agents may enter and leave
the organization, it seems evident to distinguish three phases of an agent par-
ticipating in an organization: entering the organization, playing roles in the or-
ganization, and leaving the organization. If closed systems are considered, only
the second phase is relevant. In each phase, different kinds of reasoning can be
distinguished.

Entering the Organization. In this phase, the agent has to reason about
whether it wants to enter the organization, and whether it has the capabilities
to behave as the organization requires. That is, the agent needs to consider
what it wants from the organization, and what the organization wants from it.1

Since agents typically participate in an organization by playing a role in the
organization, this kind of reasoning will focus on deciding whether to play a
role.

In order to determine this, the agent has to reason about whether playing a
certain role in the organization can help it to fulfill its own goals, and whether
it can come to an agreement, e.g., with respect to the interaction protocols that
will be used. For this, the agent has to understand the specification of the role,
and should be able to relate it to its own goals. For example, if an agents wants
to sell books, it might participate as a seller in an auction if it understands
that playing the seller role will enable it to sell the books. The agent also has to
determine whether it can play the role in the way required from the organization.
For example, the auction might require the agent to have a bank account in the
country where the auction is held, to enable easy transfer of the money earned
by selling the books. In order to determine whether the agent can fulfill these
norms belonging to a role, the agent has to understand them and relate them
to its own capabilities. For example, if the agent currently does not have a bank
account in the country where the auction is held, but it does know how to obtain
such a bank account, it might decide to play the role and open up the account.
1 See also [8], where the notion of social power is used as a basis for the agent to

decide whether it wants to enter a group, i.e., whether the power it loses by entering
is compensated by the power it gains or not.

102 M.B. van Riemsdijk, K. Hindriks, and C. Jonker

In practice, it will often be the case that the agent and the role do not match
exactly [11]. Playing the role might not enable the agent to fulfill its goals entirely,
and the agent might not have all the capabilities in principle required to play
the role. The agent can then negotiate about the terms under which it plays
the role in the organization (see also [36], where goal negotiation is identified
as one of the challenges of human-agent cooperation), and form a contract [17]
with the organization. A related aspect is that conflicts may arise between some
goals of the agent and requirements imposed by the role [11] (see also [53,47,56]
for work on conflicting goals). For example, the agent may want to sell its books
to only one buyer because it concerns a book series that the agent feels should
not be separated. However, the auction does not offer the possibility to specify
that the books should be sold to a single buyer. The agent will then have to
reason about priorities between its goals, i.e., whether selling the books is more
important than keeping the books together.

Playing Roles in the Organization. When the agent has decided to play
a role in the organization, it has to decide how to do this. In other words, the
abstract specification of the role with accompanying norms and responsibilities
or goals has to be interpreted and translated to concrete actions taken by the
agent. We distinguish three increasingly advanced levels of organizational reason-
ing related to playing roles: behaving according to the specification of the role,
reasoning about violation of the specification, and reasoning about adapting the
specification of the role (or other parts of the organization).

Before we discuss these levels of organizational reasoning, we remark that an
agent may also be designed to fulfill certain roles in an organization (see, e.g.,
the Gaia methodology [60])2. An agent may then always behave according to
the specification of the role by design, and no advanced forms of reasoning are
required to make sure the agent complies with the specification. Generation of
agent skeleton code [57] from the organizational specification can be used to
ease agent developed in such a setting.3 While this is useful for certain kinds of
applications, it limits the flexibility of the MAS. We aim for domains in which
increased flexibility obtained through organizational reasoning would provide
additional benefits. For example, in the case of open systems it would be benefi-
cial if the agents are capable of entering and functioning in various organizations
without the programmer having to specify for each of these organizations exactly
how the agent should do this. Also, in simulation of organizations one may want
to simulate with different norms, organizational structures, and role specifica-
tions, in order to try out what yields better results. If the agents are able to
understand the organizational specification, this provides for additional flexibil-
ity and a kind of separation of concerns: one could modify the organizational
specification independently of the agents, and the agents would be able to adapt
2 In [34], the ROADMAP methodology is proposed which extends Gaia, among other

things by allowing agents to change roles at run-time.
3 Although the skeletons make sure the agent behaves according to the specification,

even in this approach reasoning may still be required to choose from several allowed
options.

Programming Organization-Aware Agents 103

to this. The discussion in the sequel focuses on organizational reasoning in this
sense.

The first level of organizational reasoning that we distinguish, behaving accord-
ing to the specification, requires that the agent understands the role specification
and is able to translate it into concrete actions that fulfill the goals of the role
and do not violate the norms of the role. One of the main challenges here is
to bridge the gap between the possibly abstract specification of the role, and
concrete actions that the agent has to take (see also [59] for an approach to con-
cretizing norms for electronic institutions). For example, the role specification
of a policeman might specify that he should keep people away from hazardous
situations. The agent playing the role of policeman then has to translate this into
setting up road blocks in case hazardous chemicals have escaped from a plant.
The closer the role specification is to the internal agent architecture (e.g., in
[11,12] they are relatively close), the easier this translation will presumably be.
If a role is specified in an organizational modeling language and the agent is pro-
grammed in an agent programming language that was not designed to work with
the organizational modeling language, bridging this gap will be more difficult.
Another challenge is to let the agent reason about its own behavior to prevent
it from violating norms (see, e.g., [24,25] for work on how to prevent violation
of goals, and [40] for an approach on how AgentSpeak(L) agents can adapt their
behavior to norms). For example, if the norm is that policemen should always
execute tasks in pairs, this should influence the agents’ actions accordingly.

The second level, reasoning about violation, requires the agent to decide
whether, even though it has decided to play the role, it will nevertheless vio-
late some of the requirements imposed by the role (see also [10,7]). For example,
the role of policeman might specify that it can only be played by agents that have
the corresponding diploma. However, if road blocks need to be set up and police-
men have not arrived yet, firefighters might decide to play the role of policemen
and set up the road blocks, even though strictly speaking they are not allowed
to do this. Deciding on whether to violate the role specification requires weigh-
ing the benefits of breaking the rules against possible negative consequences or
sanctions resulting from this. Here, it should be noted that there is a difference
between norm enforcement, which makes the violation of norms less desirable
by introducing, e.g., sanctioning mechanisms, and norm regimentation, in which
case it is made impossible to violate a norm (see, e.g., [35,55]). In the former
case, an agent can decide to violate the norm and accept the sanction, while in
the latter case this is not possible. Regimentation can be realized using organi-
zational middleware in which the agent sends requests for actions that it would
like to execute to the middleware, which decides whether the specific action is
indeed executed. For example, in MOISE+ [31] each agent is connected to a so-
called “Orgbox” which forms the interface between agents and middleware, and
in ISLANDER/AMELI [20] governors are used for mediating the participation
of agents in an electronic institution.

The third level, reasoning about adaptation, requires the agent to reason about
how possible changes to the specification of the role or organization as a whole

104 M.B. van Riemsdijk, K. Hindriks, and C. Jonker

might affect the functioning of the organization (see [30] for an approach that
uses reorganization agents for performing reorganizations). In particular, the
agent should be able to determine which changes will lead to improvements in
the functioning of the organization. This might, for example, be determined
by comparing the actual behavior of the organization against the prescribed
behavior. Discrepancies can indicate that changes are necessary.

Besides reasoning about how to play a role in the organization, the agent
should also reason about whether to take on additional roles in the organization
or change roles. This is largely similar to the kind of reasoning needed when
entering the organization. An additional aspect that needs to be addressed if the
agent decides to take on multiple roles, is that it should reason about possible
conflicts between the requirements imposed by these roles. For example, if an
incident occurs, the mayor of the city might take on the role of coordinator of
the rescue efforts. This role requires him to be at the crisis management centre.
However, this conflicts with his role as mayor, as in that role he should be at
the scene to comfort the injured people.

Leaving the Organization. In order to enter this phase, the agent has to
reason about whether it still wants to participate in the organization. Reasons
for leaving the organization (see also [29]) can be that the agent has achieved
the goals it wanted to by being part of the organization. Another reason can
be that it believes it will not be able to achieve its goals. These considerations
are similar to an agent deciding whether to drop a goal in BDI agent languages:
when the goal is achieved or believed to be unachievable. Another reason for the
agent to leave the organization is that it is thrown out, for example because it
has not adhered to the norms of the organization. Alternatively, an agent may
not be allowed to leave the organization, e.g., if it has not payed yet in the case
of an electronic market place.

3.2 Elements of Organizational Specifications

As explained in Section 1, an organizational specification defined in an organiza-
tional modeling language is used to organize and regulate a multi-agent system.
For example, the MOISE+ organizational modeling language [4,31] specifies an
organization in terms of a structural dimension using the notions of roles and
groups, a functional dimension that describes how global collective goals should
be achieved, and a normative dimension expressing permissions and obligations
for roles, related to the achievement of (sub)goals.

Agents capable of organizational reasoning should be able to understand and
reason about an organizational specification. This requires agents to understand
all elements of the organizational specification, such as the structural dimension,
the functional dimension and the normative dimension in the case of MOISE+.
Different kinds of organizational reasoning are associated with each of these
elements.

For example, the MOISE+ structural dimension is related to the communi-
cation between agents. It specifies that agents playing a certain role should not

Programming Organization-Aware Agents 105

communicate with agents playing some other role. Moreover, the structural di-
mension allows the specification of authority links between roles. This should
presumably influence how agents handle and pose requests: if a higher ranked
agent requests something from a lower ranked agent, the latter should usually
obey (unless its reasoning determines that there are strong arguments against
obeying).

3.3 Direction of Organizational Reasoning

The third dimension that we distinguish, is the direction of organizational rea-
soning: top down or bottom up. By top down reasoning we mean that the agents
take an organizational specification as the basis for their behavior in the organi-
zation, for example by following the specified work processes. By bottom up rea-
soning we mean that the agents figure out amongst themselves how they should
cooperate, without a predefined organization. Naturally, these can co-exist. In
general, the more is specified in the organizational specification, the less room
there will be for bottom-up reasoning, and vice versa. This dimension is related
to the distinction made between agent-centered and system-centered [31], where
the latter refers to the case where there is an explicit organizational specifica-
tion. The direction of organizational reasoning refers to the kind of reasoning
required from the agents in each of these cases.

In the discussion so far, we have focused mainly on top down reasoning. In
bottom up reasoning, an important kind of reasoning is reasoning about other
agents. This has received relatively little attention in the agent programming
literature. Nevertheless, we mention several approaches in agent programming
and other areas of MAS research that address aspects of reasoning about other
agents. For example, for virtual characters in games, it is important that they
are able to form an internal representation of the mental states of other play-
ers, e.g., for predicting what they might do [37,51]. A related area is plan or
intention recognition [9,13,23]. There, agents try to recognize the plans or inten-
tions of other agents (which might also be humans), based on observations of
their actions and domain knowledge of certain standard procedures. Reasoning
about humans is also an important part of mixed-initiative systems, in which
the system collaborates with a user by sometimes taking initiative to support
the user’s activities (see, e.g., [43,22]). It will have to be investigated whether
techniques developed in these areas can be used in the context of organized MAS
for reasoning about other agents, and how this kind of bottom up reasoning can
be combined with top down reasoning.

4 Programming Organization-Aware Agents

In Section 3, we have categorized kinds of organizational reasoning. In this sec-
tion, we discuss general approaches for how agents could be programmed to
perform organizational reasoning. Future research will have to make an effort in
clearly identifying their respective strengths and weaknesses.

106 M.B. van Riemsdijk, K. Hindriks, and C. Jonker

The first approach that we identify, is to use existing agent programming
languages for specifying an agent’s organizational reasoning. This is the approach
taken in [31], where Jason is used to program agents that should function in a
MOISE+ organization. Jason is extended by necessary organizational actions,
such as an action for adopting a role. Otherwise, no additions to Jason are
made. The actions do not come with sophisticated reasoning, e.g., the action for
adopting a role does not check whether the agent has the capabilities for playing
the role. Plans are programmed, e.g., to specify when the agent should adopt a
particular role.

The advantage of this approach is that an existing language is used, which
means that a programmer who knows Jason could in principle program Jason
agents that should function in an organization. The disadvantage is that the pro-
grammer is not explicitly supported in programming organization-aware agents.
For example, he will have to program how an agent should determine whether
it can play a role in an organization. This is a non-trivial task. Also, some as-
pects of organizational reasoning have to be repeated for each instance of it. For
example, an agent should notify the organization if it has achieved some goal.
This means that an action has to be included in each plan where a goal of the
organization is reached.

The second approach we discuss here aims for a more generic approach based
on the recognition that in open systems software agents can no longer be com-
pletely hard-coded as this would require the reprogramming of agents every time
a virtual organization changes. The idea is that agents instead need to exchange
information about virtual organizations to be able to adequately coordinate their
activities. Such information exchange needs to be supported by explicitly repre-
senting the structure and norms of the organization in some declarative language.
Current state of the art agent programming languages provide an agent with the
capability to reason with its beliefs and goals. In order to become organization-
aware the second approach would be to suggest adding dedicated capabilities
to an agent that support organizational reasoning. The basic idea here would
be to add an “organizational attitude” to agents besides their epistemic and
motivational attitude. This can be achieved by adding dedicated organizational
reasoning patterns as software components or plugins that will provide agents
with the capability to reason about generic issues related to the organization
they participate in. For example, plugins might be provided (i) for identifying
the benefits of taking part in the organization, (ii) for negotiating about inter-
action protocols, (iii) for monitoring of norm compliance, and possibly other
typical reasoning patterns.

Finally, the third - even more ambitious - approach would be to develop new
programming abstractions for programming an agent’s organizational reasoning
and decision making. In this approach, the organizational reasoning would be
done in a separate layer using the new programming abstractions, and the agent’s
cognitive reasoning and decision making (reasoning about achieving goals) in an-
other. The latter is then programmed in existing agent programming languages.
A semantic connection between both layers would have to be established. For

Programming Organization-Aware Agents 107

Fig. 1. Architecture for Organizational Reasoning

example, organizational reasoning and decision making involves deciding whether
to take on a certain role, which typically comes with permissions and obligations
to achieve goals. If the agent takes on the role, this should influence its cognitive
reasoning and decision making on how to reach the accompanying goals. How-
ever, if it turns out that the agent is not able to achieve the goals after all, or
decides to achieve other goals because this is more in line with its own interests,
this should in turn influence its organizational reasoning and decision making. It
may, e.g., have to decide to delegate some goals to other agents (see also [32,6]).
An architecture for this approach is depicted in Figure 1.

Programming languages for organization-aware agents would reduce the ef-
fort needed for programming and maintaining agents. We refer to the well-known
rule of thumb that programmers can code a fixed number of lines of code per
hour, independently of the language in which the coding is done. Having pro-
gramming constructs for organization-aware agents would allow the program-
mer to represent the reasoning in a concise way, reducing the amount of time
needed for programming. Moreover, it would provide conceptual support, since
the language would guide the programmer in its thinking about the problem.
For maintenance of programs, programs written in terms of higher programming
abstractions are easier to read and thus to maintain than programs written in
lower-level languages. Maintenance of software is notoriously hard for those that
did not write the programs themselves, and increased understandability of the
code would improve maintenance.

108 M.B. van Riemsdijk, K. Hindriks, and C. Jonker

Although we aim for applications in which an agent’s ability to perform or-
ganizational reasoning is beneficial, it may not be necessary for the agent to
perform all of the reasoning required to function in an organization itself. Some
approaches alleviate the agent partly from having to do organizational reason-
ing, by letting the organizational middleware take over some aspects of this. For
example, in ISLANDER/AMELI, governors can be posed questions about the
institution [19], in J-MOISE+ events are sent to agents to notify them, e.g.,
about whether the agent has an obligation, and in [55] the agent can delegate
tasks to its role, which forms the connection between the agent and the organi-
zation. Although these approaches can help explain the agent what is expected
from it in a certain situation from the perspective of the organization, the agent
will still have to take the decision as to what it will do. That is, either decide
which of several allowed actions it takes in case of regimentation (see, e.g., [57]),
or decide whether to comply with a norm if the norm is only enforced.

5 Conclusion

In this paper, we have identified kinds of organizational reasoning along three
dimensions: phases of organizational participation, elements of organizational
specifications, and direction of organizational reasoning. Moreover, we have iden-
tified three approaches for programming organization-aware agents: using ex-
isting agent programming languages, developing components for organizational
reasoning, and developing dedicated programming abstractions for supporting
organizational reasoning. Through this, we have provided a research agenda
on what needs to be addressed when developing techniques for programming
organization-aware agents.

Acknowledgements

We would like to thank the anonymous referees for their useful comments.

References

1. AOS group. Jack: an agent infrastructure for providing the
decision-making capability for autonomous systems (whitepaper),
http://www.aosgrp.com/downloads/JACK_WhitePaper_UKAUS.pdf

2. Arcos, J.L., Esteva, M., Noriega, P., Rodŕıguez-Aguilar, J.A., Sierra, C.: Engi-
neering open environments with electronic institutions. Engineering applications
of artificial intelligence 18(2), 191–204 (2005)

3. Baldoni, M., Boella, G., Genovese, V., Grenna, R., van der Torre, L.: How to
program organizations and roles in the JADE framework. In: Bergmann, R., Lin-
demann, G., Kirn, S., Pěchouček, M. (eds.) MATES 2008. LNCS (LNAI), vol. 5244,
pp. 25–36. Springer, Heidelberg (2008)

http://www.aosgrp.com/downloads/JACK_WhitePaper_UKAUS.pdf

Programming Organization-Aware Agents 109

4. Boissier, O., Hübner, J.F., Sichman, J.S.: Organization oriented programming:
From closed to open organizations. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J.,
Dikenelli, O. (eds.) ESAW 2006. LNCS (LNAI), vol. 4457, pp. 86–105. Springer,
Heidelberg (2007)

5. Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.: Multi-Agent Pro-
gramming: Languages, Platforms and Applications. Springer, Berlin (2005)

6. Brazier, F., Jonker, C., Treur, J.: Formalization of a cooperation model based on
joint intentions. In: Mueller, J., Wooldridge, M., Jennings, N. (eds.) ATAL 1996.
LNCS, vol. 1193, pp. 141–155. Springer, Heidelberg (1997)

7. Broersen, J., Dastani, M., Hulstijn, J., van der Torre, L.: Goal generation in the
BOID architecture. Cognitive Science Quarterly 2(3-4), 428–447 (2002)

8. Carabelea, C., Boissier, O., Castelfranchi, C.: Using social power to enable agents
to reason about being part of a group. In: Gleizes, M.-P., Omicini, A., Zambonelli,
F. (eds.) ESAW 2004. LNCS (LNAI), vol. 3451, pp. 166–177. Springer, Heidelberg
(2005)

9. Carberry, S.: Techniques for plan recognition. User Modeling and User-Adapted
Interaction 11, 31–48 (2001)

10. Castelfranchi, C., Dignum, F., Jonker, C., Treur, J.: Deliberative normative agents:
Principles and architecture. In: Jennings, N.R. (ed.) ATAL 1999. LNCS, vol. 1757,
pp. 364–378. Springer, Heidelberg (2000)

11. Dastani, M., Dignum, V., Dignum, F.: Role-assignment in open agent societies.
In: Proceedings of the second international joint conference on autonomous agents
and multiagent systems (AAMAS 2003), Melbourne, pp. 489–496 (2003)

12. Dastani, M.M., van Riemsdijk, M.B., Hulstijn, J., Dignum, F.P.M., Meyer, J.-J.C.:
Enacting and deacting roles in agent programming. In: Odell, J.J., Giorgini, P.,
Müller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382, pp. 189–204. Springer, Heidelberg
(2005)

13. Demolombe, R., Fernandez, A.M.O.: Intention recognition in the situation calculus
and probability theory frameworks. In: Toni, F., Torroni, P. (eds.) CLIMA 2005.
LNCS (LNAI), vol. 3900, pp. 358–372. Springer, Heidelberg (2006)

14. Dignum, F., Dignum, V., Jonker, C.: Towards agents for policy making. In: Pro-
ceedings of the 9th International Workshop on Multi-Agent-Based Simulation,
MABS 2008 (2008)

15. Dignum, F., Dignum, V., Thangarajah, J., Padgham, L., Winikoff, M.: Open agent
systems??? In: Luck, M., Padgham, L. (eds.) Agent-Oriented Software Engineering
VIII. LNCS, vol. 4951, pp. 73–87. Springer, Heidelberg (2008)

16. Dignum, F., Kinny, D., Sonenberg, L.: From desires, obligations and norms to goals.
Cognitive Science Quarterly 2(3-4), 407–430 (2002)

17. Dignum, V.: A Model for Organizational Interaction: Based on Agents, Founded
in Logic. PhD thesis (2004)

18. Dignum, V., Dignum, F.: What’s in it for me? Agent deliberation on taking up
social roles. In: Proceedings of the second European Workshop on Multi-Agent
Systems, EUMAS 2004 (2004)

19. Esteva, M., Padget, J., Sierra, C.: Formalizing a language for institutions and
norms. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333,
pp. 348–366. Springer, Heidelberg (2002)

20. Esteva, M., Rosell, B., Rodŕıguez-Aguilar, J.A., Arcos, J.L.: AMELI: An agent-
based middleware for electronic institutions. In: Proceedings of the Third Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS
2004), pp. 236–243. IEEE Computer Society, Los Alamitos (2004)

110 M.B. van Riemsdijk, K. Hindriks, and C. Jonker

21. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: An organiza-
tional view of multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.)
AOSE 2003. LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

22. Ferguson, G., Allen, J.: Mixed-initiative systems for collaborative problem solving.
AI Magazine 28(2) (2009)

23. Goultiaeva, A., Lespérance, Y.: Incremental plan recognition in an agent program-
ming framework. In: Workshop on Plan, Activity, and Intent Recognition, PAIR
2007 (2007)

24. Hindriks, K.V., van Riemsdijk, M.B.: Satisfying maintenance goals. In: Baldoni, M.,
Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2007. LNCS (LNAI),
vol. 4897, pp. 86–103. Springer, Heidelberg (2008)

25. Hindriks, K., van Riemsdijk, M.B.: Using temporal logic to integrate goals and
qualitative preferences into agent programming. In: Baldoni, M., Son, T.C., van
Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2008. LNCS (LNAI), vol. 5397, pp.
215–232. Springer, Heidelberg (2009)

26. Hoogendoorn, M., Jonker, C., Popova, V., Sharpaskykh, A., Xu, L.: Formal mod-
elling and comparing of disaster plans. In: Proceedings of the Second Interna-
tional Conference on Information Systems for Crisis Response and Management
(ISCRAM 2005), pp. 97–107 (2005)

27. Hoogendoorn, M., Jonker, C., van Maanen, P., Sharpanskykh, A.: Formal analysis
of empirical traces in incident management. Reliability Engineering and System
Safety 93, 1422–1433 (2008)

28. Hoogendoorn, M., Treur, J.: An adaptive multi-agent organization model based
on dynamic role allocation. In: Proceedings of the 2006 IEEE/WIC/ACM Interna-
tional Conference on Intelligent Agent Technology (IAT 2006), pp. 474–481. IEEE
Computer Society, Los Alamitos (2006)

29. Hormazábal, N., Cardoso, H.L., de la Rosa, J.L., Oliveira, E.: An approach for
virtual organizations’ dissolution. In: Proceedings of the international workshop
on coordination, organization, institutions and norms in agent systems (COIN
2009@AAMAS), pp. 93–108 (2009)

30. Hübner, J.F., Sichman, J.S., Boissier, O.: Using MOISE+ for a cooperative frame-
work of MAS reorganisation. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004.
LNCS (LNAI), vol. 3171, pp. 506–515. Springer, Heidelberg (2004)

31. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent systems
using the MOISE+ model: programming issues at the system and agent levels. In-
ternational Journal of Agent-Oriented Software Engineering 1(3/4), 370–395 (2007)

32. Jennings, N.: Controlling cooperative problem solving in industrial multi-agent
systems using joint intentions. Artificial Intelligence Journal 74(2) (1995)

33. Jonker, C., Treur, J.: From organisational structure to organisational behaviour
formalisation. International Journal of Agent-Oriented Software Engineering (to
appear, 2009)

34. Juan, T., Pearce, A.R., Sterling, L.: ROADMAP: extending the Gaia methodology
for complex open systems. In: Proceedings of the First International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2002), pp. 3–10.
ACM, New York (2002)

35. Kamara, L., Pitt, J., Sergot, M.: Norm-aware agents for ad hoc networks: A position
paper. In: Proceedings of the AAMAS 2004 Workshop on Agents and Ubiquitous
Computing (2004)

36. Klein, G., Woods, D.D., Bradshaw, J.M., Hoffman, R.R., Feltovich, P.J.: Ten chal-
lenges for making automation a “team player” in joint human-agent activity. IEEE
Intelligent Systems 19(6), 91–95 (2004)

Programming Organization-Aware Agents 111

37. Laird, J.E.: It knows what you’re going to do: adding anticipation to a quakebot.
In: Proceedings of the fifth international conference on Autonomous Agents, pp.
385–392. ACM, New York (2001)

38. López y López, F.: Social Power and Norms: Impact on Agent Behaviour. PhD
thesis (2003)

39. Mathieu, E., Heffner, T.S., Goodwin, G., Salas, E., Cannon-Bowers, J.: The influ-
ence of shared mental models on team process and performance. The Journal of
Applied Psychology 85(2), 273–283 (2000)

40. Meneguzzi, F., Luck, M.: Norm-based behaviour modification in BDI agents. In:
Proceedings of the eighth international joint conference on autonomous agents and
multiagent systems (AAMAS 2009), Budapest, pp. 177–184 (2009)

41. Mitchell, R.J. (ed.): Managing Complexity in Software Engineering. Institution of
Electrical Engineers, UK (1990)

42. Munroe, S., Miller, T., Belecheanu, R.A., Pechoucek, M., McBurney, P., Luck, M.:
Crossing the agent technology chasm: Experiences and challenges in commercial
applications of agents. Knowledge Engineering Review 21(4), 345–392 (2006)

43. Myers, K., Yorke-Smith, N.: Proactivity in an intentionally helpful personal as-
sistive agent. In: Proceedings of AAAI 2007 Spring Symposium on Intentions in
Intelligent Systems (2007)

44. Nair, R., Tambe, M., Marsella, S.: Team formation for reformation in multiagent
domains like RoboCupRescue. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.)
RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 150–161. Springer, Heidelberg (2003)

45. Okouya, D., Dignum, V.: OperettA: a prototype tool for the design, analysis and
development of multi-agent organizations. In: Proceedings of the 7th international
joint conference on Autonomous agents and multiagent systems (AAMAS 2008),
pp. 1677–1678. International Foundation for Autonomous Agents and Multiagent
Systems, Richland (2008)

46. Oomes, A.: Organization awareness in crisis management: dynamic organigrams
for more effective disaster response. In: Proceedings of the First International Con-
ference on Information Systems for Crisis Response and Management (ISCRAM
2004), pp. 63–68 (2004)

47. Pokahr, A., Braubach, L., Lamersdorf, W.: A goal deliberation strategy for BDI
agent systems. In: Eymann, T., Klügl, F., Lamersdorf, W., Klusch, M., Huhns,
M.N. (eds.) MATES 2005. LNCS (LNAI), vol. 3550, pp. 82–93. Springer, Heidelberg
(2005)

48. Rouse, W.B., Boff, K.R.: Organizational Simulation. Wiley, Chichester (2005)
49. Schurr, N., Patil, P., Pighin, F., Tambe, M.: Using multiagent teams to improve

the training of incident commanders. In: Proceedings of the fifth international
joint conference on autonomous agents and multiagent systems (AAMAS 2006),
Industry Track, Hakodate (2006)

50. Sierhuis, M.: Modeling and Simulating Work Practice; Brahms: A multiagent mod-
eling and simulation language for work system analysis and design. PhD thesis
(2001)

51. Sindlar, M., Dastani, M., Dignum, F., Meyer, J.-J.C.: Mental state abduction of
BDI-based agents. In: Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M.
(eds.) DALT 2008. LNCS (LNAI), vol. 5397, pp. 161–178. Springer, Heidelberg
(2009)

52. Sycara, K., Sukthankar, G.: Literature review of teamwork models. Technical Re-
port CMU-RI-TR-06-50, Carnegie Mellon University (2006)

112 M.B. van Riemsdijk, K. Hindriks, and C. Jonker

53. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting and avoiding interference
between goals in intelligent agents. In: Proceedings of the 18th International Joint
Conference on Artificial Intelligence, IJCAI 2003 (2003)

54. Tinnemeier, N.A., Dastani, M., Meyer, J.-J.C.: Orwell’s nightmare for agents? Pro-
gramming multi-agent organisations. In: Proceedings of the Fifth International
Workshop on Programming Multiagent Systems, ProMAS 2008 (2008)

55. Tinnemeier, N.A., Dastani, M., Meyer, J.-J.C.: Roles and norms for programming
agent organizations. In: Proceedings of the eighth international joint conference on
autonomous agents and multiagent systems (AAMAS 2009), Budapest, pp. 121–
128 (2009)

56. van Riemsdijk, M.B., Dastani, M., Meyer, J.-J.C.: Goals in conflict: Semantic foun-
dations of goals in agent programming. Autonomous Agents and Multi-Agent Sys-
tems 18(3), 471–500 (2009)

57. Vasconcelos, W.W., Sabater, J., Sierra, C., Querol, J.: Skeleton-based agent devel-
opment for electronic institutions. In: Proceedings of the First International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2002), pp.
696–703. ACM, New York (2002)

58. Vazquez-Salceda, J.: The Role of Norms and Electronic Institutions in Multi-Agent
Systems: The HARMONIA Framework. Whitestein Series in Software Agent Tech-
nologies and Autonomic Computing. Birkhäuser, Basel (2004)

59. Vázquez-Salceda, J., Aldewereld, H., Grossi, D., Dignum, F.: From human regula-
tions to regulated software agents’ behavior. Journal of Artificial Intelligence and
Law 16(1), 73–87 (2008)

60. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The Gaia methodology. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 12(3), 317–370 (2003)

Energy Trade-Offs in Resource-Constrained
Multi-Agent Systems

Hugo Carr, Jeremy Pitt, Anthony Kleerekoper, and David Blancke

Electrical & Electronic Engineering Department,
Imperial College London, SW7 2BT, UK

1 Introduction

Sensor networks and mobile ad hoc networks are two types of open system with
resource constraints, in which functionality may be compromised by a lack of
resources. In this work, we investigate adaptive algorithms for power-challenged
computing networks. Using simulations, we have studied how self-organization
can be used to trade off energy for (acceptable) accuracy to improve longevity
in a sensor network; and how perceived threat and information sensitivity can
be used to trade-off energy for (acceptable) security risk in an ad hoc network.

2 Energy vs. Accuracy in Sensor Networks

In sensor networks, a trade off exists between accuracy and longevity for networks
implementing in-network data aggregation functions. Given the following system:

– A set of sensor nodes S = {s1, . . . sn, ssink} where ssink is the sink node;
– Each sensor node, si, has some energy at time t, eni(t), and some, fixed,

error value, eri;
– Sensor nodes take readings such that ri(t) = R(t) ± eri where R(t) is the

correct value. The error value is applied positively or negatively at random;
– Sensor nodes form opinions such that oi(t) = O({r1(t), r2(t), ..., rn(t)}) where

O(. . .) is some aggregating function of the readings received from neighbours;
– Network error is defined as NE(t) = abs(R(t) − osink(t));
– Network lifetime is defined as NL = t such that

∑n
i=0 eni(t) > 0 and∑n

i=0 eni(t + 1) ≤ 0 where the summations do not include the sink node;

The requirement is to derive a method for aggregation that enables the sensors
to specify an upper accuracy bound for the network error such that the net-
work lifetime increases as the upper bound is raised, i.e. derive an algorithm
for O({r1(t), r2(t), ..., rn(t)}) such that we maximise NL while ensuring that
∀t[NE(t) ≤ ε], where ε is some predefined error bound.

There are three main algorithmic aspects to our proposed solution: the clus-
tering algorithm for routing and self-organization of the aggregation tree initi-
ated by ssink, the opinion formation algorithm for in-network data aggregation
(i.e. computing oi(t), for each i ∈ S), and network reformation and ‘intelligent’
message casting.

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 113–115, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

114 H. Carr et al.

Fig. 1. Error in the aggregated reading over time under difference thresholds

The clustering algorithm is a minor variation of the protocol for forming an
aggregation tree presented in [1], primarily in the assumption that transmission
range is variable and the impact that data aggregation has on the cluster-head
selection mechanism. We then adopt the opinion formation model of [4] for in-
network data aggregation algorithm: treating the sensor nodes as agents, we
can condition the interaction with social relations, such as trust and confidence
thresholds, rather than simply averaging values. Finally we extend the message-
passing protocols so agents (sensors) themselves determine the advisability on
whether or not to transmit, and the extent whether or not it is appropriate (due
to resource constraints) for the sink node to start re-dimensioning the network.

The algorithm has been simulated using the PreSage platform [2]. To test the
longevity vs. accuracy trade-off, we used 500 nodes with a (max.) cluster size
of 30 and ran the simulation recording the aggregated opinion at the sink node.
Figure 1 compares the result of using simple aggregation against using opinion
formation aggregation with different confidence thresholds. The results show that
using a confidence threshold and network reformation can considerably extend
the life-span of the network.

3 Energy vs. Security in Ad Hoc Networks

In ad hoc networks, a trade off exists between risk and longevity for networks
implementing a number of different security policies, given that some policies re-
quire more computationally complex (and so high power) encryption algorithms.
Given the following system:

– set of agents A = {a1, a2, . . . , an}
– a set of clusters C satisfying ci ∈ C → ci ⊆ A
– a pair of roles, cluster-head and member, such that there is one cluster-head

per cluster and each agent is a member of at least one cluster;
– the set of social constraints (normative rules) as given by e.g. a specification

in an action language (cf. [3]);

Energy Trade-Offs in Resource-Constrained Multi-Agent Systems 115

– environment variables, in particular a security level, sl, energy level el, and
perceived threat level tl (derived from the information sensitivity and the
detected interception rate).

The requirement is to derive a security policy that enables the agents to deter-
mine a network-level security policy from local, cluster-based interactions con-
cerning the available energy and perceived threat.

Accordingly, we have developed an algorithm for selecting an appropriate
security policy which inter-leaves data aggregation using ‘gossiping’ at the cluster
and cluster-head level, and role-based norm-governed voting protocols for multi-
agent systems [3]. We use opinion formation, based on the same model [4], to
determine the need for change at the cluster level, followed by a vote (by the
cluster members) for change at the cluster level; if there is a change then there is
opinion formation at the cluster-head level, followed by votes within each cluster
initiated by the cluster-heads. Simulation of this system is work in progress.

4 Conclusions

In both sensor networks and ad hoc networks, there is a resource-constrained
environment limiting the effective computation of the constituent nodes. In both
cases, we see ‘brute’ facts (the energy level), institutional facts determined by
opinion formation (resp. data reading and perceived threat), and institutional
facts determined by social rules (resp. accuracy bound and security level).

In order to trade-off the brute facts against the institutional facts to improve
(resp.) accuracy and data integrity in such open systems (i.e. in the absence of
global objects and common objectives), we have developed algorithms based on
the interaction between and adaptation of an underlying social network with
an overt organizational structure, where each informs, influences and interleaves
with the other. This is the basis of what we call micro-social systems, which arise
from the interleaving of social networks with norm-governed system, and may
provide the basis of a common computational framework for self-organization in
open resource-constrained networks.

References

1. Ding, M., Cheng, X., Xue, G.: Aggregation tree construction in sensor networks. In:
IEEE Vehicular Technology Conference, vol. 4, pp. 2168–2172 (2003)

2. Neville, B., Pitt, J.: Presage: A programming environment for the simulation of
agent societies. In: Hindriks, K., Pokahr, A., Sardina, S. (eds.) ProMAS 2009. LNCS
(LNAI), vol. 5442, pp. 88–103. Springer, Heidelberg (2009)

3. Pitt, J., Kamara, L., Sergot, M., Artikis, A.: Formalization of a voting protocol
for virtual organizations. In: Proceedings International Conference on Autonomous
Agents and Multi-agent Systems (AAMAS), pp. 373–380 (2005)

4. Ramirez-Cano, D., Pitt, J.: Follow the Leader: Profiling Agents in an Opinion For-
mation Model of Dynamic Confidence and Individual Mind-Sets. In: Proceedings
IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT),
pp. 660–667. IEEE Computer Society, Los Alamitos (2006)

Engineering Social Reality with Inheritance
Relations�

Huib Aldewereld1, Sergio Alvarez-Napagao2,
Frank Dignum1, and Javier Vázquez-Salceda2

1 Universiteit Utrecht, The Netherlands
{huib,dignum}@cs.uu.nl

2 Universitat Politècnica de Catalunya, Barcelona, Spain
{salvarez,jvazquez}@lsi.upc.edu

Abstract. In systems based on organisational specifications a reoccur-
ring problem remains to be solved in the disparity between the level
of abstractness of the organisational concepts and the concepts used in
the implementation. Organisational specifications (deliberately) abstract
from general practice, which creates a need to relate the abstract con-
cepts used in the specification to concrete ones used in the practice. The
prevailing solution for this problem is the use of counts-as statements.
However, current implementations of counts-as view the relations ex-
pressed in this notion as static ontological classifications, which presents
problems in dynamic environments where the meaning of abstract con-
cepts can change over time. This limitation has already been solved in
complex formal theoretical investigations, but the results of that study
are far too complex to make a practical implementation. This paper in-
vestigates the limitations of current implementations of counts-as, and
proposes a more flexible implementation based on the use of inheritance
relations.

1 Introduction

A common problem in the design and implementation of complex systems (be it
multiagent systems [6,16] or service-based systems [7]) is the fact that specifica-
tions of the organisation of the system generally abstract from actual practice.
This creates a distinct gap between the ontology of the organisation (containing
abstract concepts such as “means of transport”) and the ontology of the imple-
mentation (containing concrete concepts such as “trucks”; often domain and/or
implementation dependent).

A typical way to solve this is by applying refinement techniques as done in
requirement engineering (see, e.g., [17]) to link the abstract model elements to
concrete concepts at design time. However, this only solves static cases and
� This work has been performed in the framework of the FP7 project ALIVE IST-

215890, which is funded by the European Community. The author(s) would like
to acknowledge the contributions of his (their) colleagues from ALIVE Consortium
(http://www.ist-alive.eu)

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 116–131, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Engineering Social Reality with Inheritance Relations 117

cannot cope with dynamic domains where the link between the abstract and
concrete concepts changes over time (due to unforeseen circumstances). More-
over, using such a method for bridging the gap does not explicitly state how the
concrete and abstract concepts relate, and leaves no information for the system
to reason about different implementations (or different contexts) at runtime. In
critical domains such as crisis management, it is important to be able to reason
about different approaches to solve a crisis and thus requires the ability to reason
about different links between the abstract organisational concepts and concrete
concepts used in practice.

It has been proposed already (e.g., see [1,9,10]) that an explicit representation
of the links between the abstract and concrete concepts can be given by the
concept of counts-as. The intuition of counts-as as subsumption relation (that
is, as a relation pertaining to ontologies) to solve this problem was first stated
in [11].

“There are usually constraints within any institution according to which
certain states of affairs of a given type count as, or are to be classified
as, states of affairs of another type.” [11]

The notion of counts-as expressed above is limited to a classificatory view of
counts-as. However, the notion of counts-as is far richer than that of an ontolog-
ical subsumption relation. Early studies of counts-as describe it as being used
as a “constitution of social reality” [13], which, in essence, means that counts-as
statements define, or establish, the appropriate context in which the organisa-
tion must act. In this view, a set of counts-as statements defines an institutional
frame.

“[...] ‘institutions’ are systems of constitutive rules. Every institutional
fact is underlain by a (system of) rule(s) of the form “X counts as Y in
context C”.” [13]

Thus the fact that an army truck counts-as a means of public transport is not
always true, but only in the context of a large scale evacuation being carried
out. In fact, it can be one of the constitutive rules that defines what a large scale
evacuation is (that is, the fact that army trucks are being used means that the
evacuation must be a large-scale evacuation). This shows two additional aspects
of counts-as. The aspect of something being constituted, that is, something as
being the result of constitution, and the aspect of something constituting a con-
text. All of these notions of counts-as have been formally investigated by [9] and
given precise semantical senses.

When designing agent systems for complex and dynamic applications such
as crisis management support (or simulation), these counts-as relations play a
crucial role in the design and running of the system. While the high level speci-
fication of the organisation of the system should stay stable throughout the life
cycle of the system (and thus be as abstract as possible), the actual implemen-
tation of the MAS should be flexible and adapt to changing environments and
contexts. Agents should know that army trucks are not available as means of

118 H. Aldewereld et al.

transport when a burst water pipe floods a street, but are available when the
context becomes that of a large scale evacuation after a dam has been breached.

So, this type of systems should incorporate not only the classificatory part of
the counts-as relation, but also should implement at least some of the constitutive
elements. The constitutive part of counts-as, however, has only been researched
from a theoretical (mostly formal) point of view so far; no implementations that
can be used in runtime systems exist. In this paper, we explore the possibility
of implementing all aspects of counts-as in the Drools rule engine.

To elucidate the need of these additional elements of counts-as we start this
paper in section 2 with a brief description of the alive project and a discussion
of the kind of dynamic domains the alive project aims to cater to. In alive,
the goal is to create systems that organise services in dynamic contexts to serve
a specific goal or (organisational) objective. The fact that the context of the
system changes at runtime means that the relations between the abstract and
concrete concepts cannot be fixed on forehand, as the relations between the
abstract and concrete concepts can change during the run of the system. It is
also not possible to define all the different relations for all the different contexts
on forehand, because not all the necessary information about all the different
contexts is available. A more flexible approach is required, and counts-as provides
just that. In section 3 we proceed by briefly investigating the different meanings
of counts-as which are used as a basis for the implementation presented in section
4. Moreover, section 4 contains some considerations about how the constitutive
aspects of counts-as are to be used in solving the problem of dynamic domains
as encountered in the alive project. We end this paper with conclusions and
considerations for future extensions.

2 The ALIVE Project

The research presented in this paper is carried out within the alive project.
alive aims to apply organisational theory to the design and implementation of
software systems. The main focus of the project is to create complex systems
based on the composition of (existing) services, through the addition of levels of
abstraction. The advantage of added levels of abstraction to the design process
of systems is two-fold: 1) it is often more intuitive to think in organisational
structures and interactions while designing complex interactions for services, and
the addition of the layers of abstraction allows for a gradual (fluent) transition
from the system as foreseen to the actual implementation; 2) when changes
happen in the environment (e.g., specific services become unavailable) the added
levels of abstraction act as an explicit representation of the conceptual steps
made at design, thus giving additional information on why certain interactions
are as they are, which enables the system to dynamically cope with the changes.
To this extend the project attempts to create a framework for software and
service engineering through the combination of the latest in coordination and
organisation mechanisms and model driven design. The layers of abstraction
introduced by the project are the following (from bottom to top).

Engineering Social Reality with Inheritance Relations 119

– The Service Layer augments and extends existing service models with se-
mantic descriptions to make components aware of their social context and
of the rules of engagement with other services.

– The Coordination Layer provides the means to specify, at a high level, the
patterns of interaction between services, using a variety of powerful coordi-
nation techniques from recent research in the area.

– The Organisation Layer provides context for the other levels – specifying the
organisational rules that govern interaction and using recent developments
in organisational dynamics to allow the structural adaptation of distributed
systems over time.

Adding layers of abstraction to the design process of systems, however, also
creates a major problem. The different layers are not necessarily specified on
the same level of abstraction which means that each are specified in terms of
a different ontology. These different ontologies do not match, and in order to
link the specifications of one level to the next, the ontologies have to be related
somehow.

