
Cryptanalysis of Hash Functions with Structures

Dmitry Khovratovich

University of Luxembourg
dmitry.khovratovich@uni.lu

Abstract. Hash function cryptanalysis has acquired many methods,
tools and tricks from other areas, mostly block ciphers. In this paper
another trick from block cipher cryptanalysis, the structures, is used for
speeding up the collision search. We investigate the memory and the time
complexities of this approach under different assumptions on the round
functions. The power of the new attack is illustrated with the crypt-
analysis of the hash functions Grindahl and the analysis of the SHA-3
candidate Fugue (both functions as 256 and 512 bit versions). The col-
lision attack on Grindahl-512 is the first collision attack on this function.

Keywords: cryptanalysis, hash functions, SHA-3, truncated differentials,
Grindahl, Fugue, structures.

1 Introduction

Since 1990 the MD family of hash functions and its successor SHA family have
been most widely used data integrity primitives. In contrast with few crypt-
analytic results in 90s recent attacks on MD5 [19], SHA-0 [14], and SHA-1 [5]
encouraged the cryptographic community to look for more reliable components
and then motivated the recent SHA-3 competition [16]. The Merkle-Damg̊ard ap-
proach [8,15] to build hash functions from compression functions, has lost a part
of credit due to such generic attacks as multicollisions [11] and second-preimage
search with expandable messages [12].

In contrast to generic attacks like multicollisions, which are applicable to hash
functions with Merkle-Damgard strengthening, attacks on lower level compres-
sion functions are highly dependent on a particular proposal and can rarely be
extended to other functions. Common ideas are mostly related to the notion of
differentials since the fact that two different messages produce the same hash
value (a collision) can be expressed as a zero difference in the output.

The idea of differentials comes from block cipher cryptanalysis and pioneering
papers by Biham and Shamir [3]. As high probability differential characteris-
tics were exploited in attacks on block ciphers as high probability zero-ending
differential trails are used to find collisions for compression functions.

Since block cipher cryptanalysis is a highly developed topic, many cryptana-
lysts try to use the most efficient methods and tools in attacks on hash functions.
However, due to stronger requirements on the results of an attack only few of
them were applied. The use of truncated differentials [17] is an example.

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 108–125, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Cryptanalysis of Hash Functions with Structures 109

In this paper we investigate another tool from block cipher cryptanalysis:
structures. A structure is originally a set of plaintexts that pairwise have some
property (e.g., zero difference in particular bytes). Since the number of pairs
with desired properties in a structure is much larger than the structure size,
such constructions are widely used in order to save memory and time in attacks
on block ciphers [4,6].

Intuitively, structures might have been used in attacks on the hash functions
built on block ciphers [18]. However, the authors are aware of only one such
attack: a recent attack on Snefru [2], though Snefru does not directly fit the
constructions from [18].

We have found that structures are especially useful in attacks on stream-
based hash functions, where parts of a message can independently be controlled.
We analyze the hash functions Grindahl and Fugue. For Grindahl-256, we
improve the best known attack by Peyrin [17], while for Grindahl-512 this
paper presents the first known collision attack. The hash function Fugue [10] is a
strengthened successor to Grindahl, so we did not manage to break its security
claims. However, our attack is substantially faster than a trivial internal-collision
attack.

This paper is organized as follows. First we briefly explain how the use of
structures reduce the cost of collision search. Then we investigate how structures
follow the differential trail and collapse to pairs in some step (Section 3) so that
the standard differential approach can be applied afterwards. We also derive the
memory complexity of the attack.

Then we attack Grindahl and Fugue with structures (Section 4). The num-
ber of computations required ro find a collision for Grindahl-256 is reduced
compared to the attack by Peyrin [17]. We also present the first collision attack
on Grindahl-512 and the first external analysis of Fugue . In the Appendix
the time complexity of the attack is estimated under different assumptions.

2 Idea in Brief

In many attacks on compression functions a cryptanalyst deals with a set of
pairs that are to follow a particular differential trail. Here the trail is a sequence
of differences in the internal state of the hash function. (see [1] for a more formal
approach). At some steps an adversary may vary a message part to be injected
thus increasing the number of pairs that follow the trail (the attack by De
Canniére and Rechberger on SHA-1 [5] is an example). If there is not enough
freedom to satisfy round conditions, the number of candidate pairs tends to
decrease. We show that this effect can be postponed if a differential trail allows
to incorporate pairs into structures.

In order to distinguish the approach when a cryptanalytic deals with pairs
from our approach we call the former one the standard differential attack. It is
also known as the trail backtracking [1]. Our attack is later called the structural
approach, or the structural attack.

