
Compact McEliece Keys from Goppa Codes

Rafael Misoczki and Paulo S.L.M. Barreto�

Departamento de Engenharia de Computação e Sistemas Digitais (PCS),
Escola Politécnica, Universidade de São Paulo, Brazil

{rmisoczki,pbarreto}@larc.usp.br

Abstract. The classical McEliece cryptosystem is built upon the class
of Goppa codes, which remains secure to this date in contrast to many
other families of codes but leads to very large public keys. Previous pro-
posals to obtain short McEliece keys have primarily centered around
replacing that class by other families of codes, most of which were shown
to contain weaknesses, and at the cost of reducing in half the capability
of error correction. In this paper we describe a simple way to reduce
significantly the key size in McEliece and related cryptosystems using a
subclass of Goppa codes, while also improving the efficiency of crypto-
graphic operations to Õ(n) time, and keeping the capability of correcting
the full designed number of errors in the binary case.

1 Introduction

Quantum computers can potentially break most if not all conventional cryp-
tosystems actually deployed in practice, namely, all systems based on the integer
factorization problem (like RSA) or the discrete logarithm problem (like tradi-
tional or elliptic curve Diffie-Hellman and DSA, and also all of pairing-based
cryptography).

Certain classical cryptosystems, inspired on computational problems of a na-
ture entirely different from the above and potentially much harder to solve,
remain largely unaffected by the threat of quantum computing, and have thus
been called quantum-resistant or, more suggestively, ‘post-quantum’ cryptosys-
tems. These include lattice-based cryptosystems and syndrome-based cryptosys-
tems like McEliece [16] and Niederreiter [19]. Such systems usually have even
a speed advantage over conventional schemes; for instance, both McEliece and
Niederreiter encryption over a code of length n has time complexity O(n2), while
Diffie-Hellman/DSA and (private exponent) RSA with n-bit keys have time com-
plexity O(n3). On the other hand, they are plagued by very large keys compared
to their conventional counterparts.

It is therefore of utmost importance to seek ways to reduce the key sizes for
post-quantum cryptosystems while keeping their security level. The first steps
� Supported by the Brazilian National Council for Scientific and Technological De-

velopment (CNPq) under research productivity grant 312005/2006-7 and universal
grant 485317/2007-9, and by the Science Foundation Ireland (SFI) as E. T. S. Walton
Award fellow under grant 07/W.1/I1824.

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 376–392, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Compact McEliece Keys from Goppa Codes 377

toward this goal were taken by Monico et al. using low density parity-check
codes [18], by Gaborit using quasi-cyclic codes [8], and by Baldi and Chiaraluce
using a combination of both [1].

However, these proposals were all shown to contain weaknesses [22]. In those
proposals the trapdoor is protected essentially by no other means than a private
permutation of the underlying code. The attack strategy consists of obtaining
a solvable system of linear equations that the components of the permutation
matrix must satisfy, and was successfully mounted due to the very constrained
nature of the secret permutation (since it has to preserve the quasi-cyclic struc-
ture of the result) and the fact that the secret code is a subcode of a public
code.

A dedicated fix to the problems in [1] is proposed in [2]. More recently, Berger
et al. [3] showed how to circumvent the drawbacks of Gaborit’s original scheme
and remove the weaknesses pointed out in [22] by means of two techniques:

1. Extracting block-shortened public codes from very large private codes, ex-
ploiting Wieschebrink’s theorem on the NP-completeness of distinguishing
punctured codes [29];

2. Working with subfield subcodes over an intermediate subfield between the
base field and the extension field of the original code.

These two techniques were successfully applied to quasi-cyclic codes, yet we will
see that their applicability is not restricted to that class.

Our contribution: In this paper we propose the class of quasi-dyadic Goppa
codes, which admit a very compact parity-check or a generator matrix repre-
sentation, for efficiently instantiating syndrome-based cryptosystems. We stress
that we are not proposing any new cryptosystem, but rather a technique to
obtain efficient parameters and algorithms for such systems, current or future.
In contrast to many other proposed families of codes [10,11,22,27], Goppa codes
have withstood cryptanalysis quite well, and despite considerable progress in the
area [14,26] (see also [6] for a survey) they remain essentially unscathed since they
were suggested with the very first syndrome-based cryptosystem known, namely,
the original McEliece scheme. Our method produces McEliece-type keys that are
up to a factor t = Õ(n) smaller than keys produced from generic t-error correct-
ing Goppa codes of length n in characteristic 2. In the binary case it also retains
the ability of correcting the full designed number of errors rather than just half as
many, a feature that is missing in all previous attempts at constructing compact
codes for cryptographic purposes, including [3]. Moreover, the complexity of all
typical cryptographic operations become Õ(n); specifically, under the common
cryptographic setting t = O(n/ lg n), code generation, encryption and decryption
all have asymptotic complexity O(n lg n).

The remainder of this paper is organized as follows. Section 2 introduces some
basic concepts of coding theory. In section 3 we describe our proposal of using
binary Goppa codes in quasi-dyadic form, and how to build them. We consider
hardness issues in Section 4, and efficiency issues, including guidelines on how
to choose parameters, in Section 5. We conclude in Section 6.

378 R. Misoczki and P.S.L.M. Barreto

2 Preliminaries

In what follows all vector and matrix indices are numbered from zero onwards.

Definition 1. Given a ring R and a vector h = (h0, . . . , hn−1) ∈ Rn, the dyadic
matrix ∆(h) ∈ Rn×n is the symmetric matrix with components ∆ij = hi⊕j where
⊕ stands for bitwise exclusive-or on the binary representations of the indices. The
sequence h is called its signature. The set of dyadic n × n matrices over R is
denoted ∆(Rn). Given t > 0, ∆(t, h) denotes ∆(h) truncated to its first t rows.