The organisational layer uses an OperA-like formalisation for the specifica-
tion of the organisational structures and interactions [6]. These structures are
to be used at the Coordination Layer to be transformed into coordination plans
and workflows. A possible implementation of the Coordination Layer is through
the use of a multi-agent system. This solution has its advantages in that the
connection between multiagent systems and organisational structures has been
researched to some extent already (e.g., see [6,15]); that is to say, agents can
be created on the basis of the organisational specification and designed in such
a way that they comply to that specification (as proposed in, e.g., [15]). Using
agents on the Coordination Layer has another advantage in the fact that agents
are autonomous and can be equipped with the means to create elaborate plans
to achieve pre-set goals/objectives (e.g., through the use of multiagent planning
mechanisms such as TÆMS [5,12]). The link from the Coordination Layer to the
Services and Service Layer can be achieved through service invocations and the
design of tools for the assistance of service composition (to allow for more com-
plex service calls and workflow enactment). The specific invocations of services
or service workflows are done by the agents playing a role in the organisation.

Although this implementation via an agent system on the coordination layer
(as intermediary between the organisational specification and the service prac-
tice) seems intuitive and attractive, it does not circumvent the mentioned prob-
lem of disparity between the abstract organisational concepts and the concrete
(service-based) concepts. While, instead of the need to link three different lev-
els, the problem can be reduced to linking just two levels (the agents can be
programmed with either an ontology that closely matches the organisational on-
tology, or with an ontology close to the service one), assuming that the agents
automatically and autonomously come up with the solution to bridge the gap
between the abstract and concrete ontologies is unfeasible.

Bridging the gap between the abstract and concrete concepts is not the only
issue, however. If that was the case, a static solution linking the two levels would

120 H. Aldewereld et al.

suffice. However,alive aims to deal with dynamic runtime elements as well, which
require the links between the concepts to change during the run of the system. To
give a concrete impression of the kind of dynamic organisations and environments
that the alive project aims to deal with, we briefly discuss one of the alive use-
cases. This use-case scenario, situated in the domain of Crisis Management, will
serve as an example throughout the latter sections of the paper.

2.1 Crisis Management Scenario

One of the domains used by the alive project is situated in the field of crisis man-
agement, in particular dealing with the handling of disasters in the Netherlands.
In a densely populated country like the Netherlands where the threat of flood-
ing is matter-of-fact, regional and nation-wide organisation of the management of
crises was required. Crisis management in the Netherlands is organised through
a nation-wide agreement on procedures called the grip. grip stands for “Geco-
ordineerde Regionale Incidentbestrijding Procedures”, which translates to Co-
ordinated Regional Incident handling Procedures. grip describes the required
organisational and management needs for different levels of incidents. The five
different grip levels are the following (in increasing severity).
grip-0 Routine accidents.
grip-1 Incidents.
grip-2 Large scale incidents.
grip-3 Disasters concerning multiple regions.
grip-4 Large scale disasters.

grip-0 handles about normal (traffic) accidents where no real coordination
is required (coordination between incident handlers is done ad hoc). grip-1 to
4 are the real incident levels, ranging from small incidents that only have an
effect in the immediate region of the incident (grip-1), or that have (apparent)
effect regions of a nearby city (grip-2), nearby cities (grip-3), or even multiple
provinces and/or the whole nation (grip-4). The scaling from one level to an-
other happens in accordance with the severity of the incident (the range of the
apparent affected region is wider because of changes in the incident or because
the incident was more/less severe than anticipated) or because the organisational
infrastructure of a higher level is deemed required to solve the incident.

Instead of using all the different grip levels to illustrate our approach we will
focus, due to space limitations, on grip levels 2 and 3. The important aspect
of the grip scenario (and which is covered by our limited scope of just viewing
levels 2 and 3) is that the domain and organisation are of a dynamic nature.
Therefore, the examples will show that static counts-as relations (as modelled
by [1,11]) do not suffice and a more complex implementation is required.

3 The Intuitions of Counts-As

Due to the dynamic nature of the domains used by the alive project, it is not
sufficient to use static references between the abstract concepts in the organisa-
tional specification of the system and the concrete concepts used by the services

Engineering Social Reality with Inheritance Relations 121

implementing the system. Contexts change during the run of the system, and
the relations between the abstract concepts and the concrete concepts need to
change with them. While in a large scale incident (grip-2) ambulances would
be used to evacuate a hospital that is being threatened to be flooded, in disas-
ter situations (grip-3) the crisis management can call upon the army to assist,
deploying army trucks to evacuate the hospital instead.

As mentioned in section 1, in these domains there is a need to explicitly repre-
sent the relations between the abstract and concrete concepts which can be used
by agents in their reasoning. The need for an explicit representation is the first
argument for using counts-as to bridge the gap instead of using refinement tech-
niques from requirements engineering instead. But there is a second argument
for using counts-as relations as well. Let us first look at the nature of counts-as
before we further explain this second argument.

The different readings of counts-as can be summarised in the example seen in
table 1 presented below (extracted from [9]).

Table 1. Three notions of counts-as

“In normative system Γ , happenings
with severe consequences to the general
safety count as disasters”

Constitutive

“It is always the case that large scale
fires count as happenings with severe
consequences to the general safety”

Classificatory

“In normative system Γ large scale fires
count as disasters”

Proper Class.

In the example, the counts-as locution occurs three times. However, the three
locutions are each of a different nature. The second premise is a (generally ac-
knowledged) contextual classification concerning an universal context (and can
thus be formalised as ontological subsumption as done in, e.g., [1,11]). The con-
clusion is a “new”, proper contextual classification which is considered to hold
with respect to the given system (this requires the extension to a context depen-
dent counts-as as attempted in, e.g., [4,10]). But what about the first premise?
The semantic ingredient of the first premise is not captured by either notions of
counts-as; it is neither a contextual nor a proper contextual classification.

The first premise of table 1 is not classificatory of nature, but is what Searle
referred to as the ability to “constitute social reality”. The counts-as defines
a context in which that counts-as relation holds. Counts-as has the ability to
change the world. Not in the sense that it affects the physical reality; it makes
no sense to express that “children at the age of 3 counts-as writers”, since 3-year
old children are physically unable to write. Stating that they can does not make
them able to.

Instead, counts-as adds institutional/organisational semantics to real-world
events and concepts (that is, the events and concepts are given meaning in

122 H. Aldewereld et al.

the context of the institution/organisation). Doing so can, however, change the
institutional/organisational capabilities of people. That is, counts-as does not
change what people can or cannot do physically, but it does change what people
are allowed/entitled to do institutionally. For instance, a normative system that
states that “a coordinator has executive command in crisis situations” (a norm
of the system) can change the organisational capabilities of a police officer in
grip-1 because in grip-1 “the first police officer at the scene counts-as the crisis
coordinator” (and again at grip-2 where it holds that “the mayor counts-as the
crisis coordinator”).

The rules and norms related to concepts in the social world change with the
changes made by counts-as. It is this kind of change that counts-as brings to the
world. It creates social facts that determine how situations should happen or how
situations should be handled. Thus, the counts-as does not directly influence the
world, but it influences the capabilities/rights of roles, and the way these roles
interact with each other. Counts-as defines the social (normative) meaning of
things; it defines the applicability of the norms on brute (real-world) concepts.

This constitutive aspect is the second argument on using counts-as rules for
the specification of the links between the abstract and concrete concepts in
complex and dynamic applications. In next section we will see how applying the
constitutive aspect of counts-as would bring important advantages in the crisis
management domain.

3.1 Constitutive Counts-As in Crisis Management

In the crisis management domain it is important that agents are able to reason
about what different contexts would bring; for instance, reasoning about whether
a change from grip-2 to grip-3 would allow for better solutions to solve the
crisis in that the army becomes available as evacuation means. Moreover, the
constitutive aspect of counts-as allows agents to change the context to affect the
crisis solving. In short, constitutive counts-as allows the agents to dynamically
change the social reality of the system, thus enabling them to scale from one
grip-level to another when required.

This was already evident from our earlier example; while army trucks are
means of transportation, they are generally not considered to be public transport,
except in the case they are used in a large scale evacuation. This change in
meaning of the concept public transport (in grip-2 it does not include army
trucks, in grip-3 it does) has an impact on the planning possibilities of the agents
in the system. The change of environment enables new (previously unavailable)
means to add to their plans.

Likewise, domain restrictions change their impact on the creation of plans
when the environment changes. While the abstract specification of the restric-
tions in the domain (both expressed in norms and in organisational specifica-
tions) remains stable over time, the dynamics of the environment (the changing
of contexts) impacts the interpretation of those restrictions; that is, the norms
and organisational specification remain fixed for all situations, but their appli-
cation changes due to changes in the meaning of the abstract concepts used to

Engineering Social Reality with Inheritance Relations 123

express them. For example, a domain restriction could be that all agents are
under the authority of the operational commander (and obliged to obey his
commands). The role of operational commander can change from one grip to
another, which also means that the organisational structure, and the rights and
authorities of the agents involved changes between contexts. See [2] for a further
elaboration of this kind of organisational and normative dynamics.

The constitutive elements of the counts-as comes into play in the definition of
the contexts in an environment. These definitions of contexts play a major role
in determining the current context. During the run of a system in a dynamic
domain such as the crisis management scenario, context changes can happen.
These context changes happen for two different reasons:

1. An agent in the system with the appropriate rights/power decrees that a
different context is of effect.

2. The situation at hand does not conform to the constitutional definition of
the current context, and a switch to another context is required.

The former kind of change has to do with notions of power and speech acts
[13,11,3]. The agent with this function has the ability to create or change bridge
rules in the normative system, i.e., the utterance “we can now use army trucks
for evacuation” made by this agent constitutes that army trucks count as public
transport and therefore affects an (indirect) change to grip-3.

The latter change can be observed in the environment and constitutes a kind of
external trigger for changing the context. E.g., when a flooding extends the city
limits it violates the proper classificatory counts-as part of the grip-2 definition,
and the situation scales automatically to grip-3.

3.2 Dealing with Sub-contexts and Overlap

In order to be able to implement the above kinds of contextual reasoning in
practice, we have implemented all the afore-mentioned aspects of counts-as into
Drools rules. As we will see in section 4, this allows for ease of use and efficient
reasoning by the agents in the system. However there were some issues to be
tackled, mainly related with the handling of overlapping and subsuming contexts.

As described above, the constitutive counts-as rules define the social context
in which the counts-as holds. This could, in practice, mean a lot of different
rules defining a single social context, which could make it problematic (or rather
inefficient) to use when comparing different contexts (e.g., in case when an agent
wants to decide whether a scale-up from grip-2 to grip-3 is required). To deal
with this inefficiency at runtime, we consider contexts to only have their unique
counts-as rules (the rules that are not part of any other context). But this re-
quires a proper handling of the occurrence of context subsumptions (i.e. context
A being sub-context of context B) and context overlap (i.e. a non-void intersec-
tion between the scopes of context A and B).

Any domain contains a number of social contexts defined by constitutive
counts-as rules as mentioned above. These constitutive counts-as rules define

124 H. Aldewereld et al.

Fig. 1. Context subsumption

the classifications that only hold for that context. Global classifications are con-
sidered to be part of the universal context, which subsumes each defined social
context (i.e., all defined contexts are a sub-context of the universal context). To
deal with subsumed contexts and to allow for quick reasoning about what makes
contexts unique, we limit the counts-as rules in a context to only those rules
which are not contained in any of its parent-contexts. Then, by using context in-
heritance relations we specify that all the counts-as rules that hold in a context
are those contained in its specification and any contained in the specification of
its parents. Figure 1 shows the subsumption of context C2 by context C1; for
instance, the social context of the grip procedures (C2) being a sub-context of
the social context of crisis management organisations (C1). This basically means
that the worlds in the context of grip are a ‘refinement’ of the worlds in the
context of crisis management organisation; that is to say, these worlds adhere to
both the classifications made by the parent context as well as to the classifica-
tions specified by the specific grip scenarios. Therefore, in a world in the social
context of crisis management organisation, all counts-as rules of C1′ apply, but
in worlds in the social context of grip apply both the counts-as rules from C1′

and C2′ . It is then easy to see that what makes the grip context different from
the global context by looking at just the rules specified in C′

2.
Similarly, we can deal with overlapping contexts. Take, for example, the dif-

ferent grip-levels; each are a specification of the crisis management situation at
a different level of severity, but they all contain elements that remain the same
between them; e.g., ambulances counts-as means of evacuation in both grip-2
and grip-3. There are, however, distinctions between the separate levels as well;
e.g., army trucks count-as means of evacuation only in grip-3, not in grip-2.
In figure 2 it is visualised how contextual descriptions for C1 and C2 are split:
a) a new shared, parent context (shown as C1&2 in the figure) that contains
all counts-as rules that are shared between contexts C1 and C2, b) two distinct
sub-contexts (shown as C1′ and C2′ in the figure) which contain the counts-as
rules that make each original context distinct.

Engineering Social Reality with Inheritance Relations 125

Fig. 2. Context overlap

By this split it now becomes fairly easy to determine the differences between
contexts C1 and C2: one looks at the specific rules for each in C1′ and C2′ ,
respectively. Similarly, it is easy to determine the similarities between contexts
C1 and C2 by looking at their shared parent-context C1&2.

In the next section we show how this can be implemented in Drools.

4 Implementing Counts-As

A prototype of the counts-as has been implemented as a Drools rule file.
Drools is an open-source Java-based rule engine for declarative reasoning (sup-
porting reasoning based on the standardised Description Logic owl-dl) [14]. Its
rule engine is an implementation of the forward chaining inference Rete algo-
rithm [8].

In Drools we can represent facts by adding them to the knowledge base as
objects of the class Predicate. The following shows an example of the insertion
of Mayor(a) into the knowledge base to express that a (represented as object
obj3 of the domain) is in fact a mayor.

Object obj3 = new Object();

ksession.insert(obj3);

ksession.insert(new Mayor(obj3));

The class Predicate is designed specifically for the prototype and is the super-
class of every predicate in the system. We also defined the sub-class Context
which means that contexts can be asserted to the knowledge base in a similar
way:

ksession.insert(Context.GRIP2);

ksession.insert(Context.GRIP3);

Defining contexts as concepts in the knowledge base allows us to also refer to them
explicitly and reason with them. This is an important advantage over implementa-
tions where contexts are mere labels on the counts-as relations between concepts.

126 H. Aldewereld et al.

In order to define the proper classificatory counts-as in a specific context, the
predicate ClassificatoryCountsAs is introduced. This predicate allows for the
expression of classificatory relations between classes with respect to a context.

ksession.insert(new ClassificatoryCountsAs

(ChiefFire.class, OperationalCommander.class, Context.GRIP2));

ksession.insert(new ClassificatoryCountsAs

(Mayor.class, OperationalCommander.class, Context.GRIP3));

The expressions above show two examples of the classificatory counts-as, where
the first statement expresses that the commander of the fire brigade counts as
the operational commander in grip-2, while the second statement expresses that
in grip-3 the mayor counts-as operational commander, instead.

To implement the uniqueness criterium specified in subsection 3.2, which al-
lows for more efficient runtime use of the counts-as rules, we implemented the
Drools rule file to create internal parallel sets of contexts (based on the intu-
itions expressed in figures 1 and 2 in section 3.2). The first rule of figure 3 shows
how this splitting is done, while the second rule of figure 3 gives an example of
how one can identify in which (original) context a counts-as rule was formulated.

rule "creation of running contexts"

when

ClassificatoryCountsAs(a : c1, b : c2)

and

lc : TreeSet()

from collect(ClassificatoryCountsAs(c1 == a, c2 == b))

then

RunningContext rc;

rc = new RunningContext(lc);

insertLogical(rc);

end

rule "identify running contexts"

when

cca : ClassificatoryCountsAs(c : context)

and

rc : RunningContext(countsas contains cca)

then

insertLogical(new RunningContextIdentifier(rc, c));

end

Fig. 3. Context splitting

The following shows an example of the context splitting. From three counts-as
rules, of which two of them are the same for two different contexts, the result
will be two contexts.

Engineering Social Reality with Inheritance Relations 127

ksession.insert(new ClassificatoryCountsAs

(Ambulance.class, MeansOfEvacuation.class, Context.GRIP2));

ksession.insert(new ClassificatoryCountsAs

(Ambulance.class, MeansOfEvacuation.class, Context.GRIP3));

ksession.insert(new ClassificatoryCountsAs

(ArmyTruck.class, MeansOfEvacuation.class, Context.GRIP3));

[...]

[GRIP2GRIP3, GRIP3]

The first rule of the example expresses that ambulances count as a means of
evacuation in the context of grip-2; the second expresses that ambulances also
count as a means of evacuation in the context of grip-3; the third rule expresses
that in the context of grip-3 army trucks also count as a means of evacuation.
After the splitting of contexts grip-2 and grip-3 containing just these three
rules we end up with two contexts, namely the context which contains the rules
that are present in both grip-2 and grip-3 (ambulances count as means of
evacuation), and the context which gives the refinement of being in context grip-
3, namely that army trucks also count as means of evacuation. The result being
the GRIP2GRIP3 context containing the rule about ambulances being evacuation
means (now unique, as there is no need to specify it twice) and the GRIP3 context
containing only the rule specifying that army trucks are evacuation means. As
explained in subsection 3.2, this split allows for an easy and efficient means to
check the similarities and differences between the contexts grip-2 and grip-31.

The internal effect of a context activation is the activation of all its shared
contexts (see Figure 4). With the contexts active, their counts-as rules will be
instantiated as active counts-as rules in the rule engine. The counts-as rules are
fired whenever there is a matching predicate. The effect of a fired counts-as rule
is that for each instance of the first predicate of the rule, a new instance of the
second predicate of the rule is created.

Closure is provided in the rules file by automatically detecting which context
should be active based on the active counts-as rules. Figure 5 shows the rules
implemented for this purpose. The first rule detects if all the proper classificatory
counts-as rules for a certain shared context are instantiated, in which case that
shared context will be activated automatically. The second rule checks if all the
shared contexts that belong to a user defined context are active, in which case
the context will be activated.

By using these rules we can identify the concept of a context (like grip-2)
with the counts-as rules related to that context. Having this constitutive relation
between a context and the counts-as rules available we can now also handle the
following scenario of the crisis management.

1 Note that in this example grip-3 ended up as a subcontext of grip-2 because of the
limited scope of the example. In reality, there are other differences between these
contexts which would show that they instead overlap.

128 H. Aldewereld et al.

rule "activate running contexts"

when

ContextActive(c : context)

and

RunningContextIdentifier(rc : runningContext, context == c)

then

insertLogical(new RunningContextActive(rc));

end

rule "classificatory counts-as"

when

rc : RunningContextActive(ca : ClassificatoryCountsAs(y1 : c1, y2 : c2))

and

obj : Predicate(class == y1)

then

insertLogical(new CountsAs(y1, y2));

end

rule "counts-as"

when

c : CountsAs(y1 : c1, y2 : c2)

and

obj : Predicate(class == y1)

then

Predicate instance;

instance = (Predicate)(((Class)y2).newInstance());

instance.setObject(obj.getObject());

insertLogical(instance);

end

Fig. 4. Activation of counts-as rules

Suppose the hospital has to be evacuated due to a flooding. There are not
enough ambulances available to evacuate all people in time. The commander
(chief medic at the location) checks to see what can be done. He can use (special)
army trucks. However, army trucks do not (in general) count-as ambulances.
The commander can check (with the Drools implementation) that army trucks
count-as ambulances in the context of grip-3. (They are part of constituting
grip-3). So, the commander decides to move to the context of grip-3. Now
he has to check what other rules constitute grip-3. One of them states that in
grip-3 the mayor counts-as commander. This means that the commander has
to transfer his command to the mayor.

The scenario shows that we need the context as an explicit concept and also
we need the constitutive aspect of the counts-as rules that define the context in
order for the commander to be able to define a switch to another context (grip
level) and realizing the consequences of this switch. The Drools implementation
presented above enables us to do this.

Engineering Social Reality with Inheritance Relations 129

rule "activate running context"

when

rc : RunningContext(cal : countsas)

and

forall(ca : ClassificatoryCountsAs(a : c1, b : c2) from cal

CountsAs(c1 == a, c2 == b)

)

then

insertLogical(new RunningContextActive(rc));

end

rule "activate context by its running contexts"

when

c : Context()

and

forall(RunningContextIdentifier(rc : runningContext, context == c)

RunningContextActive(runningContext == rc)

)

then

insertLogical(new ContextActive(c));

end

Fig. 5. Automatic activation of contexts

5 Conclusions

Counts-as statements play a crucial role in the design of agent systems for com-
plex and dynamic applications. They are needed to create the links between
the abstract system specification and the concrete practice. These links created
between the abstract and concrete ontologies are context dependent.

This paper presents an implementation of the notion of constitutive counts-
as and proper classificatory counts-as as a means to solve this gap in dynamic
domains. We considered all intricate theoretical aspects of counts-as in the im-
plementation, and the implementation is made in such a way that it allows
for reasoning about the differences between contexts and the effects of (possi-
ble) context changes. The implementation in Drools is expressive enough to
create the necessary tools for the definition of contexts and the specification of
context-dependent relations which are needed in complex and dynamic domains.
An advantage of the Drools implementation is that it allows reflection on the
counts-as statements, thus allowing for agents (with sufficient capabilities to do
so) to reason about what changes between contexts, and even to reason about
whether changing a context is a valid option to achieve their (organisational)
objective(s). That means, the implementation of counts-as presented in this pa-
per is such that it not only represents the links in different contexts, but also
allows reasoning about the effects of context change.

Drools, in its last version, is an integrated platform supporting rules, work-
flows, and events, fully adapted to object-orientation and working under Java

130 H. Aldewereld et al.

and .NET. Its rule engine is an implementation of the forward chaining infer-
ence Rete algorithm. The knowledge base is dynamic, supporting the addition
and removal of facts and rules at runtime, and it works as a truth maintenance
system with logical assertions, supporting Predicate and First-Order Logic.

Drools is nowadays the most powerful and efficient open-source rule engine,
with a strong support from the community. One of the advantages of using
Drools for our implementation is the possibility of contributing our results
back to be included in further releases of the platform.

We are aware of only a few similar approaches towards the use of context-
dependent ontological subsumption rules (i.e., [10] and [4]) that could also be
used to solve the dynamic problem ontologically. While these approaches achieve
similar results in the specification of ontological relations that can change de-
pending on the current context, neither of these take any note of the definition
of contexts themselves. That is, the constitutive aspect of the relation is over-
looked and is not implemented. To our knowledge, this is the first attempt in
implementing the constitutive aspect of counts-as.

For our current application our implementation has all properties that were
needed to define contexts and be able to reason when and why to change be-
tween contexts. Although the Drools implementation stays quite close to the
theoretical work on the counts-as some “short-cuts” had to be taken. Most no-
tably is that contexts are defined as concepts, on the same level as “domain”
concepts. Of course, the idea is that they will not be used in the same way as
other concepts, because this might lead to circular definitions of contexts. As
future work we will look more thoroughly at the logical properties that still can
be derived using this implementation.

References

1. Aldewereld, H.: Autonomy vs. Conformity: an Institutional Perspective on Norms
and Protocols. PhD thesis, Universiteit Utrecht (June 2007)

2. Aldewereld, H., Dignum, F., Penserini, L., Dignum, V.: Norm dynamics in adap-
tive organisations. In: Boella, G., et al. (eds.) Proc. of the 3rd Int. Workshop on
Normative Multiagent Systems, NorMAS 2008 (2008)

3. Austin, J.L.: How to Do Things With Words. Harvard University Press (1962)
4. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.:

Contextualizing ontologies. Journal of Web Semantics 1(4), 325–343 (2004)
5. Decker, K.S.: TÆMS: A framework for environment centered analysis & design of

coordination mechanisms. In: Foundations of Distributed Artificial Intelligence, ch.
16, pp. 429–448. Wiley, Chichester (1996)

6. Dignum, V.: A Model for Organizational Interaction: based on Agents, founded in
Logic. PhD thesis, Universiteit Utrecht (2004)

7. European FP-7 Project. Coordination, organisation and model driven ap-
proaches for dynamic, flexible, robust software and services engineering (alive),
http://www.ist-alive.eu/

8. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence 19(1), 17–37 (1982)

http://www.ist-alive.eu/

Engineering Social Reality with Inheritance Relations 131

9. Grossi, D.: Designing Invisible Handcuffs: Formal Investigations in Institutions and
Organizations for Multi-agent Systems. PhD thesis, Universiteit Utrecht (2007)

10. Grossi, D., Aldewereld, H., Vázquez-Salceda, J., Dignum, F.: Ontological aspects
of the implementation of norms in agent-based electronic institutions. In: Compu-
tational and Mathematical Organization Theory, pp. 104–116. AISB (2005)

11. Jones, A., Sergot, M.: A formal characterization of institutionalised power. Journal
of the IGPL 3, 427–443 (1996)

12. Lesser, V., Decker, K., Wagner, T.: Evolution of the GPGP/TÆMS domain-
independent coordination framework. Autonomous Agents and Multi-Agent Sys-
tems 9(1), 87–143 (2004)

13. Searle, J.: Speech acts. An essay in the philosphy of language. Cambridge University
Press, Cambridge (1969)

14. JBoss Community. JBoss drools business rules, http://www.jboss.org/drools
15. Vasconcelos, W.W., Sabater, J., Sierra, C., Querol, J.: Skeleton-based agent de-

velopment for electronic institutions. In: Proc. AAMAS 2002, pp. 696–703. ACM
Press, New York (2002)

16. Vázquez-Salceda, J., Dignum, V., Dignum, F.: Organising multiagent systems.
JAAMAS 11(3), 307–360 (2005)

17. Wieringa, R.: Requirements Engineering: Frameworks for Understanding. John
Wiley & Sons, Inc., Chichester (1996)

http://www.jboss.org/drools

Determining the Trustworthiness of New Electronic
Contracts

Paul Groth1, Simon Miles2, Sanjay Modgil2, Nir Oren2, Michael Luck2,
and Yolanda Gil1

1 Information Sciences Institute, University of Southern California, USA
2 Department of Computer Science, King’s College London, UK

Abstract. Expressing contractual agreements electronically potentially allows
agents to automatically perform functions surrounding contract use: establish-
ment, fulfilment, renegotiation etc. For such automation to be used for real busi-
ness concerns, there needs to be a high level of trust in the agent-based system.
While there has been much research on simulating trust between agents, there
are areas where such trust is harder to establish. In particular, contract proposals
may come from parties that an agent has had no prior interaction with and, in
competitive business-to-business environments, little reputation information may
be available. In human practice, trust in a proposed contract is determined in part
from the content of the proposal itself, and the similarity of the content to that of
prior contracts, executed to varying degrees of success. In this paper, we argue
that such analysis is also appropriate in automated systems, and to provide it we
need systems to record salient details of prior contract use and algorithms for as-
sessing proposals on their content. We use provenance technology to provide the
former and detail algorithms for measuring contract success and similarity for the
latter, applying them to an aerospace case study.

1 Introduction

Contracts are a mechanism by which multiple parties codify agreements to undertake
tasks, deliver services, or provide products. Before signing a contract, it is generally true
that each party expects that the others will be able to fulfil their part of the agreement.
This trust in a party can be obtained from a variety of sources including prior dealings
with the party, recommendations from associates, and the perceived ability to effec-
tively enforce the compliance of the party. For example, when signing a mobile phone
contract, the phone provider performs a credit check on the potential customer, to verify
that the customer will be able to pay. Likewise, the customer may check independent
internet sites to determine whether the service provided is high quality and fairly priced.
Thus, the parties trust each other to perform the actions stated in the contract.

However, another trust judgment must be made in addition: one must also trust the
contract itself [8], to believe that, for example, it correctly specifies terms of service,
appropriately deals with exceptional cases, is sufficiently stringent that actions will be
taken if obligations are not fulfilled. For a phone contract, the customer might look
for a statement on when support will be available, whether there is an indemnification
portion of the contract, or even whether the contract is presented on paper with an
attractive letterhead (indicating professionalism by the provider).

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 132–147, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Determining the Trustworthiness of New Electronic Contracts 133

As open electronic contracting becomes prevalent, we expect issues centred around
content-based trust (trust of artifacts based on the artifacts themselves) to arise more
frequently. Clients must determine whether to place trust in a contract provided by a
service even while, in many cases, such services may be unknown, or the service may
introduce a new contract specific to the client.

In these cases, reputation-based mechanisms alone do not provide suitable means of
measuring trust: if there are little or no grounds on which to make reputation decisions,
then assessments of trust based on reputation are of limited value. Mechanism design
techniques, attempting to guarantee that agents will behave in a certain way [11], are
ill-suited to open systems, where new agents, which may not be analysed by the system
designer and may not always act rationally, can enter the system at any time.

Contracts presented by one agent for a service may well have similarities to those
proposed by other agents providing similar services, but are unlikely to be of the same
form or template: each company (or organisation, or agent) drafts contracts in its own
way. However, even without exactly matching contracts, an agent may still draw on
prior experience, and judge a newly proposed contract on the basis of similarities. For
example, if similar contracts to the current one turned out to be valuable or successful in
the past, this may indicate future value or success. This approach requires two contract-
specific mechanisms to be in place, to determine each of the following.

– The success of prior contracts the agent has been party to. Success is meaning-
ful only if we have an unambiguous model of contractual behaviour, and if it is
based on the events that occur during a contract’s lifetime. For us to draw on salient
events, we need to capture data on those events in a queryable form.

– The similarity of a prior contract to a newly proposed one. As above, similarity
is meaningful only if we understand what a contract contains: syntactic similarity
alone would not provide a meaningful measure, e.g. the obligation to do something
and the obligation not to the same may be expressed using almost the same data are
not similar contractually.

In this paper, we begin to address the problem of how a client can make a trust judg-
ment about a contract based on the contract itself. We do so by building on several
pieces of existing, though largely unconnected work on contract modelling, content-
based trust and provenance. A theoretical framework for modelling contracts, and its
use for representation as concrete data, is presented. As with human assessments, we
enable clients to access their own prior experiences, as well as records available from
others, in order to help make a trust judgement. This prior experience is expressed in the
form of a provenance graph, which documents how contracts were constructed, where
they were used, and the processes that they were related to. While the overall work is
preliminary, we have provided a proof of concept implementation and evaluation. The
technical contributions provided in this paper are:

– an approach to measuring the success of prior contract executions;
– an algorithm for establishing the similarity between contracts;
– a model for determining the trustworthiness of contract proposals based on the

above notions of success and similarity;

134 P. Groth et al.

– an implementation of all of the above using an existing electronic contract repre-
sentation scheme and provenance model;

– a case study and evaluation of our approach in the aerospace domain.

1.1 Case Study

In this paper, we use an aerospace application as our running example and case study.
We are grateful to Lost Wax for the particulars, which are part of a simulation performed
by the Aerogility tool for their (aircraft engine manufacturer) customers [1].

Within the domain under consideration, aircraft operators require the manufacturers
of their aircraft engines to maintain the engines during their lifetimes. Engine manufac-
turers in turn rely on services at particular sites to conduct any repairs. A plane with an
engine requiring maintenance will be scheduled to land at a site with which the engine’s
manufacturer has a contract, so that repairs can take place. A service site makes use of
suppliers for given parts, and engine manufacturers often wish to restrict the suppliers
they use to those trusted.

As our running example, we consider proposals from new service sites to engine
manufacturers to provide, and be paid for, repair of engines. The question asked by
the engine manufacturer is: Should I trust this new proposal? Engine manufacturers
have more or less prior experience with other sites, and may or may not have access to
records about other manufacturers’ experience.

2 Trust

Trusting someone or something allows the uncertainty of the world to be handled: even
where aspects are unknown and may be unknowable, we do not allow this to preclude
us from action. Gambetta [7] defined trust as “a particular level of the subjective proba-
bility with which an agent will perform a particular action, both before she can monitor
such an action, and in a context in which it affects her own action”. We apply this def-
inition in contract-based systems as the likelihood that a contract proposal will lead to
other agents (primarily other contract parties) acting in an expected and desirable way.

To understand what we should capture in a measure of trust for a contract proposal,
we need to know why an agent may agree to one, including the following reasons.

– The agent believes the outcome of successful execution of the contract will be in
their interests.

– The agent believes the other parties will act in accordance with the contract.
– The agent believes another contract could not easily be obtained which better rep-

resented their interests.

Castelfranchi [5] gives a more exhaustive list of reasons why an agent may attempt to
meet a norm in the general case.

Content-based trust, the trust in artifacts from the artifacts themselves, is a relatively
neglected area compared with mechanisms to assess trust in other agents (reviewed re-
cently, for example, by Sabater and Sierra [19], Ruohomaa and Kutvonen [18]). Deter-
mining content-based trust was identified as an open issue by Gil and Artz in the context

Determining the Trustworthiness of New Electronic Contracts 135

of the Semantic Web [8]. Content-based trust is crucially important, given that the web
can be understood as a network of documents whose content people judge trustworthy
or otherwise based on various factors, including context, popularity, appearance, prove-
nance, apparent bias, etc. Content-based trust complements assessments on the trust of
those providing the content made, for example, through reputation metrics.

Such evaluations also apply where actors in a process are not human but software
agents, and it is therefore important to determine such assessments of trust automati-
cally. Aside from general web documents, content-based trust is important in assessing
contract proposals in an open system, where evaluations of those issuing proposals may
not be sufficient for providing a basis to decide whether to accept. Gil and Artz envis-
aged users providing feedback on content, which would inform the trust assessments of
later users. We take an equivalent approach here, where that feedback data is captured
by records of success or otherwise of past contracts.

3 Electronic Contracts

To compare similarity of contracts, so we can judge how much of an influence a past
contract’s success should have on assessing a new proposal, there needs to be a basis
for comparison. Unless contracts are expressed in a relatively uniform way, there is
no way to know whether one part of the document, e.g. a clause, is comparable to
another. While we cannot rely on contracts created by different agents being instantiated
from the same template, we assume that all contracts can be expressed using the same
conceptual structure, so can be mapped to the same data structure. We also assume that,
within an application domain, contract terms can be mapped to a common ontology,
allowing each part of a contract to become comparable.

For example, in our case study, we cannot assume all service sites provide contracts
following the same template, as they are independent, but assume that they all rely
on the same basic constructs (obligations, permissions etc.) and include some similar
content, e.g. obligations to service engines when they require maintenance.

3.1 Basic Concepts

A contract is a document containing clauses agreed to by a set of agents, called the con-
tract parties. Prior to agreement by the relevant parties, a contract document is simply a
contract proposal. For an electronic document, agreement may be indicated in the form
of digital signatures by the contract parties. Clauses specify regulative or constitutive
norms influencing agent behaviour.

Constitutive norms do not form a mandatory part of a contract, but help with contract
reusability and interpretation. According to Boella and van der Torre [4], the main role
of a constitutive norm is to specify a counts-as relation between facts in the domain
and terms in the contract. For example, a contract for a broadband connection may
specify what counts-as fair use, in terms of observable facts such as the amount of data
downloaded over the course of a month. Another important contractual notion, role,
where an agent occupying the role takes on the regulative norms imposed on the role,
may also be subsumed by the counts-as relationship. The counts-as relationship has
been the subject of much analysis [12,10].

136 P. Groth et al.

Here, we focus on regulative norms. Regulative norms are associated with a target
agent, and specify either what the target should do, an obligation, what the target should
not do, a prohibition, or what the target may do, a permission. If the target of an obli-
gation or a prohibition does not conform to the behaviour expected by that clause, then
this is a violation of the clause. If a clause has not been and can no longer be violated
(for example, if the action required in an obligation has been performed), then we say
that it has been fulfilled.

Some obligations or permissions may specify behaviour required or allowed when
another clause is violated: contrary-to-duty clauses, e.g. one obligation may state “A
must deliver the package to B by Thursday” while a contrary-to-duty obligation says
“If A has not delivered the package to B by Thursday, it must refund B’s payment.”

3.2 Electronic Representation of Contracts

Many different computational representations of contracts are possible, but common
formats are required for interoperability and comparison. The CONTRACT project [2]
addresses this concern (among others), by encoding contracts as XML documents con-
sisting of normative clauses that are essentially declarative specifications of agent
behaviours. The model is informed by a need to meet requirements for practical execu-
tion of contracts and monitoring for violation of contracts by the parties involved (some
features of this model are not unique to this approach, but also present in others’ mod-
els [6,9]). Importantly, this execution-based motivation and XML-based representation
provide us with both the stance and tools needed to develop techniques for evaluating
contract similarity. We therefore adopt the CONTRACT model and representation in our
work. Although we cannot provide a complete account here, we briefly outline several
key qualities of the model, and leave details to other publications [16,17].

1. A contract clause is often conditional, requiring or allowing an agent to undertake
an action only in specific circumstances. For example, an obligation on a service
site to repair an engine only matters whenever a request for maintenance has been
placed. For this reason, a practical agent should not expend resources aiming to
fulfil all clauses when most do not apply at any given time.

2. These ‘activating’ circumstances can exist in multiple instances, sometimes simul-
taneously. Continuing the example, multiple requests may be placed at one time,
and a single contract clause requires each request be processed.

3. No contract party can predict whether it will, in practice, be possible for them or
the other parties to fulfil obligations at the time the contract is agreed. Contracts are
based on expected future capabilities of agents not on certainty of achievement. For
a recent example, consider passengers left stranded due to the collapse of airline
and holiday companies: the obligation to return them home was agreed but the
capability did not exist at the relevant time.

4. All information relating to whether a contract clause is violated or not must orig-
inate from some source. For example, in a distributed system, information about
time comes from clock services, and there can be no guarantee in practice that the
time received from any two clocks will be the same.

5. That which is obliged or permitted can always be expressed as maintenance of
some condition (within each instantiating circumstance). Clearly the obligation to

Determining the Trustworthiness of New Electronic Contracts 137

“always drive on the left”, for example, is already expressed as the maintenance of
a condition. However, an obligation to achieve state S in the system before deadline
condition D can be expressed as maintaining the condition: either achieved S or
not yet passed D. For example, the obligation to “have repaired an engine within
7 days of the request” can be re-expressed as maintaining the state “have repaired
the engine or not yet passed 7 days from the request”. Generally, the obligation to
perform action A before a deadline D can be re-expressed as maintaining the state
of having performed A or D not yet having passed.

Taken together, these points inform the development of a model for contractual clauses
using the data structure in Table 1. It should be noted that any logic may be used to
specify the conditions in our contract clauses, and that it is possible to map the deontic
aspect of a clause to standard conditional logics [21]. Examples of the model’s use in
the domain of aerospace aftermarkets are provided in Section 6.

Table 1. The model for a contractual clause used in this paper

Type Whether this is an obligation or permission. A prohibition is modelled
as an obligation not to do something, i.e. with a negative normative
condition below.

Target The contract party obliged, prohibited or permitted by the clause.
Activating Condition The circumstances under which the clause has force, parametrised by

the variables specific to each instance.
Normative Condition The circumstances under which the obligation is not being violated or

the permission is being taken advantage of, parametrised by the vari-
ables specific to each instance. Therefore, for an obligation, the target
must maintain the normative condition so as not to be in violation of the
contract.

Expiration Condition The circumstances under which the clause no longer has force,
parametrised by the variables specific to each instance.

The CONTRACT project XML-based electronic format for contracts [17] is used in
our implementation. Without providing excessive detail, the key components of a con-
tract in this format can be outlined as follows.

– References to ontologies defining the concepts used in the contract and the pre- and
post-conditions of actions obliged, prohibited or permitted.

– A set of contractual roles to which contract clauses apply.
– A set of agents assigned to those roles.
– A set of clauses as modelled above.

A contract, in itself, does not express success or failure in achieving the obligations
expressed within it. For that we need to know, through recorded documentation, the
outcomes of agents’ attempts to fulfil the contract, and the processes by which they did
so. This can be called the provenance of the contracts’ outcomes.

138 P. Groth et al.

4 Provenance

Judgements of trust must be based on reliable data. Even when the assessed object pro-
vides the primary data, its content must be compared against something. In our case,
the proposal content is compared against prior contracts, to assess the proposal based
on the similarity with, and success of, those contracts. The task of acquiring this his-
torical data is outside the scope of many approaches and so not adequately addressed.
However, in a system with multiple authorities, where contracts need to be established
to guarantee one agent’s behaviour towards another, gathering such data is not trivial.

Much work [20] has been conducted on techniques for determining the provenance
of data: the source or history of that data [14]. There are two critical issues in providing
infrastructure for determining provenance. First, applications must be adapted to record
documentation of what occurs in a system in such a way that it can be connected to form
historical traces of data. This requires the independent agents in the system to document
their activities using a suitable common data model. Second, techniques are needed to
query potentially large amounts of such documentation, to elicit details relevant to the
history of a given item. Additional issues, such as the reliability of documentation for
provenance and its secure storage must also been considered [14].

In this paper, we exploit the documentation produced by a provenance infrastructure
to find connections between prior contracts and their outcomes. This allows us to mea-
sure the success or otherwise of prior contract executions, and the compliance with, or
violation of, clauses by the contract parties. The model of provenance used to evaluate
our approach is based on causal graphs, connecting occurrences in the system as effects
to their causes, whether the occurrences involved one agent or the interaction of many.
Here, we are not concerned with how the system was adapted to record documentation,
but refer readers interested in the software engineering issues elsewhere [13].

We use the Open Provenance Model (OPM) [15], developed by an international col-
laboration of provenance researchers. OPM documents prior occurrences in terms of
processes that manipulate artifacts. A process can be seen as an individual action by an
agent, while an artifact corresponds to a message sent between agents or to an object
acted on while in a given state. An example is shown in Figure 1, where a part supply
process receives a request for a part and generates that part, passing it to a process that
takes a broken engine and produces a repaired engine. Arrows denote causal dependen-
cies, where a process used an artifact or an artifact was generated by a process.

OPM has serialisations in formats such as XML and RDF (though they are still being
refined). We use the current XML serialisation in our experiments, a sample of which
is shown in Figure 2.

Fig. 1. Sample OPM graph fragment: artifacts are ovals, processes are boxes

Determining the Trustworthiness of New Electronic Contracts 139

5 Contract Trust Algorithm

We can view the problem of determining the trust of a previously unseen contract in
different ways. As a classification problem, we aim to determine to which category of
trust the contract belongs, e.g. we could classify a contract into ‘trustworthy’, ‘some-
what trustworthy’ or ‘untrustworthy’. Or, as a regression problem, the goal is to compute
a trust value for the given contract.

For either case, we can apply an approach based on the simple k-nearest neighbour
algorithm [3]. Briefly, the algorithm can be described as follows. Given an instance, q
(in our case a contract proposal) find the k instances (prior contracts) in a historical
dataset that are closest to q. The instances then vote as to the category/value of q. In our
evaluation, we use the k-nearest neighbour algorithm to perform regression that deter-
mines a numerical trust value. It is then for an agent to decide whether the trust value
is adequate to accept the proposal, or to choose between multiple potential proposals.
To use the k-nearest neighbour algorithm, we need to define the features or attributes to
be used, a distance function, a voting function, and k. Below, we define each of these
elements for our purposes.

5.1 Features: Measuring Success of Contracts

The historical dataset used by our algorithm is the set of prior contracts the agent has
been party to. We are interested in one attribute of a contract: whether the contract was
successful, defined as one in which the outcome of the process the contract governed
is achieved without breaking any contractual clauses. For example, if a service site was
obliged to repair an engine by a certain time according to a contract and the service
does so, then the contract is successful. However, the success of a process’ outcome
is not a binary decision but lies in a range. For example, if the engine is fixed but the
repair was delayed, the outcome of the repair process is still successful but less so than
if the engine was repaired on time. Additionally, it is important to note that the outcome
of a process is not merely its output; the outcome may also include effects such as
repairs being late. To determine all these effects, our approach is to use documentation
of a process. We write Dc

p to identify the provenance data for a process p that was the
execution of a contract C.

Our algorithm relies on a success-outcome function, s(DC
p) = 0 . . . 1, that computes,

given the provenance data for a process, a numeric value for the success of the process
outcome. In practice, this is a series of tests performed on the provenance data to see
if particular effects were present in the documentation; for example, whether penalties
were paid when a clause was violated. Thus, the success-outcome function provides
the value for the success attribute of each contract in the historical dataset. This is a
domain-specific and often user-specific function.

