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Preface

The 16th Workshop on Selected Areas in Cryptography (SAC 2009) was held
at the University of Calgary, in Calgary, Alberta, Canada, during August 13-14,
2009. There were 74 participants from 19 countries. Previous workshops in this
series were held at Queens University in Kingston (1994, 1996, 1998, 1999, and
2005), Carleton University in Ottawa (1995, 1997, and 2003), University of Wa-
terloo (2000 and 2004), Fields Institute in Toronto (2001), Memorial University
of Newfoundland in St. Johns (2002), Concordia University in Montreal (2006),
University of Ottawa (2007), and Mount Allison University in Sackville (2008).
The themes for SAC 2009 were:

1. Design and analysis of symmetric key primitives and cryptosystems, includ-
ing block and stream ciphers, hash functions, and MAC algorithms

2. Efficient implementations of symmetric and public key algorithms

3. Mathematical and algorithmic aspects of applied cryptology

4. Privacy enhancing cryptographic systems

This included the traditional themes (the first three) together with a special
theme for 2009 workshop (fourth theme).

We received 86 submissions, of which one was withdrawn. The review was
double-blinded. Each paper was reviewed by three members of the Program
Committee and submissions that were co-authored by a member of Program
Committee received two additional reviews. No member of Program Committee
reviewed their own submission. The average quality of submissions was high
and this made final selection of the papers a challenging task. We accepted
28 papers with 10 papers in the area of hash functions. The high number of
papers in this area could be partially attributed to the interest generated in
this area by the NIST competition. The remaining 18 papers were on block
and stream ciphers, public key schemes, implementation, and privacy-enhancing
cryptographic systems.

In addition, the program included two invited talks:

— Jan Camenisch — Privacy-Enhancing Cryptography: Theory and Practice
— Andreas Enge — Elliptic Complex Multiplication in Cryptography

We would like to thank the Program Committee for their hard work and
careful reviews. We also benefited from the expertise of many external reviewers
who helped the Program Committee with high-quality reviews. A list of all
external referees appears here.

We also would like to thank Coral Burns and Elmar Tischhauser for technical
support, and Hadi Ahmadi, Mina Askari, Martin Gagné, Kris Narayan, Arthur
Schmidt, Michal Sramka, and Mohammed Tuhin, whose effort ensured smooth
running of the workshop.



VI Preface

Finally, we gratefully acknowledge the generous support of the Faculty of
Science and Department of Computer Science of the University of Calgary, the
University of Calgary University Research Grants Committee, the informatics
Circle of Research Excellence (iICORE), the Pacific Institute for the Mathemati-
cal Sciences (PIMS), and Microsoft Research for their generous financial support.

September 2009 Michael J. Jacobson, Jr.
Vincent Rijmen
Reihaneh Safavi-Naini
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Practical Collisions for SHAMATA-256

Sebastiaan Indesteege'?*, Florian Mendel®, Bart Preneel!-2,
and Martin Schliffer®

! Department of Electrical Engineering ESAT/COSIC, Katholieke Universiteit
Leuven. Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium
2 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium
3 Institute for Applied Information Processing and Communications
Inffeldgasse 16a, A-8010 Graz, Austria

Abstract. In this paper, we present a collision attack on the SHA-3
submission SHAMATA. SHAMATA is a stream cipher-like hash function
design with components of the AES, and it is one of the fastest submit-
ted hash functions. In our attack, we show weaknesses in the message
injection and state update of SHAMATA. It is possible to find certain
message differences that do not get changed by the message expansion
and non-linear part of the state update function. This allows us to find
a differential path with a complexity of about 2°¢ for SHAMATA-256
and about 2% for SHAMATA-512, using a linear low-weight codeword
search. Using an efficient guess-and-determine technique we can signifi-
cantly improve the complexity of this differential path for SHAMATA-
256. With a complexity of about 2° we are even able to construct
practical collisions for the full hash function SHAMATA-256.

Keywords: SHAMATA, SHA-3 candidate, hash function, collision
attack.

1 Introduction

A cryptographic hash function H maps a message M of arbitrary length to a
fixed-length hash value h. Informally, a cryptographic hash function has to fulfil
the following security requirements:

— Collision resistance: it is infeasible to find two messages M and M™*, with
M* # M, such that H(M) = H(M*).

— Second preimage resistance: for a given message M, it is infeasible to find a
second message M™* # M such that H(M) = H(M™).

— Preimage resistance: for a given hash value h, it is infeasible to find a message
M such that H(M) = h.

The resistance of a hash function to collision and (second) preimage attacks
depends in the first place on the length n of the hash value. Regardless of how a
hash function is designed, an adversary will always be able to find preimages or

* F.W.O. Research Assistant, Fund for Scientific Research — Flanders (Belgium).

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 1 2009.
© Springer-Verlag Berlin Heidelberg 2009



2 S. Indesteege et al.

second preimages after trying out about 2" different messages. Finding collisions
requires a much smaller number of trials. Due to the birthday paradox, collisions
can be found in a generic way with an effort of only about 2"/2. A hash function
is said to achieve ideal security if these bounds are guaranteed.

In the last few years, the cryptanalysis of hash functions has become an impor-
tant topic within the cryptographic community. Especially the collision attacks
on the MD4 family of hash functions (MD5, SHA-1) have diminished the confi-
dence in the security of these commonly used hash functions. Therefore, NIST
has started the SHA-3 competition [7] to find a successor for the SHA-1 and
SHA-2 hash functions. The goal is to find a hash function which is fast and still
secure within the next few decades.

Many new and interesting hash functions have been proposed. One of them
is SHAMATA [I]. Out of the 51 first round candidates, SHAMATA is one of the
fastest submissions having a speed of 8-11 cycles/byte on 64-bit and 15-22 cy-
cles/byte on 32-bit platforms [I. It is a register based design, similar to the hash
function PANAMA [5] and also bears resemblance to the sponge construction [2].

In this work, we analyse the security of the hash function SHAMATA. After
a description of SHAMATA in Sect. 2] we analyse some basic differential prop-
erties of the message injection and state update function in Sect. Bl We show
how to efficiently linearise SHAMATA by considering special XOR, differences
with an equal difference in all bytes. In Sect. @, we construct a good differen-
tial path for the linearised variant of SHAMATA using a low-weight codeword
search. Section [ explains how basic message modification techniques allows us
to construct a collision attack with a complexity of 296 for SHAMATA-256 and
2110 for SHAMATA-512, based on this differential path. For SHAMATA-256, the
attack is improved further to a complexity of only 24 SHAMATA rounds using
a complex guess-and-determine strategy. This attack is practical, and we show
a collision example in App. [Al We conclude our analysis of the hash function
SHAMATA in Sect.

2 Description of SHAMATA

In this section, we give a brief description of the hash function SHAMATA.
SHAMATA is a register based hash function design that operates on an internal
state of 2048 bits and produces a hash value of 224, 256, 384 or 512 bits. The inter-
nal state consists of two parts: the main mixing register Bs, . .., By and the second
mixing register K11, ..., Kq. Internally, SHAMATA uses rounds of the AES block
cipher [6] as building blocks.

First, the message is padded to an integer number of 128-bit blocks using
classical Merkle-Damgard strengthening, like in the MD4 family. The registers
comprising the internal state of SHAMATA are set to their initial values, which
depend on the digest length used. Then, each 128-bit message block is used once
to update the internal state as described below. Finally, the finalisation phase of
SHAMATA generates the output digest from the internal state. For a detailed
description of the initialisation and finalisation phases of SHAMATA, we refer
to [I], as these details are not relevant to our analysis.
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P Q
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Q' P Q P’

Fig. 1. The state update function of SHAMATA

2.1 The Message Injection

The message injection of SHAMATA updates the internal state using a 128-bit
message block. The message block M is first expanded as follows:

P =MC(MT) , Q =MC(M), W
P =P1)||QO) , Q =Q()|IP(0).

Here, MC is the MixColumns operation from the AES block cipher [6] and MT
is the transpose of M, where M is viewed as a 4 X 4 matrix of bytes. The notation
P(i) denotes the i-th most significant 64-bit half of the 128-bit word P. Thus, P’
and @' are simply recombinations of the columns of P and Q. These expanded
message words and a block counter blockno are then added to six words of the
internal state using XOR:

By «— By ® P ®blockno , Bs «— B3® Q & blockno
K3 — Kz P, Ks — K50Q (2)
Kr; — Kr;oP Ky —KnieQ .

2.2 The State Update Function

After the expanded message words have been added, the state update function
updates the internal state by clocking the registers of the internal state twice,
as is shown in Fig. [l Formally, these two clockings can be written as
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f@@dKl = ARF" (BQ) D Bo s feed31 = feedK1 D Kg D Ko ,

feedKs = ARF"™ (B3) & By feedBy = feedKo @ K19 ® K1

BZ' <—Bi+2 for iZO,l s Ki — i+2 for i :07...,9 5 (3)
BQ — feed31 s K10 — feedK1 s

Bg — feede s Kll — feedKz .

The function ARF" consists of r rounds of the AES block cipher [6], omitting
subkey additions. Thus, the ARF function consists of the SubBytes, ShiftRows
and MixColumns operations:

ARF(X) = MC (SR(SB (X)) . (4)

For SHAMATA-224 and SHAMATA-256, the number of rounds r is equal to
one. For SHAMATA-384 and SHAMATA-512, r is two.

3 Basic Attack Strategy

In this section, we describe the basic attack strategy to construct collisions for
SHAMATA. The attack is similar to the attack on PANAMA [A[T0], since we
construct a collision in the internal state during the message injection phase.
In this phase, the message input can be used to control the differences in the
internal state. However, since the expanded message block is inserted several
times into the internal state, finding a differential trail seems to be difficult at
first. However, by exploiting some differential properties of the state update, we
can find a differential trail for SHAMATA which results in a collision with a
good probability.

3.1 Overview of the Attack

The main idea of the attack on SHAMATA is to insert special message differ-
ences A, which do not get changed by the message expansion and the non-linear
function ARF". Then, the same difference A will be added to six positions of
the internal state by the message injection. By imposing conditions on the input
of ARF", we can ensure that the difference A does not get changed by this
non-linear function. Hence, all parts of the state update are linear regarding the
XOR difference A and we can search for a differential path using basic linear
algebra.

3.2 Choosing the Message Difference

In the message expansion of SHAMATA, the 128-bit message word M is first
arranged in a 4 x 4 array of bytes. Then, the MixColumns transformation is
applied to both M and M7 and some columns are rearranged to get the expanded
message blocks P, P’, @Q and Q’. All transformations are applied on the byte
level and we can make the following observation.



Practical Collisions for SHAMATA-256 5

Observation 1. A message difference A with equal differences in all 16 bytes,
results in the same difference A in each of the expanded message words P, P/,
Q and Q'.

Transposition and rearranging columns does not change the value of byte differ-
ences. MixColumns applies the following linear transformation over GF(2%) to
each column [6]:

bp=2eaygP3ea; DleayHleas
by=1eaygP2ea;B3easPleag 5)
bo=1eagPlea; B2ea,P3eag
b3=3eayPlea;BleayP2eag

If all input values are equal to some value a, we get with 2ea® 3ea=1ea:
bi=2ea®3eadleadlea=1ea=aqa . (6)

and all output values are equal. Hence, for any message difference A with equal
values in all bytes, the same difference A will be injected into the 6 state words
Bs, Bg, K11, K7, K5 and K3.

3.3 Linearising ARF"

The only non-linear part in SHAMATA is the modified AES-round ARF". The
function ARF" behaves linearly if a given input difference A results in the same
output difference A. This is again possible for certain differences, by additionally
imposing conditions on the input values of ARF":

Observation 2. There are input differences A of ARF" with equal differences
in all 16 bytes, which result in the same output difference A for certain conditions
on the input values of ARF™.

For example, in the case of ARF! (SHAMATA-256), the input difference A =
0xff,0xff,... results in the same output difference A = 0xff,0xff,... if all
input byte values are equal to either 0x7e or 0x81. A more careful choice of the
difference in the input bytes can improve the probability that the differential
through ARF"™ is followed.

For ARF! a careful examination of the difference distribution table (DDT) of
the AES S-box reveals that the best choice is a difference of 0xc5 in each byte.
Indeed, this difference passes through the S-box unchanged for input values
{0x00, 0x1d, 0xc5, 0xd8} and hence, with an optimal probability of 275. Using
this difference, there are 4'¢ values for the input to ARF' which exhibit the
desired differential behaviour, corresponding to a differential probability of 279,

In the case of ARF? (SHAMATA-512), we can no longer view each S-box
independently. Eliminating linear steps at the in- and output, ARF? reduces
to SubBytes, followed by MixColumns and another SubBytes operation. Thus,
each column is still independent here. We have performed an exhaustive search
to find the best difference consisting of 16 equal bytes that passes through ARF?
unchanged. The best choice is a difference of 0x18 in each byte, which passes

through ARF? for (22)* values, corresponding to a differential probability of
9-110.16_
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3.4 Basic Message Modification

In this section, we analyse the possibilities to fulfil the conditions on the input of
ARF". For each active ARF" function, the input value has to be such that the
difference is passed unchanged. The probability of this event was optimised in the
previous section. Note however that in each round, the expanded message word
P is XORed directly to By. Hence, if the ARF" function in the first clocking
is active, we can simply choose M such that the input to ARF" is X, which is
fixed to one of the “good” values ensuring that the active ARF" has the required
differential behaviour:

M= (MCTH(P))" = (MC™ (B X)) (7)

If the ARF" function in the second clocking of a round is active, a similar
approach can be used, as the message is also XORed to B3 via @), which forms
the input to ARF" in the second clocking:

M=MCYQ)=MC ' (B;® X). (8)

These basic message modification techniques do not work anymore as soon as two
consecutive ARF" functions of a single round are active. If we get a difference A
in both By and Bj after the message injection, we can adjust only one input
of the following two ARF" functions. The main problem here is that we do not
have enough freedom to fulfil the conditions on the message input imposed by
both active ARF™ functions. Hence, in this case, one of them has to be satisfied
probabilistically. The best probability is 279 for ARF' and 271016 for ARF?,
as was shown in Sect.

Hence, we will aim for a differential path with a low number of consecutive
active ARF" functions (see Sect. H]). Unfortunately, in any differential path,
we always get a difference in both, By and Bs after the first message injec-
tion. However, in Sect. 5.2l we show how we can still fulfil both conditions for
SHAMATA-256 with much less effort, such that the attack becomes practical.

4 Finding a Good Differential Path

In this section, we first show how to find an efficient collision path for SHAMATA.
Recall from Sect. B4 that the new message freedom in each round of SHAMATA
allows an adversary to linearise the ARF" function in one of the two clockings
in a round. Thus, we aim to find a collision differential path that activates the
ARF"™ function in at most one clocking of each round as well. However, it was
already pointed out in Sect. B4] that it is impossible to avoid this in the round
where the first difference is introduced, but we can aim to avoid this in all the
other rounds. We describe two methods to achieve this. The first method is based
on searching low-weight codewords of a linear code and the second method is
a simple exhaustive search. The former is more general and can also be used
to find differential paths spanning a long message. The latter is only feasible
for short messages, but it is simpler. In the case of SHAMATA, either of the
methods can be used to achieve the same result.
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4.1 Low-Weight Codewords

For a fixed number of message blocks, all differential paths under consideration
can be seen as the codewords of a linear code. We show that searching for low-
weight codewords in this code is a useful tool to construct good differential paths
for SHAMATA. The use of low-weight codeword search techniques to construct
differential paths was proposed by Rijmen and Oswald [9] and extended by
Pramstaller et al. in [8].

A codeword of the code under consideration contains, for each round, the
message difference and the differences in the internal state registers immediately
after the new message block was added. As we consider only A differences, each
of these differences is represented by a single bit. Let Am(®), Abéi), cee Ab(()i)

and Akﬁ), N Ak((,i) denote these bits for round 7. With IV the fixed number of
message blocks used, a codeword of the code is then given by

Am® -+ AV HAbz(),l) ---Akél) |- ||Ab§,’N) ...Ak(()N)] . 9)

We now construct the generator matrix G of this code. The differences in a
SHAMATA state immediately after the message addition in round i can be
represented by an 1 x 16 binary vector As(®,

As() — Abgi) bgi) kﬁ) k(()i)] . (10)

As the ARF™ function is assumed to behave linearly with respect to the A dif-
ference, the state difference vector in round i, As(?, can be written in function
of the state differences vector in round i — 1, As*=1) | as follows

AsD = Ast=D A @ Am@) (11)

Here, w is a 1 x 16 vector indicating to which positions of the internal state a
new message block is added. It is easy to see that

w=1[1100100010101000] . (12)

The 16 x 16 matrix A is a transition matrix corresponding to the two clockings
in the round. It is given by

0 1 0 1°
11 1
0 10
1 1
0 01
A=V 01 (13)
1 0 1
0 0 1
0 0 1
1 0 1]
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Now, consider the N x 17N generator matrix G,y given by

w wA wA?2 . wAN 1
w wA . wAN—2
Gan = | Inxn w : . (14)
wA
w

This is the generator matrix of a linear code that contains all length N differential
paths of the type we consider. As we are only interested in collision differentials,
it is required that the last internal state has no difference. This can be achieved
by using Gaussian elimination to force zeroes in the last 16 columns of Ggj.
This gives the generator matrix G, which generates a linear code containing all
differential paths that result in a collision.

Due to the possibility of message modification in either of the clockings in
a SHAMATA round, but not both (see Sect. 34, a good differential path for
SHAMATA activates the ARF" function in at most one clocking per round. As
was already noted, it is impossible to avoid activating ARF" in both clockings
of the round where a difference is first introduced. But we aim to avoid this in
the remainder of the differential path.

Intuitively, a codeword with a low weight in Aby and Abs, which are the input
differences to ARF", is more likely to satisfy this property than a random code-
word. Thus, we look for low-weight codewords in this code, considering only the
weight of these bits, using an algorithm similar to that of Canteaut and Chabaud
[3]. For each codeword below a certain threshold weight, we check if it satisfies
the condition mentioned above. If it does, a suitable collision differential path has
been found. If not, the search is simply continued. Note that this search method
can find collision differential paths shorter than N rounds. Indeed, nothing pre-
vents the search from padding a shorter differential path to IV rounds by adding
rounds without a difference, as we indeed observed. The shortest collision differ-
ential path we found is shown in Table[Il It consists of 25 rounds and, except for
the first round, only activates ARF" in at most one of the clockings of a round.

4.2 An Alternative Approach

Note that, for a given length of N rounds, there are only 2V possible differential
paths of the type we consider. Indeed, as each message block can only have a A
difference or no difference at all, there are only 2%V possible message differences.
Given the message difference, exactly one differential path follows. Hence, when
N is not too large, a simple brute force search can also be a viable approach.

As the more general approach given above resulted in a differential path of
only 25 rounds, a brute force approach is indeed practically feasible. We have ex-
haustively searched all differential paths of length up to 25 rounds. As expected,
this search also found the differential path given in Table[[l Moreover, there is
only one differential path of 25 rounds, and no shorter differential paths of this
type exist. Hence, the differential path in Table [l is optimal.



Table 1. The differential path for 25 rounds of SHAMATA with differences after each
clocking. For differences at the input of ARF" (word Bi, grey column), the differen-
tial probabilities of each round are given in the last two columns for SHAMATA-256
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5 Collision Attack on SHAMATA

In this section, we put together the various pieces that were introduced, and
present our collision attack on SHAMATA. We search for a message pair which
follows the differential path in Table [

5.1 Collisions for SHAMATA-256 and SHAMATA-512

In rounds where none of the ARF" functions is active, the differential path
is always followed, regardless of the message block. Hence, in those rounds, we
make an arbitrary choice for the message block. In rounds with exactly one active
ARF" function, the message modification technique presented in Sect. [3.4]is used
to deterministically construct a message block that ensures that the differential
path is followed. This takes only negligible time, i.e., no more than computing
a single round of SHAMATA.

However, in the first round where a difference is introduced, the ARF" func-
tion is active in both clockings. The message modification technique of Sect. 3.4
can only deterministically satisfy the conditions for one of them. As discussed
in Sect. B4 the probability that the path is still followed is 279 for ARF"
(SHAMATA-256) and 2711016 for ARF? (SHAMATA-512). A prefix with no
difference is used to provide the required message freedom.

Thus, a conforming pair for the first round of the differential path can be
found by performing about 290 trials for SHAMATA-256 and about 20 trials
for SHAMATA-512. Once such a pair has been found, a colliding message pair
can be constructed with negligible additional effort. Thus, the overall complexity
of our attack is about 29 SHAMATA rounds for SHAMATA-256, and about
2110 SHAMATA rounds for SHAMATA-512. The attack requires only negligible
memory and is easily parallelisable. Hence, for both variants of SHAMATA, the
attack is significantly faster than a brute force attack. Note that the attack also
applies to SHAMATA-224 and SHAMATA-384.

5.2 Practical Collisions for SHAMATA-256

In the case of SHAMATA-256, a more efficient approach exists to control the val-
ues which are input to the ARF" function in both clockings of a round. This ap-
proach exploits the fact that in SHAMATA-256 only a single AES round is used,
i.e., 7 = 1. Hence, this method can not be applied to SHAMATA-512, where r = 2.
Assume we aim to fix the inputs to the ARF! function in both clockings
of round i to X; and X, respectively. Let B(®) denote the B-register at the
beginning of round ¢. Then, this requirement can be written as
B &PV gi=x, (1)

B 0 QW qi=X,
Using the definition of the state update function of SHAMATA in ([[)-(), this

can be rewritten in a function of the internal state at the beginning of round ¢ —1
and the message blocks M;_1 and M;, yielding the following
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M,y =MC™! (D1 @SB! (Cl @ SR™! (M;) ) (16)
MiflT =MC! (DQ @SB! (CQ ® SR (MZT))) ’
where C1, Co, D1 and D5 are constants defined by
¢y =S8R (Mc (B Vok{ToKk{TMeiox,)),
Cy=SR (Mc (B YVerkiMaki™aieX,)), (17)

D =B{"Ve(-1),
Dy =B{ Ve @i-1).

These constants only depend on the internal state of SHAMATA-256 at the
beginning of round ¢ — 1, and are thus known. Now, we search for message
blocks M;_1 and M; such that the conditions of (If) are satisfied.

A straightforward approach to find the message blocks M;_; and M; would be
to guess one of them, compute the other using the first equation of (I6) and then,
check if the second equation of (@) holds as well. This procedure is expected
to find a solution after about 2'?® trials. We propose a guess-and-determine
approach which performs significantly better. Our approach is as follows

1. Assume we know the four bytes of M; indicated in the pattern in Fig. Bl(a).
Note that this pattern is symmetric, i.e., it is invariant under matrix trans-
position. This implies that also the same pattern of bytes of M;T is known.
Note that in ([I6), M; and M;T are input to the inverse ShiftRows operation
or SR™!. This operation performs a circular right shift of the rows of the
state over 0, 1, 2 or 3 bytes for the first, second, third and fourth row,
respectively. Hence, the bytes of M; indicated in Fig Pl(a) form the first
column of SR~ (M;). Similarly, the first column of SR™1 (MiT) is known.
All other operations in (6] treat the four columns independently, so knowl-
edge of the first columns of SR~ (M;) and SR™! (MlT) suffices to compute
the first columns of M;_; and M;_; . The latter is equal to the first row of
M;_1, which overlaps with the first column of M;_; in exactly one byte.

Thus, we investigate all 232 guesses for four bytes of M; as indicated in
Fig. @l(a). For each guess, we compute the first column and the first row of
M;_1 using (). Then, we verify if the overlapping byte matches, and if so,
we save the candidate in a list Lj. As this imposes an 8-bit condition, about
224 candidates are expected to remain.

2. The same procedure is repeated with the patterns in Fig.2l(b), Fig.[2(c) and
Fig. 2I(d). Each pattern is invariant under matrix transposition, and results
in one column after applying the SR~! operation. This results in four lists,
L1, Lo, Ly and L, of about 224 elements each.

3. An element of the list L; contains candidate values of the first row and
column of M;_;. Similarly, an element of the list Ly contains the second row
and column of M;_1. Note that these overlap in two byte positions. Thus, we
can merge both lists and store all matching combinations in a new list, L.
The expected number of entries in the new list L 4 is 224 x 224 x 2716 = 232,
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B -l HE- Jj[‘- B l-@
] j [

(] | (] ]

(a) (b) (c) ()

Fig. 2. Patterns used in the guess-and-determine phase

If the lists L1 and Lo are sorted according to the overlapping bytes, this
merge operation can be performed very efficiently.

4. The same procedure is used to merge the lists Ls and L4, resulting in a new
list L which is also expected to contain about 232 entries.

5. Finally, the lists L4 and Lp are merged. The entries in these lists overlap
in eight byte positions, which corresponds to a 64-bit condition. Again, if
both lists are sorted according to these bytes, merging them can be done
efficiently. The number of expected matches is 232 x 232 x 2764 =1,

It is easy to verify that each final match will satisfy (I0]), and also that every
solution to (@) will be found by this procedure. The time complexity of this
algorithm is dominated by the merging of lists L4 and Lp, which takes 232
operations. Using hash tables as the data structure to store the lists, an explicit
sorting step can be avoided. The memory complexity is determined by one of
the lists L4 or Lp, as only one of them really needs to be stored in memory,
while the elements of the other can be computed on-the-fly. This corresponds to
a memory requirement of about 232 AES states.

For a practical implementation, it is better to reduce the memory requirements
of the algorithm, at the expense of an increase in its time complexity. This can
be done by, for instance, fixing the byte in the first row and last column of M;_1
a priori. Then, the lists L; and L4 are only expected to contain 2'¢ elements
each, and the lists L4 and Lp are reduced to about 224 elements. Thus, the total
memory complexity is reduced to about 22 AES states, or 256 MB. However,
as one byte was fixed a priori, the entire procedure has to be repeated 28 times,
increasing the time complexity to 240 operations. We have implemented our
attack. The guess-and-determine phase was run on a cluster using 256 jobs with a
running time of about 5 minutes each. The rest of the attack takes only negligible
time using message modification, as explained in Sect. 3.4l A collision example
for SHAMATA-256 is given in App. [Al

6 Conclusion

In this paper, we have presented a practical collision attack on the SHA-3 submis-
sion SHAMATA. Due to weaknesses in the message injection and state update
function of SHAMATA it is possible to find certain message differences, that do
not get changed by the message expansion or the non-linear part of the state
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update function. These symmetric XOR differences need to be equal in each byte
of the 128-bit words. Using these differences, the non-linear ARF" function be-
haves linearly and we can search for a differential path using a linearised variant
of SHAMATA. Moreover, since we use the same difference in every 128-bit word,
we can represent each word of the internal state by a single bit.

The main weakness in SHAMATA is the relatively light message injection
followed by a low number of register clockings. The message injection allows us
to efficiently fulfil many conditions using basic message modification. This results
in an attack complexity of about 2?6 for SHAMATA-256 and 2'1° for SHAMATA-
512. Using an efficient guess-and-determine technique we are able to improve the
complexity of the attack on SHAMATA-256 to about 2%° round computations
and present a practical collision for SHAMATA-256. Possible improvements for
SHAMATA include increasing the number of times the internal registers are
clocked and the use of constants to avoid the use of symmetric differences.
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A Colliding Message Pair for SHAMATA-256

ml =
00000000: 10 37 fd e7 65 30 1c cO e3 61 6e 41 24 6f cb b9 |.7..e0...anA$o.. |
00000010: 7f 28 81 17 81 4a dl 3f bf 4e ca da 92 f5 35 d0 |.(

00000020: fO fO dc 19 73 d5 a7 07 8c Ob bc 3d b6 85 46 57 |

00000030: 02 92 d1 24 00 df 40 67 ca 2c fa 5b 9d 70 2c ce |

00000040: de 38 51 f5 01 3c 3b aa d8 ba 38 Oe al 40 bl 91 |.8Q..

00000050: 7b 18 18 24 cc d9 76 cO f7 4a 61 28 86 06 30 8e |
00000060: 30 8d ab a3 62 52 aa ee 5d 66 2b 13 ec 71 6b ca
00000070: e3 29 f2 2c b3 ed 3d 7e f7 f2 fd Ob le c7 d6 eb
00000080: aa bc bf ab f9 fb 56 dl b5 8e df 57 ce 90 e8 fe |...
00000090: 1e 93 a2 80 e6 4c 6f 43 b3 9a 57 9f Oc c2 69 b6 |..... i
000000a0: 7e 29 61 77 24 b7 48 d9 45 27 30 13 b8 19 12 d6 |~)aw$.H.E’0..... |
000000b0: ac b4 56 92 00 c5 d6 b3 60 2d 52 6¢c ef bc 22 64 |..V..... ‘-R1.."m|
000000c0: e5 83 e5 09 3b 2d e2 80 55 13 94 0d 2c a6 e3 d8 |....;-..U...,...]|
000000d0: 53 e9 01 66 72 ae 8d cf 68 25 8a b6 ae 64 e7 c1 |S..fr...h%...d..
000000e0: 5a 39 6b 5a ff 41 Oe 5f 6e 60 cb 5d 1c ed ca 01 |Z9kZ.A._n‘.]1....
000000f0: 70 af Oa ab dd ed 2c 32 00 cO 3f 2c 66 22 04 cO |p..... ,2..7,F" ..
00000100: 3b 97 65 9d 01 64 98 7b e6 63 d4 d6 4b 77 00 bb |;.e..d.{.c..Kw..
00000110: bb ac 35 e3 27 66 55 34 Oc Of db d7 2f 16 19 ae |..5.°fU4..../...
00000120: 5b 6f
00000130: £f5 bl
00000140: bb £6
00000150: 3e ba
00000160: 1a 3f
00000170: €0 27
00000180: 69 3a
00000190: a6 21

SHAMATA-256 (m1) =
00000000: 6e a3 bl al 29 75 8d 3f £f5 60 £f8 1b 6b 11 02 9a In...)u.?. . .k...|

00000010: 14 b9 b2 d9 b3 2a b6 02 2a f5 83 ab e3 4c la 2a |..... *..0%. . Lox]|
m2 =

00000000: 10 37 fd e7 65 30 1c cO e3 61 6e 41 24 6f cb b9 |.7..e0...anA$o.. |
00000010: 80 d7 7e e8 7e b5 2e cO 40 bl 35 25 6d Oa ca 2f |..”.”...Q@.5%m../|
00000020: Of Of 23 e6 8c 2a 58 f8 73 f4 43 c2 49 7a b9 a8 |..#..*#X.s.C.Iz..|
00000030: fd 6d 2e db ff 20 bf 98 35 d3 05 a4 62 8f d3 31 |.m... ..5...b..1]|
00000040: 21 c7 ae Oa fe c3 c4 55 27 45 c7 f1 5e bf 4e 6e |!...... U’E..".Nn|

00000050: 7b 18 18 24 cc d9 76 cO £7 4a 61 28 86 06 30 8e |{..$..v..Ja(..0.
00000060: 30 8d ab a3 62 52 aa ee 5d 66 2b 13 ec 71 6b ca |0...bR..1f+..qgk.|
00000070: 1c d6 0d d3 4c 12 c2 81 08 0d 02 f4 el 38 29 1a |....L........ 8).1
00000080: 55 43 40 54 06 04 a9 2e 4a 71 20 a8 31 6f 17 01 |UC@T....Jq .lo..|
00000090: 1e 93 a2 80 e6 4c 6f 43 b3 9a 57 9f Oc c2 69 b6 | LoC..W...i.]|
000000a0: 81 d6 9e 88 db 48 b7 26 ba d8 cf ec 47 e6 ed 29 | oGO
000000b0: ac b4 56 92 00 c5 d6 b3 60 2d 52 6¢c ef bc 22 6d |.. ‘-R1.."m]|
000000c0: e5 83 e5 09 3b 2d e2 80 55 13 94 0d 2c a6 e3 d8 |... U]
000000d0: ac 16 fe 99 8d 51 72 30 97 da 75 49 51 9b 18 3e | ..uIQ..>|
000000e0:
000000£0:
00000100:
00000110:
00000120:
00000130:
00000140:
00000150
00000160:
00000170:
00000180:
00000190: 59 de 92 76 09 84 Ob b0 fb fa e5 2c 42 38 68 d8 |Y..v....... ,B8h. |

SHAMATA-256 (m2)
00000000: 6e a3 bl al 29 75 8d 3f f5 60 £8 1b 6b 11 02 9a |n...)u.?.‘. .k...|
00000010: 14 b9 b2 d9 b3 2a b6 02 2a f5 83 ab e3 4c 1la 2a |..... *..%, ... L.x|
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Abstract. In this paper, we propose two new ways to mount attacks
on the SHA-3 candidates Grgstl, and ECHO, and apply these attacks also
to the AES. Our results improve upon and extend the rebound attack.
Using the new techniques, we are able to extend the number of rounds in
which available degrees of freedom can be used. As a result, we present
the first attack on 7 rounds for the Grgst1-256 output transformation ]
and improve the semi-free-start collision attack on 6 rounds. Further, we
present an improved known-key distinguisher for 7 rounds of the AES
block cipher and the internal permutation used in ECHO.

Keywords: hash function, block cipher, cryptanalysis, semi-free-start
collision, known-key distinguisher.

1 Introduction

Recently, a new wave of hash function proposals appeared, following a call for
submissions to the SHA-3 contest organized by NIST [26]. In order to analyze
these proposals, the toolbox which is at the cryptanalysts’ disposal needs to
be extended. Meet-in-the-middle and differential attacks are commonly used. A
recent extension of differential cryptanalysis to hash functions is the rebound
attack [22] originally applied to reduced (7.5 rounds) Whirlpool (standardized
since 2000 by ISO/IEC 10118-3:2004) and a reduced version (6 rounds) of the
SHA-3 candidate Grgst1-256 [14], which both have 10 rounds in total.

Many hash functions [1L12}6]12,[T4[T6L17] use concepts or parts of the block
cipher AES [25] as basic primitives, and research on AES-related hash functions
is ongoing [15,22L27]. In this direction, a new attack model has been recently
introduced for block ciphers [I§]. In this model, the secret key is known to
the adversary and the goal is to distinguish the block cipher from a random
permutation. In particular, reduced versions of the AES have been studied in
this setting [I824] and recently, an attack on full AES-256 has been published [5].

! Note that the 7-round semi-free-start collision attack on Grgstl-256 in the prepro-
ceedings version of this paper does not have enough freedom to succeed, see Sect.

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 1 2009.
© Springer-Verlag Berlin Heidelberg 2009



Improved Cryptanalysis of the Reduced Grgstl Compression Function 17

Table 1. Summary of results for Grgstl, ECHO and AES

computational memory

target rounds complexity requirements type section
6 2112 204 semi-free-start collision see [22]
Grest1-256 6 204 204 semi-free-start collision Sect.
7 255 - permutation distinguisher Sect.
7 256 - output transf. distinguisher Sect.
7 2896 - permutation distinguisher see [2]
ECHO 384 o4 o
7 2 2 permutation distinguisher Sect.
AES 7 256 - known-key distinguisher see [18]
7 224 216 known-key distinguisher  Sect.

In the rebound attack [22], two rounds of the state update transformations
are bypassed by a match-in-the-middle technique using the available degrees of
freedom in the state. The characteristic used in the attack is then constructed
by moving the “most expensive” parts into these two rounds. The “cheaper”
parts are then covered in an inside-out manner, called outbound phase. Other
work in parallel to this explores the application of the rebound idea to other
SHA-3 candidates [2I.28]. Recently, the rebound attack has been extended to
attack the full compression function of Whirlpool [I9] and LANE [20] by using
the additional freedom of the key schedule (Whirlpool) or other parts of the
state (LANE).

In this work, we present improved techniques to use the freedom available in
only a single state. The effect of both techniques we present are an extension
of the number of rounds in which degrees of freedom can be used to improve
the work from the two to four rounds. As a result, we present the best known
attacks on the reduced Grgstl-256 permutation and output transformation (up
to 7 out of 10 rounds), and also significantly improve upon the first known-key
distinguisher [I8] for 7-round AES and 7 rounds of the internal permutation used
in ECHO. A summary of our results is given in Table [I1

2 Description of AES-Based Primitives

In this paper, we show improved attack strategies for AES based cryptographic
primitives. We apply the ideas to the Grgstl and ECHO hash function, and to the
block cipher AES. In the following, we describe these functions in more detail.

2.1 AES

The block cipher Rijndael was designed by Daemen and Rijmen and standardized
by NIST in 2000 as the Advanced Encryption Standard (AES) [25]. The AES
follows the wide-trail design strategy [7L8] and consists of a key schedule and
state update transformation. Since we do not use the key schedule in our attack,
we just describe the state update here.

In the AES, a 4 x 4 state of 16 bytes is updated using the following 4 round
transformations, with 10 rounds for AES-128 and 14 rounds for AES-256:
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— The non-linear layer SubBytes (SB) applies a S-Box to each byte of the state
independently

— The cyclical permutation ShiftRows (SR) rotates the bytes of row j left by
7 positions

— The linear diffusion layer MixColumns (MC) multiplies each column of the
state by a constant MDS matrix

— AddRoundKey (AK) adds the 128-bit round key K; to the state

Note that a round key is added prior to the first round and the MixColumns
transformation is omitted in the last round of AES. For a detailed description
of the AES we refer to [25].

