

Lecture Notes in Computer Science 5867
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Michael J. Jacobson Jr. Vincent Rijmen
Reihaneh Safavi-Naini (Eds.)

Selected Areas
in Cryptography
16th Annual International Workshop, SAC 2009
Calgary, Alberta, Canada, August 13-14, 2009
Revised Selected Papers

13

Volume Editors

Michael J. Jacobson Jr.
University of Calgary, Department of Computer Science
2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
E-mail: jacobs@cpsc.ucalgary.ca

Vincent Rijmen
K.U. Leuven, ESAT/COSIC
Kasteelpark Arenberg 10, 3001 Leuven-Heverlee, Belgium
E-mail: vincent.rijmen@esat.kuleuven.be

Reihaneh Safavi-Naini
University of Calgary, Department of Computer Science
2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
E-mail: rei@ucalgary.ca

Library of Congress Control Number: 2009937877

CR Subject Classification (1998): E.3, K.6.5, D.4.6, E.2, K.4.4, I.1

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-05443-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-05443-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12788668 06/3180 5 4 3 2 1 0

Preface

The 16th Workshop on Selected Areas in Cryptography (SAC 2009) was held
at the University of Calgary, in Calgary, Alberta, Canada, during August 13-14,
2009. There were 74 participants from 19 countries. Previous workshops in this
series were held at Queens University in Kingston (1994, 1996, 1998, 1999, and
2005), Carleton University in Ottawa (1995, 1997, and 2003), University of Wa-
terloo (2000 and 2004), Fields Institute in Toronto (2001), Memorial University
of Newfoundland in St. Johns (2002), Concordia University in Montreal (2006),
University of Ottawa (2007), and Mount Allison University in Sackville (2008).

The themes for SAC 2009 were:

1. Design and analysis of symmetric key primitives and cryptosystems, includ-
ing block and stream ciphers, hash functions, and MAC algorithms

2. Efficient implementations of symmetric and public key algorithms
3. Mathematical and algorithmic aspects of applied cryptology
4. Privacy enhancing cryptographic systems

This included the traditional themes (the first three) together with a special
theme for 2009 workshop (fourth theme).

We received 86 submissions, of which one was withdrawn. The review was
double-blinded. Each paper was reviewed by three members of the Program
Committee and submissions that were co-authored by a member of Program
Committee received two additional reviews. No member of Program Committee
reviewed their own submission. The average quality of submissions was high
and this made final selection of the papers a challenging task. We accepted
28 papers with 10 papers in the area of hash functions. The high number of
papers in this area could be partially attributed to the interest generated in
this area by the NIST competition. The remaining 18 papers were on block
and stream ciphers, public key schemes, implementation, and privacy-enhancing
cryptographic systems.

In addition, the program included two invited talks:

– Jan Camenisch — Privacy-Enhancing Cryptography: Theory and Practice
– Andreas Enge — Elliptic Complex Multiplication in Cryptography

We would like to thank the Program Committee for their hard work and
careful reviews. We also benefited from the expertise of many external reviewers
who helped the Program Committee with high-quality reviews. A list of all
external referees appears here.

We also would like to thank Coral Burns and Elmar Tischhauser for technical
support, and Hadi Ahmadi, Mina Askari, Martin Gagné, Kris Narayan, Arthur
Schmidt, Michal Sramka, and Mohammed Tuhin, whose effort ensured smooth
running of the workshop.

VI Preface

Finally, we gratefully acknowledge the generous support of the Faculty of
Science and Department of Computer Science of the University of Calgary, the
University of Calgary University Research Grants Committee, the informatics
Circle of Research Excellence (iCORE), the Pacific Institute for the Mathemati-
cal Sciences (PIMS), and Microsoft Research for their generous financial support.

September 2009 Michael J. Jacobson, Jr.
Vincent Rijmen

Reihaneh Safavi-Naini

16th Annual Workshop on Selected Areas
in Cryptography

August 13–14, 2007, Calgary, Alberta, Canada

in cooperation with the
International Association for Cryptologic Research (IACR)

Conference Co-chairs

Michael J. Jacobson, Jr. University of Calgary, Canada
Vincent Rijmen Katholieke Universiteit Leuven, Belgium and

Graz University of Technology, Austria
Reihaneh Safavi-Naini University of Calgary, Canada

Program Committee

Masayuki Abe NTT, Japan
Mikhail J. Atallah Purdue University, USA
Roberto Avanzi Ruhr University Bochum, Germany
Feng Bao Institute for Infocomm Research, Singapore
Paulo Barreto University of São Paulo, Brazil
Jan Camenisch IBM Research, Switzerland
Vassil Dimitrov University of Calgary, Canada
Christophe Doche Macquarie University, Australia
Orr Dunkelman Ecole Normale Supérieure, France
Helena Handschuh Katholieke Universiteit Leuven, Belgium
Thomas Johansson Lund University, Sweden
Mike Just University of Edinburgh, UK
Charanjit Jutla IBM Research, USA
Liam Keliher Mount Allison University, Canada
Xuejia Lai Shanghai Jiao Tong University, PR China
Pil Jong Lee Pohang University of Science and Technology,

Korea
Mitsuru Matsui Mitsubishi Electric Corporation, Japan
Shiho Moriai Sony Corporation, Japan
Eiji Okamoto University of Tsukuba, Japan
Josef Pieprzyk Macquarie University, Australia
Bart Preneel Katholieke Universiteit Leuven, Belgium
Matt Robshaw Orange Labs, France
Francesco Sica
Doug Stinson University of Waterloo, Canada
Edlyn Teske University of Waterloo, Canada

VIII Organization

Nicolas Thériault Universidad de Talca, Chile
Adam L. Young MITRE, USA
Amr Youssef Concordia University, Canada
Michael Wiener Cryptographic Clarity, Canada

External Reviewers

Martin Ågren
Toru Akishita
Elena Andreeva
Kazumaro Aoki
Adem Atalay
Dan Bernstein
Marina Blanton
Charles Bouillaguet
Suresh Chari
Joo Yeon Cho
Ming Duan
Sung Wook Eom
Keith Frikken
Philippe Gaborit
Willi Geiselmann
Darrel Hankerson
Nadia Heninger
Florian Hess
Howard Heys
Seok Hee Hong
Marko Hölbl
Sebastiaan Indesteege
Kimmo Jarvinen
Marcos A. Simpĺıcio Jr.
Anindya Patthak
Nathan Keller
Sun Young Kim
Kazukuni Kobara
Dae Sung Kwon
Tanja Lange
Gaëtan Leurent
Ji Li
Wei Li
Julio Lopez
Stefan Lucks
Yiyuan Luo
Alex May
Nicky Mouha

Michael Naehrig
Anderson Clayton Nascimento
Maria Naya-Plasencia
Mehrdad Nojoumian
Raphael C.-W. Phan
Daniel Rasmussen
Thomas Ristenpart
Andy Rupp
Yu Sasaki
Michael Scott
Yannick Seurin
Igor Shparlinski
Paul Stankovski
Ron Steinfeld
Jiayuan Sui
Xiaorui Sun
Daisuke Suzuki
Koutarou Suzuki
Elmar Tischhauser
Jalaj Upadhyay
Berkant Ustaoglu
Salil Vadhan
Vesselin Velichkov
Frederik Vercauteren
Huaxiong Wang
Yongtao Wang
Ruizhong Wei
Jian Weng
Hongjun Wu
Jiang Wu
Zhongming Wu
Liangyu Xu
Kan Yasuda
Muhammad Reza Z’Aba
Greg Zaverucha
Erik Zenner
Bo Zhu

Organization IX

Sponsoring Institutions

The Faculty of Science and Department of Computer Science of the University
of Calgary
The University of Calgary University Research Grants Committee
The informatics Circle of Research Excellence (iCORE)
The Pacific Institute for the Mathematical Sciences (PIMS)
Microsoft Research

Table of Contents

Hash Functions I

Practical Collisions for SHAMATA-256 . 1
Sebastiaan Indesteege, Florian Mendel, Bart Preneel, and
Martin Schläffer

Improved Cryptanalysis of the Reduced Grøstl Compression Function,
ECHO Permutation and AES Block Cipher . 16

Florian Mendel, Thomas Peyrin, Christian Rechberger, and
Martin Schläffer

Cryptanalyses of Narrow-Pipe Mode of Operation in AURORA-512
Hash Function . 36

Yu Sasaki

Miscellaneous Techniques

More on Key Wrapping . 53
Rosario Gennaro and Shai Halevi

Information Theoretically Secure Multi Party Set Intersection
Re-visited . 71

Arpita Patra, Ashish Choudhary, and C. Pandu Rangan

Real Traceable Signatures . 92
Sherman S.M. Chow

Hash Functions II

Cryptanalysis of Hash Functions with Structures . 108
Dmitry Khovratovich

Cryptanalysis of the LANE Hash Function . 126
Shuang Wu, Dengguo Feng, and Wenling Wu

Practical Pseudo-collisions for Hash Functions ARIRANG-224/384 141
Jian Guo, Krystian Matusiewicz, Lars R. Knudsen, San Ling, and
Huaxiong Wang

Hardware Implementation and Cryptanalysis

A More Compact AES . 157
David Canright and Dag Arne Osvik

XII Table of Contents

Optimization Strategies for Hardware-Based Cofactorization 170
Daniel Loebenberger and Jens Putzka

More on the Security of Linear RFID Authentication Protocols 182
Matthias Krause and Dirk Stegemann

Differential Fault Analysis of Rabbit . 197
Aleksandar Kircanski and Amr M. Youssef

An Improved Recovery Algorithm for Decayed AES Key Schedule
Images . 215

Alex Tsow

Block Ciphers

Cryptanalysis of the Full MMB Block Cipher . 231
Meiqin Wang, Jorge Nakahara Jr., and Yue Sun

Weak Keys of Reduced-Round PRESENT for Linear Cryptanalysis 249
Kenji Ohkuma

Improved Integral Attacks on MISTY1 . 266
Xiaorui Sun and Xuejia Lai

New Results on Impossible Differential Cryptanalysis of
Reduced–Round Camellia–128 . 281

Hamid Mala, Mohsen Shakiba, Mohammad Dakhilalian, and
Ghadamali Bagherikaram

Modes of Operation

Format-Preserving Encryption . 295
Mihir Bellare, Thomas Ristenpart, Phillip Rogaway, and Till Stegers

BTM: A Single-Key, Inverse-Cipher-Free Mode for Deterministic
Authenticated Encryption . 313

Tetsu Iwata and Kan Yasuda

Implementation of Public Key Cryptography

On Repeated Squarings in Binary Fields . 331
Kimmo U. Järvinen

Highly Regular m-Ary Powering Ladders . 350
Marc Joye

An Efficient Residue Group Multiplication for the ηT Pairing over
F3m . 364

Yuta Sasaki, Satsuki Nishina, Masaaki Shirase, and Tsuyoshi Takagi

Table of Contents XIII

Compact McEliece Keys from Goppa Codes . 376
Rafael Misoczki and Paulo S.L.M. Barreto

Hash Functions and Stream Ciphers

Herding, Second Preimage and Trojan Message Attacks beyond
Merkle-Damg̊ard . 393

Elena Andreeva, Charles Bouillaguet, Orr Dunkelman, and
John Kelsey

Cryptanalysis of Dynamic SHA(2) . 415
Jean-Philippe Aumasson, Orr Dunkelman,
Sebastiaan Indesteege, and Bart Preneel

A New Approach for FCSRs . 433
François Arnault, Thierry Berger, Cédric Lauradoux,
Marine Minier, and Benjamin Pousse

New Cryptanalysis of Irregularly Decimated Stream Ciphers 449
Bin Zhang

Author Index . 467

Practical Collisions for SHAMATA-256

Sebastiaan Indesteege1,2,�, Florian Mendel3, Bart Preneel1,2,
and Martin Schläffer3

1 Department of Electrical Engineering ESAT/COSIC, Katholieke Universiteit
Leuven. Kasteelpark Arenberg 10, B–3001 Heverlee, Belgium

2 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium
3 Institute for Applied Information Processing and Communications

Inffeldgasse 16a, A–8010 Graz, Austria

Abstract. In this paper, we present a collision attack on the SHA-3
submission SHAMATA. SHAMATA is a stream cipher-like hash function
design with components of the AES, and it is one of the fastest submit-
ted hash functions. In our attack, we show weaknesses in the message
injection and state update of SHAMATA. It is possible to find certain
message differences that do not get changed by the message expansion
and non-linear part of the state update function. This allows us to find
a differential path with a complexity of about 296 for SHAMATA-256
and about 2110 for SHAMATA-512, using a linear low-weight codeword
search. Using an efficient guess-and-determine technique we can signifi-
cantly improve the complexity of this differential path for SHAMATA-
256. With a complexity of about 240 we are even able to construct
practical collisions for the full hash function SHAMATA-256.

Keywords: SHAMATA, SHA-3 candidate, hash function, collision
attack.

1 Introduction

A cryptographic hash function H maps a message M of arbitrary length to a
fixed-length hash value h. Informally, a cryptographic hash function has to fulfil
the following security requirements:

– Collision resistance: it is infeasible to find two messages M and M∗, with
M∗ �= M , such that H(M) = H(M∗).

– Second preimage resistance: for a given message M , it is infeasible to find a
second message M∗ �= M such that H(M) = H(M∗).

– Preimage resistance: for a given hash value h, it is infeasible to find a message
M such that H(M) = h.

The resistance of a hash function to collision and (second) preimage attacks
depends in the first place on the length n of the hash value. Regardless of how a
hash function is designed, an adversary will always be able to find preimages or
� F.W.O. Research Assistant, Fund for Scientific Research — Flanders (Belgium).

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 1–15, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 S. Indesteege et al.

second preimages after trying out about 2n different messages. Finding collisions
requires a much smaller number of trials. Due to the birthday paradox, collisions
can be found in a generic way with an effort of only about 2n/2. A hash function
is said to achieve ideal security if these bounds are guaranteed.

In the last few years, the cryptanalysis of hash functions has become an impor-
tant topic within the cryptographic community. Especially the collision attacks
on the MD4 family of hash functions (MD5, SHA-1) have diminished the confi-
dence in the security of these commonly used hash functions. Therefore, NIST
has started the SHA-3 competition [7] to find a successor for the SHA-1 and
SHA-2 hash functions. The goal is to find a hash function which is fast and still
secure within the next few decades.

Many new and interesting hash functions have been proposed. One of them
is SHAMATA [1]. Out of the 51 first round candidates, SHAMATA is one of the
fastest submissions having a speed of 8–11 cycles/byte on 64-bit and 15–22 cy-
cles/byte on 32-bit platforms [1]. It is a register based design, similar to the hash
function PANAMA [5] and also bears resemblance to the sponge construction [2].

In this work, we analyse the security of the hash function SHAMATA. After
a description of SHAMATA in Sect. 2, we analyse some basic differential prop-
erties of the message injection and state update function in Sect. 3. We show
how to efficiently linearise SHAMATA by considering special XOR differences
with an equal difference in all bytes. In Sect. 4, we construct a good differen-
tial path for the linearised variant of SHAMATA using a low-weight codeword
search. Section 5 explains how basic message modification techniques allows us
to construct a collision attack with a complexity of 296 for SHAMATA-256 and
2110 for SHAMATA-512, based on this differential path. For SHAMATA-256, the
attack is improved further to a complexity of only 240 SHAMATA rounds using
a complex guess-and-determine strategy. This attack is practical, and we show
a collision example in App. A. We conclude our analysis of the hash function
SHAMATA in Sect. 6.

2 Description of SHAMATA

In this section, we give a brief description of the hash function SHAMATA.
SHAMATA is a register based hash function design that operates on an internal
state of 2048bits and produces a hash value of 224, 256, 384 or 512bits. The inter-
nal state consists of two parts: the main mixing register B3, . . . , B0 and the second
mixing register K11, . . . , K0. Internally, SHAMATA uses rounds of the AES block
cipher [6] as building blocks.

First, the message is padded to an integer number of 128-bit blocks using
classical Merkle-Damg̊ard strengthening, like in the MD4 family. The registers
comprising the internal state of SHAMATA are set to their initial values, which
depend on the digest length used. Then, each 128-bit message block is used once
to update the internal state as described below. Finally, the finalisation phase of
SHAMATA generates the output digest from the internal state. For a detailed
description of the initialisation and finalisation phases of SHAMATA, we refer
to [1], as these details are not relevant to our analysis.

Practical Collisions for SHAMATA-256 3

B[0] B[1] B[2] B[3]

K[0]K[1]K[2]K[3]K[4]K[5]K[6]K[7]K[8]K[9]K[10]K[11]

+

+ +

ARFr

P Q

Q′ P Q P ′

Fig. 1. The state update function of SHAMATA

2.1 The Message Injection

The message injection of SHAMATA updates the internal state using a 128-bit
message block. The message block M is first expanded as follows:

P = MC
(
MT
)

, Q = MC (M) ,
P ′ = P (1) ||Q(0) , Q′ = Q(1) ||P (0) .

(1)

Here, MC is the MixColumns operation from the AES block cipher [6] and MT

is the transpose of M , where M is viewed as a 4×4 matrix of bytes. The notation
P (i) denotes the i-th most significant 64-bit half of the 128-bit word P . Thus, P ′

and Q′ are simply recombinations of the columns of P and Q. These expanded
message words and a block counter blockno are then added to six words of the
internal state using XOR:

B2 ← B2 ⊕ P ⊕ blockno , B3 ← B3 ⊕Q⊕ blockno ,
K3 ← K3 ⊕ P ′ , K5 ← K5 ⊕Q ,
K7 ← K7 ⊕ P , K11 ← K11 ⊕Q′ .