The measure of success of a past contract is calculated by the agent assessing the
new proposal, and so the values given to that success are otherwise arbitrary reflections
of what that agent considers important. If two agents use similar calculations of suc-
cess from the events recorded in the documentation, they have similar outlook on trust.
Section 6.3 describes the function we use for the aerospace case study.

140 P. Groth et al.

5.2 Distance: Measuring Similarity of Contracts

We now define a distance function to determine how close a proposal is to the prior
contracts. A contract C1’s distance from another contract C2 is a normalised similarity
value. We rely on a general function, Equation 1, to produce all permutations of pairings
of elements of any sets A and B:

map(A, B) :=
{

P ⊂ A × B
∣∣∣all elements in a pair occur only once in P

}
. (1)

map(A, B) is used by Equation 2 to compute the summation that maximizes the addi-
tive similarity score between two sets. Equation 2 assumes that there exists a similarity
function for the elements within the provided sets. This equation is necessary because
clauses and other constructs do not have a fixed comparison order.

max additive score(A, B) = max

({ ∑
(x,y)∈P

sim(x, y)
∣∣P ∈ map(A, B)

})
(2)

Based on Equations 1 and 2, we define the distance function, Equation 3, as the maxi-
mum similarity score between two contracts, C1 and C2. The function assumes that a
contract, C, is a set of clauses, hence, we can write cl ∈ C.

dist(C1, C2) = max additive score(C1, C2); (3)

The similarity between two clauses, Equation 4, is defined as the similarity between
the clauses conditions. We use a dot accessor notation to denote accessing each type of
condition from a clause. Thus, cl.act denotes accessing the activation condition from a
clause. Likewise, cl.mant denotes accessing the maintenance condition (the expiration
condition is excluded, as it merely aids agents in knowing when clauses no longer ap-
ply, rather than affecting the semantics of what is required/permitted). Similarily, each
condition contains a formula, F , that can be accessed in the same fashion. Additionally,
we use the function type() to allow for the retrieval of the type of a given object. In
the case of the deontic statement this is whether it is an obligation or permission. In the
case of other entities such as variables this is the class of that entity.

sim(cl1, cl2) :=
sim(cl1.act, cl2.act) + sim(cl1.mant, cl2.mant)

2
(4)

The similarity of two conditions is the similarity between the two conditions formulas
as seen in Equations 5, 6, 7.

sim(exp1, exp2) :=

{
0 if type(exp1)! = type(exp2)
sim(exp1.F, exp2.F) otherwise

(5)

sim(act1, act2) := sim(act1.F, act2.F) (6)

sim(mant1, mant2) := sim(mant1.F, mant2.F) (7)

Determining the Trustworthiness of New Electronic Contracts 141

For convenience, we assume all formulas are in disjunctive normal form, i.e. each for-
mula is a set of disjunctive clauses, DIS, and each of these is a set of conjunctive
clauses, CNJ , in turn a set of atoms. The equations for determining formula similarity
are given below. At each step, the combination that maximizes the similarity are chosen.

sim(F1, F2) := max additive score(F1, F2) (8)

sim(DIS1, DIS2) := max additive score(DIS1, DIS2) (9)

sim(CNJ1, CNJ2) := max additive score(CNJ1, CNJ2) (10)

Similarity between two atoms is defined by Equation 11. Each atom consists of a rela-
tion, a.r, a list of variables, a.vars, and a list of individuals, a.inds. The Equations 13,
14, and 15 define similarity for each component respectively.

Note d(x, y) denotes a domain specific function for comparison, returning a similar-
ity score from 0 and 1. In the case study below, we used a function for time periods
that states if two periods are within 5 calendar days then they are equivalent. Similarly,
for two non-equal payments, if the difference is less than 2000 euros, we state a 0.75
similarity score, or 0.5 if between 2000 and 6000 difference.

sim(a1, a2) :={
0 if |a1.vars|! = |a2.vars| ∨ |a1.inds|! = |a2.inds|
sim‘(a1, a2) otherwise.

(11)

sim′(a1, a2) :=
(
sim(a1.r, a2.r)

+
|a1.vars|∑

i=0

sim(a1.vars[i], a2.vars[i])

+
|a1.inds|∑

i=0

sim(a1.inds[i], a2.inds[i])
)

1 + |a1.vars| + |a1.inds|

(12)

sim(r1, r2) :=

⎧⎪⎨
⎪⎩

1 if r1 = r2,

d(r1, r2) if ∃d(r1, r2),
0 otherwise.

(13)

sim(v1, v2) :=

{
1 if type(v1) = type(v2),
0 otherwise.

(14)

sim(ind1, ind2) :=

⎧⎪⎨
⎪⎩

1 if ind1 = ind2,

d(ind1, ind2) if ∃d(ind1, ind2),
0 otherwise.

(15)

142 P. Groth et al.

5.3 Voting: Evaluating Trustworthiness of Proposals

Using this distance function, k-nearest neighbour can determine which contracts are
closest to the input contract. To assign a success value to the new contract, a voting
function is required. We adopt a simple normalised weighted average approach. Here,
the input or proposed contract, cp, is assigned a success value that is determined as
follows: first, the sum of the success values from the k-nearest contracts is calculated,
where each success value is weighted by its distance from the input contract. Then, this
sum is divided by k. Because we are using this weighted approach, we can use a very
high value for k because the weighting will discount any contracts that are far away
from the input contract. In our tests, k is set to be equal to the entire historical dataset.
Thus, Equation 16 describes the voting function, n is equal to the number of contracts
in the historical dataset.

v(cp) =
∑i=n

i=0 dist(cp, ci)s(Dci
p)

n
(16)

k-nearest neighbour has a number of properties that make it useful for this application.
In particular, it allows the agent to apply all its historical knowledge to determining
the trust value of a new contract. It also removes the need for a training phase in the
algorithm so that new information can be used immediately. Finally, the approach can
be easily adapted to support categories of trust instead of a trust value.

6 Case Study

In our preliminary case study, we simulate the aerospace scenario through messages be-
ing sent by the various entities, indicating what they have done and what has happened.
This allows compliance or violation to be determined. Now, in our particular example,
we assume that an engine manufacturer is offered a contract proposal by a service site
of which it has no prior experience. The manufacturer judges the contract proposal on
the basis of its prior contracts with other sites. Each contract consists of the following
relevant clauses.

1. An obligation on the service site to repair each engine within D days of it arriving
for maintenance.

2. An obligation on the service site to pay a penalty P to the manufacturer for each
repair not completed in D days (with the payment having its own deadline, not
varied in this case study).

3. A set of permissions and prohibitions, one for each of a set of part suppliers, allow-
ing or denying the service site to source parts from that supplier. We assume three
relevant part suppliers exist.

The formalisation of the first of the above is characterised in Table 2, following the data
structure shown in Table 1.

Determining the Trustworthiness of New Electronic Contracts 143

Table 2. Model for obligation 1 in the case study contract

Type Obligation
Target Service Site
Activating Condition Engine E requires repairing at time T

Normative Condition Engine E has been repaired or time T + D has not been reached
Expiration Condition Engine E has been repaired or time T + D has been reached

6.1 Simulation

Simulations of the execution of the above contract were run, varying the following
simulation factors.

– The time to repair, D, may be short or long.
– The penalty payment, P , may be high or low.
– For each part supplier, the site may be permitted or prohibited from sourcing parts

from that supplier.
– The service site may be honest or dishonest.

These factors combine to influence which of four scenarios is executed in the simula-
tion. The scenarios have the following outcomes.

1. The repairs are completed successfully using permitted part suppliers.
2. The repairs are not all completed successfully, but a penalty payment is received.
3. The repairs are not all completed successfully, and no penalty payment is received.
4. The repairs are completed but using a prohibited part supplier.

Long time to repair, high penalty payment and more permitted suppliers increase the
chance of repairs being completed. Long time to repair and more permitted suppliers
also increase the chance of correct part suppliers being used. Honesty increases the
chances of penalties being paid when repairs are not performed.

Specifically, the following calculation is used. First, we calculate the repair success
chance as a base probability increased if D is long, P is high, and for each permitted
supplier. Allowed supplier chance is increased by D being long and for each permitted
supplier. Pays penalty chance is 0.1 or 0.8 depending on whether the site is honest.
Repair success chance is the probability that repair is successful. If yes, allowed supplier
chance is the probability that scenario 1 occurs, else 3. If no, pays penalty chance is the
probability that scenario 4 occurs, else 2.

6.2 Provenance

Each of the four scenarios above produces a different provenance graph. Each OPM
graph documents the processes that occurred during the scenario, and the data produced
and exchanged in that scenario, with the documentation being recorded by some or all of
the agents involved. Included in that graph are the messages sent between agents, which

144 P. Groth et al.

means that the engine manufacturer can identify the critical messages sent between
participants indicating success of and compliance with the contract.

– A message received by the engine manufacturer notifying of successful repair, and
containing a timestamp less than the deadline, indicates that repairs were completed
successfully. The absence of such a message, or a later timestamp than the deadline,
indicates lack of successful repair.

– Where there was not a successful repair, a message received by the engine manu-
facturer notifying of payment of penalty indicates that such a payment was made.
Absence of the message indicates that the payment was not made.

– A message received by the service site from a part supplier notifying of delivery of
a part indicates that that supplier was used by the service site.

A snippet of the XML serialisation in the OPM for a scenario is shown in Figure 2.

<opmGraph xmlns="http://openprovenance.org/model/v1.01.a">
...
<processes>
<process id = "SiteServiceScenario1Process">

<value xsi:type="xs:string" ...>ServiceSite</value>
</process>

...
<artifacts>
<artifact id = "SiteServiceScenario1OrderPart1">

<value xsi:type="xs:string" ...>orderPart(order1,type112)</value>
</artifact>

...
<causalDependencies>
<used>

<effect id = "SiteServiceScenario1Process"/>
<role value = "requestReceived"/>
<cause id = "EngineManufacturerScenario1Request1"/>

</used>
<wasGeneratedBy>

<effect id = "SiteServiceScenario1OrderPart1"/>
<role value = "requestSent"/>
<cause id = "SiteServiceScenario1Process"/>

</wasGeneratedBy>

Fig. 2. Snippets of documentation recorded from scenario 1 following the OPM XML schema

6.3 Success and Similarity

The success of the contract execution should depend on the outcome and reflect the
importance given to different factors by the agent making the trust assessment. For the
scenarios above, scenario 1 should be rated as 1.0 success; scenario 2 has 0.75 success;
scenario 3 has 0.25 success; and scenario 4 has 0.0 success. Scenario 4 has the worst
outcome because using a faulty part from a bad supplier is more likely to cause the
plane to fail than merely not receiving maintenance. A prior contract is, then, more
similar to the proposal if it has the same time to repair, same penalty payment, and
same permissions and prohibitions on part suppliers.

Determining the Trustworthiness of New Electronic Contracts 145

7 Evaluation

In this section, we describe our evaluation of the efficacy of our algorithm, using the
aerospace case study introduced above. In one test case, N prior contracts are generated
with a random set of factors. For each contract, a scenario is selected randomly but
influenced by the factors as described in Section 6.1, e.g. long time to repair increases
the chance that a scenario in which repairs are completed will be chosen. The scenarios
are enacted and the execution documented as provenance graphs.

A contract proposal is randomly generated just as was done for the prior contracts.
The engine manufacturer uses the documentation to judge the success of each prior
contract, and the similarity algorithm to judge the similarity of the content of the new
proposal to each prior contract. They combine these measures, as specified in the trust
algorithm above, to judge whether to trust the proposal.

We evaluate how more information on prior contracts has a beneficial effect on deci-
sions to trust proposals. For each randomly generated proposal, we first enact it multiple
times, getting an average score for its success: called the average actual success. We
compare this with trust rating generated by our algorithm.

In our experiment, we generated 10 contract proposals. For each proposal, we com-
puted the average actual success by enacting the proposal 100 times. We then compared
this to the trust rating computed using our algorithm as we increased the number of
prior contracts from 1 to 200. We measured the difference between these values after
adding increments of 10 prior contracts. Figure 3 shows the average difference when
combining the measures for all 10 proposals. As can be seen in the graph, the difference
between these two scores steadily decreases as the number of prior contracts increases.
This shows that the algorithm is effective: by calculating trustworthiness of a proposal
using our algorithm, based on prior contract success and similarity, we achieve a closer
and closer match to the actual success rate which would be achieved from enacting that
contract. Therefore, the trust measure accurately reflects the worth to be gained by the
agent by accepting the proposal.

Fig. 3. The difference between trust evaluation and actual success of a proposal (Y-axis) as the
number of prior contracts increases (X-axis)

146 P. Groth et al.

8 Conclusions

Assessing a contract proposal can be difficult when there is little public information on
the proposer. In this paper, we show how a content-based assessment, comparing the
proposal with prior contracts based on its similarity of content to them, and the success
of those prior contracts, can inform a decision on whether to trust the proposal. As
shown in our results, as the number of prior contracts used in the assessment increases,
the difference between the trust value and the actual outcome decreases; that is, the
evaluation becomes more accurate.

Our approach relies on two pieces of technology: a contract model and its data repre-
sentation on the one hand, and a model for representing the history of processes within
the system (the provenance of contract enactments’ outcomes) on the other. Our work
effectively integrates these different aspects to provide an effective means of assessing
content-based trust in contracts.

As with any approach which is improved by drawing on ever more data, optimisa-
tions need to be made to realistically scale. First, we use the k-nearest neighbour mea-
sure as an example similarity measure, but the same overall technique described here
applies with other algorithms. Second, optimisations are possible even when retaining
the k-nearest neighbour approach, e.g. by pre-computing the similarity of past contracts
A and B, to approximate the similarity of proposal P to B based on its calculated simi-
larity to A. In either case, this is an interesting avenue of work, for which we would not
reinvent optimisations but draw on existing machine learning research.

While the work presented here considers proposals from unfamiliar agents, we may
also expect to see unfamiliar contract proposals from familiar agents, i.e. those for
which the agent receiving the contract has some direct or indirect reputation metrics.
We cannot automatically assume that an agent providing a robust contract in one area
is doing so in another area, e.g. your mobile phone provider may be excellent, but you
may not wish to rely on them providing reliable medical insurance contracts. In such
cases, the trustworthiness of the contract content can be complemented by the metrics
regarding the agent, to ensure that we can expect the contract both to be reliably ful-
filled and its effect to be as we expect and desire. A simple way to combine contract and
agent trust metrics would be to perform a weighted sum. Exactly how best to weight
each aspect, and how beneficial this combination would be, is a topic for future work.

Acknowledgements. The research described in this paper is partly supported by the Eu-
ropean Commission Framework 6 funded project CONTRACT (INFSO-IST-034418).
The opinions expressed herein are those of the named authors only and should not
be taken as necessarily representative of the opinion of the European Commission or
CONTRACT project partners. We also gratefully acknowledge support from the US Air
Force Office of Scientific Research (AFOSR) with grant number FA9550-06-1-0031.

References

1. Aerogility (2009), http://www.aerogility.com/
2. IST CONTRACT project (2009), http://www.ist-contract.org

http://www.aerogility.com/
http://www.ist-contract.org

Determining the Trustworthiness of New Electronic Contracts 147

3. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine Learn-
ing 6, 37–66 (1991)

4. Boella, G., van der Torre, L.W.N.: Regulative and constitutive norms in normative multiagent
systems. In: Principles of Knowledge Representation and Reasoning: Proceedings of the
Ninth International Conference (KR 2004), pp. 255–266 (2004)

5. Castelfranchi, C.: Prescribed mental attitudes in goal-adoption and norm-adoption. Artificial
Intelligence and Law 7(1), 37–50 (1999)

6. Dignum, V., Meyer, J.J., Dignum, F., Weigand, H.: Formal specification of interaction in
agent societies. In: Proceedings of the Second Goddard Workshop on Formal Approaches to
Agent Based Systems, pp. 37–52 (2002)

7. Gambetta, D.: Can we trust trust? In: Trust: Making and Breaking Cooperative Relations, pp.
213–237. Basil Blackwell, Malden (1988)

8. Gil, Y., Artz, D.: Towards content trust of web resources. Journal of Web Semantics 5(4),
227–239 (2007)

9. Governatori, G.: Representing business contracts in ruleml. International Journal of Cooper-
ative Information Systems 14(2-3), 181–216 (2005)

10. Grossi, D.: Designing Invisible Handcuffs. PhD thesis, Dutch Research School for Informa-
tion and Knowledge Systems (2007)

11. Guerin, F., Pitt, J.: Proving properties of open agent systems. In: The First International Joint
Conference on Autonomous Agents & Multiagent Systems (AAMAS 2002), pp. 557–558
(2002)

12. Jones, A.J.I., Sergot, M.: A formal characterisation of institutionalised power. Journal of the
IGPL 3, 427–443 (1996)

13. Miles, S., Groth, P., Munroe, S., Moreau, L.: Prime: A methodology for developing
provenance-aware applications. ACM Transactions on Software Engineering and Method-
ology (June 2009)

14. Moreau, L., Groth, P., Miles, S., Vazquez, J., Ibbotson, J., Jiang, S., Munroe, S., Rana, O.,
Schreiber, A., Tan, V., Varga, L.: The provenance of electronic data. Communications of the
ACM 51(4), 52–58 (2008)

15. Moreau, L., Plale, B., Miles, S., Goble, C., Missier, P., Barga, R., Simmhan, Y., Futrelle,
J., McGrath, R.E., Myers, J., Paulson, P., Bowers, S., Ludaescher, B., Kwasnikowska, N.,
Van den Bussche, J., Ellkvist, T., Freire, J., Groth, P.: Open Provenance Model (2009),
http://openprovenance.org/

16. Oren, N., Panagiotidi, S., Vazquez-Salceda, J., Modgil, S., Luck, M., Miles, S.: Towards a
formalisation of electronic contracting environments. In: Proceedings of the Workshop on
Coordination, Organization, Institutions and Norms in Agent Systems at AAAI 2008, COIN
2008 (2008)

17. Panagiotidi, S., Alvarez, S., Vazquez, J., Oren, N., Ortega, S., Confalonieri, R., Jakob, M.,
Biba, J., Solanki, M., Willmott, S.: Contracting language syntax and semantics specification
(2009), http://www.ist-contract.org

18. Ruohomaa, S., Kutvonen, L.: Trust management survey. In: Herrmann, P., Issarny, V., Shiu,
S.C.K. (eds.) iTrust 2005. LNCS, vol. 3477, pp. 77–92. Springer, Heidelberg (2005)

19. Sabater, J., Sierra, C.: Review on computational trust and reputation models. Artificial Intel-
ligence Review 24(1), 33–60 (2005)

20. Simmhan, Y., Plale, B., Gannon, D.: A survey of data provenance in e-science. SIGMOD
Record 34(3), 31–36 (2005)

21. van der Torre, L., Tan, Y.: Contextual deontic logic. In: Bonzon, P., Cavalcanti, M., Nossum,
R. (eds.) Formal Aspects of Context, pp. 143–160. Kluwer Academic Publishers, Dordrecht
(1997)

http://openprovenance.org/
http://www.ist-contract.org

Trust Based Evaluation of Wikipedia’s
Contributors

Yann Krupa1, Laurent Vercouter1, Jomi Fred Hübner1,3, and Andreas Herzig2

1 École Nationale Supérieure des Mines de Saint Etienne
Centre G2I, Département SMA

158, cours Fauriel, F-42023 Saint-Etienne
{krupa,vercouter,hubner}@emse.fr

2 Institut de Recherche en Informatique de Toulouse
118 route de Narbonne, F-31062 Toulouse

herzig@irit.fr
3 Federal University of Santa Catarina

Department of Automation and Systems Engineering
P.O. Box 476, Florianópolis, Brasil, 88040-900

jomi@das.ufsc.br

Abstract. Wikipedia is an encyclopedia on which anybody can change
its content. Some users, self-proclaimed “patrollers”, regularly check re-
cent changes in order to delete or correct those which are ruining articles
integrity. The huge quantity of updates leads some articles to remain pol-
luted a certain time before being corrected. In this work, we show how a
multiagent trust model can help patrollers in their task of controlling the
Wikipedia. To direct the patrollers verification towards suspicious con-
tributors, our work relies on a formalisation of Castelfranchi & Falcone’s
social trust theory to assist them by representing their trust model in a
cognitive way.

1 Introduction

In evolutive and open systems, like participative websites as Wikipedia1, com-
mon security measures are too complex to be applied while maintaining a good
tradeoff between openness and website integrity. For example, a Role Based Ac-
cess Control (RBAC) limits the system openness thus reducing participation.
Moreover, role management represents a heavy administrative task. Then, it
is necessary to define decentralized control mechanisms allowing scalability. A
multiagent approach of this problem is therefore appropriate, in particular by
means of social control via trust assessment towards other agents of the system.

The work presented here defines how a multiagent trust model, inspired by
the Theory of Social Trust by Castelfranchi & Falcone [1], can be constructed
to contribute to an application like Wikipedia. The content of Wikipedia is
controlled by the users themselves. These users handle the modification checking,

1 http://en.wikipedia.org/

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 148–161, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://en.wikipedia.org/

Trust Based Evaluation of Wikipedia’s Contributors 149

nevertheless, a few mistakes remain online for some certain time because of the
sizeable activity of Wikipedia. The cognitive trust model that we propose allows
to target more efficiently the contributions to check in priority by making trust
assessments towards other users.

The structure of this article is the following: section 2 focuses on some of
Wikipedia intrinsic mechanisms and particularly on patrollers who watch modi-
fications. Section 3 is about trust in multiagent systems and describes the trust
model used in our application. We apply this model to Wikipedia in section 4.
Finally, we focus on the use of the trust model to maintain the integrity of the
encyclopedia, by means of patrollers assistance, in section 5.

2 The Wikipedia Encyclopedia

The online encyclopedia Wikipedia is now famous and commonly used, it is one
of the 10 most visited websites, according to the web traffic measurement website
Alexa2. Wikipedia basic principle is that anyone can modify articles. They are
constantly updated, corrected and completed. By submitting a modification, a
user accepts that everything goes under free licence allowing free use and modi-
fication of the content. Those two principles make Wikipedia a free encyclopedia
that is constantly moving. Wikipedia relies on collective knowledge in order to
make its content evolve.

2.1 Participative But Not Anarchic

Wikipedia allows the user to correct or increase the quality of any article. The
user doing such a modification is called a “contributor”. Every contributor is
identified either by its account, if he created one, or his IP address at the moment
of the publication.

Wikipedia encourages modifications, even minimal ones, because they can
bring attention to an article thus making other users contribute on this article.
This has two main consequences: firstly, it allows anyone to improve or damage
articles3. Secondly, it also allows anyone to correct other’s mistakes and damages.
Wikipedia relies on that collective behaviour in order to evolve.

Unlike most websites or forums, on Wikipedia all users are equal. There are
some administrators that are elected by users. They have some privileges that
allow them to do some maintenance tasks and block users, but they don’t have
“full power” over users. Thus, if an administrator is in conflict with another user
on the article about darwinism for example, he cannot impose his point of view.

However, contributions must follow some explicit rules. Rules are defined by
users, the same way articles are, and their application is insured by the collec-
tivity. For example, there are rules about the conditions4 that an article should
2 http://www.alexa.com/topsites
3 Nevertheless, some pages are protected, e.g. Barack Obama’s page during the pres-

idential campaign. Protected pages can only be modified by users that have been
registered for days or months.

4 http://en.wikipedia.org/wiki/WP:NN

http://www.alexa.com/topsites
http://en.wikipedia.org/wiki/WP:NN

150 Y. Krupa et al.

meet to be on Wikipedia. The online encyclopedia is thus a website that is not
anarchic, but self-governed by processes defined by the users themselves [2].

There is, for example, a process which aims to assign categories to every
article. This provides a structure to the encyclopedia by placing articles inside
one or multiple categories. The Tennis article is inside “racquet sport” category
which is itself contained in a category named “sport”.

Also, multiple roles emerge on Wikipedia, some users, like the Wikignomes
who browse articles in order to add references, categories, and correct dead
links, ... “Cabalists” from the Mediation Cabal try to find a compromise between
users with conflicting point of view. In this article we will focus on the “Recent
Changes Patroller” role, which consists in a surveillance of the recent changes
on the encyclopedia to prevent damages.

2.2 The RC Patrol

The sizeable activity of users on Wikipedia play a preponderant role in its evo-
lution. In 2009, there are about 20 modifications per minute on Wikipedia (in
French)5. Among these modifications, there are many quality contributions, but
also many damaging ones. Some people use the articles as a means of chatting
by successive modifications of them. Some others just want to verify if it is really
possible to modify the article by adding test messages. Finally, there are some
users that just want to damage the encyclopedia, by adding insults, libelous con-
tent, or by changing the meaning of an article. Those users making voluntary
damages are called “Vandals”.

The RC Patrol is a group of users, with no specific power and self-proclaimed,
aiming at protecting the encyclopedia from being damaged. Patrollers follow the
evolution of the “recent changes” page. Their objective is to cancel as quick as
possible any modification that damages article integrity. Such a cancellation is
called a “revert”. Reverts sometimes come with a small comment, if the patroller
decides to provide one.

Taking into account the number of modifications per minute, it is impossible
for the patrollers to verify in details every modification. When a vandal adds
insults inside an article, there is no doubt about the goal of that modification.
However, when a contributor modifies a scientific article, the verification could
both take a long time and require some expertise.

Thus, the RC Patrol tries to reduce the number of modifications to check, by
warning vandals and reverting their modification in order to discourage them
from damaging the encyclopedia. A vandal that decides to keep on damaging
the articles after having being warned will be blocked by an administrator upon
the request of a patroller.

Besides vandalism, some users can add other mistakes, by lack of expertise
for example. Even patrollers can make mistakes or may not agree. As a revert is
also a modification, users can therefore cancel the erroneous revert.

Wikipedia is an environment in which users can act freely. This environment is
open, meaning that anyone can participate. User’s autonomy, system openness
5 http://toolserver.org/~gribeco/stats.php

http://toolserver.org/~gribeco/stats.php

Trust Based Evaluation of Wikipedia’s Contributors 151

and decentralised control of Wikipedia allows to consider it as a multiagent
system and to apply existing approaches for related problems in this domain,
like trust towards other agents of the system.

3 The ForTrust Trust Model

In this paper, we aim at using a trust model in order to assist the RC patrollers.
As Wikipedia is open and decentralized, multiagent systems are suitable for that
application. In this part, we present trust in multiagent systems and the ForTrust
model, a multiagent trust model based on Castelfranchi & Falcone Social Trust
Theory.

3.1 Trust in Multiagent Systems

The open and decentralised context of multiagent systems is interesting in terms
of flexibility, adaptability and scalability but it also brings some risks and vul-
nerability. Agents, potentially developed by different people and acting in an
autonomous way, can freely enter or leave the system, contribute to collective
activities or transmit data to other agents. Thus, they can have a selfish be-
haviour, meaning that they will favour their own goals without taking into ac-
count other’s goals or system integrity. This kind of agent can harm the system
if it doesn’t know how to react against such an agent.

The problem raised by the possible presence of selfish agents leads to a trust
management problem towards other agents. Grandison [3] defines trust manage-
ment as “the activity of collecting, codifying, analysing and presenting evidence
relating to competence, honesty, security or dependability with the purpose of
making assessments and decisions regarding trust relationships for Internet ap-
plications”. Such a decision must be used in addition to classical security tech-
niques which insure authentication, confidentiality of information, . . . but that
cannot garantee the behavior of transaction partners.

In multiagent systems, and generally speaking in many of the open web ap-
plications, trust management is often handled by reputation mechanisms. Some
of those mechanisms work in a centralised way, for example, by using recom-
mandations and opinions of the website users (cf. eBay6, Amazon7, . . .). These
opinions can be presented as they are or interpreted by an aggregation function
(e.g. Sporas [4]). Other mechanisms, inspired by the multiagent field, work in
a decentralised manner (e.g. Repage [5]) by allowing each agent to evaluate lo-
cally its neighbour’s reputation such that the agent decides whether to trust or
not.

Nevertheless, reputation is a single element among others that can be used to
make trust assessments. In this article, we focus more specifically on the trust
decision.

6 http://www.ebay.com/
7 http://www.amazon.com/

http://www.ebay.com/
http://www.amazon.com/

152 Y. Krupa et al.

3.2 Social Trust Theory

According to Castelfranchi & Falcone [1] (C & F), social trust relies on four
elements: a truster i, a trustee j, an action α and i’s goal ϕ. C & F propose a
definition of trust based on four primitive concepts: capacity, intention, power
and goal. They state that: “an agent i trusts an agent j for doing the action α
in order to achieve ϕ” iff:

1. i has the goal ϕ;
2. i believes that j is capable of doing α;
3. i believes that j has the power to achieve ϕ by doing α;
4. i believes that j intends to do α.

3.3 Trust Formalisation

A formal model of trust, relative to the social trust theory by C & F has been
proposed in a precedent work [6]. This model is briefly described here, details
about the formalisation realised in multimodal logic (called L) which combines
dynamic logic and BDI, can be found in the article [6].

That formalisation points out the difference between occurent trust and dis-
positional trust. Occurent trust represents a trust decision “here and now”. In
this case, the truster i has goal ϕ and trusts j to do action α now to achieve
goal ϕ. In this article, we will only use the occurent trust, defined this way:

Trust(i, j, α, ϕ) def=
Goal (i, ϕ) ∧
Bel (i,Act(j, α)) ∧
Bel (i,Power (j, α, ϕ))

(1)

That formalisation uses the four primitive concepts by C & F, the predicate
Act(j, α) meaning that j does α. It covers both capacity and intention: Act(j, α)
is the case when j has the capacity and the intention of doing α. Predicate Power
means that j has the power of achieving ϕ by doing action α.

3.4 Trust in Inaction

Trust, as considered here, allows to represent how an agent can make a trust
assessment towards another agent trusting that he will act in a certain manner
to achieve a given goal. Nevertheless, Lorini and Demolombe [7] says we also
have to consider trust in inaction, relating to the trust assessment made when
an agent i trusts an other agent j so that j does not execute action α that can
prevent i from achieving ϕ. Trust in inaction is defined as follows:

Trust(i, j,∼ α, ϕ) def=
Goal(i, ϕ) ∧
Bel(i,¬Act(j, α)) ∧
Bel(i,Power (j, α,¬ϕ))

(2)

Trust Based Evaluation of Wikipedia’s Contributors 153

Meaning that i trusts j not to do α when i has goal ϕ iff: i has goal ϕ, i believes
that j has the power to prevent i from achieving ϕ by doing α, and i believes
that j will not do α (he has no capacity or no intention).

4 Trust Decision on Wikipedia

This section defines an application of the the ForTrust model, presented in sec-
tion 3, to Wikipedia. Section 4.1 identifies actors, actions and goals and the
situations where a trust decision happens. The way those contributions are in-
ferred is presented in sections 4.2 and 4.3, respectively for the case of contribu-
tion needing correction and vandalism to revert. Finally, section 4.4 presents an
implementation of an assistant agent using this trust model.

4.1 Application of the ForTrust Model to Wikipedia

The ForTrust model is used on Wikipedia in order to decide whether to trust
or not a contributor. Trustees (j agent in the previous section) are Wikipedia
contributors. Two actions are taken into account: page modification and vandal-
ism. Even though a vandalism is a modification, we decide to take into account
these actions separately in order to simplify the formalisation. The goal that
we consider here is the role of the RC patrol: maintaining pages integrity. The
achievement status of this goal is estimated by the patrollers themselves who
decide if a page content integrity is maintained or not.

These two actions lead to two situations where one must decide whether to
trust or not a contributor. In the first case, “patroller i trusts j to modify page
p while maintaining its integrity” can be formalised this way:

Trust(i, j,modify(p), integrity(p)) ←
Goal(i, integrity(p)) ∧
Bel(i, Act(j,modify(p))) ∧
Bel(i, Power(j,modify(p), integrity(p)))

(3)

An implication is used here instead of an equality (as used in the previous
section), in order to get closer to the inference mechanisms implemented in logic
programming (cf. section 4.4).

The second case, “patroller i trusts contributor j not to vandalize page p so
that the page integrity is maintained” can be defined this way:

Trust(i, j,∼ vandalize(p), integrity(p)) ←
Goal(i, integrity(p)) ∧
Bel(i,¬Act(j, vandalize(p))) ∧
Bel(i,Power(j, vandalize(p),¬integrity(p)))

(4)

We assume that if Trust cannot be inferred, it implies ¬Trust.
Actions and goals are now clearly identified, the next step is to develop mech-

anisms that allow the agent i to infer those trust assessments from past be-
haviours of agent j. More precisely, those mechanisms must allow i to evaluate
if the predicates Power (j, α, ϕ) and Act(j, α) are true, so that i can deduce j’s
reliability.

154 Y. Krupa et al.

4.2 Trust in Action: Modification

In this case, we will focus on the contributor’s power when he publishes a modi-
fication. Intentional vandalism is not considered in this part. The trust model is
used in order to evaluate if a contributor reaches the wanted goal (integrity(p))
when he publishes some contribution (action modify(p)). Contributor’s capacity
and intention (Act(j,modify(p))) are always true and the decision to trust relies
on the agent belief on Power (j,modify(p), integrity(p)). This belief is inferred
the following way:

Bel(i,Power (j,modify(p), integrity(p))
← category(p, c) ∧

imagem(j, c) > δ ∧ #Oj,c > 0
(5)

where the predicate category(p, c) links page p to its category c and imagem(j, c)
is a function that maps to each pair (agent,category) the “quality” of j contri-
butions in that category (imagem : AGT × CAT → [0, 1] where AGT is the
set of all agents and CAT the set of all categories) and #Oj,c is the number of
changes done by agent j in the category c. The δ threshold is used to define the
minimal value of the required image in order to consider that an agent produces
contributions of reasonnable quality in a given category. The image function is
defined this way:

imagem(j, c) =
min(x̄j,c, η)

η
(6)

x̄j,c =

∑
〈ts,te〉∈Oj,c

te − ts

#Oj,c

where Oj,c is the set of all changes done by agent j in pages of category c. Each
member of this set is a tuple 〈ts, te〉 where ts is the time of the modification, and
te is the time when this page is modified again by another contributor. Thus, the
difference between te and ts represents the duration while agent j modification
was not changed. Mean persistance of modifications of j in category c is given
by x̄j,c. η is an upper bound for x̄ such that if η is equal to one month, agents
with x̄ = 1 month or x̄ = 10 months will get the same image. Thus, the general
image of Wikipedia contributors relies on the persistence of their modifications.

In some particular cases, this metric can be noisy and therefore, a good con-
tributor can receive negative feedback. This will happen, for example, when the
contributor modifies a specific part of an article and another part of the same
article is modified the following minute by another contributor. The first contrib-
utor will be regarded as a contributor with a low persistence of his modifications.
But the only information source that is available is the Wikipedia website, thus
it is impossible to use other metrics like the number of views per version of an
article to reduce this noise. We also do not want to go into complex or unfeasable
computations like the semantical analysis of the modifications.

Trust Based Evaluation of Wikipedia’s Contributors 155

1 // inference ru l e s for Trust decis ion , Goal=i n t e g r i t y (p)
2 t ru s t (J , modify (p) , Goal) [s t r ength (C)] :−
3 . intend (Goal) & // the agent has the goa l
4 act (J , modify (p)) [s t r ength (X)] & // J has i s capable and intends
5 power (J , modify (p) , Goal) [s t r ength (Y)] & // J has the power
6 C = math . min (X,Y) . // computes t r u s t s t reng th
7 // t ru s t s t reng th i s represented by annotations in hooks
8
9 t ru s t (J , ˜ vanda l i z e (P) , Goal) [s t r ength (C)] :−

10 . intend (Goal) & // the agent has the goa l
11 act (J , ˜ vanda l i z e (P)) [s t r ength (X)] &

// J i s capable and intends to not vanda l i ze
12 power (J , vanda l i z e (P) ,˜ Goal) [s t r ength (Y)] & // J has the power
13 C = math . min (X,Y) .

// computes t r u s t s t reng th
14
15 // P in t e g r i t y i s a goa l to maintain
16 { begin mg(i n t e g r i t y (P)) }
17 { end }
18
19 // ru l e s for act ion (capaci ty and in ten t ion)
20 act (J , modify (p)) [s t r ength (1)] .
21 act (J , ˜ vanda l i z e (P)) [s t r ength (X)] :−
22 (1− imagev (J)) > 0 . 8 .
23
24 // ru l e s for power
25 power (J , modify (p) ,) [s t r ength (Y)] :−
26 category (P,C) & imagem(J , C) > 0 . 5 .
27 // the image funct ion i s implemented so tha t the 3rd term i s
28 // the value for agent J in category C
29 power (J , vanda l i z e (P) ,) [s t r ength (1)] .
30
31 // computing images :
32 imagev (J , 0) :− 0 = . count (modify (, J ,)) .
33 imagev (J ,X) :− X = . count (vanda l i z e (, J , ,)) / . count (modify (, J ,)) .

Fig. 1. Extract of Jason implementation

4.3 Trust in Inaction: Vandalism

This time, we need to use trust in inaction. Patrollers’ goal stays the same
(integrity(p)). Nevertheless, trust assessment does not rely on the power of
a contributor to prevent the truster from achieving this goal by doing action
vandalize(p) (we suppose that every contributor has that power), but on his
intention to do it (predicate Act(j, vandalize(p))). Belief inference on Act is
done as follows:

Bel(i,¬Act(j, vandalize(p))
← (1 − imagev(j)) > ε ∧ nc(j) > 0 (7)

imagev(j) =
pvt(j)
nc(j)

(8)

where pvt : AGT → N is a function that maps each agent j to the number of
modification that has been labelled as vandalism and nc : AGT → N maps to
the total number of modifications done by agent j. imagev(j) = 0 means that no
change has ever been considered as vandalism. The threshold ε is used to define
the minimal image required so that Act becomes true. Agents’ image regarding
vandalism acts does not refer to a specific category because it does not rely on
a specific expertise in a category of articles.

156 Y. Krupa et al.

4.4 From the Abstract Model to an Implementation

An implementation of an agent using the ForTrust model has been realized with
a BDI architecture using the Jason language [8]. Jason fits well an implemen-
tation of a formal definition of trust, as defined in section 3: it is based on logic
programming and BDI architecture at the same time.

Fig. 2 illustrates the main components of the agent architecture. Data struc-
tures encapsulates goals, beliefs, intentions and plan library. The perceive process
updates the belief base from the environnement and the act process selects the
next action to be done from the set of current intentions. Finally, the inference
process must decide whether to trust or not an agent.

Specialisation of this agent to the Wikipedia specific context is easy while
using Jason. Decisions to trust have to be customized and some inference rules
must be added for that decisions. It is also needed to implement the percep-
tion component which analyses the “recent changes” page on Wikipedia and
translates it into perceived facts.

The perception given by the architecture is then converted into first order
predicates and included in the belief base whith a specific annotation indicating
that they correspond to the agent perception. Older perceptions are removed
consequently. Among those beliefs, the following are extracted from Wikipedia:

– modify(p, j , t): agent j modified p at time t.
– vandalize(p, j, g, t): change on page p by j at time t was labelled as vandalism

by g.
– category(p, c): page p belongs to category c.

An intitial implementation of this agent in Jason is presented in Fig. 1. Lines
from 1 to 13 implement the trust inference mechanisms. Lines from 20 to 29
implement the inference of predicates Act and Power as defined in (7) and
(5). Lines 32 to 33 implement the imagev(j) function computation (8). The
imagem(j, c) (6) is computed in a similar manner but is not reproduced in this
source code extract for simplicity reasons.

Belief
Base

Plan
Library

Intentions

perceive trust inference
and decision

act

Goal
Base

Legend

data
structure

process

control flow

data flow

Wikipedia Web Site

Fig. 2. General architecture for trust

Trust Based Evaluation of Wikipedia’s Contributors 157

5 Trust-Based Assistance to Wikipedia Patrollers

The encyclopedia quality relies directly on each user’s contribution and correc-
tion to existing articles. Most important damages come from vandalism acts
that consist in erasing valid content or introducing voluntarily false data inside
articles or text without relation to the article topic. The case of imperfect con-
tributions (incomplete content, wrong spelling, . . .) also has an impact on the
global quality. We propose to use trust in order to spot contributors that need
to be frequently corrected. Trust assessment towards contributors will allow to
spot untrustworthy users and target verifications towards them.

A complete automation of the decision to revert a contribution, to correct
it or to block a user will be really difficult to realize. The verification task is
currently handled by human patrollers because it requires a semantic interpre-
tation of articles content, which is currently impossible to realise with a software.
There are some robots which do very simple verifications, by seeking terms or
characteristic regular expressions, in order to prevent the insertion of insults in
articles. But they are not reliable and show a large number of false positives.
Therefore, the patroller has to judge whether a contribution is a vandalism act
when he thinks that the damage was intentional. This decision is subjective, and
the patroller can make mistakes. For example, what if a contributor indicates a
wrong date for a historical event, is it an error or voluntary damaging?

Over the 30000 daily modifications on wikipedia (French), the patrollers’ task
is a hard one. Fig. 3 shows the number of overall daily deletions and reverts8.
Reverts represents only 3 to 6% of overall contributions. But it is necessary
to control every contribution in order to identify the ones that are vandalism
acts. Fig. 4 estimates the revert delay of a vandalism by indicating the proba-
bility that it can be reverted in a certain amount of time8. If approximatively
50% contributions are reverted in less than 2 minutes, a non negligible quantity
(approximatively 25%) stays online longer than 1 hour and about 10% remains
longer than one day. Most likely, the cause of this delay is the huge number of
contributions to check.

We propose to use the ForTrust model, as described in section 4, in order to
assist patrollers in their verification tasks. Our goal is to reduce their task charge
by supplying them with an assistant agent which has the ability to make trust
assessment in order to help the patroller targetting his verifications.

The assistant agent can therefore use its own trust model in order to classify
contributions in four distinct categories:

– VAN: contributions that probably are vandalism;
– COR: contributions that may need to be corrected;
– INT: contributions with less chance of being reverted or corrected;
– UKN: the agent is not sure about these contributions.

8 Data and graphics from http://toolserver.org/~gribeco/stats-vandalism.php,
based on http://fr.wikipedia.org/ project.

http://toolserver.org/~gribeco/stats-vandalism.php
http://fr.wikipedia.org/

158 Y. Krupa et al.

Fig. 3. Deletion and reverts on Wikipedia (retrieved on april 22nd, 2009)

Table 1. Relation between beliefs and decisions (i is the patroller, j is the contributor
and p the modified page)

Decision Assistant Agent’s beliefs

VAN ¬Trust(i, j,∼ vandalize(p), integrity(p)) ∧ nc(j) > 0
COR Trust(i, j,∼ vandalize(p), integrity(p)) ∧

¬Trust(i, j,modify(p), integrity(p))
INT Trust(i, j,∼ vandalize(p), integrity(p))∧

Trust(i, j,modify(p), integrity(p))
UKN nc(j) = 0

The classification of a contribution in one or another category depends on the
trust assessment that the agents makes towards the contributor. Table 1 sum-
marizes the relationship between decision and agent beliefs.

This table illustrates the advantages of a cognitive model for an assistant agent
for the patrollers. The use of C & F socio-cognitive theory allows to describe to a
human user the reasons that brings the agent to a trust or distrust decision. Here,
we aim to distinguish between distrust regarding an intentional vandalism and
distrust regarding a low skill contribution. The assistant agent does not replace
the patroller but gives advice by telling him that some contributions do not
need to be checked (those in category INT). It could also completely mask the

Trust Based Evaluation of Wikipedia’s Contributors 159

Fig. 4. Probable delay before revert

INT contributions in order to reduce significantly the amount of contributions
to verify.