2.2 The Grgstl Hash Function

Grgstl was proposed by Gauravaram et al. as a candidate for the SHA-3 com-
petition [I4]. Tt is an iterated hash function with a compression function built
from two distinct permutations P and Q. Grgstl is a wide-pipe design with
proofs for the collision and preimage resistance of the compression function [I3].
A t-block message M (after padding) is hashed using the compression function
f(H;—1, M;) and output transformation g(H;) as follows:

Hy =1V
H,=f(Hi-1,M;)=H;_1 ®P(Hi-1 ®M;) @ Q(M;) forl1<i<t
h = g(H;) = trunc(H; ® P(Hy)),

The two permutations P and @) are constructed using the wide trail design
strategy. The design of the two permutations is very similar to AES, instantiated
with a fixed key input. Both permutations of Grgst1-256 update an 8 x 8 state
of 64 bytes in 10 rounds each. The round transformations of Grgstl-256 are
briefly described here:

— AddRoundConstant (AC) adds different one-byte round constants to the
8 x 8 states of P and @)

— the non-linear layer SubBytes (SB) applies the AES S-Box to each byte of
the state independently

— the cyclical permutation ShiftBytes (ShB) rotates the bytes of row j left by
7 positions

— the linear diffusion layer MixBytes (MB) multiplies each column of the state
by a constant MDS matrix

2.3 The ECHO Hash Function

The ECHO hash function is a SHA-3 proposal submitted by Benadjila et al. [2]. Tt
is also a wide-pipe iterated hash function and uses the HAIFA [3] domain exten-
sion algorithm. Its compression function uses an internal 2048-bit permutation
that can be seen as a big AES manipulating 128-bit words instead of bytes. More
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precisely, an appropriately padded ¢-block message M and a salt s are hashed
using the compression function f(H;_1, M;,¢;, s) where ¢; is a bit counter:

Hy=1IV
Hi Zf(Hi_l,Mi7Ci7S) for 1 S’LSL‘
h = trunc(Hy),

The compression function of ECHO is built upon a 2048-bit permutation F', com-
posed of 8 rounds (resp. 10 rounds) in the case of a 256-bit output (resp. 512-bit
output). Its internal state can be modeled as a 4 x 4 matrix of 128-bit words. The
concatenation of the input chaining variable and the incoming message block are
the plaintext input of the permutation F' which is tweaked by the input counter
¢; and the salt s. A feed-forward of the plaintext is then applied to the internal
state V:
V = Fe, s(Him1||M;) & (Hi—1|[M;)

and the 512-bit output chaining variable H; is the xor of all the 128-bit word
columns of V for a 256-bit hash digest size. In the case of a 512-bit hash value,
the 1024-bit output chaining variable H; is the xor of the two left and the two
right 128-bit word columns of V.

A permutation round is very similar to an AES round, except that 128-bit

words are manipulated. One round is the composition of three sub-functions
BigMC o BigShR o BigSW:

— The non-linear layer BigSubWords (BigSW) applies two AES rounds to each
of the 16 128-bit words of the internal state. The round keys, always different,
are composed of the salt value and a counter value initialized by c¢;.

— The cyclical permutation BigShiftRows (BigShR) rotates the location in the
matrix of the 128-word of row j left by j positions

— The linear diffusion layer BigMixColumns (BigMC) multiplies each column
of the state by a constant MDS matrix

3 Basic Attack Properties

Before describing attacks for Grgstl, ECHO and AES in detail, we give an overview
of the round transformation properties used by the attacks. Since we mostly use
Grgstl to describe the attacks and the properties of MixColumns and MixBytes
are rather similar, we use MixBytes to describe their common properties in the
following. We will use differential properties of the SubBytes and MixBytes trans-
formation and exploit the diffusion property of both, ShiftBytes (ShiftRows) and
MixBytes. Together, this leads to an efficient guess-and-determine strategy for
both, differences and values at the input and output of SubBytes and MixBytes.

Since we exploit the differential properties of SubBytes and MixBytes, we
define the notation and state variables according to these two transformations.
We denote the SubBytes layer of round i by SB;, its input state by SBI" and
the output state by SBP“*. An equivalent notation is used for the MixBytes
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transformation. The MixBytes transformation of round 7 is denoted by M B;,
its input state by MBI" and the output state by MBP“t. We will use MC; for
the MixColumns transformation of ECHO and AES. Further, counting from 0, we
denote the byte in row r and column ¢ by [r, ], i.e. SBI"[r, c] for the input of the
S-box in round 3.

3.1 Improving on the Rebound Attack

The main idea of the rebound attack [22] is to start close to the middle of a
(truncated) differential path, connect using the available degrees of freedom in
the middle and finally propagate outwards. Our attack works rather similar for
Grgst1-256, ECHO and AES, and in the following we use Grgst1-256 to describe
the attacks and discuss then, the application to ECHO and AES. Similar to the
rebound attack, we start with a truncated differential path with a full active
state in the middle of the trail. Fig. [[l shows the truncated differential path
used in both permutations P and @ of our improved attack on Grgstl1-256. In
the rebound attack, the middle part of the differential trail is solved first for
both differences and values by exploiting the available degrees of freedom (in-
bound phase). Then, differences and values are propagated outwards probabilis-
tically (outbound phase) to find semi-free-start collisions, free-start collisions, or
non-random properties of the permutations or compression function.

In this work, we improve on the middle part of the attack where we exploit
the available degrees of freedom of the state values and differences. The idea is to
first find differences and values for the middle (4-round) part of the differential
trail, with the following number of active bytes at SubBytes:

T1

1 —

8 2,64 2,8 1y

1

3.2 Exploiting Properties of the Round Transformations

In this section, we briefly describe which properties of the round transformations
are used for the attacks in the following sections. Note that some used properties,
especially those of MixBytes, are specific to a truncated differential path with a
minimum number of active S-boxes such as the one given in Fig. [

SubBytes. In our attacks, we use some differential properties of the AES S-
box. Most of these properties can simply be verified by computing the differential
distribution tables (DDT) [4] of the S-box (or inverse S-box).

— For a given input (or output) difference of the AES S-box, the number of
possible output (or input) differences is restricted to 127.

SB sB| I SB SB SB s | SB
ShB| he | hB| ShB| hi he| | ShB|
MB] ve § MB MB] MB) ve/ | MB]

Fig. 1. The position of active bytes of the 7 round differential path for both permuta-
tions P and @
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— For a given input and output difference, the number of possible input values
is limited to either 2 or 4 values.

— For a given input and output difference, the AES S-box behaves linear due
to the fact that there are only 2 or 4 solutions per S-box (see Sect. for
more details).

In the following sections, we use some differential S-box tables to efficiently carry
out the attacks. We call S% the table that contains all input byte pairs (a,b),
such that we get the difference § at the output of the AES S-box, i.e. such that
Sbox(a) @& Sbox(b) = §. Each table Sg has 256 entries with 127 possible input
differences a @ b of the S-box. More precisely, for any difference 6 # 0 on the
output of the S-box, 129 input differences are not possible, 126 differences have
two candidates and 1 difference has 4 candidates. The table S% contains all the
output byte pairs (a,b), such that we get the difference ¢ at the input of the S-
box, i.e. after the application of the inverse AES S-box. For a fast implementation
of the attacks, these tables are precomputed and sorted accordingly.

ShiftBytes. The ShiftBytes (or ShiftRows) transformation moves bytes and
thus, differences to different positions but does not change their value. The good
diffusion property of ShiftRows allows us to choose certain differences and values
of the subsequent MixBytes layer independently. Assume we have one active
column in MixBytes. Then, we get after the adjacent ShiftRows application one
active byte in each new column. Hence, we can determine these single active
bytes by the subsequent MixBytes transformation independently.

MixBytes. In the case of MixBytes (or MixColumns), we use the property of
an n x n MDS matrix that, given any n bytes of input and output, the other n
bytes can be uniquely determined. Since MixBytes is linear, this also holds for
differences. In the following attacks, we use differential paths with a minimum
number of active S-boxes. Hence, also the number of differences in the MixBytes
transformation is minimal and every active MixBytes operation contains zero
differences in exactly 7 (3 for MixColumns) input/output bytes. It follows, that
choosing a single byte difference uniquely determines all other 8 (4 for MixBytes)
differences.

Hence, for a fixed position of active bytes, we get 255 possibilities for the
difference propagation of MixBytes (bundles in [9]). These cases can be precom-
puted and stored in tables. We call M, the table that contains all possible input
differences of MixBytes (or MixColumns), such that we get only one non-zero
byte at row i in the output. We call M} the same table but for the inverse of the
MixBytes (or MixColumns) transformation. Since the MixBytes transformation
is linear, the same tables can be used for values and differences.

3.3 Known-Key Distinguishers

In the following, we will describe known-key distinguisher attacks against AES
and the internal permutations used in Grgstl and ECHO. We refer to [I8] for the
details of this setting. However, in this paper, our distinguishers will consist in
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finding a pair of plaintext for the keyed permutation (when the key is randomly
chosen but known by the attacker) such that some plaintext and ciphertext words
contain no difference. For the distinguishing attack to be valid, the complexity
should be lower than expected in the case of a random permutation. Assume
an n-bit permutation with differences in 7 bytes of the plaintext and in 7 bytes
of the ciphertext. Then, assuming that the positions of the byte-differences are
fixed, the complexity of the generic attack is greater or equal (depending on the
values of i and n) to 2(n=8%)/2,

4 A Linearized Match-in-the-Middle Attack

In this section, we present a method which allows us to find a state pair with
differences according to the truncated differential path of Fig. Il with a complex-
ity of about 248. The main idea is to first search for differences according to the
4-round middle part (I — 8 — 64 — 8 — 1) of the path. We can find such
differences with a complexity of about 1 by guess and determine (see Sect. [1]).
In the second phase, we try to solve for the corresponding values of the state.
The main idea is that we can do this linearly. Since the differential of each S-box
is fixed we get either 2 or 4 possible values for the AES S-box (see Sect. B2).
In these cases, the S-box behaves linearly and hence, we can find the correct
values by solving a linear system of equations (see Sect. [L.2). Note that we need
to repeat the solving phase with new differences if no solution was found.

4.1 Filtering for Differential Paths

In this section, we filter for candidate differences which follow the middle part
(1 -8 — 64 — 8 — 1) of the differential path of Fig. [l with a high probability.
Fig. @l shows the corresponding round transformations and the differential path
in detail. In the attack, we use properties of the SubBytes (SB) and MixBytes
(MB) transformations to filter for differential paths. Hence, we are interested
in the input and output of these transformations. The first and second column
show differences at the input and output of the S-boxes (SBI" and SB?"t), and
column three and four show differences at the input and output of the MixBytes
transformations (MBI" and MB?'t). To determine possible input and output dif-
ferences of these two transformations, we use their corresponding lookup tables
M3, M}, S and S% (see Sect. B2).

Column 1. We start with the differences of the first column (marked by “1”
in state MBI and MBS“t) of the MixBytes operation of round 2 (MB;). Since
7 input byte differences are required to be zero, choosing one of the remaining
9 non-zero differences, uniquely determines all other differences of MB,. Since
the ShiftBytes and AddRoundConstant operations are linear, we get the same
differences for the bytes marked by “1” in states SB3"* and SBY. It follows that
we can choose from 255 non-zero differences for the first byte of SBY', and this
choice determines all differences marked by “1” between state SB3“t and SBY.
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Fig. 2. Filtering for differential paths

Column 2. Next, we continue with the differences of the first column of MB;
(marked by “2” in states MBI and MBS"t). Again, 7 differences of MB3 are zero
and choosing one byte determines all differences of the first column of MB3. Note
that the input of the first column of SB3 and thus, the difference of SBI'[0, 0],
has already been fixed in the previous step. Due to the differential behavior of
the AES S-box (see Sect. B2]), we can choose from only 127 differences for the
corresponding output byte of SB3 (SB$"t[0,0]). Choosing one of these possible
127 differences uniquely determines all differences marked by “2” between states
SBSUt and SBI.

Column 3. Then, we continue with the second column of MB, (marked by “3”
in states MBI and MB$Ut). Again, 7 bytes of the input differences are required to
be zero. Additionally, one output difference of SB3 (SB$"*[1,1]) has already been
fixed due to Column 2. Again, we can only choose from 127 possible input
differences for SBs (SBI'[1,1]) and get 127 possible differences for the bytes
marked by “3” between SBI and SBSUt.

Column 4-5. We proceed with the second column of MB35, marked by “4” in
states MBY and MB$"*. Note that the input bytes of two S-boxes (SBY [0, 1] and
SBY'[7,0]) have already been fixed due to Column 1 and Column 3. These two
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Table 2. The approximate number of possible choices for the differences at the input
and output of the 3 S-boxes SB,, SB3 and SB4

SBy SBY SB3* SBi
1255 127 1

127 64
64 32
32 16
16 8
8 4
4 2
2 1

input differences restrict the number of possible differences for the output of SB3
(bytes marked by “4”) to about 256,/2% = 64 values. We continue with the third
column of MB; (marked by “5”). Two output differences of the corresponding S-
box SB3 have already been fixed and thus, we can choose from about 64 possible
differences for the input bytes marked by “5” in SBY' as well.

Column 6-16. This procedure continues for all 8 columns of each of the two
MixBytes transformations MB, and MB3. The approximate number of possible
S-box differences for SBY and SB$"t are halved for each additional MixBytes
column and are shown in Table

MB; and MB;. Until now, we have determined differences for the states SB3"t,
SBI SBSUt and SB. Since all differences in SBS"t and SBY" have already been
determined, we have only about 255/2% ~ 1 difference left for SBY' and SB3“t.
Note that choosing the difference for one byte determines all other differences
as well due to the restrictions by MixBytes.

Note that we can find one possible differential characteristic with a complexity
of about one, since we filter though each MixBytes and S-box transformation
only once. The total number of possible differential paths can be determined by
considering the number of choices we have at the input and output of S-box SBs3,
the input of S-box SB; and the output SB4. The approximate number of choices
are listed in Table @] and by multiplying these numbers we can get up to ~ 264
possible differential paths or starting points for the next phase.

4.2 Solving for Conforming State Pairs

After we have found a differential path we need to search for a valid pair of the
state. Since the differential of each active S-box is fixed there are only either 2 or
4 input pairs possible. In both cases, the S-box behaves linearly [I0] and hence,
we can easily solve the resulting linear system of equations. In the following
description we assume that we have only 2 possible input pairs for each active
S-box (note that in this case, all S-boxes behave linearly).

Consider the diagonal of SB$"t respectively the first column of MBY' (denoted
by “2” in Fig.[2)). For each S-box we have 2 possible inputs k; and &} for 0 < i < 8
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such that the differential path holds. In other words, we have 28 possible inputs
for the diagonal of SBSUt. Let = € {0, 1}® then the possible values for the diagonal
of SBS"* are given by:

koxz-(kok)

where k = [ko, ..., k7] and k' = [kg, ..., k7].
Next, we compute the first byte of SB}' by going forward ShiftBytes, MixBytes
and AddRoundConstant.

SBJ[0,0] = (k@ x- (k@ k)L

where L denotes composition of ShiftBytes, MixBytes and AddRoundConstant.
Since these transformations are all linear L is a linear transformation as well.

Since we have 2 possible values a and a’ for SB'[0, 0] such that the differential
trail holds, the following equation has to be fulfilled.

(kox - (koK) - L=ady-(a®d)

where y € {0,1}.

By doing the same for the other diagonals (corresponding to columns 2-8 of
MBI') we get a system of 64 equations in 64+8=72 variables which has to be
fulfilled to guarantee that the differential trail holds in the forward direction.
In a similar way we also get a system of 64 linear equations in 72 variables by
going backward from SBY to SBS“. However, since the values of SBY' and SBg"t
are related, we get in total a system of 128 equations in 80 variables when we
combine them. In other words, to find a valid pair, we have to backtrack and
try about 24 differential paths and thus, solve the linear system of equations
248 times. Since we can start with up to 24 differential paths, we can only find
about 204748 = 216 pairs after the linear solving step.

Note that the attack works similar if one has 4 possible input pairs for the
S-box. By choosing the differences in the previous step (Sect. Bl in a way,
to maximize the number of differentials with 4 possible pairs for the S-box,
the overall complexity can be reduced slightly (by about 22 to 2°). The total
complexity of the attack is given by the number of times we need to solve the
resulting linear system of equations (we assume here that this corresponds to
about one compression function call).

4.3 Application to AES

The same technique applies to the block cipher AES as well. In this case, we
start with a differential path with the following sequence of active S-boxes:

1—-4—-16—-4—1

Hence, we get 64 conditions (equations) for the S-box layers of round 2, 3 and
4. Since we have 64 equations in 24 variables, we need to repeat the attack
264=24 — 240 times to find a valid pair. Note that in the case of AES, we get a
better complexity if we first fix the differential path for rounds 1-3 (1 — 4 —
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16 — 4) and then, solve for the pair. In this case, we get only 32 conditions
and the complexity to solve for a pair is about 2'2. Since we need to repeat the
attack only 224 times to fulfill the last MixColumns operation we get a total
complexity of only 236 in this case.

5 A Start-from-the-Middle Technique

In this section, we describe another attack that uses the available freedom degrees
in the middle. The truncated differential path considered here will be the same
than in the previous section or in the rebound attack [22]: in the case of Grgstl,
we use the one from Fig.[Il More precisely, the attack will first focus on a 3-round
part of the middle of the path, the following sequence of active bytes:

1,8 2,64 2,8

1

We can find a conforming state pair according to this path with only a few
operations by choosing “good” differences in advance and exploiting the available
degrees of freedom. We start at the last MixBytes transformation of the 3-round
trail (MB;3 in Fig. ) and compute backwards. The attack can be divided into
three main phases:

1. In Phase 1, we start with 1-byte differences at the output of each MixBytes
column MB3 (MB$"t) and compute backwards to the input of SBs (SBI').
Each column of MixBytes MB3 can be computed independently. Then, we
maintain as much freedom as possible in the input difference of SB3 (SBII')
by using the precomputed differential tables of the S-box.

2. In Phase 2, we have enough degrees of freedom to choose the differences for
SBI' such that each of the eight MB, MixBytes transitions from 8 to 1 active
byte in backward direction is satisfied.

3. In Phase 3, we get more degrees of freedom since both (a,b) and (b, a) are
valid solutions for each byte of SBY. Hence, we can randomize each ac-
tive byte of SBI" and get enough pairs such that the last single MixBytes
transformation MB; can be fulfilled as well.

At this point, all available degrees of freedom have been used and we rely on
a probabilistic behavior for the remaining transitions in backward and forward
direction.

5.1 Application to Grgstl-256

Phase 1. We randomly select non-zero differences for the eight active bytes of
SBIr i.e. for SBi[i,i] with i ranging from 0 to 7. Those differences will remain
unchanged when computing backward to MB$"t. Since the MixBytes transfor-
mation is linear, we apply its inverse (Phase 1.A in Fig. [B) to MB$"* and deter-
ministically get 64 byte differences for MBI and thus, for SBSUt. We denote by
d[¢, 7] the byte difference of SB[, j]. For each output difference 4[7, j] in SBs,
we compute all valid byte pairs SBI'[i,j] such that the S-box differential holds
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Phase 1.B Phase 1.A

Fig. 3. Phase 1 of the attack
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Fig. 4. Phase 2 and Phase 3 of the attack

(Phase 1.B in Fig. B]). As discussed in Sect. B2l we can choose from 127 possible
input differences for SBYi, j] using the S-box differential table. For each of these
XOR difference, we get two possible pairs (a,b) and (b, a). Hence, for each byte
of SBI', we get a list (denoted by capital letters in Fig. ) of 254 valid candidate
pairs which are sorted by input difference and stored in table S?[Z’J]. Note that
any choice of these pairs will conform to the expected differential path from SBI
up to SBI.

Phase 2. We now take care of the differential path from SBY to SBY'. Since we
can choose a candidate pair for each byte SBi3” independently, we will process
independently for each column of MB; as well. More precisely, for each column
j of SBI (or MBSUt), we will use the inverse MixBytes table M3 to choose each
byte difference of SBI', such that they result in only one active byte at the
input of MBy (MBI'). For each of the 255 differences of JVI%, we check if some

candidate pairs of SBT' (computed during Phase 1 and stored in Sg[m]) can fit the
8-byte difference of MBS"t (see Fig.Hl). Since for each byte of SBY we can choose
from 127 possible output differences of the S-box, the probability of success is
127/255 ~ 1/2.

Thus, for an entire column of MB;y we get a probability of (127/255)% ~ 278
such that one valid candidate pair can be found. Since we can start with 255 input
differences for each column of MB5, we can find one solution for a column with
probability 1 — (1 — (127/255)%)2%° ~ 0, 62. We continue for all eight columns of
SBIM'. The probability of success is about (0, 62)® ~ 27°® and we have to restart
at Phase 1 about 2°® = 46 times to find a solution. At the end of Phase 2, we
get a set of byte pairs for SBY', which conforms to the differential path from SBY
up to SBI.
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Note that these two first phases are doing essentially the same work as the
rebound attack [22], but need fewer operations to complete (on average the
rebound attack takes about one operations per valid candidate, but this whole
step required 2% operations). Here, we need to repeat the process 2°° times
to find a solution, but compute only a few table lookups per iteration. Thus,
we consider that we can find one solution for the truncated differential path
1 — 8 — 64 — 8 with about one computation of Grgst1l-256 on average.

Phase 3. It seems that at this phase, the differences in SBI and SB3“t can
not be chosen anymore. However, an observation allows us to actually get some
control over the differences in SBY. We denote by S a 64-byte solution of SBY
(found at the end of Phase 2) and by (a,b)[*7! the byte pair of row i and column
j in S. In Fig. @ we can see that the active bytes of SBI' are located in the
first column. By looking at this figure, it is easy to check that the differences of
the active bytes located at row j of SBI' depend only on the byte pairs of the
j-th column of MBSt (or SBY'). We know that (a, )% ..., (a,b)I"7] are valid
solutions for this column, and switching a and b in any of the pairs actually
maintains the validity of those candidates (the differences values of each byte
will remain the same in MB; and MB3).

Thus, one solution for each column of SBI' provides us in fact 2® valid can-
didatedqd. Each of these solutions will lead to a random difference on the cor-
responding active byte SBI'[j, 0], independently of all other differences in SB,.
Now, if we can hit any of the elements of M% for MB; from the newly available
differences in SBI', we directly get a solution for the differential path from SBSUt
to SBS“t. Since we have 255 elements in MY, we expect about 27 solutions on
average (28 solutions, but half of them may be repeating, see footnote 2I).

We did not succeed to control the differences in SB3"* as well. Thus, if the
differences are uniformly distributed, the success probability for the 8 to 1 active
byte transition from the MixBytes layer MBy is equal to 278%7 = 2756,

5.2 Application to AES

Again, also this technique can be applied to the AES block cipher. We use the
same differential path as in Fig. [T except that we manipulate a 4 x 4 state and
that no MixColumns transformation is applied in the last round:

4—-1—-4—106—-4—1—4—4

Phase 1. This step is analog to the Grgst1-256 case.

2 We have 28 different combinations by switching a and b for each column. However,
we must take in account that some repeating combinations are counted here (given
a combination, inverting everything will obviously lead to exactly the same behavior
in the differential path). Thus, instead of having 64 bits degrees of freedom left (8
for each column) we intrinsically loose one of them and get 63 degrees of freedom.
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Phase 2. This step is similar to the case of Grgst1-256. However, the probability
computation changes when looking for a match between MBSt and SBY'. For each
column, we now get a probability of (127/255)% ~ 27% such that at least one
valid candidate pair can be found. Since we have 255 differences in M%, we will
immediately find one solution for each starting difference SBY' of the attack. In
fact, we expect up to about 2 solutions for each column.

Phase 3. Again, we try to control the differences in SB'. We use the same
technique as for Grgst1-256: for each active byte at row i in SBI', we can ran-
domize its difference by randomizing the solutions on the column 7 in SBY. By
switching a and b, we directly get 2* solutions per column. Moreover, we also
have to consider the fact that for the AES case, we already had 2* solutions per
column. Thus, we get in total about 2% solutions per column (see footnote ).
Each of those solutions will lead to a random difference on the corresponding
active byte of SBI', independently of the other active bytes of SBI'. Now, if we
can hit any of the elements of MY using the available differences in SBI', we get
a solution for the differential path between SB$"t and SB3"t. Since we have 255
elements in M%, the whole attack will find about 27 solutions on average (2%
solutions, but half of them may be fully repeating ones, see footnote [2I).

Extending the Path. Propagating from SBY" to SBI" according to the trun-
cated differential path has a success probability of 2738 = 2724, Thus, we can
find a pair corresponding to the path from SBI" to SBI" with about 224 round
computations on average.

6 Results

In the previous two sections, we have proposed two new techniques to find dif-
ferences and values for a 4-round truncated differential path with 1 — 8 —
64 — 8 — 1 active bytes for Grgst1-256. In the following, we apply these re-
sults to the permutation, compression function and output transformation of
Grgst1-256, the AES block cipher and the ECHO permutation.

6.1 Grgstl-256

Both proposed techniques can be used to improve the complexity of the 6-
round semi-free-start collision attack of [22]. However, due to the limited de-
grees of freedom, a semi-free-start collision attack on 7 rounds of the Grgst1-256
compression function is not possible.

6 Rounds. Both proposed techniques (described in Sect. [ and Sect. Bl can be
used to find a valid pair for the 6 round trail of P and @, given in [22]:

8158564588564

Using the linearized match-in-the-middle attack, we can omit the conditions
on SB4. Hence, the number of equations is reduced to 64 and we expect to
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find a solution (in fact 2% solutions) for already the first differential path. The
complexity to find a match for the 8 active bytes (64 bits) at the input, and at
the output prior to the (linear) MixBytes transformation is 232 each. Hence, the
total complexity to find a semi-free-start collision for 6 rounds of Grgst1-256 is
about 24 in time and memory.

Using the start-from-the-middle technique, we can construct a differential
path with active bytes 8 — 1 — 8 — 64 — 8 — 8 — 64) with only a few
operations. As a proof of concept, we give in Appendix [A] a valid input pair
for the permutations P and @) on 6-rounds of Grgstl-256 which conforms to
this truncated differential path. We get a final complexity of 264 operations and
memory for a semi-free-start collision on Grgst1-256 reduced to 6 rounds.

7 Rounds. Again, both techniques can be used to find a valid pair conforming
to the 4-round part in the middle of Fig. [ (1 — 8 — 64 — 8 — 1) with
a relatively low complexity (2¢ and 2°¢). This path can be extended by one
round in backward and two rounds in forward direction to give a differential
path of the form:

8§—-1—-8—-64—-8—1—8— 064,

However, using both techniques we can only find 2'6 pairs conforming to this
truncated differential path and one can convince himself with a counting argu-
ment: In the middle of the differential path where all bytes of the state are active,
one can start with approximatively 2°'2 . 2512 = 21024 (ifferent pairs. However,
only a portion 27°6 will follow a MixBytes transition 8 — 1, and only a portion
27968 — 27448 i]] follow a MixBytes transition 64 — 8 (because we have a
probability of 27° for each column). Since we have two 64 — 8 and two 8 — 1
transitions and consider them to be independent, only 21024-4482-56:2 — 916
valid pairs will remain for the 4-round path in the middle (1 - 8 — 64 — 8 — 1)
and thus, also for the 7-round path.

Note that due to this lack of freedom a semi-free-start collision using this
truncated differential path is not possible. For a collision at the end of 7 rounds,
we need about 264 pairs for each, P and Q. Otherwise, a birthday attack on 128
bits (8 active bytes at the input, 8 active bytes prior to MixBytes at the output)
is not feasible. By using different positions of active bytes in round 2 and 6, but
the same column for P and @, we can construct about 26 .26 .23 .23 = 218
different truncated paths. By far not enough for a collision attack. However, one
could think of a free-start near-collision attack on 7 rounds of Grgst1l-256 but
this property gets destroyed by the output transformation.

Therefore, we can only get a distinguisher for the permutation or output
transformation of Grgst1-256 reduced to 6.5 rounds (without the final MixBytes
transformation). The complexity is 2% instead of 2224 for a random 512-bit
permutation or 212 for a random 256-bit function. We can get a distinguisher
for the full 7 rounds by applying the subspace distinguisher proposed in [19].
Note that the input and the output differences of the 6.5 round attack form
a vector space of dimension 64 at the input and output. Since the Mixbytes
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transformation is linear also the output differences after 7 rounds form a vector
space of dimension 64. Hence, we can apply the subspace distinguisher with
parameters N = 512, n = 64, t = 128 (generic complexity: 2115-4) to distinguish
7 rounds of the permutation P and Q. To construct a vector space of size t = 128,
we need to repeat our attack on the comression function 27 times. Hence, the
total complexity for the subspace distinguisher of the permutation is about 2°°
permutation calls with negligible memory.

Similarily, we can use the subspace distinguisher to distinguish the output
transformation of Grgst1-256 as well. Note that the 8 active bytes of the input
are added to the output by the feed-forward. However, due to the truncation
at the end the output differences will still form a vector space of dimension 64.
Since Grgst1-256 truncates columns and MixBytes works on columns, we keep
only half of the vector space. Hence, we can apply a subspace distinguisher with
parameters N = 256, n = 64, t = 256 (generic complexity: 27°-?) and need to
repeat our attack 2% times to get a vector space of size t = 256. Hence, the total
complexity for the subspace distinguisher on 7 rounds of the Grgst1-256 output
transformation is about 2° output transformation calls and negligible memory.

6.2 AES Block Cipher

Both proposed techniques apply to the block cipher AES in the known-key dis-
tinguisher setting as well. The resulting 7-round differential path for AES is
computed by simply extending the 4-round path in both forward and backward
direction to give the following sequence of active bytes:

4—-1—-4—106—-4—1—-4—4

Note that the last MixColumns operation is omitted in the AES. Since we aim
for 4 active bytes in both, plaintext and ciphertext, we would expect to find
such a pair with about 2%® computations for a random permutation. Note that
an equivalent generic attack needs to find a pair with only 4 active bytes at
the input and output as well. Hence, the best generic method is to start with 4
active bytes at the input and search for a near-collision on 12 non-active bytes
at the output with complexity 2(12:8)/2 = 248,

Using the linearized match-in-the-middle attack, we get a known-key distin-
guisher for 7-rounds of AES with a complexity of about 236 and negligible mem-
ory. However, the start-from-the-middle technique allows us to further improve
the complexity for the known-key distinguisher to about 224 in time and negligi-
ble memory for 7-rounds of AES. Additionally, one may think of other applica-
tions of these attack such as near-collisions on a compression function built upon
the 7-round reduced AES in Davies-Meyer mode [6123], or a collision attack on
the compression function for 5 rounds.

6.3 Internal Permutation of ECHO

It is possible to apply the start-from-the-middle technique to other AES-based
hash functions, such as ECHO [2] whose internal 2048-bit permutation can been
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seen as a big AES processing 128-bit words instead of bytes. This directly gives
us an improved distinguisher on 7 rounds whose complexity is 23128 = 2384
operations (compared to the previous one with complexity 25%¢) and memory
requirements are 22°6. However, we can improve the memory requirements by
storing a differential lookup table for the AES super box [9] with size 232 .232 =
264 instead of a differential lookup table for two full AES rounds with size
2128 . 2128 — 9256 Thig is possible due to the fact that one can combine the last
MixColumns transformation of the AES with the subsequent BigMixColumns
transformation of ECHO, since both transformations are linear. Note that this
attack only allows to distinguish 7 rounds of the ECHO internal permutation
from a random 2048-bit permutation, but does not apply to the compression
function due to the word compression at its output.

7 Conclusion and Future Work

In this paper, we have proposed two new ways to mount attacks on the SHA-3
candidates Grgstl and ECHO, and the block cipher AES. Our results improve
upon and extend the rebound attack. Both techniques are an extension of the
number of rounds in which degrees of freedom can be used to improve from two
to four rounds. As a result, we present the best known attacks on constructions
where (reduced variants of) permutations are used. We improve on the attack
on the reduced Grgst1-256 compression function (up to 6 out of 10 rounds), and
present a distinguisher for 7-rounds of the Grgst1-256 permutation and output
transformation. Further, we improve upon the distinguisher for 7-rounds of the
internal permutation of ECHO and the known-key distinguisher for 7-rounds of the
block cipher AES. Nevertheless, a comfortable security margin for these SHA-3
candidates remain. Not only because both proposals have a higher number of
rounds, but also because in an attack on the hash function much less degrees
of freedom are available (compared to an attack on the compression function or
permutation).

On the other hand, the new techniques of this paper have been optimized for
this setting and do not directly apply to other settings where more degrees of
freedom are available. Sources for such degrees of freedom are salt, counter, or
key inputs. While the analysis typically gets more complicated if more freedom
is available, much better attacks can be expected. As an example we refer to
a recent extension of the rebound attack on the full 10-round Whirlpool com-
pression function [19]. Note that Whirlpool is a block cipher based construction
which offers additional degrees of freedom through its conservative key schedule.
Some SHA-3 candidates use block-cipher based compression functions with key-
schedules less conservative than Whirlpool. Hence, more degrees of freedom are
available to an attacker and better results may be expected along those lines.

In general, the rebound attack and its extensions as described in this paper,
work with any differential or truncated differential. However, the diffusion prop-
erties of AES based hash functions allow a very simple construction of good
truncated differential paths, which facilitates the analysis. Nevertheless, future
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work will include the application of the rebound idea on other hash construc-
tions, even though this may require sophisticated tools to obtain good results,
as was the case for e. g. SHA-1 [I1].
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A Message and Chaining Variable Example for the
6-Round Differential Path of Grgstl-256

We give here in hexadecimal display a chaining variable and message pair exam-
ple ([Hy, M;],[Hza, Ms]) that verifies the 6-round differential path for Grgst1-256.

H, = fdab6faf65da3531e5a7f611baba937d
b18648152738a5fe4bd38caba8b050e7
3d734623aed6f7a35e3fb3d72ebabe60
1712a3d23d76fe79ccbbal0461dddee0

M, = 66b16a712984a23ca99283090e5818c7
c7£46£fcd74c54b7a9950a4bfcb2861bl
1£90846a04c92172af57a58ad9b747a3
a26dca926c18£410ad0£40£52800d27b

Hy = 21ab6faf65da3531e51bf611babad37d
b186c5152738ab5fe4bd38c88a8b050e7
3d734623ecd6f7a35e3fb3d72e6c5e60
1712a3d23d767779ccbbal0461ddde66

My = £8b16a712984a23ca9ef83090e5818c7
c7£434cd74c54b7a9950a40fcb2861b1
1£90846a29¢92172af57a58ad95547a3
a26dca926c18d710ad0£40£52800427£
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Abstract. We present cryptanalyses of the AURORA-512 hash func-
tion, which is a SHA-3 candidate. We first describe a collision attack on
AURORA-512. We then show a second-preimage attack on AURORA-
512/-384 and explain that the randomized hashing can also be attacked.
We finally show a full key-recovery attack on HMAC-AURORA-512 and
universal forgery on HMAC-AURORA-384. Our attack exploits weak-
nesses in a narrow-pipe mode of operation of AURORA-512 named
“Double-Mix Merkle-Damgard (DMMD),” which produces 512-bit out-
put by updating two 256-bit chaining variables in parallel. We do not look
inside of the compression function. Hence, our attack can work even if
the compression function is regarded as a random oracle. The time com-
plexity of our collision attack is approximately 22*®¢ AURORA-512 oper-
ations, and 223° x 512 bits of memory is required. Our second-preimage
attack works on any given message. The time complexity is approxi-
mately 229 AURORA-512 operations, and 2%%® x 512 bits of memory is
required. Our key-recovery attack on HMAC-AURORA-512, which uses
512-bit secret keys, requires 22°7 queries, 2%°° off-line AURORA-512 op-
erations, and a negligible amount of memory. The universal forgery on
HMAC-AURORA-384 is also possible by combining the second-preimage
and key-recovery attacks.

Keywords: AURORA, DMMD, collision, second preimage, HMAC.

1 Introduction

Hash functions are important cryptographic primitives used for various purposes.
Currently, the National Institute of Standards and Technology (NIST) is con-
ducting a SHA-3 competition for determining a new hash standard algorithm
1. In the SHA-3 competition, 51 algorithms were accepted as candidates. One
of the most important design aspects is the size of the internal state. To make
hash algorithms efficient and compact, the internal state size should be as small
as possible. If the internal state size is the same as the hash size, the structure
is called a narrow-pipe mode [2]. On the other hand, to make hash algorithms
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secure, the internal state size should be larger than the hash size. Such a struc-
ture is called a wide-pipe mode [2]. Therefore, there is a trade-off of efficiency
and security in the choice between the narrow-pipe or wide-pipe modes.

AURORA [3] is one of the hash algorithms submitted for SHA-3, which was
designed by Iwata et al. AURORA mainly has four algorithms: AURORA-224,
AURORA-256, AURORA-384, and AURORA-512. The output of AURORA-
224 is obtained by truncating the last output value of AURORA-256. Similarly,
the output of AURORA-384 is obtained by truncating the last output value
of AURORA-512. Hence, two algorithms AURORA-256 and AURORA-512 are
important to evaluate the security of AURORA. AURORA operates in narrow-
pipe mode. In AURORA-256, a hash value is computed by iteratively applying
a compression function that takes a 256-bit chaining variable and a 512-bit
message block as input and a 256-bit chaining variable as output. AURORA-
512 adopts a different mode of operation named Double-Mix Merkle-Damgard
(DMMD), which produces 512-bit output by updating two 256-bit chaining vari-
ables in parallel. Update of 256-bit chaining variables is done by using almost
the same compression functions as AURORA-256. A unique characteristic of
the DMMD structure is computing 512-bit chaining variables by combining the
component of AURORA-256. This gives a large advantage with respect to the
size of the component to be implemented because components for AURORA-512
and AURORA-256 can be shared. Due to this structure, AURORA is efficient,
especially in hardware. Hence, evaluating the security of AURORA-512 is useful
for the cryptographic community to understand the tradeoff between efficiency
and security in hash function design.