(2)

2.2 The State Update Function

After the expanded message words have been added, the state update function
updates the internal state by clocking the registers of the internal state twice,
as is shown in Fig. 1. Formally, these two clockings can be written as

4 S. Indesteege et al.

feedK1 = ARF r (B2)⊕B0 , feedB1 = feedK1 ⊕K9 ⊕K0 ,
feedK2 = ARF r (B3)⊕B1 , feedB2 = feedK2 ⊕K10 ⊕K1 ,
Bi ← Bi+2 for i = 0, 1 , Ki ← Ki+2 for i = 0, . . . , 9 ,
B2 ← feedB1 , K10 ← feedK1 ,
B3 ← feedB2 , K11 ← feedK2 .

(3)

The function ARF r consists of r rounds of the AES block cipher [6], omitting
subkey additions. Thus, the ARF function consists of the SubBytes, ShiftRows
and MixColumns operations:

ARF (X) = MC (SR (SB (X))) . (4)

For SHAMATA-224 and SHAMATA-256, the number of rounds r is equal to
one. For SHAMATA-384 and SHAMATA-512, r is two.

3 Basic Attack Strategy

In this section, we describe the basic attack strategy to construct collisions for
SHAMATA. The attack is similar to the attack on PANAMA [4,10], since we
construct a collision in the internal state during the message injection phase.
In this phase, the message input can be used to control the differences in the
internal state. However, since the expanded message block is inserted several
times into the internal state, finding a differential trail seems to be difficult at
first. However, by exploiting some differential properties of the state update, we
can find a differential trail for SHAMATA which results in a collision with a
good probability.

3.1 Overview of the Attack

The main idea of the attack on SHAMATA is to insert special message differ-
ences ∆, which do not get changed by the message expansion and the non-linear
function ARF r. Then, the same difference ∆ will be added to six positions of
the internal state by the message injection. By imposing conditions on the input
of ARF r, we can ensure that the difference ∆ does not get changed by this
non-linear function. Hence, all parts of the state update are linear regarding the
XOR difference ∆ and we can search for a differential path using basic linear
algebra.

3.2 Choosing the Message Difference

In the message expansion of SHAMATA, the 128-bit message word M is first
arranged in a 4 × 4 array of bytes. Then, the MixColumns transformation is
applied to both M and MT and some columns are rearranged to get the expanded
message blocks P , P ′, Q and Q′. All transformations are applied on the byte
level and we can make the following observation.

Practical Collisions for SHAMATA-256 5

Observation 1. A message difference ∆ with equal differences in all 16 bytes,
results in the same difference ∆ in each of the expanded message words P , P ′,
Q and Q′.

Transposition and rearranging columns does not change the value of byte differ-
ences. MixColumns applies the following linear transformation over GF(28) to
each column [6]:

b0 = 2 • a0 ⊕ 3 • a1 ⊕ 1 • a2 ⊕ 1 • a3
b1 = 1 • a0 ⊕ 2 • a1 ⊕ 3 • a2 ⊕ 1 • a3
b2 = 1 • a0 ⊕ 1 • a1 ⊕ 2 • a2 ⊕ 3 • a3
b3 = 3 • a0 ⊕ 1 • a1 ⊕ 1 • a2 ⊕ 2 • a3

. (5)

If all input values are equal to some value a, we get with 2 • a⊕ 3 • a = 1 • a:

bi = 2 • a⊕ 3 • a⊕ 1 • a⊕ 1 • a = 1 • a = a . (6)

and all output values are equal. Hence, for any message difference ∆ with equal
values in all bytes, the same difference ∆ will be injected into the 6 state words
B3, B2, K11, K7, K5 and K3.

3.3 Linearising ARF r

The only non-linear part in SHAMATA is the modified AES-round ARF r. The
function ARF r behaves linearly if a given input difference ∆ results in the same
output difference ∆. This is again possible for certain differences, by additionally
imposing conditions on the input values of ARF r:

Observation 2. There are input differences ∆ of ARF r with equal differences
in all 16 bytes, which result in the same output difference ∆ for certain conditions
on the input values of ARF r.

For example, in the case of ARF 1 (SHAMATA-256), the input difference ∆ =
0xff,0xff,... results in the same output difference ∆ = 0xff,0xff,... if all
input byte values are equal to either 0x7e or 0x81. A more careful choice of the
difference in the input bytes can improve the probability that the differential
through ARF r is followed.

For ARF 1 a careful examination of the difference distribution table (DDT) of
the AES S-box reveals that the best choice is a difference of 0xc5 in each byte.
Indeed, this difference passes through the S-box unchanged for input values
{0x00, 0x1d, 0xc5, 0xd8} and hence, with an optimal probability of 2−6. Using
this difference, there are 416 values for the input to ARF 1 which exhibit the
desired differential behaviour, corresponding to a differential probability of 2−96.

In the case of ARF 2 (SHAMATA-512), we can no longer view each S-box
independently. Eliminating linear steps at the in- and output, ARF 2 reduces
to SubBytes, followed by MixColumns and another SubBytes operation. Thus,
each column is still independent here. We have performed an exhaustive search
to find the best difference consisting of 16 equal bytes that passes through ARF 2

unchanged. The best choice is a difference of 0x18 in each byte, which passes
through ARF 2 for (22)4 values, corresponding to a differential probability of
2−110.16.

6 S. Indesteege et al.

3.4 Basic Message Modification

In this section, we analyse the possibilities to fulfil the conditions on the input of
ARF r. For each active ARF r function, the input value has to be such that the
difference is passed unchanged. The probability of this event was optimised in the
previous section. Note however that in each round, the expanded message word
P is XORed directly to B2. Hence, if the ARF r function in the first clocking
is active, we can simply choose M such that the input to ARF r is X , which is
fixed to one of the “good” values ensuring that the active ARF r has the required
differential behaviour:

M = (MC−1(P))T = (MC−1(B2 ⊕X))T . (7)

If the ARF r function in the second clocking of a round is active, a similar
approach can be used, as the message is also XORed to B3 via Q, which forms
the input to ARF r in the second clocking:

M = MC−1(Q) = MC−1(B3 ⊕X). (8)

These basic message modification techniques do not work anymore as soon as two
consecutive ARF r functions of a single round are active. If we get a difference ∆
in both B2 and B3 after the message injection, we can adjust only one input
of the following two ARF r functions. The main problem here is that we do not
have enough freedom to fulfil the conditions on the message input imposed by
both active ARF r functions. Hence, in this case, one of them has to be satisfied
probabilistically. The best probability is 2−96 for ARF 1 and 2−110.16 for ARF 2,
as was shown in Sect. 3.3.

Hence, we will aim for a differential path with a low number of consecutive
active ARF r functions (see Sect. 4). Unfortunately, in any differential path,
we always get a difference in both, B2 and B3 after the first message injec-
tion. However, in Sect. 5.2, we show how we can still fulfil both conditions for
SHAMATA-256 with much less effort, such that the attack becomes practical.

4 Finding a Good Differential Path

In this section, we first show how to find an efficient collision path for SHAMATA.
Recall from Sect. 3.4 that the new message freedom in each round of SHAMATA
allows an adversary to linearise the ARF r function in one of the two clockings
in a round. Thus, we aim to find a collision differential path that activates the
ARF r function in at most one clocking of each round as well. However, it was
already pointed out in Sect. 3.4 that it is impossible to avoid this in the round
where the first difference is introduced, but we can aim to avoid this in all the
other rounds. We describe two methods to achieve this. The first method is based
on searching low-weight codewords of a linear code and the second method is
a simple exhaustive search. The former is more general and can also be used
to find differential paths spanning a long message. The latter is only feasible
for short messages, but it is simpler. In the case of SHAMATA, either of the
methods can be used to achieve the same result.

Practical Collisions for SHAMATA-256 7

4.1 Low-Weight Codewords

For a fixed number of message blocks, all differential paths under consideration
can be seen as the codewords of a linear code. We show that searching for low-
weight codewords in this code is a useful tool to construct good differential paths
for SHAMATA. The use of low-weight codeword search techniques to construct
differential paths was proposed by Rijmen and Oswald [9] and extended by
Pramstaller et al. in [8].

A codeword of the code under consideration contains, for each round, the
message difference and the differences in the internal state registers immediately
after the new message block was added. As we consider only ∆ differences, each
of these differences is represented by a single bit. Let ∆m(i), ∆b

(i)
3 , . . . , ∆b

(i)
0

and ∆k
(i)
11 , . . . , ∆k

(i)
0 denote these bits for round i. With N the fixed number of

message blocks used, a codeword of the code is then given by[
∆m(1) · · · ∆m(N) || ∆b

(1)
3 · · · ∆k

(1)
0 || · · · || ∆b

(N)
3 · · · ∆k

(N)
0

]
. (9)

We now construct the generator matrix G of this code. The differences in a
SHAMATA state immediately after the message addition in round i can be
represented by an 1× 16 binary vector ∆s(i),

∆s(i) =
[
∆b

(i)
3 · · · b(i)

0 k
(i)
11 · · · k(i)

0

]
. (10)

As the ARF r function is assumed to behave linearly with respect to the ∆ dif-
ference, the state difference vector in round i, ∆s(i), can be written in function
of the state differences vector in round i− 1, ∆s(i−1), as follows

∆s(i) = ∆s(i−1) ·A⊕∆m(i) · w . (11)

Here, w is a 1 × 16 vector indicating to which positions of the internal state a
new message block is added. It is easy to see that

w =
[
1 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0

]
. (12)

The 16× 16 matrix A is a transition matrix corresponding to the two clockings
in the round. It is given by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0
1 1 1
0 1 0
1 1
0 0 1
0 0 1
1 0 1
0 0 1
...

...
. . .

0 0 1
1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

. (13)

8 S. Indesteege et al.

Now, consider the N × 17N generator matrix Gall given by

Gall =

⎡⎢⎢⎢⎢⎢⎢⎣ IN×N

w wA wA2 · · · wAN−1

w wA · · · wAN−2

w
...

. . . wA
w

⎤⎥⎥⎥⎥⎥⎥⎦ . (14)

This is the generator matrix of a linear code that contains all length N differential
paths of the type we consider. As we are only interested in collision differentials,
it is required that the last internal state has no difference. This can be achieved
by using Gaussian elimination to force zeroes in the last 16 columns of Gall.
This gives the generator matrix G, which generates a linear code containing all
differential paths that result in a collision.

Due to the possibility of message modification in either of the clockings in
a SHAMATA round, but not both (see Sect. 3.4), a good differential path for
SHAMATA activates the ARF r function in at most one clocking per round. As
was already noted, it is impossible to avoid activating ARF r in both clockings
of the round where a difference is first introduced. But we aim to avoid this in
the remainder of the differential path.

Intuitively, a codeword with a low weight in ∆b2 and ∆b3, which are the input
differences to ARF r, is more likely to satisfy this property than a random code-
word. Thus, we look for low-weight codewords in this code, considering only the
weight of these bits, using an algorithm similar to that of Canteaut and Chabaud
[3]. For each codeword below a certain threshold weight, we check if it satisfies
the condition mentioned above. If it does, a suitable collision differential path has
been found. If not, the search is simply continued. Note that this search method
can find collision differential paths shorter than N rounds. Indeed, nothing pre-
vents the search from padding a shorter differential path to N rounds by adding
rounds without a difference, as we indeed observed. The shortest collision differ-
ential path we found is shown in Table 1. It consists of 25 rounds and, except for
the first round, only activates ARF r in at most one of the clockings of a round.

4.2 An Alternative Approach

Note that, for a given length of N rounds, there are only 2N possible differential
paths of the type we consider. Indeed, as each message block can only have a ∆
difference or no difference at all, there are only 2N possible message differences.
Given the message difference, exactly one differential path follows. Hence, when
N is not too large, a simple brute force search can also be a viable approach.

As the more general approach given above resulted in a differential path of
only 25 rounds, a brute force approach is indeed practically feasible. We have ex-
haustively searched all differential paths of length up to 25 rounds. As expected,
this search also found the differential path given in Table 1. Moreover, there is
only one differential path of 25 rounds, and no shorter differential paths of this
type exist. Hence, the differential path in Table 1 is optimal.

Practical Collisions for SHAMATA-256 9

Table 1. The differential path for 25 rounds of SHAMATA with differences after each
clocking. For differences at the input of ARF r (word B1, grey column), the differen-
tial probabilities of each round are given in the last two columns for SHAMATA-256
(ARF 1) and SHAMATA-512 (ARF 2).

round M B3 B2 B1 B0 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 K0 ARF 1 ARF 2

1 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ 2−192 2−220.32

2 ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆

3 ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ 2−96 2−110.16

4 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

5 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ 2−96 2−110.16

6 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

7 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ 2−96 2−110.16

8 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

9 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

10 ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆

11 ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

12 ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

13 ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ 2−96 2−110.16

14 ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆

15 ∆ ∆ ∆ ∆

∆ ∆ ∆

16 ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ 2−96 2−110.16

17 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ 2−96 2−110.16

18 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

19 ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

20 ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ 2−96 2−110.16

21 ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆

22 ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆ 2−96 2−110.16

23 ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ 2−96 2−110.16

24 ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆

25 ∆

10 S. Indesteege et al.

5 Collision Attack on SHAMATA

In this section, we put together the various pieces that were introduced, and
present our collision attack on SHAMATA. We search for a message pair which
follows the differential path in Table 1.

5.1 Collisions for SHAMATA-256 and SHAMATA-512

In rounds where none of the ARF r functions is active, the differential path
is always followed, regardless of the message block. Hence, in those rounds, we
make an arbitrary choice for the message block. In rounds with exactly one active
ARF r function, the message modification technique presented in Sect. 3.4 is used
to deterministically construct a message block that ensures that the differential
path is followed. This takes only negligible time, i.e., no more than computing
a single round of SHAMATA.

However, in the first round where a difference is introduced, the ARF r func-
tion is active in both clockings. The message modification technique of Sect. 3.4
can only deterministically satisfy the conditions for one of them. As discussed
in Sect. 3.4, the probability that the path is still followed is 2−96 for ARF 1

(SHAMATA-256) and 2−110.16 for ARF 2 (SHAMATA-512). A prefix with no
difference is used to provide the required message freedom.

Thus, a conforming pair for the first round of the differential path can be
found by performing about 296 trials for SHAMATA-256 and about 2110 trials
for SHAMATA-512. Once such a pair has been found, a colliding message pair
can be constructed with negligible additional effort. Thus, the overall complexity
of our attack is about 296 SHAMATA rounds for SHAMATA-256, and about
2110 SHAMATA rounds for SHAMATA-512. The attack requires only negligible
memory and is easily parallelisable. Hence, for both variants of SHAMATA, the
attack is significantly faster than a brute force attack. Note that the attack also
applies to SHAMATA-224 and SHAMATA-384.

5.2 Practical Collisions for SHAMATA-256

In the case of SHAMATA-256, a more efficient approach exists to control the val-
ues which are input to the ARF r function in both clockings of a round. This ap-
proach exploits the fact that in SHAMATA-256 only a single AES round is used,
i.e., r = 1. Hence, this method can not be applied to SHAMATA-512, where r = 2.

Assume we aim to fix the inputs to the ARF 1 function in both clockings
of round i to X1 and X2, respectively. Let B(i) denote the B-register at the
beginning of round i. Then, this requirement can be written as{

B
(i)
2 ⊕ P (i) ⊕ i = X1

B
(i)
3 ⊕Q(i) ⊕ i = X2

. (15)

Using the definition of the state update function of SHAMATA in (1)–(3), this
can be rewritten in a function of the internal state at the beginning of round i−1
and the message blocks Mi−1 and Mi, yielding the following

Practical Collisions for SHAMATA-256 11

{
Mi−1 = MC−1

(
D1 ⊕ SB−1

(
C1 ⊕ SR−1 (Mi)

))
Mi−1

T = MC−1
(
D2 ⊕ SB−1

(
C2 ⊕ SR−1

(
Mi

T))) , (16)

where C1, C2, D1 and D2 are constants defined by

C1 = SR−1
(
MC−1

(
B

(i−1)
0 ⊕K

(i−1)
9 ⊕K

(i−1)
0 ⊕ i⊕X1

))
,

C2 = SR−1
(
MC−1

(
B

(i−1)
1 ⊕K

(i−1)
10 ⊕K

(i−1)
1 ⊕ i⊕X2

))
,

D1 = B
(i−1)
2 ⊕ (i− 1),

D2 = B
(i−1)
3 ⊕ (i− 1).

(17)

These constants only depend on the internal state of SHAMATA-256 at the
beginning of round i − 1, and are thus known. Now, we search for message
blocks Mi−1 and Mi such that the conditions of (16) are satisfied.