It is interesting to note that the trust model of an assistant agent is constantly
evolving and can review its trust assessment. For example, if a contributor stops
being a vandal and decides to contribute correctly, the trust model will change its
trust value accordingly after a certain time. On the other hand, trusted contribu-
tors may not be verified directly by patrollers and a trusted contributor that has
turned vandal may not be spotted immediately. Eventually, every contribution
is checked, as the “classical” means of article surveillance still are available:

– The Watchlist is a list managed by the user that displays all changes that
have been done on the articles selected by the user.

– The Projects: Some users participate in projects and regularly checks articles
contained in the project to ensure their correctness.

– Article Browsing: Mistakes and vandalisms can be detected by users that
are simply gathering information on Wikipedia.

Once the vandal has been spotted, the assistant agent will adjust its trust value
and the contributor could be marked as untrusted.

160 Y. Krupa et al.

6 Conclusion

In this article, we presented an application allowing Wikipedia patrollers to
automatically filter recent changes in order to verify only those performed by
untrustworthy contributors. This is obtained by providing to the patrollers an
assistant agent that can make trust assessments based on the contributor’s sup-
posed capacities, intentions and power. The use of a cognitive trust model allows
to reason on the distrust decision to distinguish between those who are vandals
and those who are low skill contributors.

The implementation of a BDI agent is proposed here with the Jason language.
It relies on the website’s changes, freely available, to perceive contributions. The
agent watches patrollers’ actions, namely modification or revert, and learns the
trust assessment that is made towards contributors. This trust model is then
used to reduce the amount of modifications to verify based on trust assessment
toward their contributors.

A simulation of these assistant agents is currently being implemented in order
to validate experimentally the pertinence of the decision taken by the agents:
By using the contribution’s history (including reverts) available on Wikipedia,
we will then simulate a learning and an assistance to patrollers. The distance
between assistant assessment and real decisions (from the patrollers) will then be
correlated in order to evaluate a distance between both. Model parameters, like
decision thresholds, can be decided experimentally by doing multiple simulations
in order to reduce this distance.

A large number of wikis work the same way, thus, even if the application
described here relies on Wikipedia, it is possible to transpose it on other wikis,
e.g. those of the Wikimedia foundation (Wiktionary, Wikiversity, ...).

Acknowledgements

The work presented in this article is supported by the ANR in the ForTrust
ANR-06-SETI-0069 project.

References

1. Castelfranchi, C., Falcone, R.: Social trust: A cognitive approach. In: Castelfranchi,
C., Tan, Y.H. (eds.) Trust and Deception in Virtual Societies, pp. 55–90. Kluwer,
Dordrecht (2001)

2. Viégas, F., Wattenberg, M., McKeon, M.: The hidden order of Wikipedia. In:
Schuler, D. (ed.) HCII 2007 and OCSC 2007. LNCS, vol. 4564, pp. 445–454. Springer,
Heidelberg (2007)

3. Grandison, T., Sloman, M.: Trust management tools for internet applications. In:
Nixon, P., Terzis, S. (eds.) iTrust 2003. LNCS, vol. 2692, pp. 91–107. Springer,
Heidelberg (2003)

9 http://www.irit.fr/ForTrust/

http://www.irit.fr/ForTrust/

Trust Based Evaluation of Wikipedia’s Contributors 161

4. Zacharia, G., Moukas, A., Maes, P.: Collaborative reputation mechanisms in elec-
tronic marketplaces. In: Proceedings of the Hawaii International Conference on Sys-
tem Sciences (HICSS-32), Maui, Hawaii, United States of America, vol. 08, p. 8026.
IEEE Computer Society, Washington (1999)

5. Sabater-Mir, J., Paolucci, M., Conte, R.: Repage: Reputation and image among lim-
ited autonomous partners. Journal of Artificial Societies and Social Simulation 9(2),
3 (2006)

6. Lorini, E., Herzig, A., Hübner, J.F., Vercouter, L.: A logic of trust and reputation.
Logic Journal of the IGPL (2009)

7. Lorini, E., Demolombe, R.: Trust and norms in the context of computer security: A
logical formalization. In: van der Meyden, R., van der Torre, L. (eds.) DEON 2008.
LNCS (LNAI), vol. 5076, pp. 50–64. Springer, Heidelberg (2008)

8. Bordini, R.H., Hübner, J.F., Wooldrige, M.: Programming Multi-Agent Systems in
AgentSpeak using Jason. Wiley Series in Agent Technology. John Wiley & Sons,
Chichester (2007)

Evolutionary Role Model for Multi-Agent
Systems

Erdem Eser Ekinci and Oğuz Dikenelli

Ege University, Department of Computer Engineering,
35100 Bornova, Izmir, Turkey
erdemeserekinci@gmail.com
oguz.dikenelli@ege.edu.tr

Abstract. In sociology, the role concept is deeply researched to predict
activities of human organizations and theorized with many sub-theories.
In the same direction, multi-agent system researchers use the role concept
to model and program the agents behaviours, cooperations. But there is
an important point missed out by the MAS researchers: evolution of the
organization. In this paper, by inspiring from the efforts in sociology, we
propose an evolutionary role model for coping with the evolution of the
role-based multi-agent systems.

1 Introduction

The role concept are widely researched from the view points of individual
behaviours and cooperation of the agents to incorporate the concept into pro-
grammable artifacts of multi-agent systems (MAS). But, when open, distributed-
concurrent and unstoppable properties of the MAS[1] are considered, proposed
models and released frameworks remain weak to answer question of how an
agent system spreading over a wide geography can be deployed, managed and
maintained. In this paper we propose an abstract role-based model to handle
MAS with an evolutionary approach and paves the way of coping with these
deployment, management and maintenance problems. Our model looks multi-
agent organization through individual evolution and organizational evolution
perspectives and determines the relations between these perspectives.

2 Evolutionary Role Model

The roots of the word of “role”, although, reaches the born of the theater in
antique ages. Today sociologists have converted the role concept to a deep theory
to predict activities of individuals by analyzing body of knowledge about human
organizations[2]. As a consequence of these researches, the role concept is defined
as scripts for social conduct and depths of the concept are theorized with many
sub-theories which are Role Playing, The Self, Role Taking, Identity, Role Exit,
Role Transition, Role Alternation, Role Conflict, Role Change, Role Making,
Consensus and Conformity[2,3,4,5,6,7,8].

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 162–164, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Evolutionary Role Model for Multi-Agent Systems 163

By drawing inspiration from sociology, we propose an evolutionary role model
illustrated in Figure 1. The model is divided into two different perspectives:
individual evolution and organizational evolution. In the following list, states
and operations of these separated perspectives are detailed.

– Self: The Self depicts all belongings of the agent and covers all properties
of the agent such as beliefs, capabilities, norms, rules, goals and identities of
all taken roles.

– Role Making: The role making is the operation of gathering the explicit
knowledge of a role situated in an organization by the agent. After role
making, the agent learns what the role’s goals, rules, beliefs are.

– Role Taking: The role taking is the act of participating to a specific orga-
nization by committing the role beliefs, goals and rules.

– Identity: By role taking, the agent gains a new unique identity in an orga-
nization. This identity is published to whole organization and has important
responsibility in communication.

– Role Playing: Emanating behaviours according to a role in the scope of
organization with the identity of a role instance.

– Role Alternation: An agent can take more than one role and gain many
role instances at the same time. The alternation is the capability of switching
between these role instances.

– Role Exit: When an agent reaches its goals in the scope of a role, then it
leaves the organization by exiting the role.

– Role Transition: The role transition is a compound operation that occurs
by exiting a role and taking another one in sequential fashion. The transitions
are previously defined in the organization.

– Self-Conflict: The Self-Conflict is the state of failing to play multiple roles
at the same time due to conflicts. The conflict can occur between beliefs,
rules, goals of different role instances, or a role instance and the self.

– Role Change: Role change can be defined in short as differentiation in the
semantics of a role due to the changing requirements and detected conflicts.

– Consensus: In the consensus form, each agent, which is member of the
organization, is agreed on the goals, norms, beliefs of the organization.

– Organization-Conflict: Conflicted organization means participant agents
are dissipated and unable to cooperate with each other due to misunder-
standing the semantics of role types.

As depicted in the figure of the model, whole organization is in vicious cycle
between organizational conflict and consensus forms. Agents begin their lifes by
taking roles whose conceptualizations are agreed on by the whole organization.
But during their individual evolution they get in conflicts. Many of these conflicts
can be resolved by exiting a role. But some of them requires some changes in
conceptualization of conflicting role(s). After changing roles with an engineering
touch, even if agent’s internal coherence is obtained, the cooperation is broken
down and organization is dissipated until others’ recognitions are conformed to
the new conceptualization of the changed role.

164 E.E. Ekinci and O. Dikenelli

Fig. 1. Evolutionary Role Model

3 Conclusion

In this paper, we propose an evolutionary role model for multi-agent systems,
which covers individual and organizational evolution, by drawing inspiration
from the role theory propounded in sociology. Similar models are also articulated
previously[9,10]. But, differently from these models, we define the organizational
evolution and relate to the individual evolution of agents.

References

1. Jennings, N.R., Zambonelli, F., Wooldridge, M.: Developing multiagent systems:
The gaia methodology. ACM Trans. Softw. Eng. Methodol. 12(3), 317–370 (2003)

2. Biddle, B.J.: Recent developments in role theory. Annual Review of Sociology 12,
67–92 (1986)

3. Coutu, W.: Role-playing vs. role-taking: An appeal for clarification. American So-
ciological Review 16, 180–187 (1951)

4. Stryker, S.: Identity salience and role performance: The relevance of symbolic inter-
action theory for family research. Journal of Marriage and the Family 30, 558–564
(1968)

5. Ebaugh, H.R.F.: Becoming an ex: the process of role exit. University of Chicago
Press, Chicago (1988)

6. Turner, R.: Role change. Annual Review of Sociology 16, 87–110 (1990)
7. Aldous, J.: The making of family roles and family change. Journal of The Family

Coordinator 23, 231–235 (1974)
8. Marks, S.R., MacDermid, S.M.: Multiple roles and the self: A theory of role balance.

Journal of Marriage and the Family 58, 417–432 (1996)
9. Odell, J., Van Dyke Parunak, H., Brueckner, S., Sauter, J.A.: Temporal aspects

of dynamic role assignment. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.) AOSE
2003. LNCS, vol. 2935, pp. 201–213. Springer, Heidelberg (2004)

10. Dastani, M., Birna Van Riemsdijk, M., Hulstijn, J.: Enacting and deacting roles in
agent programming. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004.
LNCS, vol. 3382, pp. 189–204. Springer, Heidelberg (2005)

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 165–180, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Replication Based on Role Concept for Multi-Agent
Systems

Sebnem Bora and Oguz Dikenelli

Computer Engineering Department
Ege University, Izmir, Turkey

{sebnem.bora,oguz.dikenelli}@ege.edu.tr

Abstract. Replication is widely used to improve fault tolerance in distributed
and multi-agent systems. In this paper, we present a different point of view on
replication in multi-agent systems. The approach we propose is based on role
concept. We define a specific “fault tolerant role” which encapsulates all behav-
iors related to replication-based fault tolerance in this work. Our strategy is
mainly focused on replicating instances of critical roles in the agent organiza-
tion. However, while doing this, we simply transfer the critical role and the
fault tolerant role to appropriate agents. Here, the fault tolerant role is responsi-
ble for coordination between replicated role instances (replicas). Moreover, our
approach is flexible in terms of fault tolerance since it is possible to easily mod-
ify existing behaviors of the “fault tolerant” role, remove some of its behaviors,
or include new behaviors to it due to its characteristic architecture.

1 Introduction

Multi-agent systems have recently been widely employed in solving problems faced
in distributed and dynamic environments. As distributed systems, multi-agent systems
(MAS) are vulnerable to failures resulting from the system crash or shortages of sys-
tem resources, slow-downs or breakdowns of communication links, and errors in
programming. Consequently, a fault may spread throughout a multi-agent system, and
cause a degradation of the system performance and even the multi-agent system to
fail. Therefore, it seems that fault tolerance is a necessary paradigm that must be
inserted to the multi-agent development environment.

In most cases, replication-based techniques are employed in multi-agent systems to
achieve fault tolerance such as explained in [6, 7, 8, 9, 10, 11, 12, 19, 20]. In these
approaches, they replicate the agent itself by applying standard techniques used in
distributed systems, although agents are more sophisticated and interactive entities.

In multi-agent organizations [18, 17], agents enact their roles and naturally, they
act and communicate under their roles. Thus this affects their criticalities in the multi-
agent organization. For instance, a manager role can be considered more critical role
than a janitor role in a factory since the manager role has critical responsibilities in
terms of the organization such as supervising and taking charge of the activities and
productivity of their workers, making organizational decisions and handling a variety
of problems that arise on a daily basis. There are some other responsibilities of man-
agers such as goal setting, planning, and organizing; evaluating and analyzing; and

166 S. Bora and O. Dikenelli

providing satisfaction among the staff and the customers. If an agent enacts critical
roles for the organization, it then possesses all of its roles’ goals and features includ-
ing its roles’ criticalities. The failure of this agent affects the organization that it be-
longs to. To apply fault tolerance in an organization, replication is the technique we
need to apply. However, we should not replicate the agent itself.

To make easy to understand why agent replication is not appropriate for fault toler-
ance, let us give an example. We assume that there is an agent that enacts a critical
role r1 and we replicate this agent due to enacting r1. Let’s say there are two repli-
cated agents with role r1 in the organization. Then, the original agent with role r1
wants to enact role r2. We have to answer questions such as “Should the second repli-
cated agent take up the role r2?”, “How many agents do we replicate for role r2?” etc.
We can increase the number of questions while expanding this scenario. Thus, we
understand that agent replication is a naïve way to improve fault tolerance in MAS
organization and we have to find out a new way of replication in MAS.

In this paper, we present a new approach for replication in MAS. Our method is
based on role concept. Therefore, we define a specific “fault tolerant role” which
encapsulates all behaviors related to replication-based fault tolerance. The fault toler-
ant role is assigned to the agents that enact critical roles which are identified at the
design time. One of the responsibilities of the fault tolerant role is to create new in-
stances of critical roles. Therefore, the critical and “fault tolerant” roles are trans-
ferred to appropriate agents that will enact these roles. Since the “fault tolerant” role
is also responsible for ensuring coordination among replicated instances of critical
roles it should be enacted by the agents that enact the critical roles.

The remainder of this paper is structured as follows: Section 2 presents the context
of the work; Section 3 presents the “fault tolerant” role and how to implement role-
based replication in multi-agent organizations; Section 4 describes how to determine
criticalities of roles; Section 5 gives a case study; Section 6 is a review of related work
on fault tolerance in multi-agent systems and finally Section 7 gives the conclusion.

2 Context of This Work

In this section, we describe the proposed architecture for role-based replication. We
use the model shown in Figure 1 to describe role-based replication.

In this model, a role is one of the basic components of a multi-agent organization
and it is seen as performing a goal within the organization to serve some purpose. A
role has its goals, plans (a partially-ordered sequence of primitive tasks), and onto-
logical knowledge. The concept of a goal allows specifying objectives as the desired
final state to be reached. Agents are active entities that enact role(s) and achieve goals
of their own roles by executing its roles’ plans. A role enacting agent uses its role’s
knowledge via its role’s plans to achieve its role’s goal. For instance, as explained in
[17], in order to effectively play the role of cook in a restaurant, a person has to fol-
low work instructions, use the tools required for the role to transform the ingredients
as required, and communicate with other role players. In this model, we assume that
agents have their own goals, knowledge, and capabilities to enact some specific roles
[26].

 Replication Based on Role Concept for Multi-Agent Systems 167

Fig. 1. The Model We Use to Describe the Proposed Architecture

If one aims to improve fault tolerance for this model, he has to identify new goals
coming from fault tolerance requirements, plans to achieve these goals, and reusable
services that can be used by these plans. However, we first need to present some basic
concepts. A system is said to fail when it cannot meet its specification. Therefore, a
deviation from the specification is considered a failure. A fault is defined as a defect
that may lead to a failure. Whenever a failure occurs, a fault-tolerant system should
continue to operate in a degraded fashion while repairs are being made, i.e. system
should tolerate faults and continue to operate in the presence of faults. Our goal in
multi-agent systems design is to construct a multi-agent organization in such a way
that it can automatically recover from partial failures without seriously affecting the
overall performance.

If we aim to construct a fault tolerant system, we have to answer what sort of par-
tial failures can degrade the system’s performance. Since the role concept is very
important aspect of an organization in this model, the roles enacted by the agents of
the organization must be avoided to be failed. We list below under what circum-
stances the role is failed:

1. The agent that enacts this role is crashed.
2. Some parts of communication links are crashed. Since the agent cannot

communicate with agents then it will not achieve its role’s goal in a timely
manner.

3. Some resources can not be accessed. Since a role has rights to access re-
sources which belong to environment.

4. There are some conflicts in the knowledge bases of the different roles of
the agent. Since the agent can enact more than one role, the knowledge
bases of the roles enacted by the agent can have some rules that can seri-
ously contradict each other.

5. The agent does not have all the plans of the role it enacts.

All these situations contribute to a failure state. The failure model defines the ways in
which failure may occur to provide an understanding of the effects of failures. In this
work, we focus on the fail-silent model where the considered system allows only

168 S. Bora and O. Dikenelli

crash failures [27]. Therefore, we’ll not focus on handling with items 3, 4 and 5 in this
paper.

Since replication is a key technique to achieve fault tolerance in distributed and
dynamic environments, we use this technique to avoid failures resulting from the
failed roles. We should replicate the instances of critical roles to mask the failed roles
from the organization. To achieve this, we should find agents that can take up the
critical role. Then, we should transfer the critical role that encapsulates its goals, plans
and knowledge to the agents.

To apply role-based replication in a multi-agent organization, there must be several
services such as the replication service, the group communication service, the failure
detection, and the membership service. In general, the replication service is responsi-
ble for creating new replicas and destroying some existing replicas and applying ac-
tive and passive replication approaches. Active and passive approaches mainly focus
on coordination between the replicas [13].

In addition to coordination requirements, the replication degree, which means the
number of replicas, is a critical concept for applying fault tolerance policies based on
replication. The problem is how the system will decide on the number of replicas at
runtime. The replication degree can be identified adaptively or statically. In a static
fault tolerance policy, this number is set to the number defined by a programmer at
initialization. In an adaptive fault tolerance policy, the number of replicas of the group
is determined based on resources of the system.

We have some further constraints on replication-based fault tolerance in MAS.
Since the criticalities of roles may change dynamically during the system’s operation
and the available resources are not infinite, the number of replicas of a role instance
must be dynamically updated based on the criticalities of the role as well. In order to
insert fault tolerant structures to a MAS and to cope with all these constraints derived
from replication, we propose a specific role called “fault tolerant role”. Next, we
present role-based replication.

3 Role-Based Replication

When the agent enacts a role, it behaves under this role. An agent can enact different
roles from moment to moment. Each agent can enact several roles at one time beyond
the basic role of AgentId. Every agent enacts AgentId role and each agent has at least
that role at all times [22, 18]. For role changing, several operations such as “classify”,
“declassify”, “reclassify”, “activate”, “suspend” and “shift” are introduced by Odell
et al. [18]. These operations are primitive operations and come with the basic role of
AgentId.

For the role-based replication, there must be several instances of a critical role
(replicas). In the case of failure of one of replicas, there will be another replica to
achieve its critical goal in the organization. In this work, we introduce the “fault toler-
ant” role which has some goals coming from replication-based fault tolerance require-
ments, plans to achieve these goals, and reusable services that can be used by these
plans. This role must be enacted by all agents that enact the critical role or any role that
we want it not to be crashed, since the fault tolerant role is responsible for ensuring
coordination between replicas. This role provides consistency between replicas.

 Replication Based on Role Concept for Multi-Agent Systems 169

To simplify the understanding of the role-based replication process, we rediscuss the
example given in [18] from the fault tolerance perspective. Figure 2 portrays the
“Nancy” agent being classified the secretary of an executive director in the Organiza-
tion B. The organization decides that her role in the company (Organization B) is very
critical. Therefore, she’ll enact the fault tolerant role and have some replicas. When she
cannot work in her company due to some reasons, there will be nothing to worry about
the organization’s operation. In this case, replicas can take over her responsibilities.

Fig. 2. Dynamic Classification in terms of Fault Tolerance (1)

Figure 3 illustrates the “Susan” agent being classified the co-secretary of an execu-
tive director in the Organization B. As defined in [18], the “Classify“ operation
simply adds the transferred role to other roles’ group of the agent. She is the replica
for Nancy’s role and she also enacts the fault tolerant role. Fault tolerant role helps
providing coordination between Nancy and Susan. Thus Susan has the knowledge,
goal, and plan of the role of Nancy as well.

Fig. 3. Dynamic Classification in terms of Fault Tolerance (2)

In addition to operations introduced by Odell et al. [18] to deal with dynamic role
assignment, we introduce some more operations: “Evaluate”, “Find”, “Transfer”.
These operations are needed due to the role-based replication process and we assume
that they also come from the basic role of AgentId.

170 S. Bora and O. Dikenelli

For role-based replication, the first operation is to evaluate criticalities of roles
(RoleCriticality), if the adaptive fault tolerance policy is preferred to apply to the
organization. The criticality of a role is the measure of the potential impact of the
failure of that role on the failure of the organization. For this purpose, each agent that
enacts the “fault tolerant” role executes a periodic plan called “calculation of critical-
ities of roles”. In this plan, the agent periodically invokes the “Evaluate” operation
and calculates the criticality of the role that it enacts. The value of RoleCriticality is
then used to compute the number of replicas for the critical role.

For role-based replication, the next operation is to find suitable agents that can take
the critical role for the replication process, if necessary. This is currently being inves-
tigated [25], and will not be considered in this paper. We suppose that there are lightly
loaded agents that we can transfer the critical role to them. If there is no such an
agent, we have to create new agents that can enact the critical role. After selecting or
creating an agent, we have to transfer the critical role as an entity including its knowl-
edge, its goal and plan libraries (behaviors) to the agent that will enact a given role.
Therefore, “Transfer” operation is invoked. To coordinate the replicas, we also trans-
fer the “fault tolerant“ role to the agents that enact the critical role. The fault tolerant
role associates with only the critical role for the coordination purpose and encapsu-
lates fault tolerance related behaviors and provides interactions between replicas. The
original agent that enacts critical role, takes up the fault tolerant role when we decide
on applying role-based replication. After transferring the critical role and the “fault
tolerant” role to the agents, we have to classify these roles. Thus agent enacts the
critical role and the fault tolerant role (multiple classification) when it is classified.

While the agent enacts a role, this role can be either activated or suspended. To ac-
tivate our new critical and fault tolerant roles, we have to perform the “Activate”
operation.

Fault tolerant role is very important for improving fault tolerance in an organiza-
tion since agents that enact the critical role behave under their fault tolerant roles to
provide coordination between replicas. In an organization, the leader (that originally
enacts the critical role) may quit the organization or it may be removed in the case of
if the agent enacting this role is failed due to some reasons. Then, a replica can take
over. It has all the necessary stuff such as knowledge, plans to achieve its goal. Next,
we‘ll describe the “fault tolerant” role in detail.

3.1 The Fault Tolerant Role

Figure 4 shows a goal model for a simple fault tolerant organization in our approach.
In this model, the organization includes some roles such as the fault tolerant role, a
role which is critical, and some other roles. To perform role-based replication, the
fault tolerant role has the goals such as “multicast to the group”, “detect failures”,
“elect a new leader”, “monitor criticalities of roles”, and “adjust the number of repli-
cas” goals. In order to achieve these identified goals, we implement their plans and
the reusable services that can be used by these plans [11].

One of the reusable services is the membership service. It maintains a list of repli-
cas of a replica group in the knowledge base of each member of the replica group.
The membership service associates with a failure detection service to reach a decision

 Replication Based on Role Concept for Multi-Agent Systems 171

Fig. 4. A Goal Model for a Simple Fault Tolerant Organization

about the group’s membership. The output of the membership service is called a
“view” [13, 14]. The reliable multicast services deliver messages to the current view
members.

Failure detection is one of the crucial aspects of any fault tolerant system to recog-
nize a faulty component of the system. In our approach, “sendAlive” and “re-
ceiveAlive” are two plans that achieve the “detect failures” goal. In the “sendAlive”
plan, each replica in the replica group periodically exchanges heartbeats. A heartbeat
message is an “I am alive” message prepared for informing that the sending replica is
safe.

Once a heartbeat message has been received by all the replicas, then the “re-
ceiveAlive” plan is executed. In this plan, each agent waits for a new heartbeat mes-
sage from the same agent that sent the previous heartbeat message. If a new heartbeat
message is not received during timeout, that replica is added to a suspect list. If all
replicas detect that replica on timeout, they place the replica in question on their sus-
pect lists. In the case of recurrence of the same situation, the replica is deleted from
the membership lists. Timeout values are set before application starts. However,
timeout values are adapted according to observed response times. For instance, if a
replica or the connection is very slow, then the timeout value will be increased to
account for disparity; however, this may not prevent to mark a replica suspect falsely
in all cases.

Coordination between replicas is supported by a group communication service
which provides multi-point-to-multi-point communication. We assume that the MAS
development framework also supports multicasting. This feature is used to implement

172 S. Bora and O. Dikenelli

the group communication service. However, this basic multicasting mechanism only
delivers requests in an arbitrary order. An ordering guarantee in multicasting must be
supported to develop fault tolerant systems because consistency and coordination
between the replicas is constructed by performing incoming requests in order. The
ordering scheme is implemented in the “group communication” plan which achieves
the “multicast to the group” goal. In this plan, a group-specific ascending number is
assigned to a new message whenever it is received from another agent, and then this
message is multicast to the replicas in the membership lists in order to implement the
semi-active replication strategy. In semi-active replication strategy, replicas are or-
ganized in a group, and all replicas execute incoming requests. One of the agent that
enacts the critical role is designated as the primary (the leader) and responsible for
providing responses. Therefore, consistency between replicas is ensured by process-
ing each message.

In the passive replication strategy, replicas are also organized in a group and pri-
mary one responds to client requests. However, primary periodically updates replicas’
states. If primary fails, one replica can be elected as a primary. In this work, the pas-
sive replication strategy uses the primary to order the messages as the semi-active
replication strategy does, but requires a mechanism to order the views. Therefore, we
have implemented the view synchronous multicast for the passive replication strategy.
The inconsistency between replicas is avoided if, whenever the primary sends the
update message to its replicas, either all or none of the replicas receive the message
(atomicity) in the context of a dynamic membership [23]. View synchronous multi-
cast is also implemented in the “view synchronous communication” plan. The imple-
mentation consists in delivering multiple, independent, a batch of messages between
view changes. A view change occurs when a replica wants to join or leave the group,
or a replica fails. In every view change, a message containing the composition of the
view of the group is multicast to the group members. If the primary of the group fails,
and a new view is defined, either all the replicas in new view, or none of them con-
sider the last message of the primary. Therefore, consistency in the group will be
ensured.

The replication service is the most important part of the replication-based fault tol-
erance approaches. To implement the replication service in our approach, the ”adjust
the number of replicas” goal must be achieved. The “calculation of the number of
replicas and replication” plan achieves this goal by using the cloning service. In this
plan, the replication degree of the group is calculated by using the value of the criti-
cality of a critical role and the number of resources. If the replication is needed ac-
cording to the result of the replication degree, then the cloning [11,15,16] service is
used for replication of new replicas.

The critical roles must be identified to replicate new instances of the critical roles.
To identify critical roles, the number of messages received by an agent for each role is
monitored to collect some data to calculate the role criticalities. The collected data is
then evaluated to take a decision on the role criticalities. The fault tolerant role is re-
sponsible for monitoring the roles and evaluating the criticalities of roles. Therefore, the
fault tolerant role has the “monitor criticalities of roles” goal and the “calculation criti-
calities of roles” plan to achieve that goal. The criteria to be a critical role will be given
in the next section.

 Replication Based on Role Concept for Multi-Agent Systems 173

In the proposed architecture, each role instance can be replicated many times and
with different replication strategies. Each replication group has only one leader which
coordinates the replica group and communicates with the other replicas. When the
leader fails, a replica is selected as a new leader in the replica group. Therefore, the
fault tolerant role has the “elect a new leader” goal and the “election of a new leader”
plan to achieve this goal.

Next, we describe what makes an agent critical and the criticality of the role.

4 Criticality of the Role

In order to achieve effective fault handling, we have to estimate the critical roles of
the organization, since the criticality of a role is the measure of the potential impact of
the failure of that role on the failure of the organization. There are two cases that we
must distinguish: 1) the role’s criticality is static and 2) the role’s criticality is dy-
namic. In the first case, multi-agent systems have static organization structures.
Therefore, critical roles can be identified and then replication is performed by the
programmer before run time.

In the second case, the role criticality cannot be determined before run time since
the multi-agent systems may have dynamic organization structures. Therefore, critical
roles can be dynamically evaluated at run-time. It can be done by using some prior
input, or it can be done by using an observation module that collects the data [10, 11].
We can use some metrics for dynamically estimating and updating role criticalities in
the organization. Within a MAS organization, the roles designate responsibilities of
agents. Each role has a different impact on the operation of organization. For instance,
Colman and Han distinguish types of roles in an organization: functional roles, opera-
tional-management roles and organizational management roles [17]. The concept of
role captures the importance of an agent in an organization, and its dependencies to
other agents.

The dependency of other roles on a specific role is another metric that can show
the role’s criticality. If a critical role somehow fails, the other roles, which rely on the
critical role, will struggle to achieve their individual goals. The dependency on a role
is derived from the number and performatives of the messages received. Guessoum
et al. distinguishes six classes of performatives [12]. They also describe the influence
of a message on its receiver by using symbolic values such as low, medium, high.
According to this classification, we only consider messages (containing Class 1 type
of performatives) [12] with a high value of influence on their receivers to determine
the criticality of a role. Therefore, messages, to be considered in terms of role’s criti-
cality in our approach, contain performatives such as request, request-whenever,
query-if, query-ref, subscribe.

In this work, we set a period for the organization at the system initialization. This
period is called the sampling period T and actually defined over a time window
((k-1)T, kT), where k is the sampling instant. Considering both metrics, the criticality
of a role and the number of replicas are calculated in the “calculation of criticalities of
roles” and “calculation of the number of replicas, and replication” plans. The critical-
ity of a role can be defined by the following equations:

174 S. Bora and O. Dikenelli

 RoleCriticality (k)=a*role(k)+b*Ratio_req (k) (1)

Ratio_req (k): The change in the number of messages sent to an agent for a specific
role to the average number of messages over a number of periods;

a, b: Coefficients for contributions of the weight of the role and the number of re-
quests to the RoleCriticality.

role(k): The value corresponding to the weight of the role at the kth sampling in-
stant. The weights of the roles are explicitly defined in the role ontology before the
program starts. Consider weight of each role as a numerical value within the interval
(1, 10).

After we have computed the criticality of each role, we can compute the number of
replicas (no_replicas) of a critical role as follows:

 no_replicas(k+1)=rounded(rm+RM*RoleCriticality(k)) (2)

rm: The minimum number of replicas that is defined by programmer before an ap-
plication starts.

RM: The available resources that define the maximum number of possible simulta-
neous replicas. Then, the number of replicas (no_replicas) is used to control and up-
date replication for each role in the next sampling period.

R.C=no_replicas(k+1)-no_replicas(k)

where R.C is the number of replicas that must be replicated if R.C is a positive integer
or the number of replicas that must be killed if R.C is a negative integer. In the next
we’ll give the case study.

5 Case Study

Our fault tolerance approach presented in this paper has been implemented as a case
study by using SEAGENT Multi-Agent framework [1, 24]. For the case study, we
designed an agent system which includes some specific agents which enact the “li-
brary assistant” role (library assistant agent), or enact the “user assistant” role for
querying library assistant agents. The library assistant agent manages a library and
holds the library knowledge using the library ontology. Instances of this ontology
hold the properties of books including name, ISBN, authors’ names and keywords of
the books. In our case study, each user assistant agent directly sends a book request to
library assistant agents. The library assistant agent has only one plan that matches the
request to the book ontology instance(s) and returns the matched books’ descriptions
within a FIPA-ACL message [2]. When the user assistant agent receives responses
from the library assistant agents, it selects a library based on the responses and pre-
sents the result to the user. In this case study, the user assistant agents depend on the
library assistant agents. Therefore, each library assistant agent is a single of point of
failure. Since the library assistant agent is a critical agent for the system’s operation, it
must be initialized as a fault tolerant agent. In order to become a fault tolerant agent,
the library assistant agent should also enact the “fault tolerant” role. The goal model
of this scenario is shown in Figure 5.

 Replication Based on Role Concept for Multi-Agent Systems 175

Fig. 5. A Goal Model for the Fault Tolerant Library System

In this goal model, three types of roles are given: The library assistant role, the user
assistant role and the fault tolerant role. The user assistant role has the “send a query”
goal to query the library assistant agent and the “present the result to the user” goal to
present the results that the user waits for. The library assistant role has the “process
the query” goal to process the requests and return the results. The “fault tolerant” role
has the “send alive” and “receive alive” goals to implement the failure detector, the
“adjust the number of replicas” goal to handle the replication process, the “elect a new
leader” goal to elect a new leader when the leader fails, the “monitor criticalities of
roles” goal to calculate the criticalities of roles, and the “multicast to the group” goal
to implement group communication.

When we decide that the library assistant agent needs to be fault tolerant, it invokes
a “classify” operation for the “fault tolerant” role, it then enacts the “fault tolerant”
role. Then, it invokes a “find” operation to search for a replica candidate residing on
another host. When it finds an agent to take up the “library assistant” role, it then
transfers the “library assistant” and “fault tolerant” roles including their plan libraries.
These all operations are performed in the “calculation of the number of replicas and
replication” plan to achieve the “adjust the number of replicas” goal. When the agent
on the other host classifies both roles, the agent enacts the “library assistant” role and
activates it. When the agent enacts the critical role and the fault tolerant role, it and its
leader periodically execute the “sendAlive” plan to implement the heartbeat mecha-
nism of the failure detection mechanism.

Let us assume that the user assistant agent sends a query to the leader library as-
sistant agent and apply the semi-active replication scheme. When the leader library
assistant receives this query, it automatically assigns a number to this query and
sends it to itself and its replica by executing the “group communication” plan to
achieve group communication goal. When the library assistant agents receive this

176 S. Bora and O. Dikenelli

query, they process the query. The leader library assistant agent returns the result to
the user assistant agent.

5.1 Evaluation of the Approach

To evaluate our approach, we implemented a test bed for the scenario mentioned
above. In this test bed, we suppose that multi-agent organizations are static structures
and the criticalities of roles do not change over time in such a system. Therefore, we
identify that the “library assistant” role to be replicated and define the replication de-
gree for this role before program starts. The library assistant role and some other roles
having simple plans are assigned to an agent. In the first case, we employ the agent
replication approach in the test bed. According to the agent replication approach, the
agent is replicated due to having the critical “library assistant” role. Therefore, we
implemented a test bed consisting of a library assistant agent leader, its replicas
(agents) in the number range from 3 to 23, and the user assistant agent that queries the
library assistant agent. In this test bed, another agent also sends requests to the library
assistant agents due to their other roles. Since the agent itself is replicated, then all
roles enacted by the leader are also enacted by the replica agents. In the second case,
we employ the role-based replication approach in the test bed. According to our ap-
proach, the critical role and the fault tolerant role are assigned (transferred) to the
agents having less workload. In this case, the test bed consists of the replica instances
of the library assistant role (together with the fault tolerant role) in the number range
from 3 to 23, the user assistant agent, and the leader. The user assistant agent periodi-
cally queries the agent that enacts the “library assistant” role. The number of queries
sent to the agent that enacts “library assistant” role is equal to 60 for both cases. Also
in the second case, the agents that enact “library assistant role” are queried by another
agent for their other roles to cause workload on them. In order to see the costs of role-
based replication and agent replication, the response times for queries are measured in
both cases. The response time is the time it takes the user assistant agent to receive the
last reply from a leader after sending its requests to the leader. In this test, we try to
observe the effect of role-based replication to the overall system performance.

The agent system is implemented in the SEAGENT platform and Java Version
1.5.0. The tests are performed on two computers with Intel P4 running at 1.5 GHz and
2GB of RAM, running Windows XP. We distribute the agents to two computers and
run each test ten times.

The results of the tests are illustrated in Fig. 6. The results show the average re-
sponse times of the systems applying the agent replication and role-based replication
approaches, as the number of replicas increases. As seen from the figure, the slopes
of response times of both systems increase linearly with the number of agents in an
organization. The increase in response time is expected, since it is caused by the
implementation of the system on two machines. Moreover, the number of the ex-
changed messages increases with the number of replicas due to the multicasting of
request and heartbeat messages. However, the average response times of the system
applying the agent replication are much higher than the average response times of
the system applying role-based replication. This result was also expected, since the
agent is replicated with all its roles due to having a critical role into an agent replica
group. The leader of the group multicasts requests to its group members.

 Replication Based on Role Concept for Multi-Agent Systems 177

Fig. 6. The Test Results

6 Related Works

Several approaches to fault-tolerance in MAS are documented in the literature; each
focuses on different aspects of fault-tolerance. Kumar et al. present a methodology
than can be used to specify robust brokered architectures with capability of recovering
from broker failures [3]. Their methodology is based on the theory of teamwork. In
their work, brokers are organized hierarchically in teams. Brokers in teams exchange
information between them and maintain communications between agents. Their ap-
proach can be only used for recovering from broker failures.

Klein proposes an approach based on a shared exception handling service that is
plugged into existing agent systems [4]. This service monitors the overall progress of
a multi-agent system. When a new agent is created, the “new agent registration” agent
takes a description of its normative behavior and creates sentinels to look for the evi-
dence of dysfunctional behavior. When a sentinel detects such faulty symptoms, this
information is sent to a “diagnosis” agent that produces a set of candidate diagnoses.
These are sent to the resolution agent that defines a resolution plan to take corrective
actions.

Hagg uses sentinel agents to guard specific functions or to guard against specific
states in the society of agents. The sentinel interacts with other agents using semantic
addressing. Thus, it can build models of other agents by monitoring agent communi-
cation and by interaction. It can also use timers to detect crashed agents or communi-
cation link failures [5].

178 S. Bora and O. Dikenelli

There are also well-known fault tolerance approaches based on replication tech-
niques for multi agent systems. In order to increase fault tolerance and improve avail-
ability and reliability of MAS, Fedoruk and Deters implemented transparent replication
via proxies [6]. The proxy as an interface handles all communication between replicas
and other agents in the MAS. The proxy also controls execution in a replica group and
state management of a replica group. Although this proxy approach handles fault toler-
ance issues in a multi-agent system, proxy itself is a single point of failure. There is no
recovery mechanism introduced in this work when the proxy fails. They chose FIPA-
OS agent toolkit as a platform for their implementation. Since FIPA-OS does not pro-
vide any replication mechanism, the replication server is implemented as a standard
FIPA-OS agent. Moreover, this approach does not support the idea of changing fault
tolerance policies at run-time. Therefore, replication is realized by a programmer
before the application starts.

Guessoum et al. present an adaptive multi-agent architecture with both agent level
and organization level adaptation [7, 8]. The organization’s adaptation is based on the
monitoring of the system’s behavior. The architecture was implemented with the
DIMA platform [9] and the DarX middleware [10]. In DarX, software components
can be either replicated or un-replicated, and it is possible to change the replication
strategy at run time. Although we also use the replication technique to implement
fault tolerance policies within the organization, the main difference of our approach
from this work is that our replication technique is based on role concept. In our repli-
cation technique, we do not replicate an agent due to its criticality. Because, we claim
if an agent is critical in the organization, its role that it fills as a position is critical for
the organization. Therefore, we transfer behavior libraries (plans) and knowledge of
the critical role to an agent to become an instance of the critical role.

These approaches present useful solutions to the problem of fault tolerance in
multi-agent systems. However, the entities used for handling this problem force a
specific multi-agent organization and these approaches lack flexibility and reusability.
On the other hand, in our case, fault tolerance requirements are identified and the
behaviors that satisfy these requirements are encapsulated by the fault tolerant role.
These behaviors can be used whenever we need to make an organization fault toler-
ant. Briefly, our approach provides flexibility and reusability to multi-agent organiza-
tions in terms of fault tolerance since it is possible to easily modify existing behaviors
of the fault tolerant role, remove some of behaviors, or include new behaviors.

7 Conclusion

In this paper, we presented a new approach to replication-based fault tolerance in
MAS. We define a “fault tolerant” role that encapsulates all the related behaviors to
replication-based fault tolerance such as replication, failure detection mechanism,
group communication service, leader election, and monitoring. Therefore, the “fault
tolerant” role is responsible for replicating instances of critical roles, coordination
between critical role instances and satisfying all replication-based fault tolerance
requirements.

 Replication Based on Role Concept for Multi-Agent Systems 179

Moreover, our approach is flexible in terms of fault tolerance since it is possible to
easily modify existing behaviors of the “fault tolerant” role, remove some of its be-
haviors, or include new behaviors to it.

References

1. Dikenelli, O., et al.: SEAGENT: A Platform for Developing Semantic Web Based Multi
Agent Systems. In: The Fourth International Joint Conference on Autonomous Agents -
AAMAS 2005 (2005)

2. FIPA, FIPA Specifications, http://www.fipa.org
3. Kumar, S., Cohen, P.R., Levesque, H.J.: The adaptive agent architecture: Achieving fault-

tolerance using persistent broker teams. In: Proceedings of Fourth International Confer-
ence on Multi-Agent Systems (July 2000)

4. Klein, M., Dallarocas, C.: Exception handling in agent systems. In: Etzioni, O., Muller,
J.P., Bradshaw, J.M. (eds.) Proceedings of the Third International Conference on Agents
(Agents 1999), Seattle,WA, pp. 62–68 (1999)

5. Hägg, S.: A sentinel approach to fault handling in multi-agent systems. In: Proceedings of
the second Australian Workshop on Distributed AI, in conjunction with the Fourth Pacific
Rim International Conference on Artificial Intelligence (PRICAI 1996), Cairns, Australia
(August 1996)

6. Fedoruk, A., Deters, R.: Improving fault-tolerance by replicating agents. In: Proceedings
of 1st International Joint Conference on Autonomous Agents and Multi-Agent Systems,
Bologna, Italy (2002)

7. Guessoum, Z., Ziane, M., Faci, N.: Monitoring and organizational-level adaptation of
multi-agent systems. In: AAMAS 2004, pp. 514–522. ACM, New York (2004)

8. Guessoum, Z., Briot, J.-P., Charpentier, Z., Aknine, S., Marin, O., Sens, P.: Dynamic and
Adaptative Replication for Large-Scale Reliable Multi-Agent Systems. In: Proc. ICSE
2002 First International Workshop on Software Engineering for Large-Scale Multi-Agent
Systems (SELMAS 2002), Orlando FL, U.S.A. ACM, New York (2002)

9. Guessoum, Z., Briot, J.P.: From active objects to autonomous agents. IEEE Concur-
rency 7(3), 68–76 (1999)

10. Guessoum, Z., Briot, J.P., Sens, P., Marin, O.: Toward fault-tolerant multi-agent systems.
In: MAAMAW 2001, Annecy, France (2001)

11. Bora, S., Dikenelli, O.: Implementing a Multi-agent Organization that Changes Its Fault
Tolerance Policy at Run-Time. In: Dikenelli, O., Gleizes, M.-P., Ricci, A. (eds.) ESAW
2005. LNCS (LNAI), vol. 3963, pp. 153–167. Springer, Heidelberg (2006)

12. Guessoum, Z., Faci, N., Briot, J.P.: Adaptive Replication of Large-Scale Multi-agent Sys-
tems – Towards a Fault-Tolerant Multi-agent Platform. In: Garcia, A., Choren, R., Lucena,
C., Giorgini, P., Holvoet, T., Romanovsky, A. (eds.) SELMAS 2005. LNCS, vol. 3914,
pp. 238–253. Springer, Heidelberg (2006)

13. Tanenbaum, A.S., van Steen, M.: Distributed Systems: Principles and Paradigms. Prentice-
Hall, Englewood Cliffs (2002)

14. Chockler, G.V., Keidar, I., Vitenberg, R.: Group Communication Specifications: A Com-
prehensive Study. ACM Computing Surveys 33(4), 1–43 (2001)

15. Shehory, O., Sycara, K., Chalasani, P., Jha, S.: Agent Cloning: An Approach to Agent
Mobility and Resource Allocation. IEEE Communications 36(7), 58–67 (1998)

180 S. Bora and O. Dikenelli

16. Decker, K., Sycara, K., Williamson, M.: Cloning for Intelligent Adaptive Information
Agents. In: Rao, A., Singh, M.P., Wooldridge, M.J. (eds.) ATAL 1997. LNCS (LNAI),
vol. 1365, pp. 63–75. Springer, Heidelberg (1998)

17. Colman, A.W., Han, J.: Roles, Players, and Adaptable Organizations. Applied Ontology 2
(2007)

18. Odell, J., Parunak, H.V.D., Brueckner, S., Sauter, J.A.: Changing roles: Dynamic role as-
signment. Journal of Object Technology 2(5), 77–86 (2003)

19. Bora, S., Dikenelli, O.: Applying Feedback Control in Adaptive Replication in Fault Tol-
erant Multi-agent Organizations. In: Proc. ICSE 2006 Fifth International Workshop on
Software Engineering for Large-Scale Multi-Agent Systems (SELMAS 2006). ACM,
Shangai (2006)

20. Bora, S., Dikenelli, O.: Experience with Feedback Control Mechanisms in Self-replicating
Multi-Agent Systems. In: Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z.
(eds.) CEEMAS 2007. LNCS (LNAI), vol. 4696, pp. 133–142. Springer, Heidelberg
(2007)

21. Stollberg, M., Rhomberg, F.: Survey on Goal-driven Architectures. Technical Report
(2006)

22. Ferber, J.O., et al.: Agent/Group/Roles:Simulating with Organizations. In: Fourth Interna-
tional Workshop on Agent-Based Simulation, France (2003)

23. Guerraoui, R., Schiper, A.: Fault-Tolerance by Replication in Distributed Systems. In:
Strohmeier, A. (ed.) Ada-Europe 1996. LNCS, vol. 1088. Springer, Heidelberg (1996)

24. SEAGENT, http://www.seagent.ege.edu.tr
25. Almeida, A., Aknine, S., Briot, J.P.: Dynamic resource allocation heuristics for providing

fault tolerance in multi-agent systems. In: SAC 2008, pp. 66–70 (2008)
26. Dastani, M., Dignum, V., Dignum, F.: Role-Assignment in Open Agent Societies. In:

AAMAS 2003, Australia. ACM, New York (2003)
27. Powell, D.: Delta-4: A generic architecture for dependable distributed computing.