One can recursively characterize a dyadic matrix when n is a power of 2: any
1× 1 matrix is dyadic, and for k > 0 any 2k × 2k dyadic matrix M has the form

M =
[

A B
B A

]

where A and B are 2k−1 × 2k−1 dyadic matrices. It is not hard to see that the
signature of a dyadic matrix coincides with its first row. Dyadic matrices form
a commutative subring of Rn×n as long as R is commutative [12].

Definition 2. A dyadic permutation is a dyadic matrix Πi ∈ ∆({0, 1}n) whose
signature is the i-th row of the identity matrix.

A dyadic permutation is clearly an involution, i.e. (Πi)2 = I. The i-th row (or
equivalently the i-th column) of the dyadic matrix defined by a signature h can
be written ∆(h)i = hΠi.

Definition 3. A quasi-dyadic matrix is a (possibly non-dyadic) block matrix
whose component blocks are dyadic submatrices.

Quasi-dyadic matrices are at the core of our proposal. We will be mainly con-
cerned with the case R = Fq, the finite field with q (a prime power) elements.

Definition 4. Given two disjoint sequences z = (z0, . . . , zt−1) ∈ F
t
q and L =

(L0, . . . , Ln−1) ∈ F
n
q of distinct elements, the Cauchy matrix C(z, L) is the t×n

matrix with elements Cij = 1/(zi − Lj), i.e.

C(z, L) =

⎡
⎢⎢⎢⎢⎣

1
z0 − L0

. . .
1

z0 − Ln−1
...

. . .
...

1
zt−1 − L0

. . .
1

zt−1 − Ln−1

⎤
⎥⎥⎥⎥⎦ .

Cauchy matrices have the property that all of their submatrices are nonsingu-
lar [25]. Notice that, in general, Cauchy matrices are not dyadic and vice-versa,
although the intersection of these two classes is non-empty in characteristic 2.

Definition 5. Given t > 0 and a sequence L = (L0, . . . , Ln−1) ∈ F
n
q , the Van-

dermonde matrix vdm(t, L) is the t× n matrix with elements Vij = Li
j.

Compact McEliece Keys from Goppa Codes 379

Definition 6. Given a sequence L = (L0, . . . , Ln−1) ∈ F
n
q of distinct elements

and a sequence D = (D0, . . . , Dn−1) ∈ F
n
q of nonzero elements, the General-

ized Reed-Solomon code GRSr(L, D) is the [n, k, r] linear error-correcting code
defined by the parity-check matrix

H = vdm(r − 1, L) · diag(D).

An alternant code is a subfield subcode of a Generalized Reed-Solomon code.

Let p be a prime power, let q = pd for some d, and let Fq = Fp[x]/b(x) for
some irreducible polynomial b(x) ∈ Fp[x] of degree d. Given a code specified
by a parity-check matrix H ∈ F

t×n
q , the trace construction derives from it an

Fp-subfield subcode by writing the Fp coefficients of each Fq component of H
onto d successive rows of a parity-check matrix Td(H) ∈ F

dt×n
p for the subcode.

The related co-trace parity-check matrix T ′
d(H) ∈ F

dt×n
p , equivalent to Td(H)

by a left permutation, is obtained from H by writing the Fp coefficients of terms
of equal degree from all components on a column of H onto successive rows of
T ′

d(H).
Thus, given elements ui(x) = ui,0 + · · · + ui,d−1x

d−1 ∈ Fq = Fp[x]/b(x),
the trace construction maps a column (u0, . . . , ut−1)T from H to the column
(u0,0, . . . , u0,d−1; . . . ; ut−1,0, . . . , ut−1,d−1)T on the trace matrix Td(H), and to
the column (u0,0, . . . , ut−1,0; . . . ; u0,d−1, . . . , ut−1,d−1)T on the co-trace matrix
T ′

d(H).
Finally, one of the most important families of linear error-correcting codes for

cryptographic purposes is that of Goppa codes:

Definition 7. Given a prime power p, q = pd for some d, a sequence L =
(L0, . . . , Ln−1) ∈ F

n
q of distinct elements and a polynomial g(x) ∈ Fq[x] of

degree t such that g(Li) �= 0 for 0 � i < n, the Goppa code Γ (L, g) over
Fp is the alternant code over Fp corresponding to GRSt(L, D) where D =
(g(L0)−1, . . . , g(Ln−1)−1), and its minimum distance is at least 2t + 1.

An irreducible Goppa code in characteristic 2 can correct up to t errors us-
ing Patterson’s algorithm [23], or slightly more using Bernstein’s list decoding
method [5], and t errors can still be corrected by suitable decoding algorithms if
the generator g(x) is not irreducible1. In all other cases no algorithm is known
that can correct more than t/2 errors (or just a few more).

3 Goppa Codes in Cauchy and Dyadic Form

A property of Goppa codes that is central to our proposal is that they admit a
parity-check matrix in Cauchy form:

1 For instance, one can equivalently view the binary Goppa code as the alternant code
defined by the generator polynomial g2(x), in which case any alternant decoder will
decode t errors. We are grateful to Nicolas Sendrier for pointing this out.

380 R. Misoczki and P.S.L.M. Barreto

Theorem 1 ([28]). The Goppa code generated by a monic polynomial g(x) =
(x− z0) . . . (x− zt−1) without multiple zeros admits a parity-check matrix of the
form H = C(z, L), i.e. Hij = 1/(zi − Lj), 0 � i < t, 0 � j < n.

This theorem (also appearing in [15, Ch. 12, §3, Pr. 5]) is entirely general when
one considers the factorization of the Goppa polynomial over its splitting field,
in which case a single root of g is enough to completely characterize the code.
For simplicity, we will restrict our attention to the case where all roots of that
polynomial are in the field Fq itself.

3.1 Building a Binary Goppa Code in Dyadic Form

We now show how to build a binary Goppa code that admits a parity-check
matrix in dyadic form. To this end we seek a way to construct dyadic Cauchy
matrices. The following theorem characterizes all matrices of this kind.