A straightforward approach to find the message blocks Mi−1 and Mi would be
to guess one of them, compute the other using the first equation of (16) and then,
check if the second equation of (16) holds as well. This procedure is expected
to find a solution after about 2128 trials. We propose a guess-and-determine
approach which performs significantly better. Our approach is as follows

1. Assume we know the four bytes of Mi indicated in the pattern in Fig. 2 (a).
Note that this pattern is symmetric, i.e., it is invariant under matrix trans-
position. This implies that also the same pattern of bytes of Mi

T is known.
Note that in (16), Mi and Mi

T are input to the inverse ShiftRows operation
or SR−1. This operation performs a circular right shift of the rows of the
state over 0, 1, 2 or 3 bytes for the first, second, third and fourth row,
respectively. Hence, the bytes of Mi indicated in Fig 2 (a) form the first
column of SR−1 (Mi). Similarly, the first column of SR−1

(
Mi

T) is known.
All other operations in (16) treat the four columns independently, so knowl-
edge of the first columns of SR−1 (Mi) and SR−1

(
Mi

T) suffices to compute
the first columns of Mi−1 and Mi−1

T. The latter is equal to the first row of
Mi−1, which overlaps with the first column of Mi−1 in exactly one byte.

Thus, we investigate all 232 guesses for four bytes of Mi as indicated in
Fig. 2 (a). For each guess, we compute the first column and the first row of
Mi−1 using (16). Then, we verify if the overlapping byte matches, and if so,
we save the candidate in a list L1. As this imposes an 8-bit condition, about
224 candidates are expected to remain.

2. The same procedure is repeated with the patterns in Fig. 2 (b), Fig. 2 (c) and
Fig. 2 (d). Each pattern is invariant under matrix transposition, and results
in one column after applying the SR−1 operation. This results in four lists,
L1, L2, L3 and L4 of about 224 elements each.

3. An element of the list L1 contains candidate values of the first row and
column of Mi−1. Similarly, an element of the list L2 contains the second row
and column of Mi−1. Note that these overlap in two byte positions. Thus, we
can merge both lists and store all matching combinations in a new list, LA.
The expected number of entries in the new list LA is 224× 224× 2−16 = 232.

12 S. Indesteege et al.

(a) (b) (c) (d)

Fig. 2. Patterns used in the guess-and-determine phase

If the lists L1 and L2 are sorted according to the overlapping bytes, this
merge operation can be performed very efficiently.

4. The same procedure is used to merge the lists L3 and L4, resulting in a new
list LB which is also expected to contain about 232 entries.

5. Finally, the lists LA and LB are merged. The entries in these lists overlap
in eight byte positions, which corresponds to a 64-bit condition. Again, if
both lists are sorted according to these bytes, merging them can be done
efficiently. The number of expected matches is 232 × 232 × 2−64 = 1.

It is easy to verify that each final match will satisfy (16), and also that every
solution to (16) will be found by this procedure. The time complexity of this
algorithm is dominated by the merging of lists LA and LB, which takes 232

operations. Using hash tables as the data structure to store the lists, an explicit
sorting step can be avoided. The memory complexity is determined by one of
the lists LA or LB, as only one of them really needs to be stored in memory,
while the elements of the other can be computed on-the-fly. This corresponds to
a memory requirement of about 232 AES states.

For a practical implementation, it is better to reduce the memory requirements
of the algorithm, at the expense of an increase in its time complexity. This can
be done by, for instance, fixing the byte in the first row and last column of Mi−1
a priori. Then, the lists L1 and L4 are only expected to contain 216 elements
each, and the lists LA and LB are reduced to about 224 elements. Thus, the total
memory complexity is reduced to about 224 AES states, or 256MB. However,
as one byte was fixed a priori, the entire procedure has to be repeated 28 times,
increasing the time complexity to 240 operations. We have implemented our
attack. The guess-and-determine phase was run on a cluster using 256 jobs with a
running time of about 5 minutes each. The rest of the attack takes only negligible
time using message modification, as explained in Sect. 3.4. A collision example
for SHAMATA-256 is given in App. A.

6 Conclusion

In this paper, we have presented a practical collision attack on the SHA-3 submis-
sion SHAMATA. Due to weaknesses in the message injection and state update
function of SHAMATA it is possible to find certain message differences, that do
not get changed by the message expansion or the non-linear part of the state

Practical Collisions for SHAMATA-256 13

update function. These symmetric XOR differences need to be equal in each byte
of the 128-bit words. Using these differences, the non-linear ARF r function be-
haves linearly and we can search for a differential path using a linearised variant
of SHAMATA. Moreover, since we use the same difference in every 128-bit word,
we can represent each word of the internal state by a single bit.

The main weakness in SHAMATA is the relatively light message injection
followed by a low number of register clockings. The message injection allows us
to efficiently fulfil many conditions using basic message modification. This results
in an attack complexity of about 296 for SHAMATA-256 and 2110 for SHAMATA-
512. Using an efficient guess-and-determine technique we are able to improve the
complexity of the attack on SHAMATA-256 to about 240 round computations
and present a practical collision for SHAMATA-256. Possible improvements for
SHAMATA include increasing the number of times the internal registers are
clocked and the use of constants to avoid the use of symmetric differences.

Acknowledgements

This work was supported in part by the IAP Programme P6/26 BCRYPT of
the Belgian State (Belgian Science Policy), and in part by the European Com-
mission through the ICT programme under contract ICT-2007-216676 ECRYPT
II. The collision example for SHAMATA-256 was obtained utilizing high perfor-
mance computational resources provided by the University of Leuven, http://
ludit.kuleuven.be/hpc.

References

1. Atalay, A., Kara, O., Karakoç, F., Manap, C.: SHAMATA Hash Function Algo-
rithm Specifications. Submission to NIST (2008),
http://www.uekae.tubitak.gov.tr/uekae_content_files/crypto/

SHAMATASpecification.pdf,
http://www.uekae.tubitak.gov.tr/home.do?ot=1&sid=601&pid=547

2. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge functions. In: ECRYPT
Hash Workshop, Barcelona, Spain, May 24-25 (2007),
http://sponge.noekeon.org/SpongeFunctions.pdf

3. Canteaut, A., Chabaud, F.: A New Algorithm for Finding Minimum-Weight Words
in a Linear Code: Application to McEliece’s Cryptosystem and to Narrow-Sense
BCH Codes of Length 511. IEEE Transactions on Information Theory 44(1), 367–
378 (1998)

4. Daemen, J., Assche, G.V.: Producing Collisions for Panama, Instantaneously. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 1–18. Springer, Heidelberg
(2007)

5. Daemen, J., Clapp, C.S.K.: Fast Hashing and Stream Encryption with PANAMA.
In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 60–74. Springer, Heidelberg
(1998)

6. Daemen, J., Rijmen, V.: The Design of Rijndael: AES — The Advanced Encryption
Standard. Springer, Heidelberg (2002)

http://
ludit.kuleuven.be/hpc
http://www.uekae.tubitak.gov.tr/uekae_content_files/crypto/SHAMATASpecification.pdf
http://www.uekae.tubitak.gov.tr/uekae_content_files/crypto/SHAMATASpecification.pdf
http://www.uekae.tubitak.gov.tr/home.do?ot=1&sid=601&pid=547
http://sponge.noekeon.org/SpongeFunctions.pdf

14 S. Indesteege et al.

7. National Institute of Standards and Technology: Announcing Request for Candi-
date Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3)
Family. Federal Register 27(212), 62212–62220 (November 2007),
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

8. Pramstaller, N., Rechberger, C., Rijmen, V.: Exploiting Coding Theory for Col-
lision Attacks on SHA-1. In: Smart, N.P. (ed.) Cryptography and Coding 2005.
LNCS, vol. 3796, pp. 78–95. Springer, Heidelberg (2005)

9. Rijmen, V., Oswald, E.: Update on SHA-1. In: Menezes, A. (ed.) CT-RSA 2005.
LNCS, vol. 3376, pp. 58–71. Springer, Heidelberg (2005)

10. Rijmen, V., Van Rompay, B., Preneel, B., Vandewalle, J.: Producing Collisions for
PANAMA. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 37–51. Springer,
Heidelberg (2002)

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

Practical Collisions for SHAMATA-256 15

A Colliding Message Pair for SHAMATA-256

m1 =
00000000: 10 37 fd e7 65 30 1c c0 e3 61 6e 41 24 6f cb b9 |.7..e0...anA$o..|
00000010: 7f 28 81 17 81 4a d1 3f bf 4e ca da 92 f5 35 d0 |.(...J.?.N....5.|
00000020: f0 f0 dc 19 73 d5 a7 07 8c 0b bc 3d b6 85 46 57 |....s......=..FW|
00000030: 02 92 d1 24 00 df 40 67 ca 2c fa 5b 9d 70 2c ce |...$..@g.,.[.p,.|
00000040: de 38 51 f5 01 3c 3b aa d8 ba 38 0e a1 40 b1 91 |.8Q..<;...8..@..|
00000050: 7b 18 18 24 cc d9 76 c0 f7 4a 61 28 86 06 30 8e |{..$..v..Ja(..0.|
00000060: 30 8d ab a3 62 52 aa ee 5d 66 2b 13 ec 71 6b ca |0...bR..]f+..qk.|
00000070: e3 29 f2 2c b3 ed 3d 7e f7 f2 fd 0b 1e c7 d6 e5 |.).,..=~........|
00000080: aa bc bf ab f9 fb 56 d1 b5 8e df 57 ce 90 e8 fe |......V....W....|
00000090: 1e 93 a2 80 e6 4c 6f 43 b3 9a 57 9f 0c c2 69 b6 |.....LoC..W...i.|
000000a0: 7e 29 61 77 24 b7 48 d9 45 27 30 13 b8 19 12 d6 |~)aw$.H.E’0.....|
000000b0: ac b4 56 92 00 c5 d6 b3 60 2d 52 6c ef bc 22 6d |..V.....‘-Rl.."m|
000000c0: e5 83 e5 09 3b 2d e2 80 55 13 94 0d 2c a6 e3 d8 |....;-..U...,...|
000000d0: 53 e9 01 66 72 ae 8d cf 68 25 8a b6 ae 64 e7 c1 |S..fr...h%...d..|
000000e0: 5a 39 6b 5a ff 41 0e 5f 6e 60 cb 5d 1c ed ca 01 |Z9kZ.A._n‘.]....|
000000f0: 70 af 0a ab dd ed 2c 32 00 c0 3f 2c 66 22 04 c0 |p.....,2..?,f"..|
00000100: 3b 97 65 9d 01 64 98 7b e6 63 d4 d6 4b 77 00 bb |;.e..d.{.c..Kw..|
00000110: bb ac 35 e3 27 66 55 34 0c 0f db d7 2f 16 19 ae |..5.’fU4..../...|
00000120: 5b 6f 1a 5a b0 28 b9 1e 89 84 7b a5 71 46 a7 e2 |[o.Z.(....{.qF..|
00000130: f5 b1 8d d2 9e b9 04 9e 79 43 ca df 65 cf 9f c1 |........yC..e...|
00000140: bb f6 43 f9 cd 88 af 13 ea 2f 93 e8 cd 39 8c a0 |..C....../...9..|
00000150: 3e ba 1b ef e2 d5 0d 6b 59 89 11 cb cf b8 ad c4 |>......kY.......|
00000160: 1a 3f 2f 9d a3 1d 82 3c e0 75 9d 83 b2 ac 3c bf |.?/....<.u....<.|
00000170: e0 27 0c c5 af b0 be a9 94 1e de 9d 50 69 10 cb |.’..........Pi..|
00000180: 69 3a 97 08 f4 9b a6 6d df 71 4d 44 40 ec 05 7e |i:.....m.qMD@..~|
00000190: a6 21 6d 89 f6 7b f4 4f 04 05 1a d3 bd c7 97 27 |.!m..{.O.......’|

SHAMATA-256(m1) =
00000000: 6e a3 b1 a1 29 75 8d 3f f5 60 f8 1b 6b 11 02 9a |n...)u.?.‘..k...|
00000010: 14 b9 b2 d9 b3 2a b6 02 2a f5 83 ab e3 4c 1a 2a |.....*..*....L.*|

m2 =
00000000: 10 37 fd e7 65 30 1c c0 e3 61 6e 41 24 6f cb b9 |.7..e0...anA$o..|
00000010: 80 d7 7e e8 7e b5 2e c0 40 b1 35 25 6d 0a ca 2f |..~.~...@.5%m../|
00000020: 0f 0f 23 e6 8c 2a 58 f8 73 f4 43 c2 49 7a b9 a8 |..#..*X.s.C.Iz..|
00000030: fd 6d 2e db ff 20 bf 98 35 d3 05 a4 62 8f d3 31 |.m... ..5...b..1|
00000040: 21 c7 ae 0a fe c3 c4 55 27 45 c7 f1 5e bf 4e 6e |!......U’E..^.Nn|
00000050: 7b 18 18 24 cc d9 76 c0 f7 4a 61 28 86 06 30 8e |{..$..v..Ja(..0.|
00000060: 30 8d ab a3 62 52 aa ee 5d 66 2b 13 ec 71 6b ca |0...bR..]f+..qk.|
00000070: 1c d6 0d d3 4c 12 c2 81 08 0d 02 f4 e1 38 29 1a |....L........8).|
00000080: 55 43 40 54 06 04 a9 2e 4a 71 20 a8 31 6f 17 01 |UC@T....Jq .1o..|
00000090: 1e 93 a2 80 e6 4c 6f 43 b3 9a 57 9f 0c c2 69 b6 |.....LoC..W...i.|
000000a0: 81 d6 9e 88 db 48 b7 26 ba d8 cf ec 47 e6 ed 29 |.....H.&....G..)|
000000b0: ac b4 56 92 00 c5 d6 b3 60 2d 52 6c ef bc 22 6d |..V.....‘-Rl.."m|
000000c0: e5 83 e5 09 3b 2d e2 80 55 13 94 0d 2c a6 e3 d8 |....;-..U...,...|
000000d0: ac 16 fe 99 8d 51 72 30 97 da 75 49 51 9b 18 3e |.....Qr0..uIQ..>|
000000e0: 5a 39 6b 5a ff 41 0e 5f 6e 60 cb 5d 1c ed ca 01 |Z9kZ.A._n‘.]....|
000000f0: 8f 50 f5 54 22 12 d3 cd ff 3f c0 d3 99 dd fb 3f |.P.T"....?.....?|
00000100: 3b 97 65 9d 01 64 98 7b e6 63 d4 d6 4b 77 00 bb |;.e..d.{.c..Kw..|
00000110: 44 53 ca 1c d8 99 aa cb f3 f0 24 28 d0 e9 e6 51 |DS........$(...Q|
00000120: a4 90 e5 a5 4f d7 46 e1 76 7b 84 5a 8e b9 58 1d |....O.F.v{.Z..X.|
00000130: 0a 4e 72 2d 61 46 fb 61 86 bc 35 20 9a 30 60 3e |.Nr-aF.a..5 .0‘>|
00000140: bb f6 43 f9 cd 88 af 13 ea 2f 93 e8 cd 39 8c a0 |..C....../...9..|
00000150: 3e ba 1b ef e2 d5 0d 6b 59 89 11 cb cf b8 ad c4 |>......kY.......|
00000160: 1a 3f 2f 9d a3 1d 82 3c e0 75 9d 83 b2 ac 3c bf |.?/....<.u....<.|
00000170: e0 27 0c c5 af b0 be a9 94 1e de 9d 50 69 10 cb |.’..........Pi..|
00000180: 69 3a 97 08 f4 9b a6 6d df 71 4d 44 40 ec 05 7e |i:.....m.qMD@..~|
00000190: 59 de 92 76 09 84 0b b0 fb fa e5 2c 42 38 68 d8 |Y..v.......,B8h.|

SHAMATA-256(m2) =
00000000: 6e a3 b1 a1 29 75 8d 3f f5 60 f8 1b 6b 11 02 9a |n...)u.?.‘..k...|
00000010: 14 b9 b2 d9 b3 2a b6 02 2a f5 83 ab e3 4c 1a 2a |.....*..*....L.*|

Improved Cryptanalysis of the Reduced Grøstl
Compression Function, ECHO Permutation and

AES Block Cipher

Florian Mendel1, Thomas Peyrin2, Christian Rechberger1,
and Martin Schläffer1

1 IAIK, Graz University of Technology, Austria
2 Ingenico, France

thomas.peyrin@gmail.com, martin.schlaeffer@iaik.tugraz.at

Abstract. In this paper, we propose two new ways to mount attacks
on the SHA-3 candidates Grøstl, and ECHO, and apply these attacks also
to the AES. Our results improve upon and extend the rebound attack.
Using the new techniques, we are able to extend the number of rounds in
which available degrees of freedom can be used. As a result, we present
the first attack on 7 rounds for the Grøstl-256 output transformation1

and improve the semi-free-start collision attack on 6 rounds. Further, we
present an improved known-key distinguisher for 7 rounds of the AES
block cipher and the internal permutation used in ECHO.

Keywords: hash function, block cipher, cryptanalysis, semi-free-start
collision, known-key distinguisher.

1 Introduction

Recently, a new wave of hash function proposals appeared, following a call for
submissions to the SHA-3 contest organized by NIST [26]. In order to analyze
these proposals, the toolbox which is at the cryptanalysts’ disposal needs to
be extended. Meet-in-the-middle and differential attacks are commonly used. A
recent extension of differential cryptanalysis to hash functions is the rebound
attack [22] originally applied to reduced (7.5 rounds) Whirlpool (standardized
since 2000 by ISO/IEC 10118-3:2004) and a reduced version (6 rounds) of the
SHA-3 candidate Grøstl-256 [14], which both have 10 rounds in total.

Many hash functions [1, 2, 6, 12, 14, 16, 17] use concepts or parts of the block
cipher AES [25] as basic primitives, and research on AES-related hash functions
is ongoing [15, 22, 27]. In this direction, a new attack model has been recently
introduced for block ciphers [18]. In this model, the secret key is known to
the adversary and the goal is to distinguish the block cipher from a random
permutation. In particular, reduced versions of the AES have been studied in
this setting [18,24] and recently, an attack on full AES-256 has been published [5].
1 Note that the 7-round semi-free-start collision attack on Grøstl-256 in the prepro-

ceedings version of this paper does not have enough freedom to succeed, see Sect. 6.1.