Springer, Heidelberg (1991)

Knowledge Management in Role Based Agents

Hüseyin Kır, Erdem Eser Ekinci, and Oguz Dikenelli

Ege University, Department of Computer Engineering,
35100 Bornova, Izmir, Turkey

{huseyinkir,erdemeserekinci}@gmail.com, oguz.dikenelli@ege.edu.tr

Abstract. In multi-agent system literature, the role concept is getting
increasingly researched to provide an abstraction to scope beliefs, norms,
goals of agents and to shape relationships of the agents in the organi-
zation. In this research, we propose a knowledgebase architecture to in-
crease applicability of roles in MAS domain by drawing inspiration from
the self concept in the role theory of sociology. The proposed knowledge-
base architecture has granulated structure that is dynamically organized
according to the agent’s identification in a social environment. Thanks to
this dynamic structure, agents are enabled to work on consistent knowl-
edge in spite of inevitable conflicts between roles and the agent. The
knowledgebase architecture is also implemented and incorporated into
the SEAGENT multi-agent system development framework.

1 Introduction

In multi-agent system research domain, role concept is getting more popular
from both methodology and infrastructure perspectives in last years. The main
purpose behind using roles in MAS research domain is to provide an abstraction
to define beliefs, norms, goals of agents and to shape relationships between the
agents in the organization. But, the role concept is not new, and not firstly used
by the MAS domain researchers for modeling organizations.

The role concept was introduced within the theater in antique ages to define
behaviors and scripts of an actor in scenes of a part. But in the previous century,
sociologists converted this simple concept to a deep theory which is comprised of
systematic methods of empirical investments to predict activities of individuals,
to resolve human social relationships, stratification and interactions by analyzing
body of knowledge about human organizations[1]. As a consequence of these
researches, the role concept is explicated as designated social part to be played,
characteristic behaviors and scripts for social conduct. Albeit at a first glance
it appears like that there is not so much change in the general definition of role
through the ages, depths of the concept are theorized with many sub-theories
(role playing, role taking, role transition, role leaving, role conflict, etc.) which do
clarify the problems such as which conditions conduct a role, how an individual
plays a role and what the dynamics are behind taking or leaving a role.

When the MAS researchers import the role concept to the multi-agent sys-
tem theory, they pave the way of transferring all related sub-theories of socio-
logical role theory. Already corresponds of many role sub-theories propounded

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 181–196, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

182 H. Kır, E.E. Ekinci, and O. Dikenelli

by sociologists[2,1] can be seen in the prominent MAS researches[3,4]. But we
ascertain that the fact of the self concept’s importance in the role theory is dis-
regarded in these researches. In this paper, to increase applicability of roles in
MAS domain we propose a knowledgebase architecture by drawing inspiration
from the self concept in the role theory of sociology.

The self concept, basically, denotes the word “I”, which is the knowledge of
physical properties, beliefs, impulses, characteristic behaviors and talents, and all
other referents to the “I” [2]. But in theory, the concept is not a simple, complete
structure but granulated net that is expanded and reorganized during life long
evolution of the individual[5,6]. In daily life, each individual participates many
organizations such as family, school, and business and gains many identities by
taking different roles. In sociology, individual’s participation in an organization is
technically expressed as expansion of the self with the acceptance of all norms,
goals and beliefs, which belong to the enacted role[6]. Additionally, when the
individual moves from one participated organizations to another, the granulated
form of the self is dynamically reorganized according to the identification of the
individual with respect to its cognition about its roles[5,7].

The main contribution of the self concept to the role theory is depicted as
clarifying the problem of resolving human behaviors in conflicting positions[7].
In detail, an individual may play more than one role in the same organization
or different organizations. But, rules, norms and goals of these roles may not be
completely consistent with each other, even if they are in the same organization.
Furthermore, an individual can play a role, which is not congruent with her/his
self, by violating self’s rules and norms until reaching self goals, if there is not
another way. In such conflicting positions, by the help of granulated and alterable
form of the self concept, sociologists become capable of explaining the meaning
of individual’s behaviors[5].

Analogously to sociological role theory, in a role-based multi-agent system,
agents enact various types of roles due to desire of achieving their congenital
goals during their life time. Differently from the human case, in the MAS liter-
ature conflicts between agents and roles are formally expressed and highlighted
as an undesired situation[3,8]. But as emphasized previously, conflicts between
the roles of an organization is inevitable for the reason of looking through the
different perspectives to the organization.

In the light of this idea, to make role theory completely applicable on MAS, we
propose a knowledgebase architecture, which consists of dynamically arranged
knowledge blocks, similar to the granulated and alterable form of self concept
developed by sociologists. The proposed knowledgebase architecture has two
components; active and passive knowledge. The passive knowledge is used as
storage unit for all knowledge blocks of the agent. Besides, the active knowledge
is a subset of passive knowledge that is arrangement of knowledge blocks which
are the most relevant to the agent’s active position in the organization. While
consistency of the passive knowledge is not cared, active knowledge is obliged to
be consistent to plan deterministically at decision making time. This architecture
is implemented and incorporated into the SEAGENT multi-agent development

Knowledge Management in Role Based Agents 183

framework[9]. SEAGENT framework is based on the OWL ontologies in a way
that all artifacts of the programming paradigms are stored in the ontologies. So,
the knowledgebase is implemented to manage the knowledge handled with these
ontologies by the direction of the role theory and the self concept.

The remainder of this paper is structured as follows: In Section 2, we detail
our knowledgebase semantics on the agent meta-model and formally declare the
effects of the role operations on the knowledge. Section 3 presents the imple-
mented architecture of the proposed knowledge approach which is incorporated
into the SEAGENT multi-agent development framework. Section 4 elaborates a
case study that emphasize the benefits of the proposed knowledge model. Finally
in Section 5, we examine the related works before concluding with Section 6.

2 Role-Based Knowledge Semantics

In the decision making phase, the knowledgebase of the agent has the responsi-
bility of providing information about how the agent reacts the events perceived
from the environment, or how it achieves proactively its goals. But beyond pro-
viding information about plans or goals, for effective planning, the knowledge-
base must also exhibit partial projection of the world encompassing the agent.
Through this direction, when the world around the agent is organized with roles,
the projection of the world in the knowledgebase takes form according to these
roles and their relationships. Since, to handle projection of the world around the
agent we define three types of knowledge blocks as granules of our knowledge-
base; self knowledge, role knowledge and role-instance knowledge blocks. If it
is required to introduce these blocks simply; the role knowledge block involves
norms, goals, rules and beliefs specific to a role in an organization and the self
knowledge block represents the agent itself in the form of congenital behaviors,
norms, goals, rules and beliefs. Differently from the other ones, the role instance
knowledge block handles the information of inferred rules, norms and beliefs
while the agent is performing under a role. Followings of this section declares
the formal semantics of these knowledge blocks.

From the point of knowledge view, the knowledge of a role r ∈ R is a tuple
Kr = 〈G, P, σr , πr, R〉 where, G is the set of goals, P is the set of plans that
are used to achieve each role goal, σr specifies the facts of the role, πr spec-
ifies the rules of the role and finally R represents the set of possible relations
between roles. To detail semantics of R we use the model proposed in [10] by
Kristensen and Osterbye. They ascertain three types of role relations: specializa-
tion, aggregation and dependency. Specialization is supported by extension and
used to built up role hierarchies. We represent specialization as Rspec(r1, r2),
where r1, r2εR , and implies that r1 extends r2. Similarly, aggregation is used
to construct role compositions and represented as Raggr(r1,{rx, ry, ...}), where
r1, rx, ry, ...εR , and defines that r1 is aggregated of given role set. Finally the
role dependency means one role is dependent on another role for the realiza-
tion of its goals[11]. In accordance with the Kristensen’s work, we examine the
reflections of these inter-role relations on the knowledge block relations.

184 H. Kır, E.E. Ekinci, and O. Dikenelli

Another knowledge block in our knowledge model is the self knowledge. The
self defines the personal attitudes of an agent a∈A. Hence, we represent the self
knowledge as a tuple Kself = 〈G, P, σself , πself , Ω〉 where, G represents the set
of congenital goals of the agent, P is the set of plans that comprise the own
capabilities of the agent, σself specifies the facts that the agent has about the
world and himself, πself specifies the rules that constraints the agent behavior
and Ω represents the identity of the self.

In our model the last knowledge block is the role instance knowledge. When
an agent enacts a role, it creates a unique entity, called role instance ri ∈ Ri, in
the organization. We specify the role instance knowledge as Kri = 〈id, roleT ype,
enactmentType, σri, πri, A〉 where id is the unique identifier of the role instance,
roleType represents the role to which the role instance belongs and enactment-
Type determines the degree of dedication of an agent on a role. The semantics of
the enactment is detailed in [11,4] and there are four types of enactment; max-
imally selfish, selfish, social and maximally social, τ= {τMaxSelfish, τSelfish,
τSocial, τMaxSocial}. If an agent enacts a role in a selfish form this means the
agent attaches higher priority to the self’s rules, goals and norms. On the con-
trary, if the enactment is social, the agent prioritizes its role responsibilities.
Finally A represents the set of role instances that the role instance aggregated
of. In this article we use the shorter form as kriroleT ype

id
∈Kri, to represent the role

instance knowledge. When a role is initiated newly, it has an empty fact(σri)
and rule(πri) sets. This knowledge is composed along the life cycle of the agent
via learning and inference. Also, these two concepts could be considered as an
extension of the role knowledge which empower agent to objectify the role.

Consequently, we represent the agent’s whole knowledge as Ka which is union
of the self knowledge kself , set of the role knowledge Kr={kr1 , kr2 , ..., krn} and set
of the role instance knowledge Kri={kri1 , kri2 , ..., krin}, kself∪Kr∪Kri⊆Ka. But,
as emphasized in the introduction, consistency of entire knowledgebase Ka can-
not be established due to unavoidable conflicts between self of agents and roles
and between enacted roles. The granulated structure of knowledgebase enables
an agent to construct the most relevant and consistent subset of the agent knowl-
edge in accordance with its active role. Even the agent enacts various roles that
are in conflict, decision making must always placed on a consistent knowledge. To
provide the consistency, we separate the knowledgebase into two constituents; ac-
tive knowledge(Kactive) and passive knowledge(Kpassive). While passive knowl-
edge is equivalent to the entire knowledge of the agent Kpassive ⊆ Ka and its
consistency is not expected, the active knowledge is a sub-set of passive knowl-
edge Kactive ⊂ Kpassive that is arranged from the relevant knowledge blocks into
a consistent form. We introduce the semantics that formally define how passive
and active knowledge are managed according to the life-cycle of role-based agents
in the following section.

Operational Knowledge Semantics

Through the life-cycle of a role-based agent, the agent enacts roles and performs
under these roles till reaching its goals and then deacts the roles. Concurrently,

Knowledge Management in Role Based Agents 185

Fig. 1. Role Life Cycle

the knowledgebase also evolves together with its owner agent. In order to detail
changes of the knowledgebase during the agent evolution, one must declare oper-
ations performed between an agent and a role. These operations are determined
informally by Odell et al. in [12]. But Dignum et al. articulate these operations
in a formal way[4]. We declare an enhanced version of the role operations in
Figure-1 and within the following definitions, we formally declare the effects of
these operations on the active and the passive knowledge of the agent.

Definition 1. (Deploy) An agent takes the knowledge of a role by performing
deploy operation. This operation makes agent acquainted with the organiza-
tional facts, norms and goals from the perspective of a role. By this way, the
agent obtains the knowledge about how the role can be performed. After the de-
ployment, the knowledge block of the role is installed into the passive knowledge
of the agent. The operation is represented as Odeploy(a1, r1) → K ′

passive where
r1 ∈ R, a1 ∈ A and K ′

passive is for the evolved agent knowledge after the deploy-
ment operation. Let 〈ga, pa, Σa, Πa)〉 be the agent’s passive knowledge before
deploy operation and 〈gr1 , pr1 , σr1 , πr1 , R〉 is the knowledge block of the role r1,
then the deployment operation can be detailed as follows:

Kpassive=〈ga,pa,Σa,Πa〉 kr1=〈gr1 ,pr1 ,σr1 ,πr1 ,R〉 Odeploy(a1,r1)

Kpassive ∪ kr1 ⊆ K ′
passive K ′

passive=〈ga∪gr1 ,pa∪pr1 ,Σa∪σr1 ,Πa∪πr1〉
But, in order to perform deployment operation successfully, some preconditions
that comes from the relationships of the deployed role must be satisfied. If the
role intended to deploy extends or aggregates from other roles, then the parent
or aggregated roles should be deployed as well:

Odeploy(a1,r1) ⇒ ∀rx∈ R ((Raggr(r1,rx) ∨ Rspec(r1,rx)) ∧ Odeploy(a1,rx))

Definition 2. (Enact) By performing this operation, an agent gains a new
identity and a unique instance of the role is declared to the organization. In-
stantiation of a role is represented as Oenact(a1, r1, τ)→k′

self , where r1 ∈ R,
a1 ∈ A, τ specifies the enactment type and k′

self specifies the evolved knowledge
block of the self after the enactment operation. This operation ingenerates a new

186 H. Kır, E.E. Ekinci, and O. Dikenelli

instance of the role r1 as rir1
x ∈Ri and adds this new identity to the agent’s self

knowledge block kself = 〈gself , pself , σself , πself , Ω〉.
kself=〈gself ,pself ,σself ,πself ,Ω〉 Oenact(a1,r1,τ)

k′
self=〈gself ,pself ,σself ,πself ,Ω′〉 Ω ∪ {rir1

x } ⊆ Ω′

Similar to the deployment operation, in order to perform the enactment success-
fully the agent follows the suit by enacting the aggregated roles:

Oenact(a1,r1) ⇒ ∀rx∈ R (Raggr(r1,rx) ∧ Oenact(a1,rx))

Besides, enactment does not cause only extending the identities in the self knowl-
edge block. In addition, a role instance knowledge krir1

x
=〈x, r1, τ, σri, πri, A〉 is

also created and inserted into the passive knowledge, Ka1 ∪ kr1⊆ K ′
a1

. But the
newly created role instance has an empty fact (σri) and rule (πri) sets. These
rules and facts are directly inserted into the role instance knowledge block or
generated by inference along the activation and execution of the role instance.

Definition 3. (Activate) An important point is that, an agent may enact var-
ious roles to achieve numerous goals concurrently. Hence, a role is not played
continuously. Due to the position of the agent in the organization, a role is ac-
tivated at a time. The activation operation puts forward an identity of an agent
to prepare it performing under a role instance. From the point of knowledge
view, each activation operation causes a context switch that updates the active
knowledge of the agent with respect to the activated role. The active knowledge
is constructed from the most relevant knowledge blocks stored in the passive
knowledge that literally reflects the activated role instance’s conception of the
world. Additionally, relations between roles and enactment type of the role in-
stance significantly effects the content of the active knowledge.

Before declaring semantics of the active knowledge construction in terms of the
enactment type, an important function Construct Perspective (CP) and logical
operator �, which are intensely used in our semantics, are required to be defined.
First one is conflict resolver operator “�”, which designates the maximal subset
of the former operand that does not conflict with the latter operand. For in-
stance, let s1=〈x0, x1, x2, x3,¬x5〉 and s2=〈¬x1, x2, x4, x5〉 are set of premises,
then s1�s2=〈x0, x2, x3〉 and s2�s1=〈x2, x4〉. In order to define and eliminate
conflicts between entities, we utilize goal and rule conflict definitions made by
Dastani et al.[4] and the semantic relations between these entities.

Construct Perspective function, on the other hand, is the root function for
arranging the active knowledge from the related knowledge blocks. The function
is called when the activation operation is triggered, Oactivate(rir1

x)→CP (rir1
x)

where rir1
x ∈Ri. We define CP (rirx

y) function for the role rx∈R and role instance
rirx

y ∈ Ri, whose type is rx, as:

CP (rirx
y)

Kactive= krirx
y

∪ CP τ (rx) ∪ ∀ rirk
z ∈ A (CP (rirk

z))

where krirx
y

=〈y, rx, τ, σri, πri, A〉.

Knowledge Management in Role Based Agents 187

In order to construct the knowledge perspective of a role instance, three groups
of knowledge block are added to the active knowledge. The knowledge block of
the activated role instance(krirx

y
) is added to the active knowledge without any

hesitation of a conflict. Because, when a role is initiated for the first time, it has
empty fact (σri) and rule (πri) sets and the efforts on keeping active knowledge
consistent prevents expansion of the role instance knowledge in a conflicting way.
Also, the active knowledge constructor function recursively adds all aggregated
role instances’ knowledge, which are defined in A, to the active knowledge. And
finally, the knowledge block of the role is added to the active knowledge with
the operation CP τ (rx). Dignum[11] defines the evaluation of the goals of an
agent in accordance with the role enactment type (τ), but goals are not the only
determinant on the behavior of an agent. Hence, we extend this definitions in a
way that comprises every entity in the knowledge.

The function CP τ (rx) process in a different way for each enactment type τ
and the active knowledge varies as follows:

Case 1. (Maximally selfish enactment) The agent only uses its own goals, and
ignores any objectives of the role. But, the role enacting agent cannot try to
achieve pure self goals while playing the game by the organizational rules. Hence,
the agent should disregard the organizational rules. But, it still has to know at
least the shared organizational vocabulary in order to communicate with the
other agents. CP τ (rx) function for this type of enactment is:

CP MaxSelfish(rx)= kself ∪ prx ∪ (σrx
σself) ∪ ∀ rm∈S (CP MaxSelfish(rm))

where krx=〈grx , prx , σrx , πrx , R〉, S defines the list of specialized roles that is
inferred from the role relations R and as mentioned before σrx�σself designates
the role facts that does not conflict with facts of the self knowledge block.

Case 2. (Selfish enactment) Different from maximal selfish enactment, the en-
acting agent takes as many of its role’s goals and rules as possible into consider-
ation. But self rules still have the priority, so rules of the role that conflict with
the self rules are disregarded.

CP Selfish(rx)=kself ∪ prx∪ (σrx
σself) ∪ (πrx
πself) ∪ (grx
gself) ∪
∀rm ∈ S (CP Selfish(rm))

where krx=〈grx , prx , σrx , πrx , R〉 and S defines the list of specialized roles that is
inferred from the role relations R.

Case 3. (Maximally social enactment) Agent, even though it does not firmly
believe, may act for the sake of the organization’s benefits. For this reason, the
agent only uses objectives from the role and precisely obeys the organizational
rules. Agent ignores its self goals and rules, for the duration of the role enactment.

CP MaxSocial(rx)=krx ∪ pself ∪ (σself
σrx) ∪ ∀ rm∈S (CP MaxSocial(rm))

where krx=〈grx , prx , σrx , πrx , R〉 and S defines the list of specialized roles that is
inferred from the role relations R.

188 H. Kır, E.E. Ekinci, and O. Dikenelli

Case 4. (Social enactment) This enactment type is similar to the selfish enact-
ment, but herein the agent includes as many of its own goals and rules as possible
but the organizational rules and goals still have the priority.

CP Social(rx)=krx ∪ pself ∪ (σself
σrx) ∪ (πself
πrx) ∪ (gself
grx) ∪
∀ rm ∈ S (CP Social(rm))

where krx=〈grx , prx , σrx , πrx , R〉 and S defines the list of specialized roles that is
inferred from the role relations R.

As a special case, if there are no conflicting goals or beliefs between the self
and the activated role, then the constructed active knowledge of social enactment
is same with the selfish enacted role’s active knowledge. In other words, if there
are no conflicting rules then, πself� πr1= πself , πr1� πself = πr1 and the same
for the facts and goals. Hence;

Oactivate(rir1
x)→(kself∪ kr1∪ krir1

x
) ⊆Kactive

whether krir1
X

=〈x, r1, τSocial, σri, πri, A〉 or krir1
x

=〈x, r1 τSelfish, σri, πri, A 〉 .
While active knowledge construction ensures that the agent makes determin-

istic decisions, occasionally agent may need to share a role specific knowledge
or a know-how with another role that does not have direct relation. In such a
case, agent adopts that knowledge as experience and adds the knowledge to its
self knowledge. Thereby, agent can use that knowledge independent from the
life-cycle and knowledge scope of the role.

Definition 4. (Suspend) Role instances goes into suspending state when none
of its goals and eventually tasks are in execution and there is nothing more to do
in the scope of instance. In this case, the entire active knowledge is committed
back to the agent knowledge and a new active knowledge is constructed with the
subsequent activation operation.

Definition 5. (Deact) Agent deacts a role instance in the case of withdrawing
from a social position. Deact operation could be triggered through the achieve-
ment of all role goals or the inexpediency of the enacted role instance. This oper-
ation deallocates the role instance from the agent and represented as: Odeact(a1,
rir1

1) → k
′
self , where rir1

1 εRi and a1εA. When the role instance’s main goal is
achieved, the instance is deallocated from the agent.

kself=〈gself ,pself ,σself ,πself ,Ω〉 Odeact(a1,rir1
1)

k′
self=〈gself ,pself ,σself ,πself ,Ω′〉 Ω′ = Ω \ rir1

x

Enacting a role and deacting the same role doesn’t always end up with the same
agent knowledge, because through the execution of the role instance, agent may
gain experience and its self knowledge may evolve. Also, as a rule, if there is an
aggregate role which is enacted by the agent, its participant roles could not be
deacted.

Knowledge Management in Role Based Agents 189

Odeact(a1,rir1
1) ⇒ ∀rx∈ R (Raggr(rx,r1) ∧ Odeact(a1,rirx))

Definition 6. (Remove) Finally, with remove operation, the agent also loses
the capability of playing the role. This operation removes the resources of a
role and every instances of it from the agent. Role remove is represented as
Oremove(a1, r1) → K ′

passive where r1εR and a1εA.

Kpassive=〈ga,pa,Σa,Πa〉 kr1=〈gr1 ,pr1 ,σr1 ,πr1 ,R〉 Oremove(a1,r1)

K ′
passive = Kpassive \ (kr1 ∪ ∀ rir1

x (k
rir1

x
))

that is K ′
passive=〈ga \ gr1 , pa \ pr1 , Σ

′
a, Π ′

a〉 where Σ′
a = Σa \ (σr1∪ ∀rir1

x (σrir1
x

))
and Π ′

a = Πa \ (πr1∪ ∀rir1
x (πrir1

x
)).

If there is an instance of the role running on the agent, the role cannot be
removed, Oremove(a1, r1) ⇒ ∀rir1

x ∈ Ri (Odeact(a1, rir1
x)). Also, in order to remove a

role which is depended on by another role with the relationship types of specifi-
cation and aggregation must be removed, Oremove(a1, r1) ⇒ ∀rx ∈ R ((Rspec(rx,r1)
∨ Raggr(rx,r1)) ∧ Oremove(a1, rx)).

3 The Architecture

We implemented a knowledgebase architecture, which supports the semantics
detailed in the previous section, and incorporated it into the SEAGENT se-
mantic web enabled multi-agent framework[9]. The SEAGENT framework han-
dles all its artifacts such as roles, goals and plans within OWL ontologies.
Since OWL is a description logic based knowledge representation language, the
SEAGENT framework provides great facilities for implementing mentioned role-
based knowledge semantics. In this section, we focus on our knowledgebase im-
plementation and position it in SEAGENT framework.

Figure-2 represents the implementation of the proposed knowledgebase archi-
tecture within the SEAGENT framework. As indicated in the figure, two vertical
layers compose the overall architecture. The first layer, called Execution Layer,
provides planning and execution infrastructure for the SEAGENT agents. The
second one, the Semantic Web Layer encapsulates the ontologies that represents
the roles, goals, rules and domain specific concepts. This layer also represents
the semantic web together with the local ontologies which imports the shared
concepts published in the internet. The proposed knowledgebase architecture
is composed of three sub-modules: Knowledge Manager, Active Knowledge and
Passive Knowledge. The Passive Knowledge module is responsible for storing all
local ontologies that are used by the agent. We provide an extensible support
for different physical passive knowledge persistence solutions and there are two
existing implementations as TDB and RDB light weight ontology storage based
on Jena API1. On the other hand, Active Knowledge module serves a complete
and consistent knowledge subset that is arranged from the passive knowledge in
accordance with the active role instance and its dependencies. In fact, this knowl-
edge is an in-memory ontology model that imports all active role instance related
1 http://jena.sourceforge.net/DB/index.html

190 H. Kır, E.E. Ekinci, and O. Dikenelli

Fig. 2. SEAGENT Knowledgebase Architecture

ontologies and accessible from the tasks of the active role. Lastly, the Knowledge
Manager module acts as a bridge between active and passive knowledge mod-
ules and has critical responsibilities such as, construction of active knowledge,
ensuring the consistency of it and synchronization of the active and passive
knowledge. To fulfill these responsibilities, the Knowledge Manager module is
composed of three sub-modules that are Perspective Constructor, Transaction
Manager and Conflict Manager. Following paragraphs detail the functionality of
the Knowledge Manager module.

The Perspective Constructor module is in the charge of the construction of
active knowledge. Figure-3 represents the algorithm that constructs the active
knowledge. In accordance with the formerly proposed knowledge semantics, this
algorithm takes the activated role instance as parameter and simply identifies a
maximal related sub graph from a net of role and role instance relations. After
the specification of role and role instances that are related with the activated role
instance, their knowledge are read into active knowledge in accordance with their
enactment type. This provides a consistent and well defined knowledge context,
even agent enacts conflicting roles and participates in non-adaptive organiza-
tions. This knowledge serves agent a conception of world from the perspective
of the active role instance.

Another important function of the Knowledge Manager is the concurrency
management. Since selected storage infrastructure is a non-transactional media
and we have different atomicity requirements, we implemented our own transac-
tion management sub-system and this functionality is provided by the Transac-
tion Manager sub-module. As emphasized previously, an agent may enact several
roles concurrently (one actively at a time), and each role instance may execute
several tasks in order to achieve several goals synchronously. However, the Trans-
action Manager module ensures that only one task can modify an ontology at a

Knowledge Management in Role Based Agents 191

Fig. 3. Active Knowledge Construction Algorithm

time via transaction. In the implementation of our concurrency control infras-
tructure, two-phase locking algorithm is adopted because of its simplicity and
success in practice[13]. Also with the construction of our own transaction mech-
anism, we are enabled to redefine the atomicity of the knowledge transactions
and agent goals are the best guide for this purpose. Transaction Manager com-
mits all un-committed modifications, that are triggered by the task, in the case of
achievement of the goal that the task contributes. Or, in the case of an exception
that occurred during the execution of the task, all un-committed modifications
are aborted. In the case of long-term goals, this approach may cause long-lived
transactions that access large number of resources and this may cause deadlocks.
To cope with this problem transactions can be prematurely committed within
the tasks of the agent.

As a result of the agent’s cognitive structure, agent learns and gains experience
from its former actions. Besides, consistency of the agent knowledge shouldn’t
decay with this newly added or inferred knowledge. For each knowledge modifi-
cation, Conflict Manager checks the consistency of the active knowledge and all
suspending role instances’ knowledge perspectives. Since the SEAGENT frame-
work represents all knowledge artifacts with OWL ontologies, this consistency
check is basically an ontology validation. But from the point of agent view, a

192 H. Kır, E.E. Ekinci, and O. Dikenelli

concept’s validity is only dependent on the agent’s perception on that concept.
Hence, open world assumption based inference engines are not sufficient for our
requirements. We extended Eyeball2 tool with new inspectors in order to de-
tect and report goal and rule conflicts. When Conflict Manager distinguishes a
knowledge modification that threaten the consistency of the active knowledge,
it throws an exception and notifies the SEAGENT exception handler[14].

4 Case Study

This section presents a multi-organization application that is implemented with
SEAGENT Multi-Agent Development Framework as a case study to emphasize
and observe the benefits of the proposed knowledge architecture. In order to
provide conflicting but not totally irrelevant roles to our agents, we preferred
the barter domain. Figure-4 represents Corporate Barter and Barter Trade Ex-
change organizations’ design model. The corporate barter organization, or peer
to peer barter, is the most plain type of barter which is arranged between two
companies who have mutually agreeable goods or services to swap evenly. Par-
ticipants can openly determine the price of the goods being exchanged and offer
discounts without inviting retaliation by competitors or existing customers. This
type of organization is a free competition market, where every customer tries to
be monopoly in its area of expertise. Hence, companies aim to dominate the
market with creating competition via reducing prices and increasing product
quality. Explicit representation of the corporate barter organizational rules that
are applicable to the customer role are, (ruleSet1):

PERMITTED(customer DO overpricing(product))
PERMITTED(customer DO underpricing(product))
PERMITTED(customer DO offer_discount(product))
OBLIGED((customeri DO make_payment(customerj, producti)
IF(customerj DO make_payment(customeri, productj)
AND (customeri, customerj DO accept_trade(producti, productj)))

Similarly, barter trade exchange organization is a collection of businesses that
trade their goods and services, managed by an intermediator. In this organi-
zation, businesses do not exchange goods directly as in the bilateral form of
the corporate barter. Rather, barter trade exchanges is multilateral and partic-
ipants only interacts with an intermediator. Another difference of barter trade
exchange is the use of a form of private label currency. The customer role of
this organization stimulates enactor agents to maximize their profit via increas-
ing prices within the legal limits or reducing transportation cost by preferring
nearby barter options. The rules and norms in the role description of the Cus-
tomer role of barter trade exchange organization are, (ruleSet2):

FORBIDDEN((customer DO overpricing(product)
AND(customer DO underpricing(product) AND(customer DO offer_discount(product)
IF(customer DO violate_competition_legislation(product_price)))),
OBLIGED((customer DO make_payment(barter_manager, producti)
OR (make_payment(barter_manager, barter_dollar))
IF(customer DO accept_trade(producti, productj)
OR accept_trade(producti, barter_dollar))

2 http://jena.sourceforge.net/Eyeball/

Knowledge Management in Role Based Agents 193

Fig. 4. Organization model

Also, both Customer roles extend from a more generic Legal Customer role
that is supplied by a competent authority in order to ensure, without consider-
ing barter type, all customer roles respect the legislation. Such as, prohibiting
barter of unmarketable goods like weapons, drugs and prostitution, or obligating
companies to have appropriate license to sell goods that are permitted to be sold
only by licensed sellers(such as alcohol), (ruleSet3):

FORBIDDEN(customer DO barter(weapon, drug, ...)),
OBLIGED(customer DO have(license) IF(customer DO barter(product)
AND(product DO require_license(license)))

In order to affirm the expediency of our approach, we will examine a case where
a company agent participates Corporate Barter Organization and Barter Trade
Exchange Organization by socially enacting both Customer Roles in order to
achieve his self goal of consuming the company’s unused stocks. Also, the self
knowledge has a rule in sales as applying a fixed price to all goods and not
making discounts regardless of the amount of the purchase. Similarly, he has a
self rule in buying as only trading the indispensable goods, (ruleSet4):

PERMITTED(self DO barter(product) IF(self DO demand(product))),
FORBIDDEN(self DO discount(product))

While existing agent cognitive models refuse the simultaneous enactment of both
customer roles because of their conflicting rules on pricing policies, it could
be easily seen that this is not an uncommon and avoidable case. As a part of
the solution that we proposed for this problem, SEAGENT agents stores both
rules, as SWRL rules, and goals, as goal ontologies, into his passive knowledge.
In a case where another agent, which is also participated in Corporate Barter
Organization, makes a barter offer with a very low profit margin and even quite

194 H. Kır, E.E. Ekinci, and O. Dikenelli

under the product’s fair market value, our agent activates the appropriate role
instance and evaluates his knowledge in order to make a decision.

With a traditional knowledgebase, both rule sets would be included in an
aggregate agent knowledge and agent would query whole related and unrelated
knowledge in order to make a decision. Correspondingly, while this very low
profited barter is permitted by the Corporate Barter Organization, underpricing
which violates competition legislation are banned in the Barter Trade Exchange
Organization. Also, while Corporate Barter Organization permits offering dis-
count, self of the agent adopts one-price policy:

PERMITTED(customer DO underpricing(product) - from ruleSet1
FORBIDDEN((customer DO underpricing(product) - from ruleSet2
IF(customer DO violate_competition_legislation(product_price))))
PERMITTED(customer DO offer_discount(product)) - from ruleSet1
FORBIDDEN(self DO discount(product)) - from ruleSet4

On the other hand, in our approach with the activation of the customer role
instance of the Corporate Barter Organization, the knowledge manager of the
agent reconstitutes the active knowledge. In accordance with active knowledge
construction semantics defined in previous section, this knowledge contains the
active role instance’s knowledge and since the enactment type is social, Corporate
Barter Organization’s Customer role’s knowledge, Legal Customer’s knowledge
and the subset of the self knowledge that does not conflict with the role knowl-
edge. In the following rule-set, content of the active knowledge is shown.

PERMITTED(customer DO overpricing(product)),
PERMITTED(customer DO underpricing(product)),
PERMITTED(customer DO offer_discount(product)),
OBLIGED((customeri DO make_payment(customerj, producti)
IF(customerj DO make_payment(customeri, productj)
AND (customeri, customerj DO accept_trade(producti, productj))),
FORBIDDEN(customer DO barter(weapon, drug, ...)),
OBLIGED(customer DO have(license)
IF((customer DO barter(product)) AND(product DO require_license(license)))),
PERMITTED(self DO barter(product) IF(self DO demand(product)))

The constituted active knowledge that is clarified from conflicting and irrelevant
knowledge represents the exact perception of the world of the activated role in-
stance. Hence, this approach makes enactment of the roles which have conflicting
knowledge possible and ensures the integrity of the global identity.

5 Related Work

In the agent research domain, there are some approaches which are motivated
to handle inconsistent knowledge of agent by the approach of clustering[15,16].
In [16], Halpern and Fagin presents a model of local reasoning, where an agent’s
knowledge is handled as a “society of minds”, each with its own cluster of beliefs,
which may contradict with each other. In each frame of mind, the agent beliefs
are consistent, but the conclusion that the agent draws in different frames of mind
may be inconsistent. Differently from our role-based approach, in the model of
this research, knowledge clusters are defined as non-interacting and agent can
utilize only one cluster at a time. So, they develop a new modal operator to be
able to define axioms that are true in all frames of the mind.

Knowledge Management in Role Based Agents 195

On the other hand Wassermann[15], similarly, proposes a belief base struc-
ture that simulate commonsense reasoning in an psychologically way, that am-
plify the RABIT system. This system consists of four modules: LTM(Long-Term
Memory) that all agent beliefs are stored, STM(Short-Term Memory) which
is a small subset of LTM where the reasoning (decision making) takes place,
ITM(Intermediate-Term Memory) that stores the history of the reasoning pro-
cess and finally RTM(Relevant-Term Memory) which is a kind of context, storing
the relevant concepts. Also, an heuristic algorithm to retrieve the most relevant
beliefs from a structured belief base(LTM) into the STM is introduced. But,
because of the absence of a well defined context scope, we cannot affirm that the
constructed STM embody the exact mental state of the agent.

Another research, that must be touched on here due to its conceptually simi-
larity with our approach, is the VIKEF project[17]. The VIKEF project aims to
create large-scale information systems that base on Semantic Web Technology.
At the center of the system there is an RDF knowledge base which contains a
large amount of information about documents and their contents. But, as a result
of the nature of web, it is obvious that conflicting information will arise. To cope
with this problem, they propose a context-based system to store semantically
contradictory statements in the knowledge base. But they use relations between
contexts, called compatibility relations, to gather related contexts differently
from our role-based approach.

6 Conclusion

In this paper we propose a knowledgebase approach to increase applicability of
role concept in the MAS research domain. While developing this role-based agent
knowledgebase architecture, we dive into the depths of the role theory which is
developed in consequence of sociological empirical researches. By the help of role
theory, sociologists also use roles to predict human behaviors according to the
body of knowledge about human organizations[1]. In the development of our
knowledgebase approach, we inspire from the self concept that has an important
place in the sociological role theory to resolve human behaviors in conflicting
social positions.

We also implement this knowledge approach and integrate it into the
SEAGENT multi-agent development framework[9]. The proposed knowledge-
base architecture is separated into two parts; active and passive knowledge. Both
knowledge parts consist of knowledge blocks each of which contains consistent
information about agent, role or role instance. While in the passive knowledge
persistence of knowledge blocks are provided, on the other hand, in the active
knowledge related knowledge blocks are arranged in a consistent form to provide
consistent knowledge to the agent for deterministic decision making. In Section
2, we declare the semantics of these knowledge blocks and how active and passive
knowledge evolve in the life-cycle of role-based agent. To measure applicability
of our approach and ensure the implemented architecture, we also develop a
case study in electronic barter domain application in Section 4. Within the case

196 H. Kır, E.E. Ekinci, and O. Dikenelli

study, we observe that an agent can play roles which have conflicting knowledge.
In the further steps of this research, we aim to cope with management of the
knowledge from the organizational perspective.

References

1. Biddle, B.J.: Recent developments in role theory. Annual Review of Sociology 12,
67–92 (1986)

2. Allen, V.L., van de Vliert, E.: A role theoretical perspective on transitional pro-
cesses. Role Transitions: Explorations and Explanations, 3–18 (1984)

3. Dastani, M.M., van Riemsdijk, M.B., Hulstijn, J., Dignum, F.P.M., Meyer, J.-J.C.:
Enacting and deacting roles in agent programming. In: Odell, J.J., Giorgini, P.,
Müller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382, pp. 189–204. Springer, Heidelberg
(2005)

4. Dastani, M., Dignum, V., Dignum, F.: Role-assignment in open agent societies. In:
Autonomous agents and multiagent systems (AAMAS), pp. 489–496. ACM, New
York (2003)

5. Marks, M.S.M., Stephen, R.: Multiple roles and the self: a theory of role balance.
Journal of Marriage and the Family (1996)

6. Goffman, E.: The Presentation of Self in Everyday Life. Anchor (June 1959)
7. Stryker, S., Serpe, R.T.: Identity salience and psychological centrality: Equivalent,

overlapping, or complementary concepts? Social Psychology Quarterly 57, 16–35
(1994)

8. Zhang, X., Xu, H., Shrestha, B.: An integrated role-based approach for modeling,
designing and implementing multi-agent systems. Journal of the Brazilian Com-
puter Society (JBCS) 13, 45–60 (2007)

9. Dikenelli, O.: Seagent mas platform development environment. In: Autonomous
Agents and Multiagent Systems, pp. 1671–1672 (2008)

10. Kristensen, B.B., Osterbye, K.: Roles: conceptual abstraction theory and practical
language issues. Theor. Pract. Object Syst. 2(3), 143–160 (1996)

11. Vázquez-Salceda, J., Dignum, V., Dignum, F.: Organizing multiagent systems. Au-
tonomous Agents and Multi-Agent Systems 11(3), 307–360 (2005)

12. Giorgini, P., Müller, J.P., Odell, J.J. (eds.): AOSE 2003. LNCS, vol. 2935. Springer,
Heidelberg (2004)

13. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency control and recovery
in database systems. Addison-Wesley Longman Publishing Co., Inc., Amsterdam
(1987)

14. Cakirlar, I., Ekinci, E.E., Dikenelli, O.: Exception handling in goal-oriented multi-
agent systems. In: Proceedings of the workshop Engineering Societies in the Agents
World IX. Springer, Heidelberg (2009)

15. Wassermann, R.: On structured belief bases. In: Frontiers in Belief Revision. Ap-
plied Logic Series, vol. 22, pp. 349–369. Kluwer Academic, Dordrecht (2001)

16. Fagin, R., Halpern, J.Y.: Belief, awareness, and limited reasoning. Artificial Intel-
ligence 34(1), 39–76 (1987)

17. Stoermer, H., Palmisano, I., Redavid, D., Iannone, L., Bouquet, P., Semeraro, G.:
Contextualization of a RDF knowledge base in the VIKEF project. In: Sugimoto,
S., Hunter, J., Rauber, A., Morishima, A. (eds.) ICADL 2006. LNCS, vol. 4312,
pp. 101–110. Springer, Heidelberg (2006)

Balancing Organizational Regulation and Agent
Autonomy: An MDE-Based Approach�

Loris Penserini1, Virginia Dignum1, Athanasios Staikopoulos2,
Huib Aldewereld1, and Frank Dignum1

1 Universiteit Utrecht - Institute of Information and Computing Sciences
P.O. Box 80089, 3508 TB Utrecht, The Netherlands

{loris,dignum,virginia,huib}@cs.uu.nl
2 Trinity College Dublin, Computer Science, Ireland
AthanasiosStaikopoulos@cs.tcd.ie

Abstract. The deployment of agent societies —as complex systems— in
dynamic and unpredictable settings brings forth critical issues concerning their
design. Organizational models have been advocated to specify open systems in
dynamic environments in order to accomplish the need to represent regulating
structures explicitly and independently from acting components (or agents). De-
spite the fact that several frameworks have been proposed for the specification of
organizational models, it is still a matter of design choice how to balance between
regulative design and component flexibility.

We propose a design framework, discussing the advantages of having differ-
ent degrees of abstraction at organizational level in the development of agent
societies. That is, we illustrate how the design properties impact the flexibility of
run-time systems to cope with context changes. We adopt the OperA software en-
gineering methodology to deal with the organizational model specification, and
the Model Driven Engineering (MDE) mechanisms to map concepts between dif-
ferent design models.