Theorem 2. Let H ∈ F
n×n
q with n > 1 be simultaneously a dyadic matrix

H = ∆(h) for some h ∈ F
n
q and a Cauchy matrix H = C(z, L) for two dis-

joint sequences z ∈ F
n
q and L ∈ F

n
q of distinct elements. Then Fq is a field of

characteristic 2, h satisfies

1
hi⊕j

=
1
hi

+
1
hj

+
1
h0

, (1)

and zi = 1/hi + ω, Lj = 1/hj + 1/h0 + ω for some ω ∈ Fq.

Proof. Since a dyadic matrix is symmetric, the sequences that define it must
satisfy 1/(zi − Lj) = 1/(zj − Li), hence Lj = zi + Li − zj for all i and j. Then
zi + Li must be a constant α, and taking i = 0 in particular this simplifies to
Lj = α−zj . Substituting back into the definition Mij = 1/(zi−Lj) one sees that
Hij = 1/(zi + zj +α). But dyadic matrices also have constant diagonal, namely,
Hii = 1/(2zi + α) = h0. This is only possible if all zi are equal (contradicting
the definition of a Cauchy matrix), or else if the characteristic of the field is 2,
as claimed.

In this case we see that α = 1/h0, and hence Hij = 1/(zi + zj + 1/h0).
Plugging in the definition Hij = hi⊕j we get 1/Hij = 1/hi⊕j = zi + zj + 1/h0,
and taking j = 0 in particular this yields 1/hi = zi + z0 + 1/h0, or simply
zi = 1/hi + 1/h0 + z0. Substituting back one obtains 1/hi⊕j = zi + zj + 1/h0 =
1/hi + 1/h0 + z0 + 1/hj + 1/h0 + z0 + 1/h0 = 1/hi + 1/hj + 1/h0, as expected.

Finally, define ω = 1/h0 + z0 and substitute into the derived relations zi =
1/hi +1/h0 +z0 and Lj = α−zj to get zi = 1/hi +ω and Lj = 1/hj +1/h0 +ω,
as desired. ��
Therefore all we need is a method to solve Equation 1. The technique we propose
consists of simply choosing distinct nonzero h0 and hi at random where i scans
all powers of two smaller than n, and setting all other values as

hi+j ← 1
1
hi

+
1
hj

+
1
h0

Compact McEliece Keys from Goppa Codes 381

for 0 < j < i (so that i + j = i ⊕ j), as long as this value is well-defined.
Algorithm 1 captures this idea. Since each element of the signature h is assigned
a value exactly once, its running time is O(n) steps. The notation u

$←U means
that variable u is uniformly sampled at random from set U . For convenience
we also define the essence of h to be the sequence ηs = 1/h2s + 1/h0 for s =
0, . . . , �lg n� − 1 together with η�lg n� = 1/h0, so that, for i =

∑�lg n�−1
k=0 ik2k,

1/hi = η�lg n� +
∑�lg n�−1

k=0 ikηk.

Algorithm 1. Constructing a binary Goppa code in dyadic form
Input: q (a power of 2), n � q/2, t.
Output: Support L, generator polynomial g, dyadic parity-check matrix H for a bi-

nary Goppa code Γ (L, g) of length n and design distance 2t + 1 over Fq, and the
essence η of the signature of H .

1: U ← Fq \ {0}
� Choose the dyadic signature (h0, . . . , hn−1). N.B. Whenever hj with j > 0 is taken

from U , so is 1/(1/hj + 1/h0) to prevent a potential spurious intersection between
z and L.

2: h0
$←U

3: η�lg n� ← 1/h0

4: U ← U \ {h0}
5: for s← 0 to �lg n� − 1 do
6: i← 2s

7: hi
$←U

8: ηs ← 1/hi + 1/h0

9: U ← U \ {hi, 1/(1/hi + 1/h0)}
10: for j ← 1 to i− 1 do
11: hi+j ← 1/(1/hi + 1/hj + 1/h0)
12: U ← U \ {hi+j , 1/(1/hi+j + 1/h0)}
13: end for
14: end for
15: ω

$←Fq

� Assemble the Goppa generator polynomial:
16: for i← 0 to t− 1 do
17: zi ← 1/hi + ω
18: end for
19: g(x)← ∏t−1

i=0 (x− zi)
� Compute the support:

20: for j ← 0 to n− 1 do
21: Lj ← 1/hj + 1/h0 + ω
22: end for
23: h← (h0, . . . , hn−1)
24: H ← ∆(t, h)
25: return L, g, H , η

Theorem 3. Algorithm 1 produces up to
∏�lg n�

i=0 (q − 2i) Goppa codes in dyadic
form.

382 R. Misoczki and P.S.L.M. Barreto

Proof. Each dyadic signature produced by Algorithm 1 is entirely determined
by the values h0 and h2s for s = 0, . . . , �lg n� − 1 chosen at steps 2 and 7 (ω
only produces equivalent codes). Along the loop at line 5, exactly 2i = 2s+1

elements are erased from U , corresponding to the choices of h2s . . . h2s+1−1. At
the end of that loop, 2 + 2

∑s
�=0 2� = 2s+2 elements have been erased in total.

Hence at the beginning of each step of the loop only 2s+1 elements had been
erased from U , i.e. there are q − 2s+1 elements in U to choose h2s from, and
q − 1 possibilities for h0. Therefore this construction potentially yields up to
(q − 1)

∏�lg n�−1
s=0 (q − 2s+1) =

∏�lg n�
i=0 (q − 2i) possible codes. ��

Theorem 3 actually establishes the number of distinct essences of dyadic signa-
tures corresponding to Cauchy matrices. The roots of the Goppa polynomial are
completely specified by the first �lg t� elements of the essence η together with
η�lg n�, namely, zi = η�lg n� +

∑�lg t�−1
k=0 ikηk, disregarding the ω term which is im-

plicit in the choice of η�lg n�. We see that any permutation of the essence elements
η0, . . . , η�lg t�−1 only changes the order of those roots. Since the Goppa polyno-
mial itself is defined by its roots regardless of their order, the total number of
possible Goppa polynomials is therefore

(∏�lg t�
i=0 (q − 2i)

)
/�lg t�! ≈ (q−t)

(
q

�lg t�
)
.