Now assume that the trail deals with truncated differentials, and the possible
differences form a linear space R of differences. Then if a pair of states (S1, S2)

110 D. Khovratovich

Fig. 1. Comparative view on the structural and the differential approaches. F is a
round function. In the first case the number of states remains stable till structures
collapse to pairs (middle round).

fits the trail, and a pair (S2, S3) fits the trail, then the pair (S1, S3) fits the trail
too. Such a group of states is called a structure.

Suppose at some step a structure of size Q enters the round with probability
P . Then every state Si will have a desired difference with PQ other states
thus composing a smaller structure. Therefore the initial structure splits into
1/P smaller structures. If the structure collapses into separate pairs then the
differential attack is launched.

Suppose there is now freedom from the message injection, i.e., for a pair of
messages (M, M ′) there are V possibilities for M and D more possibilities for
M ′ (V D pairs at all). So if a round differential has probability P then of T pairs
about V · D · P · T pairs survive. See Figure 1 for the outline of the situation.

When we work with structures, the value of the injected message can be
chosen freely only for the first state of a new structure, or the leader state; the
messages injected to the other states should have a desired difference with a first
one. Consequently, the message freedom results in structures of size ≈ D ·P ·Q.
The number of states remains the same; however, it can be increased if we take
other states as leading ones.

3 Analysis of Structure Fission

In order to benefit from the number of pairs in a structure an adversary should
keep the size of the structure as big as possible. Let us estimate the size as a
function of the round probability and the freedom given by message injections.
Denote by ∼ the desired binary relation between two states, which can be also
interpreted as the fact that the difference in the state satisfies the trail conditions.

Cryptanalysis of Hash Functions with Structures 111

The particular relation is usually clear from the context. Then a structure is a set
of internal states such that any two states of the set satisfy the binary relation ∼.
In our attacks on Grindahl and Fugue (Section 4) the relation is of form “bytes
(respectively, words) i1, i2, . . . , ik are equal”.

No freedom in the message injection. Suppose a structure of size Q = 2q states
enters a round with probability 2−p. First consider the case where there is no
freedom in message injection due to the differential trail or the message schedule.
After the application of the round function any state has a desired difference
with 2q−p other states, which form a structure of size 2q−p. Therefore, the initial
structure splits into about 2p smaller structures of average size 2q−p.

It is easy to prove that the partition of a structure into structures of equal
size gives a lower bound on the overall number of pairs. If p is high enough
then the structure collapses to separate pairs. Since there were 22q−1 pairs in
the structure, about 22q−1−p pairs come out of one round. Then the pairs are
processed by the standard differential attack.

Value freedom in the message injection. Suppose now there is some freedom in
message injections but the differential trail does not allow to introduce a differ-
ence, or the value of the difference is fixed. Then every state can be transformed
to at most one element of a new structure, so the structures do not grow in this
case. However, one may increase the number of structures and thus the number
of considered states.

The latter approach increase the memory complexity so we do not use it except
for the round when all structures collapse to pairs. Given V = 2v possibilities
for an injected message we get 22q−1+v−p pairs after the round.

Difference freedom in the message injection. Assume that 2d possible differences
can be injected, and they form a linear space. Then we get larger structures
because we have more freedom in steering a state into the structure.

Suppose that state Si has already transformed to state S′
i by message vi:

Si[vi] = S′
i. Let us compute the probability that a randomly chosen state Sj

can be transformed to some state with the desired difference with S′
i by some

message m′, which follows the trail too. The probability can be expressed as
P(∃m′ : Sj [m′] ∼ S′

i, m
′ ∼ m | Si ∼ Sj).

Assuming that the events for particular messages are independent we obtain
the following expression:

P(∃m′ : Sj [m′] ∼ S′
i, m

′ ∼ m | Si ∼ Sj) =

= 1 −
∏

m′∼m

P(Sj [m′] � S′
i | Si ∼ Sj) = 1 − (1 − 2−p)2

d ≈ 2d−p. (1)

Consequently, one structure splits into structures of average size Q′ = 2q+d−p.
Analogously, if q + d − p < 0 the structure collapse to pairs. Since 22q−1+v+d

pairs can be composed about 22q−1+v+d−p come out of the round.

112 D. Khovratovich

Size of the initial structure. By degrees of freedom we understand the base 2
logarithms of the number of admissible values. Suppose that at round i there
are vi degrees of freedom in the values of the injected message, di degrees of
freedom in the differences in injected messages, and pi (bit) conditions to be
satisfied. In the standard differential attack we start with 2c pairs and leave
with one pair in the end. Therefore, we obtain the following equation:

c +
T∑

i=1

(vi + di − pi) = 0.