1 Introduction

To empower individuals and human organizations to achieve their goals and perform
their tasks effectively, we need systems that are aware of dynamic and usually unpre-
dictable physical and organizational/social contexts where tasks are performed. The
current trend is that an increasing number of entities, from smart personal devices to
legacy databases, are controlled by software agents. The deployment of agent societies
in dynamic and unpredictable settings brings forth critical issues concerning the design,
implementation and validation of their behavior [11,7,4]. Changes in the environment
lead to alterations on the effectiveness of the organization and therefore in a need to
reorganize, or at least, the need to consider the consequences of the change to the orga-
nizations effectiveness and possibly efficiency.

� This work has been performed in the framework of the FP7 project ALIVE IST-215890, which
is funded by the European Community. The author(s) would like to acknowledge the contri-
butions of his (their) colleagues from ALIVE Consortium (http://www.ist-alive.eu)

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 197–212, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

198 L. Penserini et al.

Organizational models have been advocated to specify open systems in dynamic en-
vironments. By open we mean that components are not designed nor controlled by a
common entity, and by dynamic we mean that unplanned and unspecified changes may
occur at run time. That is, there is a need to represent the regulating structures explic-
itly and independently from the acting components (or agents). Organization models
comprise structural and behavioral aspects [11,7]. Structural aspects include the formal
patterns of relationships between groups and individuals, and the norms that govern
their interactions, while behavioral aspects include processes, rules, activities, and oper-
ational methods. Depending on the specific situation, a change may affect the structural
aspects or the behavior aspects.

Several frameworks have been proposed for the specification of organizational mod-
els. However, it is still a matter of design choice how to balance between regulative
design and component flexibility. In this paper, we present some initial considerations
towards the formalization of design guidelines for organizational models and apply
these to the case of modeling of crisis management systems in the Netherlands [12].
The work reported in this paper is part of the general development framework within
the European FP7 ALIVE project. In particular, with respect to the proposed ALIVE
design framework, we discuss possible advantages of having different levels —i.e., Or-
ganizational and Coordination — in the design process of agent-based systems. That
is, we illustrate how the design properties impact the flexibility of run-time systems to
cope with context changes. We adopt and combine the OperA methodology [5] to deal
with the organizational model specification, and the Model Driven Engineering (MDE)
mechanisms [1] —i.e., MDA based transformations [8]— to map concepts between the
different levels of abstraction.

The paper is organized as follows: Section 2 gives an overview of the ALIVE design
framework that includes the OperA methodology and the MDE techniques. Section 3
briefly sketches a case study about The Netherlands procedures to cope with a crisis
management scenario. Section 4 provides some intuitions about the effects of having a
more or a less abstract organizational model specification over the (run-time) agents au-
tonomy. In Section 5, we illustrate how MDE techniques facilitate the regulation of the
level of design abstraction. In Section 6, we apply our approach to a real case study of
organizational models. Section 7 provides some preliminary remarks about advantages
and disadvantages of our approach. Finally, Section 8 gives some conclusions.

2 Background

2.1 The ALIVE Approach

The ALIVE project aims to apply organizational concepts to the design and implementa-
tion of service-based software systems. The main focus of the project is to create com-
plex systems based on the composition of (existing) services, through the addition of
levels of abstraction. The project extends the current trend in service-oriented engineer-
ing by combining the latest in coordination and organization mechanisms and model
driven design to create a framework for software and service engineering for “live”
open systems of active services. An overview of the project’s architecture is given in
figure 1.

Balancing Organizational Regulation and Agent Autonomy 199

role

rolerole role

actor

actor
actor

actor

Organisational level

Coordination level

Service level

SD
SD

SD

SD

SD

SD

WS
WS

WS

WS

WS

WS

Form
al Fram

ework

M
odel-Driven Engineering

Fig. 1. The ALIVE framework for software and service engineering

– The Service Level (SL) augments and extends existing service models with seman-
tic descriptions to make components aware of their social context and of the rules
of engagement with other services.

– The Coordination Level (CL) provides the means to specify, at a high level, the
patterns (workflows) of interaction between services, using a variety of powerful
coordination techniques from recent European research in the area.

– The Organization Level (OL) provides context for the other levels – specifying
the organizational rules that govern interaction and using recent developments in
organizational dynamics to allow the structural adaptation of distributed systems
over time.

The advantage of added levels of abstraction to the design process of systems based on
the composition of services is two-fold: 1) it is more intuitive to think in organizational
structures and interactions while designing complex interactions for services, and the
addition of these layers of abstraction allows for a gradual (fluent) transition from the
system as foreseen to the actual implementation; 2) when changes happen in the envi-
ronment (e.g., specific services become unavailable) the added levels of abstraction are
an explicit representation of the conceptual steps made at design, thus giving additional
information on why certain interactions (between the services) are as they are, which
enables the system to dynamically cope with the changes.

OL and CL have different philosophies: CL takes a bottom-up approach to modeling,
by describing the behavior of the system as a plan workflow by describing the individ-
ual behavior of agents and specifying their activities. OL takes a top-down view, by
describing the objectives of an organization. OL defines the desired result of the col-
lective behavior, whereas CL describes the practice (i.e., the individual activities and
interactions) that leads to that result. The difference in the viewpoints becomes clear
when we compare the models used at OL and CL, as detailed below.

200 L. Penserini et al.

In the rest of this paper, we focus our attention on OL and CL. Specifically, we
illustrate how different degrees of design abstractions at OL and CL may be affected by
context changes that force the system to adapt.

The Organization Level of ALIVE. The Organizational Level (OL) defines the or-
ganizational structure of the society, describing roles and interactions, as intended by
the organizational stakeholders. The OL specification is based on the OperA frame-
work [5]. OperA enables the specification of abstractions, suitable both to model and
study existing societies, as well as to develop new systems that participate in an orga-
nizational context. The main focus of OperA enable a suitable balance between global
aims and requirements agent autonomy, their coordination needs, and environmental
stakeholders’ needs.

At the OL, social structures (describing roles and their relationships) as interaction
structures (describing abstract patterns of interaction) and norms (describing organiza-
tional rules and requirements) are specified. These form the basis for the design of the
coordination layer, by providing the organization information that agents will require
to enact roles in the organization.

The Social Structure specifies objectives of the society, its roles and what kind
of model governs coordination. The Social Structure is typically depicted in a role-
dependency graph (e.g., Figure 2). Normative structures describe how to shape the free-
dom of role-enacting agents within the organization. While the Social Structure diagram
deals with organizational objectives and social responsibilities between organizational
roles, and the Normative Structure describes the regulations that hold in an organiza-
tions, the Interaction Structure specifies how to fulfill responsibilities and to achieve
objectives, while still remaining compliant with a normative dimension (cf, Figure 6).
Interaction Structure diagrams specify a partial ordering of the activities within the or-
ganization defined in terms of scenes and scene transitions. It abstracts over how the
activities are done, but defines in which order what is supposed to happen such that
organizational objectives are met without violating any organizational rules.

Interaction Scenes describe a scenario of activity, that is, how roles can interact and
evolve. A scene is described by its players, results and the norms regulating the in-
teraction (cf, Figure 6.(B)). Within a scene, landmarks define important states in the
scene execution, that is, states that must be reached in any interaction between players
to achieve a scene result. Landmark patterns provide a partial ordering of scene states
(cf, Figure 6.(C)).

The Coordination Level of ALIVE. The OL provides the overall organization design
that fulfills the stakeholders requirements. However, it does not specify how to structure
groups of agents and constrain their behavior by social rules such that their combined
activity will lead to the desired results. Coordination can be defined as the process of
managing dependencies between activities [9]. That is, one way to coordinate is to man-
age functional dependencies. In this sense, coordination refers to task sharing and man-
agement, such that individual and shared goals are achieved. Another view is that of the
system as an organization where dependencies are captured through supervision (e.g.
influence, authority, etc.) and collaboration (e.g. teams) relationships between agents.
In this sense, coordination refers to the specification of power and authority relations
between agents.

Balancing Organizational Regulation and Agent Autonomy 201

2.2 Model Driven Engineering

Model Driven Engineering (MDE) [1] refers to the systematic use of models as primary
artifacts throughout the Software Engineering (SE) development process. A model-
driven approach to development is generally based on the Model Driven Architecture
(MDA) [8] that is an initiative from OMG1 specifying a framework of open standards
and related technologies. The framework is built upon the metamodel foundation in
order to enable a standard specification and inter-operability mechanism for tools. So
systems and applications are formalized with metamodel descriptions and are visualized
by models as metamodel instantiations. Actual code implementations are created auto-
matically by applying predefined transformations from source models to target models
and implementation languages.

In the context of this paper, MDE specifies the organization and coordination lay-
ers, upon which special purpose tools (editors) are created, allowing the modeling and
instantiation of corresponding models. Moreover, constraint rules in the form of OCL
expressions are attached to the metamodels to validate models during instantiation as
well as transformations are applied to integrate ALIVE across its layers.

3 Motivating Scenario

Incident Management refers to the activities of an organization to identify, analyze and
correct hazards. The Netherlands has an extensive crisis management structure to re-
spond to incidents that affect public order. A layered model, the Coordinated Regional
Incident-Management Procedure (GRIP), is a nationwide emergency management pro-
cedure based on the severity of the disaster, and allows local, regional and national
authorities to take action where necessary. The aim of the procedure is to enable the ad-
equate response to the situation, with a minimum level of disruption of the public life.
The procedure is currently used by emergency services, different layers of government
and government agencies. Table 1 gives an overview of reach and procedures of the
different levels.

These GRIP procedures are a motivating use-case for ALIVE as a scenario in which
changes in the environment affect organizations [12]. Following the ALIVE method,
a distinction is made between organizational structures, specified in the OL (i.e. the
structural aspects of the system), and coordination activities, specified in the CL as
multi-agent systems (i.e. the behavioral aspects of the system). One aim of ALIVE is to
support smooth transition between different disaster levels and maintain consistency of
operation, by providing a flexible formal model for the GRIP procedures.

The organizational model describes the abstract purposes of the system. That is, the
organizational model describes the objectives and requirements for the organization; it
describes the reason for which the organization is created and/or laws or regulations
imposed on the organization by external institutions. In the GRIP procedures these can
be, for instance, the overall objective to “solve crises” (holds over all possible environ-
ments) or abstract maintenance goals like “minimize casualties”, “minimize structural

1 Object Management Group, see http://www.omg.org/

202 L. Penserini et al.

Table 1. GRIP levels of incident management

Phase Affected area Coordination
GRIP 0 Day-to-day routine operations -
GRIP 1 Incident of limited proportions Duty officers
GRIP 2 Incident with a definite effect Local commander

on the surrounding area
GRIP 3 Threatened well-being of (large groups of) Mayor

the population within a single municipality
GRIP 4 Province or country level Queen’s Commissioner

damage”, and “minimize cost”. There are obviously, many different ways in which to
specify these issues.

Design decisions taken at OL have consequences for the possibilities at CL. For ex-
ample, assume that at OL it is explicitly defined that evacuation of casualties is a task
of the medics role and to be done using an ambulance by a team of exactly 3 players
(the driver, the nurse and the first-aid specialist). This choice gives a very precise de-
scription to the CL on how to deploy agents for this task and how to define a concrete
evacuation plan. On the other hand, it can be decided at the OL that evacuation of ca-
sualties is the objective of the crises-solvers. This leaves open the possibility, in case
of need, to request a bystander to use her car to take some casualties to the hospital,
which may be more efficient if no medics are around. However, such a design decision
requires a more complex solution at CL, given that less handles are provide about which
are the capabilities and requirements of specific agents, who must be endowed with the
capabilities to reason about their position in the organization.

Abstract organization models are flexible and robust as they can accommodate many
changes in the environment; however, these models may not give enough information
to generate an efficient coordination model. This would be the case of the GRIP ‘free’
model depicted in Figure 2. Similarly, concrete organization models are more efficient
as they describe capabilities and requirements in great detail but will need to be reor-
ganized in face of environmental changes. This implies the specification of a detailed

Fig. 2. Possible organizational models at different levels of abstraction, by OperA’s Social Struc-
ture diagrams

Balancing Organizational Regulation and Agent Autonomy 203

organizational model for each GRIP level, as the models for GRIP-2 and GRIP-3 in
Figure 2 plus the reorganization rules to change between these models. The issue is
thus to decide when to choose a flexible and robust organizational model, and when to
choose a highly descriptive and efficient model.

4 Balance Regulation and Flexibility

As discussed in the previous section, at the highest level of abstraction, organization
models represent all institutional norms with the minimum constraints for agents. At
the lowest level of abstraction, organizations describe one, proven, process that guar-
antees full compliance to organizational norms and objectives. In [7] and [11] a for-
mal description in terms of graph theory is proposed for quantifying to what extent
organizational structures enjoy specific characteristics such as robustness, flexibility
and efficiency. These formal properties can be used to determine the level of speci-
ficity of the organizational model. That is, given different organizational models, it can
be determined which one provides the highest flexibility, and which one the highest
efficiency.

Basically, the spectrum of choices concerning the level of abstraction of the organi-
zation model ranges between the following two extremes:

Most Abstract. The organization model consists of only one role, which has one ob-
jective corresponding to the global objective of the organization, and as norms all
the organizational norms. This requires the Coordination Level (CL) to have the ca-
pabilities to interpret such description in the context, and decide on the best trans-
formation into concrete plans and activities.

Most Concrete. The organization model includes many roles with detailed objectives
and sub-objectives. Interaction scenes and the partial ordering of scenes provide
all the details needed to generate a complete plan that fixes activity such that there
is no room for interpretation. Structures at CL can be obtained by a translation
mechanism and therefore there is no need for decision making capabilities at CL.

As detailed by examples in the next sections, different degrees of abstraction reflect
also on the single agent autonomy required to accomplish organizational objectives.
Intuitively, if more detailed specification is given at OL, less alternative ways (auton-
omy) for agents at CL to achieve the organizational objectives are left. So, despite the
fact that we often desire agents to be highly autonomous (e.g., see [4]), we also expect
agents to adhere to institutional norms that regiment their activities and, hence, reduce
their autonomy. The OperA modeling language adopted at OL does not have the goal
of guaranteeing agent autonomy but rather of coping with the given autonomy. Never-
theless, by the separation of concerns along three levels (organizational, coordination
and service), the ALIVE design framework helps designers to better regulate agent au-
tonomy simply intervening in the specification of each level. Of course, the autonomy
property is also often used as an indicator to establish the system flexibility to adapt to
context changes, as discussed next.

204 L. Penserini et al.

5 MDE to Guarantee Flexibility-Regulation Balance

This section describes a concrete MDA approach to support the design of organiza-
tional models with different degrees of abstraction as well as the modification of their
underlying coordination model as a result of an organizational adaptation. As it is ex-
plained, the design property impacts the flexibility of run-time systems to cope with
context changes. That is, the adaptation process of the run-time system may require
changes either within models at CL —e.g., agents’ workflows— or within both CL and
OL —e.g., agents’ workflows and the organization’s Social Structure. Figure 3 outlines
in terms of MDA concepts, the two principal modeling scenarios discussed along the
paper.

As it is illustrated in the first case (Figure 3.(A)), the abstract GRIP ‘free’ organiza-
tional model is capable to effectively capture both scenarios of GRIP-2 and GRIP-3 (at
OL) with no modifications. As a result this design solution provides ultimate flexibility
and dynamicity for the OL. While, the coordination models need to be modified to re-
flect changes on agents and workflows involved. In this case both GRIP-2 and GRIP-3
coordination models are associated with the same abstract organizational model mak-
ing the generation process rather generic, so agents playing the same role are treated
similarly ignoring their specific/individual capabilities and requirements.

In the second case, the escalation of scenario from GRIP-2 to GRIP-3 requires both
the modification (with new organizational roles and regulations) of the organizational
models and their corresponding coordination models. This more concrete design ap-
proach may compromise adaptation flexibility, however it provides more elaborate map-
pings among the organizational and coordination models, thus providing more elaborate
workflows due to enhanced regulations.

In MDA, the OL and CL dependencies are formulated with model driven mappings
(relations). The mappings are specified with a transformation language, among the
corresponding elements of the OL and CL metamodels shown in Figure 4 and
Figure 5 respectively. As illustrative examples, the mappings among
sceneToAgents, playerToAgent, landmarkToCompositeTask and
sceneResults have been specified. So, the transformation process can be initiated
from the sceneToAgents mapping that creates a number of agents from the players
of a scene. The rule in turn applies a mapping among a player and an agent, which
based on the interaction patterns identified in the scene for that player creates a number
of ordered task lists. A particular ordered task list is derived from the from and to

Fig. 3. Modeling alternatives at OL: (A) an abstract model and (B) a detailed model for every
crisis situation

Balancing Organizational Regulation and Agent Autonomy 205

landmarks that are mapped to composite tasks, and a flow that connects tasks as a result
of the partial order is created. Similarly the results (e.g., sub-objectives) of a scene are
mapped to workflow tasks.

mapping sceneToAgent s (i n s : OL : : Scene , i n o u t wf : Workflow) {
v a r a g e n t s := s . p l a y e r s −>c o l l e c t (p l | map
p laye rToAgen t (agentNames , pl , s)) ;

}
mapping p l aye rToAgen t (i n agentName : S t r i n g , i n p l :OL : : P l a y e r , i n

s :OL : : Scene , i n o u t wf : Workflow) : Agent{
name := agentName ; p l a y := p l . p l a y e r I D ;
p a r t i c i p a t e += o b j e c t CL : : P a r t i t i o n {

a g e n t := r e s u l t ;
t a s k += s . i n t e r a c t i o n P a t t e r n −>c o l l e c t (x |
map c r e a t e O r d e r e d T a s k L i s t s (x , wf)) ; } ;

}
mapping c r e a t e O r d e r e d T a s k L i s t s (i n l p : OL : : LandmarkPa t t e rn ,

i n o u t wf : Workflow) : Sequence (Composi teTask){
v a r p a r t i a l O r d e r s := l p . l andmarkOrde r ;
r e s u l t := p a r t i a l O r d e r s −>c o l l e c t (x :OL : : P a r t i a l O r d e r |
map c r e a t e O r d e r e d T a s k L i s t (x , wf)) ;

}
mapping c r e a t e O r d e r e d T a s k L i s t (i n po :OL : : P a r t i a l O r d e r ,

i n o u t wf : Workflow) : Sequence (Composi teTask){
v a r c t 1 := map landmarkToComposi teTask (po . from) ;
v a r c t 2 := map landmarkToComposi teTask (po . t o) ;
v a r f low := o b j e c t Flow {} ;
c t 1 . ou t go ing−>append (f low) ; c t 2 . incoming−>append (f low) ;
wf . edge += f low ; r e s u l t += c t 1 ; r e s u l t += c t 2 ;

}
mapping landmarkToComposi teTask (i n l :OL : : Landmark) : Composi teTask {

r e s u l t := o b j e c t CL : : Composi teTask {
name := l . name ; } ;

. . . }
mapping s c e n e R e s u l t s (i n s :OL : : Scene , i n o u t wf : Workflow) :

Sequence (SimpleTask){
r e s u l t += s . r e s u l t s −>c o l l e c t (x | x . s t a t e D e s c r i p t i o n −>
map t o S i m p l e T a s k ()) ;

. . . }
mapping OL : : P a r t i a l S t a t e D e s c r i p t i o n : : t o S i m p l e T a s k () : S impleTask {

name := s e l f . s t a t e D e s c r i p t i o n ;
. . . }

When an abstract organizational model is used as a source of the mapping definitions
only a few elements are resolved, associated with general capabilities. In the second
case where the source model is more elaborate the mapping can produce more detailed
Agent specifications with specific capabilities.

206 L. Penserini et al.

Fig. 4. OperA Meta-Model fragment

Fig. 5. Coordination Meta-Model fragment

6 Organizational Structure Design

This section provides some details about how to use the modeling language of our
ALIVE design famework. According to Figure 3, the focus is on how context changes
may affect the whole system, considering both a more and a less abstract organizational
model at OL. The features of the ALIVE design framework are illustrated by the crisis
scenario through some examples of MDA transformation rules.

6.1 Abstract OL

This is the case where at OL the designer provides an organizational model that ab-
stracts from the GRIP crisis situations, i.e., as shown by GRIP ‘free’ model of Figure 2.
The abstraction level adopted for dealing with the social structure of the organization

Balancing Organizational Regulation and Agent Autonomy 207

Fig. 6. Modeling fragments at OL: (A) Interaction Structure, (B) scene script for Handle
Incident and its (C) landmark pattern, referred to the GRIP ‘free’ model of Figure 2

also reflects onto its interaction structure, as pointed out by Figure 6. Figure 6.(A) de-
fines a partial ordering of activities (scenes) within the organization to fulfill the main
objective no-crisis. Moreover, within each scene, the designer may describe how
roles interact and evolve, expected results and norms regulating the interactions, as
shown in Figure 6.(B) and (C).

In the abstract OL, the landmark pattern provided for the scene Handle
Incident only specifies two important objectives (landmark states) to be achieved
by role enacting agents within the scene execution. In particular, each agent that enacts
the role of Coordinator has at least to reach the state evaluate severity and
each agent that enacts the role of Crisis Solvers has at least to reach the state
evacuate people in order to correctly fulfill the scene results. This level of details
are quite far from what actual agents require at CL to effectively deal with a Handle
Incident activity (a complex task) within a crisis scenario. For example, Figure 7
gives an idea of how complex the workflow of agent tasks can be2 at CL to deal with
the expected results from scene Handle Incident, i.e., safe location, street order,
rescue and containment.

Thus if we apply the transformation description (sceneToAgents) upon the or-
ganizational model, an incomplete coordination model is derived. Therefore, even
if some OL concepts can be mapped into the CL, a lot of information is missing
and has to be captured within the CL, e.g., by providing agents that embed more
complex activities than required. That is, the more abstract the OL specification, the
more freedom for the agents at CL to choose the way to fulfill organizational objec-
tives. For coping with the crisis situation of GRIP-2, a possible workflow required
at CL —mainly to achieve the results required by scene Handle Incident—
is described by Figure 7. It is worth noticing that the single landmark evacuate
people —λ0: specified at OL— is mapped into three main CL workflow tasks —

2 This design concept ‘task’ is used to model both an agent’s complex plan and an agent’s simple
atomic action, as for the scope of this paper the distinction is not relevant.

208 L. Penserini et al.

Fig. 7. Possible workflow model at CL to deal with the scene Handle Incident of Figure 6
when severity is at GRIP-2

status information, assessment and evaluate GRIP— belonging to the
roles Service Providers, Coordinator and Government respectively, re-
flecting the more complex level of details as well as the extended freedom given to the
agents in order to achieve an objective.

In the case of a transformation, the landmark evacuate people produces a
composite task with corresponding agents, which are derived from the corresponding
players of the scene. However, the composite task cannot be decomposed further
into two simple tasks as such details are not provided yet. Moreover, in GRIP-2, the ex-
pertise of several agents is needed to cope with the crisis, e.g., agents Cop, Medic
and Firefighter comply with and enact the role Crisis Solvers and how
they should coordinate with each other is not detailed within the landmark patterns
of scenes. So, workflow constructs such as ForkNode and JoinNode cannot be cre-
ated to impose the ordering of single tasks that are created from the result mapping
(sceneResults). According to our crisis management scenario, we describe here a
possible context change that forces the whole ALIVE organizational setting to adapt.
In particular, we discuss how these changes impact design models provided at CL and
OL as illustrated in Figure 3.(A).

Scenario 1. While the crisis organization is involved in a GRIP-2 level of a floodwater
incident, the river that crosses a big city has breached its banks. This causes the roads
into (or out of) the incident location to get blocked and cannot be used for wounded and
people evacuation any longer. This context change also forces the Government to scale
up to the GRIP-3 level.

The regulation imposed by the organizational model GRIP ‘free’ —i.e., see Figure 2
and Figure 6— remains still valid to cope with Scenario 1. Nevertheless, as partially
described by Figure 7, this workflow is not suitable anymore for the new crisis sit-
uation and a new workflow model is needed at CL. For example, new agents play-
ing roles along with new rights come to play at GRIP-3 of incident handling, e.g.,
as the mayors of the affected towns are coordinated and supervised by a regional

Balancing Organizational Regulation and Agent Autonomy 209

coordinating team (LOCC) that keeps the Minister of Internal Affairs (Government)
informed about the actual crisis situation, i.e., see the social structure diagram of Fig-
ure 2.(GRIP-3). In this case, the transformation process (playerToAgent) is param-
eterized from domain knowledge as follows: playerToAgent(‘Major’, C) and
playerToAgent(‘LOCC’, C).

Finally, with MDA many of the normative rules defined in OL models can be trans-
lated into OCL rules in CL models, so the generated coordination models can be vali-
dated after a transformation or an adaptation process.

6.2 Specific OL

In this section, we discuss the case where at OL the designer provides an organizational
model specifically tailored to a crisis situation, e.g., let us consider the case of GRIP-2.
A possible resulting model is defined by the social structure of Figure 2.(GRIP-2) and
by the interaction structure of Figure 8 but except for the scene Mobilise along with
any reference to the role Army, as it comes to play within the crisis only at GRIP-3 and
GRIP-4.

The more accurate level of details also is reflected by landmark patterns of scenes,
as partially shown in Figure 8.(C). That is, an MDA transformation can produce the
workflow of Figure 7 as almost a straight interpretation of the OL model. For ex-
ample, the previous freedom at CL of choosing the three agents —Cop, Medic and
Firefighter— to deal with Handle Incident activities at GRIP-2 is lost. In
fact, now by the landmark pattern of Figure 8.(C) the need of the three agents along
with their required abilities is precisely defined by:
DONE(P, street order)BEFORE

(DONE(M, medical assistance) AND DONE(F, no fire))
So, the transformation of scene results (sceneResults) will produce a detailed

workflow fragment of tasks with the imposed ordering and concurrency derived from
the landmark pattern. Moreover, instead of the previous generic role of

Fig. 8. Modeling fragments at OL: (A) Interaction Structure, (B) scene script for Handle
Incident and its (C) landmark pattern, referred to the GRIP-3 model of Figure 2

210 L. Penserini et al.

Crisis Solvers (CS) played by three different agents —CS::Cop, CS::Medic
and CS::Firefighter— now the workflow is more elaborated with P::Cop,
M::Medic and F::Firefighter where P, M and F corresponding to well defined
organizational roles Police, Medics and Firefighter respectively, along with
their required abilities and rights.

Considering the previous Scenario 1, the context change forces the organization to
adapt but this time the organizational model proposed in Figure 2.(GRIP-2) is not valid
anymore to deal with GRIP-3. The change from GRIP-2 to GRIP-3 introduces some
new organizational roles and changes in the hierarchical structure of the role interac-
tions. For example, the National Operational Coordination Center (LOCC) of the Dutch
Ministry of Interior and Kingdom Relations comes into play with the responsibility to
monitor and support the activities of the pool of majors involved into the crisis. That
is, the proposed model for GRIP-3 (see Figure 2) considers a local dimension for the
Coordinator that is enacted by any involved major along with the required local
handling forces. Moreover, within the organizational model of GRIP-2 there is no role
(e.g., Crisis Solvers) that may abstract on possible Army enacting agents needed
at GRIP-3.

7 Consequences for Agent Design

Role description as provided by the OL modeling is a “position” to be filled by a player
[10]. At CL, roles will be (temporarily) assigned to players. For example, in GRIP
1, the role of crisis coordinator is assigned to the first official to arrive on the scene.
A role may be temporarily unassigned, without necessarily leading to a failure in the
operation of the system. From the perspective of the organization it does not matter
whether policewoman Alice or policeman Bob take the coordinator role, as long as
they both have sufficient capability. The ability to dynamically bind different players
to roles gives the organization a degree of adaptability in meeting changing goals and
environments.

A role player who is bound to a role in an organizational structure needs an ability
to perform the assigned role. This capabilities include [2]:

– Execution of function defined by the role or imposed by role relationships, includ-
ing the ability to use resources available to the role.

– Ability to communicate, as a proxy for its role, with players of other roles.
– Ability to reason about what plans and activities can be used to achieve role objec-

tives (landmark states).

In particular this last capability requires different skills, depending on the level of ab-
straction of the OL specification. From the perspective of a role player, the role descrip-
tion provides a, more or less abstract, definition of the organizational knowledge and
skills required to adequately perform the role. That is, different levels of abstraction
of OL models have consequences for the capabilities required from CL agents, i.e., in
its operational knowledge or know-how. Role players need to evaluate the context and
determine fulfillment of the role. This demands observation and reasoning skills for the
agents in order to adapt to different contexts and determine plans and operational ac-
tivities to enact the role. Communication between agents is necessary, and robustness

Balancing Organizational Regulation and Agent Autonomy 211

of the system is rather dependent on the monitoring process. Nevertheless, when agents
are designed for a specific role, they cannot accommodate large changes in the context.

Taking the crisis management scenario as an example, we can identify the following
characteristics of the different abstraction choices:

Case 1. Abstract emergency management description at OL.
In this situation, the crisis management model at OL is abstract enough to incorpo-
rate all GRIP situations. Specific models for each GRIP level need to be defined at
CL, but they still have to adhere to those regulations inherited from OL by MDA
transformations.

– Advantages: Only requires organizational verification for one model, MDA
model transformations guarantee link between OL and CL. Furthermore, dy-
namic changes are dealt with at CL affecting only the current GRIP model,
enabling a stable OL model. Less regulations inherited from OL allows
agents more freedom to search for optimized ways of achieving organizational
objectives.

– Disadvantages: There is a need for CL-designers to be able to acquire the lack-
ing OL specification, e.g., manually and/or by other design tools. Hence, the
CL-designer has also to be a domain expert in order to correlate agent capabil-
ities with organizational objectives and norms.

Case 2. Specific GRIP descriptions at OL.
– Advantages: The verification of each GRIP is done at OL level (e.g., making

use of OperettA verification capabilities [6]). The CL model is explicitly gen-
erated for each GRIP, limiting the need of acquiring context information at CL.

– Disadvantages: Change dynamics are required at OL which implies a more
complex change strategy, as changes at OL have consequences for all models
at CL. Interpretation of GRIP at CL is fixed by the OL-CL transformation,
which means that it is not possible to incorporate specific agent capabilities.

Another important issue is the evolution of situation knowledge. If we keep the knowl-
edge coupled to a role, then it can be transferred to any agent enacting that role (e.g.
when the role of coordinator moves from police officer to mayor). If we keep knowledge
at agent level, then explicit ‘debriefing’ is needed when roles change. Comprehensive
solutions for this issue require complex agents that are able to reason about their own
objectives and desires and thus decide and negotiate their participation in an organiza-
tion [3].

8 Conclusions

The proposed work shows features and discusses the applicability of a design framework
for software and service engineering of systems deployed in highly dynamic contexts.
We illustrated that the modularity (levels: OL, CL and SL) of our design framework
helps designers in separation of concerns, making it easier and more precise to regulate
agent autonomy by simply intervening in the specification of each level. Moreover, we
focused on how context changes may affect the system flexibility to adapt, considering
both a more and a less abstract organizational model at OL. We adopt and apply the

212 L. Penserini et al.

OperA methodology to deal with the organizational model specification, and the MDA
transformation techniques to map concepts between the different levels of abstraction
at OL and CL. We motivate and actually apply our ideas within the case of modeling
of crisis management systems in the Netherlands.

References

1. Brown, A.W., Conallen, J., Tropeano, D.: Introduction: Models, Modelling and Model
Driven Architecture (MDA). Springer, Heidelberg (2005)

2. Colman, A., Han, J.: Roles, players and adaptive organisations. Applied Ontology: An Inter.
Journal of Ontological Analysis and Conceptual Modeling (2), 105–126 (2007)

3. Dastani, M., Dignum, V., Dignum, F.: Role assignment in open agent societies. In: AAMAS
2003. ACM Press, New York (2003)

4. Dignum, M., Weigand, H.: I am autonomous, you are autonomous. In: Nickles, M., Rovatsos,
M., Weiss, G. (eds.) AUTONOMY 2003. LNCS (LNAI), vol. 2969, pp. 227–236. Springer,
Heidelberg (2004)

5. Dignum, V.: A Model for Organizational Interaction: based on Agents, founded in Logic.
PhD thesis, Universiteit Utrecht (2004)

6. Dignum, V., Okouya, D.: Operetta: A prototype tool for the design, analysis and development
of multi-agent organizations. In: Proc. AAMAS 2008, Demo Track (2008)

7. Grossi, D., Dignum, F., Dignum, V., Dastani, M., Royakkers, L.: Structural aspects of the
evaluation of agent organizations. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier,
O., Dignum, V., Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, pp.
3–18. Springer, Heidelberg (2007)

8. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture—
Practice and Promise. Addison-Wesley, Reading (2003)

9. Malone, T., Crowston, K.: The interdisciplinary study of coordination. ACM Computing
Surveys 26(1) (March 1994)

10. Odell, J., Nodine, M., Levy, R.: A metamodel for agents, roles, and groups. In: Odell, J.,
Giorgini, P., Müller, J. (eds.) AOSE 2004. LNCS, vol. 3382, pp. 78–92. Springer, Heidelberg
(2005)

11. Penserini, L., Grossi, D., Dignum, F., Dignum, V., Aldewereld, H.: Evaluating organizational
configurations. In: IEEE/WIC/ACM International Conference on Intelligent Agent Technol-
ogy, IAT 2009 (2009)

12. Quillinan, T.B., Brazier, F., Aldewereld, H., Dignum, F., Dignum, V., Penserini, L., Wijn-
gaards, N.: Developing Agent-based Organizational Models for Crisis Management. In: Proc.
of the 8th Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 2009),
pp. 45–51. ACM Press, New York (2009)

Cooperative Sign Language Tutoring:
A Multiagent Approach

İlker Yıldırım, Oya Aran, Pınar Yolum, and Lale Akarun

Department of Computer Engineering
Boğaziçi University

Bebek, 34342, Istanbul, Turkey
{ilker.yildirim,aranoya,pinar.yolum,akarun}@boun.edu.tr

Abstract. Sign languages can be learned effectively only with frequent
feedback from an expert in the field. The expert needs to watch a per-
formed sign, and decide whether the sign has been performed well based
on his/her previous knowledge about the sign. The expert’s role can
be imitated by an automatic system, which uses a training set as its
knowledge base to train a classifier that can decide whether the per-
formed sign is correct. However, when the system does not have enough
previous knowledge about a given sign, the decision will not be accu-
rate. Accordingly, we propose a multiagent architecture in which agents
cooperate with each other to decide on the correct classification of per-
formed signs. We apply different cooperation strategies and test their
performances in varying environments. Further, through analysis of the
multiagent system, we can discover inherent properties of sign languages,
such as the existence of dialects.

1 Introduction

Sign language is the natural means of communication for the hearing-impaired.
These visual languages are based on signs, which are a combination of hand
gestures, facial expressions, and head movements. A sign that is composed of
hand gestures is called a manual sign, whereas the head movements or facial
expressions are called non-manual signal. Teaching these signs to others is an
important, but a difficult task. A person can improve her performance of signs
only with frequent attempts and feedback. To automate the teaching of sign
languages, an automated sign language tutoring tool called SignTutor has been
developed [1]. The aim of this system is to help users learn isolated signs by
watching recorded videos and to enable them to try those signs on their own.
The system records a user’s video while she is performing a sign. After anal-
ysis of the user’s sign performance, the system gives the user feedback on her
performance. The system can recognize manual signs as well as non-manual,
complex signs, which include hand movements and shapes, together with head
movements, and facial expressions. The system uses a classifier for recognition,
by which it can compute a similarity score with a level of certainty for the user’s
sign performance. This classifier is the key component in deciding whether the

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 213–228, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

214 İ. Yıldırım et al.

user has performed the sign correctly. SignTutor is specialized for Turkish sign
language.

The current system is a stand-alone application. That is, each system has
its own data and own set of classifiers and there is no communication between
different instances of the system. Hence, two students that are practicing the
same set of signs on different stations cannot use each other’s data or feedback.
This is an obvious disadvantage. Intuitively, different systems will have varying
data and varying performances of classifiers. That is, a system may classify sign A
correctly, but may be incompetent in classifying sign B, whereas a second system
may have complementary expertise. It is most appropriate for these systems to
cooperate with each other when making decisions.

This challenge can be addressed by a traditional approach in which there is
a centralized database and a classifier, where every tutoring system acts as a
client. Clients then need to to be connected in order to facilitate tutoring. This
architecture is not plausible in our situation, because first, we know that the
clients may not be online all the time, and second, videos may belong to certain
individuals who do not want to share them on a central database.

Accordingly, we propose to encapsulate each instance of the SignTutor in an
agent. Agents are distributed geographically, but will be able to communicate
with each other over the Internet, forming a cooperative multiagent system [2].
Each agent is associated with a local database of signs and a classifier. An agent
can improve its classification performance due to its own experience. An agent
may decide to include a practice sign in its training data or a sign language
teacher may add new training data. Moreover, agents can help each other clas-
sify signs by exchanging classification requests. Thus, even when an agent’s own
classifier is not trained to classify a sign accurately, it can collect answers from
others and decide autonomously. Since agents have their own local databases
they can make a decision even when they cannot or do not want to communi-
cate with other agents. However, realizing this multiagent system comes with
challenges. The most important one is that when agents have varying expertise
in different classes, it is not immediately clear whom to ask for help. Accordingly,
we study different cooperation strategies deeply to understand their strengths
and weaknesses in different environments.

The rest of this paper is organized as follows: Section 2 formalizes the problem
of identifying agents to cooperate with. Section 3 explains different cooperation
strategies that have been developed to help agents decide on sign classification.
Section 4 evaluates these cooperation strategies on real sign language data. Sec-
tion 5 explains how important sign language properties can be inferred from a
multiagent system. Finally, Section 6 discusses our work with comparisons to
the literature.

2 Problem Definition

In this study, rather than focusing on how agents can improve the capability of
their own classifiers, we are interested in the problem of cooperation for making

Cooperative Sign Language Tutoring: A Multiagent Approach 215

Fig. 1. A setting for multiagent architecture for Turkish sign tutoring tools

better decisions for incoming classification requests. We illustrate the problems
of cooperation associated with our architecture on a simple setting. Figure 1
depicts a possible setting for cooperative multiagent architecture, which consists
of three agents that can communicate with each other. Each agent has a classifier
and this classifier is trained with data in the database associated with it.

As described above, the tutoring tool aims to make people learn sign language
on their own. The tutoring tool shows videos of signs as queried by the human
learner. A sign language learner requests the agent to recognize her performance,
Vhuman, and decide whether it is an instance of sign class Cclaim. The agent
then queries a subset of other agents, AQ, in the system by communicating to
them Vhuman, for their top m class predictions, P

(1)
i , ..., P

(m)
i , with associated

scores, S
(1)
i , ..., S

(m)
i and certainty values, C

(1)
i , ..., C

(m)
i for all i ∈ AQ. Now, the

agent has to decide if Vhuman belongs to Cclaim by combining predictions, scores
and certainty values of all queried agents. Therefore, the problem is to design
cooperation strategies in our architecture, which enable agents to effectively
combine results of other agents and to achieve better classification performance
than it would do on its own.

3 Cooperation Strategies

In our context, cooperation strategies are expected to enable each agent achieve
better tutoring, which corresponds to increased predictive accuracy in recogniz-
ing performances of human learners. As discussed above in Section 2, predictions,
scores and certainties of other agents are available to each agent by communi-
cation. Therefore, we develop cooperation strategies that exploit data gathered
through communication.

A valid interpretation of the cooperation strategy problem is classifier com-
bination. In this view, the agent that is to make the decision is responsible for
gathering predictions of other agents and applying any classifier combination

216 İ. Yıldırım et al.

method, such as voting and score fusion. In Sections 3.1 and 3.2, we further
elaborate state-of-the-art classifier combination methods [3].

Another suitable interpretation for the cooperation strategy problem is team-
mate modeling in cooperative multiagent learning, where agents model each
other in order to make good guesses about their future behavior [4]. In our case,
each agent in our system, by communicating predictions for human performances
maintain probabilistic models of each other. Each agent, then, uses these models
of other agents in the system to decide which agents to query for a given human
performance, and how to combine responses of these agents to make a better
prediction next time. We propose two probabilistic methods, one incorporates
prior knowledge to build a model, and the other uses observations coming from
interactions. The details of these methods are explained in section 3.3.

3.1 Voting

Voting is a common method for combining classifiers, and has proven useful
many times in the literature [5,6]. While applying voting schemes as cooperation
strategies, we consider responses coming from other agents as votes, and the
decision making agent which is responsible to respond to the user (the agent
that is queried by the human learner) is responsible for counting the votes in
terms of a specific scheme, and making the decision accordingly. We call this
agent the decision maker. For instance, in our sample setting seen in Figure 1,
the user performs a sign, which is captured by agent 3 as Vhuman, and the user
also claims that she performed an instance of the sign class Cclaim. Following
this, agent 3 queries both agents 1 and 2 to collect their votes for the class of
sign to which Vhuman belongs. Among several voting schemes we study majority
voting, weighted voting and Borda count schemes. If at the end of counting of
votes, agent 3 decides that the performance Vhuman belongs to the class Cclaim,
then it responds verbally as OK, and otherwise as WRONG to the user.

Majority voting. Majority voting is the application of majority rule, which
selects the one of two choices with more than half of the votes to make a deci-
sion [7]. To apply the majority rule, the decision making agent, agent 3 in our
sample setting, needs to retrieve the top predictions, P

(1)
i , for all i ∈ AQ, the

agents that are queried (in this case agents 1 and 2). There are two outcomes of
majority voting, OK or WRONG. A vote P

(1)
i is counted for OK if it is equal

to Cclaim, and counted for WRONG otherwise. The one which has more than
half of the votes is the final decision. In case of a tie, the decision maker selects
one of the possibilities randomly.

Weighted voting. The weighted voting scheme is based on the idea that not
all voters are equal, but instead, each voter has an associated weight and her
vote is counted according to this weight. This time, the decision maker collects
certainty values (which corresponds to weights) and predictions for their top
choices, C

(1)
i and P

(1)
i respectively for i ∈ AQ. The decision maker needs to

count the weighted votes as follows.

Cooperative Sign Language Tutoring: A Multiagent Approach 217

R =
∑

i∈AQ

K ∗ C
(1)
i

where

K =

{
1 if P

(1)
i = Cclaim

−1 if P
(1)
i �= Cclaim

and

Final Decision =

{
OK if R ≥ 0
WRONG if R < 0

One problem associated with weighted voting is the assessment of weights. With-
out elaborating on this problem, we simply make agents assess a certainty value
for their votes as C

(1)
i = S

(1)
i /S

(2)
i , where, S

(1)
i is the score calculated for top

prediction, P
(1)
i , by agent i and S

(2)
i is the score of the second prediction, P

(2)
i .

Borda count. Borda count is a voting scheme, in which voters rank candidates
(or a subset of candidates) in the order of preference. Each candidate’s score is
the summation of points—the higher the position of the candidate in the rank
of a voter, the higher the score—over all voters. The winner in Borda count is
the candidate with the maximum score.

In Borda count, the decision maker collects the top k predictions, P
(1)
i , ..., P

(k)
i

from each agent i ∈ AQ, the subset of agents that are queried. Each position in a
rank of k predictions has a specific score. For instance if k = 3, a possible scoring
could be 15 points for the first position, 10 and 5 points for the second and third
positions, respectively. After counting the total score for each class, the one with
the maximum score is selected. If the selected class is Cclaim, then feedback is
generated as OK, otherwise it is generated as WRONG. In our experiments we
set k = 3, and scores as 3 points for the first position, 2 points for the second
position, and 1 point for the last position in the rankings.

3.2 Score Level Fusion

In score level fusion, instead of the predictions themselves, the scores (confi-
dences, likelihoods, and so on) of the prediction, coming from different experts,
are fused to give the final decision [8,9]. Several combination rules, such as sum
rule or product rule, can be applied to combine data coming from different
sources in order to achieve better inference. Here, we apply sum rule for score
level fusion.