For n ≈ q/2 the number of dyadic codes can be approximated by qmQ = 2m2
Q

where Q =
∏∞

i=1 (1− 1/2i) ≈ 0.2887881. We will also see that the number
of quasi-dyadic codes, which we describe next and propose for cryptographic
applications, is larger than this. Before we proceed, however, it is interesting to
notice that one of the reasons the attack proposed in [22] succeeds against certain
quasi-cyclic codes, besides the constrained structure of the applied permutation,
is that those schemes start from a known BCH or Reed-Solomon code which is
unique up to the choice of a primitive element from the underlying finite field.
Thus, in those proposals an initial code over F2m is at best chosen from a set
of O(2m) codes. In comparison, we start from a secret code sampled from a
much larger family of O(2m2

) codes. For instance, while those proposals have
only 215 starting points over F216 , our scheme can sample a family with more
than 2254 codes over the same field. The main protection of the hidden trapdoor
is, of course, the block puncturing process and the more complex blockwise
permutation of the initial secret code, as detailed next.

3.2 Constructing Quasi-Dyadic, Permuted Subfield Subcodes

To complete the construction it is necessary to choose a compact generator
matrix for the subfield subcode. Although the parity check matrix H built by
Algorithm 1 is dyadic over Fq, the usual trace construction leads to a generator
of the dual code that most probably violates the dyadic symmetry. However, by
representing each field element to a basis of Fq over the subfield Fp, one can view
H as a superposition of d = [Fq : Fp] distinct dyadic matrices over Fp, and each
of them can be stored in a separate dyadic signature.

A cryptosystem cannot be securely defined on a Goppa code specified directly
by a parity-check matrix in Cauchy form, since this would immediately reveal

Compact McEliece Keys from Goppa Codes 383

the Goppa polynomial g(x): it suffices to solve the overdefined linear system
zi − Lj = 1/Hij consisting of tn equations in t + n unknowns.

Algorithm 1 generates fully dyadic codes. We now show how to integrate the
techniques of Berger et al. with Algorithm 1 so as to build quasi-dyadic subfield
subcodes whose parity-check matrix is a non-dyadic matrix composed of blocks
of dyadic submatrices. The principle to follow here is to select, permute, and
scale the columns of the original parity-check matrix so as to preserve quasi-
dyadicity in the target subfield subcode and the distribution of introduced errors
in cryptosystems. A similar process yields a generator matrix in convenient quasi-
dyadic, systematic form.

For the desired security level (see the discussion in Section 5.1), choose p = 2s

for some s, q = pd = 2m for some d with m = ds, a code length n and a design
number of correctable errors t such that n = �t for some � > d. For simplicity
we assume that t is a power of 2, but the following construction method can be
modified to work with other values.

Run Algorithm 1 to produce a code over Fq whose length N
 n is a large
multiple of t not exceeding the largest possible length q/2, so that the constructed
t×N parity-check matrix Ĥ can be viewed as a sequence of N/t dyadic blocks
[B0 | · · · | BN/t−1] of size t × t each. Select uniformly at random � distinct
blocks Bi0 , . . . , Bi�−1 in any order from Ĥ , together with � dyadic permutations
Πj0 , . . . , Πj�−1 of size t × t and � nonzero scale factors σ0, . . . , σ�−1 ∈ Fp. Let
Ĥ ′ = [Bi0Π

j0 | · · · | Bi�−1Π
j�−1] ∈ (Ft×t

q)� and Σ = diag(σ0It, . . . , σ�−1It) ∈
(Ft×t

p)�×�. Compute the co-trace matrix H ′ = T ′
d(Ĥ

′Σ) = T ′
d(Ĥ

′)Σ ∈ (Ft×t
p)d×�

and finally the systematic form H of H ′. Notice that, if the systematic form
of T ′

d(Ĥ
′) is H0, then H = U−1H0V where U = diag(σ0It, . . . , σ�−d−1It) and

V = diag(σ�−dIt, . . . , σ�−1It).
The resulting parity-check matrix defines a code of length n and dimension

k = n−dt over Fp, and since all block operations performed during the Gaussian
elimination are carried out in the ring ∆(Ft

p), the result still consists of dyadic
submatrices which can be represented by a signature of length t. Hence the
whole matrix can be stored in an area a factor t smaller than a general matrix.
However, the dyadic submatrices that appear in this process are not necessarily
nonsingular, as they are not associated to a Cauchy matrix anymore; should
all the submatrices on a column be found to be singular (above or below the
diagonal, according to the direction of this process) so that no pivot is possible,
the whole block containing that column may be replaced by another block Bj′

chosen at random from Ĥ as above.
The trapdoor information consisting of the essence η of h, the sequence

(i0, . . . , i�−1) of blocks, the sequence (j0, . . . , j�−1) of dyadic permutation iden-
tifiers, and the sequence of scale factors (σ0, . . . , σ�−1), relates the public code
defined by H with the private code defined by Ĥ . The space occupied by the
trapdoor information is thus m2 + � lg N + �s bits. If one starts with the largest
possible N = 2m−1, this simplifies to the maximal size of m2 + �(m−1+ s) bits.

The total space occupied by the essential part of the resulting generator (or
parity-check) matrix over Fp is dt× (n− dt)/t = dk Fp elements, or mk bits – a

384 R. Misoczki and P.S.L.M. Barreto

factor t better than plain Goppa codes, which occupy k(n− k) = mkt bits. Had
t not been chosen to be a power of 2, say, t = 2uv where v > 1 is odd, the cost
of multiplying t × t matrices would be in general O(2uuv3) rather than simply
O(2uu), and the final parity-check matrix would be compressed by only a factor
2u.