1.1 SHA-3 Requirements and Claimed Security of AURORA
NIST requires SHA-3 candidates to satisfy several security properties [I], e.g.,

— Preimage resistance of n bits,

— Second-preimage resistance of n — k bits for any message shorter than 2%
blocks,

— Collision resistance of n/2 bits,

— Resistance on randomized hashing [4] of n — k bits (See Section for
details.),

— 2"/2 queries and 2" off-line computations against distinguishing attacks on

HMAC [5].

According to Iwata et al. [3], DMMD has provable security for collision resis-
tance and preimage resistance. It was proven that any adversary needs at least
2201 computations to find a collision of AURORA-512, and needs at least 2°'2
computations to find a preimage of AURORA-512. On the other hand, it was
claimed that security of AURORA-512 is 256 bits for collision resistance, 512
bits for preimage resistance, and (512 — k) bits for second preimage resistance
of 2¥-block messages. It is also mentioned that AURORA can be securely used
as randomized hashing and as a HMAC.
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1.2 Owur Contribution

We investigate the weaknesses of the DMMD mode of operation adopted in
AURORA-512. We first show a collision attack on AURORA-512, where the
time complexity is approximately 2236 AURORA-512 operations and requires
2236 % 512 bits of memory. We then show a second-preimage attack on AURORA-
512 and -384. Our attack generates a second preimage of any given message.
Generated messages are 8 blocks long. The time complexity is approximately
2290 AURORA-512 operations and requires 22%® x 512 bits of memory. We then
explain that the randomized hashing can also be attacked. These attacks use
the multi-collision attack on a Merkle-Damgard structure proposed by Joux [6].
However, direct application of [6] to AURORA-512 does not work regarding a
collision attack and is not efficient regarding a second-preimage attack. This is
due to the mixing function of AURORA-512, which is designed to prevent attacks
using multi-collisions such as [6]. We show that AURORA-512 is vulnerable
against multi-collision attacks even if the mixing function is adopted. Note that
a similar approach was taken by Knudsen et al. [7] to attack MDC2 []]. We
finally show a full key-recovery attack on HMAC-AURORA-512 with 512-bit
secret keys, which require 22°7 queries, 22°? off-line AURORA-512 operations,
and negligible amount of memory. The universal forgery on HMAC-AURORA-
384 is also possible by combining the second-preimage and key-recovery attacks.
Results of our attacks are summarized in Table. [l

Outline. In Section 2, we describe the specifications of AURORA-512, ran-
domized hashing, and HMAC. We then introduce Joux’s multi-collision attack.
In Section 3, we discuss a collision attack on AURORA-512. In Section 4, we
discuss a second-preimage attack on AURORA-512 and -384. We then explain
that randomized hashing can also be attacked. In Section 5, we present a key
recovery attack on HMAC-AURORA-512 and a universal forgery attack on

Table 1. Summary of attacks on AURORA

Attack type Hash size Reference Time Memory

Collision 512 lgﬂ’r 9234.4  9229.6
Collision 512 EﬂT 9249 _
Collision 512 Ours 2236 9236

2nd-preimage 512/384 [ 2291 2315
2nd-preimage 512/384  Ours 229t 278
Randomized hash 512/384  Ours 2290 2288

Attack type Hash size Reference Time Memory Query
HMAC key recovery 512 Ours  22%9 - 2257
HMAC universal forgery 384 Ours 2291 9288 2256

T Ferguson and Lucks [9] also explained attacks on AURORA. Our work is independent
of [9]. We describe the relationship between these two works in the Appendix.
1 After our submission, Joux and Lucks showed improved analyses on AURORA [10].
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HMAC-AURORA-384. In Section 6, we summarize what we can learn from these
attacks and conclude this paper.

2 Related Works

2.1 Description of AURORA-512 and AURORA-384

We briefly describe the specifications of AURORA-512 and AURORA-384.
Please refer to Ref. [3] for details.

An input message M is padded to be a multiple of 512 bits by the standard MD
message padding, namely, a single bit ‘1’; necessary numbers of ‘0’s, and a 64-bit
string representing the block length of M are appended to the end of M. Then,
the padded message is divided into 512-bit message blocks (Mo, My, ..., My_1).

The computation for AURORA-384 is the same as AURORA-512 but for the
initial value and truncating the last 512-bit value to 384 bits. Hence, we explain
data processing in AURORA-512. AURORA-512 adopts a narrow-pipe mode of
operation named DMMD, where two half-size (256-bit) chaining variables are
updated independently by using the same message in each block. However, if all
blocks are updated independently, the construction becomes vulnerable to Joux’s
multi-collision attack [6]. To prevent this attack, DMMD periodically computes
the mixing function, which takes concatenation of two half-size chaining variables
as input, to introduce the dependency of two chaining variables.

More strictly, in AURORA-512, compression functions Fy, Fi, ..., F7, Go, Gy,
ooy Gr 1 {0,11256 % {0, 13512 — {0, 1}2°°, two functions M F, MFF : {0,1}? —
{0,1}512, and two 256-bit initial values (IVs) HY and HP are defined. The
algorithm to compute a hash value is as follows. This is also illustrated in Fig. [l
In the procedure below, we use k' to denote k& mod 8.

1. for k=0to N — 1 {

2 HEL o Re(HY M)

s omD, - Gu(HD M)

4 ifO<k<N—-1)A(kmod8=7) {
5. temp — H\,[[H[,

6. Hg+1||H,?+1 — MF(temp)
7

8.

9.

}
}
Output MFF(HY|HL)

2.2 Description of Randomized Hashing

Randomized hashing [4] improves the security of the digital signature schemes
from the collision attacks on the hash functions. It makes it difficult for the
attacker to obtain a signature for one of the colliding messages from the signer
and produce it as a signature for the other colliding message because the signer
always uses a different random value in every signature generation process. One
may note the discussion on its security by Gauravaram and Knudsen [TT].
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Fig. 1. Hash computation in AURORA-512

The algorithm of randomized hashing takes a message M and a key K as
input and outputs a randomized message M. The procedure is as follows.

1. Process M to the padding procedure to make sure that the processed message
M’ islonger than K. Let M} and K, be the length of M’ and K, respectively.

2. Set counter «— | M} /K| and remainder «—— M; mod K.

3. Let R be concatenation of counter copies of the K and the remainder left-
most bits of the K.

4. Output M* «— K||M' @ R||K (), where K o) is a 16-bit binary represen-
tation of K7,.

According to NIST [I], SHA-3 candidates with n-bit output must provide (n—k)-
bit security in the following attack: 1) The attacker chooses a message M,
which is shorter than 2* blocks. 2) Then, randomization value K is chosen
without control of the attacker. 3) The attacker finds My and Ko s.t. (M, K1) #
(My, K3), which yield the same randomized hash value.

2.3 Description of HMAC

HMAC [5] is an algorithm to compute a MAC when a key and a message are
input. According to Krawczyk et al. [I2], the minimal recommended length for
the secret key is L, where L is the size of the hash function output. Therefore, it
is reasonable to use 512-bit keys for HMAC with 512-bit output hash functions,
and use 384-bit keys for 384-bit output hash functions. The HMAC algorithm
to compute an output with a hash function H and an initial value Hy when a
key K and a message M are input is as follows.

Ko — Pad(K), (1)
temp = H (Ho, (Ko ® ipad)||M), (2)
HMAC—-H (M) = H(Hy, (Ko ® opad)|temp), (3)

where, ipad and opad are constant values defined in the specification of HMAC,
and Pad(-) is a padding process of K. In Pad(-), if the size of K is shorter than
the block length, zeros are appended to the end of K to make its length the
same as the block length signified as K. If the size of K and the block length
are identical, K is signified as K.
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SHA-3 candidates with n-bit output are required to be secure against distin-
guishing attacks that require much fewer than 2/ queries and significantly less
computation than a preimage attack.

2.4 Description of Joux’s Multi-collision Attack

Let t-collision be t different messages that result in the same hash value. Joux
showed that 2F-collision of any n-bit iterated hash function can be found with a
complexity of k- 22 [6]. For chaining variables H; and a compression function
CF(Hj, M;) = Hj1, Joux’s attack generates (M, M) such that CF(H;, M;) =
CF(H;,M]) = Hji1 for j = 0,1,...,k — 1. Any choice of (M;, M) for j =
0,1,...,k — 1 will result in the same H},, hence a 2F-collision is generated.

Joux applied this technique to a cascaded construction. Let A(-) be an n-
bit iterated hash function and B(-) be an n-bit hash function. For an input
message M, the cascaded construction outputs a 2n-bit value A(M)||B(M).
Intuitively, the cascaded construction has 2n-bit security. However, with Joux’s
attack, collisions and preimages can be found with a complexity of 7 - 22 and
n-22 - 2" respectively. To find a collision, the attacker generates a 22 -collision
of A(-). From these 22 messages, two paired messages will also collide with
each other by computing B(+). To find a preimage, the attacker generates a 2™-
collision of A(:). Then exhaustively searches for a message that connects the
collision value to the n-bit of the given hash value for A(-). Since there are 27
messages that match the n-bit of given hash value, one of the messages will also
satisfy the n-bit of the given hash value for B(:).

Restriction of Joux’s Multi-collision Attack. Joux’s multi-collision attack
is useful if a compression function includes two independent parts through several
blocks like AURORA-512. In fact, if two independent parts in AURORA-512
continues for 256 blocks or 512 blocks, the Joux’s attack can be applied to find
collisions or second preimages. However, the mixing function inserted at every 8
blocks guarantees that the independent part continues for at most 8 blocks, and
this prevents efficient application of Joux’s attack.

3 Collision Attack on AURORA-512
Our attack finds collisions of 8-block messages with a complexity of 2236,

Attack Procedure. The attack procedure is as follows. The attack is also
illustrated in Fig.

1. Randomly choose 2224(= 2256'%) My, and compute HY — Fy(HY , My) for
each M. This yields an 8-collision (=23-collision) of HY.

2. By applying Joux’s attack [6] to M; through Mg, we obtain a 22!-collision of
HY. Let these 7-block messages yielding the 22!-collision be M[(o%]’ 0<i <
221 — 1.

3. Compute HP, | — Gp(HP,M\"),0 < k < 6 for all i. Let HX" be the
corresponding 22! HPs.
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Fig. 2. Collision construction on AURORA-512

4. Set M7 to be a randomly chosen value, and compute HgD(i) = G7(H7D(i), M7)
for all i. Check whether or not a collision exists among 221 H).

5. If not, go back to Step Hl and try a different M. If a collision is found, let
the corresponding ‘i’s be il and i2, and corresponding M7 be M7(j ), Then,

[(gé ||M7(] and Mozg]) ||M7(] are the colliding pair.

At Step E since there are 221 HP) | we can make roughly 24! (= (221)2/2) pairs

of HP™ . Therefore, the probability that a collision will be found is 2-215(=
2- 256 241). As a result, after 221° iterations of Step B we expect to obtain a
colliding pair.

Complexity Evaluation. Steps [[l and ] cost 7 - 2224 Fj-operations. Step
costs 7 - 221 Gy-operations. At Steps @ and [ the complexity of Step @ for a
chosen My is 22! G-operations. Therefore, 221° iterations cost 2236 (= 221 .2215)
G-operations. Hence, the time complexity of this collision attack is 7 - 2224 +
7.221 49236 5 9236 [ or (3, operations. At Steps [ and Bl we need to prepare
2236 % 512 bits of memory to find a 23-collision.

Remark on Success Probability of Generating Multi-collision. At
Steps [l and [ of the attack procedure, the success probability of generating
multi-collisions is much lower than 1/2. Suzuki et al. [I3] gives us the complex-
ity for finding s-collisions of n-bit value with a probability of approximately 1/2:

(sHY* x (27" )+ s— 1. (4)

The value of this equation is 222>?1 ~ 2226 when n = 256 and s = 23. However,
considering that our attack generates 23-collisions 7 times at Steps [0 and [, we
need to dramatically increase the success probability. For this purpose, our at-
tack computes 2230 different messages to find a 23-collision for each block. Since
2230-226 — 16, the success probability for Steps[MlandBlbecomes (1—(1/2)16)7 ~ 1.
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Under this strategy, the attack complexity is 7-2230 4 7.221 42236 — 9236.150
F, or G operations, which is approximately 2236 AURORA-512 operations.

4 Second-Preimage Attack on AURORA-512 and -384

Our attack can generate second-preimages of any given message. Generated
second-preimages are 8 blocks long. The time complexity of our attack is ap-
proximately 229 AURORA-512 operations. Since the complexity is much lower
than 238, the attack can also be applied to AURORA-384. Strictly speaking, the
attack complexity depends on the output distribution of the compression func-
tion. We first assume that the output distribution is perfectly balanced, then
discuss other cases later.

Attack Procedure. The attack procedure for some given message is as follows.
The attack is also illustrated in Fig.

1. Compute a hash value of the given message. Let TV and TP be the upper
256 bits and the lower 256 bits of the input values for the M F'F function,
respectively.

2. Choose an My and compute HY « Fy(HY | My). Repeat this computation
with changing My until a 232-collision of HY is obtained.

3. Following the first block, we apply Joux’s attack [6] to M; through Mg. In
total, we obtain a 232%7 = 22%4_collision of HY.

4. Compute HY « F;(HY, M7||Pad) for 2288 (= 2256 .232) different Mzs, where
Pad is the padding string for 8-block messages and the length of M7||Pad
must be 1 block. If the output distribution of F7 is perfectly balanced with
respect to Mr||Pad, namely, the output distribution of Fr(HY,-) is balanced,

(Comp. <2288) (Comp. <2288)  (Comp. 2288 if balanced)
1x232 collision 1x232 collision  2256x232 collision
f_‘_\ eoe I 1 [ 1
M, Mg M7| |Pad
512~
256 _’\2 6 _h\ )
5
HoV =\ Fo \ cee F v
0 \ H\U H U H U 3
1 6 7 —
T
-~
_C
| G 256 > G — w)
HoP 25\6 0 \ YY) 6 @
HlD HGD H7D HBD I

Fig. 3. Second-preimage construction for AURORA-512
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we obtain 232-collisions for all possible values of HY. Therefore, we obtain
a 232collision of Mr||Pad that maps HY to TV. Consequently, we obtain
2256(= 2224 . 232) messages Mo|| M| - - - || M7||Pad that produce TY.

5. Compute HP,, — Gr(HP,My),0 < k < 7 for all My||My]|---||Mz||Pad
obtained at Step Ml Since we have 226 different choices, we expect that one
will match TP. The matched message Mol||M;]| - - - || My is a second preimage
of the given message.

Complexity Evaluation. At Steps@and[] if we try 2288 (= 2256.232) different
M, for each block, we obtain a 232-collision due to the pigeonhole principle. The
time complexity is at most 7-2288 [}, operations, and the success probability is 1.
Step H costs exactly 2288 Fr-operations if the output distribution of Fr(HY ") is
perfectly balanced. Step [l costs 8 - 2256 G-operations. Therefore, the total time
complexity of this attack is 7 - 2288 42288 1.8.92256 ~ 2291 [ or (i-operations,
which is approximately 22 AURORA-512 operations. At Steps @ and B we
need to prepare 2288 x 512 bits of memory.

Remark on Output Distribution. At Steps [ and [, we need only one 232-
collision. Therefore, the attack complexity lessens if the distribution is not bal-
anced. At Step Hl we need one 232-collision that produces TV. If the distribution
is not balanced and TV is produced more frequently than other values, the com-
plexity lessens. However, if Ty is not produced as much as other values, 2288
trials may not be enough to produce a desired 232-collision. In such a case, one
solution is simply trying more messages until we obtain a 232-collision. Another
solution is keeping other multi-collisions of HY at Step Bl and start to compute
F; by replacing the value of HY.

Attack on Randomized Hashing. Second-preimage attacks that work for
any IV can also attack randomized hashing if a hash function has an iterative
structure, e.g., Merkle Damgard. Since our second-preimage attack can work
for any IV, AURORA-512 and -384 are not secure in randomized hashing. The
attack procedure is as follows. Note that this attack finds a 16-block message.

1. The attacker chooses any M and receives K that is chosen without the

attacker’s control. Then, compute a hash value of the randomized message

and obtain TV and TP that are the input for the M FF function.

Randomly generate a 1-block value K’ and a 7-block value M1 || M|l - - - || M5.

3. Process the randomized 8-block message K'|| K@ M| || K'& M| - - - | K' & My,
and obtain H{Y and H{P that are the output from the M F function.

4. Find an 8-block message Mg||M}||--- || M5 that maps (H||HLP) to (TY]|
TP), where Mj; is a concatenation of 431-bit free value m/5, 16-bit value
K/L(z)v and 65-bit padding string for a 15-block and 447-bit message. This

can be done with our second-preimage attack by considering (HZ || HP) as
the initial value.

5. Output the key K’ and the message M7 || M3|| - - - || M4|| K’ @ M| K'@& M| - - - ||
[K'1*3! @ m/5, where [K']*3! represents the 431 left-most bits of K'.

[\
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The attack complexity is the same as that for the second-preimage attack. Note
that at Step 1 of the procedure, the message M can be randomly given. Hence,
this attack is stronger than breaking randomized hashing.

Remark on Iterated Compression Function Scenario. During the 8-
step computation between two M F computations, AURORA uses 16 different
functions Fy, ..., F7,Go,...,G7. It is interesting to observe the scenario where
Fy, ..., F7 are replaced with the same function F' and Gy, ..., G7 are replaced
with G. In this scenario, the attack complexity can be reduced by generating
multi-fixed-points.

In this attack, for a given HY, the attacker generates 232 messages denoted
by M%) that make F(HY, M) = HY. This requires the time complexity of
approximately 2288 F' computations. Then, self-concatenation of any choice of
M) for 7 blocks guarantees that HY is equal to HY because any M) maps
HY to HY during 7 blocks. This enables us to save the complexity of generating
a multi-collision 6 times. The rest of the attack is exactly the same as the one for
standard AURORA-512. Finally, the time complexity becomes 228%(= 2 x 2288),
which is better than the attack on standard AURORA-512.

5 Key Recovery Attack on HMAC-AURORA

In this section, we present a full key recovery attack on HMAC-AURORA-512
when 512-bit secret keys are used and the MAC length is 512-bit long. Our
attack requires 22°7 queries and the off-line complexity is 22° AURORA-512
operations. The attack can be carried out with a negligible amount of memory.
This attack does not make any impact on security of AURORA as a SHA-3 can-
didate, however, the complexity is significantly less than that of the exhaustive
search for a 512-bit key. Our attack can also recover the inner-key of HMAC-
AURORA-384 with almost the same complexity as in HMAC-AURORA-512.
This attack does not recover the outer-key of HMAC-AURORA-384, but univer-
sal forgery is possible by combining the inner-key recovery and second-preimage
attacks. Different from collision and second-preimage attacks, this attack does
not use multi-collisions. Hence, this attack reveals another security weakness of
AURORA-512 and -384.

5.1 Full Key Recovery Attack on HMAC-AURORA-512

In this attack, we mainly ask 1-block messages (including padding bits) as
queries. The structure to process a 1-block message in HMAC-AURORA-512
is illustrated in Fig. @

Attack Procedure

1. Prepare 22°7 different messages that are the same length but shorter than 448
bits so that the length of padded messages does not exceed 1-block. Let M?
be prepared messages. Ask all M? to the oracle, and obtain corresponding
HMAC g (M?).
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Fig. 4. Structure for processing a 1-block message in HMAC-AURORA-512

2. Find message pairs (M7, M7") in which HMACg (M7?) and HMACg (M)
are a collision. Due to the computation structure, a pair of messages has the
following five possibilities to be a collision.

Case 1: HYs collide and HPs collide.

Case 2: Case 1 does not occur and Hj's collide.

Case 3: Case 1 and 2 do not occur and hY's collide and h¥s collide.
Case 4: Case 1, 2, and 3 do not occur and h¥'s collide and h¥s collide.
Case 5: Case 1, 2, 3, and 4 do not occur and HMAC values collide.
Therefore, we expect to obtain several collisions in this Step.

3. To detect a Case-1 collision in Step B ask M7||Pad;, ||z and M’'||Pad;, |z
for any x to the oracle, and check whether HMAC k(M7 |Pad;,||z) and
HMAC g (M7 ||Pad;y, ||z) are a collision or not. If they are a collision, (M7,
M) is a desired pair with a negligible error probability.

4. Let (M71, M) be a colliding pair of Case 1 in Step2 First, we exhaustively
search for KY by computing Fy (K7, M7') and Fy(KY, M7Y) for all 2256
KY and check whether the computed values are a collision or not. If they are
a collision, the corresponding K is the correct value. Similarly, we detect
KD by computing G1(KL, M7') and G1(KL, M) for all 2256 KP and
check whether the computed values are a collision or not.

5. For all HMAC collision pairs (M7, M7") obtained in Step Bl we compute the
values of Hj and Hj' with recovered K and K. If H; and Hj' are a
collision, we discard that pair. Note, each of the remaining collision pairs are
of Cases 3, 4 or 5 in Step 21



Cryptanalyses of Narrow-Pipe Mode of Operation 47

6. Take a collision pair (M72, M7?") from all remaining collision pairs, and as-
sume this pair is a collision of Case 3. We then recover K, and K2, by
the same method as Step @ Namely, we exhaustively search for KU, such
that Fy (KU, Hy'?) = Fi (K3, Hy’*) and K2, such that Gy (KD, Hy'?) =
G (thtv H;ﬂ/)'

7. With recovered K;, and K., compute HMACg (M) for any M that are
already asked to the oracle, and check whether its HMAC value matches with
the one obtained from the oracle. If matched, that K,,; is the correct value.
Otherwise, discard the pair (M2, M7?") and go back to Step [l Repeat the

attack by choosing a different collision pair until K,,; is recovered.

Complexity and Success Probability. At Step [ we ask 2257 queries to the

oracle. At Step Bl the probability that the collision of each case is obtained can
be considered as independent. According to [I4, Theorem 3.2], the probability of
obtaining a collision for a logy, N-bit output hash function, with trying 6 - N'/2
different messages is as follows.

02

1—e 2 (5)

Eq. B becomes approximately 0.86 when 6§ = 2. Therefore, we expect to obtain
a collision of each case with a probability of 0.86. To successfully recover Kj,
and Koyu:, we need to obtain a Case-1 and a Case-3 collision. By 22°7 queries,
the probability of obtaining these two collisions is (0.86)2 ~ 0.75. This is higher
than the probability of obtaining a single collision with 2256 queries, which is
approximately 0.39. For simplicity, we assume that five collisions in total, a
single collision in each case, are obtained. At Step Bl we need two queries for
each collision. Hence, if we obtained five collisions, we need eight queries in
the worst case, which is negligible compared to Step [l At Step Fl we compute
Fy 22256 times to recover KU . For each guess of K the probability that
F (KU, MY = Fy (KUY, M3Y) is expected to be 27256, Hence, we can expect
that only one KY is chosen as the correct guess. Similarly we compute Gy
2 - 2256 times to recover K. As a result, the time complexity for this Step is
2.2256 Fy_operations + 2- 2256 G-operations ~ 2257 AURORA-512 operations.
Step Bl costs negligible time. In our assumption, three collisions, one for Cases
3, 4, and 5, will remain. Step [ costs the same complexity as Step [ which
is 2257 AURORA-512 operations, and this is repeated three times in the worst
case due to Step [l Therefore, the time complexity for Steps [6 and [@is 3 - 2257
AURORA-512 operations. Finally, the total time complexity is 227 AURORA-
512 operations for Step @ and 3-22°7 AURORA-512 operations for Step [6, which
is 2259 AURORA-512 operations.

This attack can be easily carried out if we have a large amount of memory.
Moreover, if we apply the memoryless collision search [15] for Step [ all Steps
can be carried out with a negligible amount of memory. To apply the memoryless
collision search, we use the HMAC values obtained from the oracle as the next
query. Therefore, Step [0l becomes adaptive. The memoryless collision search of
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our attack requires a message space of 512 bitdl. Hence, we use 2-block messages
as queries. Due to the increment of the message block, at Step Bl a message
pair has six possibilities to be a collision. However, since this collision is filtered
out at Step B with two additional queries, this does not impact the total attack
complexity.

5.2 Universal Forgery on HMAC-AURORA-384

Inner Key Recovery Attack. AURORA-384 supports HMAC for a 384-
bit MAC length. The structure for processing a 1-block message in HMAC-
AURORA-384 is illustrated in Fig.

The inner-key recovery procedure for HMAC-AURORA-384 is almost the
same as that of HMAC-AURORA-512. For HMAC-AURORA-384, at Step
of the attack procedure, a pair of messages has the following six possibilities to
be a collision.

Case 1: HYs collide and HPs collide.
Case 2: Case 1 does not occur and H3s collide.
Case 3: Case 1 and 2 do not occur and HZ's collide.

K®ipad M| |Pad,,

512

256 | | F.)256
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256 G256
D 0
Hq —\—’);\T'
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_IhZU
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—HMAC,(M)

Fig. 5. Structure for processing a 1-block message in HMAC-AURORA-384

L If the message space is much smaller than 512 bits, for example 447 bits, the ran-
domness for the memoryless collision search will collide after 22235 trials and we
cannot make 2257 different queries.
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Case 4: Case 1, 2, and 3 do not occur and hY's collide and hs collide.
Case 5: Case 1, 2, 3, and 4 do not occur and his collide.
Case 6: Case 1, 2, 3, 4, and 5 do not occur and HMAC values collide.

Remember that HI and HMAC values are 384 bits. By asking 22°¢ queries, we
will obtain a single collision pair of Cases 1, 2, 4, and 5, and 2127(= 2256-2-1-384)
collision pairs of Cases 3 and 6; therefore, we expect to obtain 2128 44 collisions
in total. To recover the inner-key, we need to detect the collision pair of Case 1.
At Step Blof the attack procedure, this can be achieved by asking two additional
queries M7||pad,, ||z and M7 |pad,,||x for each collision pair (M7, M7'). The
inner-key recovery procedure at Step Hl is exactly the same, in which we need a
time complexity of 2257 AURORA-384 operations.

Finally the inner-key is recovered with 2257 42. (2128 +4) ~ 2257 queries and a
time complexity of 227 AURORA-384 operations. This attack can be performed
with a negligible amount of memory.

Universal Forgery by Combining the Inner-Key Recovery and Second-
Preimage Attacks. Although our attack cannot recover the outer-key, we can
perform a universal forgery on HMAC-AURORA-384 by using the recovered
inner-key and applying the second-preimage attack, which is explained in Sec-
tion @ or by Ferguson and Lucks [9].

In a universal forgery attack, the attacker has access to the oracle which
returns HMACy(+). For any given message M, our attack can find the value of
HMAC) (M) without asking M to the oracle. After revealing the inner-key, our
attack requires one query and the same off-line complexity and memory as that
of the second-preimage attack on AURORA-512, which are 22 AURORA-512
operations and 2288 x 512 bits of memory in Section @l of this paper and 229!
AURORA-512 operations and 2315 message blocks of memory in [9]. The attack
procedure is as follows.

Target:

0. Receive M.
Preparation:

1. Recover the inner-key K, with the attack explained in Section (B2
Universal forgery:

2. For the given M, find a second-preimage M’ s.t. AURORA—384(K;,, M) =

AURORA—-384(K;y,, M') by using the second-preimage attack.
3. Ask M’ to the oracle, and receive HMACy (M").
4. HMACy(M') is the HMAC value of M.

6 Discussion and Conclusions

The designers of AURORA showed proof for preimage resistance but did not
show proof for second-preimage resistance. In fact, we showed that AURORA
does not satisfy second-preimage resistance. Therefore, it would be useful to
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consider the differences of these two properties. We give some intuition by sum-
marizing observations obtained from our attacks.

Assume that a hash function H is a sequence of several independent functions
Hy,H>,...,H;. The preimage resistance can be guaranteed if at least one of the
functions is preimage resistant. However, this is not true for second-preimage
resistance. To guarantee second-preimage resistance, all functions should be se-
cure. The security bound of the second-preimage resistance is dependent on the
weakest part of the hash function. AURORA can be regarded as consisting of
two parts; the first 8-block H; and the M FF function Hs. Because the M F'F
function is secure, AURORA is secure on preimage resistance. However, because
the first 8 blocks is not secure, AURORA does not satisfy second-preimage re-
sistance.

From this observation, designing hash functions which are provably secure for
second-preimage resistance seems harder than designing hash functions which
are provably secure for preimage resistance.

7 Conclusion

We pointed out the weakness of the DMMD mode of operation. We first presented
a collision attack on AURORA-512. We then presented a second-preimage attacks
on AURORA-512 and -384, then explained that randomized hashing could also be
attacked. Finally, we showed a full key-recovery attack on HMAC-AURORA-512
and a universal forgery attack on HMAC-AURORA-384.
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A Relationship between Our Work and [9]

This paper mainly presents three attacks on AURORA-512; a collision attack,
a second-preimage attack and its application to randomized hashing, and a key-
recovery attack on HMAC. Ferguson and Lucks independently found similar
results on collision and second-preimage attacks [9].

Our work on collision and second-preimage attacks was motivated by the
discussion by Ferguson, Lucks, and Iwata during a presentation on AURORA
by Iwata at the first SHA-3 conference on 27th February 2009. We found our
collision attack immediately after Iwata’s presentation and informed it to the
AURORA team that same day. On the other hand, Ferguson and Lucks men-
tioned that “at that point of time, (the concerns) had not been thought through”
[9][Sec. 6]. Hence, we believe that we first found collision attack.

Regarding second-preimage resistance, we found the attack in a few days after
the conference. Hence, the work is independent of Ferguson and Lucks. How-
ever, we heard they independently found the second-preimage attack during the
SHA-3 conference before we found it.

From a technical viewpoint, the attack found by Ferguson and Lucks [9]
and ours are in the same framework. However, we use 8-block multi-collisions,
whereas [9] uses 9-block multi-collisions. Hence, the attack complexity of [9] is
superior to ours in both collision and second-preimage attacks. The evaluation
for the amount of memory is significantly different, in which our attack requires
2288 whereas their attack [9] requires only 2315, This difference is based on
the assumption on compression functions rather than attack techniques. Fergu-
son and Lucks assumes that compression functions are “balanced”, whereas our
attack also considers the case where the output distribution is very biased.



More on Key Wrapping

Rosario Gennaro and Shai Halevi

IBM T.J. Watson Research Center
Hawthorne, NY 10532, USA

rosario@us.ibm.com, shaih@alum.mit.edu

Abstract. We address the practice of key-wrapping, where one symmet-
ric cryptographic key is used to encrypt another. This practice is used
extensively in key-management architectures, often to create an “adapter
layer” between incompatible legacy systems. Although in principle any
secure encryption scheme can be used for key wrapping, practical con-
straints (which are commonplace when dealing with legacy systems) may
severely limit the possible implementations, sometimes to the point of
ruling out any “secure general-purpose encryption.” It is therefore desir-
able to identify the security requirements that are “really needed” for the
key-wrapping application, and have a large variety of implementations
that satisfy these requirements.

This approach was developed in a work by Rogaway and Shrimpton at
EUROCRYPT 2006. They focused on allowing deterministic encryption,
and defined a notion of deterministic authenticated encryption (DAE),
which roughly formalizes “the strongest security that one can get without
randomness.” Although DAE is weaker than full blown authenticated
encryption, it seems to suffice for the case of key wrapping (since keys
are random and therefore the encryption itself can be deterministic).
Rogaway and Shrimpton also described a mode of operation for block
ciphers (called SIV) that realizes this notion.

We continue in the direction initiated by Rogaway and Shirmpton.
We first observe that the notion of DAE still rules out many practical
and “seemingly secure” implementations. We thus look for even weaker
notions of security that may still suffice. Specifically we consider notions
that mirror the usual security requirements for symmetric encryption,
except that the inputs to be encrypted are random rather than adver-
sarially chosen. These notions are all strictly weaker than DAE, yet we
argue that they suffice for most applications of key wrapping.

As for implementations, we consider the key-wrapping notion that
mirrors authenticated encryption, and investigate a template of Hash-
then-Encrypt (HtE), which seems practically appealing: In this method
the key is first “hashed” into a short nonce, and then the nonce and
key are encrypted using some standard encryption mode. We consider a
wide array of “hash functions”, ranging from a simple XOR to collision-
resistant hashing, and examine what “hash function” can be used with
what encryption mode.
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1 Introduction

Key-wrapping roughly refers to encrypting one cryptographic key with another.
In this paper we focus on the use of this practice for symmetric encryption,
where the main application is key-management. Key-management architectures
often include a hierarchy (or tree) of keys, with a master key encrypting sev-
eral lower keys, which in turn encrypt even lower keys, and with the leaf keys
used to encrypt “the real data” (cf. [17, Chapter 6]). Another typical case where
key-wrapping is used is retrofitting an encryption system to work with an in-
compatible key-management architecture, for example an AES encryption sys-
tem with a 3DES key-management. In such cases, one can add a “glue layer”
in between the encryption system and the key management architecture, that
generates data keys as expected by the encryption system (e.g., AES keys) and
uses the keys from the key-management architecture to wrap these data keys
(e.g., using 3DES).

A similar situation arises when the encryption system must use its keys in
a restricted manner, but the key-management architecture is not designed to
keep track of these restrictions. For example, one system that we encountered
was using the GCM encryption mode, and needed to comply with the following
requirement from the NIST standard for GCM [d]:

The total number of invocations of the authenticated encryption function
shall not exceed 232, including all IV lengths and all instances of the
authenticated encryption function with the given key.

However, that system was using a key-management architecture that did not
keep track of the number of times that any single key is being served, and hence
was not able to certify that the requirement from above is being met. Here too,
the solution was to add a key-wrapping adapter layer that generates a new GCM
key every time and wraps it with the given key from key-management.

1.1 What Is a Secure Key-Wrapping?

It is clear that any secure encryption scheme is in particular also a secure key-
wrapping scheme. But using secure encryption may be an overkill for the appli-
cation to key-wrapping. In particular, the usage of key-wrapping as an adapter
between legacy systems sometimes imply severe practical limitations on its im-
plementation, perhaps to the point of excluding general-purpose secure encryp-
tion. We therefore seek weaker notions of security that can be implemented even
in cases where standard secure encryption is impossible, but are still strong
enough for the purpose of key-wrapping.

This approach was taken by Rogaway and Shrimpton in @], where they fo-
cused on allowing deterministic procedures. Specifically, they investigated deter-
ministic authenticated encryption (DAE), which roughly formalizes “the strongest
security that one can get from deterministic procedures.” Although achieving less
than standard authenticated encryption, DAE appears to be sufficient for key-
wrapping: since the key itself is already random, it seems that randomness is not
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really needed in the encryption procedure itself. Indeed, Rogaway and Shrimpton
included in the full version of their work an appendix in which they prove that
DAE is good enough for applications that encrypt high entropy plaintext. (See
more discussion in our Appendix [A])

However, even DAE may sometimes be too much to ask for. In this paper we
show several examples of practical “seemingly secure” schemes that nevertheless
fail to meet the notion of DAE. We thus aim lower, looking for even weaker
notions that still suffice for key wrapping. Noting that the difference between key
wrapping and general-purpose encryption is that the plaintext to be encrypted is
a symmetric cryptographic key (and therefore is random), we consider notions of
security that mirror the usual notions for symmetric encryption, except that the
attack model postulates that the plaintext to be encrypted is random rather than
adversarially controlled. Specifically, in Section 2lwe present notions that mirror
CPA-security, CCA-security, and integrity of ciphertext. We argue that these
notions suffice for many application of key-wrapping. We also prove formally
that they suffice for the typical application in which a master-key is used to
encrypt data keys, which themselves are used to encrypt real data.

1.2 How to Achieve Secure Key-Wrapping?

Implementing secure key wrapping can be done using standard secure symmet-
ric encryption, perhaps using generic composition techniques such as encrypt-
then-authenticate ﬂa, q, @} (which work for key-wrap just as well as for regular
encryption). Another solution was given by Rogaway and Shrimpton [@]7 who
designed a mode of operation called SIV that they prove to meet the stronger
notion of DAE. However, applications of key wrapping sometimes place restric-
tions on the implementation. (For example, being deterministic, or using a spe-
cific encryption mode because that mode is already implemented in hardware,
etc.) The thrust of this paper is therefore to examine many different plausible
constructions, trying to separate secure constructions from insecure ones.

We focus specifically on an approach for achieving authenticated key-wrap
that we call Hash-then-Encrypt (HtE). In this method, the key is first “hashed”
into a short nonce, and then the nonce and key are encrypted using some stan-
dard encryption mode. There are several reasons to look at this approach: First,
we may be able to get away with using a very simple “hash function” (maybe as
simple as just XOR), which could be very efficient. Perhaps more importantly,
this template could allow re-use of components that is already implemented in
existing systems.