The decision making agent gathers predictions, P
(1)
i , ..., P

(k)
i , and their as-

sociated scores, S
(1)
i , ..., S

(k)
i for the top k choices for all agents i ∈ AQ. For

instance, in our sample setting in Figure 1, once the decision maker, agent 3,
receives the data coming from agents 1 and 2, it can proceed to apply score level
fusion methods to generate the user feedback. In our experiments we set k = 3.

218 İ. Yıldırım et al.

Given that the decision maker has P
(1)
i , ..., P

(k)
i and S

(1)
i , ..., S

(k)
i for all i ∈

AQ, score fusion by sum rule calculates new integrated score for each sign class
as follows:

sumScores(P (j)
i) = sumScores(P (j)

i) + S
(j)
i ∀ i: i ∈ AQ and 1≤ j ≤ k,

where sumScores is a vector of size of the number of different sign classes, and
it is initially all 0s. The position of the maximum value in sumScores is the
decision of the decision making agent. If the decision is the same as Cclaim then
the feedback is generated as OK, and otherwise as WRONG.

3.3 Modeling Agents

As we have discussed earlier, the aim of cooperation strategies is to enable agents
to achieve better tutoring, i.e. increased predictive accuracy in recognizing hu-
man performances. Agents in our architecture are heterogeneous in the sense that
their classifiers are trained using different databases, and they aim to improve
via experience. The heterogeneity of agents in the system could be of advantage
if a proper cooperation strategy is designed.

Strategies we have proposed up to now do not actually take advantage of
agents’ being heterogeneous. For instance, in majority voting and Borda count
schemes, the decision-making agent totally ignores differences among agents, and
acts as if everyone is equally knowledgeable for all queries. Although in weighted
voting each agent’s vote is counted according to their certainty values, one’s
evaluating its own weight may not always be a good choice. For instance, among
other reasons, weights gathered this way have no meaning in terms of relative
certainty of two agents, because they are all generated independent from others
by all means. Similarly score fusion techniques also suffer from the same case of
being relatively unnormalized.

One can exploit the heterogeneity of the system by designing a strategy in
which each agent models others explicitly in terms of what they know and how
well they know what they know, or in other words a strategy by which each agent
models expertise of other agents. Once an agent has modeled expertise of other
agents, it can query them accordingly, and still end up as a better tutor than it
would otherwise be. We now propose two different approaches for modeling other
agents in the system, the Observation-based model, a simple model of counting
success and failure times in previous predictions by each agent for each sign class,
and the Bayesian model, on top of the Observation-based model, incorporating
some prior knowledge related with success of others for each different sign class1.

Observation-based model. In multiagent games, a simple model for modeling
other agents in the system to predict their future behavior and achieve coordi-
nation is called fictitious play, in which agents maintain empirical distribution
1 In terms of our modeling approaches, we do not need to consider the exploration

versus exploitation tradeoff, because agents can only explore when extra data for
modeling others are available. When such data is available, agents use this data to
update all models they maintain.

Cooperative Sign Language Tutoring: A Multiagent Approach 219

of previously observed behavior for each agent, and use these distributions to
predict behavior of others. As shown previously and repeated many times, in
many settings, fictitious playing agents can achieve coordination [10].

In our work, we use the same idea to model predictive accuracy of other agents
in the system for each class of sign. But in our case, agents need to communicate
with each others training data sets to build up models of predictive accuracy.
More specifically, agent i has a data set D, which consists of performance in-
stances (videos) for different sign classes. Agent i queries a set of other agents,
AT with D and collects their top predictions P

(1)
i for each item in D. Using these

predictions, agent i calculates an empirical distribution for each agent j in AT in
terms of how accurate agent j is in predicting an instance of sign class c, which
is the reliability Rc

i . For each sign class c and for each agent i the reliability is
calculated as follows:

Rc
i =

TP

TP + FA
(1)

where TP is the number of times agent i predicted an instance of the sign class
c correctly (number of true positives), and FA is the number of times the agent
predicted c when it was not c (false accepts).

Agents can use their Observation-based models in combining responses to
make a better decision. For instance, an agent can decide to stick to prediction
of a particular agent in a particular sign class based on its reliability. Formally,
an agent decides based on its Observation-based model as follows. The agent
collects the top prediction, P

(1)
i , for all agents i ∈ AQ, a subset of all agents

that are queried. A value for each sign class is calculated using reliability of all
agents in their predicted class:

V alue(P (1)
i) := V alue(P (1)

i) + R
P

(1)
i

i (2)

where R
P

(1)
i

i is the reliability of agent i in sign class P
(1)
i , and V alue is a vector

of size of number of sign classes. The decision making agent then, averages each
item in V alue depending on the number of agents that predicted that particular
sign class. The agent makes its decision as the position of the maximum in V alue.

To illustrate Observation-based modeling strategy we study an example on
our sample setting as seen in Figure 1, where agent 3 models agents 1 and 2
for three different sign classes, namely “Study”, “Study regularly”, and “Study
continuously”. For each of these three classes, agent 3 queries both agents for
5 instances (Hence 15 instances are used for modeling at total). Table 1 shows
reliability values calculated by agent 3 according to Equation 2. For example,
agent 1 responded correctly four out of five times for the “Study” class, whereas
agent 2 only answered two out of five correctly for the same class.

The values in Table 2 are obtained after normalization of reliability values
among agents. Now, having calculated normalized reliability values of others,
agent 3 will decide for a test item by querying other agents. Suppose that, agent
1 decides that this test item belongs to the third class, “Study continuously”,

220 İ. Yıldırım et al.

Table 1. Reliability values of both agents for three classes before normalization

Reliability Agent 1 Agent 2
Study 0.8 0.4

Study regularly 0.6 1
Study continuously 0.8 0.6

Table 2. Reliability values of both agents for three classes after normalization

Reliability Agent 1 Agent 2
Study 0.67 0.33

Study regularly 0.38 0.62
Study continuously 0.57 0.43

whereas, agent 2’s decision is the second class, “Study regularly”. After collecting
responses of both agents, according to its models, agent 3 favors agent 2’s decision
(agent 2’s value of 0.62 is greater than agent 1’s value of 0.57).

Bayesian model. A rather important point in modeling is that the more
accurate the models of others, the better decisions made out of others’ responses.
Especially if observations are scarce, (i.e. due to cost or availability), agents can
achieve better modeling if they rely on their prior information regarding other
agents in the system. In our system, the observations between agents that are
useful for modeling are really rare. Therefore, incorporating prior information
turns out to be critical and could be of help.

In the Observation-based model, agents only use their interaction history for
other agents, and build their models only according to their observations. One
can extend this approach by incorporating the available a priori information in a
Bayesian fashion. For instance, a relevant prior information about different sign
classes is their similarity with each other. On top of the observations collected,
augmenting the prior information, which says that a particular pair of similar
signs are more likely to be confused with each other, can increase accuracy of
models.

In our model, several subsets of sign classes are very similar in each other.2

This similarity a priori says that an agent is more likely to confuse the class of
a sign with another class which is similar to the real class. More formally, let S
be the class of all signs, and Conf1, ..., Confκ,, Confn be disjoint confusion
sets, such that S = Conf1 ∪ ... ∪ Confκ ∪ ... ∪ Confn. Then, we say that any
instance of sign s in Confκ is more likely to be confused with another instance
of a sign in Confκ, than it is to be confused with an instance of a sign in the
set S − Confκ.

2 In our Bayesian model, a priori, each agent takes it for granted that every other
agent is likely to confuse a pair of similar signs. But instead, there could be other
types of priors and each agent could have a specific distribution over these possible
priors.

Cooperative Sign Language Tutoring: A Multiagent Approach 221

We quantify how much two classes of signs are confused with each other as
follows: Let Confκ = s1, ..., sj , ..., sc, and let R

(sj)
i be the reliability of agent i

in class sj as described in Section 3.3. We calculate the posterior reliability of
agent i in sign class sj as follows:

PR
sj

i = R
sj

i −
∑

sh∈Confκ
(1 − Rsh

i)
|Confκ| (3)

where |Confκ| is the cardinality of the set Confκ. This formula says that to
calculate the posterior reliability, we decrease the reliability of agent i in sign
sj by the average unreliability of agent i in signs in Confκ. The underlying
intuition is that if agent i is wrong in its prediction of sj , then the reason is
its unreliability in predicting the true class strue where both sj and strue are
certainly in Confκ.

Once posterior reliability values are calculated, the decision making agent can
proceed as in the Observation-based model. But this time, the decision maker
adopts the prediction of the agent with the highest posterior reliability with-
out averaging them. Therefore, the decision maker does maximum a posteriori
(MAP) estimation over the posterior reliability distribution of other agents. In
other words, the decision making agent is more likely to stick to the prediction
of the agent which is not only reliable in terms of the sign class of its prediction,
but also reliable in the sign classes that are likely to be confused with that of
prediction.

Having formally described Bayesian model, we know illustrate how it works by
following our example above at the end of Observation-based model, Section 3.3.
Firstly, notice that the three classes we selected, “Study”, “Study regularly”,
and “Study continuously” all belong to the same confusion set. Table 3 shows
posterior reliability values calculated by agent 3 according to Equation 3 and
Table 1.

Values in Table 4 are obtained after normalization of posterior reliability val-
ues in Table 3 again for each sign and over all agents. Again, agent 3 is to
test the same data item as in Observation-based model. Before studying what
Bayesian model predicts, here we reveal that the test item belongs “Study reg-
ularly” class. Therefore, Observation-based model actually fails to predict the
test item correctly (its prediction is “Study continuously”).

Same as the Observation-based model example, agent 1 decides that the test
item belongs to the third class, “Study continuously”, whereas agent 2 decides it
belongs to the second class “Study regularly”. Our Bayesian model believes that

Table 3. Posterior reliability values of both agents for three classes before
normalization

Posterior Reliability Agent 1 Agent 2
Study 0.5 0.2

Study regularly 0.4 0.5
Study continuously 0.5 0.3

222 İ. Yıldırım et al.

Table 4. Posterior reliability values of both agents for three classes after normalization

Posterior Reliability Agent 1 Agent 2
Study 0.71 0.29

Study regularly 0.44 0.56
Study continuously 0.63 0.37

a posteriori agent 1 is more reliable than agent 2 in terms of their decisions, hence
it predicts that the test item belongs to the third class, “Study continuously”,
which is the correct prediction (agent 1’s value of 0.63 is greater than agent 2’s
value of 0.56).

4 Evaluation of Cooperation Strategies

We evaluate the performance of our cooperation strategies on a dataset of 19
signs (We use exactly the same dataset used in [1]). For each sign, the dataset
consists of five repetitions from eight different subjects. We measure the perfor-
mance of each cooperation strategy by the predictive accuracy of the decision
making agent. We also compare the performance of decision making agent with
the performance of each single agent queried. We perform our analysis in several
experiments. All results reported are average of five runs for each experiment
(See Table 5 for a summary of each experimental setting).

Table 5. Summary of experimental settings, see text for details

of
Setting Trained agents Random agents Semi-oracles Quarter-oracles Total
One 2 - - - 2
Two 2 2 2 - 6
Three 2 4 - 4 10

In the first set of experiments, we examined how cooperation strategies per-
form given there is a very limited number of agents to query. In this setting,
there are two agents which are trained with performance instances of several
subjects. And there is one decision making agent, which is responsible to query
others and combine their responses (See Figure 1 for an instance of the first
setting). In this setting, we make up test sets using performance instances of one
subject. We train the first of two agents using instances of four other subjects,
and the second agent is trained by performances of three subjects. There is one
overlapping subject that we use to train both agents, therefore at total, data
from six subjects are used to train classifiers of the two agents. Performance
instances of one of the remaining two subjects are used by the decision making
agent to model other agents. The instances of the remaining last subject is left
for the test. We apply eight-fold cross-validation to generate test and training
sets. For example, in a fold, we use instances from subject one (95 instances) for

Cooperative Sign Language Tutoring: A Multiagent Approach 223

Table 6. Test results for the first setting

Subjects Agent Agent Majority Weighted Borda Sum Obs.-based Bayesian
1 2 Voting Voting Count Rule based M Model

1 0.68 0.68 0.64 0.66 0.67 0.67 0.69 0.71
2 0.77 0.78 0.65 0.81 0.76 0.79 0.78 0.80
3 0.76 0.60 0.54 0.62 0.67 0.63 0.73 0.75
4 0.76 0.73 0.59 0.77 0.78 0.78 0.72 0.79
5 0.59 0.47 0.34 0.57 0.58 0.60 0.40 0.47
6 0.81 0.72 0.65 0.79 0.80 0.80 0.71 0.76
7 0.62 0.68 0.49 0.68 0.71 0.64 0.66 0.62
8 0.77 0.64 0.52 0.80 0.72 0.77 0.68 0.74

Avr 0.72 0.66 0.55 0.71 0.71 0.71 0.67 0.70

test, and use instances from subjects two, three, four and five (380 instances)
for training first agent, and use instances from subjects five, six and seven (285
instances) for training the second agent, and use instances from subject eight
(95 instances) to train the decision making agent for the models of the first and
second agents.

Table 6 tabulates the performances of cooperation strategies as they are em-
ployed by the decision making agent by querying two agents. First, we see that
although the decision making agent has no valid classifier to recognize any in-
stance of 19 signs, it achieves equally successfully as the other two trained agents.
Second, our results suggest that all cooperation strategies perform comparably,
except the majority voting scheme. But in terms of teammate modeling strate-
gies, we can still see the availability of prior information results in a slightly
higher performance (Bayesian modeling is slightly better than Observation-based
model). Actually, modeling approaches come with a cost, which is the cost of
extra training data and the necessary interactions to build models of others.
Given this cost, we can infer that voting and fusion methods are more preferable
when compared to modeling in this particular setting.

In real settings, it is more likely that there will be more than two agents to
query, and their predictive accuracy (reliability) in any given sign class is expect-
edly variant. In a second set of experiments we run our cooperation strategies
on a more realistic setting to see the performance of our cooperation strategies
and whether modeling pays off. For this purpose, this time in addition to a sin-
gle decision making agent, and two trained agents (among which the dataset
distributed as described for the first experiments), two random agents and two
semi-oracle agents are also involved. A random agent responds to a given query
by one of 19 classes randomly. It also generates second or more predictions, as
well as corresponding scores and certainty values again randomly. In contrast,
a semi-oracle agent can recognize a set of sign classes perfectly, whereas it per-
forms just like any random agent for the rest of the signs. In our setting, the
first semi-oracle is perfect in the first ten signs, whereas the second semi-oracle
is perfect in the remaining nine signs.

224 İ. Yıldırım et al.

Table 7. Test results for the second setting

Subjects Majority V Weighted V Borda C Sum Rule Obs-based M Bayesian M
1 0.17 0.17 0.80 0.74 0.94 1.0
2 0.15 0.14 0.85 0.80 0.95 1.0
3 0.14 0.15 0.88 0.79 0.89 0.98
4 0.17 0.15 0.87 0.78 0.94 0.99
5 0.07 0.12 0.80 0.71 0.79 1.0
6 0.17 0.17 0.87 0.79 0.94 1.0
7 0.08 0.14 0.88 0.73 0.77 0.96
8 0.15 0.13 0.86 0.77 0.94 1.0

Avr 0.14 0.14 0.85 0.76 0.89 0.99

Note that our second setting is different from the first setting in that there
are significant number of agents in the system who are not reliable at all for
a given sign. In Table 7, since in majority voting scheme we blindly count the
votes, majority voting ends up with a poor performance due to votes coming
from unreliable agents. The situation is the same for weighted voting as well.

Interestingly, Borda count and score fusion by sum rule achieve relatively
better performance. In Borda count, since each agent responds with its top three
choices, and since the higher a sign class in a rank the higher its counted score,
the effect of random agents is less, whereas the correct predictions (both from
semi-oracles and trained agents) are reinforced due to scoring. In the light of our
results, we can say that Borda count scheme is more robust to unreliable sources
of information when compared to other common voting schemes. See [11] for a
detailed discussion on robustness of the Borda count and its variants.

A similar effect is also observed for score fusion by sum rule. In this case,
again each agent reports its top three choices alongside with its corresponding
scores. The difference from Borda count is that the scoring is calculated by each
agent on its own. Since the higher a sign class is in a rank, the higher its score,
this method can also eliminate unreliable information and continue with more
reliable ones.

The best performing strategies are teammate modeling methods, namely
Observation-based and Bayesian modeling, in which the decision making agent
explicitly models other agents in terms of their predictive accuracy for all sign
classes. The explicit modeling enables the decision maker to avoid unreliable
responses, and only consider information coming from reliable sources. For in-
stance, in the Observation-based model, the decision maker is more likely to
decide an instance in one of top ten signs following the first semi-oracle agent,
and more likely to decide as the second semi-oracle for an instance from the last
nine signs. Bayesian model brings it further by including the prior, and achieves
to reveal the oracle for most of the time. We conclude that it definitely pays off
to explicitly model others in the system, if not every agent in the system are
comparably reliable, and there exists unreliable ones.

To examine further effects of the size of the system, and information distri-
bution among agents, we test our methods in a third set of experiments. In this

Cooperative Sign Language Tutoring: A Multiagent Approach 225

Table 8. Test results for the third setting

Subjects Borda C Sum Rule Observation-based M Bayesian M
1 0.77 0.61 0.93 0.85
2 0.72 0.58 0.98 0.96
3 0.73 0.60 0.97 0.95
4 0.77 0.58 0.96 0.95
5 0.69 0.53 0.81 0.82
6 0.79 0.59 0.95 0.89
7 0.69 0.57 0.81 0.82
8 0.71 0.52 0.93 1.0

Avr 0.73 0.57 0.92 0.91

case, in addition to one decision making agent, and two trained agents, there
are four random agents and four quarter-oracles. A quarter-oracle perfectly rec-
ognizes one fourth of 19 signs, in particular the first quarter-oracle is perfect in
sign classes between 1 and 5, the second is perfect in 6 to 10, the third is perfect
in 11 to 15, and the fourth quarter-oracle is perfect in 16 to 19. Quarter-oracles
respond randomly for the signs in which they are not perfect.

This time, we only compare Borda count and score fusion by sum rule with
Observation-based modeling and Bayesian modeling. The results in Table 8 show
that it becomes more and more preferable to pay the cost of modeling as the
size of the system increases and variations in the reliability of agents increase.

5 Discovering Sign Language Properties

Languages have inherent properties that are useful to discover. One such prop-
erty is the existence of dialects. The term dialect corresponds to a specific form
of a language that belongs to a particular geographic region or social group [12].
Sign language contains many dialects. Although dialects are mostly due to geo-
graphical separation, dialects—in terms of particular signs—can as well be ob-
served among different signers in the same region. Before continuing, to avoid
ambiguity, we consider dialects at the level of a sign, and if there are dialects
for a particular sign, then it means this particular sign is signed in at least two
different ways.

Since dialects are very common in sign language, it is an important question
for linguists to understand the nature of dialects. Actually the first step in the
study of dialects is to discover them. Here we propose and evaluate an automated
method to discover dialects using the models generated by agents in Observation-
based and Bayesian modeling strategies.

First we assume that for a particular sign, an agent only knows one way of
signing it, even if the sign has dialects. Now consider a sign with two different
dialects. Since an agent, which can recognize one dialect, cannot recognize the
other dialect, we can separate the set of agents in the system in two in terms of
which dialect they recognize. More formally, the set Dial1 has the agents that
can recognize the first dialect, and the set Dial2 contains the agents that can

226 İ. Yıldırım et al.

only recognize the second dialect. Due to our assumption that Dial1 and Dial2
are separate, if one can find such disjoint sets of agents in terms of recognizing
one particular sign class, it can be inferred that this sign has at least two different
dialects known in the system.

A way to extract such patterns of sets is to use models generated by agents
for Observation-based and Bayesian modeling. We can generate set of reliable
agents for each sign using a threshold reliability value out of model of a decision
making agent. Formally, T c

i is the set of reliable agents for the sign class c for
the decision making agent i ∈ AD, the set of decision making agents. If the sign
c has only one dialect known in the system, and each decision making agent
i ∈ AD models the same set of other agents AQ, then we expect ∩i∈ADT c

i �= φ.
But on the other hand, if there are at least two dialects of the sign c known in
the system, then it follows that ∩i∈ADT c

i = φ.
To experimentally test our method for discovering dialects in the system, we

run an additional fourth set of experiments. In this case, there are two deci-
sion making agents, two trained agents, two random agents and two semi-oracle
agents. In addition to the 19 signs, we include a 20th sign, which has two different
dialects in the system. One trained agent is trained for the first dialect and one
semi-oracle is perfect in the first dialect. On the other hand, the other trained
agent is trained for the second dialect and the other semi-oracle is perfect in the
second dialect.

For each decision making agent, any agent i is in the set of reliable agents
for a particular sign if the reliability of that agent i for that particular sign is
greater than a threshold value, which we set as 0.6. For all 20 signs, we find the
cardinality of the intersection of set of reliable agents for the decision making
agents 1 and 2, T c

1 ∩ T c
2 , where 1 ≤ c ≤ 20. We observe that this cardinality is 0

only for the sign 20. Therefore we infer that the sign 20 has at least two dialects
known in the system.

6 Discussion

We introduced a cooperative multiagent system for sign language tutoring. Each
agent in our architecture represents a SignTutor [1] that can improve itself due
to experience and by exchanging decisions with each other. On this architec-
ture, we proposed several cooperation strategies that differ on whom to request
experiences from and how to combine incoming answers.

As a cooperation strategy, firstly, we adopted several voting methods (major-
ity voting, weighted voting, and Borda count), which are widely and successfully
used in combining classifiers. Secondly, we applied score fusion by sum rule,
which has proven useful in many pattern recognition problems. And lastly, we
proposed two teammate modeling methods. Observation-based modeling strat-
egy explicitly accounts for the reliability of other agents in the system using
previous on purpose communication (On purpose in the sense that they inter-
act to model each other using a portion of training data). The other teammate
modeling method, the Bayesian modeling strategy, incorporates the available a
priori information in order to model others better.

Cooperative Sign Language Tutoring: A Multiagent Approach 227

At first, we observed that the decision making agent performs comparably for
all cooperation strategies in a toy setting, where there are two agents that are
more or less equally reliable. But in more realistic settings, where there are more
agents and they are not equally reliable, modeling strategies—although they are
costly when compared to other strategies—perform the best. Therefore, for the
decision making agent, it pays off to model others when there are agents with
unknown reliabilities. We also showed that by analysis of the set of reliables of
different agents, we can discover dialects of a sign known in the system.

Yolum and Singh [13] show that agents by modeling and updating models of
others can achieve trustworthy service selection. In their model, agents model
others in the system and direct their queries accordingly. Similar to our model, a
model of an agent has several components, and they are updated depending on
the interaction with that particular agent. But, rather than a statistical model,
they assign a value between 0 and 1 for each component for each agent, and
updating these values corresponds to an increment or a decrement over them.

To make agents cooperate more effectively, Chalkiadakis and Boutilier [14] em-
ploy Bayesian learning in order to better model others in the system and predict
their future behavior more accurately. They show that Bayesian agents achieve
better coordination in stochastic environments when compared to fictitious play,
which is similar to our Observation-based model, and several previously proposed
heuristic strategies.

Parker [15] also uses confusion matrix of a classifier as prior information to
combine rankings coming from several non-homogeneous learners. He assumes
that the confusion matrix of a classifier is a predictor for this classifier’s future
behavior, and he uses these behavior predictions in combining and achieves bet-
ter error rates. In this study, predictions about future behavior of classifiers are
done only upon the prior, but, in contrary to our modeling approaches, there
neither exists an explicit statistical model nor the prior is updated due to obser-
vations.

Currently, we are collecting a larger database of human performances for a
larger collection of signs in Turkish sign language. Therefore, we will have the
chance to test our cooperation strategies also on this upcoming database. We
are also working on other possible priors in addition to the confusion matrix.
Lastly, we are searching for other properties of sign languages and methods to
discover these properties on our architecture.

Acknowledgement

This work has been partially supported by The Scientific and Technological
Research Council of Turkey (TUBITAK) under grants 107E021 and 105E073.

References

1. Aran, O., Ari, I., Akarun, L., Sankur, B., Benoit, A., Caplier, A., Campr, P., Car-
rillo, A., Fanard, F.: Signtutor: An interactive system for sign language tutoring.
IEEE MultiMedia 16(1), 81–93 (2009)

228 İ. Yıldırım et al.

2. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. Knowl-
edge Engineering Review 10(2), 115–152 (1995)

3. Kuncheva, L.: Combining pattern classifiers: methods and algorithms. Wiley-
Interscience, Hoboken (2004)

4. Panait, L., Luke, S.: Cooperative multi-agent learning: The state of the art. Au-
tonomous Agents and Multi-Agent Systems 11(3), 387–434 (2005)

5. Kittler, J.: Combining classifiers: A theoretical framework. Pattern Analysis &
Applications 1(1), 18–27 (1998)

6. Melvin, I., Weston, J., Leslie, C.S., Noble, W.S.: Combining classifiers for improved
classification of proteins from sequence or structure. BMC Bioinformatics 9(1), 389
(2008)

7. Weiss, G.: Multiagent systems: a modern approach to distributed artificial intelli-
gence. MIT Press, Cambridge (1999)

8. Aran, O., Burger, T., Caplier, A., Akarun, L.: A belief-based sequential fusion
approach for fusing manual signs and non-manual signals. Pattern Recognition
(2008)

9. Gokberk, B., Akarun, L.: Comparative analysis of decision-level fusion algorithms
for 3D face recognition. In: Proceedings of the 18th International Conference on
Pattern Recognition (ICPR), vol. 3, pp. 1018–1021 (2006)

10. Robinson, J.: An iterative method of solving a game. Annals of Mathematics,
296–301 (1951)

11. Van, M., Erp, S.L.: Variants of the borda count method for combining ranked clas-
sifier hypotheses. In: The Seventh International Workshop on Frontiers in Hand-
writing Recognition, pp. 443–452 (2000)

12. Jewell, E.J., Abate, F.: The New Oxford American Dictionary. Oxford University
Press, Oxford (2001)

13. Yolum, P., Singh, M.P.: Engineering self-organizing referral networks for trustwor-
thy service selection. IEEE Transactions on Systems, Man and Cybernetics, Part
A 35(3), 396–407 (2005)

14. Chalkiadakis, G., Boutilier, C.: Coordination in multiagent reinforcement learning:
A bayesian approach. In: Proceedings of the 2nd AAMAS, pp. 709–716 (2003)

15. Parker, J.R.: Rank and response combination from confusion matrix data. Infor-
mation Fusion 2(2), 113–120 (2001)

Assistance Layer in a P2P Scenario

Jordi Campos1, Maite López-Sánchez1, and Marc Esteva2

1 MAiA Dept., Universitat de Barcelona
{jcampos,maite}@maia.ub.es

2 Artificial Intelligence Research Institute (IIIA) CSIC
marc@iiia.csic.es

Abstract. Usually, MAS design and implementation involves a coor-
dination model that structures agent interactions and an infrastructure
in charge of enacting it. We propose the term Coordination Support to
denote the services offered by this infrastructure. Such services can be
grouped in different layers. We propose an additional Assistance layer
devoted to assist coordination rather than just to enable it. This layer is
illustrated by means of a Peer-to-Peer sharing network (P2P) scenario,
so that the benefits of our proposal can be empirically evaluated.

1 Introduction

As a general illustration of the proposed Coordination Support concept[1], with
an accent on the Assistance Layer, we present a P2P sharing network scenario.
In this scenario, a set of computers connected to the Internet (peers) share some
data. The performance is evaluated in terms of time and network consumptions
during the sharing process. We model this scenario as a MAS where peers are
agents with a certain organisation. Its role capabilities and their net of rela-
tionships constitute its social structure. Also, we assume they are organised to
pursue the following goal: all peers get the data by consuming minimum time
and network. Moreover, they follow some social conventions. Specifically, peers
use a simplified version of the BitTorrent protocol[2] to interact and a norm to
limit their network usage. This norm can be expressed as: norBWDL =“a peer
cannot use more than maxBW bandwidth to share data”.

2 Assistance Layer

To provide assistance functionalities, we have implemented our proposed 2-Lama
architecture [3], which places a meta-level (ML) on top of a previously exist-
ing domain-level (DL). Accordingly, the P2P MAS constitutes the domain-level
whilst the meta-level consists of a set of agents we call assistants organised to
aid peers. Each assistant provides a subset of peers (cluster) with the following
functionalities:

Information. It consists on providing agents with necessary and useful infor-
mation to participate: the description of current norms and the identifiers of

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 229–232, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

230 J. Campos, M. López-Sánchez, and M. Esteva

those other peers interested in the same data. An assistant supplies this infor-
mation to new peers joining its cluster and to all peers in its cluster whenever
this information is updated. Norm descriptions are sent by means of “norm
<norm_id> <definition>” messages, whereas information about peers are sent
with “interested <peer> [,<peer>]*” messages.

Justification. It justifies the effects of agent actions due to social conventions: in-
volves providing explanations about why some messages have been filtered out
due to the application of a norm. We assume Internet Service Providers (ISP)
are equipped with an infrastructure mechanism that filters out messages that
violate norms. This approach is not unrealistic since, nowadays, there exist ISP
initiatives to improve P2P distribution systems. Specifically, assistants sup-
ply justifications to their peers by sending a “justification ’<orig_message>’
action ’filtered out’ reason ’norm <norm_id>’” message.

Advices. It consists in suggesting plans to contact other peers. Based on net-
work communication times, assistants recommend the subset of agents to be
contacted by a newcomer peer. Each assistant generates these plans based on
partial information it receives from its clusters. This information consists of
communication times and data possession. At meta-level, assistants commu-
nicate among them to share a summary of this information. Consequently,
each assistant has detailed information about its cluster and an overview
about the rest of the domain-level. Assistants use this information to es-
timate which are the shortest paths among data sources and destinations.
Accordingly, they recommend peers to contact those other peers that are in
these shortest paths [3]. by sending “contact <peer> [,<peer>]*” messages.

Adaptation. In updates system’s organisation to improve its design purpose
achievement. Our meta-level adapts the domain-level organisation by chang-
ing its bandwidth norm (norBWDL). It changes the bandwidth limit (maxBW)
at certain time intervals. As this limit increases, the time to share data de-
creases since more network is used to transmit it. However, a large increase
of network usage can saturate it and, as a result, increase time instead of
reducing it. Assistant agents observe its cluster network usage and suggest
to vary this limit in order to increase the usage without achieving network
saturation (see [3] for further details). Then, assistants need to agree on the
next value of maxBW. In current implementation, each assistant computes the
average of all suggested maxBW and communicates it to its peers.

3 Implementation and Results

We have implemented a prototype [3] of our P2P proposal in Repast Symphony
[4]. Our actual P2P scenario is composed of 12 peers grouped in 3 different clus-
ters, each one having its own assistant. Figure 1 depicts the underlying network
topology composed by peers (p), assistants (a), routers (r) and links among
elements (lines with an associated bandwidth).

We tested three MAS approaches: Brute-force-no-ML, a MAS without ML in
which all peers contact all the others to request the datum; 2-LAMA-AgAss, our
proposed architecture providing agent assistance through information, justifica-

Assistance Layer in a P2P Scenario 231

Fig. 1. P2P network topology

Table 1. Results using different approaches

MAS approaches ct cn

Brute-force-no-ML 1325.97 69884.3
2-LAMA-AgAss 1146.38 25089.2
2-LAMA-AgAss-OrgAss 876.43 18854.5

tion, and advice services but without norms; and 2-LAMA-AgAss-OrgAss, previous
approach plus an organisational assistance to adapt the norBWDL norm. We
use a simplified version of BitTorrent protocol in each one of them. Table 1 shows
the time (ct) and network (cn) consumed by these approaches. ct is the number
of time units required to distribute the datum among all peers, whereas cn is the
number of network units consumed during this same period (the network units
consumed by a single message depends on its length and its transportation la-
tency). Obtained results show that adding a meta-level (2-LAMA-AgAss) saves net-
work consumption, since it advises peers to contact only a subset of them. This
reduction also means there is less network saturation, so messages travel faster
and ct is slightly decreased. Moreover, if we add the bandwidth limit norm and
let the ML adapt it depending on network status (2-LAMA-AgAss-OrgAss) then,
the savings become significantly greater for both measures. Over all, simulations
show positive results of social structure advices and norm adaptation.

4 Conclusions

This paper suggests to include an additional Assistance layer when develop-
ing MAS. We illustrate this new layer in a P2P sharing network scenario. The
results show the Assistance Layer improves system’s performance, especially
when adapting MAS’ organisation. In fact, we regard run-time assistance as a
new research line in MAS. Assisting agents about current coordination model
can simplify its development and let them be more effective and efficient. On the
other hand, adapting a MAS organisation to varying circumstances can help to
keep its original purpose.

Acknowledgements. Work funded by IEA (TIN2006-15662-C02-01), AT
(CONSOLIDER CSD2007-0022), and Marc Esteva’s Ramon y Cajal contract.

References

1. Campos, J., López-Sánchez, M., Esteva, M.: Assistance layer, a step forward in
Multi-Agent Systems Coordination Support. In: AAMAS 2009, pp. 1301–1302
(2009)

232 J. Campos, M. López-Sánchez, and M. Esteva

2. Cohen, B.: The BitTorrent Protocol Specification, http://www.bittorrent.org
3. Campos, J., López-Sánchez, M., Esteva, M.: Multi-Agent System adaptation in a

Peer-to-Peer scenario. In: ACM SAC 2009 - Agreement Technologies, pp. 735–739
(2009)

4. North, M., Howe, T., Collier, N., Vos, J.: Repast Simphony Runtime System. In:
Agent Conference on Generative Social Processes, Models, and Mechanisms (2005)

http://www.bittorrent.org

Navigational Web-Interfaces from Formal Tropos
Specification

Komminist Weldemariam

Center for Information Technology, FBK-Irst,
via Sommarive 18, Trento 38100, Italy

sisai@fbk.eu

Abstract. This paper presents a method of building executable and in-
teractive application interface prototypes from requirements. The speci-
fication of the requirements uses i* and Formal Tropos languages.

1 Introduction

A methodology for automatically generating prototypes from requirements that
are specified using Formal Tropos (FT) [1] language is presented. FT follows the
agent-oriented requirements modeling concepts. It allows to specify the struc-
tural and behavioral aspects of a system in the form of actors, goals, tasks,
resources, softgoals and dependencies. The specification is then iteratively ver-
ified and refined using NuSMV [2] tool, for the consistency and completeness
checking. The verified requirements are then passed to our tool for generating
the actual prototypes, which can easily be embedded in web application.

2 Prototype Generation

We summarize our prototype generation framework in three steps (detail can
be found in [3]). First we model and validate the business logic. During which
we identify, model, and specify requirements. More specifically, we represent the
actors of the system, their goals, and dependencies using i* [4] or Tropos [5]. We
derive FT specification for the corresponding visual models. The FT specifica-
tion is then mapped into an intermediate language using T-Tool [6] for formal
analysis. T-Tool calls the NuSMV [2] engine for formal validation. Secondly,
we derive relational database structures from FT specification. During which
we capture structural and behavioral properties of the system from validated
FT specification and map them into relational database structures with stored
procedures and functions. Finally we integrate the relational structures and ap-
plication service interfaces. During which we generate skeletons of application
service interfaces from verified requirements so that the stakeholders can directly
interact with the prototype.

Our prototype generator schema produces an architecture that comprises of
application navigational interfaces, stored programs and functions, and applica-
tion database models. The model part of the architecture resembles the model

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 233–235, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

234 K. Weldemariam

view control (MVC) architecture. It contains the structural aspect of the pro-
totype in the form of relational structure. The stored procedures and functions
contain the behavioral aspects of the prototype in the form of behavioral con-
straints managed through Java Server Pages (JSP) and relational procedures.
The application interface is organized as a set of web-based interfaces with nav-
igational features that capture user and system interactions. The user interacts
with the application interfaces. The interactions are captured and stored into
the database model. The stored procedure observes the runtime state of the
database model and controls the view accordingly.

3 Capturing Application Data Models

Information related to the structural and behavioral aspects of the system are
derived from the verified FT specification. We organized such information in the
form of relational models.

Related to the structural aspect we extracted actor list, goal list, goal hier-
archy, and dependancy list. The actor list is a one to one mapping of actors to
their respective root goals. An actor is associated with exactly one root goal,
which is formalized in outer layer of the FT specification through a goal or task
specification. The goal list is a representation of a goal decomposition for every
actor. The decomposition is done from the point of view of the actor who com-
mitted for its fulfillment. The goal hierarchy represents the hierarchy of a goal in
the form of a collection of < supergoal, subgoal > tuples. Finally we capture the
dependencies between two actors in the dependancy list, where the depender’s
goal depends on dependee actor’s local activities.

Behavioral aspects of the objects in the model and dependencies among them
are essential for rapid application service prototyping. They are annotated in
the inner layer of FT specification to capture the circumstances on the goal
creation and fulfillment as constraints. Further, they allow to capture pre- and
post- conditions on tasks and sub-tasks creation and fulfillment. We captured
two relational tables that model both constraints, namely the goal creation and
goal fulfillment relational structures. The goal creation captures the creation
constraints for each goal. It is generated from the inner layer of FT specification
through an analysis of goal creation properties. Whereas, the goal fulfillment
captures the fulfillment constraints for each goal. Like the goal creation relation,
the goal fulfillment is generated with the same analysis strategy. However, unlike
that it uses fulfillment constraints.

4 Integrating Relational Models and Interfaces

The structures mentioned in the previous section are then further analyzed in
the second pass to generate service interfaces for application prototyping. The
goals which are to be achieved are made unavailable from the service interface
once they are fulfilled. Application service interfaces may be easily generated
from relational model through the following strategy.

Navigational Web-Interfaces from Formal Tropos Specification 235

– Top Level Interface. An interface is displayed for every root goal for every
actor. They are organized by actors role. If the top level interface is navi-
gated, the root goal corresponding to the interface is said to be created in the
system. The pre-condition for navigation must attain true value for created
flag of the goal which is being navigated.

– Creation of subgoal interfaces. A subgoal interface is displayed as soon as
creational constraints of the subgoal are satisfied and the super goal is be-
ing analyzed. Subgoal instance is created once the super goal interface is
navigated.

– Goal status the display. Upon navigating through a specific goal subgoal are
created, and based on it’s fulfillment conditions, its completion status is also
displayed.

5 Conclusion

A strategy for modeling and generation of application service interfaces from
agent based specifications is discussed. We address interactions between product
users and service interfaces, and interdependencies among services. Application
interfaces are generated by applying actor as roles interpretation. Actor’s role
equips the actor to interact with the system through an interface corresponding
to the responsibilities of the role. In order to find responsibilities, a view of
goals as responsibilities is taken. A service interface per actor role is generated.
A service interface is a collection of goals, or responsibilities of the given actor
role. Goal dependencies result in service dependencies. The runtime interface
interactions with the relational database model is supported by the MySQL
stored procedures and functions.

References

1. Pistore, M., Fuxman, A., Kazhamiakin, R., Roveri, M.: Formal Tropos: Language
and Semantics. Technical Report 4, University of Trento (November 2003)

2. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV Version 2: An OpenSource Tool for Symbolic
Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404,
p. 359. Springer, Heidelberg (2002)

3. Weldemariam, K.: An Agent Oriented Approach for Rapid Application Prototyping.
Master’s thesis, Indian Institute of Technology, Bombay, Powai, Mumbai-400076,
India (August 2006)

4. Yu, E.S.-K.: Modelling Strategic Relationships for Process Reengineering. PhD The-
sis, Dept. of Computer Science, University of Toronto, Toronto, Canada (1995)

5. Giunchiglia, F., Mylopoulos, J., Perini, A.: The Tropos Software Development
Methodology: processes, models and diagrams. In: AAMAS 2002: Proceedings of
the first international joint conference on Autonomous agents and multiagent sys-
tems, pp. 35–36. ACM, New York (2002)

6. Pistore, M., Kazhamiakin, R., Roveri, M.: T-Tool Tutorial. Technical report,
University of Trento (2003)

ALIVE: A Framework for Flexible and Adaptive
Service Coordination�

J.S.C. Lam1, W.W. Vasconcelos1, F. Guerin1, D. Corsar1, A. Chorley1, T.J. Norman1,
J. Vázquez-Salceda2, S. Panagiotidi2, R. Confalonieri2, I. Gomez2, S. Hidalgo2,
S.A. Napagao2, J.C. Nieves2, M. Palau Roig3, L. Ceccaroni3, H. Aldewereld4,
V. Dignum4, F. Dignum4, L. Penserini4, J. Padget5, M. De Vos5, D. Andreou5,
O. Cliffe5, A. Staikopoulos6, R. Popescu6, S. Clarke6, P. Sergeant7, C. Reed7,

T. Quillinan8, and K. Nieuwenhuis8

1 University of Aberdeen
2 Universitat Politécnica de Catalunya

3 Tech Media Telecom Factory SL
4 Universiteit Utrecht
5 University of Bath

6 Trinity College Dublin
7 Calico Jack Ltd

8 Thales Nederland B.V.

Abstract. There is a large body of research on software services, but the issues
of communication and dynamic reconfiguration have received little attention, as
have adaptation to environment and dynamic combination of service building
blocks into new applications. Here, we present the approach of the FP7 ALIVE

project to the use of formal models of coordination and organisation mecha-
nisms to deliver a flexible, high-level means to describe the structure of interac-
tions between services in the environment. Our aim is to create a framework for
services engineering for “live” open systems of active services. We propose to
build on the current activities in service-oriented engineering by defining three
levels: (i) An organisational level models the organisational structure of execut-
ing and interlinked services and the context around them. (ii) A coordination level
provides flexible ways to model interaction between the services. (iii) These two
levels connect with existing (semantic) Web services, which contain semantic de-
scriptions to make components aware of their social context and of the rules of
engagement with other services.

1 Introduction

New generations of networked applications based on the notion of software services
which can be dynamically deployed, adjusted and composed will make it possible to
create radically new types of software systems. These systems shall be able to com-
municate and reconfigure flexibly at runtime, adapt to their environment and dynami-
cally combine sets of building block services into new applications. In order to achieve

� This work has been performed in the framework of the FP7 project ALIVE IST- 215890, which
is funded by the European Community (http://www.ist-alive.eu)

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 236–239, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

ALIVE: A Framework for Flexible and Adaptive Service Coordination 237

this objective, the ALIVE project aims at providing a semantic-based and context-aware
framework by bringing together the leading edge methods from two highly promising
areas – Coordination Technology and Organisational Theory. The project will adopt the
latest Semantic Web technologies to connect to existing service-oriented systems. The
ALIVE framework combines model driven development with coordination and organi-
sational mechanisms, providing support for live (that is, highly dynamic) and open sys-
tems of services. We will demonstrate the implemented framework which validates and
tests the ALIVE approach in three use cases from three industrial partners respectively:
dynamic crisis management, communication in entertainment domains and dynamic
orchestration of distributed services on interactive community displays.

2 ALIVE Framework

The ALIVE framework aims to support the design, deployment and maintenance of
distributed systems by (1) allowing the coordination, reorganisation and adaptation of
Web services, (2) following operational constraints defined in the organisation level;
and (3) adapting to the dynamic nature of Web Services at runtime.

2.1 Organisation Level

The organisational model views an organisation as a social system, and describes what
the aims and the concerns of the organisation are with respect to the social system. The
OperettA tool1, an Eclipse plugin, is an organisational modelling tool. Its function is to
create and manage the organisational model of a given distributed system. The designer
is able to design the whole organisational level of a given distributed system through
abstract concepts such as objectives, roles, obligations, violations, sanctions and high-
level interaction diagrams that only identify critical states (called landmarks) and land-
mark patterns. The organisational model is specified in terms of four structures: (1) The
social structure specifies objectives of the society, its roles, role dependencies and what
kind of model governs coordination (see Fig. 1 (B)). (2) The interaction structure de-
scribes interaction moments, as scene scripts, representing a society task that requires
the coordinated action of several roles, and gives a partial ordering of scene scripts,
which specify the intended interactions between roles (see Fig. 1 (A)). (3) The norma-
tive structure expresses organisational norms and regulations related to roles. (4) The
communicative structure specifies the ontologies for description of domain concepts
and communication illocutions.