For each code produced by Algorithm 1, the number of codes generated by
this construction is

(
N/t

�

)× �!× t� × (r − 1)�, hence
(
N/t

�

)× �!× t� × (r − 1)� ×∏�lg N�
i=0 (q − 2i) codes are possible in principle.

3.3 A Toy Example

Let F25 = F2[u]/(u5 + u2 + 1). The dyadic signature

h = (u20, u3, u6, u28, u9, u29, u4, u22, u12, u5, u10, u2, u24, u26, u25, u15)

and the offset ω = u21 define a 2-error correcting binary Goppa code
of length N = 16 with g(x) = (x − u12)(x − u15) and support L =
(u21, u29, u19, u26, u6, u16, u7, u5, u25, u3, u11, u28, u27, u9, u22, u2). The associated
parity-check matrix built according to Theorem 1 is

Ĥ =
[
u20 u3 u6 u28 u9 u29 u4 u22 u12 u5 u10 u2 u24 u26 u25 u15

u3 u20 u28 u6 u29 u9 u22 u4 u5 u12 u2 u10 u26 u24 u15 u25

]
,

with eight 2× 2 blocks B0, . . . , B7 as indicated. From this we extract the short-
ened, rearranged and permuted sequence Ĥ ′ = [B7Π

0 | B5Π
1 | B1Π

0 | B2Π
1 |

B3Π
0 | B6Π

1 | B4Π
0] (because in this example the subfield is the base field

itself, all scale factors have to be 1), i.e.:

Ĥ =
[
u25 u15 u2 u10 u6 u28 u29 u9 u4 u22 u26 u24 u12 u5

u15 u25 u10 u2 u28 u6 u9 u29 u22 u4 u24 u26 u5 u12

]
,

whose co-trace matrix over F2 has the systematic form:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [MT | In−k],

from which one readily obtains the k×n = 4×14 generator matrix in systematic
form:

G =

⎡
⎢⎢⎣

1 0 0 0 0 1 0 1 0 0 0 1 1 1
0 1 0 0 1 0 1 0 0 0 1 0 1 1
0 0 1 0 0 1 0 0 1 1 1 0 0 0
0 0 0 1 1 0 0 0 1 1 0 1 0 0

⎤
⎥⎥⎦ = [Ik |M],

Compact McEliece Keys from Goppa Codes 385

where both G and H share the essential part M :

M =

⎡
⎢⎢⎣

0 1 0 1 0 0 0 1 1 1
1 0 1 0 0 0 1 0 1 1
0 1 0 0 1 1 1 0 0 0
1 0 0 0 1 1 0 1 0 0

⎤
⎥⎥⎦ ,

which is entirely specified by the elements in boldface and can thus be stored in
20 bits instead of, respectively, 4 · 14 = 56 and 10 · 14 = 140 bits.

4 Assessing the Hardness of Decoding Quasi-Dyadic
Codes

The original McEliece (or, for that matter, the original Niederreiter) schemes are
perhaps better described as a candidate trapdoor one-way functions rather than
full-fledged public-key encryption schemes. Such functions are used in cryptog-
raphy in many different settings, each with different security requirements, and
we do not consider such applications in this paper. Instead we focus purely on
the question of inverting the trapdoor function, in other words, decoding.

As we pointed out in Section 1, the well-studied class of Goppa codes remains
one of the best choices to instantiate McEliece-like schemes. Although our pro-
posal is ultimately based on Goppa codes, one may wonder whether or not the
highly composite nature of the Goppa generator polynomial g(x), or the pecu-
liar structure of the quasi-dyadic parity-check and generator matrices, leak any
information that might facilitate decoding without knowledge of the trapdoor.

Yet, any alternant code can be written in Goppa-like fashion by using the
diagonal component of its default parity-check matrix (see Definition 6) to in-
terpolate a generating polynomial (not necessarily of degree t) that is composite
with high probability. We are not aware of any way this fact could be used to
facilitate decoding without full knowledge of the code structure, and clearly any
result in this direction would affect most of the alternant codes proposed for
cryptographic purposes to date.

Otmani et al.’s attack against quasi-cyclic codes [22] could be modified to
work against Goppa codes in dyadic form. For this reason we adopt the same
countermeasures proposed by Berger et al. to thwart it for cyclic codes, namely,
working with a block-shortened subcode of a very large code as described in
Section 3.2. This idea also build upon the work of Wieschebrink [29] who proved
that deciding whether a code is equivalent to a shortened code is NP-complete.
In our case, the result is to hide the Cauchy structure of the private code in a
general dyadic structure, rather than disguising a quasi-cyclic code as another
one with the same symmetry.

We now give a reduction of the problem of decoding the particular class of
quasi-dyadic codes to the well-studied syndrome decoding problem, classical in
coding theory and known to be NP-complete [4].

Definition 8 (Syndrome decoding). Let Fq be a finite field, and let (H, w, s)
be a triple consisting of a matrix H ∈ F

r×n
q , an integer w < n, and a vector

386 R. Misoczki and P.S.L.M. Barreto

s ∈ F
r
q. Does there exist a vector e ∈ F

n
q of Hamming weight wt(e) � w such that

HeT = sT?

The corresponding problem for quasi-dyadic matrices reads:

Definition 9 (Quasi-Dyadic Syndrome Decoding). Let Fq be a finite field,
and let (H, w, s) be a triple consisting of a quasi-dyadic matrix H ∈ ∆(F�

q)
r×n,

an integer w < �n, and a vector s ∈ F
�r
q . Does there exist a vector e ∈ F

�n
q of

Hamming weight wt(e) � w such that HeT = sT?

Theorem 4. The quasi-dyadic syndrome decoding problem (QD-SDP) is poly-
nomially equivalent to the syndrome decoding problem (SDP). In other words,
decoding quasi-dyadic codes is as hard in the worst case as decoding general codes.

Proof. The QD-SDP, being an instance of the SDP restricted to a particular
class of codes, is clearly a decision problem in NP.