In this work we consider a wide array of “hash functions”, and examine what
“hash function” can be used with what encryption mode. We show that all
the modes that we considered can be turned into a secure authenticated key-
wrapping scheme by using a second-preimage-resistant function for the hash
function, and many of them (except ECB and maybe CBC) can also use universal
hashing. But resisting collisions is not really necessary in most cases. We show
that for all modes except CTR, a simple fixed linear function is already enough to
get some level of security (but this level of security deteriorates quickly with the
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Table 1. Security of various Hash-then-Encrypt constructions

Encryption/Hash XOR Linear 2n<je§)i§$i?ge u}?al :Eirsgl
CTR broken broken secure secure
ECB broken somewhat* secure broken
CBC broken somewhat* secure ?

masked ECB/CBC somewhat™ somewhat* secure secure
XEX secure secure secure secure

*“somewhat” means concrete security that is worse than the birthday bound

length of the data key), and when using masked versions of ECB and CBC then
even a simple XOR of the key blocks suffices to get the same level of security.
Finally, when using a tweakable encryption mode E] such as XEX [20], a simple
XOR suffices to get security upto the birthday bound, regardless of the length
of the data keysl] These results are summarized in Table [

1.3 Related Work

We already discussed the work of Rogaway and Shrimpton @] on the key-wrap
problem. A somewhat similar definition to DAE was later formulated by Ama-
natidis et al. in the context of searchable encryption E] An and Bellare studied
authentication via redundancy in the context of standard symmetric encryption
B] They argued that public redundancy function is not very useful for achieving
authenticated encryption (although work by Gligor and Donescu @], Jutla ﬂﬁ],
and Rogaway @] demonstrated that simple public redundancy is sufficient when
using masked CBC or masked ECB for encryption). In our case we show that
even very simple public redundancy is sufficient in most cases. Also Bellare and
Namprempre @] and Krawczyk M] deal with generic composition techniques
of encryption and authentication, and some further results were described by
Canetti et al. [d].

Other related work was done in the area of KEM/DEM schemes for pub-
lic key encryption, where different conditions on the KEM and/or DEM parts
were investigated (e.g., ﬂ, ﬁ @]) Also, some recent work addressed public-key
deterministic encryption M] Finally, we mention that encryption of “random
messages” was also considered in the very different context of “Entropic secu-
rity” by Russell and Wang [23] and Dodis and Smith [§]: in these works they
attempted to provide statistical security for random messages using as little key
material per message as possible.

Organization. Due to space limitations, some of the results and proofs were
deferred to the final version.

! Observe that the masked modes and XEX are obtained by adding very simple mask-
ing to ECB and CBC modes, so it makes sense to talk about them here, even though
our paper is focused on dealing with legacy systems.



More on Key Wrapping 57
2 Defining Security for Key Wrapping

Below we adapt the usual notions of security for symmetric encryption to the
case of key-wrapping. The only difference between our notions and the standard
ones is that the plaintext is chosen at random rather than being controlled by the
attacker. We focus on the simplest case of fixed input length and no associated
data, extensions and variations are discussed in the long version.

Syntactically, a key-wrapping scheme is identical to an encryption scheme.
Namely, it includes a wrapping procedure Wrap that takes plaintext and wrapping-
key and returns ciphertext, and an unwrapping procedure Unwrap that takes ci-
phertext and wrapping key and returns the plaintext (or an error symbol 1 ). We
have the usual validity condition, asserting that for any wrapping key K and plain-
text D it holds that Unwrap ;- (Wrap (D)) = D. Below we usually refer to the plain-
text as a data key. We insist that wrapping keys (as well as data keys) are uniformly
random bit strings of some given length. Hence key-generation is implicitly speci-
fied as choosing a random key of the appropriate length. We denote the length of
the wrapping key by k, and the length of the plaintext/data-keys by ¢. (One can
think of k as the security parameter and £ is typically also a parameter.)

2.1 Security for Key-Wrap

Let KW = (Wrap, Unwrap) be a key-wrapping scheme. All the security definitions
are based on probabilistic games, involving an attacker A and the procedures
Wrap and Unwrap. Our definitions use the “left-or-right” style. The basic game is
the Random-Plaintext Attack (RPA), mirroring the usual chosen-plaintext attack:
First a wrapping key W is chosen uniformly at random in {0,1}*, together
with random “challenge bit” b. Then the attacker interacts with the wrapping
procedure as follows: whenever A invokes the wrapping procedure, two data keys
Do, Dy are chosen uniformly at random in {0, 1}, and A receives both Dy, Dy,
and also the ciphertext C' = Wrapy(Dy). The attacker A can keep making such
queries, and eventually it halts and outputs a guess for the value of the challenge
bit b. The RPA-advantage of A is defined as

AdViP (A) E PrALESWER o q|p = 1] — Pr[ALESWERw o qp = 0] (1)

where LR$Wrap is the “left-or-right” procedure described above, A = 1 is the
event where A outputs the bit ‘1’, and the probability is taken over all the
probabilistic choices in this game.

The Chosen-Ciphertext Attack (CCA) game is similar, except that the at-
tacker is also given access to the unwrapping procedure that on query C' returns
Unwrapy (C), but the attacker is prevented from querying it on ciphertexts that
were previously returned from the procedure Wrap. Then the CCA-advantage
of A is defined as

Advideea(a)

Pr[ALR$WrapW,UnwrapW = ].|b _ 1] o Pr[ALRSBWrapW,UnwrapW = ].|b _ 0] (2)
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The integrity of ciphertext game (INT) is defined similarly to the RPA game,
except that wrapping queries return only one random data key D and the cor-
responding ciphertext C' = Wrapy, (D), and the attacker’s goal is to output any
ciphertext C*, different than the ones that were returned from the Wrap proce-
dure, that the unwrap procedure does not reject. Namely, the advantage of A is
defined as

of Pr[ASWeP = C* . C* is “new” and Unwrap(C*) #1]  (3)

AdviB(A)
where $Wrap is the procedure above that returns both a random data key and
its encryption.

As usual, we extend the advantage notations to talk about the advantage of
“any attacker within the given limited resources”. For example, Adv(enc = q)
means any attacker that makes at most ¢ queries to its encryption oracle. We
will explicitly specify the relevant resources whenever we use this convention. We
informally say that a scheme is “secure” when the advantage of an attacker is no
more than the birthday bound (i.e., O(¢?/2") where ¢ is the resource bound and
n is a relevant security parameter). We say that a scheme is “somewhat secure”
where the advantage is exponentially small in n but larger than the birthday
bound, and otherwise we say that the scheme is “broken.” Clearly, RPA-security
captures the notion of secrecy for the key against eavesdroppers, CCA-security
ensures key secrecy also against active attackers, and the last notion adds explicit
authentication.

Below we refer to a scheme which is both RPA-secure and has integrity of
ciphertext as authenticated key-wrap. Just as for encryption ﬂa, |E], an easy argu-
ment shows that RPA-security and integrity-of-ciphertext imply CCA-security.
It is also easy to see that requiring both is strictly stronger than requiring
CCA-security (e.g., a random permutation is CCA-secure but does not provide
integrity of ciphertext).

In the long version we discuss some extensions of these definitions, e.g., to
handle variable-input-length, associated data, etc.

2.2 Key-Wrapping Is Weaker Than DAE

We note that the security notions from above are all strictly weaker than the
notion of deterministic authenticated encryption (DAE) of Rogaway and Shrimp-
ton @] DAE requires that an attacker that interacts with the Wrap and Unwrap
procedures (with some fixed random secret key W) cannot distinguish them from
a dummy Wrap that returns only random bits, and a dummy Unwrap that re-
jects any “new” ciphertext (i.e., any ciphertext that was not returned by the
Wrap procedure). Obviously, when interacting with the dummy procedures we
have Adv'™(4) = Adv*""™(A4) = 0 (and therefore also Adv*"“?(A) = 0),
so DAE implies all of our notions. In fact, Rogaway and Shrimpton proved in an
appendix of the long version of [@] that DAE implies a similar (but stronger)
notion of security, for a case where part of the plaintext is random and another
part is chosen by the attacker. See discussion in our Appendix [Al
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On the other hand, in the DAE game the attacker can query the wrapping
procedure on inputs of its choice, so it is easy to find examples of schemes that
satisfy our notions but are not DAE. (In fact, some of our “provably secure”
constructions from Section Bl below fail to meet the notion of DAE.) One easy
example is a wrapping procedure based on a block cipher, that wraps a one-block
data-key D using the wrapping key W by setting C' = (Ew (D), Ew(D + 1)). It
is clear that in all the games as described above, an attacker making at most ¢
queries to the wrapping procedure has advantage at most O(q?/2"), since the
inputs to the block ciphers will be all disjoint except with that probability. On
the other hand, a DAE attacker that can specify the data keys only needs to
encrypt two keys Do, D7 such that D; = Dy + 1 and check that the first block
in C1 is the same as the second block in Cj.

2.3 Key-Wrapping Is Sufficient for Applications

Although weaker than DAE, we claim that our notions are sufficiently strong for
most application of key wrapping. That is, for any application that uses a key-
wrapping procedure to wrap random keys, it is sufficient for the key-wrapping
to satisfy the notions that we defined above. In some sense this statement is
true by definition: our notions ensure that an attacker cannot distinguish the
“real keys” from random unrelated keys, which means that even after seeing
(and perhaps even manipulating) the wrapped keys, they are still just random
secret keys from the attacker’s perspective. Below we demonstrate formally that
secure key-wrapping is sufficient to get secure symmetric encryption.

Specifically, let W = (Wrap, Unwrap) be a key-wrapping scheme and let
SE = (Enc,Dec) be a symmetric encryption scheme. Consider the composite
symmetric encryption scheme C, whose key space is that of KWW and whose
message space is that of S€. On a given key W and plaintext message M, the
composite encryption chooses a new random data-key D from the key-space of
SE, wraps it using W to get C; «— Wrapy, (D), uses it to encrypt the message,
getting Cy «— Encp(M), and outputs the composite ciphertext C' = (Cq,Cs).
The composite decryption first recovers D «— Unwrapy,(C1) and if D #1 then
computes and returns M «— Decp(Cs).

The following lemma asserts that if WV and SE€ are secure then so is C. More
specifically, if W is RPA-secure and S& is CPA-secure then the composite is
CPA-secure, if both are CCA-secure then so is the composite, and if both have
integrity of ciphertext and the key-wrapping is RPA-secure then the composite
also has integrity of ciphertext. One point to note is that since the application
uses each data key only once, then the underlying encryption SE need only be
secure under encryption of a single message.

Lemma 1. Let q,q" be bounds on the number of encryption/wrapping queries
and the number of decryption/unwrapping, respectively. Then

AdvE® (enc = q) < AdviSP (wrap = q) + q- Advae® (enc = 1),

Advye(enc = q,dec=q') <
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enc.cca

AdvRSSe@ (wrap = g, unwrap = ¢') + q- AdvEg@(enc =1, dec = ¢'),

Adv®™(enc = q) <
AdviS P (wrap = q) + AdVISI (wrap = q) + q- AdvES™ (enc = 1).

The running-time bounds on the various attackers that are hidden in the expres-
sions above are all about equal: they differ by at most the time that it takes to
compute q encryptions/wrappings and ¢ decryptions/unwrappings.

3 Authenticated Key-Wrap

As we said before, in principle one can use any authenticated encryption scheme
to achieve authenticated key-wrap. Another “clean solution” for obtaining au-
thenticated key-wrap is wrap-then-authenticate, where one first employs any RPA-
secure scheme for wrapping and then authenticates the ciphertext with any secure
MAC. As for encryption @77@], here too one gets RCCA-security from any MAC
and authenticated key-wrap when the MAC is “strongly unforgeable” A

Yet another option is to use the carefully-engineered SIV mode of Rogaway
and Shrimpton [22]: In SIV the data key D (and associated data A) are first fed
into a pseudorandom function to get a nonce, N = PRF,,(D,A), and then the
data key is encrypted with an IV-based encryption scheme (such as CTR mode
or CBC mode, with a key which is independent of the PRF key). Shrimpton
and Rogaway proved that SIV realizes their notion of DAE (and therefore is
also an authenticated key-wrap) for any PRF and any “pseudorandom IV-based
encryption.”ﬁ They suggested implementing the pseudorandom function using a
variant of CBC-MAC, and the encryption using CTR mode.

But as we argued in the introduction, there are still cases where one may
want to use other implementation strategies. Below we analyze a wide range
of solutions that may be appealing in practice, with a goal to determine what
works and what doesn’t.

3.1 Simplified SIV May Not Work

We remind the reader that the main difference between Rogaway and Shrimp-
ton’s notion of DAE and our notions of security is that the attacker in their
model can choose the plaintext, whereas in our model the data-key is always
chosen at random. One could therefore hope that we can get a secure scheme
even if we weaken SIV by replacing the pseudorandom function with a “weak
pseudorandom function.” (Recall that a weak pseudorandom function [1§] is a

2 A MAC is “strongly unforgeable” if the attacker cannot even produce a new valid
authentication tag for a previously-authenticated message.

3 A “pseudorandom IV-based encryption” is one where the ciphertext in a chosen-
plaintext attack is indistinguishable from random. Shrimpton and Rogaway called
this notion “conventional IV-based encryption”.
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function F', such that no attacker can distinguish F(z) from random as long as
the points x themselves are chosen at random.)

Unfortunately, this intuition fails: For example, for an n-bit block cipher F
and 2n-bit data keys Ki, Ko, it is easy to see that the function F, (K1, K2) =
E,(K; ® K3) is a weak pseudorandom function (upto the birthday bound).
But implementing a key-wrap using this function and CTR mode is completely
broken: an attacker that sees the ciphertext Cy, C7, Cs that corresponds to the
key K;, K5 can trivially obtain a ciphertext for related keys simply by XOR-
ing the same non-zero block A into both C7 and C5, which would be a valid
ciphertext for the key K7 @& A, Ko ® A. Similarly, using this function F' with
CBC encryption is insecure, since if Cy, Cq, Co, C5 is a valid ciphertext for the
key Ki, Ks, K3, then Cy, Cs, C1,C5 is a valid ciphertext for the key Ky, Ko @&
C1®C, K36 C1 @ Ca.

3.2 Hash-then-Encrypt

Next we examine the solution template of “Hash-then-Encrypt” (HtE). That is,
the data-key K to be wrapped is first compressed into a one-block nonce using
some “hash functions”, N = H(K), and then the nonce and key together are
encrypted using a standard encryption mode. Here we consider using CTR mode,
ECB, and CBC. (In the long version we also explore the masked variants ECB-X
and CBC-X, and “narrow block tweakable modes” ﬂﬁ] such as Rogaway’s XEX
@]) Hash-then-Encrypt is similar to SIV when one thinks of E(H(K)) as the
pseudorandom function of SIV. However, below we also consider weak versions
of H for which E(H(K)) is not a PRF[]

For any “hash function” H, given a wrapping key W (that includes a cipher
key w) and a data key K = (K[1],..., K[{]) (where each K[i] is an n-bit block),
compute N = H(K) and C[0] = E,,(N) and then for i =1,...,¢ set:

HtCTR. C[i] = K[i]® E,,(C[0] + ¢ — 1) where the addition is modulo 2" (say).
HtECB. C[i] = E,(K[i]).

HtCBC. Cl[i] = E,, ( [i— 1)@ K[i]).

HtECB-X. C[i| = E,(X[i]®K[i])®X|i], where the X[i]’s are “XOR universal”

and derived from a different part of the wrapping key W.
HtCBC-X. Ci] = E,(C[i — 1] @ K[i]) ® X[i], where the X[i]'s are “XOR
universal” and derived from a different part of the wrapping key W.
HtXEX. C[i] = E,(X[i] ® K[i]) ® X[i], where the X[i]’s are computed as
X; a1 E,(C[0]), with o a primitive element of GF(2").

The modes HtCTR, HtECB, and HtCBC are depicted in Figures [Il Bl and [3]
respectively. For the “hashing” part we analyze several different functions, both
keyed and un-keyed. For each encryption mode we seek sufficient and/or
necessary conditions on the hash function to get authenticated key-wrap.

4 Another technical difference is that in our case the key used by F in the “PRF part”
is the same as the key used by E in the “encryption part.”
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3.3 Hash-then-CTR

When using counter-mode encryption, it turns out that a necessary and sufficient
condition on the hash function H is that it resists second-preimage collisions.
However, we point out that in our case, the function H is allowed to have a
secret key and moreover the attacker does not get to see the hash value, so it is
easier to get second preimage resistance than in the usual settings where H is
public. (In particular, any universal hash function is second preimage resistant
in our setting.) The definition below formalizes the notion of second-preimage-
resistance that we use:

Resisting second-preimage collisions. Let H be a function that can depend on
a secret key and/or on public parameters. The definition below is formalized
for the case of fixed input length, so we have a parameter ¢ that denotes the
input length of H. We also have parameters n, k', k” denoting the output length
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and the lengths of the secret key and public parameters (if any). The attack
scenario that we consider is where the secret key, public parameters, and the first
preimage are chosen at random, sk €x {0,1}¥ pp eg {0,1}¥", X er {0,1}¢,
the attacker is given the public parameters and the first preimage, and its goal
is to find a second preimage that collides with the first under H. We denote the
second-preimage-advantage of an attacker A by

Adv(4) =

Pr [Alpp, X) = X'+ X' # X and H(sk,pp, X) = H(sk, pp, X)]  (4)
sk,pp,
The case where the secret key is empty corresponds to the usual notion of second
preimage resistance for public hash functions (of function families). Below we also
denote by ay the probability that two random inputs collide under a random key;,
namely oy def Prok pp, x, x/[H (sk, pp, X ) = H (sk, pp, X')]. (Clearly ay < AdvYy,
but ay could sometimes be much smaller.)

Next we show that the HtCTR construction is secure in the sense of authen-
ticated key-wrap if and only if the hash function H is second-preimage resistant
according to the notion above.

Lemma 2. Let H be a (potentially keyed) hash function as above with input
length ¢n and output length n, and consider the HtC'TR construction using H
for the hash function and with a truly random permutation for the block cipher.
Then for any bound q on the number of wrapping queries, we have

AV (o =) < 2(§ ) + 0472,

AQviBin oy = o) < oAavE + (3 )an + Ol22/2)

Adviint (wrap = 1) > Advy
The running-time bounds on the various attackers that are hidden in the expres-

sions above are all about equal: they differ by at most the time that it takes to
compute q wrappings.
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Some constructions that are likely to meet the second-preimage resistant condi-
tion that is needed in Lemma [2 include most of the known cryptographic hash
functions such as SHA1 or SHA256. Observe that when used with AES as the
underlying cipher for encryption, we are limited to using only 128 bits of the
output of the hash function. But second-preimage resistance is a very weak re-
quirement, so it is likely that the SHA family meet this notion even if we only
take 128 bits of output. Another solution would be to key these functions (e.g.,
using HMAC).

Another class of practical functions that meet this condition are universal hash
functions (e.g., the polynomial-evaluation hash, or linear hash functions). These
functions can be proven to meet the condition of second-preimage resistance as
formulated in Eq. @), but we stress that they only meet it if the hashing key is
kept secret (as part of the key-wrapping key).

When the data-key K is a key for a block cipher E, it may even be plausible
to use N = Ek(const) as a checksum, where const is some public constant. For
contemporary ciphers like AES, it may be reasonable to assume that the public
function H(K) = AESk (const) is a second-preimage resistant function.

3.4 Hash-then-ECB and Hash-then-CBC

At first glance, one may suspect that the hash-then-encrypt method cannot be
used with ECB encryption, since in ECB the hash value does not influence in
any way the encryption of the data key itself. Below we show that this is not
really the case, indeed ECB and CBC mode behave very similarly in our context
(with one exception that is described below). For example, in Lemma ] we prove
that even a public linear function can result in an authenticated key-wrap when
combined with ECB or CBC modes.

We begin with examining a composition of second-preimage resistant hash-
ing with ECB and CBC. For both modes, we prove below that using a public
second-preimage-resistant hashing is secure (under an additional mild structural
condition). Perhaps surprisingly, however, it turns out that at least for ECB,
when using a hash function that depends on a secret key, second-preimage re-
sistance (or even universality) is not sufficient. (For CBC we still don’t know if
universal hashing suffices. We suspect that it is, but so far could not prove it.)

univHash-then-ECB may be insecure. We show a hash function with secret key
(from 2n to n bits), which is second-preimage resistant and yet has the property
that for any X,Y, Z, it holds that X = H(Y,Z) & Y = H(X, Z), and we show
how to use this property in an attack (since in ECB we use the same procedure
to encrypt the nonce as we do the key blocks). Consider the following Hash-
then-ECB scheme for wrapping a two-block data key: the hash function uses
a block cipher E and depends on two secret cipher-keys, which we denote by
hi, he. Specifically, our hash function is defined as

th,hz (Y7 Z) - E}:ll (Ehl (Y) @ Eh‘z(Z))

It is not hard to see that this function H is second-preimage-resistant as per the
definition from Eq. ({): if we replace the cipher with two random permutations
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then we have Adv3y" = 27", (In fact, H is nearly a pairwise-independent hash
function in this case.) On the other hand, if X = Hy,, j,(Y, Z) then

Eh1<Hh1,h2(Xaz)) =
= Eh1<X)EBEh2<Z) = (Eh1<Y)EBEh2(Z))EBEh2<Z) = Ehl(Y)

and therefore also Hp, 1, (X,Z) = Y. An attacker on HtECB, after seeing a
ciphertext C' = (Cy, Cy, Ca) can therefore produce the valid forged ciphertext
C* = (C1, Cy, Co).

publicSPR-then-ECB/CBC is secure. When H is a public function, on the other
hand, we show that second-preimage-resistance is sufficient, under a mild struc-
tural condition. Specifically we need to assume that for a random input data-key
K, the nonce N = H(K) is also (close to being) a random n-bit block. Below
we call a function with that property well-spread.

Lemma 3. Let H be a public well-spread hash function with input length ¢n
and output length n, and consider the construction HtECB, using H for the
hash function and with a truly random permutation for the block cipher. Then
for any bound q on the number of wrapping queries, we have

Advlf{":ggB(wmp =q), Advmggc(wmp =q) < (g) (g +£2/2™)

Adviiits (wrap = ¢), AdviiidEe(wrap = q) < O(qt) - Advi
The running-time bounds on the various attackers that are hidden in the expres-
sions above are all about equal: they differ by at most the time that it takes to
compute q wrappings.

Proof. (sketch): Below we only prove the bound on Adviini.  the proof for

Adviyrint o is similar, and the RPA-bounds are straightforward. Denote the
transcript of a g-query attack against HtECB by

{(KZ'7C,‘) : Ki == <.K'Z[].}7 . .,KZ'[E]), CZ' == <Cz[0];cz[]-}7 . ’7Ci[€]>}i€[17q]

and let C* = (C*[0],C*[1],...,C*[{]) be the attempted forged ciphertext. Also
let K*[j] = E~1(C*[j]) for j =0,1,---,f and N* = H(K*[1],..., K*[{]), so C*
is valid iff N* = H(K*[0]).

We have three types of ciphertext C* to consider: either C*[0] is different from
all the C;[4]’s, or it is equal to one of the C;[0]’s, or it is equal to one of the C;[j]’s
for j > 0. Denote the probability of C* of the first type being valid by €, and
probability of C* of the second type being valid by e2, and the probability of C'*
of the third type being valid by 3. We show three collision-finders for H: one
with success probability e1 — O(gf/2"™), the second with with success probability
€2/q, and the third with success probability €3/qf.

The first collision finder (that needs to work when C*[0] # C;[j] for all 4, j)
gets a random input X and computes N = H(X). (Recall that H is well spread
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and public, so N is nearly uniform and we can compute it.) Now the collision
finder plays the integrity-of-ciphertext game with the attacker, choosing at ran-
dom values for the K;’s and for the permutation E and its inverse E~! as needed.
When the attacker outputs C*, the collision finder sets E~1(C*[0]) = N, which
is a valid assignment with probability 1 — ¢£/2", and returns K* as the second
preimage. Note that K™ is different from X with overwhelming probability, and
the ciphertext C* is valid iff indeed H(K*) = N.

The second collision finder (that needs to work when C*[0] = C;[0] for some ¢)
also begins by getting some random input X and computing N = H(X). Again,
the collision finder plays the integrity-of-ciphertext game with the attacker, but
now it chooses at random a query i and uses X as the data-key K;. Clearly If
C* is a valid forgery and C*[0] = C;[0] (which happens with probability e2/q)
then K™ is a second preimage of N.

The third collision finder (that needs to work when C*[0] = C;[j] for j > 0)
also begins by getting some random input X and computing N = H(X). Again,
the collision finder plays the integrity-of-ciphertext game with the attacker, but
now it chooses at random a query ¢ and a block h, and uses N as the data-key
block K;[j]. Again, if C* is a valid forgery and C*[0] = C;[j] (which happens
with probability e3/¢f) then K* is a second preimage of N. O

XOR-then-ECB/CBC is not secure. It turns out that second preimage resistance
is not a necessary condition when using ECB or CBC. Below we show that even
a simple public linear function may be sufficient in this case. However, not every
linear function works, and in particular just taking the XOR of the key blocks
is not secure. Let K[1], K[2] be a two-block data-key, and let C[0], C[1], C[2] be
the ciphertext corresponding to it using XOR-then-ECB key wrapping. Then one
can check that the ciphertext C[1], C[0], C[2] is a valid ciphertext, corresponding
to the data key K[1] @ K[2], K[2]. The same attack works also for CBC.

Linear-then-ECB/CBC may be secure. Below we show, however, that the “per-
mutation attack” from above is in some sense the only one that matters when
using ECB or CBC with a public linear function. Specifically, we show that using
a public linear function of the form H(K[L],..., K[(]) = >_; a; K[j] where the
a;’s are linearly independent, is already enough to get some level of security.
(For example, we can use a; = o/ where « is a primitive element in GF(2").)
However, the security level deteriorates quickly with £: the advantage bound that
we prove is only (q(£+ 1))“F1/2". For the typical case £ = 2 this means security
level of O(2"/3), which may be sufficient in many applications. But for longer

keys this construction may not be secure enough to be used in practice.

Lemma 4. Fiz some { < n, and let H(KI1],..., K[{]) f Z§:1 a; K[j], where
the o’s are linear operations over {0,1}" such that the set {1,cu,...,a¢} is
linearly independent. (That is, there is no nontrivial 0-1 combination of the a’s
and 1 that sums up to zero.)
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Consider the HtECB and HtCBC constructions using H for the hash function,
and with a truly random permutation for the block cipher. Then for any bound q
on the number of wrapping queries, we have

AdviyiRes (wrap = q), Adviyac(wrap = q) < O(¢*(*/2")
Adviiits (wrap = q), AdviiidEe(wrap = q) < O((q(¢ + 1)) /2™)

In the long version we also include analysis for the constructions Hash-then-
ECB-X/CBC-X and Hash-then-XEX. Some variations of our constructions for
variable-input-length and associated-data are mentioned in Appendix

4 Conclusions

In this work we examined the practice of key-wrapping, and in particular the
implementation template of Hash-then-Encrypt. We argued that this template
may be attractive in practice, especially in cases where the key-wrapping is used
to “glue” together existing incompatible systems. We considered a wide array of
“hash functions” and encryption modes, showed how to break some combinations
and proved security bounds for others. Although none of the combinations that
we considered meets the notion of deterministic authenticated encryption due
to Rogaway and Shrimpton @}, we argued that some of them are still secure
enough for key-wrapping. To make this argument, we measured them against
weaker notions of security, which are arguably sufficient for most applications of
key-wrapping.

We would like to stress again that given the choice, one should prefer more
robust implementations, such as standard authenticated encryption or the SIV
mode of Rogaway and Shrimpton. But in cases where these options are not
available, we believe that our results may provide guidance to what can or cannot
be used safely.
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A The Rogaway-Shrimpton KIAE Notion

In an appendix to the long version of their paper [@]7 Rogaway and Shrimpton
describe a notion of key insertion authenticated encryption that bares some simi-
larities to our notion of authenticated key-wrapping: Specifically, they describe a
setting where one applies a randomized encoding procedure to the adversarially-
controlled message before encryption, and the attacker is given the correspond-
ing ciphertext together with the randomness that was used in the encoding. The
KIAE notion roughly requires that such an attacker cannot distinguish these
(ciphertext, randomness) pairs from just random bits.

The crucial difference between our notions and KIAE is that we insist that
the plaintext to be encrypted is completely random and outside of the attacker’s
control, whereas KIAE still allows the attacker to control parts of the plaintextﬁ
Namely, our authenticated key-wrapping is a degenerate case of KIAE where the
message and authenticated data are both empty. It thus follows that KIAE is
still strictly stronger than all the security notions that we consider in this work.

In terms of usage, KIAE seems rather far removed from the way that key
wrapping is typically used in practice: A typical applications would apply key-
wrapping to a random data key, and then use that data key as a cryptographic
key in some other scheme (say, to encrypt “real data” or a lower-level key in the
hierarchy). The KIAE case seems to be targeted at applications where the data
key (which is used as a cryptographic key elsewhere) is wrapped together with
some “real data” in the same ciphertext. Hence in that notion the attacker gets
to choose this “real data”, while at the same time the data key is assumed to be
random.

B Variations and Extensions

Variable input length. All the constructions and proofs in this section extend also
to the case of variable input-length. (Although for key-wrap this case may not
be very interesting, since symmetric keys are typically all of the same length.)
When using second-preimage resistant hash function, we need to assume that it
is second-preimage resistant even for variable input-length. The proofs for the
linear hash functions need to be extended by considering the cases where the
attempted forged ciphertext is an extension of the previous ciphertexts that were

5 A smaller difference is that Rogaway-Shrimpton consider associated data as an inte-
gral part of their notion, whereas we view it as an optional extension. There are also
some syntactic differences between these notions, but these are of no consequence.
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obtained from the encryption oracle. For the “somewhat secure” constructions,
the security bound for ECB and CBC will then be roughly O((q/yayx )?"><) where
Lmaz 1s the largest allowable length of any data-key (expressed in 128-bit blocks).
For the masked version ECB-X and CBC-X, we get O(q“m=x), where in this case
lmaz is the longest data-key that was returned by the wrapping oracle.

Input lengths that are not a multiple of the block length are handled by CTR
without a problem. When using other modes, this can be handled by just padding
the key. If one must preserve the length then ciphertext-stealing will also work.

Associated data. To handle associated data A, one must “hash” it together with
the data-key, computing the nonce as N «— H (D, A). But as opposed to the data
key, the associated data A is not random, so it should be modeled as controlled
by the attacker.

For the constructions using second-preimage hashing, we must now make a
stronger assumption on the hash function. Specifically, the function H(D,A)
must meet the condition of “enhanced TCR” as described in [|ﬁ|]7 when D is
viewed as the hashing seed: Namely an attacker that chooses A and gets a random
D, should not be able to find different A’, D’ such that H(D,A) = H(D',A").
Still we note that since H can depend on a secret key then constructing such
functions is easier, and in particular universal hashing satisfy even this stronger
requirement.

For the constructions based on linear hashing, one way to incorporate as-
sociated data is by applying a PRF to it and then computing the nonce as
N = H(PRF(A)|D), where H is the same linear function from above. Practi-
cally speaking, however, if we are already using a PRF then we might as well
compute N = PRF(A|D) (in which case we get back the SIV construction).
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Abstract. We re-visit the problem of secure multiparty set intersection
(MPSI) in information theoretic settings. In [!E], Li et.al have proposed
a protocol for MPSI with n = 3t 4+ 1 parties, that provides informa-
tion theoretic security, when ¢ out of those n parties are corrupted by
an active adversary having unbounded computing power. In Iﬁ], the au-
thors have claimed that their protocol takes six rounds of communication
and communicates O(n*m?) field elements, where each party has a set
containing m field elements. However, we show that the round and com-
munication complexity of the protocol in IE] is much more than what is
claimed in ﬂﬂ} We then propose a novel information theoretically secure
protocol for MPSI with n > 3t + 1, which significantly improves the "ac-
tual” round and communication complexity of the protocol of ﬂﬁ} Our
protocols employ several tools which are of independent interest.

Keywords: Multiparty Computation, Information Theoretic Security.

1 Introduction

Secure Multiparty Set Intersection (MPSI): Consider a complete synch-
ronous network N, consisting of n parties P = {Py,..., P,}, who are pairwise
connected by a reliable and private channel. The parties do not trust each other
and the distrust in the network is modeled by a centralized adversary A;, who
has unbounded computing power and can actively corrupt at most ¢ parties in
Byzantine fashion, where ¢ < 7. A Byzantine (or actively) corrupted party is
under complete control of A;, who may force the party to behave arbitrarily. Any
protocol over A is assumed to operate in a sequence of rounds. In each round, a
party performs some local computation, sends new messages to the other parties
through the private channels and publicly broadcasts some information, receives
the messages that were sent by the other parties in current round on the private
channels and the messages that were publicly broadcast by the other parties in

* Financial Support from Microsoft Research India Acknowledged.
** Financial Support from Infosys Technology India Acknowledged.
*** Work Supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for
Secure Communication and Computation Sponsored by Department of Information
Technology, Government of India.

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 71 2009.
© Springer-Verlag Berlin Heidelberg 2009



72 A. Patra, A. Choudhary, and C.P. Rangan

current round. Here broadcast is a primitive, which allows a party to send some
information identically to all other parties. If a physical broadcast channel is
available in the system, then broadcast will take one round. Otherwise, we can
simulate broadcast using a protocol among the parties in P, which will have the
same effect as a physical broadcast channel. Each party P; has a private data-
set S;, containing m elements from a finite field F, where |F| > n. The goal of
MPSI is to design a protocol that can compute the intersection of these n sets,
satisfying the following properties:

1. CORRECTNESS: At the end of the protocol, each honest party correctly gets
the intersection of the n sets, irrespective of the behavior of A; and

2. SECRECY: The protocol should not leak any eztra information to the cor-
rupted parties, other than what is implied by the input of the corrupted
parties (i.e., the data-sets possessed by corrupted parties) and the final out-
put (i.e., the intersection of all the n data-sets).

MPSI problem is an interesting secure distributed computing problem and has
huge practical applications such as online recommendation services, medical
databases, data mining etc. [10].

Existing Literature on MPSI: The MPSI problem was first studied in cryp-
tographic model in m, @], under the assumption that the adversary has bounded
computing power. By representing the data-sets as polynomials, the set intersec-
tion problem is converted into the task of computing the common roots of n
polynomials in ﬂﬁ, ] This is done as follows: Let S = {s1,52,...,8m} be a
set of size m, where Vi, s; € F. Now set S can be represented by a polynomial
f(z) of degree-m, where f(z) = [[\~,(z — ;) = ap + a1z + ... + apa™. It is
obvious that if an element s is a root of f(z), then s is a root of r(z)f(z) too,
where r(x) is a random polynomial of degree-m over F. Now for MPSI, party P
represents his set S;, by a degree-m polynomial f(©*)(z) and supplies f)(z)
(i.e. its m+ 1 coefficients), as his input, in a secure manner. Then all the parties
jointly and securely compute

F(a) = (r (@) fP) (@) +r® (@) f P @) + ... 4 @) f () (1)

where M) (z),... 7" (x) are n secret random polynomials of degree-m over F,
jointly generated by the n parties. Note that F'(z) preserves all the common
roots of f(P)(z), ..., fF)(z). Every element s € (S;NS2N...NS,) is a root of
F(z), i.e. F(s) = 0. Hence after computing F'(x) in a secure manner, it can be
reconstructed by every party, who locally checks if F/(s) = 0 for every s in his
private set. All s’s at which the evaluation of F'(x) is zero forms the intersection
set (S1 NSy N...NSy). In [14], it has been proved formally that F(z) does not
reveal any extra information to the adversary, other than what is deduced from
(S1NSan...NS,) and input set .S; of the corrupted parties.

Remark 1. Even though every s € (51N S2N...NS,) is a root of F(x), there
may exist some s’ € F, such that F(s") = 0, even though s’ ¢ (S1NS2N...NS,).
This is possible if s’ happens to be the common root of all (%) (z)’s. However, as
stated in M], the probability of this event is negligible.
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In ﬂﬂ}, the MPSI problem is solved by securely computing F(x), assuming A; to
be computationally bounded. In ]7 the authors have presented the first informa-
tion theoretically secure protocol for MPSI, assuming A; to be computationally
unbounded and n > 3t + 1. Specifically, the authors have shown how to securely
compute F'(x) in the presence of a computationally unbounded .4;. To the best
of our knowledge, this is the only known information theoretically secure MPSI
protocol. Notice that, although not explicitly stated in /, the MPSI protocol of
/ involves a negligible error probability in CORRECTNESS. This is due to the
argument given in Remark [

Our Motivation and Contribution: The authors in ﬂﬁ] claimed that their
MPSI protocol takes siz rounds and communicates O(n*m?) elements from F.
However, we show that the round and communication complexity of the MPSI
protocol of ﬂﬁ] is much more than what is claimed in [@] We then propose a
new information theoretically secure protocol for MPSI with n > 3t + 1, which
significantly improves the ”actual” round and communication complexity of the
MPSI protocol given in ]

2 Analysis of the MPSI Protocol of [15]

In order to securely compute F(x) given in (IJ) against a computationally un-
bounded A;, the MPSI protocol of [15] is divided into three phases. We briefly
recall the steps performed in first two phases, which are the most expensive
phases in terms of round and communication complexity.