2.2 Coordination Level

The coordination level provides a means to specify the patterns of interaction between
services, and to transform the organisational representation coming from the organi-
sational level into service-oriented workflows. The Coordination Design Tool are cre-
ated (as Eclipse plugins) for administrators to design the whole coordination level of
a distributed system by means of actors, tasks, workflows and workflow coordination

1 http://www.cs.uu.nl/research/projects/opera/

238 ALIVE research team

Fig. 1. Screen shots from Eclipse: (A) & (B) Interaction and Social Structure Editor in OperettA;
(C) Graphical Workflow Editor; (D) Graphical Action Editor; (E) Multi-agent System

mechanisms. The tools also support the generation of the agents that will perform the
actual coordination tasks and the inspection of predefined and generated workflows.
The Graphical Action editor (see Fig. 1 (D)) produces machine processable action de-
scriptions, which can be used by other components, such as the workflow synthesis and
agent tab. A workflow is composed of a sequence of steps, where each step is associ-
ated with an action and input bindings for the inputs of that action, along with a link to
the next step in the workflow. Generated workflows are initially used by the workflow
editor (see Fig. 1 (C)), which supports visualisation of a workflow, editing of a work-
flow, and uploading/downloading of a workflow to/from the workflow repository. Work-
flows are subsequently used by the agents for enactment. The multi-agent generator (see
Fig. 1 (E)) takes the OperettA model and the actions defined for the organisation and
creates an initial multi-agent system where every role in the organisation is assigned to
an agent and the actions are distributed to the agents according to the role. The Planning
agent chooses a plan and sends it to all the coordination level agents; each agent enacts
the actions it is responsible for. The agents run in the AgentScape2 platform.

2.3 Service Level

The service level supports the semantic description of services and the selection of the
most appropriate service for a given task. It also effectively supports higher level and
dynamic service composition. The service design tool is used to generate or inspect
service descriptions, edit service templates and register them in the service directory.
It also connects with the service matchmaking tool (a human interface to the match-

2 http://www.agentscape.org/

ALIVE: A Framework for Flexible and Adaptive Service Coordination 239

maker component), allowing administrators to search for services matching a given task
description or implementing a given service template and registering it in the service
directory. The service setup tool is used to check and modify the setup of the run-
ning environment, including the URIs of different resources, facilitating components,
pre-defined services and service containers. Sometimes the administrator may want to
manually change an automatically selected service for another that is considered more
suitable (for reasons not modelled within the ALIVE framework); in this case the service
matchmaking tool is used to search for services that match a given task description (by
using the matchmaker component).

The Monitor Tool covers the three levels. It allows administrators to inspect the sta-
tus of a system’s execution, and to keep track of the events generated at execution time
and inspect how the system handles them. The tool aggregates and analyses event logs
related to the execution of services, the fulfilment of coordination plans and the achieve-
ments of role and/or organisational objectives; and hence feedback is provided to the
organisational model and workflow generation.

An Organisational Adaptation Simulator for P2P
Networks

Jordi Campos1, Marc Esteva2, Maite López-Sánchez1, and Javier Morales2

1 MAiA Deptartment, Universitat de Barcelona
{jcampos,maite}@maia.ub.es

2 Artificial Intelligence Research Institute (IIIA), CSIC
{marc,jmorales}@iiia.csic.es

Abstract. Organisational centred multi-agent systems (MAS) have
proved to be effective to regulate agents’ activities. Nevertheless, pop-
ulation and/or environmental changes may lead to a pour fulfilment of
the system’s purposes, and therefore, adapting the whole organisation
becomes key. This paper presents a MAS simulator devoted to test organ-
isations with self-adaptation capabilities in P2P scenarios. More specif-
ically, our simulator implements different sharing P2P methods –some
of them with self-adaptation– and so, it can be used as a testbed for
comparing them.

1 Introduction

This paper presents a simulator for testing organisation adaptation mecha-
nisms in P2P scenarios. In order to endow an organisation-based MAS with
self-adaptation capabilities, we propose to incorporate a meta-level in charge of
adapting system’s organisation. Hence, we call our approach Two Level Assisted
MAS Architecture (2-LAMA) [1]. In this context a P2P system is modelled as
an organisation, with a social structure among peers, and a set of protocols and
norms that regulate the sharing process. On top of the P2P system, that we
call domain-level, we add a distributed meta-level which perceives information
about its status and uses this information to adapt peers’ social structure and
norm values. Meta-level adaptation is based on system performance, which is
measured by the time peers spent to share data and the network consumption
in such a process.

The simulator, that we have implemented using Repast Symphony, can model
the whole process, implements different sharing methods, and help in the analysis
of system’s behaviour. In the rest of the paper we present the system architecture
in section 2, the implemented sharing methods in section 3 and the graphic user
interface in section 4.

2 Simulator Architecture

The simulator architecture allows to model both agents (agent-level) and the
transport of messages among them (network-level). On the one hand, the p2p

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 240–242, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

An Organisational Adaptation Simulator for P2P Networks 241

module represents the conceptual model defined by the 2-LAMA targeted to
drive the simulation at agent-level. Among others, it provides facilities to create
state-based agents, and to define a problem (number of peers, who has initially
the datum, etc). This module is divided into two layers, the domain-level com-
posed by peers, and the meta-level containing the assistants that implement
adaptation services.

On the other hand, the netsim module drives the simulation at network-level.
It provides facilities to transport messages among agents, to define different
network topologies, and to collect statistical information about network status.
The network level simulates message transport as a packet switching network. We
assume that peers are connected to different ISPs. Hence, we define an individual
link that connects each peer to its ISP, and some aggregated links among ISPs.
The latency of a message between agents depends on the number of links, their
bandwidth and the current traffic through them.

During simulations the tool generates log files containing all occurred events.
The simulator includes a module for facilitating the analysis of simulation results.
For this purpose, this module processes the generated logs extracting relevant
information, which is later on displayed in different types of graphics. Hence,
this can be used to compare the time spent to share the data in different con-
figurations, or using different sharing methods.

3 Sharing Methods

The simulator offers alternate sharing methods. This way, they can be executed
over the same initial configurations and their results can be compared. Currently
the tool includes two sharing methods without meta-level, and two different
methods with meta-level. The two methods without meta-level are a brute-force
algorithm, where peers contact all other peers, and a single-piece version of
the BitTorrent protocol (BT). Regarding methods using a meta-level, the tool
includes the 2-LAMA approach with just social structure adaptation, and the
2-LAMA approach with social structure and norm adaptation Hence, it allows
to compare the performance of our adaptation approach with respect to methods
without meta-level.

We used the BitTorrent protocol as a base to design the protocol in our
2-LAMA P2P approach, so both protocols are similar. The main difference is
that BT does not have a distributed meta-level but a single agent (Tracker)
that informs just about connected peers. Consequently, peers do not receive any
further assistance to share the datum, and are restricted to use the algorithm
in [2]. In contrast, the 2-LAMA approach without norm adaptation includes a
meta-level with assistant agents. In this method, assistants just adapt the social
structure among peers —i.e. their overlay network. Hence, norm values remain
unchanged during the whole simulation. Finally, in the 2-LAMA approach with
social structure and norm adaptation, assistants update both the social structure
and norm values during the simulation.

242 J. Campos et al.

4 GUI

In order to display up-to-date visual runtime information of the evolution of our
P2P simulation, an advanced GUI has been created as an extension of the Repast
GUI. Figure 1 depicts a GUI screenshot that illustrates its general appearance.
The Control toolbar (1) pertains to the original Repast GUI and allows to play
the simulation, pause it or execute it step by step. On the left area, the Legend
panel shows information about what represents each object of the layout (2),
the colours of the different messages exchanged among agents (3), whether they
are visible or not, and if execution will pause upon sending this kind of messages
(4). All these options can be modified by users. Thus, the legend allows an
easy identification of each object and message to interpret what is happening
in the simulation at every moment The Runtime P2P Network layout (5)
shows the elements of the simulation and the communications among them. Peers
and assistants are drawn according to the network topology, while messages are
displayed as arrows among them with the corresponding colour defined in the
legend panel. Finally, the Resume layout (6) displays how the data has been
distributed among the different peers. It highlights completed peers and displays
arrows connecting source and receiver agents. These arrows are labelled with the
time step at which the datum was received.

Fig. 1. 2-LAMA P2P Simulator Graphic User Interface

Acknowledgements. Work funded by IEA (TIN2006-15662-C02-01), AT
(CONSOLIDER CSD2007-0022), and Marc Esteva’s Ramon y Cajal contract.

References

1. Campos, J., López-Sánchez, M., Esteva, M.: Multi-Agent System adaptation in a
Peer-to-Peer scenario. In: ACM SAC 2009 - Agreement Technologies, pp. 735–739
(2009)

2. Cohen, B.: The BitTorrent Protocol Specification,
http://www.bittorrent.org/beps/bep_0003.html

http://www.bittorrent.org/beps/bep_0003.html

PreSage-MS: Metric Spaces in PreSage

Hugo Carr1, Alexander Artikis1,2, and Jeremy Pitt1

1 Electrical & Electronic Eng. Dept., Imperial College London, SW72BT
2 National Centre for Scientific Research “Demokritos”, Athens 15310

Abstract. We consider adaptation in open systems, i.e. systems with-
out global objects or common objectives. There are three related issues:
how to make the degrees of freedom (DoFs) transparent to all agents,
how to define a ‘fair’ process for performing adaptation, and how to
retain some control over the adaptation to avoid, for example, undesir-
able configurations. We represent the specification DoFs in terms of a
metric space, and define, in a uniform and consistent way, a mechanism
for ‘moving’ between points in the metric space which is both ‘fair’ to
the agents and avoids unacceptable moves or points in the space. This
approach is demonstrated by the platform PreSage-MS, which allows a
designer to specify and animate an adaptive open multi-agent system in
terms of a metric space and norm-governed rules for ‘moving’ in that
space.

1 Introduction

Open systems [1,2] performing organisational adaptation must define in advance
which DoFs may be adapted at runtime. Taken in isolation a DoF of a proto-
col specification does not have any meaning; systems need to specify both the
adaptable and non-adaptable aspects of the system. As well as the parameters
for adaptation it is also necessary to specify the mechanism for adapting these
parameters, ideally in the same formalism. In open systems, it has been shown
that an action language such as the Event Calculus is an effective means of
establishing such a description [1], and for specifying protocols for adaptation
which are representative and ‘fair’ [3].

However, a system which has full access to its own specification may adapt in
damaging ways and in practical terms must be constrained. Artikis et al have
demonstrated [4] how the rules of an adaptive system can be represented as a
specification point (SP) in a metric space. SPs which represent dangerous or
unstable positions can be excluded from the space. This can be encoded using
normative positions (power, permission and obligation) and thus represented in
the Event Calculus. As such, we have a single unifying formalism describing the
specification space, the adaptation mechanism and its constraints.

In this paper, we present the multi-agent system (MAS) animator PreSage-MS
which serves as a tool to investigate how the specification of DoFs affects long
term system utility. Depending on which DoFs are available during a simulation,

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 243–246, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

244 H. Carr, A. Artikis, and J. Pitt

adaptation may become stagnant, chaotic, stable, or periodically stable. By ex-
perimenting with different sets of DoFs, designers can balance control versus
flexibility.

2 PreSage-MS

PreSage-MS is a framework written to facilitate the design and implementation
of a multi agent organisation that can adapt its own specification at run-time.
The platform takes an open approach to MAS design and implements a formal
description of the protocols and rules of behaviour in the event calculus. PreSage-
MS represents an integration of the MAS-simulation platform PreSage [5] and
the preliminary work done by Apostolou and Artikis on metric spaces in Java [6].
As an example, we implement a general voting protocol in the Event Calculus as
an adaptation mechanism and consider a system’s resource distribution method
as a DoF. Below we define the name of the DoF (line 1), the possible values it
can take (line 2), and its initial value (line 3).

1 dof(resource_distribution).
2 dofValues(resource_distribution, [priority, vote, random]).
3 intially (active(resource_distribution) = priority).

This DoF is subsequently adapted through the voting protocol, specifically when
‘A’ declares the result of the vote. A new active predicate is initiated containing
the value of the DoF voted for by the agents (line 4). The calculation of the
winner has been abstracted into the vote result predicate (line 7) and is based
on which votes have been cast (line 6). This operation can only occur if ‘A’ has
the institutional power to perform such a declare (line 5).

4 initiates(declare(A, Result), active(resource_distribution) = Result, T) :-
5 holdsAt(pow(A, declare(A, Result)), T),
6 holdsAt(votes_cast = Votes, T),
7 vote_result(Votes, Result).

When these rules are unified with an action history, the system can derive the
normative positions of the agents, and the respective legal actions. We have in-
cluded an Event Calculus plugin to provide a window listing the active predicates
and the action history. This has been complemented with a manual animator
in which the user can examine all legal actions in the current timecycle. Each
legal move has been implemented as a button which may be used to force an
institutional action at the current timecycle. This can be seen in Figure 1.

The transition from a Current Specification Point (CSP) to a desired specifi-
cation point (DSP) will generally be guided using the predefined distance metric
coupled with a machine learning technique. To aid the design of a system based
on such a distance we have included a plugin (Figure 2) which measures how
far away a DSP lies with a range of metrics including weighted and unweighted
Euclidean, and weighted and unweighted Manhattan. In addition to this the vi-
sualiser plugin maps a graph of all of these legal jumps based on the maximum
threshold distance the system may deviate from any SP. Using these graphs a
path can be planned towards what the agents collectively consider to be the
optimal SP.

PreSage-MS: Metric Spaces in PreSage 245

Fig. 1. Plugin listing the Prolog predicates along with a set of legal actions for the
current time point and the action history

Fig. 2. Plugin measuring the distance between specification points and a graph of legal
moves. The discoloured node corresponds to the CSP.

3 Conclusion

Necessary aspects of adaptation in open systems can be uniformly described
in the Event Calculus. We have developed PreSage-MS, which combines agent
simulation with metric spaces to facilitate the animation of run-time behaviour
of such systems. Furthermore, as PreSage-MS is specified in a uniform object
language, designers may even experiment with runtime adaptation of the metric
space itself, resulting in a hitherto unexplored form of meta-adaptation.

References

1. Artikis, A., Pitt, J., Sergot, M.: Animated specifications of computational societies.
In: AAMAS 2002, July 2002, pp. 1053–1062 (2002)

2. Hewitt, C.: Open information systems semantics for distributed artificial intelli-
gence. Artificial Intelligence 47, 79–106 (1992)

246 H. Carr, A. Artikis, and J. Pitt

3. Pitt, J., Kamara, L., Sergot, M., Artikis, A.: Voting in online deliberative assemblies.
In: ICAIL 2005, June 2005, pp. 195–204 (2005)

4. Artikis, A.: Dynamic protocols for open agent systems. In: AAMAS 2009, pp. 97–104
(2009)

5. Neville, B., Pitt, J.: Presage: A programming environment for the simulation of
agent societies. In: Hindriks, K.V., Pokahr, A., Sardina, S. (eds.) ProMAS 2008.
LNCS, vol. 5442, pp. 88–103. Springer, Heidelberg (2009)

6. Apostolou, M., Artikis, A.: Evaluating dynamic protocols for open agent systems.
In: AAMAS 2009, May 2009, pp. 1419–1420 (2009)

Normative Multi-Agent Organizations
A Programming Language and Its Interpreter

Mehdi Dastani

Utrecht University
The Netherlands

Abstract. Multi-agent systems are viewed as consisting of individual
agents whose behaviors are regulated by organization artifacts. This ab-
stract presents a programming language, which is designed to implement
norm-based organization artifacts, by means of an example and explains
the execution behavior of the language interpreter.

In order to achieve the overall objectives of multi-agent systems, the behavior of
individual agents and their interactions should be regulated/coordinated. Exist-
ing approaches advocate the use of organizational models, normative systems,
and electronic institutions to regulate the agents’ behaviors and interactions
[3,4,6]. Norm-based artifacts regulate the behavior of individual agents in terms
of norms being enforced by monitoring, regimenting and sanctioning mecha-
nisms. Generally speaking, the social and normative perspective is conceived as
a way to make the development and maintenance of multi-agent systems easier
to manage, e.g., OperA [2], AMELI [3], and Moise+ [5].

A declarative programming language to implement norm-based organization
artifacts is presented in [1]. It provides programming constructs to specify 1)
the initial state of an artifact, 2) the effects of the agents’ actions that can
be monitored by the artifact, and 3) the applicable norms and sanctions1. The
interpreter of the programming language is based on a cyclic process. At each
cycle, the observable actions of the individual agents are monitored, the effects
of the actions are determined, and norms and sanction are imposed if necessary.
Below we give a brief presentation of the programming language by means of a
simple example, discuss the data types for specifying norms and sanctions, and
finally describe the execution behavior of the built interpreter.

The (initial) state of a normative organization artifact is constituted by two
disjoint sets of facts: brute and institutional facts. Brute facts specify the brute
state of the artifact (e.g., “John has submitted a paper with 18 pages.”), which
may for example be the state of the environment shared by the agents. Institu-
tional facts specify the normative state of the artifact (e.g., “John’s submission

1 The individual agents are assumed to be implemented in a programming language,
not necessarily known to the artifact programmer. However, it is required that the
observable actions of the agents can be monitored by the artifact.

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 247–249, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

248 M. Dastani

violates the 15 page limit.”). The brute facts are initially set by the programmer
by means of a Prolog program. As a consequence of an agent’s action, the atomic
brute facts can change during the artifact’s execution. The institutional facts are
only created and modified during the artifact execution since no initial institu-
tional facts can be specified. They are created and modified based on the (brute
and normative) state of the artifact and the applicable norms. The effect of an
agent’s observable action is specified by means of a pre- and a post-condition,
each considered as a set of brute literals (positive or negative brute facts). A
precondition is evaluated with respect to the brute state of the artifact and the
postcondition is used to update the brute state of the artifact. Norms are repre-
sented by counts-as rules [4], which ascribe “institutional facts” to “brute facts”.
For example, in a paper submission system, a counts-as rule may express the
norm “a submission with more than 15 pages counts-as a violation”. Institu-
tional facts are used with the explicit aim of triggering system’s reactions (e.g.,
sanctions). Sanctions are implemented as rules too, but follow the opposite di-
rection of counts-as rules. A sanction rule determines which brute facts will be
brought about by the system as a consequence of the institutional facts. Typi-
cally, changing the brute state of an artifact (e.g., an agent’s environment) by
adding brute facts to it corresponds to imposing sanctions (e.g., issuing fines).

The example in Figure 1 illustrates the implementation of a small part of a pa-
per submission system. The initial brute facts represent the facts that virginia
is one of the workshop chairs and that there are four registered authors. The rest
of the facts declare the lists of submitted papers and the reviewers that are as-
signed to papers (both lists are initially empty). We also have some background
knowledge, represented by Prolog rules, used to determine if the assignment of
papers to reviewers are conflicting (e.g., if an author should review its own pa-
per). The declaration of the initial brute facts is followed by the specification of
two actions to monitor: uploadPaper and assignReviewers. The execution of
the first action adds a paper to the list of submitted papers, and the execution of
the second assigns one reviewer to each paper. The first action is assumed to be
performed by an author and the second by the chair. Action specifications are
followed by counts-as and sanction rules. The first counts-as rule states that a
submitted paper with more than 15 pages is a violation and the second rule indi-
cates that conflicting assignments should be regimented. The special atom viol
indicates a regimented state that cannot be reached. A counts-as rule with viol
in its consequent means therefore that a state satisfying its antecedent should
be avoided. This is done by not realizing the effect of the observed action and
thereby preventing the application of the counts-as rule. Finally, the sanction
rule indicates that a page limit violation should be sanctioned by issuing a fine
of 25 euro.

The execution of this artifact program monitors possible actions performed
by either a registered author or the workshop chair. In particular, performing
the action uploadPaper(john, p1, 18) by the author john adds paper p1 to
the list of the received submissions (initially empty) resulting in the brute fact
submittedPapers([[john,p1,18]]). The result is evaluated with respect

Normative Multi-Agent Organizations 249

Facts:
workshopChair(virginia).
registeredAuthors([john, mary, eva, peter]).
submittedPapers([]).
reviewersPapers([]).
conflict([],Rs,[]).
conflict([(A, Id, Pages)|T], Rs, [A|R]):- member((A, Id), Rs), conflict(T,Rs,R).
conflict([(A, Id, Pages)|T], Rs, B):- conflict(T, Rs, B).
empty([]).

Effects:
{ submittedPapers(Rs), registeredAuthors(As), member(A,As) }

uploadPaper(A, Id, Pages)
{ not submittedPapers(Rs), submittedPapers([(A,Id,Pages)|Rs]) }

{ workshopChair(A), reviewersPapers(OldPRs) }
assignReviewers(A,PRs)

{ not reviewersPapers(OldPRs), reviewersPapers(PRs) }

Counts-as rules:
submittedPapers(As) and member((A,Id,Pages), As) and Pages > 15 => viol_pageLimit(A).
submittedPapers(Rs) and reviewersPapers(Res) and conflict(Rs, Res, X) and not empty(X) => viol.

Sanction rules:
viol_pageLimit(A) => fined(A,25).

Fig. 1. An example of norm-based organization artifact program

to the counts-as rules causing the generation of the page limit violation and
adding viol pageLimit(john) to the normative state of the artifact. Finally,
the interpreter evaluates the normative state of the artifact with respect to the
sanction rule adding the brute fact fined(john,25) to the brute state of the
artifact. This brute fact indicates that a fine of 25 euro is issued for john. Sup-
pose mary and peter upload their papers as well resulting in the brute fact
submittedPapers([[peter,p3,12], [mary,p2,14], [john,p1,18]]). Also
assume that the workshop chairs decide to assign papers to reviewers by per-
forming the action assignReviewers(virginia,[[peter,p1], [john,p3],
[mary,p2]]), indicating that papers p1, p2, and p3 should be reviewed by peter,
mary and john, respectively. The performance of this action, however, will be
prevented since otherwise the second counts-as rule can be applied causing the
generation of the special regimentation atom viol.

References

1. Dastani, M., Tinnemeier, N.A.M., Meyer, J.-J.C.: A programming language for nor-
mative multi-agent systems. In: Dignum, V. (ed.) Multi-Agent Systems: Semantics
and Dynamics of Organizational Models, ch. 16. IGI Global (2008)

2. Dignum, V.: A Model for Organizational Interaction. PhD thesis, Utrecht University,
SIKS (2003)

3. Esteva, M., Rodŕıguez-Aguilar, J.A., Rosell, B., Arcos, J.L.: Ameli: An agent-based
middleware for electronic institutions. In: Proc. of AAMAS 2004 (2004)

4. Grossi, D.: Designing Invisible Handcuffs. PhD thesis, Utrecht University (2007)
5. Hübner, J.F., Sichman, J.S., Boissier, O.: Moise+: Towards a structural functional

and deontic model for mas organization. In: Proc. of AAMAS 2002 (2002)
6. Jones, A.J.I., Sergot, M.: On the characterization of law and computer systems. In:

Deontic Logic in Computer Science (1993)

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 250–253, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Hybrid Teams in Virtual Environments: Samurai Joins
the Training Team

Jurriaan van Diggelen, Tijmen Muller∗, and Karel van den Bosch

TNO Defense, Safety and Security
Soesterberg, The Netherlands

jurriaan.vandiggelen@tno.nl, tijmen.muller@tno.nl,
karel.vandenbosch@tno.nl

Abstract. This paper demonstrates a virtual environment where mixed human-
agent teams are used for team-skills training.

Keywords: Human-Agent Teams, Team Training, Cognitive Modeling.

1 Introduction

Training team skills forms an essential part of the education of many professions
which demand a tight collaboration, such as medical, military, or fire fighting. Usu-
ally, this is done by team training drills with a (potentially large) number of partici-
pants, each playing a dedicated role in a given scenario.

The demonstrator described in this paper intends to provide a different approach.
We have developed a game-based platform in which some team-members are played
by humans, and some team-members are played by software agents. In this way, team
training can be made less costly, as not all roles have to be fulfilled by humans any-
more. Furthermore, it can be better tailored to the specific learning objectives of a
specific individual, as we can more precisely control the team behavior of artificial
team members than that of human team members (which may be trainees themselves).

We use the game SABRE [3], which is a Virtual Environment (VE) based on the
commercial game Never Winter Nights, which has been developed by NATO for
training military team skills. Normally, SABRE is played by a group of humans
which collaboratively explore a village to find weapons hidden by terrorists. In this
project, we implemented a software agent, called Samurai, and allowed it to partici-
pate in a team of human SABRE-players as an equal team-member.

Samurai is based on the agent programming language 3APL [3], where agents are
defined in terms of cognitive concepts such as goals, plans and beliefs. To endow an
agent with the desired team characteristics, we also added organizational notions to
the framework, such as roles, workflows, and team goals.

∗ The first two authors are listed alphabetically and should be regarded as having made an equal

contribution.

 Hybrid Teams in Virtual Environments: Samurai Joins the Training Team 251

The next section describes Samurai’s different types of team behavior. Section 3
describes the implemented prototype. Section 4 concludes the paper.

2 Teaming Up with Samurai

Most simply, a team is a group of people working together to achieve a common
goal. This requires team members to maintain common ground, to be mutually pre-
dictable, and to be mutually directable [2]. Related literature reports different ways
in which these properties can be implemented in artificial team members, with dif-
ferent levels of sophistication. In an elementary way, we have implemented them in
Samurai as follows. Samurai maintains common ground with the other team mem-
bers by actively sharing relevant pieces of information with them. Mutual predict-
ability is achieved by applying an organizational structure to the team, which is
commonly known by all participants, and provides a shared basic understanding of
how the different participants are performing their share of teamwork. Mutual di-
rectability is implemented by a request protocol, which allows one agent to ask
another agent to perform an action.

Whereas we believe these properties to be essential for team membership, how
these properties reveal themselves in behavior may vary. By explicitly modeling such
differences in artificial team members we can expose trainees to different types of
team behavior. For all three aspects discussed above, we can configure Samurai in
either provocative mode or unprovocative mode. When Samurai maintains common
ground in a provocative way, it sometimes refrains from sharing relevant information.
This invites the trainee to learn to actively collect relevant information. When mutual
predictability is implemented in a provocative way, Samurai is not (fully) organiza-
tion aware. This invites the trainee to improve the collaboration with Samurai by
communicating his or her own roles. Provocative mutual directability means that
Samurai will not blindly follow up a request from the trainee. Instead, the trainee
should convince Samurai that that the requested action is in its own interest too, or in
the team’s interest.

3 Team Training Environment

We assume that an agent’s behavior can be modeled by specifying beliefs, goals and
plans. Following the agent programming language 3APL [1], we assume that the
relation between these three notions is specified by practical reasoning rules (or PR-
Rules). When an agent enacts a role in the organization, it adopts the corresponding
PR-rules, which is then known by all other agents in the organization. These other
agents can decide which information qualifies as relevant to an agent, by inspecting
its organizational PR-Rules. Because also human behavior is specified in this way,
Samurai can decide which information is relevant to a human trainee, and subse-
quently share it with the trainee.

252 J. van Diggelen, T. Muller, and K. van den Bosch

The coupling between the agent (Samurai) and the virtual environment (SABRE) is
depicted in Figure 1. A screenshot of the application is depicted in Figure 2.

The Samurai and SABRE processes
run in parallel. At the Samurai side, the
process starts when new information is
obtained from SABRE. This may be
about actions being finished or new
observations. This information may be
exchanged with others, and may lead
to new actions. Actions are executed at
the SABRE side by calling game
scripts. In this way, the higher level
planning of actions is implemented in
the agent, while the lower level im-
plementation of these actions is im-
plemented in the VE.

Get new information

Communicate

Prioritize PR rules

Select plan

Execute action Execute script

Notify when finished

Samurai Sabre

Notify observations

Observe

Fig. 1. Agent-VE coupling

Fig. 2. Samurai’s internal workings (left); Samurai in the VE (Right)

4 Conclusion

This demonstration paper describes our approach to applying virtual team members in
training scenarios. Samurai can be configured to exhibit different types of team be-
havior which may be more or less challenging to the trainee. In the future, we plan to
perform experiments to test the effectiveness of our hybrid training environment on
human learning.

 Hybrid Teams in Virtual Environments: Samurai Joins the Training Team 253

References

[1] Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.C.: Agent programming in
3APL. Autonomous. Agents and Multi-Agent Systems 2(4) (1999)

[2] Klein, G., Woods, D., Bradshaw, J.M., Hoffman, R.R., Feltovich, P.J.: Ten Challenges for
Making Automation a Team Player. In Joint Human-Agent Activity. IEEE Intelligent
Systems 19(6) (2004)

[3] Leung, A., Diller, D., Ferguson, W.: SABRE: A game-based testbed for studying team be-
havior. In: Proceedings of the Fall Simulation Interoperability Workshop (SISO). Orlando,
FL, September 18-23 (2005)

H. Aldewereld, V. Dignum, and G. Picard (Eds.): ESAW 2009, LNAI 5881, pp. 254–256, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Joint Activity Testbed: Blocks World for Teams (BW4T)

Matthew Johnson1, Catholijn Jonker2, Birna van Riemsdijk2, Paul J. Feltovich1,
and Jeffrey M. Bradshaw1

1 Florida Institute for Human and Machine Cognition,
40 South Alcaniz, Pensacola, Florida, USA

2 EEMCS, Delft University of Technology, Delft, The Netherlands
{mjohnson,pfeltovich,jbradshaw}@ihmc.us,
{c.m.jonker,m.b.vanriemsdijk}@tudelft.nl

Abstract. This demonstration will be the presentation of a new testbed for joint
activity. The domain for this demonstration will be similar to the classic AI
planning problem of Blocks World (BW) extended into what we are calling
Blocks World for Teams (BW4T). By teams, we mean at least two, but usually
more members. Additionally, we do not restrict the membership to artificial
agents, but include and in fact expect human team members. Study of joint ac-
tivity of heterogeneous teams is the main function of the BW4T testbed.

Keywords: Joint Activity, Coordination, Teamwork.

1 Introduction

This demonstration will be the presentation of a new testbed for joint activity. The
domain for this demonstration will be similar to the classic AI planning problem of
Blocks World (BW) shown in Figure 1. BW has been a popular test domain with the
Planning community because of its simplicity and was borrowed by the Distributed
AI (DAI) and Multi-Agent Systems (MAS) community to study distributed planning
and coordination. We extend BW into what we are calling Blocks World for Teams
(BW4T). Teams consist of at least two, but usually more members. Additionally, we
do not restrict the membership to artificial agents, but include and in fact expect hu-
man members. Study of joint activity of heterogeneous teams is the main function of
the BW4T testbed.

Fig. 1. Basic Blocks World

 Joint Activity Testbed: Blocks World for Teams (BW4T) 255

2 Blocks World for Teams (BW4T)

In order to study joint activity of heterogeneous teams in a controlled manner, we
extend the basic BW problem in a few ways. First, instead of having only one player,
as usual in BW, for BW4T we allow multiple players as in the DAI and MAS work.
Our approach is different in that players can be combinations of both human and
artificial agents. Second, instead of having all the blocks visible on a table, we hide
them in a series of rooms. Agents can only see blocks that are in the same room as
they are. This feature is added to force the coordination to be explicit, i.e., to force
coordination through communication. Coordination can frequently occur through
observation of the environment and non-verbal cues. While implicit coordination is
another valuable area of study, these cues can be very difficult to detect and measure.
Restricting the visibility will force explicit communication. A restricted chat window
is provided for communication. By controlling the goal and the communication op-
tions, we can influence the need for coordination and type of coordination available
during the joint activity.

2.1 The Environment

Figure 2 shows the basic setup: a number of colored boxes are hidden in a number of
rooms that have one or more doors. In Figure 2, we show twelve rooms arranged in
three rows of four, containing a number of red, white and blue boxes.

Fig. 2. BW4T basic setup with everything visible

2.2 The Players

Each player in BW4T controls an avatar in the environment. The players must navi-
gate their avatar around the world and perform simple pick-up and drop-off actions.
Human team members use a simple keyboard and mouse interface. Players communi-
cate through a restricted chat like interface. The messages are restricted to a domain
relevant set to bound the interpretation problem for artificial agents and still allow for
a very diverse set of coordination techniques by the players. Players have their own
interface and are restricted as to what they can see. As an example, consider a two
player BW4T example shown in Figure 3. Players, depicted by their red circle ava-
tars, can only see the contents of the room they are currently in and do not see the
other players or their status except through communication.

256 M. Johnson et al.

Fig. 3. BW4T - 2 player example

2.3 The Game

At the bottom of the interface, as shown in Figure 2, there is a set of bins. The bins
depict the color pattern required. The team goal is to fill each bin to match the speci-
fied pattern as fast as possible. Players may “carry” only one block at a time. To re-
trieve a block, each player must maneuver its avatar into the various rooms, to find
the block of interest. Then the player must navigate to the block of interest to “pick it
up” and maneuver the robot into the goal area to “drop it off” in the appropriate bin.

3 Related Work

While there have been plenty of MAS testbeds, it is rare to find a testbed specifically
designed for arbitrary sized heterogeneous (human and agent) teams. This testbed is
similar to MICE (Michigan’s Intelligent Coordination Experiment) [1] in that it ad-
dresses a simple domain. BW4T is similar to Gamebots3D [2] in that we focus on
human participation. While its initial domain is a simple one, we expect to add more
domains with increased complexity in the future.

Acknowledgments. The work is partially supported by the ADA CTA.

References

1. Durfee, E.H., Montgomery, T.A.: MICE: A Flexible Testbed for Intelligent Coordination
Experiments. In: Proceedings of the 1989 Distributed AI Workshop (1989)

2. Adobbati, R., Marshall, A.N., Scholer, A., Tejada, S.: Gamebots: A 3D Virtual World Test-
Bed For Multi-Agent Research. In: Proceedings of the Second International Workshop on
Infrastructure for Agents, MAS, and Scalable MAS (2001)

Author Index

Akarun, Lale 213
Aldewereld, Huib 116, 197, 236
Alvarez-Napagao, Sergio 116, 236
Andreou, D. 236
Andrighetto, Giulia 1
Aran, Oya 213
Artikis, Alexander 243

Blancke, David 113
Bora, Sebnem 165
Bradshaw, Jeffrey M. 254
Burgemeestre, Brigitte 68

Campenǹı, Marco 1
Campos, Jordi 229, 240
Carr, Hugo 113, 243
Ceccaroni, L. 236
Chorley, A. 236
Clarke, S. 236
Cliffe, O. 236
Confalonieri, R. 236
Conte, Rosaria 1
Corsar, D. 236

Dastani, Mehdi 247
De Vos, M. 236
Dignum, Frank 116, 197, 236
Dignum, Virginia 84, 197, 236
Dikenelli, Oğuz 162, 165, 181

Ekinci, Erdem Eser 162, 181
Esteva, Marc 229, 240

Feltovich, Paul J. 254
Ferber, Jacques 15

Gil, Yolanda 132
Gleizes, Marie-Pierre 33
Gomez, I. 236
Groth, Paul 132
Guerin, F. 236

Herzig, Andreas 148
Hidalgo, S. 236
Hindriks, Koen 98

Hübner, Jomi Fred 148
Hulstijn, Joris 68

Johnson, Matthew 254
Jonker, Catholijn 98, 254

Kamphorst, Bart 84
Kleerekoper, Anthony 113
Kır, Hüseyin 181
Krupa, Yann 148
Kühn, Eva 17, 65

Lam, J.S.C. 236
López-Sánchez, Maite 229, 240
Luck, Michael 132

Maurel, Christine 33
Migeon, Frédéric 33
Miles, Simon 132
Modgil, Sanjay 132
Morales, Javier 240
Morandini, Mirko 33
Muller, Tijmen 250

Nieuwenhuis, K. 236
Nieves, J.C. 236
Norman, T.J. 236

Oren, Nir 132

Padget, Julian 49, 236
Palau Roig, M. 236
Panagiotidi, S. 236
Penserini, L. 236
Penserini, Loris 33, 197
Perini, Anna 33
Pitt, Jeremy 113, 243
Popescu, R. 236

Quillinan, T. 236

Reed, C. 236

Sergeant, P. 236
Sesum-Cavic, Vesna 17, 65
Staikopoulos, Athanasios 197, 236

258 Author Index

Tan, Yao-Hua 68
Traskas, Dimitris 49

van den Bosch, Karel 250
van Diggelen, Jurriaan 250
van Riemsdijk, M. Birna 98, 254
van Wissen, Arlette 84
Vasconcelos, W.W. 236

Vázquez-Salceda, Javier 116, 236
Vercouter, Laurent 148

Weldemariam, Komminist 233

Yolum, Pınar 213
Yıldırım, İlker 213

	Title Page
	Preface
	Organization
	Table of Contents
	Part 1: Invited Talks
	The Immergence of Norms in Agent Worlds
	Introduction
	The Normative Gap
	A 2-Way Dynamics of Norms
	Normative Agents
	EMIL-A Architecture
	Value Added of EMIL-A

	Simulating Norm Emergence
	The Norm Recognition Module at Work

	The Simulation Model
	Results and Discussion

	Concluding Remarks
	References

	Thinking Integral: How to Build Complex Systems That Live with People and Exhibit Collective Intelligence
	References

	Part 2: Self-organisation
	A Space-Based Generic Pattern for Self-Initiative Load Balancing Agents
	Introduction
	Classification of LB Algorithms
	SILBA Pattern
	Local Node Pattern
	Allocation Pattern
	Routing Pattern
	Pattern Composition

	Implementation with a Space-Based Middleware
	Shared Containers and Scheduler
	Local Node Implementation
	Allocation Implementation
	Routing Implementation

	Examples and Benchmarks
	Mapping Some Algorithms to SILBA
	Benchmarks

	Conclusion
	References

	A Goal-Oriented Approach for Modelling Self-organising MAS
	Introduction
	Methodological Background
	Tropos and Tropos4AS: Goal-OrientedModelling
	ADELFE: Cooperative Agents
	Comparing the Two Methodologies

	Modelling of Self-organising MAS
	Metamodel Extension
	Modelling Steps

	Application to an Example
	Architecture
	Detailed Design
	Discussion

	Related Work
	Conclusion and Future Work
	References

	Engineering Agent Organisations in a Business Environment
	Introduction
	Call Centre Case Study
	Call Routing Process

	Modelling Approach
	The Hierarchical Model
	A Decentralised Approach

	Experiments
	Call CentreWorkshop (CCW)

	Results and Discussion
	Related Work
	Conclusions and Future Work
	References

	Peer-to-Peer Overlay Network Based on Swarm Intelligence
	Introduction
	Architecture and Design
	Simulation Results
	Conclusion
	References

	Part 3: Software-Engineering and Architectures
	Agent Architectures for Compliance
	Introduction
	Cognitive Agent Architectures
	Perception and Action
	Perception, Planning and Action
	Perception, Goal Generation, Planning and Action

	Information Needs
	Case Study: Horizontal Monitoring
	Related Research
	Conclusions
	References

	Incorporating BDI Agents into Human-Agent Decision Making Research
	Introduction
	Related Work
	Colored Trails
	The Framework
	What’s Missing?

	2APL
	The Platform
	What’s Missing?

	CTAPL
	Conceptual Design
	Implementation

	Discussion
	Future Work
	Conclusions
	References

	Programming Organization-Aware Agents
	Introduction
	Motivation and Background
	Dimensions of Organizational Reasoning
	Phases of Organizational Participation
	Elements of Organizational Specifications
	Direction of Organizational Reasoning

	Programming Organization-Aware Agents
	Conclusion
	References

	Energy Trade-Offs in Resource-Constrained Multi-Agent Systems
	Introduction
	Energy vs. Accuracy in Sensor Networks
	Energy vs. Security in Ad Hoc Networks
	Conclusions
	References

	Part 4: Social Aspects of Agent Societies
	Engineering Social Reality with Inheritance Relations
	Introduction
	The ALIVE Project
	Crisis Management Scenario

	The Intuitions of Counts-As
	Constitutive Counts-As in Crisis Management
	Dealing with Sub-contexts and Overlap

	Implementing Counts-As
	Conclusions
	References

	Determining the Trustworthiness of New Electronic Contracts
	Introduction
	Case Study

	Trust
	Electronic Contracts
	Basic Concepts
	Electronic Representation of Contracts

	Provenance
	Contract Trust Algorithm
	Features:Measuring Success of Contracts
	Distance: Measuring Similarity of Contracts
	Voting: Evaluating Trustworthiness of Proposals

	Case Study
	Simulation
	Provenance
	Success and Similarity

	Evaluation
	Conclusions
	References

	Trust Based Evaluation of Wikipedia’s Contributors
	Introduction
	The Wikipedia Encyclopedia
	Participative But Not Anarchic
	The RC Patrol

	The ForTrust Trust Model
	Trust in Multiagent Systems
	Social Trust Theory
	Trust Formalisation
	Trust in Inaction

	Trust Decision on Wikipedia
	Application of the ForTrust Model to Wikipedia
	Trust in Action: Modification
	Trust in Inaction: Vandalism
	From the Abstract Model to an Implementation

	Trust-Based Assistance to Wikipedia Patrollers
	Conclusion
	References

	Evolutionary Role Model for Multi-Agent Systems
	Introduction
	Evolutionary Role Model
	Conclusion
	References

	Part 5: Organisation and Autonomy
	Replication Based on Role Concept for Multi-Agent Systems
	Introduction
	Context of This Work
	Role-Based Replication
	The Fault Tolerant Role

	Criticality of the Role
	Case Study
	Evaluation of the Approach

	Related Works
	Conclusion
	References

	Knowledge Management in Role Based Agents
	Introduction
	Role-Based Knowledge Semantics
	The Architecture
	Case Study
	Related Work
	Conclusion
	References

	Balancing Organizational Regulation and Agent Autonomy: An MDE-Based Approach
	Introduction
	Background
	The ALIVE Approach
	Model Driven Engineering

	Motivating Scenario
	Balance Regulation and Flexibility
	MDE to Guarantee Flexibility-Regulation Balance
	Organizational Structure Design
	Abstract OL
	Specific OL

	Consequences for Agent Design
	Conclusions
	References

	Cooperative Sign Language Tutoring: A Multiagent Approach
	Introduction
	Problem Definition
	Cooperation Strategies
	Voting
	Score Level Fusion
	Modeling Agents

	Evaluation of Cooperation Strategies
	Discovering Sign Language Properties
	Discussion
	References

	Assistance Layer in a P2P Scenario
	Introduction
	Assistance Layer
	Implementation and Results
	Conclusions
	References

	Navigational Web-Interfaces from Formal Tropos Specification
	Introduction
	Prototype Generation
	Capturing Application Data Models
	Integrating Relational Models and Interfaces
	Conclusion
	References

	Part 6: Demonstrations
	ALIVE: A Framework for Flexible and Adaptive Service Coordination
	Introduction
	ALIVE Framework
	Organisation Level
	Coordination Level
	Service Level

	An Organisational Adaptation Simulator for P2P Networks
	Introduction
	Simulator Architecture
	Sharing Methods
	GUI
	References

	PreSage-MS: Metric Spaces in PreSage
	Introduction
	PreSage-MS
	Conclusion
	References

	Normative Multi-Agent Organizations
	References

	Hybrid Teams in Virtual Environments: Samurai Joins the Training Team
	Introduction
	Teaming Up with Samurai
	Team Training Environment
	Conclusion
	References

	Joint Activity Testbed: Blocks World for Teams (BW4T)
	Introduction
	Blocks World for Teams (BW4T)
	The Environment
	The Players
	The Game

	Related Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