Here T stands for the number of rounds covered by the trail. We also denote by
c(t) the logarithm of the number of pairs after t-th round:

c(t) = c +
t∑

i=1

(vi + di − pi) = c +
t∑

i=1

vi

︸ ︷︷ ︸
v(t)

+
t∑

i=1

di

︸ ︷︷ ︸
d(t)

−
t∑

i=1

pi

︸ ︷︷ ︸
p(t)

.

Suppose we start with a structure of size 2q, which collapse to pairs after l + 1
rounds, l < T . The structure splits to 2p(l)−d(l) smaller structures after l rounds.
Each structure is of size about 2q+d(l)−p(l). Therefore, about 22q+d(l)−p(l)−1 pairs
come out of round l.

In order to continue the collision search and obtain one pair in the end the
following equation should hold:

2q + d(l) − p(l) − 1 = c(l) ⇔ 2q = c + v(l) + 1 ⇔ q =
c + v(l) + 1

2
.

c(t) = c + v(t) + d(t) − p(t)

q(t) = q + d(t) − p(t)

q

c

states/
pairs of states

l l + 1 T rounds

c+v(t)+1
2

logarithmic scale

Fig. 2. Memory complexity of the collision search with structures

Cryptanalysis of Hash Functions with Structures 113

The memory complexity is thus determined by the maximum of 2q and 2c(l+1)+1.
It can be finally expressed as

min
0≤l<T

max(2
c+v(l)+1

2 , 2c(l+1)+1). (2)

The plot of the memory complexity of the attack with structures compared
to a standard differential attack is drawn in Figure 2. There c stands for the
logarithm of the number of pairs required by the differential attack, q stands for
the logarithm of the size of the structure that is used for the structural attack.

4 Concrete Attacks

4.1 How to Construct a Trail

The trails used in our attacks on Grindahl and Fuguehave been obtained by
a simple backtracking process. The idea is to start with zero-difference state and
step back with introducing differences by all message injections. The differences
spread to the internal state till every byte (or another building block) contains
the difference. The number of steps is subject to the diffusion properties of the
internal transformations.

4.2 Grindahl-256

Description. Grindahl is a family of hash functions proposed by Knudsen,
Rechberger and Thomsen at FSE 2007 [13] as a stream-based hash function. The
round function of Grindahl uses the design components of AES [7]: SubBytes
and the MixColumns operation. Since the internal state of Grindahl is wider
than that of AES (Grindahl-256 can be viewed as a byte matrix of 4 rows and
13 columns) it uses a modified ShiftRows transformation in order to obtain
better diffusion. The other message-independent transformation is AddCon-
stant, which adds a constant to a particular byte.

In Grindahl-256 the message injection is just the overwriting of the first
column with 4-byte message block. The round function is defined as the following
composition of transformations:

P (α, M) = MixColumns ◦ ShiftRows ◦ SubBytes◦
◦ AddConstant ◦ InjectMessage(α, M).

Here α denotes the state to be iterated, and M the message block to be injected.
Every message block is used only once.

In order to obtain a hash value the state filled with zeros is iterated till the
message is ended. Then eight blank rounds (no message injection) are applied
and the resulting state is truncated to 256 bits, which is the hash value.

114 D. Khovratovich

Security. The designers of Grindahl-256 claimed the security level of 2128

operations against both collision and second-preimage attack. Peyrin in [17]
found a differential trail, which leads to a full collision in an internal state before
the blank rounds are applied. The trail deals with two values of byte differences:
non-zero and zero. It starts with a pair of states that differ in all bytes and after
9 message injections leads to a collision. Following our notation, he had 55 byte
conditions, 21 byte degrees of value freedom, and 20 byte degrees of difference
freedom thus obtaining complexity 2(55−21−20)·8 = 2112 message pairs. In early
steps there was more freedom that is required by the trail so there was no clear
difference between the value freedom and the difference freedom. However, the
structural approach benefits from the difference freedom so we first exploit the
latter one. There is also an attack on the prefix-MAC built on Grindahl [9].

Although Grindahl-256 is already broken, the goal of our attack is not only
the illustration of structural technique. Peyrin provided some ad-hoc observa-
tions on the fact that his attack is one of the best dealing with the truncated-
differential approach, and 2104 is the lower bound on the complexity of such
attack. Our attack breaks this bound.

Attack. In order to apply the structural approach we first have to modify a
bit the class of truncated differentials. Here and later we consider two-valued
byte-difference: ∗ (random difference, including 0) and 0 (bytes coincide). They
are marked as grey and white cells in Figure 3, respectively. One can easily check
that this not only barely affect the probability of the trail and the complexity
of the collision search but also simplify computations.