1. Input Phase: Here each party represents his private data-set as a polyno-
mial and t-shares the coefficients of the polynomial among the n parties. To do
so, the parties use a two dimensional verifiable secret sharing (VSS). A two di-
mensional VSS ﬂi 11, @]7 ensures that each party (including a corrupted party)
”consistently” and correctly ¢-shares the coefficients of his polynomial with ev-
erybody. Now, the authors in ﬂﬁ] claimed that this takes two rounds, where in
the first round, each party does the sharing and in the second round verifica-
tion is done by all parties to ensure whether everybody has received correct and
consistent shares (see sec. 4.2 in NED However, no estimation is done for the
communication complexity of this phase. Now it is well known that the minimum
number of rounds taken by any VSS protocol with n > 3t 4+ 1 is at least three
ﬂ@, , ] Moreover, the current best three round VSS protocol with n = 3t 41
requires a private communication of O(n?) and broadcast of O(n?) field ele-
ments ﬁ @] Now in the Input Phase of ﬂﬁ], each party executes (m + 1)
VSS’s to share the coefficients of his secret polynomial. In addition, each party
also executes n(m + 1) VSS’s to share the coefficients of n random polynomials,
each of degree m. These polynomials are used to generate secret random poly-
nomials (V) (z), ..., 7" (z). So the total number of VSS done in Input Phase
is O(n*m). Hence, the Input Phase will take at least three rounds, with a
private communication of O(n®m) and broadcast of O(n°m) field elements. If
the broadcast channel is not available, then simulation of broadcast of a single
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field element requires a private communication of O(n?) field elements and £2(t)
rounds ﬂﬁ] Thus, in the absence of broadcast channel, the Input Phase will
require {2(t) rounds and a communication complexity of O(n7m) field elements.

2. Computation Phase: Given that the coefficients of f(71)(z),..., f()(z),
r(M(z),...,r"(z) are t-shared, in the computation phase, the parties jointly
try to compute F(z) = () (2) fP) (x) 4 r®) (2) f P2 (z) + ... + ) (2) P (2),
such that the coefficients of F'(x) are t-shared. For this, the parties execute a
sequence of steps. But we recall only first two steps, which are crucial in the
communication and round complexity analysis of Computation Phase.

During step 1, the parties locally multiply the shares of the coefficients of
7 (z) and fF)(z), for 1 < i < n. This results in 2¢-sharing of the coefficients
of fF)(x)r® (x) for 1 <4 < n. During step 2, each party invokes a re-sharing
protocol and converts the 2t-sharing of the coefficients of f()(z)r(® () into
t-sharing, for 1 < i < n. The re-sharing protocol enables a party to generate ¢-
sharing of an element, given the ¢’-sharing of the same element, where ¢’ > ¢. In
ﬂﬁ], the authors have given the reference of [@] for the details of re-sharing pro-
tocol and claimed that the re-sharing and other additional verifications will take
only three rounds, with a private communication of O(n*m?) field elements (see
sec. 4.2 of [15]). However, [12] presents a protocol for general secure Multiparty
Computation (MPC), which uses ”circuit based approach” to securely evaluate
a function. Specifically, the MPC protocol of ﬂﬂ] assumes that the (general)
function to be computed is represented as an arithmetic circuit over F, consist-
ing of addition, multiplication, random, input and output gates. The re-sharing
protocol of ﬂﬁ] was used to evaluate a multiplication gate. But the protocol was
non-robust in the sense that it fails to achieve its goal when at least one of the
parties misbehaves, in which case the protocol outputs a pair of parties such
that at least one of them is corrupted. In fact, the MPC protocol of [@] takes
£2(t) rounds in the presence of broadcast channel in the system, whereas in the
absence of broadcast channel it will take £2(¢2) rounds. The authors in [15] have
not mentioned what will be the outcome of their protocol if the re-sharing pro-
tocol (whose details they have not given) fails during the computation phase.
In fact, computing ¢t-sharing of the coefficients of F'(x) by using the ideas of best
known general MPC protocol with n = 3t+1 ﬂi , | will require a communica-
tion complexity of 2(m?n?) field elements and round complexity of §2(¢) rounds
in the presence of a broadcast channel.

To summarize, a more accurate estimation of the round complexity and com-
munication complexity of the MPSI protocol of ﬂﬁ] in the presence and in the
absence of a physical broadcast channel is as follows:

1. If a physical broadcast channel is available in the system, then the Input
Phase will require a private communication of £2(n®m) field elements and
broadcast of 2(n°m) field elements. Moreover, the Computation Phase
will take £2(t) rounds and communication complexity of £2(m?n?).

2. If a physical broadcast channel is not available in the system, then the In-
put Phase will require a private communication of 2(n”m) field elements.
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Moreover, the Computation Phase will take 2(¢?) rounds and communi-
cation complexity of 2(m?n?) field elements.

3 Our Results

We propose a new, information theoretically secure MPSI protocol with n =
3t + 1, tolerating a computationally unbounded A;. Our protocol is based on
the approach of solving the MPSI by securely computing the function given in
(). Moreover, our protocol involves a negligible error probability in correctness.
However, as mentioned in Remark [Il any protocol for MPSI, based on comput-
ing the function in () will involve a negligible error probability. In the following
tables, we compare the round complexity (RC) and communication complexity
(CC) of our MPSI protocol with the estimated RC and CC of the MPSI proto-
col of [@] (as stated in previous section). In the tables, the CC is in terms of
field elements. Moreover, CC/RC with (out) BC stands for communication com-
plexity /round complexity in presence (absence) of physical broadcast channell.

Reference CC with BC RC with BC
Private Broadcast
[15] Q2(n*m 4+ m?n?) 2(n°m) 0(t)

This Paper O((m?n® + n*log(|F|)) O(m?*n® + n*log(|F)) 58

Reference CC without BC RC without BC

Private
[15] 2(n"m) 22
This Paper O(m?*n® 4 n° log(|F)) O(t)

From the table, we find that our MPSI protocol significantly improves the esti-
mated round and communication complexity of the MPSI protocol of ﬂﬁ]

3.1 Our MPSI Protocol vs. Existing General MPC Protocols

The MPSI problem is a particular variant of general secure MPC problem HE]
Informally, in MPC problem, each party P; has a private input x; € F. There is a
publicly known function f : F™ — F™. At the end of computation of f, party P
gets y; € F, such that (y1,...,yn) = f(x1,...,2,). The goal of any general MPC
protocol is to securely compute f, where at the end of the protocol, all parties
(honest) receive correct outputs, irrespective of the behavior of A;. Moreover,
the messages seen by A; during the protocol, should contain no additional in-
formation about the inputs and outputs of honest parties, other than what can
be computed from the inputs and outputs of corrupted parties. The function f
is represented as an arithmetic circuit over the finite field F, consisting of five
type of gates, namely addition, multiplication, random, input and output. The

L If a physical broadcast channel is not available, then we use the protocol of M, B],
which takes O(t) rounds and private communication of O(n?f) bits to simulate
broadcast of £ bit message.
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number of gates of these types are denoted by ca, cyr, cr, ¢r and co respectively.
Any general MPC protocol tries to securely evaluate the circuit gate-by-gate,
keeping all the inputs and intermediate results of the circuit as ¢-shared B, ]

The MPSI problem can be solved using any general MPC protocol. However,
since a general MPC protocol does not exploit the nuances and the special
properties of the problem, it is not efficient in general. Moreover, we do not
know how to customize the generic MPC protocols to solve MPSI problem in an
optimal fashion. However, we outline below a general approach and use the same
to estimate the complexity of MPSI protocols, that could have been derived from
general MPC protocols.

Suppose, we try to solve MPSI by computing the function given in (), us-
ing general MPC protocol. The arithmetic circuit, representing the function in
(@), will roughly require ¢; = n(m + 1) input gates (every party P; inputs
(m + 1) coefficients of f)(z)), cg = n(m + 1) random gates (n polynomials
rM(z),...,r™(z) have n(m + 1) random coefficients), cy; = n(m + 1) mul-
tiplication gates (computing r()(z) (%) (x) requires (m + 1)? co-efficient mul-
tiplications) and co = 2m + 1 output gates (the 2m + 1 coefficients of F(z)
should be output). In the following tables we give the round complexity (RC)
and communication complexity (CC) of best known general MPC protocols with
n = 3t + 1, to securely compute (I]) with above number of gates.

Reference CC with BC RC with BC
Private Broadcast
3] O(n°m?) O(n°m?) O(1)
[12] O(n'*m?) O(n?) O(n)
8] O(n*m?) O(n?) O(n)
2 O(n?m?) O(n?) O(n)

This Paper O(m?*n® + n*log(|F|)) O(m?*n® 4+ nlog(|F|)) 58

Reference CC without BC RC without BC

Private
3] O(n™m?) o)
12) O(n®m?) O(n?)
8] O(ntm?) O(n?)
2] O(n*m? +n®) O(n?)
This Paper O(m?*n® 4 n° log(|F)) O(n)

From the table, we find that our protocol incurs much lesser communication
complexity than the protocol of E], while keeping round complexity same. But
the protocols of @, , ] provides slightly better communication complexity than
ours at the cost of increased round complexity. Round complexity and communi-
cation complexity are two important parameters of any distributed protocol. If
we ever hope to practically implement MPSI protocols, then we should look for
a solution, which tries to simultaneously optimize both these parameters. In this
context, our MPSI protocol fits the bill more appropriately, than the protocols
mentioned in the table.

Though our main motive in this paper is to present a clean solution for MPSI,
as a bi-product we have shown that our protocol simultaneously improves both
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communication and round complexity, whereas existing general MPC' protocols
(when applied to solve MPSI) improve only one of these two parameters.

3.2 Overview of Our Protocol

As mentioned earlier, our MPSI protocol tries to securely compute the function
given in (). Our protocol is divided into three phases, namely (a) Input and
Preparation phase; (b) Computation Phase and (c¢) Output Phase. In the Input and
Preparation phase, the parties t-share the coefficients of their input polynomials.
Moreover, the parties jointly generate the t-sharing of the secret random r(*) (z)
polynomials. To achieve the first task, we design a new protocol called 1DShare,
which further uses a new information checking protocol (ICP) called Multi-Secret-
Multi-Verifier-ICP. The second task is achieved by a sub-protocol called Random.
In the Computation Phase, the parties generate the t-sharing of the coefficients
of 7 (x)f®(z). For this, we use sub-protocol Mult, which is a combination
of few existing ideas from the literature and few new ideas presented in this
paper. Finally, in the Output Phase, the coefficients of F(z) are reconstructed
by each party, by using sub-protocol ReconsPublic. In the next section, we give
the technical details of each of the above mentioned sub-protocols.

4 Tools Used

Here we present a number of sub-protocols each solving a specific task. Finally,
we combine them to design our MPSI protocol. All the sub-protocols that are
presented here are designed to concurrently deal with £ > 1 values. In the litera-
ture, the sub-protocols that achieve the same functionality as ours, were designed
to deal with single value at a time. Our sub-protocols, concurrently dealing
with ¢ values, are better in terms of communication complexity, than £ concur-
rent executions of the existing sub-protocols working with single value. Thus,
our sub-protocols harness the advantage offered by dealing with multiple values
concurrently (this fact will be more clear in the following sections).

For convenience, we analyze the round and communication complezity of the
sub-protocols assuming the existence of physical broadcast channel in the system.
While presenting the sub-protocols, we assume that all computations and com-
munications are done over a finite field F, where F = GF(2") and & is the error
parameter. Thus, each field element can be represented by log(F) = O(k) bits.
Moreover, without loss of generality, we assume that n = poly(k).

4.1 Information Checking Protocol and IC Signatures

Information Checking Protocol (ICP) is a tool for authenticating messages in
the presence of A;. The notion of ICP was first introduced by Rabin et.al HE]
As described in ﬂﬂ, }, an ICP is executed among three parties: a dealer D, an
intermediary I NT and a verifier R. The dealer D hands over a secret value s € F
to INT. At a later stage, INT is required to hand over s to R and convince R
that s is indeed the value which INT received from D.
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The basic definition of ICP involves only a single verifier R and deals with
only one secret s ﬂﬂ, ] We extend this notion to multiple verifiers, where all the
n parties in P act as verifiers. Thus our ICP is executed among three entities:
the dealer D € P, an intermediary INT € P and entire set P acting as verifiers.
This will be later helpful in using ICP as a tool in our MPSI protocol. Moreover,
we extend our ICP to deal with multiple secrets, denoted by S, which contains
¢ > 1 secret values. Thus, our ICP is executed with respect to multiple verifiers
and deals with multiple secrets concurrently. We call our ICP as Multi-Secret-
Multi-Verifier-ICP. Now similar to the ICP defined in ﬂi @}7 our Multi-Secret-
Multi-Verifier-ICP is a sequence of following three protocols:

1. Distr(D,INT, P, S): is initiated by D, who hands over secret S = (s!) ...
5(9), containing £ > 1 elements from F to INT. In addition, D hands over some
authentication information to INT and verification information to the
individual parties (verifiers) in P.

2. AuthVal(D,INT, P, S): is initiated by INT to ensure that in RevealVal, secret
S held by INT will be accepted by all (honest) parties (verifiers) in P.

3. RevealVal (D, INT, P, S): is carried out by INT and the verifiers. Here INT
produces S, along with authentication information and individual verifiers
in P produce verification information. Depending upon the values produced
by INT and verifiers, either S is accepted or rejected by all the parties.

The authentication information, along with .S, which is held by INT at the
end of AuthVal is called D’s IC signature on S, denoted as ICSig(D,INT,S).
Multi-Secret-Multi-Verifier-ICP satisfies the following properties (which are almost
same as the properties, satisfied by the ICP of [B, @])

1. If D and INT are uncorrupted, then S will be accepted in RevealVal by each
honest verifier.

2. If INT is uncorrupted, then at the end of AuthVal, INT knows an S, which
will be accepted in RevealVal by each honest verifier, except with probability
2 92(k),

3. If D is uncorrupted, then during RevealVal, with probability at least 1 —
2-9(1) every S’ # S produced by a corrupted INT will be rejected by each
honest verifier.

4. If D and INT are uncorrupted, then at the end of AuthVal, A; has no
information about S.

We now present our novel protocol Multi-Secret-Multi-Verifier-ICP, with n = 3t +
1. The high level idea of the protocol is as follows: D selects a random polynomial
F(z) of degree £ 4+ nk over F, whose lower order ¢ coefficients are elements of
S. In addition, D also selects a random polynomial R(x) of degree £ + nk over
F, which is independent of F(z). D hands over F(z) and R(x) to INT. D then
associates k random evaluation points with each verifier P; and gives the value
of F(x), R(x) at those evaluation points to P;. This prevents with very high
probability, a corrupted INT', to produce an incorrect F'(x) during RevealVal,
without being un-noticed by an honest verifier P;. This ensures third property
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of ICP. In order to ensure second property, an honest INT has to ensure that
his F(z) is consistent with the evaluation points of the honest verifiers. For
this, INT and the verifiers interact in a zero knowledge fashion and check the
consistency of F(z) and secret evaluation points. To maintain the secrecy of S
during the zero knowledge interaction, I NT uses the R(z) polynomial.

Multi-Secret-Multi-Verifier-ICP(D, INT, P, £,5 = (s"V, ... s®))

Distr(D,INT,P,¢,S) Round 1: D selects a random polynomial F(z) of degree
¢ + nk over F, whose lower order ¢ coefficients are elements of S. In addition, D
selects another random polynomial R(x) of degree ¢ + nr over F. D also selects nk
random, non-zero, distinct evaluation points from F, denoted by «; 1, i2,..., aix,
for 1 < ¢ < n. D privately gives F(z) and R(x) to INT. To verifier P; € P, D
privately gives (au,,ai,bi1), for L =1,..., K, where a;; = F(a;,;) and b;; = R(a,).

AuthVal(D,INT,P,¢,S) Round 2: INT chooses a random d € F \ {0} and
broadcasts (d, B(x) = F(x) + dR(x)). Parallely, each verifier P; € P broadcasts a
random subset of indices 1, ..., lg , the evaluation points «;,, ..., @i, and the values
Qilyy ey @it a0 b1y, .oy bi1, . Notice that each verifier randomly selects the subset

of indices I, ..., L, independent of other verifiers.

Round 3: D checks if for at least 2t + 1 verifiers P;, it holds that a; ; +db;; = B(au,),
for all [ in the set of random indices broadcasted by P; in Round 2. If the above
condition is not satisfied for at least 2¢ 41 verifiers, then D broadcasts the polynomial

Local Computation (by each party): Ir F(z) is broadcasted in Round 3, then
INT replaces the F(x) received from D during Round 1, with the F'(z) which is
broadcasted in Round 3. Accordingly, each verifier P; adjust his a;; (as received in
Round 1), for | = 1,...,k, such that F(a;;) = a;; holds. ELSE say that verifier P;
accepts INT if a;; 4+ db;,; = B(a,), for all [ in the set of random indices, broadcasted
by P; in Round 2.

The polynomial F(z) is called D’s IC signature on S = (sV,... s) given to
INT, which is denoted by ICSig(D,INT,S).

RevealVal(D, INT,P,¢,S): (a) Round 4: INT broadcasts F(z); (b) Round 5: Each
verifier P; € P broadcasts all the evaluation points «a;; which were not broadcasted
during Round 2 and a;,; corresponding those indices.

Local Computation (by each party): Say that verifier P; re-accepts INT if for
at least one of the newly revealed (by P;) points, it holds that a;; = F(as,;). If
there are at least ¢ + 1 verifiers who re-accepts INT, then accept the lower order ¢
coefficients of F(z) as S = (s, ..., s¥). In this case, we say that D’s signature on
S is correct. Else reject F'(x) broadcasted by INT and we say that INT has failed
to produce D’s signature.

Lemma 1 (Property 1). If D and INT are honest, then each honest verifier
will accept S at the end of RevealVal, without any error.

Lemma 2 (Property 2). If D is uncorrupted, then at the end of AuthVal,
INT knows an S, which will be accepted in RevealVal by each honest verifier,
except with probability 2~ %)
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PROOF: If D is honest, then the proof follows from Lemma/[ll So we consider the
case when D is corrupted. Now there are two possible sub-cases. If D broadcasts
F(z) during Round 3, then the lemma holds trivially, without any error. So
we consider the case, when D (corrupted) has not broadcasted F(z) during
Round 3. This implies that at least 2¢ 4+ 1 verifiers have accepted INT during
AuthVal. Now, out of these 2t 4+ 1 verifiers, at least ¢t + 1 are honest. If we can
show that these honest verifiers will re-accept INT during RevealVal with high
probability, then the proof is over. So we now proceed to prove the same.

In order that an honest P; accept INT during AuthVal but does not re-accept
it during RevealVal, it must be the case that the data (evaluation points and
values) that P; exposed during AuthVal satisfies the polynomial B(z) that INT
broadcasted during AuthVal, but on the other hand, out of the remaining evalu-
ation points that are used by P; in RevealVal, none satisfy the polynomial F(x)
produced by INT'. That is, for the selected 7 indices [1,...,l5, it holds that
a;; + db;; = B(ayy), for all [ in the set of indices {l1, ...Jg} and F(a;;) # aiy
for all [ in the remaining set of indices. Notice that INT chooses d indepen-

dently of the values given by D. Also, P; chooses the 7 indices randomly out

of k indices. So the probability that the above event happens is ( L ) A 27 0(R)
w/2

which is negligible. This shows that with high probability all honest verifiers (at

least ¢ + 1), who have accepted INT during AuthVal, will re-accept INT during

RevealVal, thus proving our lemma. |

Lemma 3 (Property 3). If D is uncorrupted, then during RevealVal, with
probability at least 1 — 2=2")  every S" # S produced by a corrupted INT will
be rejected by each honest verifier.

PROOF: If a corrupted INT produces S’ # S during RevealVal, then it implies
that INT has broadcasted F'(x) # F(x) during Round 4. Moreover, while
broadcasting F'(x), INT will have no information about the § random secret
evaluation points (which were not broadcasted during AuthVal), corresponding to
each honest verifier. Without knowing the  secret evaluation points of an honest
verifier, say P;, the probability that INT will be re-accepted by P; is at most

ZT]F’IL'“. Thus, the total probability that any honest verifier will accept INT (who

broadcasts F'(x) # F(x)) is (f+"’7]l‘(l2t+1) ~ 9-02(k) -

Lemma 4 (Property 4). If D and INT are honest, then A; will have no
information about S at the end of AuthVal.

PROOF: For simplicity, let the first ¢ verifiers are corrupted. So in the Round 1,
the adversary will know xt points on F'(z) and R(x). In Round 2, the adversary
will come to know about additional 4 (2¢+1) points on F'(z) and R(z). Moreover,
since D and INT are both honest, 2t + 1 honest verifiers will accept INT and
hence D will not broadcast F'(x) during Round 3. So at the end of AuthVal,
adversary will know st + 5 (2t 4 1) points on each of F'(z) and R(x). However,
since n = 3t+1 and degree of F'(z) and R(x) is {+nk, the adversary will have no
information about the lower order ¢ coefficients of F'(x). O
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Lemma 5. Protocol Multi-Secret-Multi-Verifier-ICP takes five rounds and cor-
rectly generates IC signature on £ field elements, by privately communicating
O((¢ + nk)k) bits and broadcasting O((¢ + nk)k) bits. The protocol works
correctly, except with error probability of 2~ ().

Important Notation: In the rest of the paper, whenever we say that D hands
over ICSig(D,INT,S) to INT, we mean that Distr and AuthVal are executed
in the background. Similarly, INT reveals ICSig(D,INT,S) can be interpreted
as INT, along with other parties, invoking RevealVal.

Remark 2 (Comparison with Existing ICP). The current best known ICP is due
to ﬂ], which privately communicates and broadcasts O(nk) bits, to generate IC
signature on a single secret (though the ICP of ﬂ] is designed with n = 2t+41, the
protocol when executed with n = 3t 4 1, will result in the same communication
complexity). Had we executed ¢ times the ICP of [B], dealing with single secret,
the communication complexity would turn out to be O(¢nk) bits (both private
and broadcast). However, the communication complexity of Multi-Secret-Multi-
Verifier-ICP considering all the ¢ secrets concurrently is O((¢ + nk)x) bits (both
private and broadcast). This clearly shows that if ¢ is significantly large, which is
the case in our MPSI protocol, then executing a single instance of Multi-Secret-
Multi-Verifier-ICP, dealing with multiple secrets concurrently, is advantageous
over executing multiple instances of ICP of ﬂﬂ], dealing with single secret. The
same principle holds for other sub-protocols, which are described in the sequel.

4.2 Generating ¢ Length Random Vector

We now present a protocol called RandomVector(P, £), which allows the parties
in P to jointly generate a vector, containing ¢ random elements from F. Fol-
lowing the idea of B], protocol RandomVector uses Vandermonde Matrix and its
capability to extract randomness.

(7‘<1), . ,r“)) = RandomVector(P, ¢)

1. Every party P; € P selects L = [zziﬂ random elements r(l’Pi>, . ,T(L’Pi> from
F.

2. Every party P; € P as a dealer invokes Sharing Phase of four round VSS protocol
of ll_JJ] with n > 3t + 1 for sharing each of the values "), . p(EFi)

3. For reconstructing the values r&F9) . p(E:F0) (shared by P; in Sharing Phase),
the Reconstruction Phase of four round VSS of Il_J.H with n > 3t+1 is invoked for L
times separately. Now corresponding to every P; € P, the values r(bF3) . p(5:F0)
are public.

4. Now parties compute (7'(1’1), A p(L2HD = 7‘<1’P1), . ,7‘<1’P”> Vv,
(rEY @2y = (p&PO eGPy (D (B2
(rEPO (B PR) Y Here Vois a nox (2t 4 1) publicly known Vandermonde
matrix over F.

The values rMD . p02HD 0 p (B (264D congtitute the elements of ¢

length random vector.
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Protocol RandomVector also uses the four round perfect VSS (verifiable secret
sharing) protocol of ] (see Fig 2 of]) as black box. The perfect VSS (see
the definition of VSS in Section 2.1 of ]) with n > 3t+1 parties consists of two
phases, namely Sharing Phase and Reconstruction Phase. The Sharing Phase takes
four rounds and allows a dealer D (which can be any party from the set of n par-
ties) to verifiably share a secret s € F by privately communicating O(n? log |F|)
bits and broadcasting O(n?log |F|) bits where |F| > n. The Reconstruction Phase
takes single round and allows all the (honest) parties to reconstruct the secret s
(shared by D in Sharing Phase) by broadcasting O(nlog |F|) bits in total. Notice
that, in our context, |F| = 2% > n. The VSS protocol has an important property
that once D (possibly corrupted) shares a secret s during Sharing Phase, then D
is committed to s. Later, in the Reconstruction Phase, irrespective of the behavior
of the corrupted parties, the same s will be reconstructed. Thus a corrupted D
will not be able to change his commitment from s to any other value, with the
help of corrupted parties, during Reconstruction Phase.

Lemma 6. Protocol RandomVector generates £ length random wvector in five
rounds and privately communicates O({n?k) bits and broadcasts O(fn’k) bits.

4.3 Unconditional Verifiable Secret Sharing and Reconstruction

Definition 1 (d-1D-sharing [1]). : We say that a secret s is d-1D-shared, if
there exists a degree-d polynomial f(x), with f(0) = s, such that each (honest)
P; in P holds the it" share f(i) = s; of s. The vector (s1, 82, ..,5y,) of shares is
called a d-sharing of s and is denoted as [s]q. We may skip the subscript d when
it is clear from the contet.

If s is d-1D-shared by D € P, then we denote it as [s]}. In the sequel, we
describe a new protocol 1DShare, which allows a dealer D € P to t-1D-share /
secret values s ..., s(¥) where ¢ > 1, with very high probability. If D behaves
correctly during the protocol, then each honest P; € P will hold i** shares
81(1)7 o sy), of sV, ..., s (respectively), at the end of the protocol.

Notice that the desired sharing for each s (separately) can be produced using
a perfect (i.e., without any error) VSS protocol with n > 3t + 1 E, m, @]
However, this will involve more communication complexity than 1DShare which
performs the same task with less communication complexity (but with a negligible
error probability). 1DShare achieves this by incorporating one of the ideas used
in B] and using Multi-Secret-Multi-Verifier-ICP as building block.

The goal of 1DShare is as follows: (a) If D is honest, then the protocol
generates [s()];,...,[s()]; with very high probability, such that the secrets
sM ... 5@ remain information theoretically secure from A;. (b) If D is cor-
rupted and has not generated t-1D-sharing of secrets, then with high prob-
ability, D will be detected as corrupted during a public verification process.
Moreover, every honest party accepts a pre-defined ¢-1D-sharing of ¢ 1’s, namely
(1], [1]¢, - - -, [1]¢ (£ times), on behalf of D.

Informally, the protocol works as follows: D chooses £+ 1 random polynomials
FOx),..., fO(x) over F, each of degree t, such that f(©)(0) = and 1 (0) =
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sW for 1 =1,...,¢. Here r is a random non-zero element from F. D then hands
over his IC signature on i*" points of f)(x) polynomials concurrently to party
P;. After this, the parties jointly produce a non-zero random value z. Now D
is asked to broadcast a linear combination of the £ + 1 polynomials, where the
scalars of the linear combination are function of z. At the same time, each party
P; is asked to broadcast his corresponding linear combination of points. Ideally,
the linear combination of points, broadcasted by the individual parties, should lie
on the linear combination of the polynomial broadcasted by D. If this happens,
then with very high probability, D has correctly t-1D-shared each s(). Otherwise,
there is a party, say P;, for which the above condition is not satisfied. In this case,
P; is asked to reveal D’s signature on the i*" points of f(l)(a:) polynomials that
he has received from D. In case P, is able to correctly produce the signature, D is
detected to be corrupted and the protocol terminates, with each party assuming
predefined t-1D-sharing of ¢ 1’s, namely [1];, [1],. .., [1]+, on behalf of D.

([sM1P, ..., [s)P) = 1DShare(D, P, (51 5@ .. s0)

1. For | = 1,...,¢, D picks a random polynomial f{(z) over F of degree-t, with
f<l)(0) = s, D also chooses a random polynomial f( (z) of degree-t with
F©(0) = r where r is a random, non-zero element from F. For i = 1,...,n,
let S; = (74, 551), 552), R sz(z)), where r; = f(© (7) and 31@ = f® (7). D hands over
1CSig(D, P;, S;) to party P;.

2. All the parties in P invoke RandomVector(P, 1) to generate a non-zero random
value z € F.

3. D broadcasts the polynomial f(z) = f©(z) + 20, fO(2)2' = S0, fO(x)2"
Parallely, every party P; computes and broadcasts y; = r; + Zle sgl)zl.

4. If the polynomial f(z) broadcasted by D is of degree more than ¢, then each party
agrees that D is corrupted and outputs ¢t-1D-sharing of £ 1’s i.e [1]¢, [1]¢, ..., [1]:.
The protocol terminates here.

5. Every party checks whether f(4) e y; for all i = 1,...,n. If yes then every-
body accepts the t-1D-sharings [sm]t, [3(2)],5, R [s(a]t and the protocol termi-
nates. Otherwise, let P; € P, such that f(i) # y;. In this case, P; reveals
ICSig(D, P;, S;). If P; succeeds to prove D’s signature on S; = (73, sil), ce sy))
and f(i) # i + Zle sgl)zl, then each party agrees that D is corrupted and
outputs t-1D-sharing of ¢ 1’s i.e [1]¢, [1]¢,...,[1]: (¢ times) and the protocol ter-
minates here. We say that P; has raised a valid complaint against D. But if the
signature is invalid then ignore P;’s complaint against D and everybody accepts

[8(1)]t, ey [S(E)]t.

Lemma 7. In protocol 1DShare, if D is honest, then t-1D-sharing of sV, ...,
s are generated, except with error probability of 2~ . Moreover, A, will
have no information about the secrets. On the other hand, if D is corrupted and
any of the values r, s, ... s is not t-1D-shared, then D will be caught, ex-
cept with error probability of 2~ The protocol takes eleven rounds, privately
communicates O((In + nk)k) bits and broadcasts O((fn + n?k)K) bits.

Proor: The communication and round complexity can be checked easily by
inspection. We now prove the correctness. If D is honest, then f(i) = y; will
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hold, corresponding to every honest P;. However, a corrupted party P; may
broadcast incorrect y; # y; , such that y! # f(i). Moreover, P; can forge honest
D’s IC signature on corresponding incorrect r; # r; or/and s;(j) #* sgj), for
j =1...4. In this case, everybody will reject the sharing done by D. However,
from properties of Multi-Secret-Multi-Verifier-ICP protocol, this can happen with
probability 272, The secrecy of s(1), s ... s for an honest D, follows from
the fact that A, will have only ¢ shares for each s(9,1 < i < n and random r. In
addition, the value f(0) is blinded with a random value 7, chosen by D. Thus,
A; will have no information about the secrets.

Next, we consider the case, when D is corrupted and the sharing of at least
one of the values 7, s(), s s is not a correct ¢-1D-sharing, i.e., the shares
of the honest parties lie on a polynomial of degree higher than ¢. Let H be the
set of honest parties in 7. Moreover, let h°(z), ..., h*(z) denote the minimum
degree polynomial, defined by the points on f(9(z),..., f()(x) respectively, held
by the parties in H. Then according to the condition, degree of at least one of the
polynomials h°(z), ..., h?(z) is more than t. Moreover, degree of h%(z), ..., h’(z)
can be at most | H|—1. This is because | H| distinct points can define a polynomial
of degree at most |H|— 1. Now the value y; broadcasted by an honest P; can be
defined as y; = Zﬁ:o 2T hI (7).

We next claim that if degree of at least one of h®(z), ..., h*(z) is more than t,
then the minimum degree polynomial, say A" (x), defined by y;’s, correspond-
ing to P; € H will be of degree more than ¢, with very high probability. This will
clearly imply that f(x) # h™"(x) and hence y; # f(i), for at least one P; € H.

So we proceed to prove that h™ () will be of degree more than ¢, when one
of h®(x),..., h*(x) has degree more than ¢. For this, we show the following:

1. We first show that h®/(z) = £4_,29h7 (x) will of degree more than ¢ with
very high probability, if one of h®(x), ..., h*(x) has degree more than t.

2. We then show that h™"(x) = h?®f(z), implying that h™"(z) will be of
degree more than t with very high probability

The first claim is easy to prove. If one of h%(z),. .., h*(z) has degree more than
t, then the linear combination of these polynomials, namely h%7(z), can be
written as h®f (z) = h{*/ () + h9°f (). Here h“! (z) contains all the coefficients
of h®/(z), having exponent more than ¢, while hgef (z) contains all the remaining
coefficients of h®f (z). Now h?¢f (z) will be of degree-t, if h*/ (x) = 0, which can
happen for at most ¢ possible values of z. Since z is generated randomly from
F \ {0}, independent of h°(z), ..., h‘(z), the probability that h{*/(z) = 0 is at
most |IF|€—1 ~ 2 ?() This implies that h®/(z) will be of degree t,, > t. Notice
that each y; broadcasted by an honest P;, will lie on h9¢7 (z).

Now we will show that A" (x) = hf(z) and thus h™"(z) has degree at
least ¢,,, which is greater than ¢. So consider the difference polynomial dp(z) =
hief (x)—h™" (x). Clearly, dp(z) = 0, for all = i, where P; € H. Thus dp(x) will
have at least |H| roots. On the other hand, maximum degree of dp(x) could be
tm, which is at most |H|—1. These two facts imply that dp(x) is zero polynomial,
implying that h?¢/(z) = h™™(x) and thus h™" () has degree t,, > t.
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Since h™" (z) has degree more than ¢, it implies that h™(z) # f(x) (which
is of degree-t and broadcasted by D). This further imply that f(i) # y;, for at
least one P; € H. So P; will raise a valid complaint against D by revealing
I1CSig(D, P;, S;), where S; = (4, 5§1)7 R 51@). Since P; is honest, the signature
will be revealed successfully, except with an error probability of 2~(%) (this
follows from the properties of Multi-Secret-Multi-Verifier-ICP). Moreover, every-
body will publicly verify that f(i) # r; + Zle sgl)zl and hence will catch the
corrupted D with very high probability. |

Reconstruction of ¢-1D-Sharing: We now present a protocol called Recon-
sPublic, that reconstructs a secret s, given [s]¢. In the protocol, every party broad-
casts his share of s. Now out of these n shares, at most ¢ could be corrupted.
But since n = 3t + 1, by applying Reed-Solomon error correction algorithm (e.g.
Berlekamp Welch Algorithm ﬂﬂ]), s can be recovered.

s = ReconsPublic(P, [s]¢)

Each party P; broadcasts his share s; of s. The parties apply error correction to
reconstruct s from the n shares.

Lemma 8. ReconsPublic takes one round and broadcasts O(nk) bits.

Important Notation: We now define few notations which are used in subse-
quent sections (these notations are also commonly used in the literature). By say-
ing that parties in P compute (locally) ([yM]a,..., [y )a) = o([zV]4,...,
[#(9]4) (for any function ¢ : F¢ — F*'), we mean that each P; computes (y\", .. .,
yi(e,)) = go(a:gl), ce acy)). Note that applying an affine (linear) function ¢ to a
number of d-1D-sharings, we get d-1D-sharings of the outputs. So by adding two
d-1D-sharings of secrets, we get d-1D-sharing of the sum of the secrets, i.e. [a]q +
[bla = [a + b]q. However, by multiplying two d-1D-sharings of secrets, we get
2d-1D-sharing of the product of the secrets, i.e. [a]q[b]a = [ab]24- O

4.4 Upgrading t-1D-Sharing to t-2D-Sharing

Definition 2. A wvalue s is d-2D-shared among the parties in P, if there exists
degree-d polynomials f, f*, f2..., f™ with f(0) = s and fori=1,...,n, fi(0) =
f(@). Moreover, every (honest) party P; € P holds a share s; = f(i) of s, the
polynomial fi(x) for sharing s; and share-share sj; = f7(i) for the share s; of
every other (honest) party P;. We denote d-2D-sharing of s as [[s]]a.

If a secret s is d-2D-shared by a party D € P, then we denote it as [[s]].

Notice that if s is d-2D-shared, then its i*” share s; is d-1D-shared. We now
present a new protocol, called UpgradelDto2D for upgrading ¢-1D-sharing to ¢-
2D-sharing. Specifically, given t-1D-sharing of £ secrets, namely [s(D];, ..., [s)],
Upgrade1Dto2D, outputs t-2D-sharing [[s™V]]¢, [s®]]s, ..., [sV]];, except with
probability of 27°(%) Moreover, A; learns nothing about the secrets during
UpgradelDto2D. Furthermore, if a party tries to cheat during the protocol, then
with very high probability, he will be caught.
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Lemma 9. Protocol UpgradelDto2D upgrades t-1D-sharing of £ secrets to t-2D-
sharing, except with negligible error probability. The protocol consumes twenty
eight rounds, privately communicates O((fn?+n3k)k) bits and broadcasts O((¢n?
+n3K)K) bits. Moreover, A; learns nothing about the secrets.