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 16–35, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Improved Cryptanalysis of the Reduced Grøstl Compression Function 17

Table 1. Summary of results for Grøstl, ECHO and AES

target rounds computational memory type sectioncomplexity requirements

Grøstl-256

6 2112 264 semi-free-start collision see [22]
6 264 264 semi-free-start collision Sect. 6.1
7 255 - permutation distinguisher Sect. 6.1
7 256 - output transf. distinguisher Sect. 6.1

ECHO
7 2896 - permutation distinguisher see [2]
7 2384 264 permutation distinguisher Sect. 6.3

AES
7 256 - known-key distinguisher see [18]
7 224 216 known-key distinguisher Sect. 6.2

In the rebound attack [22], two rounds of the state update transformations
are bypassed by a match-in-the-middle technique using the available degrees of
freedom in the state. The characteristic used in the attack is then constructed
by moving the “most expensive” parts into these two rounds. The “cheaper”
parts are then covered in an inside-out manner, called outbound phase. Other
work in parallel to this explores the application of the rebound idea to other
SHA-3 candidates [21, 28]. Recently, the rebound attack has been extended to
attack the full compression function of Whirlpool [19] and LANE [20] by using
the additional freedom of the key schedule (Whirlpool) or other parts of the
state (LANE).

In this work, we present improved techniques to use the freedom available in
only a single state. The effect of both techniques we present are an extension
of the number of rounds in which degrees of freedom can be used to improve
the work from the two to four rounds. As a result, we present the best known
attacks on the reduced Grøstl-256 permutation and output transformation (up
to 7 out of 10 rounds), and also significantly improve upon the first known-key
distinguisher [18] for 7-round AES and 7 rounds of the internal permutation used
in ECHO. A summary of our results is given in Table 1.

2 Description of AES-Based Primitives

In this paper, we show improved attack strategies for AES based cryptographic
primitives. We apply the ideas to the Grøstl and ECHO hash function, and to the
block cipher AES. In the following, we describe these functions in more detail.

2.1 AES

The block cipher Rijndael was designed by Daemen and Rijmen and standardized
by NIST in 2000 as the Advanced Encryption Standard (AES) [25]. The AES
follows the wide-trail design strategy [7, 8] and consists of a key schedule and
state update transformation. Since we do not use the key schedule in our attack,
we just describe the state update here.

In the AES, a 4 × 4 state of 16 bytes is updated using the following 4 round
transformations, with 10 rounds for AES-128 and 14 rounds for AES-256:

18 F. Mendel et al.

– The non-linear layer SubBytes (SB) applies a S-Box to each byte of the state
independently

– The cyclical permutation ShiftRows (SR) rotates the bytes of row j left by
j positions

– The linear diffusion layer MixColumns (MC) multiplies each column of the
state by a constant MDS matrix

– AddRoundKey (AK) adds the 128-bit round key Ki to the state

Note that a round key is added prior to the first round and the MixColumns
transformation is omitted in the last round of AES. For a detailed description
of the AES we refer to [25].

2.2 The Grøstl Hash Function

Grøstl was proposed by Gauravaram et al. as a candidate for the SHA-3 com-
petition [14]. It is an iterated hash function with a compression function built
from two distinct permutations P and Q. Grøstl is a wide-pipe design with
proofs for the collision and preimage resistance of the compression function [13].
A t-block message M (after padding) is hashed using the compression function
f(Hi−1, Mi) and output transformation g(Ht) as follows:

H0 = IV

Hi = f(Hi−1, Mi) = Hi−1 ⊕ P (Hi−1 ⊕Mi)⊕Q(Mi) for 1 ≤ i ≤ t

h = g(Ht) = trunc(Ht ⊕ P (Ht)),

The two permutations P and Q are constructed using the wide trail design
strategy. The design of the two permutations is very similar to AES, instantiated
with a fixed key input. Both permutations of Grøstl-256 update an 8× 8 state
of 64 bytes in 10 rounds each. The round transformations of Grøstl-256 are
briefly described here:

– AddRoundConstant (AC) adds different one-byte round constants to the
8× 8 states of P and Q

– the non-linear layer SubBytes (SB) applies the AES S-Box to each byte of
the state independently

– the cyclical permutation ShiftBytes (ShB) rotates the bytes of row j left by
j positions

– the linear diffusion layer MixBytes (MB) multiplies each column of the state
by a constant MDS matrix

2.3 The ECHO Hash Function

The ECHO hash function is a SHA-3 proposal submitted by Benadjila et al. [2]. It
is also a wide-pipe iterated hash function and uses the HAIFA [3] domain exten-
sion algorithm. Its compression function uses an internal 2048-bit permutation
that can be seen as a big AES manipulating 128-bit words instead of bytes. More

Improved Cryptanalysis of the Reduced Grøstl Compression Function 19

precisely, an appropriately padded t-block message M and a salt s are hashed
using the compression function f(Hi−1, Mi, ci, s) where ci is a bit counter:

H0 = IV

Hi = f(Hi−1, Mi, ci, s) for 1 ≤ i ≤ t

h = trunc(Ht),

The compression function of ECHO is built upon a 2048-bit permutation F , com-
posed of 8 rounds (resp. 10 rounds) in the case of a 256-bit output (resp. 512-bit
output). Its internal state can be modeled as a 4×4 matrix of 128-bit words. The
concatenation of the input chaining variable and the incoming message block are
the plaintext input of the permutation F which is tweaked by the input counter
ci and the salt s. A feed-forward of the plaintext is then applied to the internal
state V :

V = Fci,s(Hi−1||Mi)⊕ (Hi−1||Mi)

and the 512-bit output chaining variable Hi is the xor of all the 128-bit word
columns of V for a 256-bit hash digest size. In the case of a 512-bit hash value,
the 1024-bit output chaining variable Hi is the xor of the two left and the two
right 128-bit word columns of V .

A permutation round is very similar to an AES round, except that 128-bit
words are manipulated. One round is the composition of three sub-functions
BigMC ◦BigShR ◦BigSW :

– The non-linear layer BigSubWords (BigSW) applies two AES rounds to each
of the 16 128-bit words of the internal state. The round keys, always different,
are composed of the salt value and a counter value initialized by ci.

– The cyclical permutation BigShiftRows (BigShR) rotates the location in the
matrix of the 128-word of row j left by j positions

– The linear diffusion layer BigMixColumns (BigMC) multiplies each column
of the state by a constant MDS matrix

3 Basic Attack Properties

Before describing attacks for Grøstl, ECHO and AES in detail, we give an overview
of the round transformation properties used by the attacks. Since we mostly use
Grøstl to describe the attacks and the properties of MixColumns and MixBytes
are rather similar, we use MixBytes to describe their common properties in the
following. We will use differential properties of the SubBytes and MixBytes trans-
formation and exploit the diffusion property of both, ShiftBytes (ShiftRows) and
MixBytes. Together, this leads to an efficient guess-and-determine strategy for
both, differences and values at the input and output of SubBytes and MixBytes.

Since we exploit the differential properties of SubBytes and MixBytes, we
define the notation and state variables according to these two transformations.
We denote the SubBytes layer of round i by SBi, its input state by SBin

i and
the output state by SBout

i . An equivalent notation is used for the MixBytes

20 F. Mendel et al.

transformation. The MixBytes transformation of round i is denoted by MBi,
its input state by MBin

i and the output state by MBout
i . We will use MCi for

the MixColumns transformation of ECHO and AES. Further, counting from 0, we
denote the byte in row r and column c by [r, c], i.e. SBin

i [r, c] for the input of the
S-box in round i.

3.1 Improving on the Rebound Attack

The main idea of the rebound attack [22] is to start close to the middle of a
(truncated) differential path, connect using the available degrees of freedom in
the middle and finally propagate outwards. Our attack works rather similar for
Grøstl-256, ECHO and AES, and in the following we use Grøstl-256 to describe
the attacks and discuss then, the application to ECHO and AES. Similar to the
rebound attack, we start with a truncated differential path with a full active
state in the middle of the trail. Fig. 1 shows the truncated differential path
used in both permutations P and Q of our improved attack on Grøstl-256. In
the rebound attack, the middle part of the differential trail is solved first for
both differences and values by exploiting the available degrees of freedom (in-
bound phase). Then, differences and values are propagated outwards probabilis-
tically (outbound phase) to find semi-free-start collisions, free-start collisions, or
non-random properties of the permutations or compression function.

In this work, we improve on the middle part of the attack where we exploit
the available degrees of freedom of the state values and differences. The idea is to
first find differences and values for the middle (4-round) part of the differential
trail, with the following number of active bytes at SubBytes:

1 r1−→ 8 r2−→ 64 r3−→ 8 r4−→ 1

3.2 Exploiting Properties of the Round Transformations

In this section, we briefly describe which properties of the round transformations
are used for the attacks in the following sections. Note that some used properties,
especially those of MixBytes, are specific to a truncated differential path with a
minimum number of active S-boxes such as the one given in Fig. 1.

SubBytes. In our attacks, we use some differential properties of the AES S-
box. Most of these properties can simply be verified by computing the differential
distribution tables (DDT) [4] of the S-box (or inverse S-box).

– For a given input (or output) difference of the AES S-box, the number of
possible output (or input) differences is restricted to 127.

AC

SB

ShB

MB

AC

SB

ShB

MB

AC

SB

ShB

MB

AC

SB

ShB

MB

AC

SB

ShB

MB

AC

SB

ShB

MB

AC

SB

ShB

MB

Fig. 1. The position of active bytes of the 7 round differential path for both permuta-
tions P and Q

Improved Cryptanalysis of the Reduced Grøstl Compression Function 21

– For a given input and output difference, the number of possible input values
is limited to either 2 or 4 values.

– For a given input and output difference, the AES S-box behaves linear due
to the fact that there are only 2 or 4 solutions per S-box (see Sect. 4.2 for
more details).

In the following sections, we use some differential S-box tables to efficiently carry
out the attacks. We call Sδ

F the table that contains all input byte pairs (a, b),
such that we get the difference δ at the output of the AES S-box, i.e. such that
Sbox(a) ⊕ Sbox(b) = δ. Each table SF has 256 entries with 127 possible input
differences a ⊕ b of the S-box. More precisely, for any difference δ �= 0 on the
output of the S-box, 129 input differences are not possible, 126 differences have
two candidates and 1 difference has 4 candidates. The table Sδ

B contains all the
output byte pairs (a, b), such that we get the difference δ at the input of the S-
box, i.e. after the application of the inverse AES S-box. For a fast implementation
of the attacks, these tables are precomputed and sorted accordingly.

ShiftBytes. The ShiftBytes (or ShiftRows) transformation moves bytes and
thus, differences to different positions but does not change their value. The good
diffusion property of ShiftRows allows us to choose certain differences and values
of the subsequent MixBytes layer independently. Assume we have one active
column in MixBytes. Then, we get after the adjacent ShiftRows application one
active byte in each new column. Hence, we can determine these single active
bytes by the subsequent MixBytes transformation independently.

MixBytes. In the case of MixBytes (or MixColumns), we use the property of
an n× n MDS matrix that, given any n bytes of input and output, the other n
bytes can be uniquely determined. Since MixBytes is linear, this also holds for
differences. In the following attacks, we use differential paths with a minimum
number of active S-boxes. Hence, also the number of differences in the MixBytes
transformation is minimal and every active MixBytes operation contains zero
differences in exactly 7 (3 for MixColumns) input/output bytes. It follows, that
choosing a single byte difference uniquely determines all other 8 (4 for MixBytes)
differences.

Hence, for a fixed position of active bytes, we get 255 possibilities for the
difference propagation of MixBytes (bundles in [9]). These cases can be precom-
puted and stored in tables. We call M i

F the table that contains all possible input
differences of MixBytes (or MixColumns), such that we get only one non-zero
byte at row i in the output. We call M i

B the same table but for the inverse of the
MixBytes (or MixColumns) transformation. Since the MixBytes transformation
is linear, the same tables can be used for values and differences.

3.3 Known-Key Distinguishers

In the following, we will describe known-key distinguisher attacks against AES
and the internal permutations used in Grøstl and ECHO. We refer to [18] for the
details of this setting. However, in this paper, our distinguishers will consist in

22 F. Mendel et al.

finding a pair of plaintext for the keyed permutation (when the key is randomly
chosen but known by the attacker) such that some plaintext and ciphertext words
contain no difference. For the distinguishing attack to be valid, the complexity
should be lower than expected in the case of a random permutation. Assume
an n-bit permutation with differences in i bytes of the plaintext and in i bytes
of the ciphertext. Then, assuming that the positions of the byte-differences are
fixed, the complexity of the generic attack is greater or equal (depending on the
values of i and n) to 2(n−8·i)/2.

4 A Linearized Match-in-the-Middle Attack

In this section, we present a method which allows us to find a state pair with
differences according to the truncated differential path of Fig. 1 with a complex-
ity of about 248. The main idea is to first search for differences according to the
4-round middle part (1 → 8 → 64 → 8 → 1) of the path. We can find such
differences with a complexity of about 1 by guess and determine (see Sect. 4.1).
In the second phase, we try to solve for the corresponding values of the state.
The main idea is that we can do this linearly. Since the differential of each S-box
is fixed we get either 2 or 4 possible values for the AES S-box (see Sect. 3.2).
In these cases, the S-box behaves linearly and hence, we can find the correct
values by solving a linear system of equations (see Sect. 4.2). Note that we need
to repeat the solving phase with new differences if no solution was found.

4.1 Filtering for Differential Paths

In this section, we filter for candidate differences which follow the middle part
(1→ 8→ 64→ 8→ 1) of the differential path of Fig. 1 with a high probability.
Fig. 2 shows the corresponding round transformations and the differential path
in detail. In the attack, we use properties of the SubBytes (SB) and MixBytes
(MB) transformations to filter for differential paths. Hence, we are interested
in the input and output of these transformations. The first and second column
show differences at the input and output of the S-boxes (SBin

i and SBout
i), and

column three and four show differences at the input and output of the MixBytes
transformations (MBin

i and MBout
i). To determine possible input and output dif-

ferences of these two transformations, we use their corresponding lookup tables
M j

F , M j
B, Sδ

F and Sδ
B (see Sect. 3.2).

Column 1. We start with the differences of the first column (marked by “1”
in state MBin

2 and MBout
2) of the MixBytes operation of round 2 (MB2). Since

7 input byte differences are required to be zero, choosing one of the remaining
9 non-zero differences, uniquely determines all other differences of MB2. Since
the ShiftBytes and AddRoundConstant operations are linear, we get the same
differences for the bytes marked by “1” in states SBout

2 and SBin
3 . It follows that

we can choose from 255 non-zero differences for the first byte of SBin
3 , and this

choice determines all differences marked by “1” between state SBout
2 and SBin

3 .

Improved Cryptanalysis of the Reduced Grøstl Compression Function 23

SBin
1 SBout

1 MBin
1 MBout

1

AC SB1 ShB MB1

SBin
2 SBout

2 MBin
2 MBout

2

AC SB2 ShB MB2

SBin
3 SBout

3 MBin
3 MBout

3

AC SB3 ShB MB3

SBin
4 SBout

4 MBin
4 MBout

4

AC SB4 ShB MB4

1
1

1
1

1
1

1
13

3
3

3
3

3
3

35
5

5
5

5
5

5
5

1
1

1
1

1
1

1
13

3
3

3
3

3
3

35
5

5
5

5
5

5
5

1
1

1
1

1
1

1
13

3
3

3
3

3
3

35
5

5
5

5
5

5
5

1

1
1
1
1
1
1
1

3
3
3
3
3
3
3
3

5
5
5
5
5
5
5
5

1
1
1
1
1
1
1
1

3
3
3
3
3
3
3
3

5
5
5
5
5
5
5
5

1
1
1
1
1
1
1
1

3
3
3
3
3
3
3
3

5
5
5
5
5
5
5
5 2

2
2

2
2

2
2

24

4
4

4
4

4
4

46
6

6
6

6
6

6
6

2
2
2
2
2
2
2
2

4
4
4
4
4
4
4
4

6
6
6
6
6
6
6
6 2

2
2
2
2
2
2
2 4

4

4
4
4
4
4
4 6

6
6

6
6
6
6
6

2

2
2
2
2
2
2
2 4

4

4
4
4
4
4
4 6

6
6

6
6
6
6
6

2

2
2
2
2
2
2
2 4

4

4
4
4
4
4
4 6

6
6

6
6
6
6
6

2
2

2
2

2
2

2
2

4
4

4
4

4
4

4
4

6
6

6

6
6

6
6

6

Fig. 2. Filtering for differential paths

Column 2. Next, we continue with the differences of the first column of MB3

(marked by “2” in states MBin
3 and MBout

3). Again, 7 differences of MB3 are zero
and choosing one byte determines all differences of the first column of MB3. Note
that the input of the first column of SB3 and thus, the difference of SBin

3 [0, 0],
has already been fixed in the previous step. Due to the differential behavior of
the AES S-box (see Sect. 3.2), we can choose from only 127 differences for the
corresponding output byte of SB3 (SBout

3 [0, 0]). Choosing one of these possible
127 differences uniquely determines all differences marked by “2” between states
SBout

3 and SBin
4 .