The second barrier is that the trail used by Peyrin for collision search is badly
suited for the structural approach due to the distribution of probabilities among
the iterations, which helps the standard differential attack but does not provide
the best results for the structural attack. Table 1 (a) shows that we would have
to start with a structure if 212.5·8 = 2100 states, which does not offer enough
advantage against Peyrin’s attack.

The better complexity is provided by the second trail from [17], which was
proposed for the second-preimage search. However, there is a mistake in Peyrin’s
paper: the byte C inserted before the k-th iteration does not affect column 11 in
the k+1-th iteration. As a result, the complexity of a simple truncated differential
attack is 221·8 = 2168 pairs. However, the structural attack needs only a set of
210.5·8+0.5 = 284.5 states (Table 1 (b)).

The attack works as follows. Iterate Grindahl-256 for 10 rounds with ran-
domly chosen messages and obtain a structure with 284.5 states. Then we keep
the size of the strcture after the first iteration thanks to the 4-byte difference
freedom. After the second round the structure collapses to 272 pairs, and only
one pair comes out of the next iteration.

Time complexity of the attack. Since some message bytes pass several Sub-
Bytes transformations it is not clear how costly the steps when we deal with
structures are. A trivial upper bound is 2q+max(di) ≈ 2116. We propose some
optimizations, which lead to a complexity about 2100 operations though the

Cryptanalysis of Hash Functions with Structures 115

Table 1. Parameters of differential trails for Grindahl-256. Measurement in bytes.

i vi di pi c(i) c+v(i)
2

q(i)

Start − − − 14 7 12.5

1 0 2 2 14 7 12.5

2 3 4 7 14 8.5 9.5

3 4 3 7 14 10.5 5.5

4 4 2 7 13 12.5 1.5

5 4 3 9 11 14.5 −
6 4 4 14 5 16.5 −
7 2 2 9 0 17.5 −

8 − 9 0 0 0 0 17.5 −

i vi di pi c(i) c+v(i)
2

q(i)

Start − − − 21 10.5 10.5

1 0 4 4 21 10.5 10.5

2 4 4 20 9 12 −
3 4 3 15 0 14 −

4 − 5 0 0 0 0 14 −

(a) (b)

technique can probably be improved. The reader may refer to Table 8 for better
understanding.

In the first step there are 4 bytes of difference freedom and 4 bytes where
the difference should be canceled. The leader state of a new structure is defined
by iterating the round function with a random message block. For each next
state S in the structure we must find the message bytes (A, B, C, D) to be
injected (we keep this notation in the further text) that lead to a state colliding
in particular 4 bytes with the leader state. First consider column 7 before the
MixColumns transformation in the second iteration. Three bytes of column 7
are not affected by the message injection and can be derived explicitly. On the
other hand, one byte after the MixColumns transformation is known because
a collision there is needed. Thus, compute both the input and the output of the
MixColumns transformation of column 7 and thus derive the value of D and
the value of second byte in column 9 in the next iteration.

Then try all the values of C. For each value derive one more byte in col-
umn 9 in the third iteration. As a result, two bytes in column 9 are known
before the MixColumns transformation and two bytes are known due to the
fact of collision. As a result, derive the values of A and B and check the Mix-
Columns transformation in column 3 of the second iteration with the latter two
values. On average, 27 trials of C are required.

The second step is actually the bottleneck of our attack, though we believe
that the complexity may be reduced. First vary B and C for each state thus
obtaining 2100.5 states. Then the 16 bytes in the third iteration where zero dif-
ference is desired are fully determined by 6 bytes that are affected by A and D.
This gives us 16 − 6 = 10 byte conditions, which can be used to divide the set
of states into structures. One more condition we get from the second iteration,
where the byte was affected by just fixed B. Therefore, we obtain 2(10+1)·8 = 288

blocks each of size 212.5. In every block we have 6 variables and 6 conditions;
the other conditions are provided by constants. Since we process the blocks in-
dependently, the memory complexity is not increased.

116 D. Khovratovich

Then consider the unknown bytes in columns 3, 5 and 11 that are affected
only by A. Consider two random states in a block and denote by xA and x′

A

the message byte A after the SubBytes transformation. Then the fact of zero
difference in those columns can be expressed as the following system of equations:

⎧
⎪⎨

⎪⎩

a12S(a21xA + c1) + c2 = a12S(a21x
′
A + c′1) + c′2;

a11S(a31xA + c3) + c4 = a11S(a31x
′
A + c′3) + c′4;

a14S(a41xA + c5) + c6 = a14S(a41x
′
A + c′5) + c′6.