PROOF: The communication and round complexity of the protocol is easy to
follow. We now prove the correctness. Provided ¢ t-1D-sharing [sV];, [s®];, ...,
0) (M) (”)

’Z ""Z

[s(9];, every honest party P; correctly t-1D-shares his shares s;

Now for every honest party P, the value s, = (O) Z r(l) (l will be
reconstructed correctly, where sj, is the h'" share of 5 = 8(0) + Z ()s(l)
But a corrupted party P. may share s( ) st ), ceey sg) with s ;ﬁ sc for bome

1€{0,1,...,¢}. In this case with very hlgh probability s, = s 4 Z (mWs

will not be equal to s. (which is the actual ¢! share of s) as the £ length vector
(r(l), ceey r(z)) is chosen uniformly at random. Hence Reed-Solomon Error correc-
tion algorithm will point 5. as a corrupted share, in which case P, will be caught.
It is easy to see that at any stage of the protocol, A; learns not more than ¢ shares
for each s(l), 1 <[ < /. Hence all the secrets will be secure. O

(s e, 8P, - -+, [[8))¢) = UpgradelDto2D(P, £, [sV]¢, [sP]s, ..., [s¥]¢)

1. Bach P; € P invokes 1DShare(P;, P, 1, 5(07)) to generate [s>:7)],, where s(*7+) ¢
F\ {0} is a random value.
2. The parties in P computes [s(V]; = Zyzl[s(O’Pj)]t.

3. Now every P; invokes 1DShare(P;, P, ¢ + 1,850),851),...,550) to generate

[sgo)]t,[sgl)]t, s (>]t, where 5(0)7 51),...,550 are the i'" shares of secrets
50 g ,...,s“) respectively.
4. Now to detect the parties P, (at most ¢), who have generated
s ts st tyeens 597, such that s s for some | € 0,1,...,¢}, the
k k k k k
parties in P jointly generate an ¢ length random vector (r(l),...,r(z)) by

invoking Protocol RandomVector(P,¢). Now all the parties publicly reconstruct

Si = 81(0) + Zle r(l)sgl) and s = s(¥ + Zle r® s by executing following steps:

(a) The parties in P compute [s;]; = [s{”]; + S, r® [s)]; and invoke
ReconsPublic(P, [si]+) to publicly reconstruct s;, for i =1,...,n.

(b) Every party apply Reed-Solomon error correction algorithm (e.g. Berlekamp
Welch Algorithm ﬂﬂ}) to s1,S2,...,Sn, to recover s. Reed-Solomon error cor-
rection algorithm also points out the corrupted shares. Hence if s; is pointed
as a corrupted share, then [s (O)]t, [sgl)]t, ce [sy)]t are ignored by every party.

5. Output [[s]e, [[s]]e, ..., [[s"])e.

Remark 3 (Comparison with Existing Protocols). In ﬂ], the authors have given
a protocol to upgrade d-1D-Sharing to d-2D-Sharing, where n = 2¢t+ 1. However,
the protocol is non-robust. That is, if all the n parties behave honestly, then the
protocol will perform the upgradation. Otherwise, the protocol will fail to do the
upgradation, but will output a pair of parties, of which at least one is corrupted.
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4.5 Proving c = ab

Given t-1D-sharing of ¢ pairs, ([aM]P, [pMV)P), ..., ([aD]P, [pO]P), let V) =
a®b® forl =1,...,¢. D € P now wants to generate [c(D]P, ... [¢D]P such that
the (honest) parties in P know that the shared ¢V values satisfy ¢! = a(p®
for | = 1,...,0. If D is honest, then during this process all ¥, b® and ¢®
values should remain secure.

We propose a protocol ProveCeqAB to achieve the above task. The idea of the
protocol is inspired from ﬂ], where a protocol for the same purpose is proposed,
with a single pair of values, namely (a,b). Our protocol concurrently deals with
¢ pairs, which leads to a gain in communication complexity. Our protocol uses
1DShare as a building block.

([cm]?, ey [c(a]?) = ProveCeqAB(D,P, ¢, [am]?, [b(l)]?, e [a“)]?, [b(a]?)

1. D chooses a random non-zero £ length tuple (5<1), e ,B(Z)) e F. D
then invokes 1DShare(D,P,¢, ¢V, ..., ¢¥), 1DShare(D,P,¢,3M,...,5¥) and
1DShare(D, P, £,60 30 . b 3O) to verifiably t-1D-share (cV),... c®),
(5<1), e ,B“)) and (b(l)ﬁm, e ,b“)ﬁ“)) respectively. If in any of these 1DShare
protocol, D is found to be corrupted, then every party conclude that D fails in
this protocol and hence this protocol terminates.

2. Now all the parties in P invoke RandomVector(P, 1) to generate a random value
rel.

3. For every | € {1,...,£}, all parties locally compute [Y V], = (r[a®]; + [8"]:)
and invoke ReconsPublic(P, [V (V];) to reconstruct Y. Parallely, D broadcasts
the values Z0 = (ra® + M), ..., 20 = (ra'® 4+ 5¥). All the parties check
whether Z® £ Y@ If not then every party concludes that D fails in this protocol
and hence the protocol terminates.

4. For every | € {1,...,£}, the parties locally compute [XU], =

(Y”) O], — pOBY], — r[c”)]t) and invoke ReconsPublic(P,[X®];) to recon-

struct X . The parties then check X® Z 0. If not then every party concludes
that D fails in this protocol and hence the protocol terminates. Otherwise D has
proved that ¢V = ¢Dp®.

Lemma 10. In protocol ProveCegAB, if D does not fail, then (a®,b®), ¢!
satisfies ¢V = aWb®) for 1 = 1,...,¢, except with negligible error probability.
ProveCeqAB takes eighteen rounds, privately communicates O((fn + n?k)k) bits
and broadcasts O((fn +n?k)k) bits. Moreover, if D is honest then A; learns no
information about a¥, bW and ¢, for 1 <1< 4.

4.6 Multiplication

Given t-1D-sharing of ¢ pairs of secrets, say ([a™)];, [p™M]y), ..., ([a]:, [p©],),
we now present a protocol called Mult which allows the parties to compute t-1D-
sharing [c(M];, ..., [¢!D]; such that ¢() = aWp®) for [ = 1,..., £ Our protocol is
motivated from the protocol of ﬂ], which deals with a single pair of t-1D-sharing.
However, our protocol concurrently deals with ¢ pairs of ¢-1D-sharing. This leads
to a gain in communication complexity.
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Lemma 11. Except with negligible error probability, Mult produces [c(l)]t, ceey

@), from £ pairs ([aD]y, [BD],),..., ([aD], [0©);). The protocol takes 46
rounds, privately communicates O((¢n? + n3k)k) bits and broadcasts O((n? +
n3k)k) bits. Moreover, A; learns nothing about ¢V, a®) and b, for 1 <1< (.

([c(l)]iv R [C(E)]i) = MUIt(,Pvgv ([a(l)]f» [b(l)]t)» ) ([a(g)]t» [bu)]i))

1. Al the parties invoke  UpgradelDto2D(P, ¢, [a(l)]t, e [a(f)]t) and
UpgradelDto2D(P, ¢, [bm]t, RN [b“)]t) to upgrade t-1D-sharings of 2/ wval-
ues to t-2D-sharings, i.e., to generate [[a™M]]s,...,[[a'?]]¢ and [[BM]], ..., [
respectively.

2. Let (ag W .,aﬁp) and (b(ll),...,bg>) denote the 1D sharings of a) and b re-
spectlvely. Since a" and b is t-2D-shared, their i*" shares ail) and bgl) are
t-1D-shared (see the definition of ¢-2D-sharing). The parties in P locally compute
[6D]ae = [aD]e[pV]e for § = 1,...,¢ where [¢D]2; = (a"b(", ... aLb).

3. Each party P; has in his possession ‘" share of [c(l>]2t i.e. ail)bgl) for | =

.,¢ where both ail) and bil) are already t-1D-shared by P; during Pro-
tocol UpgradelDto2D executed in step 1 of this protocol. Now each party
P; invokes ProveCeqAB(P;, P, ¢, [a 51)] [b(l)] e (Z)]t ,[b(é)] ‘) to produce
e 51)] ,...,[ciz)]fi such that cEl) = El)bil) for I =1,...,£. At most ¢ (corrupted)
parties may fail to execute ProveCeqAB. For simplicity assume first 2¢ + 1 parties
are successful in executing ProveCeqAB.

4. Now for each | € {l1,...,¢}, first (2t + 1) parties have produced

P
(01 e El2)t+1)] 4D 8o for | = 1,...,£, parties in P compute [cV]; as

P n _
follows: [cV], = m[e/"]* + ... + rapale 22)t+1>] GO Here i = TI7L 0 i)
The vector (71,...,72t41) is called recombination vector [!a] which is public and

known to every party

4.7 Generating Random t-1D-Sharing

We now present a protocol called Random(P, £), which allows the parties in P to
jointly generate ¢ random t-1D-sharings, [r(V];, ..., [r(¥)];, where each r(!) € FF.

Random(P, ¢)

Every party P; € P invokes 1DShare(P;, P, £, P . r(&P) o verifiably t-1D-
share ¢ random values 7" P> ~,r®P) from F. Now all the parties in P jointly
computes [r"], = 37 [rFi )] for l=1,...,¢

Lemma 12. With overwhelming probability, Random generates £ random t-1D-

sham'ng [rMs, ..., [r©O)y in 11 rounds, by privately communicating O((¢n? +
n®k)k) bits and broadcastmg O((tn? + n3k)k) bits.

5 Unconditionally Secure MPSI Protocol with n = 3t + 1

We now present our unconditionally secure MPSI protocol with n = 3¢ 4 1.
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Remark 4. In any MPSI protocol that computes the intersection of the sets using
the function given in (), A; may disrupt the security of the protocol by forcing
a corrupted party to input a zero polynomial representing his set ﬂﬂ, ] To
avoid this, the authors of [@, @} specified the following trick. They noticed that
the coefficient of m'" degree term in every Pj’s polynomial f (Pi)(z) is 1 always.
Hence, every party assumes a predefined [1]; on behalf of the m!" coefficient
of every f(F1)(z) (instead of allowing individual parties to t-1D-share the m!"
coefficient). This stops the corrupted parties to commit a zero polynomial.

Input and Preparation Phase

. Every P; € P represents his set S; = {eil), 652), R egm)} by a polynomial f(*#) ()
of degree m such that f(F)(2) = (x—egl)) . (m—eim)) =aOP) WP 4
a™P) g™ P, then invokes 1DShare(P;, P,m,a"F) . . a(m=1F)) o generate
[a(O’Pi>]t, R [a(mfl’Pi)]t. Since a™ ™) = 1 always, every party in P assumes a
predefined t-1D-sharing for 1, namely [1]; on behalf of a(™") (see Remark M.

. The parties in P invoke n times Random(P, m + 1) parallely, where i*" invocation
of Random(P, m + 1) generates m + 1 t-1D-sharings [b>?], ..., [b{™9];. Now the
parties assume that r® (z) = b(®9 4+ ptDgp 4 4 oD g™ for 4 =1,... n. This
step can be executed parallely with step 1.

Computation Phase

. Let FO(z) = v (2) fED () = OV 4D g 4D 2™ for 4 = 1,... n. For

i=1,...,n, to generate [c(o’i)]t, ceey [C(Q’"’i)]t, the parties in P do the following:

(a) The parties invoke Mult(P, (m + 1)2, ([a'®?], [p©°],), ([a®]., pHD]0), . . .,
([a"™ e, o~ 20%), ([ 9], D)) with  (m 4+ 1) pairs
(every coefficient of r(z) should be multiplied with ev-
ery coefficient of f)(z)) to produce (m + 1)®> t-1D-sharings

[a(o’i)b(o’i)]t, [a(oyi)b(lyi)]t’ o [a(mﬂ')17(771—‘1,1')]t.7 [a(m’i)b(_’"’i)]t. . ‘
(b) The parties compute [¢©D], = [a<_0”>b(0’1)]t, [PD], = [a©®VpPY], +
DB, L[], = [atmDpimd],

cLet F(z) = Y1 FO) = d9 4+ dWz + ... 4 d®™2?™. To generate
(A, ..., [d*™];, the parties compute [d7)], = 37 [cU)], for j = 0,...,2m.

Output Phase

. The parties invoke ReconsPublic(P, [d(j>]t) to publicly reconstruct d¥) for j =
0,...,2m. Thus now parties have reconstructed F(z).
. Each P; with his private set S; = {egl), ey egm)} locally checks whether F(eil)) <
0forl=1,...,m. If F(e!") =0, the P, adds /" in a set IS, (initially I5; = 0).
P; outputs I.S; as the intersection set S1 N S2...,NS,.

Theorem 1. MPSI protocol with 3t+1 takes 58 rounds, privately communicates
O((m*n*+nk)k) and broadcasts O((m?n3+n*k)k) bits, when physical broadcast
channel is available in the system. In the absence of a physical broadcast channel,
the protocol takes O(t) rounds and privately communicates O((m?n® + n°k)k)
bits. The protocol solves MPSI problem with very high probability.
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A. Patra, A. Choudhary, and C.P. Rangan

Open Problem

Designing efficient information theoretically secure MPSI protocol with optimal
resilience (i.e., with n = 2t + 1) is left as an open problem.
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Abstract. Traceable signature scheme extends a group signature
scheme with an enhanced anonymity management mechanism. The group
manager can compute a tracing trapdoor which enables anyone to test if
a signature is signed by a given misbehaving user, while the only way to
do so for group signatures requires revealing the signer of all signatures.
Nevertheless, it is not tracing in a strict sense. For all existing schemes,
T tracing agents need to recollect all N’ signatures ever produced and
perform RN’ “checks” for R revoked users. This involves a high volume
of transfer and computations. Increasing 7" increases the degree of paral-
lelism for tracing but also the probability of “missing” some signatures
in case some of the agents are dishonest.

We propose a new and efficient way of tracing — the tracing trapdoor
allows the reconstruction of tags such that each of them can uniquely
identify a signature of a misbehaving user. Identifying N signatures out
of the total of N’ signatures (N << N’) just requires the agent to con-
struct N small tags and send them to the signatures holder. N here
gives a trade-off between the number of unlinkable signatures a member
can produce and the efforts for the agents to trace the signatures. We
present schemes with simple design borrowed from anonymous credential
systems. Our schemes are proven secure respectively in the random ora-
cle model and in the common reference string model (or in the standard
model if there exists a trusted party for system parameters initialization).

Keywords: traceable signatures, efficient tracing, group signatures,
anonymity management, bilinear groups, standard model.

1 Introduction

Group signature is one of the important privacy enhancing cryptographic prim-
itives. Each group member can sign a message on behalf of a group such that
anyone can verify that the group signature is produced by someone enrolled
to the group, but not exactly whom. In other words, one can give a proof of
group-membership without revealing the true identity.

Unconditional anonymity may be abused by misbehaving users, and timely
identification of “bad” signatures is of the utmost importance. For example,
consider the use of group signature in the Vehicle Safety Communications (VSC)

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 92 20009.
© Springer-Verlag Berlin Heidelberg 2009
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system from the Department of Transportation in the U.S. [19], any wrong traffic
information purported by a misbehaving driver or a compromised car should be
identified to avoid possibly traffic accident which may cost human life.

Group signatures come with a mechanism which allows the group manager
(GM) to “open” a signature and reveal the true signer by the GM’s decision.
To identity any signatures previously generated by a misbehaving user, the GM
is required to open all signatures. This incurs three problems — it penalizes the
privacy of all other good users, and imposes a high computational overhead on
the GM. Besides, these signatures may be distributed in various locations (e.g.
in the VSC scenario) and the GM needs to re-collect all these signatures, which
may delay the identification of bad signatures. In view of these shortcomings,
Kiayias, Tsiounis and Yung [I6] proposed the concept of traceable signatures.

Traceable signature is a group signature with an enhanced anonymity man-
agement mechanism. Opening of the signatures is no longer the only option. The
GM can compute a user-specific tracing trapdoor which enables anyone to test
if a signature is signed by a given user. In this way, the objective of identify-
ing all the signatures produced by a misbehaving user can be achieved, without
compromising the privacy of all other good users.

Nevertheless, we found that the latter two problems remain unsolved. The
tracing mechanism of the existing schemes [TO/T3T6IIR] actually does not trace
the signatures. Instead, it checks whether a signature was issued by a given user.
The GM may delegate the trapdoor to many tracing agents (TA’s) to check
in parallel, but the TA’s still need to recollect all N’ signatures ever produced
and perform RN’ invocations of the “tracing” algorithm for R revoked users in
total. This involves a high volume of transfer and computations. There is also
a trade-off between the degrees of parallelism and the trust on the TA’s. The
more TA’s employed, the higher chance that a TA may “miss” some signatures,
either intentionally or accidentally.

In this paper, we propose a new and efficient way of tracing — the user-specific
tracing trapdoor allows the reconstruction of tags such that each of them can
uniquely identify a signature of a misbehaving user. Identifying IV signatures just
requires the agent to invoke N tag-reconstruction and send these N small tags
to the signatures holder, instead of requiring the transfer of N’ >> N signatures
in the traditional approach. Our new traceable signatures still enjoy the original
applications mentioned in [I6], namely, transforming an anonymous system to
one with “fair privacy”, a mix-net application where originators of messages can
be opened, and open-bid auctions.

We present schemes with simple design borrowed from existing anonymous
credential systems. In particular, [8] has briefly mentioned that their compact
e-cash system can be viewed as a bounded group signature scheme supporting
efficient tracing. Our schemes are proven secure respectively in the random oracle
(RO) model and in the common reference string (CRS) model (or in the standard
model if there exists a trusted party for system parameters initialization). The
former is more efficient while the latter gives a more modular design and higher
security guarantees.
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2 Design of Traceable Signatures and Building Blocks

Before we delve into the formal definition of traceable signature and our construc-
tions, we first talk about its high-level design, which motivates the discussion
of several building blocks. Since traceable signature is an enhancement of group
signature, we start by the latter.

2.1 High Level Designs

Group Signatures. When a user joins a group, the GM gives this new member a
signature. The user presents this signature to a verifier to show the membership.
However, a verifier who got the same signature can claim the membership too.
This means the GM should sign on something that is related to some valuable
secrets of the users, such that they would not share it with other easily. To sign
on behalf of the group, the user should generate another signature as well. This
latter signature can be given by the member’s own private key. The signature of
the GM and the member’s own private key form the credential of a member.

We assume the private key is valuable, and a user does not want to leak
this private key to any one, including the GM (for exculpability). It can be
“hidden” in the form of a commitment. The GM can then give a signature on
the commitment. The GM may also store part of the communication with this
user in an archive. This concludes the joining stage.

A group member wants to preserve anonymity in signing. There should be a
protocol for proof of knowledge (PoK) of a signature. Another feature of group
signature is that it can be opened to reveal the true signer. Thus, it should
contain an encryption of some information that uniquely identifies a user, such
that only a designated party (e.g. the GM) can decrypt it. There should be a
way to let any verifier to know that this encryption has been done correctly, so
another zero-knowledge protocol for showing the correctness of the encryption is
needed. All these proofs by the signer should be verifiable by everyone, hence
they must be non-interactive. The proof should also be witness-indistinguishable
such that it is generated equally likely by each possible credential (the witness).
This concludes our discussions on the idea of group signature.

Traceable Signatures. The traditional way of tracing only tells if a signature is
given by a particular user. We know from the existing schemes that a function
of the user’s private key can serve as this “decisional” trapdoor which supports
an efficient detection mechanism.

For our new way of tracing, we found that it is easier for the GM to generate
the user-specific tracing trapdoor instead, which is also stored in the archive. To
make sure the signature of a member should be related to this chosen value, the
GM should give a signature on a block of messages, i.e. on the trapdoor and a
commitment of the user’s private key. This may not be required for the typical
group signature schemes or the traditional traceable signature schemes.

To enable a tracing agent TA to uniquely identify every signatures produced
by a particular member, everyone is required to compute a deterministic tag
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based on a seed given by the GM. A TA can then reproduce the tag to identify
the signature. The tag is generated by a pseudorandom function taking the secret
seed and the counter value as its input, which makes the signatures produced
by the same user remain unlinkable to any one without the trapdoor.

Now we have a function that is only computable with the help of a secret seed,
but what should be its input? We cannot afford an exponentially-large domain
here since it will be time-consuming for a TA to re-generate all possible tags.
We thus need to confine the domain. The verifier should ensure that this input
value is an integer less than a limit N pre-selected by the GM. This can be done
with the help of a zero-knowledge range proof.

The above idea has actually been employed by compact e-cash systems [4)8] to
support “join once, spend many”. In our case, we use the deterministic recovery
nature to support efficient tracing. A weakness of this approach is that, N gives
a trade-off between the number of unlinkable signature a member can produce
and the efforts to trace the signatures.

2.2 Number-Theoretic Preliminaries
A mapping é : G; X Go — G is a bilinear pairing if

— G1 and Go are cyclic multiplicative groups of prime order p.

— g, h are generators of G; and G respectively.

— 1 : Go — Gy is a computable isomorphism from Go to Gy, with ¥(h) = g.
— Each group element has a unique binary representation.

— (Bilinear) Vo € G1, y € G and a, b € Z,, é(z%,y°) = é(x,y)*.

— (Non-degenerate) é(g,h) # 1.

G and G2 can be the same group or different groups. We say that (G1, G2) is
a bilinear group pair if the group action in G, Go, ¥ and é are all efficiently
computable. We name (p, G1, Go, G, é, g, h) as bilinear map context paramsgy.

Definition 1 (Decisional Diffie-Hellman (DDH)). The DDH problem in G
is, on input a quadruple (g,g% g%, g°) € G*, output 1 if c = ab and 0 otherwise.

Definition 2 (eXternal Diffie-Hellman (XDH)). The XDH problem in a
bilinear group pair (G1, Go) with trace map v is to solve the DDH problem in G;.
If XDH is hard, there exists no efficiently computable isomorphism ¢’ : G; — Go.

Definition 3 (Decisional Linear (DLin)). The DLin problem in G = (g) is
defined as follow: On input a sextuple (u,v,g,u®,v°, g¢) € G, decide if c = a+0.

Definition 4 (¢-Decisional Diffie-Hellman Inversion (¢-DDHI)). The ¢-
DDHTI problem in prime order group G = (g) is defined as follow: On input a

(g + 2)-tuple (g7g$,g"”2, ooy g%, g° € GIY2), decide if ¢ =1/

Definition 5 (¢-Strong Diffie-Hellman (¢-SDH)). The q-SDH problem in
a bilinear group pair (G, Gz) with an efficient (computable in polynomial time)
trace map v : Go — Gy is, on input a (g + 2)-tuple (g, h, h77h727...,h7q) €
Gy x Gg“ where g = (h), output a pair (B,e) € G1 X Z,, such that BOte) — ¢,
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We say that an X assumption holds if no probabilistic polynomial time algorithm
has non-negligible advantage (over random guessing if X is decisional) in solving
problem X. The ¢-SDH assumption in (G1,G3y) with a trace map ¢ : Gy — Gy
is shown to be true [5] in the generic group model.

2.3 Cryptographic Building Blocks

Signature with Efficient Protocols. A signature scheme with efficient protocols
refers to a signature scheme with two protocols for the following purposes.

1. The signer only needs a commitment of a block of messages (mq,...,mr)
but not the messages themselves to give a signature on (mq, ..., mg);

2. A signature holder can prove the knowledge of a signature on some block of
messages without revealing the signature nor the block of messages.

Examples include BBS+ signature [2] (a variant of BBS signature in [6] as out-
lined in [9]), and P-signature [3/4]. The latter supports non-interactive zero-
knowledge proofs in the common reference string model, and the construction
in [4] supports L > 1.

In a P-signature, PSigSetup setups the global parameters used by all other
algorithms to be described below. A signer uses PSigKG to generate a pair of
signing / verification key. Any user can use an associated commitment scheme
Com to make a commitment of the message(s) to be signed and run PObtain,
which interacts with the algorithm Plssue executed by the signer. As a result, the
user obtains a P-signature on the message(s). If the privacy of the message(s) is
not a concern, the signer can simply use the PSign algorithm. The possession of
a signature can be shown using the PProve algorithm, which can then be verified
by anyone using the PVer algorithm. Details can be found in [4].

For a BBS+ signature on (mi, ms), the global parameters contain (g, g1, g2, h).
Using a signing key p, the signer picks a random e and gives the signature as
s = (ggi"gy2)"/#+e) wwhich can be verified under the verification key Z =
h* by checking if é(¢, Zh®) = é(gg7"*g5*,h). A computational zero-knowledge
proof of signature (for a single message block) has been given in [6]. A perfect
zero-knowledge proof (since the signature is not encrypted) for multiple mes-
sage blocks has been given in [2]. These can be made non-interactive by using
Fiat-Shamir heuristics in the random oracle model.

Pseudorandom Function, Weakly-Secure Signature and Strong One-Time Signa-
ture. We employed a variant of a pseudorandom function (PRF) due to Dodis
and Yampolskiy [I1], defined as PRF s(x) : « — gsiw where G, = (g) is a cyclic
group of prime order p, s €r Z, is the secret seed and x € Z, is the input. We
use it in our constructions for the tag-generation. Its pseudorandomness relies
on the ¢-DDHI assumption, see [8I4] for details.

This PRF function appeared in a short signature scheme proposed by Boneh
and Boyen [5]. The secret key is the seed s and the input = encodes the message.
The signature is the PRF value. Verification of signature is possible if we use a
bilinear group pair instead of G,. (On the other hand, the PRF is pseudorandom
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only if the DDH is hard in G,.) We will use this signature in the range proof
and the user signing part of our CRS-based construction. It is unforgeable under
a non-adaptive chosen-message attack under the g-SDH assumption. Since it is
deterministic, it is also strongly-unforgeable.

For the “anonymity against CCA attack”, we use a strong one-time signature
in our CRS-based construction, which informally means that the adversary can
ask for the signature on a chosen message, but can neither create a different
signature on that message nor forge a signature on a different message.

Non-Interactive Proofs for Bilinear Groups. Groth and Sahai [I5] proposed
an efficient non-interactive zero-knowledge (NIZK) or non-interactive witness-
indistinguishable (NIWTI) proof system for statements of the form

Q M N
[T étaq TT o [T i) = ¢
qg=1 m=1 1

n=

where t € Gr,{aq} C G1,{bs} C Ga, {agm}: {Bgn}: C Zp, {zm} C G1,{yn} C
G2 when given {C,,} — commitments of {z,,}, {D,,} — commitments of {y,},
and a CRS paramp)s. This is also referred to as pairing product equation.

The proof system can be instantiated by the subgroup decision assumption in
composite order groups, the DLin assumption or the XDH assumption. However,
the associated commitment scheme based on the first assumption is only binding
over one of the prime order subgroups, which gives different PRF values for
two identically distributed commitments of the same value. Hence, the e-cash
scheme in [4] and our CRS-based construction employ either one of the latter
two assumptions. It gives a NIZK protocol for Dodis-Yampolskiy PRF, a NIZK
PoK for a tag-based encryption [I7] (to be described), and a NIWI PoK for
Boneh-Boyen signature in [I4] It can be seen that the “structures” in all these
primitives conformed to the pairing product equations.

Range Proof. Proving a secret value is within a public range can be done in
this way — the verifier gives signatures on each value in the range, the prover
then makes a commitment of the secret value and proves the knowledge of a
signature that signs on the committed value. This idea appeared in the k-times
anonymous authentication system in [20], and is used in [2/4] and our CRS-based
construction. Camenisch, Chaabouni and shelat [7] gave a generalization of this
approach. By writing the secret value in base-D and commit to these D-ary
digits, this yields a proof of size O(k/(logk — loglogk)) instead of O(k), for
proving the secret lies in [0, 281 — 1].

Linear Encryption and Tag-Based Encryption. Linear encryption proposed in
[6] is a natural extension of ElGamal encryption based on the decision linear
assumption, which is secure even in groups where DDH problem is easy. The
encryption key is (u,v,g0) € G} where u® = v* = go, and the decryption key
s (a,b). An encryption of a message M € Gy is (Th,T»,T5) = (uo‘71)57Mg](';‘+ﬁ)7
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where «, 3 €g Zy; which can be decrypted by T3/ (77 - T?). The scheme is secure
against chosen-plaintext attacks (CPA) under the DLin assumption.

Kiltz [I7] extended this linear encryption to a tag-based encryption which is
secure against selective-tag weak chosen-ciphertext attacks (CCA), under the
same assumption. The encryption key is (u, v, go,U, V) € G} where u® = v® =
go, and the decryption key is (a,b). To encrypt a message M € G; under a
tag (or a label) t € Z5, picks o, €r Z, and returns (11,7, 713,14, T5) =
(u, v, Mgst? (gbU)*, (g5V)P), which can be decrypted by Ty/(T¢ - T%) if
é(u, Ty) = é(Th, gbU) and é(v,Ts) = é(T2, g5V) hold. The latter check can also
be done without pairing if the discrete logarithm of U, V' with respect to u, v re-
spectively are kept. We will call the tag used in tag-based encryption as “label”
to avoid any confusion with the tracing tag in the traceable signature.

3 Framework

3.1 Syntax

Our new model of traceable signature is based on the original framework in [16].
A traceable signature involves three kinds of entities, namely, the group manager
(GM), the users (U;) and the tracing agents (TA). It consists of nine polynomial
time algorithms or protocols. The following enumerates the syntax.

— Setup. On input a security parameter 1* for A € N, a trusted party executes
this algorithm to output the system parameters params. For simplicity of
the framework, we assume that Setup also outputs the group public/private
key (gpk, gsk), and the opening agent public/private key pair (opk, osk). For
brevity, all algorithms below take (params, gpk, opk) implicitly as inputs.

— Join. A (prospective) user U; joins the group and obtains a member pub-
lic/private key pair (pk;, sk;) as a result of the interaction with the GM via
this protocol. The GM also adds U;’s identification and part of the transcript
of the protocol to the membership archive DB, which is kept private.

— Sign. Given a message m and a member private key sk;, user U; uses this
algorithm to give a signature o on m on behalf of the group gpk.

— Verify. Given a signature ¢ and a message m, anyone can use this algorithm
to verify if o is a valid signature on m signed by a member of the group gpk.

— Reveal. On input of the member archive DB and a user’s identification U;,
the GM outputs a trapdoor s; for tracing the signatures produced by Uj.

— Trace. Anyone can use Trace with the trapdoor s; generated by Reveal to
output a set of tags which can uniquely identify each of the signatures of U;.

— Open. Given a valid signature o, the GM uses the opening secret key osk to
output some information ¢; which enables the retrieval of the user’s identi-
fication information U; in the membership archive DB.

— Claim. Given the member private key sk; and a valid signature o, user U;
can give an evidence z that proves the original authorship of o.

— ClaimVer. Given a message m, a valid signature o and an evidence z produced
by Claim, anyone can verify whether o is originated from user U; holding sk;.
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3.2 Requirements

Definition 6. A traceable signature scheme (of security parameter \) is correct
if the four conditions below are satisfied (with overwhelming probability in \).

— Sign-Correctness. For all messages m, and all sk; obtained from the Join
protocol, Verify(Sign(m, sk;),m) =T.

— Open-Correctness. For all messages m, all sk; obtained from the Join protocol
of user Uy, and all membership archives DB which contain the information
for user U;, Open(Sign(m, sk;),osk,DB) = U;.

— Trace-Correctness. For all messages m, all sk; obtained from the Join pro-
tocol of user U;, and all membership archives DB which contain the infor-
mation for user Uy, Sign(m, sk;) C Trace(Reveal(DB,U;)), where o is in the
set S when a specific component s of o is in the set S.

— Claim-Correctness. For all messages m and all sk; obtained from the Join
protocol, ClaimVer(m, o, Claim(sk;,0)) = T, where o = Sign(m, sk;).

We briefly recall the security concerns. Formal definition can be found in [16].

— Identification Security. Any subset of colluded users and tracing agents can-
not output a valid signature which cannot be opened to anyone in this col-
lusion group or cannot be traced (by the trapdoors produced by an honest
execution of Reveal algorithm) to one of them.

— Anonymity. No collusion of users and tracing agents can distinguish between
the signatures of two honest group members. (Note that the tracing agents
are not given the user-specific trapdoor of these two honest members.)

— Non-Frameability. There are two different ways an honest user may be
framed. A conspiration of the GM and any subset of colluded users may
construct a signature that opens or trace to an innocent user outside this
group, or may claim a signature that was generated by an honest user as
their own.

Due to the new traceability feature we introduce, our schemes can only be secure
against a weaker variant of anonymity attack described below.

— N-Anonymity. Same as Anonymity Attack, but the adversary can only see at
most N (determined in Setup) signatures from each of the honest members.

Remarks. Since Open is considered as an internal operation (which is different
from Trace), the adversary in the first two attacks are not allowed to query
an “open” oracle. Nevertheless, our CRS-based construction achieves “CCA”
anonymity, i.e. the adversary has an “open” oracle in breaking anonymity, under
the natural constraint that it cannot be queried with the challenge signature.
Given the deterministic nature of the tracing tag, the GM (or a tracing agent
who “colludes” with the GM) may launch a misidentification or framing attack
by giving a signature with a “legitimate” tracing tag [I]. However, a user can
dispute if the self-claiming component is deterministically determined by the
tracing tag and part of the membership private key which is only known to the
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user. Specifically, the existence of two valid signatures with exactly the same
tracing tag but different self-claiming components means that the GM “reused”
the same seed in issuing “different” membership credentials.

4 Constructions

We first give our construction in the common reference string model. This can
be seen as a concrete realization of the design we gave in Section 2l Then we will
present a more efficient construction in the random oracle model.

4.1 Construction in the Common Reference String Model

This somewhat generic and moderately efficient construction is mostly based on
the building blocks we presented in Section 2.3l except we have instantiated the
signature in the range proof by Boneh-Boyen signature and the PRF by Dodis-
Yampolskiy PRF. It is largely based on the compact e-cash scheme in [4]. We
added a tag-based encryption [I7] of the user’s identity and the user self-claiming
component, but removed the double-spending detection.

Setup. This algorithm setups all the building blocks. Namely, it runs PSigSetup
and returns the P-signature parameters params, PSigSetup needs to run the
setup of the Groth-Sahai proof system to get its parameters paramsgs, which
in turn contain the bilinear map context paramsgy = (p, G1,Go, Gr,é,g,h).
Let H be a collision-free hash function which maps to Z;. All these should be
determined by the CRS, or executed by a trusted initializer.

For credential issuing, runs PSigSetup to generate a key pair (gpk, gsk).

For opening, setups a key pair (opk, osk) by tag-based encryption’s TEncSetup.

For tracing, manages a list of triple (U, pk;,s;), which is initially empty.
For the range proof system, the GM picks a number N which is polynomial in A,
runs PSigSetup(params) again to generate another pair of signing key (pk,, sk ),
generates and publishes the signatures X; = PSign(, sk,),Vi € [1,2,---, N].

Join. User U; obtains a credential from the GM through the interactions below.

1. User U; randomly selects x; €r Zy, computes a public key pk; = g**, and
a commitment commsg, = Com(z;, open,,). U; sends commyy to the GM,
proves in zero-knowledge the knowledge of open,,, and that commg corre-
sponds to the secret key used for computing pk;.

2. The GM verifies the proof, randomly selects s; € Z,,, computes commseeq =
Com(s;, opens;) and sends (s;, opens,) to the user. The tracing trapdoor for
this user will be s; and the GM should ensure it is unique.

3. The user and the GM run the algorithms PObtain(gpk, (z;, s;), (opens,,
opens,))

—  Plssue(gsk, (commygy,comms,)) respectively. The user obtains a
P-signature g; on (x;, s;), and stores (s;, z;, ;) as the member private key.
4. The GM adds the entry (U;, pk;, s;) to the membership archive.
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Sign(m). User U; manages a counter n; on the number of signatures produced.

— U, generates a one-time signature key pair (pk,, sk,).
1

— U, signs on pk, by o = g=itH®ke)

— U; computes the tracing tag S = gSii“i and the self-claiming tag R = S%:.
— U, encrypts pk; by computing € = TEncypk(pk:, H(pk,)), where H(pk,)

serves as the label of the encryption.

— U; proves in non-interactive zero-knowledge manner the relations (1) - (6):

U; is in possession of a P-signature ¢; from the GM on (z;, s;).

U; generated a commitment Cy;y of 0 = gwi“fl(P’“o) , a signature on pk,.
¢ is a tag-based encryption of pk; with the label H (pk,).

S'is PRFy s, (n;), that is, S = gsﬁl“i.

R = 5%,

0 <n; < N, ie. U; is in possession of a P-signature ¢; under pk, on n;.

SOtk N =

— Uj; uses sk, to give a signature o,:s on m concatenated with the above proofs.

All these proofs need to be done non-interactively by Groth-Sahai proof system
or non-interactive P-signature (which utilizes the former). Specifically, U;

1.