Column 3. Then, we continue with the second column of MB2 (marked by “3”
in states MBin

2 and MBout
3). Again, 7 bytes of the input differences are required to

be zero. Additionally, one output difference of SB3 (SBout
3 [1, 1]) has already been

fixed due to Column 2. Again, we can only choose from 127 possible input
differences for SB3 (SBin

3 [1, 1]) and get 127 possible differences for the bytes
marked by “3” between SBin

3 and SBout
2 .

Column 4-5. We proceed with the second column of MB3, marked by “4” in
states MBin

3 and MBout
3 . Note that the input bytes of two S-boxes (SBin

3 [0, 1] and
SBin

3 [7, 0]) have already been fixed due to Column 1 and Column 3. These two

24 F. Mendel et al.

Table 2. The approximate number of possible choices for the differences at the input
and output of the 3 S-boxes SB2, SB3 and SB4

SBin
2 SBin

3 SBout
3 SBout

4

1 255 127 1
127 64
64 32
32 16
16 8
8 4
4 2
2 1

input differences restrict the number of possible differences for the output of SB3

(bytes marked by “4”) to about 256/22 = 64 values. We continue with the third
column of MB2 (marked by “5”). Two output differences of the corresponding S-
box SB3 have already been fixed and thus, we can choose from about 64 possible
differences for the input bytes marked by “5” in SBin

3 as well.

Column 6-16. This procedure continues for all 8 columns of each of the two
MixBytes transformations MB2 and MB3. The approximate number of possible
S-box differences for SBin

3 and SBout
3 are halved for each additional MixBytes

column and are shown in Table 2.

MB1 and MB4. Until now, we have determined differences for the states SBout
2 ,

SBin
3 , SBout

3 and SBin
4 . Since all differences in SBout

2 and SBin
4 have already been

determined, we have only about 255/28 ∼ 1 difference left for SBin
2 and SBout

4 .
Note that choosing the difference for one byte determines all other differences
as well due to the restrictions by MixBytes.

Note that we can find one possible differential characteristic with a complexity
of about one, since we filter though each MixBytes and S-box transformation
only once. The total number of possible differential paths can be determined by
considering the number of choices we have at the input and output of S-box SB3,
the input of S-box SB2 and the output SB4. The approximate number of choices
are listed in Table 2 and by multiplying these numbers we can get up to ∼ 264

possible differential paths or starting points for the next phase.

4.2 Solving for Conforming State Pairs

After we have found a differential path we need to search for a valid pair of the
state. Since the differential of each active S-box is fixed there are only either 2 or
4 input pairs possible. In both cases, the S-box behaves linearly [10] and hence,
we can easily solve the resulting linear system of equations. In the following
description we assume that we have only 2 possible input pairs for each active
S-box (note that in this case, all S-boxes behave linearly).

Consider the diagonal of SBout
3 respectively the first column of MBin

3 (denoted
by “2” in Fig. 2). For each S-box we have 2 possible inputs ki and k′

i for 0 ≤ i < 8

Improved Cryptanalysis of the Reduced Grøstl Compression Function 25

such that the differential path holds. In other words, we have 28 possible inputs
for the diagonal of SBout

3 . Let x ∈ {0, 1}8 then the possible values for the diagonal
of SBout

3 are given by:
k ⊕ x · (k ⊕ k′)

where k = [k0, . . . , k7] and k′ = [k′
0, . . . , k

′
7].

Next, we compute the first byte of SBin
4 by going forward ShiftBytes, MixBytes

and AddRoundConstant.

SBin
4 [0, 0] = (k⊕ x · (k⊕ k′)) · L

where L denotes composition of ShiftBytes, MixBytes and AddRoundConstant.
Since these transformations are all linear L is a linear transformation as well.

Since we have 2 possible values a and a′ for SBin
4 [0, 0] such that the differential

trail holds, the following equation has to be fulfilled.

(k ⊕ x · (k ⊕ k′)) · L = a⊕ y · (a⊕ a′)

where y ∈ {0, 1}.
By doing the same for the other diagonals (corresponding to columns 2-8 of

MBin
3) we get a system of 64 equations in 64+8=72 variables which has to be

fulfilled to guarantee that the differential trail holds in the forward direction.
In a similar way we also get a system of 64 linear equations in 72 variables by
going backward from SBin

3 to SBout
2 . However, since the values of SBin

3 and SBout
3

are related, we get in total a system of 128 equations in 80 variables when we
combine them. In other words, to find a valid pair, we have to backtrack and
try about 248 differential paths and thus, solve the linear system of equations
248 times. Since we can start with up to 264 differential paths, we can only find
about 264−48 = 216 pairs after the linear solving step.

Note that the attack works similar if one has 4 possible input pairs for the
S-box. By choosing the differences in the previous step (Sect. 4.1) in a way,
to maximize the number of differentials with 4 possible pairs for the S-box,
the overall complexity can be reduced slightly (by about 22 to 25). The total
complexity of the attack is given by the number of times we need to solve the
resulting linear system of equations (we assume here that this corresponds to
about one compression function call).

4.3 Application to AES

The same technique applies to the block cipher AES as well. In this case, we
start with a differential path with the following sequence of active S-boxes:

1→ 4→ 16→ 4→ 1

Hence, we get 64 conditions (equations) for the S-box layers of round 2, 3 and
4. Since we have 64 equations in 24 variables, we need to repeat the attack
264−24 = 240 times to find a valid pair. Note that in the case of AES, we get a
better complexity if we first fix the differential path for rounds 1-3 (1 → 4 →

26 F. Mendel et al.

16 → 4) and then, solve for the pair. In this case, we get only 32 conditions
and the complexity to solve for a pair is about 212. Since we need to repeat the
attack only 224 times to fulfill the last MixColumns operation we get a total
complexity of only 236 in this case.

5 A Start-from-the-Middle Technique

In this section, we describe another attack that uses the available freedom degrees
in the middle. The truncated differential path considered here will be the same
than in the previous section or in the rebound attack [22]: in the case of Grøstl,
we use the one from Fig. 1. More precisely, the attack will first focus on a 3-round
part of the middle of the path, the following sequence of active bytes:

1 r1−→ 8 r2−→ 64 r3−→ 8

We can find a conforming state pair according to this path with only a few
operations by choosing “good” differences in advance and exploiting the available
degrees of freedom. We start at the last MixBytes transformation of the 3-round
trail (MB3 in Fig. 2) and compute backwards. The attack can be divided into
three main phases:

1. In Phase 1, we start with 1-byte differences at the output of each MixBytes
column MB3 (MBout

3) and compute backwards to the input of SB3 (SBin
3).

Each column of MixBytes MB3 can be computed independently. Then, we
maintain as much freedom as possible in the input difference of SB3 (SBin

3)
by using the precomputed differential tables of the S-box.

2. In Phase 2, we have enough degrees of freedom to choose the differences for
SBin

3 such that each of the eight MB2 MixBytes transitions from 8 to 1 active
byte in backward direction is satisfied.

3. In Phase 3, we get more degrees of freedom since both (a, b) and (b, a) are
valid solutions for each byte of SBin

2 . Hence, we can randomize each ac-
tive byte of SBin

2 and get enough pairs such that the last single MixBytes
transformation MB1 can be fulfilled as well.

At this point, all available degrees of freedom have been used and we rely on
a probabilistic behavior for the remaining transitions in backward and forward
direction.

5.1 Application to Grøstl-256

Phase 1. We randomly select non-zero differences for the eight active bytes of
SBin

4 , i.e. for SBin
4 [i, i] with i ranging from 0 to 7. Those differences will remain

unchanged when computing backward to MBout
3 . Since the MixBytes transfor-

mation is linear, we apply its inverse (Phase 1.A in Fig. 3) to MBout
3 and deter-

ministically get 64 byte differences for MBin
3 and thus, for SBout

3 . We denote by
δ[i, j] the byte difference of SBout

3 [i, j]. For each output difference δ[i, j] in SB3,
we compute all valid byte pairs SBin

3 [i, j] such that the S-box differential holds

Improved Cryptanalysis of the Reduced Grøstl Compression Function 27

SBin
3 SBout

3 MBin
3 MBout

3

AC SB3 ShB MB3

A B C D E F G H
I J K L M N O P

X Y Z

1
1

1
1

1
1

1
1

2
2

2
2

2
2

2
2

3
3

3
3

3
3

3
3

1
1
1
1
1
1
1
1

2
2
2
2
2
2
2
2

3
3
3
3
3
3
3
3

4
5

6
7

8

1
2

3
4

5
6

7
8

Phase 1.B Phase 1.A

Fig. 3. Phase 1 of the attack

SBin
2 SBout

2 MBin
2 MBout

2

AC SB2 ShB MB2

1
8
7
6
5
4
3
2

1
1

1
1

1
1

1
1

2
2

2
2

2
2

2
2

3
3

3
3

3
3

3
3

8
7
6
5
4

1
1
1
1
1
1
1
1 2

2
2
2
2
2
2
2

3
3

3
3
3
3
3
3 4

5
6

7
8

1
1
1
1
1
1
1
1

2
2
2
2
2
2
2
2

3
3
3
3
3
3
3
3

4
5

6
7

8

Phase 2

Phase 3

Fig. 4. Phase 2 and Phase 3 of the attack

(Phase 1.B in Fig. 3). As discussed in Sect. 3.2 we can choose from 127 possible
input differences for SBin

3 [i, j] using the S-box differential table. For each of these
XOR difference, we get two possible pairs (a, b) and (b, a). Hence, for each byte
of SBin

3 , we get a list (denoted by capital letters in Fig. 3) of 254 valid candidate
pairs which are sorted by input difference and stored in table S

δ[i,j]
F . Note that

any choice of these pairs will conform to the expected differential path from SBin
3

up to SBin
4 .

Phase 2. We now take care of the differential path from SBin
3 to SBin

2 . Since we
can choose a candidate pair for each byte SBin

3 independently, we will process
independently for each column of MB2 as well. More precisely, for each column
j of SBin

3 (or MBout
2), we will use the inverse MixBytes table M j

B to choose each
byte difference of SBin

3 , such that they result in only one active byte at the
input of MB2 (MBin

2). For each of the 255 differences of M j
B, we check if some

candidate pairs of SBin
3 (computed during Phase 1 and stored in S

δ[i,j]
F) can fit the

8-byte difference of MBout
2 (see Fig. 4). Since for each byte of SBin

3 we can choose
from 127 possible output differences of the S-box, the probability of success is
127/255 	 1/2.

Thus, for an entire column of MB2 we get a probability of (127/255)8 	 2−8

such that one valid candidate pair can be found. Since we can start with 255 input
differences for each column of MB2, we can find one solution for a column with
probability 1− (1− (127/255)8)255 	 0, 62. We continue for all eight columns of
SBin

3 . The probability of success is about (0, 62)8 	 2−5,5 and we have to restart
at Phase 1 about 25.5 = 46 times to find a solution. At the end of Phase 2, we
get a set of byte pairs for SBin

3 , which conforms to the differential path from SBin
2

up to SBin
4 .

28 F. Mendel et al.

Note that these two first phases are doing essentially the same work as the
rebound attack [22], but need fewer operations to complete (on average the
rebound attack takes about one operations per valid candidate, but this whole
step required 264 operations). Here, we need to repeat the process 25.5 times
to find a solution, but compute only a few table lookups per iteration. Thus,
we consider that we can find one solution for the truncated differential path
1→ 8→ 64→ 8 with about one computation of Grøstl-256 on average.

Phase 3. It seems that at this phase, the differences in SBin
2 and SBout

4 can
not be chosen anymore. However, an observation allows us to actually get some
control over the differences in SBin

2 . We denote by S a 64-byte solution of SBin
3

(found at the end of Phase 2) and by (a, b)[i,j] the byte pair of row i and column
j in S. In Fig. 4, we can see that the active bytes of SBin

2 are located in the
first column. By looking at this figure, it is easy to check that the differences of
the active bytes located at row j of SBin

2 depend only on the byte pairs of the
j-th column of MBout

2 (or SBin
3). We know that (a, b)[0,j], ..., (a, b)[7,j] are valid

solutions for this column, and switching a and b in any of the pairs actually
maintains the validity of those candidates (the differences values of each byte
will remain the same in MB2 and MB3).

Thus, one solution for each column of SBin
3 provides us in fact 28 valid can-

didates2. Each of these solutions will lead to a random difference on the cor-
responding active byte SBin

2 [j, 0], independently of all other differences in SB2.
Now, if we can hit any of the elements of M0

B for MB1 from the newly available
differences in SBin

2 , we directly get a solution for the differential path from SBout
1

to SBout
4 . Since we have 255 elements in M0

B, we expect about 27 solutions on
average (28 solutions, but half of them may be repeating, see footnote 2).

We did not succeed to control the differences in SBout
4 as well. Thus, if the

differences are uniformly distributed, the success probability for the 8 to 1 active
byte transition from the MixBytes layer MB4 is equal to 2−8×7 = 2−56.

5.2 Application to AES

Again, also this technique can be applied to the AES block cipher. We use the
same differential path as in Fig. 1, except that we manipulate a 4× 4 state and
that no MixColumns transformation is applied in the last round:

4→ 1→ 4→ 16→ 4→ 1→ 4→ 4

Phase 1. This step is analog to the Grøstl-256 case.

2 We have 28 different combinations by switching a and b for each column. However,
we must take in account that some repeating combinations are counted here (given
a combination, inverting everything will obviously lead to exactly the same behavior
in the differential path). Thus, instead of having 64 bits degrees of freedom left (8
for each column) we intrinsically loose one of them and get 63 degrees of freedom.

Improved Cryptanalysis of the Reduced Grøstl Compression Function 29

Phase 2. This step is similar to the case of Grøstl-256. However, the probability
computation changes when looking for a match between MBout

2 and SBin
3 . For each

column, we now get a probability of (127/255)4 	 2−4 such that at least one
valid candidate pair can be found. Since we have 255 differences in M i

B, we will
immediately find one solution for each starting difference SBin

4 of the attack. In
fact, we expect up to about 24 solutions for each column.

Phase 3. Again, we try to control the differences in SBin
2 . We use the same

technique as for Grøstl-256: for each active byte at row i in SBin
2 , we can ran-

domize its difference by randomizing the solutions on the column i in SBin
3 . By

switching a and b, we directly get 24 solutions per column. Moreover, we also
have to consider the fact that for the AES case, we already had 24 solutions per
column. Thus, we get in total about 28 solutions per column (see footnote 2).
Each of those solutions will lead to a random difference on the corresponding
active byte of SBin

2 , independently of the other active bytes of SBin
2 . Now, if we

can hit any of the elements of M0
B using the available differences in SBin

2 , we get
a solution for the differential path between SBout

1 and SBout
4 . Since we have 255

elements in M0
B, the whole attack will find about 27 solutions on average (28

solutions, but half of them may be fully repeating ones, see footnote 2).

Extending the Path. Propagating from SBin
4 to SBin

5 according to the trun-
cated differential path has a success probability of 2−3·8 = 2−24. Thus, we can
find a pair corresponding to the path from SBin

1 to SBin
5 with about 224 round

computations on average.

6 Results

In the previous two sections, we have proposed two new techniques to find dif-
ferences and values for a 4-round truncated differential path with 1 → 8 →
64 → 8 → 1 active bytes for Grøstl-256. In the following, we apply these re-
sults to the permutation, compression function and output transformation of
Grøstl-256, the AES block cipher and the ECHO permutation.

6.1 Grøstl-256

Both proposed techniques can be used to improve the complexity of the 6-
round semi-free-start collision attack of [22]. However, due to the limited de-
grees of freedom, a semi-free-start collision attack on 7 rounds of the Grøstl-256
compression function is not possible.

6 Rounds. Both proposed techniques (described in Sect. 4 and Sect. 5) can be
used to find a valid pair for the 6 round trail of P and Q, given in [22]:

8 r1−→ 1 r2−→ 8 r3−→ 64 r4−→ 8 r5−→ 8 r6−→ 64

Using the linearized match-in-the-middle attack, we can omit the conditions
on SB4. Hence, the number of equations is reduced to 64 and we expect to

30 F. Mendel et al.

find a solution (in fact 28 solutions) for already the first differential path. The
complexity to find a match for the 8 active bytes (64 bits) at the input, and at
the output prior to the (linear) MixBytes transformation is 232 each. Hence, the
total complexity to find a semi-free-start collision for 6 rounds of Grøstl-256 is
about 264 in time and memory.

Using the start-from-the-middle technique, we can construct a differential
path with active bytes 8 → 1 → 8 → 64 → 8 → 8 → 64) with only a few
operations. As a proof of concept, we give in Appendix A a valid input pair
for the permutations P and Q on 6-rounds of Grøstl-256 which conforms to
this truncated differential path. We get a final complexity of 264 operations and
memory for a semi-free-start collision on Grøstl-256 reduced to 6 rounds.

7 Rounds. Again, both techniques can be used to find a valid pair conforming
to the 4-round part in the middle of Fig. 1 (1 → 8 → 64 → 8 → 1) with
a relatively low complexity (248 and 256). This path can be extended by one
round in backward and two rounds in forward direction to give a differential
path of the form:

8→ 1→ 8→ 64→ 8→ 1→ 8→ 64,

However, using both techniques we can only find 216 pairs conforming to this
truncated differential path and one can convince himself with a counting argu-
ment: In the middle of the differential path where all bytes of the state are active,
one can start with approximatively 2512 · 2512 = 21024 different pairs. However,
only a portion 2−56 will follow a MixBytes transition 8→ 1, and only a portion
2−56·8 = 2−448 will follow a MixBytes transition 64 → 8 (because we have a
probability of 2−56 for each column). Since we have two 64→ 8 and two 8→ 1
transitions and consider them to be independent, only 21024−448·2−56·2 = 216

valid pairs will remain for the 4-round path in the middle (1→ 8→ 64→ 8→ 1)
and thus, also for the 7-round path.