Here aij are coefficients of the MixColumns matrix and ci are state-dependent
constants. Due to properties of the AES S-box xA and x′

A are uniquely deter-
mined (if there is a solution) by constants c = (c1, c2, c3, c4, c5, c6) and c′ =
(c′1, c′2, c′3, c′4, c5, c6). Furthermore, this property is transitive, so that we precom-
pute the function f : c → xA.

As a result, a block of 212 states splits to 28 blocks with 24 states each where
A, B and C are fixed. In order to obtain the value of D repeat the same trick in
columns 7, 11, and 12 thus getting one pair per 24 states, or 296 pairs at all. Only
272 pairs of them pass through 3 conditions in column 9 in the fourth iteration.

In the last third step we have to pass 15 byte conditions given 6 byte degrees
of freedom. Since we deal with separate pairs, the filtering process be maintained
with precomputations (see [17]).

4.3 Grindahl-512

The hash function Grindahl-512 is defined similarly to Grindahl-256, but
the internal state is twice as big as that of Grindahl-512: it has 8 rows and 13
columns. Each injection of a message block substitutes the first column with 8
bytes of a message. The row offset values are defined by the following expression:

ci = i + 1; 0 ≤ i ≤ 7.

The MixColumns matrix is also redefined but the exact coefficients are irrelevant
to our attack. The only property we use is that this matrix is MDS with branch
number 9.

So far there is no collision attack on Grindahl-512 though a weakness of
using Grindahl-512 as the base of prefix-MAC was shown [9].

Attack. We use a 3-round differential trail, which is shown at Figure 4. The trail
is obtained by iterating Grindahl-512 backwards from the zero-difference state.
It is assumed that the last truncation (before the injection) deletes a column
with 6 byte differences, while the first two truncations delete the full-difference
column. The parameters of the trail are listed in Table 2 at the left. However, the
second step becomes so time-consuming that the resulting complexity overcomes
the brute-force one. The reason is that structures are too large to be quickly
recomposed into pairs. On the other hand, if we test all the possible injections,
the time complexity increases as well.

Cryptanalysis of Hash Functions with Structures 117

Table 2. Parameters of the differential trail for Grindahl-512. The second table is
obtained by splitting the second step into two substeps. Measurement in bytes.

i vi di pi c(i) q(i)

− − − 48 28

1 8 8 21 43 15

2 8 8 49 10 −
3 2 2 14 0 −

i vi di pi c(i) q(i)

− − − 48 28

1 8 8 21 43 15

2 - I 0 8 21 36 2

2 - II 8 0 28 10 −
3 2 2 14 0 −

We choose to decompose the second round into two sub-rounds with only slight
increase of the complexity. The idea is as follows. We first process the zeros that
are the result of the second MixColumns transformation and that are affected
by the second message injection. These are 21 zeros in columns 1–8. For any two
states that follow the trail before the second injection the condition of having
zero difference in these positions is equivalent to 21 linear equations with the
differences in the internal state after the S-box application as variables. Since the
message injection can be equivalently swapped with the S-box transformation
we obtain that the 21 equations are 21 linear conditions on 8 differences in the
message block.

Therefore, 213·8 structures of size 215·8 split into 2(13+21−8)·8 = 226·8 structures
of size 22·8. These structures collapse to pairs and are partly filtered out due to
the remaining 28 byte conditions though 8 byte degrees of freedom are still
available. Then we compose all possible 230·8 pairs and filter them out. The
desired values to be injected can be derived from pre-computed tables, which
are applicable since we already deal with pairs. The resulting complexity is
2240 computations and still 2224 memory. The complexity of the last step is
negligible. We also modify the memory complexity table taking into account the
considerations discussed above (Table 2).

4.4 Fugue

Hash family Fugue [10] has been recently submitted to the SHA-3 contest [16],
and has been recently chosen to the second round. It was designed by a group of
researchers in IBM. The design of Fugue resembles that of Grindahl with sev-
eral improvements, that should have increased the security. However, Fugue is
slower than Grindahl, which can be a serious disadvantage during the
competition.

We analyze Fugue with the structural approach and show that its security is
much higher than that of Grindahl. Though we do not break the Fugue secu-
rity claims, the our attack is significantly faster than a trivial internal-collision
attack.