Consider now a generic instance (H ′, w′, s′) ∈ F
r×n
q × Z × F

r
q of the SDP.

Assume one is given an oracle that solves the QD-SDP over ∆(F�
q) for some

given � > 0. Let v� ∈ F
�
q be the all-one vector, i.e. (v�)j = 1 for all j. Define

the quasi-dyadic matrix H = H ′ ⊗ I� ∈ ∆(F�
q)r×n with blocks Hij = H ′

ijI�, the
vector s = s′ ⊗ v� ∈ (F�

q)
r with blocks si = s′iv�, and w = �w′. It is evident that

the instance (H, w, s) ∈ ∆(F�
q)

r×n×Z×(F�
q)

r of the QD-SDP can be constructed
in polynomial time.

Assume now that there exists e ∈ F
�n
q of Hamming weight wt(e) � w such

that HeT = sT. For all 0 � i < �, let e′i ∈ F
n
q be the vector with elements

(e′i)j = ei+j�, 0 � j < n, so that the e′i are interleaved to compose e. Obviously
at least one of the e′i has Hamming weight not exceeding w/� = w′, and by the
construction of H any of them satisfies He′Ti = s′T, constituting a solution to
the given instance of the SDP. This effectively reduces the SDP to the QD-SDP
for any given � in polynomial time. Thus, the QD-SDP itself is NP-complete. ��
Although this theorem does not say anything about hardness in the average case,
it nevertheless strengthens our claim that the family of codes we propose is in
principle no less suitable for cryptographic applications than a generic code, in
the sense that, should the QD-SDP problem turn out to be feasible in the worst
case, then all coding-based cryptosystems would definitely be ruled out, regard-
less of which code is used to instantiate them. Incidentally, the expected running
time of all known algorithms for the SDP (and the QD-SDP) is exponential, so
there is empirical evidence that the average case is also very hard. We stress,
however, that particular cryptosystems based on quasi-dyadic codes will usually
depend on more specific security assumptions, whose assessment transcends the
scope of this paper.

5 Efficiency Considerations

Due to their simple structure the matrices in our proposal can be held on a
simple vector not only for long-term storage or transmission, but for processing
as well.

Compact McEliece Keys from Goppa Codes 387

The operation of multiplying a vector by a (quasi-)dyadic matrix is at the
core of McEliece encryption. The fast Walsh-Hadamard transform (FWHT) [12]
approach for dyadic convolution via lifting2 to characteristic 0 leads to the
asymptotic complexity O(n lg n) for this operation and hence also for encod-
ing. Sarwate’s decoding method [24] sets the asymptotic cost of that operation
at roughly O(n lg n) as well for the typical cryptographic setting t = O(n/ lg n).

Inversion, on the other hand, can be carried out in O(n) steps: one can show
by induction that a binary dyadic matrix ∆(h) of dimension n satisfies ∆2 =
(
∑

i hi)2I, and hence its inverse, when it exists, is ∆−1 = (
∑

i hi)−2∆, which
can be computed in O(n) steps since it is entirely determined by its first row.

Converting a quasi-dyadic matrix to systematic (echelon) form involves a
Gaussian elimination incurring about d2� products of dyadic t × t submatri-
ces, implying a complexity O(d2�t lg t) = O(d2n lg n), and hence the overall cost
of formatting is O(n lg n) as long as d is a small constant, which is indeed the
case in practice since maximum size reduction is achieved when Fp is a large
proper subfield of Fq (see Section 5.1). Notice that, contrary to systems based
on quasi-circulant matrices [8, Proposition 3.4], our proposal does not require
a lengthy process, involving expensive O(n3) matrix rank computations to con-
struct a generator matrix in suitable form, often larger than one would expect
for a code of the given dimension.

Table 1 summarizes the asymptotic complexities of code generation (mainly
due to systematic formatting), encoding and decoding, which coincide with the
complexities of key generation, encryption and decryption of typical cryptosys-
tems based on codes.

Table 1. Operation complexity relative to the code length n

operation generic ours
Code generation O(n3) O(n lg n)
Encode/Decode O(n2) O(n lg n)

5.1 Suggested Parameters

Several trade-offs are possible when choosing parameters for a particular appli-
cation. One may wish to minimize the key size, or increase speed, or simplify the
underlying arithmetic, or attaining a balance between them. We present here
some non-exhaustive combinations. The number of errors is always a power of 2
to enable maximum size reduction.

Table 2 shows the influence of varying the subfield degree while keeping fixed
the approximate security level and the number of design errors. In general, codes
over larger subfields allow for smaller keys as already indicated in [3]. For these
parameters the number of possible codes ranges from 2392 to 2731.

2 We are grateful to Dan Bernstein for suggesting the lifting technique to emulate the
FWHT in characteristic 2.

388 R. Misoczki and P.S.L.M. Barreto

Table 2. Sample parameters for a fixed number of errors (t = 128) and approximately
128-bit security level, using a subcode over the subfield F2s of F216

s n k size (bits)
1 4096 2048 32768
2 2560 1536 24576
4 1408 896 14336
8 768 512 8192

Table 3 displays a different trade-off whereby the key size and the subfield
are kept constant at the cost of varying the number of errors and the code
length. The estimated security level on column ‘level’ refers to the approximate
logarithmic cost of the best known attack according to the guidelines in [7].

Table 3. Sample parameters for a fixed key size (8192 bits, corresponding to k = 512),
using a subcode over the subfield F28 of F216

n t level
640 64 102
768 128 136
1024 256 168

One more trade-off is obtained by defining the subfield subcode over the base
field itself, following the common practice for generic codes. The corresponding
settings3 are summarised on Table 4.