Note that due to this lack of freedom a semi-free-start collision using this
truncated differential path is not possible. For a collision at the end of 7 rounds,
we need about 264 pairs for each, P and Q. Otherwise, a birthday attack on 128
bits (8 active bytes at the input, 8 active bytes prior to MixBytes at the output)
is not feasible. By using different positions of active bytes in round 2 and 6, but
the same column for P and Q, we can construct about 26 · 26 · 23 · 23 = 218

different truncated paths. By far not enough for a collision attack. However, one
could think of a free-start near-collision attack on 7 rounds of Grøstl-256 but
this property gets destroyed by the output transformation.

Therefore, we can only get a distinguisher for the permutation or output
transformation of Grøstl-256 reduced to 6.5 rounds (without the final MixBytes
transformation). The complexity is 248 instead of 2224 for a random 512-bit
permutation or 2112 for a random 256-bit function. We can get a distinguisher
for the full 7 rounds by applying the subspace distinguisher proposed in [19].
Note that the input and the output differences of the 6.5 round attack form
a vector space of dimension 64 at the input and output. Since the Mixbytes

Improved Cryptanalysis of the Reduced Grøstl Compression Function 31

transformation is linear also the output differences after 7 rounds form a vector
space of dimension 64. Hence, we can apply the subspace distinguisher with
parameters N = 512, n = 64, t = 128 (generic complexity: 2115.4) to distinguish
7 rounds of the permutation P and Q. To construct a vector space of size t = 128,
we need to repeat our attack on the comression function 27 times. Hence, the
total complexity for the subspace distinguisher of the permutation is about 255

permutation calls with negligible memory.
Similarily, we can use the subspace distinguisher to distinguish the output

transformation of Grøstl-256 as well. Note that the 8 active bytes of the input
are added to the output by the feed-forward. However, due to the truncation
at the end the output differences will still form a vector space of dimension 64.
Since Grøstl-256 truncates columns and MixBytes works on columns, we keep
only half of the vector space. Hence, we can apply a subspace distinguisher with
parameters N = 256, n = 64, t = 256 (generic complexity: 275.9) and need to
repeat our attack 28 times to get a vector space of size t = 256. Hence, the total
complexity for the subspace distinguisher on 7 rounds of the Grøstl-256 output
transformation is about 256 output transformation calls and negligible memory.

6.2 AES Block Cipher

Both proposed techniques apply to the block cipher AES in the known-key dis-
tinguisher setting as well. The resulting 7-round differential path for AES is
computed by simply extending the 4-round path in both forward and backward
direction to give the following sequence of active bytes:

4→ 1→ 4→ 16→ 4→ 1→ 4→ 4

Note that the last MixColumns operation is omitted in the AES. Since we aim
for 4 active bytes in both, plaintext and ciphertext, we would expect to find
such a pair with about 248 computations for a random permutation. Note that
an equivalent generic attack needs to find a pair with only 4 active bytes at
the input and output as well. Hence, the best generic method is to start with 4
active bytes at the input and search for a near-collision on 12 non-active bytes
at the output with complexity 2(12·8)/2 = 248.

Using the linearized match-in-the-middle attack, we get a known-key distin-
guisher for 7-rounds of AES with a complexity of about 236 and negligible mem-
ory. However, the start-from-the-middle technique allows us to further improve
the complexity for the known-key distinguisher to about 224 in time and negligi-
ble memory for 7-rounds of AES. Additionally, one may think of other applica-
tions of these attack such as near-collisions on a compression function built upon
the 7-round reduced AES in Davies-Meyer mode [6,23], or a collision attack on
the compression function for 5 rounds.

6.3 Internal Permutation of ECHO

It is possible to apply the start-from-the-middle technique to other AES-based
hash functions, such as ECHO [2] whose internal 2048-bit permutation can been

32 F. Mendel et al.

seen as a big AES processing 128-bit words instead of bytes. This directly gives
us an improved distinguisher on 7 rounds whose complexity is 23·128 = 2384

operations (compared to the previous one with complexity 2896) and memory
requirements are 2256. However, we can improve the memory requirements by
storing a differential lookup table for the AES super box [9] with size 232 · 232 =
264, instead of a differential lookup table for two full AES rounds with size
2128 · 2128 = 2256. This is possible due to the fact that one can combine the last
MixColumns transformation of the AES with the subsequent BigMixColumns
transformation of ECHO, since both transformations are linear. Note that this
attack only allows to distinguish 7 rounds of the ECHO internal permutation
from a random 2048-bit permutation, but does not apply to the compression
function due to the word compression at its output.

7 Conclusion and Future Work

In this paper, we have proposed two new ways to mount attacks on the SHA-3
candidates Grøstl and ECHO, and the block cipher AES. Our results improve
upon and extend the rebound attack. Both techniques are an extension of the
number of rounds in which degrees of freedom can be used to improve from two
to four rounds. As a result, we present the best known attacks on constructions
where (reduced variants of) permutations are used. We improve on the attack
on the reduced Grøstl-256 compression function (up to 6 out of 10 rounds), and
present a distinguisher for 7-rounds of the Grøstl-256 permutation and output
transformation. Further, we improve upon the distinguisher for 7-rounds of the
internal permutation of ECHO and the known-key distinguisher for 7-rounds of the
block cipher AES. Nevertheless, a comfortable security margin for these SHA-3
candidates remain. Not only because both proposals have a higher number of
rounds, but also because in an attack on the hash function much less degrees
of freedom are available (compared to an attack on the compression function or
permutation).

On the other hand, the new techniques of this paper have been optimized for
this setting and do not directly apply to other settings where more degrees of
freedom are available. Sources for such degrees of freedom are salt, counter, or
key inputs. While the analysis typically gets more complicated if more freedom
is available, much better attacks can be expected. As an example we refer to
a recent extension of the rebound attack on the full 10-round Whirlpool com-
pression function [19]. Note that Whirlpool is a block cipher based construction
which offers additional degrees of freedom through its conservative key schedule.
Some SHA-3 candidates use block-cipher based compression functions with key-
schedules less conservative than Whirlpool. Hence, more degrees of freedom are
available to an attacker and better results may be expected along those lines.

In general, the rebound attack and its extensions as described in this paper,
work with any differential or truncated differential. However, the diffusion prop-
erties of AES based hash functions allow a very simple construction of good
truncated differential paths, which facilitates the analysis. Nevertheless, future

Improved Cryptanalysis of the Reduced Grøstl Compression Function 33

work will include the application of the rebound idea on other hash construc-
tions, even though this may require sophisticated tools to obtain good results,
as was the case for e. g. SHA-1 [11].

Acknowledgments

We would like to thank Joan Daemen for the idea on the linearized match-in-the-
middle attack, Henri Gilbert, Mario Lamberger and the anonymous referees for
useful comments and discussions, and Vincent Rijmen for comments on the pre-
proceedings version of this paper. The work in this paper has been supported in
part by the European Commission under contract ICT-2007-216646 (ECRYPT
II) and by the IAP Programme P6/26 BCRYPT of the Belgian State (Belgian
Science Policy).

References

1. Barreto, P.S.L.M., Rijmen, V.: The Whirlpool Hashing Function. Submitted to
NESSIE, revised May 2003 (September 2000),
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html (2008/12/11)

2. Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M.,
Seurin, Y.: SHA-3 Proposal: ECHO. Submission to NIST (2008),
http://crypto.rd.francetelecom.com/echo/

3. Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions - HAIFA.
Cryptology ePrint Archive, Report 2007/278 (2007), http://eprint.iacr.org

4. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. J.
Cryptology 4(1), 3–72 (1991)

5. Biryukov, A., Khovratovich, D., Nikolic, I.: Distinguisher and Related-Key Attack
on the Full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, pp. 231–249.
Springer, Heidelberg (2009)

6. Cohen, B., Laurie, B.: AES-hash. Submission to NIST: Proposed Modes (2001),
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/

aes-hash/aeshash.pdf

7. Daemen, J., Rijmen, V.: The Wide Trail Design Strategy. In: Honary, B. (ed.)
Cryptography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidel-
berg (2001)

8. Daemen, J., Rijmen, V.: The Design of Rijndael. Information Security and Cryp-
tography. Springer, Heidelberg (2002)

9. Daemen, J., Rijmen, V.: Understanding Two-Round Differentials in AES. In: De
Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 78–94. Springer, Hei-
delberg (2006)

10. Daemen, J., Rijmen, V.: Plateau characteristics. IET Information Security 1(1),
11–17 (2007)

11. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006), http://dx.doi.org/10.1007/11935230_1

12. Fleischmann, E., Forler, C., Gorski, M.: The Twister Hash Function Family. Sub-
mission to NIST (2008),
http://ehash.iaik.tugraz.at/uploads/3/39/Twister.pdf

http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
http://crypto.rd.francetelecom.com/echo/
http://eprint.iacr.org
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/aes-hash/aeshash.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/aes-hash/aeshash.pdf
http://dx.doi.org/10.1007/11935230_1
http://ehash.iaik.tugraz.at/uploads/3/39/Twister.pdf

34 F. Mendel et al.

13. Fouque, P.A., Stern, J., Zimmer, S.: Cryptanalysis of Tweaked Versions of SMASH
and Reparation. In: Avanzi, R., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS,
vol. 5381, pp. 136–150. Springer, Heidelberg (2009)

14. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl – a SHA-3 candidate. Submission to NIST
(2008), http://www.groestl.info

15. Khovratovich, D.: Cryptanalysis of hash functions with structures. In: Jacobson,
M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 108–125.
Springer, Heidelberg (2009)

16. Khovratovich, D., Biryukov, A., Nikolic, I.: The Hash Function Cheetah: Specifi-
cation and Supporting Documentation. Submission to NIST (2008),
http://ehash.iaik.tugraz.at/uploads/c/ca/Cheetah.pdf

17. Knudsen, L.R., Rechberger, C., Thomsen, S.S.: The Grindahl Hash Functions. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 39–57. Springer, Heidelberg
(2007)

18. Knudsen, L.R., Rijmen, V.: Known-Key Distinguishers for Some Block Ciphers. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,
Heidelberg (2007)

19. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound
Distinguishers: Results on the Full Whirlpool Compression Function. In: Matsui,
M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912. Springer, Heidelberg (to appear,
2009)

20. Matusiewicz, K., Naya-Plasencia, M., Nikolić, I., Sasaki, Y., Schläffer, M.: Rebound
Attack on the Full LANE Compression Function. In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912. Springer, Heidelberg (to appear, 2009)

21. Mendel, F., Rechberger, C., Schläffer, M.: Cryptanalysis of Twister. In: Ab-
dalla, M., Pointcheval, D., Fouque, P.A., Vergnaud, D. (eds.) ACNS 2009. LNCS,
vol. 5536, pp. 342–353. Springer, Heidelberg (2009)

22. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

23. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1996),
http://www.cacr.math.uwaterloo.ca/hac/

24. Minier, M., Phan, R.C.W., Pousse, B.: Distinguishers for Ciphers and Known Key
Attack against Rijndael with Large Blocks. In: Preneel, B. (ed.) AFRICACRYPT
2009. LNCS, vol. 5580, pp. 60–76. Springer, Heidelberg (2009)

25. National Institute of Standards and Technology: FIPS PUB 197, Advanced En-
cryption Standard (AES). Federal Information Processing Standards Publication
197, U.S. Department of Commerce (November 2001)

26. National Institute of Standards and Technology: Announcing Request for Candi-
date Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3)
Family. Federal Register 27(212), 62212–62220 (November 2007),
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

(2008/10/17)
27. Peyrin, T.: Cryptanalysis of Grindahl. In: Kurosawa, K. (ed.) ASIACRYPT 2007.

LNCS, vol. 4833, pp. 551–567. Springer, Heidelberg (2007)
28. Wu, S., Feng, D., Wu, W.: Cryptanalysis of the LANE Hash Function. In: Jacobson,

M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 126–140.
Springer, Heidelberg (2009)

http://www.groestl.info
http://ehash.iaik.tugraz.at/uploads/c/ca/Cheetah.pdf
http://www.cacr.math.uwaterloo.ca/hac/
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

Improved Cryptanalysis of the Reduced Grøstl Compression Function 35

A Message and Chaining Variable Example for the
6-Round Differential Path of Grøstl-256

We give here in hexadecimal display a chaining variable and message pair exam-
ple ([H1, M1],[H2, M2]) that verifies the 6-round differential path for Grøstl-256.

H1 = fdab6faf65da3531e5a7f611baba937d
b18648152738a5fe4bd38ca5a8b050e7
3d734623aed6f7a35e3fb3d72eba5e60
1712a3d23d76fe79ccbba10461dddee0

M1 = 66b16a712984a23ca99283090e5818c7
c7f46fcd74c54b7a9950a4bfcb2861b1
1f90846a04c92172af57a58ad9b747a3
a26dca926c18f410ad0f40f52800d27b

H2 = 21ab6faf65da3531e51bf611baba937d
b186c5152738a5fe4bd38c88a8b050e7
3d734623ecd6f7a35e3fb3d72e6c5e60
1712a3d23d767779ccbba10461ddde66

M2 = f8b16a712984a23ca9ef83090e5818c7
c7f434cd74c54b7a9950a40fcb2861b1
1f90846a29c92172af57a58ad95547a3
a26dca926c18d710ad0f40f52800d27f

Cryptanalyses of Narrow-Pipe Mode of
Operation in AURORA-512 Hash Function

Yu Sasaki

NTT Information Sharing Platform Laboratories, NTT Corporation,
3-9-11 Midoricho, Musashino-shi, Tokyo, 180-8585 Japan

sasaki.yu@lab.ntt.co.jp

The University of Electro-Communications,
1-5-1 Choufugaoka, Choufu-shi, Tokyo, 182-8585 Japan

Abstract. We present cryptanalyses of the AURORA-512 hash func-
tion, which is a SHA-3 candidate. We first describe a collision attack on
AURORA-512. We then show a second-preimage attack on AURORA-
512/-384 and explain that the randomized hashing can also be attacked.
We finally show a full key-recovery attack on HMAC-AURORA-512 and
universal forgery on HMAC-AURORA-384. Our attack exploits weak-
nesses in a narrow-pipe mode of operation of AURORA-512 named
“Double-Mix Merkle-Damg̊ard (DMMD),” which produces 512-bit out-
put by updating two 256-bit chaining variables in parallel. We do not look
inside of the compression function. Hence, our attack can work even if
the compression function is regarded as a random oracle. The time com-
plexity of our collision attack is approximately 2236 AURORA-512 oper-
ations, and 2236 × 512 bits of memory is required. Our second-preimage
attack works on any given message. The time complexity is approxi-
mately 2290 AURORA-512 operations, and 2288 × 512 bits of memory is
required. Our key-recovery attack on HMAC-AURORA-512, which uses
512-bit secret keys, requires 2257 queries, 2259 off-line AURORA-512 op-
erations, and a negligible amount of memory. The universal forgery on
HMAC-AURORA-384 is also possible by combining the second-preimage
and key-recovery attacks.

Keywords: AURORA, DMMD, collision, second preimage, HMAC.

1 Introduction

Hash functions are important cryptographic primitives used for various purposes.
Currently, the National Institute of Standards and Technology (NIST) is con-
ducting a SHA-3 competition for determining a new hash standard algorithm
[1]. In the SHA-3 competition, 51 algorithms were accepted as candidates. One
of the most important design aspects is the size of the internal state. To make
hash algorithms efficient and compact, the internal state size should be as small
as possible. If the internal state size is the same as the hash size, the structure
is called a narrow-pipe mode [2]. On the other hand, to make hash algorithms

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 36–52, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Cryptanalyses of Narrow-Pipe Mode of Operation 37

secure, the internal state size should be larger than the hash size. Such a struc-
ture is called a wide-pipe mode [2]. Therefore, there is a trade-off of efficiency
and security in the choice between the narrow-pipe or wide-pipe modes.

AURORA [3] is one of the hash algorithms submitted for SHA-3, which was
designed by Iwata et al. AURORA mainly has four algorithms: AURORA-224,
AURORA-256, AURORA-384, and AURORA-512. The output of AURORA-
224 is obtained by truncating the last output value of AURORA-256. Similarly,
the output of AURORA-384 is obtained by truncating the last output value
of AURORA-512. Hence, two algorithms AURORA-256 and AURORA-512 are
important to evaluate the security of AURORA. AURORA operates in narrow-
pipe mode. In AURORA-256, a hash value is computed by iteratively applying
a compression function that takes a 256-bit chaining variable and a 512-bit
message block as input and a 256-bit chaining variable as output. AURORA-
512 adopts a different mode of operation named Double-Mix Merkle-Damg̊ard
(DMMD), which produces 512-bit output by updating two 256-bit chaining vari-
ables in parallel. Update of 256-bit chaining variables is done by using almost
the same compression functions as AURORA-256. A unique characteristic of
the DMMD structure is computing 512-bit chaining variables by combining the
component of AURORA-256. This gives a large advantage with respect to the
size of the component to be implemented because components for AURORA-512
and AURORA-256 can be shared. Due to this structure, AURORA is efficient,
especially in hardware. Hence, evaluating the security of AURORA-512 is useful
for the cryptographic community to understand the tradeoff between efficiency
and security in hash function design.