118 D. Khovratovich

Description

Fugue-256. Fugue-256 has internal state, denoted by S, of 120 bytes, which is
viewed as a 4× 30 array. We denote by Si (i = 0 . . . 29) the i-th column of S. A
message, appropriately padded, is split to 4-byte blocks. Each block I is an input
to the round transformation of S, which is defined in pseudo-code as follows:

– TIX(I);
– Repeat 2 times:

• ROR3;
• CMIX;
• SMIX;

TIX, ROR3 and CMIX are linear transformations. TIX consists of the following
steps:

S16+ = S0; S0 = I; S8+ = S0; S1+ = S24,

where + stands for XOR. CMIX is linear as well:

S0+ = S4; S1+ = S5; S2+ = S6; S15+ = S4; S16+ = S5; S17+ = S6.

ROR3 rotates the state three columns to the right.
SMIX is a more complicated transformation. It process bytes in columns S0–

S3. First, the AES S-box is applied to those 16 bytes. Then they are composed
into a 16-byte vector, that is multiplied by matrix N , which is an almost-MDS
matrix with branch number 16.

After all the blocks have been processed, the final round transformation is
applied, and then eight columns of S are taken as hash output. Since we produce
a collision before the final round, we skip its description (see full details in [10]).

Fugue-512. Fugue-512 follows the same philosophy, but has a stronger design:
36 columns (instead of 30) and twice as many operations as Fugue-256 per
round:

– TIX’(I);
– Repeat 4 times:

• ROR3;
• CMIX’;
• SMIX;

The CMIX’ and TIX’ operations have more column additions compared to
Fugue-256, and column indices are different. TIX’:

S22+ = S0; S0 = I; S8+ = S0; S1+ = S24; S4+ = S27; S7+ = S30.

CMIX’:

S0+ = S4; S1+ = S5; S2+ = S6; S18+ = S4; S19+ = S5; S20+ = S6.

Cryptanalysis of Hash Functions with Structures 119

Table 3. Column dependencies in Fugue-256 and Fugue-512. Value −i for column j
means that before r-th round the last message block that affected column j is Mr−i.

Column 0–6 7–12 13 14–17 18–23 24–29

Depend on -1 -2 -3 -1 -2 -3

Column 0–12 13–17 18–26 27–35

Depend on -1 -2 -1 -2

Properties of Internal Transformations. We consider truncated differen-
tials, where difference in one byte may be either zero or random. We assume
that two columns have equal differences with probability 2−32, so every column
addition in CMIX and TIX operations costs us 232 if producing a zero column
from two random ones. The SMIX transformation is more complicated. The ma-
trix N is not MDS but is so called almost MDS with the branch number equal
to 13. As a result, when constructing a trail in the backward direction, we get
no benefit from having few active S-boxes in the input of S-Mix so we always
assumed that any active S-Mix output was produced by the input where all the
16 bytes are active. We certainly assume that this approach may not be optimal
though we do not see any properties of the S-Mix transformation which may
lead to other possibilities.

The designers provide several arguments for the resistance of Fugue to pure
and truncated differential attacks and even provide lower bounds for several
attack modes, which unfortunately do not cover the mode that we use. We only
point out that the complexity of the trivial internal collision attack on Fugue is
about 229·8·2 = 2464 for Fugue-256 and 2560 for Fugue-512.

Analysis of Fugue-256. The optimal trail that we found for Fugue-256 is
a 6-round trail depicted in Table 5. Although differences in round r + 2 can
theoretically be managed with a message injection in round r, this is not the
case for this trail. We use the r-th message injection to get proper differences in
only rounds r and r + 1 (mostly in round r).

We start with a structure of internal states of size 244·8 = 2352. It splits into
2320 structures of 232 states each after three rounds (Table 4). About 224·8 = 2192

pairs come out of the next round, and we get one colliding pair after two more

Table 4. Parameters of differential trails for Fugue-256 and Fugue-512

i vi di pi c(i) q(i)

Start − − − 80 44

−6 0 4 4 80 44

−5 4 4 16 72 32

−4 4 4 32 48 4

−3 4 4 32 24 −
−2 4 4 32 0 −
−1 0 4 4 0 −

i vi di pi c(i) q(i)

Start − − − 116 60

−4 4 4 28 96 36

−3 4 4 56 48 −
−2 4 4 56 0 −
−1 0 4 4 0 −

120 D. Khovratovich

Table 5. Trail for Fugue-256

R\C 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

−5 ∗
−4 ∗ ∗ ∗ ∗ ∗ −− ∗ ∗ ∗ ∗ − ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
−3 ∗ ∗ ∗ − ∗ −−− ∗ ∗ ∗ − − ∗ − − − − ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
−2 ∗ ∗ −− ∗ −−− ∗ − ∗ − − − − − − − − − − − − − ∗ ∗ ∗ ∗ ∗ ∗
−1 ∗ −−−−−−−−− ∗ − − − − − − − − − − − − − − − − − − −
0 −−−−−−−−−− −