2.

runs PProve on ¢; and gpk to obtain commitments and proof (Cpk, Cseed, 1)
«— PProve(params, gpk, <, (i, s;)) for secret key x; and seed s; respectively.
runs PProve on X, and pk, to obtain commitment and proof for counter
n;, i.e. (Ceyr,ma) «— PProve(params, pk,, X, , (n;)).
uses the Groth-Sahai proof system to construct proofs showing that the
values (R, S, €, Cpk, Cseed, Cetr, Csig) are indeed well formed. This involves
the proofs mg, 7r, mo, mc of the following languages:
— Lg ={Cs, Cy,y|3n, s, open,,, opens such that
Cs = Com(s, opens) A Cy, = Com(n, openy,) Ay = PRFy ¢(n)}
— Lr ={C,,Y,y|3z, open, such that C, = Com(s,open,) NY = y*}
— Lo ={Cy, Cy, pko|Fz, open,,, open, such that
C, = Com(z, open,) A C, = Com(o, openy,) Ao = gm+H1(Pko> }
— Lo = {Cy, €|3x, open, such that
Cy = Com(z, openy) A pk = g A € = TEnc,pi (pk) }

The signature is (R, S,T, €, pko,0ots, Cpk, Cseed, Cetr, Csig, M1, T2, TS, TR, TO,
mc). Lr is relatively simple. Lg can be found in [4, Section 4.2]. Lo, Lo are
somewhat simplified variants of the proofs in [I14] Section 7].

Verify. To verify a signature, returns true if all of the following checks succeed:

A S ol

PVer(params, gpk, 71, (Cpi, Cseea)) = T.

PVer(params, pk,, 7o, Cetr) = T.

Oots 18 a valid signature on (m||m||m2||7s||mr||mo||7c) under pk,.
mg is a valid proof on (Cseeq, Cetr, S

7 is a valid proof on (Cpy, R, S).

7o is a valid proof on (Cpi, Csig, Pko)-

7 is a valid proof on (Cpy, €).
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Open. Given a valid signature (- -- , €, pk,, - - ), anyone (the GM, or an opening
agent) who holds the decryption key osk recovers pk’ = TDec(¢, H (pk,)). From
the membership archive {(U;, pk’, s;)}, the GM outputs the corresponding U;.

Reveal. From the membership archive, the GM retrieves s; of the " user.

1
Trace. Given s;, the TA computes {S; = g=iti }o<j<n. If a given signature has
the S component inside this set, the TA concludes that user i is its originator.

Claim. U; who gave the signature 0 = (R, S,---) generates a non-interactive
proof of knowledge 7y of the value z; such that R = S*¢ as a proof of authorship.

ClaimVer. Verify the proof mr given by Claim.

4.2 Construction in the Random Oracle Model

Our second scheme assumes random oracle and employs CPA linear encryption
instead of weak CCA tag-based encryption for better efficiency. The design is
similar to the traditional-style traceable signature in [10] which is extended from
[6]. However, we have moved the component for tracing component (which also
helps in self-claiming) from G to G,. Since G is usually a subgroup of Zga, it
is vulnerable to sub-exponential discrete logarithm attacks and needs very large
representation. For example, for 128-bit security, |G| > 3072 bits. This can
also been as a variant of [2], with a verifiable encryption and the self-claiming
component added and double-spending detection removed.

Our scheme relies on the DLin assumption in G, the ¢-SDH assumption in
(G1,Ga2), and the ¢-DDHI assumption in G,,. We describe the scheme in (G4, G2)
but these two groups can be the same (since we instantiate the PRF in another
DDH-hard group G,). Our scheme does not rely on the XDH assumption, this
gives more flexibility in the choices of the underlying elliptic curve. If we are
willing to make the XDH assumption, the signature can be made shorter since
the linear encryption can be replaced by ElGamal encryption [0].

Setup. Let (G1,G2) be a bilinear group pair with computable isomorphism v as
discussed such that Gy = (g), G2 = (h) and |g| = |h| = p for some prime p of A
bits. Let G, = (f) be a cyclic group of order p where the DDH assumption holds.
Let g1, g1, g2, g2 be random elements in G1, which are for the zero-knowledge
PoK protocols. Let H be a collision-free hash function which maps to Z;.

For credential issuing, the GM randomly selects y1 € g Zy, and computes Z = h#
as the public key gpk of the group. The GM keeps gsk = i in secret.

For opening, the GM setups an encryption key pair by picking go €r Gr,
osk = (a,b) €r (Z5)*. The public key is opk = (u,v, go) where u® = v = go.

For tracing, the GM manages a list of triple (U;, s;, ¢;), which is initially empty;
and picks a number N which is polynomial in A\. The GM also setup a range proof
system, e.g. [7] to be discussed in Appendix [Al
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Join. User U; obtains a credential from the GM through the interaction below.

1. U; selects x; €r Zy, sends y; = 95" to the GM with the proof SPKo{(xi) :

Yi =go' } This can be done non-interactively by Schnorr signature.

2. The GM verifies the proof, picks s;,e; €r Z,, computes ¢; = (ggfiyi)w}%
and sends (g;, €;, $;) to the user. The GM also stores the triple (U;, s;,¢;). The
tracing trapdoor for U; will be s; and the GM should ensure it is unique.

3. U; checks if é(;, Zh%) = é(ggi'g5’, h). The member public key and secret

key are (y;, e;) and (z;,¢;, ;) respectively.
Sign(m). User U; manages a counter n; on the number of signatures produced.

— U; computes the tracing tag S = fsfi”z‘ and the self-claiming tag R = S%.

— U; encrypts ¢; in (Ty = u®, Ty = vP, T3 = gigg”rﬂ) where a, 3 €r Z,.

— U, proves in non-interactive zero-knowledge manner such that (71, 7%, T3) is
a linear encryption of ¢;, where (¢;, ¢;) is a BBS + signature from the GM on

(si,xi), S = f-*ii"i, R = 5% and 0 < n; < N. This can be abstracted as

SPKl{ (giaeivsivmivnivavﬁ) :

é(si, Zh®) = e(997'95", h) A
(Ty, Ty, Ts) — (07,590 P) A
1 Zg
(S, R) = (feitmi, feitni) A
0< n; <N }(m)

To conduct SPKy, U; computes 20, = gi'gh', Ao = g7'gs”, A3 = gi'gh® for
pP1, P2, p3 €R L. Next, U; computes the following two SPK’s.

SPK]A{ (ei7Siaxiani7a767p1ap27p3’71772) :

Ay = gi'gs' A Az = 97" 95"\ A3 = g1 g5’ A

T =u” A Ty = v A

T =um A Ty =7 A

f=geigm A R= 5% A
oTs, Zhe) = élggiis he(ge, 2P IR) m)

SPKlB{ (ni7p3) (A3 = 9?1953 ANO<n; < N}(m)
We show how to instantiate SPK; 4 below and SPK;z in Appendix [Al

(Commitment.) U; picks re,, Ts;, Tays Tnis Tas 785 Tpis Tpas Tpss Tyas Tra ER Ly
and computes
T=0,"9", To=07"0,", Ty =0,""9y", Ty ==, Ty =" in Gy,
To = é(T3,h)"ié(g1,h)""ié(g2, h)""":€(go, Z) "> ""7€(go, h) "' "2 in Gr,
T = Tf”u‘”a, Tg = T;”v_’”% in Gy, g = 8" 8™i, Tig = 5" in G,
(Challenge and Response) Let T = (F4]|...||%10). For a challenge ¢ =
H(m||R||S||T1||T2||T5]|F), U; computes, in Zy, ze, = e, —C€;, 25, = T's, —CSi,
Rr; = Tay —Cl4y Zng = Tny —Cl4y Zpy = Tpy —CP1, Zpy = Tpo —CP25 Zps = Tpy —CP3,
Zyy = Tay — COEG, 2y = Ty — B, Uj sets 3 = (Ze,, Zs;s Zays Zngs Zprs Zpas

ZP37 Z’YU Z’Yz)'
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Verify. To verify a signature (S, T, T, T3, Tspk ), where mgpx denotes the com-
mitments (e.g. A1, Az, As, T) and the responses (e.g. 3) generated by the above
PoK protocol, this algorithm executes the verification algorithm of SPKj.

In particular, SPKy 4 can be verified by first computing

I __ (e Fei Fp1 ! __ o(cFri Zp2 ! c Z”z Zp3
T =A79,"9, Ty =A501 "9, T3 D)
T, =T7%, g:TQCTg)

7 — TZ“ I att /8 — TQZ” v F2

9 — f('SzSi S7n; 10 — RCS7=:

T = &(Ty, b [2°)e(gg; " g ™0, h)elgo, Z~ ot =) (o t2na))

and checking if ¢ L H(m||R||S||Tu||T2)|T5]|%4]] - - - ]I%0)- If the equation holds,
(R, S) and (Ty,T»,T3) are well-formed, thus outputs T, L otherwise.

Open. Given a valid signature (m,S, Ty, T2, T3, TspK), anyone who holds the
decryption key (a,b) computes ¢’ = T3/(T{-T¥). From the membership archive,
the GM outputs U; of the entry with the ¢; component matches with ¢’.

Reveal. From the membership archive, the GM retrieves s; of the 3" user.

1
Trace. Given s;, the TA computes {S; = f=i*i }o<;<n. If a given signature has
the S component inside this set, the TA concludes that user ¢ is its originatorﬂ

Claim. U, who gave the signature ¢ = (R, S,---) can provide a proof of author-
ship 7 by generating a proof of knowledge 7 of the value z; such that R = S%:.

ClaimVer. Verify the proof m given by Claim.

4.3 Security Analysis

Since both of our constructions are based on the same design, below we give an
overall picture of the security analysis. The security of both schemes is hinged
upon DLin, ¢-DDHI and ¢-SDH assumptions. Our RO-based construction relies
on the DDH assumption, while our CRS-based one relies on the XDH assump-
tion and any others required for the security of the multi-block P-signature [4].
Details for the RO-based construction can be found in [2J6JI0] and those for the
CRS-based construction follow from [4JT4].

— Identification Security. Misidentification is an attack by a subset of colluded
users and TA’s. To model the former requires the signing oracle of the un-
derlying signature. For our CRS-based construction, the underlying signing
protocol (the credential issuing protocol in our case) of the P-signature has

! The TA may recover f% from (R,S), but it does not help in forging a signature.
1
Nevertheless, the GM can simply send {S; = f*it7 }o<j<n to the TA to avoid this.
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guaranteed that computing these signatures in such an interactive manner
reveals nothing else about the secret key (by the fact that the protocol can
be simulated by blackbox access of the signing oracle). For the TA’s, they
are just given the seeds (but they cannot choose it), which can be easily
simulated. In fact, the seeds are just part of the messages to be signed by
the underlying signature scheme, and their secrecy is not relevant here.

There are two attacks goals in misidentification attack. The first one is
to output a valid signature which cannot be opened to anyone outside this
collusion group. With the soundness of the ZK proof for the encryption, this
translates to giving an encryption of a credential which the GM never issues.
If this happens, the simulator S can extract this credential and returns it as
the forgery of the signature scheme used for credential issuing.

The second attack goal is to produce a tag that cannot be computed by
the Trace algorithm. There are two possibilities. The adversary .4 used an
entirely new seed that is never “certified” by the GM, or A used a seed from
the GM but produced something that cannot be produced by the Reveal
algorithm. For the first case, S can decrypt the ciphertext and obtain a
forgery of the underlying signature scheme. The second case will break either
the soundness of the ZK proof for the PRF or that of the range proof.
N-Anonymity. The compromised parties controlled by an adversary A is
the same as those in misidentification attack. N-anonymity goes by a series
of transformation such that a signature produced by an honest member is
eventually transformed to one produced by another honest member, and
argue that each transformation is computationally indistinguishable to A.

Firstly, we change the parameter for the ZK proofs to a simulated one
such that the commitments are perfect hiding and the ZK proofs involved
in a signature will be “faked” by a simulation instead of giving a real proof.
The adversary cannot notice this change by the security of the ZK proofs.
Now the proofs are faked, we can change the elements that can differentiate
one honest user from another in the signatures. We replace the tracing tag
S with random element, then replace it with the tracing tag of another user.
As long as these honest users produced less than N signatures, the indis-
tinguishability of these changes are guaranteed by the pseudorandomness of
the PRF. We then change the self-claiming tag R, by the DDH assumption
(in Gp or in Gy — XDH). Finally, we encrypt a random element instead of
the signature, by the indistinguishability of the encryption.
Non-Frameability. The group member gives a signature based on the secret
key x;. The simulator S does not know z;, but it gives out many signatures
by the simulators of the underlying signature scheme and the ZK proofs
(and manipulating the random oracle in our RO-based scheme). Eventually,
the adversary A produces a valid forgery. In our CRS-based construction,
S extracts the knowledge of o by the extractability of the underlying proof
system, which is a solution of the ¢-SDH problem as long as H(pk,) does
not match with those public keys of a one-time signature scheme pre-selected
by the simulator in the simulation of the signing oracle. In our RO-based
construction, § can use the standard rewinding technique to extract ;.
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5 Conclusion

We found that the original idea of tracing signatures is nice but may not fully
solve the problems of the group signature as expected. We propose a new and
efficient way of tracing by borrowing the idea from compact e-cash. Our notion
gives an alternative when timely tracing is important and when the signatures
are scattered around in an anonymous system.
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A Signature-Based Range Proof

To implement a range proof system with D signatures [7], the GM setups a
signing key Z' = h” and gives D signatures {o; = g'/**?} for each i € Zp.

To conduct SPK;p in Section 2] i.e. to prove a secret value t = n; lies in
[0, N = D), the prover U; writes ¢ in base u where t = Zj(tij) to obtain ¢
elements {t;}, then picks 7;, computes U; = o ]J for j € Zy. Finally, U; computes:

SPKic{ ({t;}, {7} ) : 2 = (I1, 87)7 65 A (A B; = 077) }(m)

which can be instantiated by

. . “
(Commitment.) U; picks 74, , ..., 74, T'ry s+ -+, Ty, Tp €R Zy and computes {81;
Djry.
J

é(oj,h) " é(g,h)" } and L* = [T,(g," 7)gs"
(Challenge and Response) Let 8 = (4] ... [|h]|&*). For a challenge ¢ =

H(m||Y), U; computes, in Z,, z;, = 14, — ctj,...,2, = 1, — Cctg, 2, =
Try —CTjy ey 2r, =Try—CT0, 2p = Tp—cpand U; sets 3 = (24, ...\ Zey, 2y o
Zryy Zp)-

To verify, compute U} = é(B;, Z'°h™"")é(g,h)",Vj € [1,2,---  £], W' =A° I1;
(g?jztj )g5" and check if ¢ L H(m||Y) where S = (4] .. || |]L").
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Abstract. Hash function cryptanalysis has acquired many methods,
tools and tricks from other areas, mostly block ciphers. In this paper
another trick from block cipher cryptanalysis, the structures, is used for
speeding up the collision search. We investigate the memory and the time
complexities of this approach under different assumptions on the round
functions. The power of the new attack is illustrated with the crypt-
analysis of the hash functions Grindahl and the analysis of the SHA-3
candidate Fugue (both functions as 256 and 512 bit versions). The col-
lision attack on Grindahl-512 is the first collision attack on this function.

Keywords: cryptanalysis, hash functions, SHA-3, truncated differentials,
Grindahl, Fugue, structures.

1 Introduction

Since 1990 the MD family of hash functions and its successor SHA family have
been most widely used data integrity primitives. In contrast with few crypt-
analytic results in 90s recent attacks on MD5 [19], SHA-0 [14], and SHA-1 [f]
encouraged the cryptographic community to look for more reliable components
and then motivated the recent SHA-3 competition [16]. The Merkle-Damgard ap-
proach [SIT5] to build hash functions from compression functions, has lost a part
of credit due to such generic attacks as multicollisions [I1] and second-preimage
search with expandable messages [12].

In contrast to generic attacks like multicollisions, which are applicable to hash
functions with Merkle-Damgard strengthening, attacks on lower level compres-
sion functions are highly dependent on a particular proposal and can rarely be
extended to other functions. Common ideas are mostly related to the notion of
differentials since the fact that two different messages produce the same hash
value (a collision) can be expressed as a zero difference in the output.

The idea of differentials comes from block cipher cryptanalysis and pioneering
papers by Biham and Shamir [3]. As high probability differential characteris-
tics were exploited in attacks on block ciphers as high probability zero-ending
differential ¢rails are used to find collisions for compression functions.

Since block cipher cryptanalysis is a highly developed topic, many cryptana-
lysts try to use the most efficient methods and tools in attacks on hash functions.
However, due to stronger requirements on the results of an attack only few of
them were applied. The use of truncated differentials [I7] is an example.

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 108 20009.
© Springer-Verlag Berlin Heidelberg 2009
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In this paper we investigate another tool from block cipher cryptanalysis:
structures. A structure is originally a set of plaintexts that pairwise have some
property (e.g., zero difference in particular bytes). Since the number of pairs
with desired properties in a structure is much larger than the structure size,
such constructions are widely used in order to save memory and time in attacks
on block ciphers [416].

Intuitively, structures might have been used in attacks on the hash functions
built on block ciphers [I§]. However, the authors are aware of only one such
attack: a recent attack on Snefru [2], though Snefru does not directly fit the
constructions from [I8].

We have found that structures are especially useful in attacks on stream-
based hash functions, where parts of a message can independently be controlled.
We analyze the hash functions GRINDAHL and FUGUE. For GRINDAHL-256, we
improve the best known attack by Peyrin [I7], while for GRINDAHL-512 this
paper presents the first known collision attack. The hash function FUGUE [10] is a
strengthened successor to GRINDAHL, so we did not manage to break its security
claims. However, our attack is substantially faster than a trivial internal-collision
attack.

This paper is organized as follows. First we briefly explain how the use of
structures reduce the cost of collision search. Then we investigate how structures
follow the differential trail and collapse to pairs in some step (Section[3)) so that
the standard differential approach can be applied afterwards. We also derive the
memory complexity of the attack.

Then we attack GRINDAHL and FUGUE with structures (Section ). The num-
ber of computations required ro find a collision for GRINDAHL-256 is reduced
compared to the attack by Peyrin [I7]. We also present the first collision attack
on GRINDAHL-512 and the first external analysis of FUGUE . In the Appendix
the time complexity of the attack is estimated under different assumptions.

2 Idea in Brief

In many attacks on compression functions a cryptanalyst deals with a set of
pairs that are to follow a particular differential trail. Here the trail is a sequence
of differences in the internal state of the hash function. (see [I] for a more formal
approach). At some steps an adversary may vary a message part to be injected
thus increasing the number of pairs that follow the trail (the attack by De
Canniére and Rechberger on SHA-1 [5] is an example). If there is not enough
freedom to satisfy round conditions, the number of candidate pairs tends to
decrease. We show that this effect can be postponed if a differential trail allows
to incorporate pairs into structures.

In order to distinguish the approach when a cryptanalytic deals with pairs
from our approach we call the former one the standard differential attack. 1t is
also known as the trail backtracking [I]. Our attack is later called the structural
approach, or the structural attack.

Now assume that the trail deals with truncated differentials, and the possible
differences form a linear space R of differences. Then if a pair of states (51, S2)



110 D. Khovratovich

structure set of pairs

e RN e R
7§
T TR == T

\ F

F

NN - I Middle round
{7
{7

” Collision

F

Fig. 1. Comparative view on the structural and the differential approaches. F is a
round function. In the first case the number of states remains stable till structures
collapse to pairs (middle round).

fits the trail, and a pair (S2,.S3) fits the trail, then the pair (S, S3) fits the trail
too. Such a group of states is called a structure.

Suppose at some step a structure of size @ enters the round with probability
P. Then every state S; will have a desired difference with PQ other states
thus composing a smaller structure. Therefore the initial structure splits into
1/P smaller structures. If the structure collapses into separate pairs then the
differential attack is launched.

Suppose there is now freedom from the message injection, i.e., for a pair of
messages (M, M’) there are V possibilities for M and D more possibilities for
M’ (VD pairs at all). So if a round differential has probability P then of T' pairs
about V - D - P - T pairs survive. See Figure [[l for the outline of the situation.

When we work with structures, the value of the injected message can be
chosen freely only for the first state of a new structure, or the leader state; the
messages injected to the other states should have a desired difference with a first
one. Consequently, the message freedom results in structures of size =~ D - P - Q.
The number of states remains the same; however, it can be increased if we take
other states as leading ones.

3 Analysis of Structure Fission

In order to benefit from the number of pairs in a structure an adversary should
keep the size of the structure as big as possible. Let us estimate the size as a
function of the round probability and the freedom given by message injections.
Denote by ~ the desired binary relation between two states, which can be also
interpreted as the fact that the difference in the state satisfies the trail conditions.
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The particular relation is usually clear from the context. Then a structure is a set
of internal states such that any two states of the set satisfy the binary relation ~.
In our attacks on GRINDAHL and FUGUE (Section[]) the relation is of form “bytes
(respectively, words) i1, 49, ..., are equal”.

No freedom in the message injection. Suppose a structure of size Q) = 27 states
enters a round with probability 277. First consider the case where there is no
freedom in message injection due to the differential trail or the message schedule.
After the application of the round function any state has a desired difference
with 297P other states, which form a structure of size 279-P. Therefore, the initial
structure splits into about 2P smaller structures of average size 297P.

It is easy to prove that the partition of a structure into structures of equal
size gives a lower bound on the overall number of pairs. If p is high enough
then the structure collapses to separate pairs. Since there were 22¢~1 pairs in
the structure, about 229~'~P pairs come out of one round. Then the pairs are
processed by the standard differential attack.

Value freedom in the message injection. Suppose now there is some freedom in
message injections but the differential trail does not allow to introduce a differ-
ence, or the value of the difference is fixed. Then every state can be transformed
to at most one element of a new structure, so the structures do not grow in this
case. However, one may increase the number of structures and thus the number
of considered states.

The latter approach increase the memory complexity so we do not use it except
for the round when all structures collapse to pairs. Given V = 2V possibilities
for an injected message we get 2297 1TY=P pairs after the round.

Difference freedom in the message injection. Assume that 2¢ possible differences
can be injected, and they form a linear space. Then we get larger structures
because we have more freedom in steering a state into the structure.

Suppose that state S; has already transformed to state S! by message v;:
Silvi] = S.. Let us compute the probability that a randomly chosen state S,
can be transformed to some state with the desired difference with S! by some
message m’, which follows the trail too. The probability can be expressed as
P(Em' : S;jim'] ~ S[,m' ~m|S; ~5;).

Assuming that the events for particular messages are independent we obtain
the following expression:

IP’(EIm' : Sj[m'] ~ S;,m' ~m | SZ' ~ S]) =
=1— [ B(S;lm") % 8|8~ 8;) =1~ (1 -2 ~2077. (1)

Consequently, one structure splits into structures of average size Q' = 29+4-P,
Analogously, if ¢ +d — p < 0 the structure collapse to pairs. Since 229~ 1+v+d
pairs can be composed about 229~V +4=P come out of the round.



112 D. Khovratovich

Size of the initial structure. By degrees of freedom we understand the base 2
logarithms of the number of admissible values. Suppose that at round 7 there
are v; degrees of freedom in the values of the injected message, d; degrees of
freedom in the differences in injected messages, and p; (bit) conditions to be
satisfied. In the standard differential attack we start with 2¢ pairs and leave
with one pair in the end. Therefore, we obtain the following equation:

T
C"’Z(Ui"’di—pi) =0.

i=1

Here T stands for the number of rounds covered by the trail. We also denote by
¢(t) the logarithm of the number of pairs after ¢-th round:

¢ ¢ ¢ t
c(t) :c—t-Z(vi—Fdi—pi) =c+Zvi+Zdi—2pi.
i=1 i=1 i=1

i=1 =
N L R R

o(t) d(t) p(t)

Suppose we start with a structure of size 29, which collapse to pairs after [ + 1
rounds, I < T. The structure splits to 27(0=4() smaller structures after [ rounds.
Each structure is of size about 24740 =,(!) Therefore, about 224+ =pP()=1 pajrg
come out of round [.

In order to continue the collision search and obtain one pair in the end the
following equation should hold:

l 1
2+dl)—p(l)—1=c(l) & 2¢g=c+ov()+1 & ¢= C+U(2)+ .
states/
pairs of states
logarithmic scale . o(t) = e+ o(t) + d(t) — plt)
q — k”c’%g)ﬂ
q(t) = q+d(t) = p(t)
Lot T rounds

Fig. 2. Memory complexity of the collision search with structures
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The memory complexity is thus determined by the maximum of 27 and 2¢(-+1D+1,
It can be finally expressed as
etvlh+1 2c(l+1)+1). (2)

min max(2 ,
0<1<T

The plot of the memory complexity of the attack with structures compared
to a standard differential attack is drawn in Figure @l There ¢ stands for the
logarithm of the number of pairs required by the differential attack, ¢ stands for
the logarithm of the size of the structure that is used for the structural attack.

4 Concrete Attacks

4.1 How to Construct a Trail

The trails used in our attacks on GRINDAHL and FuGUEhave been obtained by
a simple backtracking process. The idea is to start with zero-difference state and
step back with introducing differences by all message injections. The differences
spread to the internal state till every byte (or another building block) contains
the difference. The number of steps is subject to the diffusion properties of the
internal transformations.

4.2 Grindahl-256

Description. GRINDAHL is a family of hash functions proposed by Knudsen,
Rechberger and Thomsen at FSE 2007 [I3] as a stream-based hash function. The
round function of GRINDAHL uses the design components of AES [7]: SUBBYTES
and the MIxCOLUMNS operation. Since the internal state of GRINDAHL is wider
than that of AES (GRINDAHL-256 can be viewed as a byte matrix of 4 rows and
13 columns) it uses a modified SHIFTROWS transformation in order to obtain
better diffusion. The other message-independent transformation is ADDCON-
STANT, which adds a constant to a particular byte.

In GRINDAHL-256 the message injection is just the overwriting of the first
column with 4-byte message block. The round function is defined as the following
composition of transformations:

P(a, M) = M1xCOLUMNS o SHIFTROWS o SUBBYTESo
o ADDCONSTANT o INJECTMESSAGE (v, M).

Here « denotes the state to be iterated, and M the message block to be injected.
Every message block is used only once.

In order to obtain a hash value the state filled with zeros is iterated till the
message is ended. Then eight blank rounds (no message injection) are applied
and the resulting state is truncated to 256 bits, which is the hash value.
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Security. The designers of GRINDAHL-256 claimed the security level of 2128
operations against both collision and second-preimage attack. Peyrin in [I7]
found a differential trail, which leads to a full collision in an internal state before
the blank rounds are applied. The trail deals with two values of byte differences:
non-zero and zero. It starts with a pair of states that differ in all bytes and after
9 message injections leads to a collision. Following our notation, he had 55 byte
conditions, 21 byte degrees of value freedom, and 20 byte degrees of difference
freedom thus obtaining complexity 2(55-21-20)8 — 9112 meggage pairs. In early
steps there was more freedom that is required by the trail so there was no clear
difference between the value freedom and the difference freedom. However, the
structural approach benefits from the difference freedom so we first exploit the
latter one. There is also an attack on the prefix-MAC built on GRINDAHL [J].

Although GRINDAHL-256 is already broken, the goal of our attack is not only
the illustration of structural technique. Peyrin provided some ad-hoc observa-
tions on the fact that his attack is one of the best dealing with the truncated-
differential approach, and 2'% is the lower bound on the complexity of such
attack. Our attack breaks this bound.

Attack. In order to apply the structural approach we first have to modify a
bit the class of truncated differentials. Here and later we consider two-valued
byte-difference: * (random difference, including 0) and 0 (bytes coincide). They
are marked as grey and white cells in Figure B respectively. One can easily check
that this not only barely affect the probability of the trail and the complexity
of the collision search but also simplify computations.

The second barrier is that the trail used by Peyrin for collision search is badly
suited for the structural approach due to the distribution of probabilities among
the iterations, which helps the standard differential attack but does not provide
the best results for the structural attack. Table[] (a) shows that we would have
to start with a structure if 212:5% = 2190 states, which does not offer enough
advantage against Peyrin’s attack.

The better complexity is provided by the second trail from [I7], which was
proposed for the second-preimage search. However, there is a mistake in Peyrin’s
paper: the byte C' inserted before the k-th iteration does not affect column 11 in
the k+1-th iteration. As a result, the complexity of a simple truncated differential
attack is 2218 = 2168 pairs. However, the structural attack needs only a set of
210-5:840.5 — 9845 gtates (Table [ (b)).

The attack works as follows. Iterate GRINDAHL-256 for 10 rounds with ran-
domly chosen messages and obtain a structure with 2845 states. Then we keep
the size of the strcture after the first iteration thanks to the 4-byte difference
freedom. After the second round the structure collapses to 272 pairs, and only
one pair comes out of the next iteration.

Time complexity of the attack. Since some message bytes pass several SUB-
BYTES transformations it is not clear how costly the steps when we deal with
structures are. A trivial upper bound is 20+tmax(di) ~ 2116 We propose some
optimizations, which lead to a complexity about 2'° operations though the
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Table 1. Parameters of differential trails for GRINDAHL-256. Measurement in bytes.

iowvodiopioc(i) T3P qli)
Start — — — 14 7 12.5
1 02 2 14 7 125 i di opioc(i) T qa)
2 3 4 7 14 85 95 Start — — — 21 105 105
3 43 7 14 105 55 1 0 4 4 21 10.5 105
4 4 2 7 13 125 15 2 442 9 12 -
5 4 3 9 11 145 - 3 431 0 14 -
6 4 4 14 5 165 — 4-50 0 0 0 14 -
7 22 9 0 175 -
8—9 0 0 0 0 175 -—

technique can probably be improved. The reader may refer to Table [ for better
understanding.

In the first step there are 4 bytes of difference freedom and 4 bytes where
the difference should be canceled. The leader state of a new structure is defined
by iterating the round function with a random message block. For each next
state S in the structure we must find the message bytes (A, B,C, D) to be
injected (we keep this notation in the further text) that lead to a state colliding
in particular 4 bytes with the leader state. First consider column 7 before the
MixCOLUMNS transformation in the second iteration. Three bytes of column 7
are not affected by the message injection and can be derived explicitly. On the
other hand, one byte after the MIxCOLUMNS transformation is known because
a collision there is needed. Thus, compute both the input and the output of the
MixCoLUMNS transformation of column 7 and thus derive the value of D and
the value of second byte in column 9 in the next iteration.

Then try all the values of C. For each value derive one more byte in col-
umn 9 in the third iteration. As a result, two bytes in column 9 are known
before the MIXCOLUMNS transformation and two bytes are known due to the
fact of collision. As a result, derive the values of A and B and check the Mix-
CoOLUMNS transformation in column 3 of the second iteration with the latter two
values. On average, 27 trials of C' are required.

The second step is actually the bottleneck of our attack, though we believe
that the complexity may be reduced. First vary B and C' for each state thus
obtaining 2'00-5 states. Then the 16 bytes in the third iteration where zero dif-
ference is desired are fully determined by 6 bytes that are affected by A and D.
This gives us 16 — 6 = 10 byte conditions, which can be used to divide the set
of states into structures. One more condition we get from the second iteration,
where the byte was affected by just fixed B. Therefore, we obtain 2(10+1):8 — 288
blocks each of size 2125, In every block we have 6 variables and 6 conditions;
the other conditions are provided by constants. Since we process the blocks in-
dependently, the memory complexity is not increased.
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Then consider the unknown bytes in columns 3, 5 and 11 that are affected
only by A. Consider two random states in a block and denote by x4 and 2/,
the message byte A after the SUBBYTES transformation. Then the fact of zero
difference in those columns can be expressed as the following system of equations:

algS(agle + Cl) +co = algS(azlx;l + Cll) + 0/2;
anS(agle + 63) +cqg = anS(aglxh + Cg) + Cil;
a14S(a41$A + 65) + Ceg = a14S(a41:r24 + Cg) + Cg.

Here a;; are coefficients of the MIXxCOLUMNS matrix and ¢; are state-dependent
constants. Due to properties of the AES S-box x4 and 2/, are uniquely deter-
mined (if there is a solution) by constants ¢ = (c1,ca,c3,c¢4,¢5,¢6) and ¢ =
(¢}, ch, s, ), cs, o). Furthermore, this property is transitive, so that we precom-
pute the function f: ¢ — z4.

As a result, a block of 2!2 states splits to 2% blocks with 2 states each where
A, B and C are fixed. In order to obtain the value of D repeat the same trick in
columns 7, 11, and 12 thus getting one pair per 2 states, or 2?6 pairs at all. Only
272 pairs of them pass through 3 conditions in column 9 in the fourth iteration.

In the last third step we have to pass 15 byte conditions given 6 byte degrees
of freedom. Since we deal with separate pairs, the filtering process be maintained
with precomputations (see [I7]).

4.3 Grindahl-512

The hash function GRINDAHL-512 is defined similarly to GRINDAHL-256, but
the internal state is twice as big as that of GRINDAHL-512: it has 8 rows and 13
columns. Each injection of a message block substitutes the first column with 8
bytes of a message. The row offset values are defined by the following expression:

ci=i+1;0<i<T.

The MixColumns matrix is also redefined but the exact coeflicients are irrelevant
to our attack. The only property we use is that this matrix is MDS with branch
number 9.

So far there is no collision attack on GRINDAHL-512 though a weakness of
using GRINDAHL-512 as the base of prefix-MAC was shown [J].

Attack. We use a 3-round differential trail, which is shown at Figure[dl The trail
is obtained by iterating GRINDAHL-512 backwards from the zero-difference state.
It is assumed that the last truncation (before the injection) deletes a column
with 6 byte differences, while the first two truncations delete the full-difference
column. The parameters of the trail are listed in Table[2 at the left. However, the
second step becomes so time-consuming that the resulting complexity overcomes
the brute-force one. The reason is that structures are too large to be quickly
recomposed into pairs. On the other hand, if we test all the possible injections,
the time complexity increases as well.
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Table 2. Parameters of the differential trail for GRINDAHL-512. The second table is
obtained by splitting the second step into two substeps. Measurement in bytes.

i vy di pi c(i) q(i) i vi di pi c(i) q(7)

- — — 48 28

- — — 48 28
1 8 8 21 43 15

1 8 8 21 43 15
2-1 0 8 21 36 2

2 8 8 49 10 —
2-1I 8 0 28 10 -—

32 214 0 —
3 2 214 0 —

We choose to decompose the second round into two sub-rounds with only slight
increase of the complexity. The idea is as follows. We first process the zeros that
are the result of the second MixColumns transformation and that are affected
by the second message injection. These are 21 zeros in columns 1-8. For any two
states that follow the trail before the second injection the condition of having
zero difference in these positions is equivalent to 21 linear equations with the
differences in the internal state after the S-box application as variables. Since the
message injection can be equivalently swapped with the S-box transformation
we obtain that the 21 equations are 21 linear conditions on 8 differences in the
message block.

Therefore, 2138 structures of size 2158 split into 2(13+21-8)8 — 9268 gryctures
of size 228, These structures collapse to pairs and are partly filtered out due to
the remaining 28 byte conditions though 8 byte degrees of freedom are still
available. Then we compose all possible 239 pairs and filter them out. The
desired values to be injected can be derived from pre-computed tables, which
are applicable since we already deal with pairs. The resulting complexity is
2240 computations and still 2224 memory. The complexity of the last step is
negligible. We also modify the memory complexity table taking into account the
considerations discussed above (Table 2I).

4.4 Fugue

Hash family FUuGuE [I0] has been recently submitted to the SHA-3 contest [16],
and has been recently chosen to the second round. It was designed by a group of
researchers in IBM. The design of FUGUE resembles that of GRINDAHL with sev-
eral improvements, that should have increased the security. However, FUGUE is
slower than GRINDAHL, which can be a serious disadvantage during the
competition.

We analyze FUGUE with the structural approach and show that its security is
much higher than that of GRINDAHL. Though we do not break the FUGUE secu-
rity claims, the our attack is significantly faster than a trivial internal-collision
attack.
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Description

FUGUE-256. FUGUE-256 has internal state, denoted by S, of 120 bytes, which is
viewed as a 4 x 30 array. We denote by S; (i = 0...29) the i-th column of S. A
message, appropriately padded, is split to 4-byte blocks. Each block I is an input
to the round transformation of S, which is defined in pseudo-code as follows:

— TIX(I);

— Repeat 2 times:
e ROR3;
o CMIX;
e SMIX;

TIX, ROR3 and CMIX are linear transformations. TIX consists of the following
steps:
Si6+ = S0; So=1; Ss+==S0; Si+ = S,

where + stands for XOR. CMIX is linear as well:
So+=854; S1+=255 S2+=S8s OSis+=054 Sie+=255 Sirt+ = Se.

ROR3 rotates the state three columns to the right.

SMIX is a more complicated transformation. It process bytes in columns Sy—
Ss. First, the AES S-box is applied to those 16 bytes. Then they are composed
into a 16-byte vector, that is multiplied by matrix N, which is an almost-MDS
matrix with branch number 16.

After all the blocks have been processed, the final round transformation is
applied, and then eight columns of S are taken as hash output. Since we produce
a collision before the final round, we skip its description (see full details in [I0]).

FuGUE-512. FUGUE-512 follows the same philosophy, but has a stronger design:
36 columns (instead of 30) and twice as many operations as FUGUE-256 per
round:

— TIX’(1);

— Repeat 4 times:
e ROR3;
e CMIX’;
e SMIX;

The CMIX’ and TIX’ operations have more column additions compared to
FuGUE-256, and column indices are different. TIX":

Soo+ = So; So=1; Ss+ =50; S1+ = S2; Sat+ = Sa7; 57+ = S30.
CMIX’:

So+ =S84 S1+ =055 S+ =S8 Sigt =054 Siot+ =255 S+ =S.
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Table 3. Column dependencies in FUGUE-256 and FUGUE-512. Value —i for column j
means that before r-th round the last message block that affected column j is M, _;.