1.1 SHA-3 Requirements and Claimed Security of AURORA

NIST requires SHA-3 candidates to satisfy several security properties [1], e.g.,

– Preimage resistance of n bits,
– Second-preimage resistance of n − k bits for any message shorter than 2k

blocks,
– Collision resistance of n/2 bits,
– Resistance on randomized hashing [4] of n − k bits (See Section 2.2 for

details.),
– 2n/2 queries and 2n off-line computations against distinguishing attacks on

HMAC [5].

According to Iwata et al. [3], DMMD has provable security for collision resis-
tance and preimage resistance. It was proven that any adversary needs at least
2201 computations to find a collision of AURORA-512, and needs at least 2512

computations to find a preimage of AURORA-512. On the other hand, it was
claimed that security of AURORA-512 is 256 bits for collision resistance, 512
bits for preimage resistance, and (512 − k) bits for second preimage resistance
of 2k-block messages. It is also mentioned that AURORA can be securely used
as randomized hashing and as a HMAC.

38 Y. Sasaki

1.2 Our Contribution

We investigate the weaknesses of the DMMD mode of operation adopted in
AURORA-512. We first show a collision attack on AURORA-512, where the
time complexity is approximately 2236 AURORA-512 operations and requires
2236×512 bits of memory. We then show a second-preimage attack on AURORA-
512 and -384. Our attack generates a second preimage of any given message.
Generated messages are 8 blocks long. The time complexity is approximately
2290 AURORA-512 operations and requires 2288 × 512 bits of memory. We then
explain that the randomized hashing can also be attacked. These attacks use
the multi-collision attack on a Merkle-Damg̊ard structure proposed by Joux [6].
However, direct application of [6] to AURORA-512 does not work regarding a
collision attack and is not efficient regarding a second-preimage attack. This is
due to the mixing function of AURORA-512, which is designed to prevent attacks
using multi-collisions such as [6]. We show that AURORA-512 is vulnerable
against multi-collision attacks even if the mixing function is adopted. Note that
a similar approach was taken by Knudsen et al. [7] to attack MDC2 [8]. We
finally show a full key-recovery attack on HMAC-AURORA-512 with 512-bit
secret keys, which require 2257 queries, 2259 off-line AURORA-512 operations,
and negligible amount of memory. The universal forgery on HMAC-AURORA-
384 is also possible by combining the second-preimage and key-recovery attacks.
Results of our attacks are summarized in Table. 1.

Outline. In Section 2, we describe the specifications of AURORA-512, ran-
domized hashing, and HMAC. We then introduce Joux’s multi-collision attack.
In Section 3, we discuss a collision attack on AURORA-512. In Section 4, we
discuss a second-preimage attack on AURORA-512 and -384. We then explain
that randomized hashing can also be attacked. In Section 5, we present a key
recovery attack on HMAC-AURORA-512 and a universal forgery attack on

Table 1. Summary of attacks on AURORA

Attack type Hash size Reference Time Memory
Collision 512 [9]† 2234.4 2229.6

Collision 512 [9]† 2249 -
Collision 512 Ours 2236 2236

2nd-preimage 512/384 [9]† 2291 231.5

2nd-preimage 512/384 Ours 2291 2288

Randomized hash 512/384 Ours 2291 2288

Attack type Hash size Reference Time Memory Query
HMAC key recovery 512 Ours 2259 − 2257

HMAC universal forgery 384 Ours 2291 2288 2256

† Ferguson and Lucks [9] also explained attacks on AURORA. Our work is independent
of [9]. We describe the relationship between these two works in the Appendix.
‡ After our submission, Joux and Lucks showed improved analyses on AURORA [10].

Cryptanalyses of Narrow-Pipe Mode of Operation 39

HMAC-AURORA-384. In Section 6, we summarize what we can learn from these
attacks and conclude this paper.

2 Related Works

2.1 Description of AURORA-512 and AURORA-384

We briefly describe the specifications of AURORA-512 and AURORA-384.
Please refer to Ref. [3] for details.

An input message M is padded to be a multiple of 512 bits by the standard MD
message padding, namely, a single bit ‘1’, necessary numbers of ‘0’s, and a 64-bit
string representing the block length of M are appended to the end of M . Then,
the padded message is divided into 512-bit message blocks (M0, M1, . . . , MN−1).

The computation for AURORA-384 is the same as AURORA-512 but for the
initial value and truncating the last 512-bit value to 384 bits. Hence, we explain
data processing in AURORA-512. AURORA-512 adopts a narrow-pipe mode of
operation named DMMD, where two half-size (256-bit) chaining variables are
updated independently by using the same message in each block. However, if all
blocks are updated independently, the construction becomes vulnerable to Joux’s
multi-collision attack [6]. To prevent this attack, DMMD periodically computes
the mixing function, which takes concatenation of two half-size chaining variables
as input, to introduce the dependency of two chaining variables.

More strictly, in AURORA-512, compression functions F0, F1, . . . , F7, G0, G1,
. . . , G7 : {0, 1}256×{0, 1}512 → {0, 1}256, two functions MF, MFF : {0, 1}512 →
{0, 1}512, and two 256-bit initial values (IVs) HU

0 and HD
0 are defined. The

algorithm to compute a hash value is as follows. This is also illustrated in Fig. 1.
In the procedure below, we use k′ to denote k mod 8.

1. for k=0 to N − 1 {
2. HU

k+1 ← Fk′ (HU
k , Mk)

3. HD
k+1 ← Gk′ (HD

k , Mk)
4. if(0 < k < N − 1) ∧ (k mod 8 = 7) {
5. temp ← HU

k+1‖HD
k+1

6. HU
k+1‖HD

k+1 ←MF (temp)
7. }
8. }
9. Output MFF (HU

N‖HD
N)

2.2 Description of Randomized Hashing

Randomized hashing [4] improves the security of the digital signature schemes
from the collision attacks on the hash functions. It makes it difficult for the
attacker to obtain a signature for one of the colliding messages from the signer
and produce it as a signature for the other colliding message because the signer
always uses a different random value in every signature generation process. One
may note the discussion on its security by Gauravaram and Knudsen [11].

40 Y. Sasaki

8-block 8-block Finalization at the end

Fig. 1. Hash computation in AURORA-512

The algorithm of randomized hashing takes a message M and a key K as
input and outputs a randomized message MR. The procedure is as follows.

1. Process M to the padding procedure to make sure that the processed message
M ′ is longer than K. Let M ′

L and KL be the length of M ′ and K, respectively.
2. Set counter←− �M ′

L/KL
 and remainder←−M ′
L mod KL.

3. Let R be concatenation of counter copies of the K and the remainder left-
most bits of the K.

4. Output MR ←− K‖M ′⊕R‖KL(2), where KL(2) is a 16-bit binary represen-
tation of KL.

According to NIST [1], SHA-3 candidates with n-bit output must provide (n−k)-
bit security in the following attack: 1) The attacker chooses a message M1,
which is shorter than 2k blocks. 2) Then, randomization value K1 is chosen
without control of the attacker. 3) The attacker finds M2 and K2 s.t. (M1, K1) �=
(M2, K2), which yield the same randomized hash value.

2.3 Description of HMAC

HMAC [5] is an algorithm to compute a MAC when a key and a message are
input. According to Krawczyk et al. [12], the minimal recommended length for
the secret key is L, where L is the size of the hash function output. Therefore, it
is reasonable to use 512-bit keys for HMAC with 512-bit output hash functions,
and use 384-bit keys for 384-bit output hash functions. The HMAC algorithm
to compute an output with a hash function H and an initial value H0 when a
key K and a message M are input is as follows.

K0 ← Pad(K), (1)
temp = H(H0, (K0 ⊕ ipad)‖M), (2)

HMAC−H(M) = H(H0, (K0 ⊕ opad)‖temp), (3)

where, ipad and opad are constant values defined in the specification of HMAC,
and Pad(·) is a padding process of K. In Pad(·), if the size of K is shorter than
the block length, zeros are appended to the end of K to make its length the
same as the block length signified as K0. If the size of K and the block length
are identical, K is signified as K0.

Cryptanalyses of Narrow-Pipe Mode of Operation 41

SHA-3 candidates with n-bit output are required to be secure against distin-
guishing attacks that require much fewer than 2n/2 queries and significantly less
computation than a preimage attack.

2.4 Description of Joux’s Multi-collision Attack

Let t-collision be t different messages that result in the same hash value. Joux
showed that 2k-collision of any n-bit iterated hash function can be found with a
complexity of k · 2 n

2 [6]. For chaining variables Hj and a compression function
CF (Hj , Mj) = Hj+1, Joux’s attack generates (Mj , M

′
j) such that CF (Hj , Mj) =

CF (Hj , M
′
j) = Hj+1 for j = 0, 1, . . . , k − 1. Any choice of (Mj, M

′
j) for j =

0, 1, . . . , k − 1 will result in the same Hk, hence a 2k-collision is generated.
Joux applied this technique to a cascaded construction. Let A(·) be an n-

bit iterated hash function and B(·) be an n-bit hash function. For an input
message M , the cascaded construction outputs a 2n-bit value A(M)‖B(M).
Intuitively, the cascaded construction has 2n-bit security. However, with Joux’s
attack, collisions and preimages can be found with a complexity of n

2 · 2
n
2 and

n · 2 n
2 · 2n, respectively. To find a collision, the attacker generates a 2

n
2 -collision

of A(·). From these 2
n
2 messages, two paired messages will also collide with

each other by computing B(·). To find a preimage, the attacker generates a 2n-
collision of A(·). Then exhaustively searches for a message that connects the
collision value to the n-bit of the given hash value for A(·). Since there are 2n

messages that match the n-bit of given hash value, one of the messages will also
satisfy the n-bit of the given hash value for B(·).

Restriction of Joux’s Multi-collision Attack. Joux’s multi-collision attack
is useful if a compression function includes two independent parts through several
blocks like AURORA-512. In fact, if two independent parts in AURORA-512
continues for 256 blocks or 512 blocks, the Joux’s attack can be applied to find
collisions or second preimages. However, the mixing function inserted at every 8
blocks guarantees that the independent part continues for at most 8 blocks, and
this prevents efficient application of Joux’s attack.

3 Collision Attack on AURORA-512

Our attack finds collisions of 8-block messages with a complexity of 2236.

Attack Procedure. The attack procedure is as follows. The attack is also
illustrated in Fig. 2

1. Randomly choose 2224(= 2256· 78) M0, and compute HU
1 ← F0(HU

0 , M0) for
each M0. This yields an 8-collision (=23-collision) of HU

1 .
2. By applying Joux’s attack [6] to M1 through M6, we obtain a 221-collision of

HU
7 . Let these 7-block messages yielding the 221-collision be M

(i)
[06], 0 ≤ i ≤

221 − 1.
3. Compute HD

k+1 ← Gk(HD
k , M

(i)
k), 0 ≤ k ≤ 6 for all i. Let H

D(i)
7 be the

corresponding 221 HD
7 s.

42 Y. Sasaki

�

�

�

�

�

�

�

�

�

�

Fig. 2. Collision construction on AURORA-512

4. Set M7 to be a randomly chosen value, and compute H
D(i)
8 = G7(H

D(i)
7 , M7)

for all i. Check whether or not a collision exists among 221 H
D(i)
8 .

5. If not, go back to Step 4 and try a different M7. If a collision is found, let
the corresponding ‘i’s be i1 and i2, and corresponding M7 be M

(j)
7 . Then,

M
(i1)
[06] ‖M (j)

7 and M
(i2)
[06] ‖M (j)

7 are the colliding pair.

At Step 4, since there are 221 H
D(i)
8 , we can make roughly 241(= (221)2/2) pairs

of H
D(i)
8 . Therefore, the probability that a collision will be found is 2−215(=

2−256 · 241). As a result, after 2215 iterations of Step 4, we expect to obtain a
colliding pair.

Complexity Evaluation. Steps 1 and 2 cost 7 · 2224 Fk-operations. Step 3
costs 7 · 221 Gk-operations. At Steps 4 and 5, the complexity of Step 4 for a
chosen M7 is 221 Gk-operations. Therefore, 2215 iterations cost 2236(= 221 ·2215)
Gk-operations. Hence, the time complexity of this collision attack is 7 · 2224 +
7 · 221 + 2236 ≈ 2236 Fk or Gk operations. At Steps 1 and 2, we need to prepare
2236 × 512 bits of memory to find a 23-collision.

Remark on Success Probability of Generating Multi-collision. At
Steps 1 and 2 of the attack procedure, the success probability of generating
multi-collisions is much lower than 1/2. Suzuki et al. [13] gives us the complex-
ity for finding s-collisions of n-bit value with a probability of approximately 1/2:

(s!)1/s × (2n· s−1
s) + s− 1. (4)

The value of this equation is 2225.91 ≈ 2226 when n = 256 and s = 23. However,
considering that our attack generates 23-collisions 7 times at Steps 1 and 2, we
need to dramatically increase the success probability. For this purpose, our at-
tack computes 2230 different messages to find a 23-collision for each block. Since
2230−226 =16, the success probability for Steps 1 and 2 becomes (1−(1/2)16)7 ≈ 1.

Cryptanalyses of Narrow-Pipe Mode of Operation 43

Under this strategy, the attack complexity is 7 · 2230 + 7 · 221 + 2236 = 2236.150

Fk or Gk operations, which is approximately 2236 AURORA-512 operations.

4 Second-Preimage Attack on AURORA-512 and -384

Our attack can generate second-preimages of any given message. Generated
second-preimages are 8 blocks long. The time complexity of our attack is ap-
proximately 2290 AURORA-512 operations. Since the complexity is much lower
than 2384, the attack can also be applied to AURORA-384. Strictly speaking, the
attack complexity depends on the output distribution of the compression func-
tion. We first assume that the output distribution is perfectly balanced, then
discuss other cases later.

Attack Procedure. The attack procedure for some given message is as follows.
The attack is also illustrated in Fig. 3.

1. Compute a hash value of the given message. Let T U and T D be the upper
256 bits and the lower 256 bits of the input values for the MFF function,
respectively.

2. Choose an M0 and compute HU
1 ← F0(HU

0 , M0). Repeat this computation
with changing M0 until a 232-collision of HU

1 is obtained.
3. Following the first block, we apply Joux’s attack [6] to M1 through M6. In

total, we obtain a 232×7 = 2224-collision of HU
7 .

4. Compute HU
8 ← F7(HU

7 , M7‖Pad) for 2288(= 2256 ·232) different M7s, where
Pad is the padding string for 8-block messages and the length of M7‖Pad
must be 1 block. If the output distribution of F7 is perfectly balanced with
respect to M7‖Pad, namely, the output distribution of F7(HU

7 , ·) is balanced,

�

�

�

�

�

�

Fig. 3. Second-preimage construction for AURORA-512

44 Y. Sasaki

we obtain 232-collisions for all possible values of HU
8 . Therefore, we obtain

a 232-collision of M7‖Pad that maps HU
7 to T U . Consequently, we obtain

2256(= 2224 · 232) messages M0‖M1‖ · · · ‖M7‖Pad that produce T U .
5. Compute HD

k+1 ← Gk(HD
k , Mk), 0 ≤ k ≤ 7 for all M0‖M1‖ · · · ‖M7‖Pad

obtained at Step 4. Since we have 2256 different choices, we expect that one
will match T D. The matched message M0‖M1‖ · · · ‖M7 is a second preimage
of the given message.

Complexity Evaluation. At Steps 2 and 3, if we try 2288(= 2256 ·232) different
Mk for each block, we obtain a 232-collision due to the pigeonhole principle. The
time complexity is at most 7 ·2288 Fk operations, and the success probability is 1.
Step 4 costs exactly 2288 F7-operations if the output distribution of F7(HU

7 , ·) is
perfectly balanced. Step 5 costs 8 · 2256 Gk-operations. Therefore, the total time
complexity of this attack is 7 · 2288 + 2288 + 8 · 2256 ≈ 2291 Fk or Gk-operations,
which is approximately 2290 AURORA-512 operations. At Steps 2 and 3, we
need to prepare 2288 × 512 bits of memory.

Remark on Output Distribution. At Steps 2 and 3, we need only one 232-
collision. Therefore, the attack complexity lessens if the distribution is not bal-
anced. At Step 4, we need one 232-collision that produces T U . If the distribution
is not balanced and T U is produced more frequently than other values, the com-
plexity lessens. However, if TU is not produced as much as other values, 2288

trials may not be enough to produce a desired 232-collision. In such a case, one
solution is simply trying more messages until we obtain a 232-collision. Another
solution is keeping other multi-collisions of HU

7 at Step 3, and start to compute
F7 by replacing the value of HU

7 .

Attack on Randomized Hashing. Second-preimage attacks that work for
any IV can also attack randomized hashing if a hash function has an iterative
structure, e.g., Merkle Damg̊ard. Since our second-preimage attack can work
for any IV, AURORA-512 and -384 are not secure in randomized hashing. The
attack procedure is as follows. Note that this attack finds a 16-block message.

1. The attacker chooses any M and receives K that is chosen without the
attacker’s control. Then, compute a hash value of the randomized message
and obtain T U and T D that are the input for the MFF function.

2. Randomly generate a 1-block value K ′ and a 7-block value M ′
1‖M ′

2‖ · · · ‖M ′
7.