Table 6. Summary of our attacks on concrete hash functions

Hash function Attack Memory complexity Time complexity

Grindahl-256 Truncated differential [17] 232 2112

Structural 284 2100

Grindahl-512 Structural 2224 2240

Fugue-256 Internal collision 2464 -

Structural 2352 2352

Fugue-512 Internal collision 2560 -

Structural 2480 2480

Table 7. Optimal trail for Fugue-512

R\C 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26–30 31–35

-4 ∗
-3 ∗ ∗ - - ∗ - ∗ ∗ ∗ ∗ ∗ - ∗
-2 ∗ ∗ - - ∗ - - ∗ ∗ - ∗ - ∗ - - - - - - - - - - - ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
-1 ∗ - - - - - - - - - ∗ - - - - - - - - - - - - - - - ----- -----

0 ----- -----

rounds. Due to big memory complexity of the attack, we assume that we are
allowed to run much precomutation and store the results in tables. We thus
assume that we spend negligible time complexity per each state and each pair,
so the resulting time complexity should be about 2352 as well. This complexity
is clearly much larger than the birthday bound (2128) though it is at the same
time much smaller than a birthday bound for the internal collision (2448). We
would also like to point out that we have not found any non-trivial differential
attack with a comparable complexity.

Analysis of Fugue-512. The optimal trail that we found for Fugue-512 is
a 5-round trail depicted in Table 7. Here we use a message injection to get

Cryptanalysis of Hash Functions with Structures 121

proper differences in the same round. We start with a structure of internal states
of size 260·8 = 2480. It splits into 2192 structures of 2288 states in the next
round (Table 4), and collapse to 2352 pairs after two rounds. Following the same
observation, we again assume that we spend negligible time complexity per each
state and each pair, so the resulting time complexity should be about 2480, which
is still much larger than the birthday bound (2256) and smaller than a birthday
bound for the internal collision (2560).

5 Conclusions and Future Work

We showed how the organization of internal states into structures can drasti-
cally reduce the complexity of collision search providing an appropriate differ-
ential trail. The exact formulas for memory complexity and estimates on time
complexity of the attack with structures have been provided. We successfully
combined our approach with simply obtained differential trails and presented
the best known attacks on Grindahl and the only external analysis of Fugue.
The results are summarized in Table 6.

We conclude that Fugue is much more resistant to attacks with truncated
differentials, that were successfully used for the cryptanalysis of Grindahl. This
is mostly due to a better diffusion and a larger internal state, which prevents from
this style of attacks. We believe that our attacks can be further improved with
other differential trails or better optimization of the maintenance of structures.
The complexity of the attack is now determined by the bottleneck step when
structures collapse to pairs. It is likely that the plot of the complexity function
can be significantly smoothed for some hash functions.

Acknowledgement. I greatly thank anonymous reviewers for their valuable
comments, which helped to improve the paper. I am supported by the PRP
“Security & Trust” grant of the University of Luxembourg.

References

1. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Radiogatun, a belt-and-mill
hash function (2006), http://radiogatun.noekeon.org/

2. Biham, E.: New techniques for cryptanalysis of hash functions and improved at-
tacks on Snefru. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 444–461.
Springer, Heidelberg (2008)

3. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

4. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

5. De Cannière, C., Rechberger, C.: Finding SHA-1 characteristics: General results
and applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

6. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

http://radiogatun.noekeon.org/

122 D. Khovratovich

7. Daemen, J., Rijmen, V.: The Design of Rijndael. AES — the Advanced Encryption
Standard. Springer, Heidelberg (2002)

8. Damg̊ard, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

9. Gorski, M., Lucks, S., Peyrin, T.: Slide attacks on a class of hash functions. In:
Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 143–160. Springer,
Heidelberg (2008)

10. Halevi, S., Hall, W.E., Jutla, C.S.: The hash function fugue. Submission to NIST
(2008)

11. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

12. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

13. Knudsen, L.R., Rechberger, C., Thomsen, S.S.: The Grindahl hash functions. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 39–57. Springer, Heidelberg
(2007)

14. Manuel, S., Peyrin, T.: Collisions on sha-0 in one hour. In: Nyberg, K. (ed.) FSE
2008. LNCS, vol. 5086, pp. 16–35. Springer, Heidelberg (2008)

15. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

16. NIST. Cryptographic hash algorithm competition,
http://www.nist.gov/hash-competition

17. Peyrin, T.: Cryptanalysis of Grindahl. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 551–567. Springer, Heidelberg (2007)

18. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
A synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994)

19. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

A Analysis of Complexity

The time complexity analysis is much harder because we have to arrange states
into structures as fast as possible.