Column 0-6 7-12 13 14-17 18-23 24-29 Column 0-12 13-17 18-26 27-35
Depend on -1 -2 -3 -1 -2 -3 Depend on -1 -2 -1 -2

Properties of Internal Transformations. We consider truncated differen-
tials, where difference in one byte may be either zero or random. We assume
that two columns have equal differences with probability 2732, so every column
addition in CMIX and TIX operations costs us 232 if producing a zero column
from two random ones. The SMIX transformation is more complicated. The ma-
trix N is not MDS but is so called almost MDS with the branch number equal
to 13. As a result, when constructing a trail in the backward direction, we get
no benefit from having few active S-boxes in the input of S-Mix so we always
assumed that any active S-Mix output was produced by the input where all the
16 bytes are active. We certainly assume that this approach may not be optimal
though we do not see any properties of the S-Mix transformation which may
lead to other possibilities.

The designers provide several arguments for the resistance of FUGUE to pure
and truncated differential attacks and even provide lower bounds for several
attack modes, which unfortunately do not cover the mode that we use. We only
point out that the complexity of the trivial internal collision attack on FUGUE is
about 22982 = 2464 for FUGUE-256 and 2°%° for FUGUE-512.

Analysis of Fugue-256. The optimal trail that we found for FUGUE-256 is
a 6-round trail depicted in Table Bl Although differences in round r + 2 can
theoretically be managed with a message injection in round r, this is not the
case for this trail. We use the r-th message injection to get proper differences in
only rounds 7 and 7 + 1 (mostly in round ).

We start with a structure of internal states of size 2448 = 2352, Tt splits into
2320 structures of 232 states each after three rounds (TableH]). About 2248 = 2192
pairs come out of the next round, and we get one colliding pair after two more

Table 4. Parameters of differential trails for FUGUE-256 and FUGUE-512

T v di pioc(i) q(i)

Start — — — 80 44 i v di pi oc(i) q(4)
-6 0 4 4 80 44 Start — — — 116 60
-5 4 4 16 72 32 —4 4 4 28 96 36
—4 4 4 32 48 4 -3 4 4 56 48 -—
-3 4 4 32 24 — —2 4 4 56 0 —
-2 4 4 32 0 — -1 0 4 4 0 —
-1 0 4 4 0 —
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Table 5. Trail for FUGUE-256

R\C01234567891011121314151617 181920 21 222324 2526 27 2829

=Dk k ok ok ok ok ok ok ok % k Kk % ok ok Kk k ok ok % k sk k ¥ k sk k ¥ k >k

—4 % k k% k k — — % *k k k — *x x % *k * *k *k *x ¥ % * *k *k *x *x ¥ * %
—3 ok ok ok — k — — — % ¥ k — — k — — — — sk x % >k *k % % >k * ¥ >k *
—2 % ok — — %k — — — %k — %k — — — — — — — — - — — — — k ok ok ok ok 3k
-1 *x - ——— ¥ — — — — — — — — — — — — — — — — — — —
0 —— — — —

Table 6. Summary of our attacks on concrete hash functions

Hash function Attack Memory complexity Time complexity
GRINDAHL-256 Truncated differential [17] 232 2112
Structural 284 2100
GRINDAHL-512 Structural 2224 2240
Fucue-256 Internal collision Q164 -
Structural 2352 2352
Fucue-512 Internal collision 2560 -
Structural 2180 2180

Table 7. Optimal trail for FUGUE-512

R\C 012345678910111213141516171819202122232425 26-30 31-35

S4 o kkkkkokokkokok Kk %k ok ok ok x ok ok ok x k ok k% ok ok ok kok ok ok ok ok ok ok X

S3 kk - -k -skokokk k- sk ok ok ok ok sk k k ok ok ok sk sk sk sk sk ok ok ok ok ok ok ok ok
“2 kk - — k- - kk - k- ok - = = = = = = = o = ok % ok okokokokok ok ok ok ok
T O ea——
[0 I oo o o oo oo oo oo emeee

rounds. Due to big memory complexity of the attack, we assume that we are
allowed to run much precomutation and store the results in tables. We thus
assume that we spend negligible time complexity per each state and each pair,
so the resulting time complexity should be about 23°? as well. This complexity
is clearly much larger than the birthday bound (2'2%) though it is at the same
time much smaller than a birthday bound for the internal collision (2%48). We
would also like to point out that we have not found any non-trivial differential
attack with a comparable complexity.

Analysis of Fugue-512. The optimal trail that we found for FUGUE-512 is
a 5-round trail depicted in Table [l Here we use a message injection to get
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proper differences in the same round. We start with a structure of internal states
of size 2608 = 2480 Tt splits into 2192 structures of 2288 states in the next
round (TableH]), and collapse to 2352 pairs after two rounds. Following the same
observation, we again assume that we spend negligible time complexity per each
state and each pair, so the resulting time complexity should be about 2480, which
is still much larger than the birthday bound (22°6) and smaller than a birthday
bound for the internal collision (2°¢0).

5 Conclusions and Future Work

We showed how the organization of internal states into structures can drasti-
cally reduce the complexity of collision search providing an appropriate differ-
ential trail. The exact formulas for memory complexity and estimates on time
complexity of the attack with structures have been provided. We successfully
combined our approach with simply obtained differential trails and presented
the best known attacks on GRINDAHL and the only external analysis of FUGUE.
The results are summarized in Table

We conclude that FUGUE is much more resistant to attacks with truncated
differentials, that were successfully used for the cryptanalysis of GRINDAHL. This
is mostly due to a better diffusion and a larger internal state, which prevents from
this style of attacks. We believe that our attacks can be further improved with
other differential trails or better optimization of the maintenance of structures.
The complexity of the attack is now determined by the bottleneck step when
structures collapse to pairs. It is likely that the plot of the complexity function
can be significantly smoothed for some hash functions.
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A Analysis of Complexity

The time complexity analysis is much harder because we have to arrange states
into structures as fast as possible.

We consider only one structure, because this process is independently applied
for all structures. To obtain the whole complexity one should multiply the derived
values by the current number of structures.

No freedom in message injection. States Si and S} belong to the same structure
if S; ~ S}. On the other hand, if ~ defines set R of linear differences then the
condition can be expressed in terms of projections to space R* that is orthogonal
to R:

Si~ S} & prg.S;=prp.S;.
As a result, we compute the ordered set of projections of structures and use
binary search to derive the structure a state belongs to. Assuming the sorting
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and search costs are negligible comparing to the round iteration we derive the
complexity roughly equal to the number of states.

Value freedom in message injection. The fact that there is the value freedom in
message injection does not affect the complexity of the attack if structures do
not collapse into pairs yet. The exact value of the complexity in this case is just
the number of states after the round iteration.

Consider the case where structures are collapsed to pairs and single states. As
mentioned in Section [3 the structure contains 229~'+? pairs. The further steps
depend on whether we can exploit properties of the round function.

— If the round function is viewed as a black box, we just derive pairs for each
possible message m. The complexity is about 2417,
— If we can quickly find solutions m for the equation

prg.Sifm] = prp.S;im| 3)

then it is solved for all possible pairs about 22971 times.

— If there exist not only a fast algorithm for solution (@) but also function f
such that (B) has a solution iff f(.S;) = f(S;). Then we compose the ordered
set of f(S) and for each new state look for a pair with negligible cost. The
complexity would be equal to the maximum of the size of the initial structure
(29) and the number of resulting pairs (22¢-1Tv=7),

Difference freedom in message injection. Again, first, we investigate the case
where structures do not collapse to pairs. Suppose states S7,...,S! have been
already distributed into just created structures. We also require that every leader
state is obtained by the same injected message mg. A state S;11 can be dis-
tributed to the structure with the leader state S’ if there exist a message m;i1
such that mg ~ m;y1 and prpL S’ = prioSiti[mit1]. Denote by S the set of
all such states S;i1[mit1]. Then the question is whether prp. S’ belongs to
prp.S.

If S is an affine space, and the linear space does not depend on S;;1 then we
can easily compute the projection and find the corresponding structure using the
ordered set approach. The complexity would be equal to the number of states.
If S is not an affine space but can be represented as a union of affine spaces then
we compute the projection for each space. In the worst case the complexity is
equal to 2¢ multiplied by the number of states.

Now consider the case where a structure collapse to pairs. This is actu-
ally the most complicated case and can be considered as a bottleneck. Indeed,
about 229-1tv+d pairs are composed from a structure with 29 states. About
22a=1+v+d=p pairs come out of the round iteration. The possible approaches are
similar to the case where there is no freedom in difference. If the round func-
tion is a black box, the complexity varies from 297% to 29T+¢_If there exists a
function f such that (B]) has a solution iff f(S;) = f(S;), then the complexity is
between 27 and 224~ 1+v+d=p)
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Table 8. Dependencies of the message block in the differential trail for GRINDAHL-256
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Abstract. The LANE[] hash function is designed by Sebastiaan In-
desteege and Bart Preneel. It is now a first round candidate of NIST’s
SHA-3 competition. The LANE hash function contains four concrete
designs with different digest length of 224, 256, 384 and 512.

The LANE hash function uses two permutations P and @, which
consist of different number of AES[I]-like rounds. LANE-224/256 uses
6-round P and 3-round Q. LANE-384/512 uses 8-round P and 4-round
Q. We will use LANE-n-(a,b) to denote a variant of LANE with a-round
P, b-round @ and a digest length n.

We have found a semi-free start collision attack on reduced-round
LANE-256-(3,3) with complexity of 2°? compression function evaluations
and 2% memory. This technique can be applied to LANE-512-(3,4) to
get a semi-free start collision attack with the same complexity of 2°2 and
2% memory. We also propose a collision attack on LANE-512-(3,4) with
complexity of 2°¢ and 2'3* memory.

Keywords: hash function, collision attack, rebound attack, LANE,
SHA-3 candidates.

1 Introduction

The SHA-3 competition hosted by NIST aims to find a new cryptographic hash
standard as a replacement of SHA-2. 51 of the 64 submitted designs are accepted
to entered the first round. The LANE hash function is one of the first round
candidates.

The attacks on widely used hash standards such as MD5[2] and SHA-1[3]
are based on differential analysis. Many of the first round candidates of SHA-
3 competition use AES[I]-like SPN structures and claim to resist differential
attacks.

Florian Mendel et al. have proposed a new tool of “Rebound” [5] attack for
cryptanalysis of AES-based designs. The main idea of rebound attack is to take
advantage of weakness implied by S-box’s optimal non-linearity. Random input
and output differences of an S-box match with surprisingly high probability of
1/2 and at least two values can be selected for each S-box. The complexity of
one round in the traditional truncated differential path can be totally eliminated

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 126 ‘ 2009.
© Springer-Verlag Berlin Heidelberg 2009
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at the cost of exhausting degrees of freedom of the active state values. In this
paper, we analyze reduced LANE with rebound techniques. There are other
parallel works of improved rebound techniques and applications in [7ISJ[9].

This paper is organized as follows. In section 2, we briefly describe the LANE
hash function. In section 3, we discuss inner collisions of only two lanes in the
first layer P. Then semi-free start collision attacks on reduced LANE-256 are
described in section 4. Section 5 describes the attacks on reduced LANE-512.
Section 6 is the conclusion.

2 Description of LANE Hash Function

The LANE hash function uses iterative MD structure with counters and out-
put transformation. Digest values of LANE-224 and LANE-384 are truncated
from LANE-256 and LANE-512 separately. Details of padding rules and output
transformation are omitted here since they do not influence this attack.

In this section we briefly describe the compression function of LANE-256
and LANE-512. LANE-256/512 is an iterative hash function, whose compression
function f(H;—1, M;, C;) processes a 512/1024-bit message block, a 512/1024-
bit chaining value, a 64-bit counter, and outputs 256/512-bit digest length. The
chaining state H;_; and the message block M; are expanded to six 256/512-
bit blocks. Each block enters a different lane of P. Different lanes use different
constants and counters. Output of the first three lanes and the last three lanes
are XORed separately as input of the () permutations. At last, output of both
@ permutations are XORed as the next chaining value H;. The structure of
compression function in LANE is shown in Figure [l

— Wy ——» Po
e W, —— Py
— W; ——» P,
Message |— W3 —p |:'3
M; ——»
Expansion > Ws > P,
His — — W —» P

Fig. 1. The compression function of LANE

2.1 Message Expansion

The compression function of LANE-256 expands chaining value H;_1 = hol|h1
and message block M; = mgl||m1||ms||ms to six 256-bit blocks Wy, ...W5 as
shown in equation [l
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Wo = ho ® mo @ mq & ma @ms || hi & mg ®me
Wi =ho®h1 ®@mo®ma@®ms || ho®my @ me
Wa =ho® h1 @mo®my @ms || ho® mg ®mg

1
W3 = hg | ha (1)
Wy =mg || M1
Ws = ma || ms

The message expansion in LANE-512 is analogous. The only difference is that
all blocks are double-sized.

2.2 Permutations P and Q

P and Q in Figure[ are permutations with AES-like state update rounds. LANE-
256 uses 6-round P, 3-round @ and LANE-512 uses 8-round P and 4-round Q.
Each round contains five steps. One round of state update operation in LANE-
256 is shown in Figure 2l The difference in LANE-512 is that all operations are
on four 4 x 4 matrices.

In this paper, we use S; to denote the state value after the i-th round. Between
S; and S;11, the state values are denoted as S, S/, S} and S}’ consecutively.
AS; is used to denote the XOR difference of state S;.

The five steps of one round are:

— SB: the non-linear operation SubBytes applies an S-Box to each byte of
the state. The S-box is the same as the one used in AES[I].

— SR: the cyclical permutation ShiftRows rotates the bytes of the i-th row
leftwards by ¢ positions.

— MC: the diffusion layer MixColumns multiplies each column by a MDS
matrix which is the same as the one in AES.

— AC: the constants and counter additions AddConstants and AddCounter
add the round constants and the counter to the states. We use AC to denote
both of them. The last rounds of both P and @ don’t have AC operations.
Details of the AC operations are omitted here since they have nothing to do
with our attacks.

— SC: the mixing operation between different 4 x 4 states SwapColumns
reorders the columns in the state. LANE-256 and LANE-512 use different
SwapColumns operations which are shown in Figure

Si Si: Siu Si:u Siuu SH_]

T -

Fig. 2. One round of state update operation in LANE-256
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Fig. 3. SwapColumns operations used in LANE-256 and LANE-512

3 Construct Inner Collisions Using Rebound Techniques

The LANE hash function has six lanes in the first layer P. In this section, we are
trying to construct collisions between only two lanes, namely the inner collisions.
It’s easy to see that two simultaneous inner collisions could directly lead to a
full collision.

3.1 Optimal Differential Pattern for LANE

The message expansion used in LANE is based on a linear (6,3,4)-code over GFy,
which means for any possible differential path, there are at least four active lanes
in the first layer P. Once the difference enters layer @, there would be more active
S-Boxes. So we want to eliminate all differences before they enter layer Q.

This is the best differential pattern for LANE with four active lanes Py, Py, Py
and Ps;. Two inner collisions in layer P ensure no difference enter layer Q as
shown in Figure [l

Let Amy = Amo # 0 and Ahg = Ahy = Amy; = Amg = 0, we have four
active lanes Py, Py, Py and P5 and the differences in W are in the form of (A, 0)
and (0, A). Differential paths with initial difference of (A,0) and (0, A) behave

I—» 00
—» 0A
—» 0A
Message —» 00
M; AOAQ —»
Expansion > AO

H, 00 —p —» AD

Fig. 4. Optimal differential pattern for LANE
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in a similar way. So we only need to consider one type of differential path in the
final attack. We will talk about this in section .21

3.2 Rebound Differential Path of Inner Collision

In this section, we only consider an inner collision of two lanes. Using rebound
techniques proposed by Florian Mendel et al. in [5], we can easily attack round 6
of layer P in LANE-256 with a complexity of 21%. The differential path is shown
in Figure

In traditional truncated differential path, difference propagates from initial
state to hash value in forward direction. In a rebound attack, we search for an
inbound differential path in internal states first. Then the outbound part can be
considered as two truncated differential paths in different directions - forward
and backward. Since complexity of the inbound phase can be eliminated, we only
need to consider probability of the outbound phase.

Here, we briefly describe the attack of inner collision. This is similar to the at-
tack on Grgstl[5]. For more details of rebound attack, please refer to the original
paper.

Step 1: We start from choosing random differences in both S% and S;. Then
compute AS3 from ASY and AS] from AS,. These difference propagations
AS) — AS3 and AS} — ASy hold with probability of 1 because all operations
between them are linear transformations SR, MC, AC and SC.

Step 2: We expect to find a match of possible differential character at the S-box
in the third round with probability of 2732, because random difference in input
and output of an S-Box matches with probability of 1/2 and there are 32 active
S-boxes. Once we have found a match, we get 232 staring points (attempts) for
the outbound phase, since we have at least two values for each S-Box match. So
we can generate 232 attempts with complexity of 232. For any z > 32 we can
generate 2% attempts with complexity of 2%.

Step 3: Each starting point (attempt) can lead to our demanded differential
pattern in Sy with a probability of 2748 x 278 = 2796 In other words, we can
generate a successful attempt in one lane with complexity of 2°6.

Step 4: In order to find a match in the three bytes of difference in Sy and eight
bytes in SZ between two lanes, we need 28x(348)/2 — 944 gyccessful attempts
in both lanes. So the complexity is 2°6 x 244 = 2190 for a inner collision with

the same initial difference in both lanes. The memory requirements of step 4 is
2 x 24 = 245,

4 Semi-free Start Collision Attack on LANE-256-(3,3)

Even if we have successfully found two inner collisions of four lanes in layer P,
we can not get a collision of full LANE. The problem is the message expansion
since rebound attack require a full control of the state values. Four initial state
values of the two inner collisions will probably lead to a contradiction since we



132 S. Wu, D. Feng, and W. Wu

have a degree of freedom for only three states, namely (hg, k1), (mo, m1) and
(mag, ms).

More precisely, from two inner collisions we get the exact values of Wy, Wy, Wy
and W5. Recall equation (), and we can see that W, and W5 can determine
values of mg, mi,mo and mg. By selecting the values of hy and hy, we can
change the value of (ho @ h1 © mo ® ma ® ms, ho ® my & ma) to Wi which we
have got from the first inner collision. Since all degrees of freedom are used, we
have to leave W5 satisfied by chance.

There are 256 bits left in W5 along with the 24-bit initial difference. We need
2(256+24)/2 — 9140 jpper collisions in both Py, P, and Py, Ps to find a match in
256 + 24 = 280 bits. So in both lanes of one inner collision, we need 2140/2 =
270 times more attempts. The complexity of semi-free start collision attack on
LANE-256 is 2190 x 270 = 2170 > 2128 which exceeds the birthday bound of
256-bit hash functions and this attack fails.

4.1 Rebound Differential Path with Partially Fixed State Values

We are inspired by Dmitry Khovratovich et al. of their meet-in-the-middle at-
tacks on several SHA-3 candidates[6]. The idea is to fix values of certain bits to
get an actually smaller size in the meet-in-the-middle part of the target state
and lower the complexity.

If we fix some bytes in an AES state, they would be affected by other bytes
in at most two rounds. We have got an observation that diffusion in LANE is
not as efficient as in AES. Fixed values in certain positions of the initial state
can proceed to the third round in both LANE-256 and LANE-512.

Combining this small observation and rebound techniques, we have found a
solution for LANE-256-(3,3) as shown in Figure [6l

In this figure, one byte with a mark of “X” means its value can be pre-
computed and fixed during the attack. In our attack, we let all the X bytes
in Sy to be zeros and calculate values of the following ones. When we choose
differences in S7 and S%, we also set the values of fixed bytes in S7 and S% to
what we have pre-computed.

In the four active lanes of this attack, the round constants and counters are
different. So the exact values of fixed bytes in S7 and S% are different in four
lanes. But they would all lead to zero values in the certain positions of initial
states.

We also let the values of marked bytes in hg and h; to be zeros. So when we
have got Wy, Wo, W, and W5 from two inner collisions, we calculate the values
of the non-zero bytes of hg, h1, mg, m1, mo and mg from Wiy, Wy and W5. Then
there are only 128 bits of state values left unsatisfied in W5 instead of 256 bits,
since all zero bytes are already satisfied in advance.

4.2 Details of the Attack

In this attack, We use two inner collision differential paths with initial differences
of the patterns (A,0) and (0, A) separately. If we change the position of two
4 x 4 matrices in the initial state of one path, the differential path don’t change
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Fig. 7. Outline of the attack on LANE-256-(3,3)

substantially. Especially, the positions of fixed bytes don’t change. So we consider
these two differential paths equivalent and only need to analyze one of them in
the following steps. Figure [0 shows outline of this attack.

This attack is described in six steps. Step 1 is the pre-computation. Steps 2 to
4 are the details in one lane of an inner collision. Step 5 is the meet-in-the-middle
step of the initial difference between two lanes. Step 6 is the meet-in-the-middle
step of the state values and the difference byte between two inner collisions
except for the X bytes.

Step 1: Set all fixed bytes in the initial states in four lanes to zeros and compute
the consecutive exact values of all fixed bytes in the following states.

Step 2: Choose random differences in both S and SY5. Here is a little difference
from the attack above. We choose differences in S% to be the same in both lanes
of one inner collision. These two differences will remain the same when they
proceed to S5 because of the linear transformations from S4 to S3. Even though
we don’t know the exact value of AS3 in both lanes, they must be the same and
will offset each other before they enter layer Q.

Step 3: We expect to find a match of possible differential character at the S-
box in the second round with probability of 2732 as in the attack above. Once
we have found a match, we get 232 staring points (attempts) for the outbound
phase. Now assume that we generated 2% attempts with complexity of 2*.

Step 4: We can find a successful attempt in one lane in every 224

With 2% attempts, we expect to find 22724 successful ones.

attempts.
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Step 5: Now we have 27724 successful attempts in both lanes, so we can find
22(w—24)=8 — 92056 matches in the only one byte difference in Sy. So we have
got 227726 inner collisions in P;,P; and the same number of inner collisions in
P,,Ps. This step requires 4 x 2*~24 memory.

Step 6: After we select the values of hg and hq, there are 128 bits in W5 and
8 bits in the initial difference unsatisfied. So we expect 22(22—56)-136 — 94z —248
matches in these 136 bits. This step requires 2 x 22¢~56 memory.

If x = 62, we expect to find a final match. Memory requirements of step 5 and
step 6 are 240 and 2%. So the semi-free start collision attack on LANE-256-(3,3)
has an overall complexity of 262 and requires about 259 memory.

5 Applications to LANE-512

We can also use rebound techniques to find inner collisions for LANE-512. By
fixing certain bytes in the state values, we can find semi-free collision and collision
attacks on LANE-512-(3,4).

5.1 Inner Collision of LANE-512

For LANE-512, we can proceed to round 8 of P in an inner collision attack of two
lanes. The differential path will be shown in Figure ] as an appendix. Details of
this attack is similar to inner collision attack on LANE-256 in section

For any given attempt, it is successful with probability of 2724 x 2796 = 2-120
which means we can generate one successful attempt with complexity of 2120,
Then we have to match in 8 x (16 + 16) = 256 bits, and we need 22°6/2 = 2128
successful attempts in both lanes. The complexity of inner collision on LANE-
512 is 2120 x 2128 = 2248 and the memory requirement of meet-in-the-middle
step is 2 x 2128 = 2129,

9

5.2 Semi-free Start Collision Attack and Collision Attack on
LANE-512-(3,4)

Using the fixed bytes techniques, we can find a semi-free start collision of reduced
LANE-512-(3,4) with a differential path shown in Figure[@ as an appendix. This
attack is almost the same as the attack in section 2] with the same complexity
of 262 and 2% memory.

As you can see in Figure [ we can fix more bytes in the 3-round path for
LANE-512. If we don’t use the degrees of freedom in the initial chaining values
ho and hi, we have 16 more bytes in the final meet-in-the-middle part. The
difference is that fixed bytes in W3 and W5 are not set to zeros in the marked
positions. Recall equation [Il since now values of hg and hy are fixed, if we set
fixed bytes of W4 and Wj5 to zeros, values of W7 and W5 in the marked positions
are determined by the value of standard IV = (hg, h1).

Assume that we have generated 2% attempts in each lanes, we expect 22%~26
inner collisions in both P;, P> and Py, Ps. The difference is now we have to match
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256 + 8 = 264 bits. So we expect 22%(22-56)=264 _ 942-376 fiya] matches with

memory requirement of 2 x 22756 If x = 94, we expect to find one final match.
So, we have found a collision attack on LANE-512-(3,4). The complexity of

collision attack on LANE-512-(3,4) is 2% and memory requirement is 2133,

5.3 Semi-free Start Collision Attack on LANE-512-(4,4)

If we want to attack more than three round in P, we can no longer use fixed val-
ues, since fixed values can only proceed to the third round. Without fixed values,
we can attack LANE-512-(4,4) with a differential path shown in
Figure [[Q which is part of the one shown in Figure

Assume that we have generated 2% attempts in each lanes, and only 2%~ 120
of them will be successful ones. Then we expect 22(x—120)=8 — 922-248 jppey
collisions in both P;, P, and P4, P5s. Here, we have to match 512 4+ 8 = 520 bits.
So we expect 22X (22-248)=520 — 9421016 fipa] matches with memory requirement
of 2 x 2227248 If 1 = 254, we expect to find one final match.

So, the complexity of semi-free start collision attack on LANE-512-(4,4) is
2254 and memory requirement is 226'. Though computational complexity is less
than birthday bound, memory requirement of this attack is more than 22°6. This
attack can be considered unsuccessful.

6 Conclusion

In this paper, we analyzed the LANE hash function using rebound and meet-in-
the-middle techniques. We give several attacks on reduced variants of LANE-256
and LANE-512. Table [l shows all the results of these attacks. Notation “ {7 in
this table means the attack can be considered unsuccessful.

The memory requirements of all these attacks come from the meet-in-the-
middle steps. But the memoryless variants seem not easy to be implemented in
our attacks.

We can hardly attack more than three rounds of P with method of fixing
certain bytes, since the fixed values can only proceed to the third round. Our
attacks on reduced variants do not hurt collision resistance of full LANE.
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Abstract. In this paper we analyse the security of the SHA-3 candi-
date ARIRANG. We show that bitwise complementation of whole registers
turns out to be very wuseful for constructing high-probability
differential characteristics in the function. We use this approach to find
near-collisions with Hamming weight 32 for the full compression function
as well as collisions for the compression function of ARIRANG reduced to
26 rounds, both with complexity close to 2 and memory requirements
of only a few words. We use near collisions for the compression function
to construct pseudo-collisions for the complete hash functions ARIRANG-
224 and ARIRANG-384 with complexity 22* and close to 2°, respectively.
We implemented the attacks and provide examples of appropriate pairs
of H, M values. We also provide possible configurations which may give
collisions for step-reduced and full ARIRANG.

Keywords: practical, pseudo-collision, ARIRANG, hash function.

1 Introduction

ARIRANG [I] is one of the first-round candidates in the SHA-3 competition
organized by NIST. It is an iterated hash function that uses a variant of the
Merkle-Damgard mode augmented by a block counter. The compression func-
tion is a dedicated design that iterates a step transformation that can be seen as
a target-heavy unbalanced Feistel network [9]. Its construction seems to be in-
fluenced by an earlier design called FORK-256 [4] with the important difference
of using a bijective function based on a layer of S-boxes and an MDS mapping
as the source of non-linearity. This prevents attacks similar to the ones devel-
oped for FORK-256 [7l6)2] from working on ARIRANG. A single sequence of 40
steps rather than four parallel branches makes it immune to meet-in-the-middle
attacks [8].

* The paper was partly done during the author’s visit to Technical University of
Denmark and was partly supported by a DCAMM grant there.

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 141@2009.
© Springer-Verlag Berlin Heidelberg 2009
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Related Work. To the best of our knowledge, the only published previous work
on ARIRANG is a step-reduced preimage attack by Hong et al [3]. Based on the
meet-in-the-middle preimage attack framework developed by Sasaki et al, Hong
et al were able to find [3-33] step-reduced pseudo-preimages with complexity
2241 and 2481 for ARIRANG-256 and ARIRANG-512, respectively.

Our Contributions. In this paper we report results of our security assessment
of ARIRANG. The initial observation that motivated our analysis was the fact
that differences created by complementing (flipping) all bits in a register propa-
gate quite nicely through the function due to a particular interaction of the layer
of S-boxes and an MDS mapping. We were able to exploit this fact to derive a
range of attacks on the compression function and extend some of them to attacks
on the complete hash function.

After a short description of ARIRANG given in section Pl we explain in de-
tails our ideas of managing all-ones differences in section [3l and show how to
find conforming messages in section Fl After that, we describe two attacks on
ARIRANG. In section [f] we show how to find collisions for 26 out of 40 steps
of the compression function with complexity close to the cost of computing
a single hash value of ARIRANG. Next, we show in Section [6 that by inject-
ing all-ones difference in one of the chaining values we can easily (with com-
plexity close to one evaluation) obtain 32-bit (resp. 64-bit) near collisions for
the full compression function of ARIRANG-256 (resp. ARIRANG-512). We use
the freedom of selecting in which chaining register we want to have differ-
ences to convert those near-collisions for the compression function to pseudo-
collisions for the full hash functions ARIRANG-224 and ARIRANG-384 which we
can obtain with complexity 222 and close to 2° respectively. Finally, we discuss
some open problems and conclude in Section [Bl Our results are summarized in
Table [

Table 1. Summary of the results of this paper

Compression function

Result Complexity Example
32-bit near-collision for full ARIRANG-256 compress 1 Y
64-bit near-collision for full ARIRANG-512 compress 1 Y
26-step collision for ARIRANG-256/512 1 Y
Hash function
Result Complexity Example
pseudo-collision for full ARIRANG-224/384 hash 223 /1 Y

2 Brief Description of ARIRANG

We start with providing a minimal description of ARIRANG necessary to un-
derstand our attacks. More details can be found in the original submission
document.
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H M
step 1 Wo0) Wo(1)
step 2 Wo(2): Wo(3)
step 20 Wo(38), Wo(39)
message
| bxpansior
step 21 Weo(40), Wo(a1)
step 22 Woaz2), Wo(a3)
step 40 Wo(z8), Wo(79)
—0

Fig. 1. Compression function of ARIRANG

Compression Function. The fundamental building block of the hash function
ARIRANG-256 (ARIRANG-512) is the compression function that takes 256-bit
(512-bit) chaining value and 512-bit (1024-bit) message block and outputs a
new 256-bit (512-bit) chaining value. The function, depicted in Fig. [l consists
of two main parts: the message expansion process and the iteration of the step
transformation.

The message expansion function takes as input 16 words of the message
Moy, ..., M5 and produces 80 expanded message words in two stages. First, 32
words W; are generated according to the procedure described in Alg. [[l where
K; are word constants and r; are fixed rotation amounts. Our attacks do not
depend on their actual values. Next, these 32 words are used 80 times, two in

Table 2. Ordering o of expanded message words W, used in step transformations

i o(7) i o(i) i o(1) i o(7)
0,1 16, 17 20, 21 20,21 40, 41 24, 25 60, 61 28, 29
2,3 0,1 22,23 3,6 42,43 12,5 62,63 7,2
4,5 2,3 24,25 9,12 44,45 14,7 64,65 13, 8
6,7 4,5 26,2715 2 46,47 0,9 66,67 3, 14
89 6,7 28,29 5,8 48,49 2,11 68,69 9,4
10, 11 18, 19 30, 31 22,23 50, 51 26, 27 70, 71 30, 31
12,13 8,9 32,33 11,14 52, 53 4, 13 72, 73 15, 10
14,1510, 11 34,35 1,4 54,55 6,15 74,75 5,0
16, 17 12, 13 36, 37 7,10 56,57 8,1 76,77 11, 6
18,19 14, 15 38, 39 13, 0 58, 59 10,3 78,79 1, 12
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each step transformation, in the order defined by the function o described in
Table 21

Algorithm 1. Generation of expanded message words in ARIRANG.
for i =0,...,15 do

Wi — M;

end for

Wie — (W @ Wi @ Wis & Wis @ Ko) K 10
Wiz — (W @ Wio @ Wiz @ Wia @ K1) K 11
Wig — (W1 @ W3 @ W5 @ Wr ® K2) K 12
Wig — (Wo @ Wo @ Wa @ Ws ® K3) K 13
Wao — (Wia @ Wa @ Wio @ Wo @ K4) < 10
Wor — (W1 ®@W1 & W7r @ Wis ® Ks) K 11
Wag — (We @ Wiz @ Wo @ Ws @ Ks) <K 12
Wag — (W3 @ Wo @ Wis ® W5 ® K7) <K T3
Was — Wiz @Wis @ W1 @ W3 @ Ks) K 710
Was — (Wa @ We @ W @ Wio @ Ko) K 11
Wae — (Ws @ W7z @ Wo @ W11 ® K10) K T2
War — Wiz @ Wia @ Wo @ Wa @ K11) K 713
Was Wio @ Wo & Ws @ Wiz @ Ki2) < 1o

Wso Wo@ Ws @ Wis @ Wa® Ki4) K 12

—(
Wag — (Wis @ Ws @ Wi @ W1 @ Ki3) K 11
—(
Wsp — (Wr @ Wiz ® W3 @ Wo & Ki5) K 73

The iterative part uses the step transformation to update the state of 8 chain-
ing registers, a, b, ..., h. First, the input chaining values HI[0],..., H[7] are
loaded into chaining registers a, ..., h. Then, the step transformation is applied
20 times. After 20 steps, the initial chaining values are XOR-ed to the current
chaining values and the computation is carried on for another 20 steps. At the
end, the usual feed-forward is applied by XOR-ing initial chaining values to the
output of the iteration.

The step transformation updates chaining registers using two expanded
message words Wo(a1), Wo(2:41) as follows

Ty — G (a; & W, a)), Ty — G (e, ® W,(at11))s
bir1 — ar ® Wy, Jt+1 — et ® Woa41),
ciy1 — by @ 11, gt+1 — ft ® Ty,
dip1 — ¢ @ (T K 13), hiv1 — g¢ @ (Tr K 29),
err1 — dp @ (Th K 23), a1 — hy @ (To K 7).

This transformation is illustrated in Fig. 2 In ARIRANG-256, it uses a function
G (%56 which splits 32-bit input value into 4 bytes, transforms them using AES
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Fig. 2. Step transformation of ARIRANG updates the state of eight chaining registers

MDSg % 4

(I)‘OJ 01‘01

Fig. 3. Function G(?*% of ARIRANG-256 uses four AES S-Boxes followed by AES MDS
mapping

S-Box and feeds the result to the AES MDS transformation, as presented in
Fig. Bl ARIRANG uses the same finite field as AES, defined by the polynomial
28 + 2% + 2% + 2 + 1. MDS mapping for 256 bit variant is defined as

z z+11 1
1 z z+11
1 1 z z4+1
z+11 1 z

MDSyyy =

In ARIRANG-512, an analogous function G®1?) is defined using a layer of 8
S-boxes and an appropriate 8 x 8 MDS matrix.

Hash Function. The hash function ARIRANG is an iterative construction
closely following the original Merkle-Damgard mode. The message is first padded
by a single ‘1’ bit followed by an appropriate number of zero bits and a 64-bit
field containing the length of the original message. After padding and appending
block length field, the message is divided into 512-bit blocks and the compression
function is applied to process each of the blocks one by one. The construction
has one additional variable compared to the plain Merkle-Damgard mode. A new
variable that stores the current message block index is introduced and its value
is XOR~ed into chainings before each application of the compression function.
However, this does not affect our attacks.
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3 All-One Differences

From the description of ARIRANG-256, it is clear that it uses only three essential
building blocks: XORs, bit rotations and the function G(2°0) which is the only
part non-linear over .

Let us focus on the function G(?°%) first. First, note that for the AES S-Box
input difference of 0Oxff maps to output difference Oxff with probability 277,
the two values x for which S(x) @ S(x @© 0xff) = Oxff are 0x7e, 0x81.

The second observation is that for the 256-bit MDS mapping all the vectors
of the form (a,a,a,a) are fixed points since a -z +a(z+ 1)+ a+a = a.

This means all-one difference will map to all-one difference through M DSy 4.
In turns, there are 16 32-bit values x such that

G (z) © G (1 @ OXFLFEFEFE) = OxFEFLFEET

and the probability of such a differential is 2728,

This means we can consider a differential that uses only all-one differences
in active registers. The big advantage of such differences is that they are rota-
tion invariant, so we can easily model differentials like that by replacing all the
rotations and function G(°0) with identity.

MDS mapping for ARIRANG-512 is different and all-ones is not its fixed-point,
but after combining S-box layer with MDS, we get the differential of the same
type with probability 27°6, so the same principle applies to the larger variant as
well.

To minimize the complexity of the attack, we need to use as few active G(2°6)-
functions as possible in the part of the function where we cannot control input
values to them. Since there are only 2!® possible combinations of all-one dif-
ferences in message words and 22* combinations including chaining registers
HI0],..., H[7], it is easy to enumerate them all using a computer search.

We note that all-one differences trick is also used in [5].

4 Message Adjustments

The method used to find messages that make the differences in the actual func-
tion to follow the differential can be called a message adjustment strategy.

We have full control over the message words Wy, ..., Wi5. Through combi-
nations of the message words, we can still control some of the messages W; for
16 < ¢ < 31. We can modify the messag