Table 4. Sample parameters for a subcode over the base subfield F2 of F216

level n k t size (bits)
80 2304 1280 64 20480
112 3584 1536 128 24576
128 4096 2048 128 32768
192 7168 3072 256 49152
256 8192 4096 256 65536

Table 5 contains a variety of balanced parameters for practical security lev-
els. Although we do not recommend these for actual deployment before further
analysis is carried out, these parameters were chosen to stress the possibilities
of our proposal while giving a realistic impression of what one might indeed

3 The actual security levels computed according to the attack strategy in [7] for the
parameters suggested in Table 4 are, respectively, 84.3, 112.3, 136.5, 216.0, and 265.1.
We are grateful to Christiane Peters for kindly providing these estimates.

Compact McEliece Keys from Goppa Codes 389

adopt in practice. The target security level, roughly corresponding to the es-
timated logarithmic cost of the best known attack according to the guidelines
in [7], is shown on the ‘level’ column. The ‘size’ column contains the amount of
bits effectively needed to store a quasi-dyadic generator or parity-check matrix
in systematic form. The size of a corresponding systematic matrix for a generic
Goppa code at roughly the same security level as suggested in [7] is given on
column ‘generic’. The ‘shrink’ column contains the size ratio between such a
generic matrix and a matching quasi-dyadic matrix. The ‘RSA’ column lists the
typical size of a (quantum-susceptible) RSA modulus at the specified security
level (more accurate RSA estimates can be found in [20,21]). To assess our re-
sults against what can be achieved by other post-quantum settings, column ‘QC’
lists key sizes for quasi-cyclic codes of approximately the specified security level
(although not necessarily for the same code length, dimension, and distance)
as suggested in [3], column ‘LDPC’ does the same for (quasi-cyclic) low-density
parity-check codes as discussed in [2], and finally the ‘NTRU’ column contains
the range (from size-optimal to speed-optimal) of NTRU key sizes as suggested
in the draft IEEE 1363.1 standard [13]. For these very compact parameters the
number of possible codes ranges between 2346 and 2392, less than those of Table 2
but still very large.

Table 5. Sample parameters for a subcode over the subfield F28 of F216

level n k t size generic shrink RSA QC LDPC NTRU
80 512 256 128 4096 460647 112 1024 6750 49152 –
112 640 384 128 6144 1047600 170 2048 14880 – 4411–7249
128 768 512 128 8192 1537536 188 3072 20400 – 4939–8371
192 1280 768 256 12288 4185415 340 7680 – – 7447–11957
256 1536 1024 256 16384 7667855 468 15360 – – 11957–16489

For the parameters on Table 5, we observed the timings on Table 6 (measured
in ms) for generic Goppa codes and quasi-dyadic (QD) codes, and also for RSA
to assess the efficiency relative to a very common pre-quantum cryptosystem. We
made no serious attempt at optimizing the implementation, which was done in
C++ and tested on an AMD Turion 64X2 2.4 GHz. Benchmarks for RSA-15360
were omitted due to the enormous time needed to generate suitable parameters.

Table 6. Benchmarks for typical parameters

level generation encoding decoding
RSA generic QD RSA generic QD RSA generic QD

80 563 375 17.2 0.431 0.736 0.817 15.61 1.016 3.685
112 1971 1320 18.7 1.548 1.696 1.233 110.34 2.123 4.463
128 4998 2196 20.5 3.467 2.433 1.575 349.91 3.312 5.261
192 628183 13482 47.6 22.320 6.872 4.695 5094.10 8.822 17.783
256 – 27161 54.8 – 12.176 6.353 – 15.156 21.182

390 R. Misoczki and P.S.L.M. Barreto

6 Conclusion and Further Research

We have described how to generate Goppa codes in quasi-dyadic form suitable for
cryptographic applications. Key sizes for a typical McEliece-like cryptosystem
are roughly a factor t = Õ(n) smaller than generic Goppa codes, and keys
can be kept in this compact size not only for storing and transmission but for
processing as well. In the binary case these codes can correct the full design
number of errors. This brings the size of cryptographic keys to within a factor 4
or less of equivalent RSA keys, comparable to NTRU keys. Our work provides
an alternative to conventional cyclic and quasi-cyclic codes, and benefits from
the same trapdoor-hiding techniques proposed by Wieschebrink in general [29],
and by Berger et al. for that family of codes [3].

The complexity of all operations in McEliece and related cryptosystems is
reduced to O(n lg n). Other cryptosystems can also benefit from dyadic codes,
e.g. entity identification and certain digital signatures for which double circulant
codes have been proposed [9] could use dyadic codes instead, even random ones
without a Goppa trapdoor. One further line of research is whether one can se-
curely combine the techniques in [2] with ours to define quasi-dyadic, low-density
parity-check (QD-LDPC) codes that are suitable for cryptographic purposes and
potentially even shorter than plain quasi-dyadic codes.

Interestingly, it is equally possible to define lattice-based cryptosystems with
short keys using dyadic lattices entirely analogous to ideal (cyclic) lattices as
proposed by Micciancio [17], and achieving comparable size reduction. We leave
this line of inquiry for future research since it falls outside the scope of this
paper.

Acknowledgments

We are most grateful and deeply indebted to Marco Baldi, Dan Bernstein, Pierre-
Louis Cayrel, Philippe Gaborit, Steven Galbraith, Robert Niebuhr, Christiane
Peters, Nicolas Sendrier, and the anonymous reviewers for their valuable com-
ments and feedback during the preparation of this work.