We consider only one structure, because this process is independently applied
for all structures. To obtain the whole complexity one should multiply the derived
values by the current number of structures.

No freedom in message injection. States S′
i and S′

j belong to the same structure
if S′

i ∼ S′
j. On the other hand, if ∼ defines set R of linear differences then the

condition can be expressed in terms of projections to space R⊥ that is orthogonal
to R:

S′
i ∼ S′

j ⇔ prR⊥S′
i = prR⊥S′

j .

As a result, we compute the ordered set of projections of structures and use
binary search to derive the structure a state belongs to. Assuming the sorting

http://www.nist.gov/hash-competition

Cryptanalysis of Hash Functions with Structures 123

and search costs are negligible comparing to the round iteration we derive the
complexity roughly equal to the number of states.

Value freedom in message injection. The fact that there is the value freedom in
message injection does not affect the complexity of the attack if structures do
not collapse into pairs yet. The exact value of the complexity in this case is just
the number of states after the round iteration.

Consider the case where structures are collapsed to pairs and single states. As
mentioned in Section 3, the structure contains 22q−1+v pairs. The further steps
depend on whether we can exploit properties of the round function.

– If the round function is viewed as a black box, we just derive pairs for each
possible message m. The complexity is about 2q+v.

– If we can quickly find solutions m for the equation

prR⊥Si[m] = prR⊥Sj [m] (3)

then it is solved for all possible pairs about 22q−1 times.
– If there exist not only a fast algorithm for solution (3) but also function f

such that (3) has a solution iff f(Si) = f(Sj). Then we compose the ordered
set of f(S) and for each new state look for a pair with negligible cost. The
complexity would be equal to the maximum of the size of the initial structure
(2q) and the number of resulting pairs (22q−1+v−p).

Difference freedom in message injection. Again, first, we investigate the case
where structures do not collapse to pairs. Suppose states S′

1, . . . , S
′
i have been

already distributed into just created structures. We also require that every leader
state is obtained by the same injected message m0. A state Si+1 can be dis-
tributed to the structure with the leader state S′ if there exist a message mi+1

such that m0 ∼ mi+1 and prR⊥S′ = prR⊥Si+1[mi+1]. Denote by S the set of
all such states Si+1[mi+1]. Then the question is whether prR⊥S′ belongs to
prR⊥S.

If S is an affine space, and the linear space does not depend on Si+1 then we
can easily compute the projection and find the corresponding structure using the
ordered set approach. The complexity would be equal to the number of states.
If S is not an affine space but can be represented as a union of affine spaces then
we compute the projection for each space. In the worst case the complexity is
equal to 2d multiplied by the number of states.

Now consider the case where a structure collapse to pairs. This is actu-
ally the most complicated case and can be considered as a bottleneck. Indeed,
about 22q−1+v+d pairs are composed from a structure with 2q states. About
22q−1+v+d−p pairs come out of the round iteration. The possible approaches are
similar to the case where there is no freedom in difference. If the round func-
tion is a black box, the complexity varies from 2q+v to 2q+v+d. If there exists a
function f such that (3) has a solution iff f(Si) = f(Sj), then the complexity is
between 2q and 22q−1+v+d−p).

124 D. Khovratovich

B Trails

M2 Iteration 2

M3 Iteration 3

M4 Iteration 4

M5 Iteration 5

Fig. 3. Differential trail for Grindahl-256 (Table 1 (b))

1

1 11 1 1 1 1 1

1 11 1 1 1 1 1

2

2 2 2 22 2 2 2

2 2 2 22 2 2 2 1 1 1 1

3

3 3

1 11 1 1 1 1 1

2 2 2

3 32 2 2

MC MCMC

SR SR SR
SR

MC

Inj Inj
Inj2 2

22

Fig. 4. Differential trail for Grindahl-512 (Table 2 (b))

Cryptanalysis of Hash Functions with Structures 125

Table 8. Dependencies of the message block in the differential trail for Grindahl-256

Message bytes

It Col Cost 1 2 3

2 1 B

2 3 1 B A

7 1 D

1 2 A

2 2 B

3 3 B A

5 3 C A

6 3 C B

3 7 2 D

8 2 C

9 2 C D AC BD

10 2 D

11 2 D A

12 1 D B

3 3 B A

4 9 3 C D AC BD

11 3 D A

12 3 B

	Cryptanalysis of Hash Functions with Structures
	Introduction
	Idea in Brief
	Analysis of Structure Fission
	Concrete Attacks
	How to Construct a Trail
	Grindahl-256
	Grindahl-512
	Fugue

	Conclusions and Future Work
	References
	A Analysis of Complexity
	B Trails

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