References

1. Baldi, M., Chiaraluce, F.: Cryptanalysis of a new instance of McEliece cryptosys-
tem based on QC-LDPC code. In: IEEE International Symposium on Information
Theory – ISIT 2007, Nice, France, pp. 2591–2595. IEEE, Los Alamitos (2007)

2. Baldi, M., Chiaraluce, F., Bodrato, M.: A new analysis of the mcEliece cryptosys-
tem based on QC-LDPC codes. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.)
SCN 2008. LNCS, vol. 5229, pp. 246–262. Springer, Heidelberg (2008)

3. Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of
the McEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS,
vol. 5580, pp. 77–97. Springer, Heidelberg (2009),
http://www.unilim.fr/pages_perso/philippe.gaborit/reducing.pdf

http://www.unilim.fr/pages_perso/philippe.gaborit/reducing.pdf

Compact McEliece Keys from Goppa Codes 391

4. Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of
certain coding problems. IEEE Transactions on Information Theory 24(3), 384–
386 (1978)

5. Bernstein, D.J.: List decoding for binary Goppa codes (2008) (preprint),
http://cr.yp.to/papers.html#goppalist

6. Bernstein, D.J., Buchmann, J., Dahmen, E.: Post-Quantum Cryptography.
Springer, Heidelberg (2008)

7. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the mcEliece cryp-
tosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp.
31–46. Springer, Heidelberg (2008),
http://www.springerlink.com/content/68v69185x478p53g

8. Gaborit, P.: Shorter keys for code based cryptography. In: International Workshop
on Coding and Cryptography – WCC 2005, Bergen, Norway, pp. 81–91. ACM
Press, New York (2005)

9. Gaborit, P., Girault, M.: Lightweight code-based authentication and signature. In:
IEEE International Symposium on Information Theory – ISIT 2007, Nice, France,
pp. 191–195. IEEE, Los Alamitos (2007)

10. Gibson, J.K.: Severely denting the Gabidulin version of the McEliece public key
cryptosystem. Designs, Codes and Cryptography 6(1), 37–45 (1995)

11. Gibson, J.K.: The security of the Gabidulin public key cryptosystem. In: Maurer,
U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 212–223. Springer, Heidel-
berg (1996)

12. Gulamhusein, M.N.: Simple matrix-theory proof of the discrete dyadic convolution
theorem. Electronics Letters 9(10), 238–239 (1973)

13. IEEE P1363 Working Group. IEEE 1363-1: Standard Specifications for Public-Key
Cryptographic Techniques Based on Hard Problems over Lattices, Draft (2009),
http://grouper.ieee.org/groups/1363/lattPK/index.html

14. Loidreau, P., Sendrier, N.: Some weak keys in McEliece public-key cryptosystem.
In: IEEE International Symposium on Information Theory – ISIT 1998, Boston,
USA, p. 382. IEEE, Los Alamitos (1998)

15. MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. North-
Holland Mathematical Library, vol. 16 (1977)

16. McEliece, R.: A public-key cryptosystem based on algebraic coding theory. The
Deep Space Network Progress Report, DSN PR 42–44 (1978),
http://ipnpr.jpl.nasa.gov/progressreport2/42-44/44N.PDF

17. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions. Computational Complexity 16(4), 365–411 (2007)

18. Monico, C., Rosenthal, J., Shokrollahi, A.: Using low density parity check codes
in the McEliece cryptosystem. In: IEEE International Symposium on Information
Theory – ISIT 2000, Sorrento, Italy, p. 215. IEEE, Los Alamitos (2000)

19. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems of Control and Information Theory 15(2), 159–166 (1986)

20. European Network of Excellence in Cryptology (ECRYPT). ECRYPT yearly re-
port on algorithms and keysizes (2007-2008). D.SPA.28 Rev. 1.1, IST-2002-507932
ECRYPT, 07/2008 (2008),
http://www.ecrypt.eu.org/ecrypt1/documents/D.SPA.28-1.1.pdf

21. National Institute of Standards and Technology (NIST). Recommendation for key
management – part 1: General (2007),
http://csrc.nist.gov/publications/nistpubs/800-57/
sp800-57-Part1-revised2_Mar08-2007.pdf

http://cr.yp.to/papers.html#goppalist
http://www.springerlink.com/content/68v69185x478p53g
http://grouper.ieee.org/groups/1363/lattPK/index.html
http://ipnpr.jpl.nasa.gov/progressreport2/42-44/44N.PDF
http://www.ecrypt.eu.org/ecrypt1/documents/D.SPA.28-1.1.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf

392 R. Misoczki and P.S.L.M. Barreto

22. Otmani, A., Tillich, J.-P., Dallot, L.: Cryptanalysis of two McEliece cryptosystems
based on quasi-cyclic codes (2008) (preprint),
http://arxiv.org/abs/0804.0409v2

23. Patterson, N.J.: The algebraic decoding of Goppa codes. IEEE Transactions on
Information Theory 21(2), 203–207 (1975)

24. Sarwate, D.V.: On the complexity of decoding Goppa codes. IEEE Transactions
on Information Theory 23(4), 515–516 (1977)

25. Schechter, S.: On the inversion of certain matrices. Mathematical Tables and Other
Aids to Computation 13(66), 73–77 (1959),
http://www.jstor.org/stable/2001955

26. Sendrier, N.: Finding the permutation between equivalent linear codes: the support
splitting algorithm. IEEE Transactions on Information Theory 46(4), 1193–1203
(2000)

27. Sidelnikov, V., Shestakov, S.: On cryptosystems based on generalized Reed-
Solomon codes. Discrete Mathematics 4(3), 57–63 (1992)

28. Tzeng, K.K., Zimmermann, K.: On extending Goppa codes to cyclic codes. IEEE
Transactions on Information Theory 21, 721–726 (1975)

29. Wieschebrink, C.: Two NP-complete problems in coding theory with an application
in code based cryptography. In: IEEE International Symposium on Information
Theory – ISIT 2006, Seattle, USA, pp. 1733–1737. IEEE, Los Alamitos (2006)

http://arxiv.org/abs/0804.0409v2
http://www.jstor.org/stable/2001955

	Compact McEliece Keys from Goppa Codes
	Introduction
	Preliminaries
	Goppa Codes in Cauchy and Dyadic Form
	Building a Binary Goppa Code in Dyadic Form
	Constructing Quasi-Dyadic, Permuted Subfield Subcodes
	A Toy Example

	Assessing the Hardness of Decoding Quasi-Dyadic Codes
	Efficiency Considerations
	Suggested Parameters

	Conclusion and Further Research
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