3. Process the randomized 8-block message K ′‖K ′⊕M ′
1‖K ′⊕M ′

2‖ · · · ‖K ′⊕M ′
7,

and obtain H ′U
8 and H ′D

8 that are the output from the MF function.
4. Find an 8-block message M ′

8‖M ′
9‖ · · · ‖M ′

15 that maps (H ′U
8 ‖H ′D

8) to (T U‖
T D), where M ′

15 is a concatenation of 431-bit free value m′
15, 16-bit value

K ′
L(2), and 65-bit padding string for a 15-block and 447-bit message. This

can be done with our second-preimage attack by considering (H ′U
8 ‖H ′D

8) as
the initial value.

5. Output the key K ′ and the message M ′
1‖M ′

2‖ · · · ‖M ′
7‖K ′⊕M ′

8‖K ′⊕M ′
9‖ · · · ‖

�K ′�431 ⊕m′
15, where �K ′�431 represents the 431 left-most bits of K ′.

Cryptanalyses of Narrow-Pipe Mode of Operation 45

The attack complexity is the same as that for the second-preimage attack. Note
that at Step 1 of the procedure, the message M can be randomly given. Hence,
this attack is stronger than breaking randomized hashing.

Remark on Iterated Compression Function Scenario. During the 8-
step computation between two MF computations, AURORA uses 16 different
functions F0, . . . , F7, G0, . . . , G7. It is interesting to observe the scenario where
F0, . . . , F7 are replaced with the same function F and G0, . . . , G7 are replaced
with G. In this scenario, the attack complexity can be reduced by generating
multi-fixed-points.

In this attack, for a given HU
0 , the attacker generates 232 messages denoted

by M (S) that make F (HU
0 , M (S)) = HU

0 . This requires the time complexity of
approximately 2288 F computations. Then, self-concatenation of any choice of
M (S) for 7 blocks guarantees that HU

7 is equal to HU
0 because any M (S) maps

HU
0 to HU

0 during 7 blocks. This enables us to save the complexity of generating
a multi-collision 6 times. The rest of the attack is exactly the same as the one for
standard AURORA-512. Finally, the time complexity becomes 2289(= 2× 2288),
which is better than the attack on standard AURORA-512.

5 Key Recovery Attack on HMAC-AURORA

In this section, we present a full key recovery attack on HMAC-AURORA-512
when 512-bit secret keys are used and the MAC length is 512-bit long. Our
attack requires 2257 queries and the off-line complexity is 2259 AURORA-512
operations. The attack can be carried out with a negligible amount of memory.
This attack does not make any impact on security of AURORA as a SHA-3 can-
didate, however, the complexity is significantly less than that of the exhaustive
search for a 512-bit key. Our attack can also recover the inner-key of HMAC-
AURORA-384 with almost the same complexity as in HMAC-AURORA-512.
This attack does not recover the outer-key of HMAC-AURORA-384, but univer-
sal forgery is possible by combining the inner-key recovery and second-preimage
attacks. Different from collision and second-preimage attacks, this attack does
not use multi-collisions. Hence, this attack reveals another security weakness of
AURORA-512 and -384.

5.1 Full Key Recovery Attack on HMAC-AURORA-512

In this attack, we mainly ask 1-block messages (including padding bits) as
queries. The structure to process a 1-block message in HMAC-AURORA-512
is illustrated in Fig. 4.

Attack Procedure

1. Prepare 2257 different messages that are the same length but shorter than 448
bits so that the length of padded messages does not exceed 1-block. Let M i

be prepared messages. Ask all M i to the oracle, and obtain corresponding
HMACK(M i).

46 Y. Sasaki

Fig. 4. Structure for processing a 1-block message in HMAC-AURORA-512

2. Find message pairs (M j , M j′) in which HMACK(M j) and HMACK(M j′)
are a collision. Due to the computation structure, a pair of messages has the
following five possibilities to be a collision.
Case 1: HU

2 s collide and HD
2 s collide.

Case 2: Case 1 does not occur and H∗
2 s collide.

Case 3: Case 1 and 2 do not occur and hU
2 s collide and hD

2 s collide.
Case 4: Case 1, 2, and 3 do not occur and hU

3 s collide and hD
3 s collide.

Case 5: Case 1, 2, 3, and 4 do not occur and HMAC values collide.
Therefore, we expect to obtain several collisions in this Step.

3. To detect a Case-1 collision in Step 2, ask M j‖Padin‖x and M j′‖Padin‖x
for any x to the oracle, and check whether HMACK(M j‖Padin‖x) and
HMACK(M j′‖Padin‖x) are a collision or not. If they are a collision, (M j ,
M j′) is a desired pair with a negligible error probability.

4. Let (M j1, M j1′) be a colliding pair of Case 1 in Step 2. First, we exhaustively
search for KU

in by computing F1(KU
in, M j1) and F1(KU

in, M j1′) for all 2256

KU
in and check whether the computed values are a collision or not. If they are

a collision, the corresponding KU
in is the correct value. Similarly, we detect

KD
in by computing G1(KD

in, M j1) and G1(KD
in, M j1′) for all 2256 KD

in and
check whether the computed values are a collision or not.

5. For all HMAC collision pairs (M j , M j′) obtained in Step 2, we compute the
values of H∗

2 and H∗′
2 with recovered KU

in and KD
in. If H∗

2 and H∗′
2 are a

collision, we discard that pair. Note, each of the remaining collision pairs are
of Cases 3, 4 or 5 in Step 2.

Cryptanalyses of Narrow-Pipe Mode of Operation 47

6. Take a collision pair (M j2, M j2′) from all remaining collision pairs, and as-
sume this pair is a collision of Case 3. We then recover KU

out and KD
out by

the same method as Step 4. Namely, we exhaustively search for KU
out such

that F1(KU
out, H

∗j2
2) = F1(KU

out, H
∗j2′
2) and KD

out such that G1(KD
out, H

∗j2
2) =

G1(KD
out, H

∗j2′
2).

7. With recovered Kin and Kout, compute HMACK(M) for any M that are
already asked to the oracle, and check whether its HMAC value matches with
the one obtained from the oracle. If matched, that Kout is the correct value.
Otherwise, discard the pair (M j2, M j2′) and go back to Step 6. Repeat the
attack by choosing a different collision pair until Kout is recovered.

Complexity and Success Probability. At Step 1, we ask 2257 queries to the
oracle. At Step 2, the probability that the collision of each case is obtained can
be considered as independent. According to [14, Theorem 3.2], the probability of
obtaining a collision for a log2 N -bit output hash function, with trying θ ·N1/2

different messages is as follows.

1− e−
θ2
2 (5)

Eq. 5 becomes approximately 0.86 when θ = 2. Therefore, we expect to obtain
a collision of each case with a probability of 0.86. To successfully recover Kin

and Kout, we need to obtain a Case-1 and a Case-3 collision. By 2257 queries,
the probability of obtaining these two collisions is (0.86)2 ≈ 0.75. This is higher
than the probability of obtaining a single collision with 2256 queries, which is
approximately 0.39. For simplicity, we assume that five collisions in total, a
single collision in each case, are obtained. At Step 3, we need two queries for
each collision. Hence, if we obtained five collisions, we need eight queries in
the worst case, which is negligible compared to Step 1. At Step 4, we compute
F1 2 · 2256 times to recover KU

in. For each guess of KU
in, the probability that

F1(KU
in, M j1) = F1(KU

in, M j1′) is expected to be 2−256. Hence, we can expect
that only one KU

in is chosen as the correct guess. Similarly we compute G1
2 · 2256 times to recover KD

in. As a result, the time complexity for this Step is
2 · 2256 F1-operations + 2 · 2256 G1-operations ≈ 2257 AURORA-512 operations.
Step 5 costs negligible time. In our assumption, three collisions, one for Cases
3, 4, and 5, will remain. Step 6 costs the same complexity as Step 4, which
is 2257 AURORA-512 operations, and this is repeated three times in the worst
case due to Step 7. Therefore, the time complexity for Steps 6 and 7 is 3 · 2257

AURORA-512 operations. Finally, the total time complexity is 2257 AURORA-
512 operations for Step 4 and 3 ·2257 AURORA-512 operations for Step 6, which
is 2259 AURORA-512 operations.

This attack can be easily carried out if we have a large amount of memory.
Moreover, if we apply the memoryless collision search [15] for Step 2, all Steps
can be carried out with a negligible amount of memory. To apply the memoryless
collision search, we use the HMAC values obtained from the oracle as the next
query. Therefore, Step 1 becomes adaptive. The memoryless collision search of

48 Y. Sasaki

our attack requires a message space of 512 bits1. Hence, we use 2-block messages
as queries. Due to the increment of the message block, at Step 2, a message
pair has six possibilities to be a collision. However, since this collision is filtered
out at Step 3 with two additional queries, this does not impact the total attack
complexity.

5.2 Universal Forgery on HMAC-AURORA-384

Inner Key Recovery Attack. AURORA-384 supports HMAC for a 384-
bit MAC length. The structure for processing a 1-block message in HMAC-
AURORA-384 is illustrated in Fig. 5.

The inner-key recovery procedure for HMAC-AURORA-384 is almost the
same as that of HMAC-AURORA-512. For HMAC-AURORA-384, at Step 2
of the attack procedure, a pair of messages has the following six possibilities to
be a collision.

Case 1: HU
2 s collide and HD

2 s collide.
Case 2: Case 1 does not occur and H∗

2 s collide.
Case 3: Case 1 and 2 do not occur and HT

2 s collide.

�

�

�

�

�

�

�

�

T
runc.

T
runc.

Fig. 5. Structure for processing a 1-block message in HMAC-AURORA-384

1 If the message space is much smaller than 512 bits, for example 447 bits, the ran-
domness for the memoryless collision search will collide after 2223.5 trials and we
cannot make 2257 different queries.

Cryptanalyses of Narrow-Pipe Mode of Operation 49

Case 4: Case 1, 2, and 3 do not occur and hU
2 s collide and hD

2 s collide.
Case 5: Case 1, 2, 3, and 4 do not occur and h∗

2s collide.
Case 6: Case 1, 2, 3, 4, and 5 do not occur and HMAC values collide.

Remember that HT
2 and HMAC values are 384 bits. By asking 2256 queries, we

will obtain a single collision pair of Cases 1, 2, 4, and 5, and 2127(= 2256·2−1−384)
collision pairs of Cases 3 and 6; therefore, we expect to obtain 2128 + 4 collisions
in total. To recover the inner-key, we need to detect the collision pair of Case 1.
At Step 3 of the attack procedure, this can be achieved by asking two additional
queries M j‖padin‖x and M j′‖padin‖x for each collision pair (M j , M j′). The
inner-key recovery procedure at Step 4 is exactly the same, in which we need a
time complexity of 2257 AURORA-384 operations.

Finally the inner-key is recovered with 2257 +2 ·(2128+4) ≈ 2257 queries and a
time complexity of 2257 AURORA-384 operations. This attack can be performed
with a negligible amount of memory.

Universal Forgery by Combining the Inner-Key Recovery and Second-
Preimage Attacks. Although our attack cannot recover the outer-key, we can
perform a universal forgery on HMAC-AURORA-384 by using the recovered
inner-key and applying the second-preimage attack, which is explained in Sec-
tion 4 or by Ferguson and Lucks [9].

In a universal forgery attack, the attacker has access to the oracle which
returns HMACk(·). For any given message M , our attack can find the value of
HMACk(M) without asking M to the oracle. After revealing the inner-key, our
attack requires one query and the same off-line complexity and memory as that
of the second-preimage attack on AURORA-512, which are 2290 AURORA-512
operations and 2288 × 512 bits of memory in Section 4 of this paper and 2291

AURORA-512 operations and 231.5 message blocks of memory in [9]. The attack
procedure is as follows.

Target:
0. Receive M .

Preparation:
1. Recover the inner-key Kin with the attack explained in Section 5.2.

Universal forgery:
2. For the given M , find a second-preimage M ′ s.t. AURORA−384(Kin, M) =

AURORA−384(Kin, M ′) by using the second-preimage attack.
3. Ask M ′ to the oracle, and receive HMACk(M ′).
4. HMACk(M ′) is the HMAC value of M .

6 Discussion and Conclusions

The designers of AURORA showed proof for preimage resistance but did not
show proof for second-preimage resistance. In fact, we showed that AURORA
does not satisfy second-preimage resistance. Therefore, it would be useful to

50 Y. Sasaki

consider the differences of these two properties. We give some intuition by sum-
marizing observations obtained from our attacks.

Assume that a hash function H is a sequence of several independent functions
H1, H2, . . . , Hj . The preimage resistance can be guaranteed if at least one of the
functions is preimage resistant. However, this is not true for second-preimage
resistance. To guarantee second-preimage resistance, all functions should be se-
cure. The security bound of the second-preimage resistance is dependent on the
weakest part of the hash function. AURORA can be regarded as consisting of
two parts; the first 8-block H1 and the MFF function H2. Because the MFF
function is secure, AURORA is secure on preimage resistance. However, because
the first 8 blocks is not secure, AURORA does not satisfy second-preimage re-
sistance.

From this observation, designing hash functions which are provably secure for
second-preimage resistance seems harder than designing hash functions which
are provably secure for preimage resistance.

7 Conclusion

We pointed out the weakness of the DMMD mode of operation. We first presented
a collision attack on AURORA-512. We then presented a second-preimage attacks
on AURORA-512 and -384, then explained that randomized hashing could also be
attacked. Finally, we showed a full key-recovery attack on HMAC-AURORA-512
and a universal forgery attack on HMAC-AURORA-384.

Acknowledgements. I would like to thank Praveen Gauravaram (Department
of Mathematics, DTU) for his comments on randomized hashing and thank
Orr Dunkelman (Ecole normale superieure) for sharing his observations on the
second-preimage attack in iterated compression function scenario. I also thank
anonymous referees for helpful comments.

References

1. U.S. Department of Commerce, National Institute of Standards and Technology:
Federal Register 72(212), Friday (November 2, 2007) Notices,
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

2. Lucks, S.: A failure-friendly design principle for hash functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

3. Iwata, T., Shibutani, K., Shirai, T., Moriai, S., Akishita, T.: AURORA: A Cryp-
tographic Hash Algorithm Family. Initial submission version (October 31, 2008),
AURORA home page,
http://www.sony.net/Products/cryptography/aurora/index.html,
NIST home page:
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

4. U.S. Department of Commerce, National Institute of Standards and Technology:
Randomized Hashing for Digital Signatures (NIST Special Publication 800-106)
(February 2009),
http://csrc.nist.gov/publications/nistpubs/800-106/

NIST-SP-800-106.pdf

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://www.sony.net/Products/cryptography/aurora/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/publications/nistpubs/800-106/NIST-SP-800-106.pdf
http://csrc.nist.gov/publications/nistpubs/800-106/NIST-SP-800-106.pdf

Cryptanalyses of Narrow-Pipe Mode of Operation 51

5. U.S. Department of Commerce, National Institute of Standards and Technology:
The Keyed-Hash Message Authentication Code (HMAC) (Federal Information Pro-
cessing Standards Publication 198) (July 2008),
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

6. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

7. Knudsen, L.R., Mendel, F., Rechberger, C., Thomsen, S.S.: Cryptanalysis on MDC-
2. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 106–120. Springer,
Heidelberg (2009)

8. International Organization for Standardization: ISO/IEC 10118-2:1994, Informa-
tion technology – Security techniques – Hash-functions – Part 2: Hash-functions
using an n-bit block cipher algorithm (1994) (Revised in 2000)

9. Ferguson, N., Lucks, S.: Attacks on AURORA-512 and the Double-Mix
Merkle-Damgaard transform. Cryptology ePrint Archive, Report 2009/113, Ver.
20090311:092718 (2009), http://eprint.iacr.org/2009/113

10. Joux, A., Lucks, S.: Improved generic algorithms for 3-collisions. Cryptology ePrint
Archive, Report 2009/305 (2009), http://eprint.iacr.org/2009/305

11. Gauravaram, P., Knudsen, L.R.: On randomizing hash functions to strengthen
the security of digital signatures. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 88–105. Springer, Heidelberg (2009)

12. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-Hashing for Message Au-
thentication. The Internet Engineering Task Force (1997),
http://www.ietf.org/rfc/rfc2104.txt

13. Suzuki, K., Tonien, D., Kurosawa, K., Toyota, K.: Birthday paradox for multi-
collisions. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences E91-A(1), 39–45 (2008)

14. Vaudenay, S.: A Classical Introduction to Cryptography: Applications for Commu-
nications Security. Springer, Heidelberg (2006)

15. Quisquater, J.J., Delescaille, J.P.: How easy is collision search. New results and
applications to DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp.
408–413. Springer, Heidelberg (1990)

http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://eprint.iacr.org/2009/113
http://eprint.iacr.org/2009/305
http://www.ietf.org/rfc/rfc2104.txt

52 Y. Sasaki

A Relationship between Our Work and [9]

This paper mainly presents three attacks on AURORA-512; a collision attack,
a second-preimage attack and its application to randomized hashing, and a key-
recovery attack on HMAC. Ferguson and Lucks independently found similar
results on collision and second-preimage attacks [9].

Our work on collision and second-preimage attacks was motivated by the
discussion by Ferguson, Lucks, and Iwata during a presentation on AURORA
by Iwata at the first SHA-3 conference on 27th February 2009. We found our
collision attack immediately after Iwata’s presentation and informed it to the
AURORA team that same day. On the other hand, Ferguson and Lucks men-
tioned that “at that point of time, (the concerns) had not been thought through”
[9][Sec. 6]. Hence, we believe that we first found collision attack.

Regarding second-preimage resistance, we found the attack in a few days after
the conference. Hence, the work is independent of Ferguson and Lucks. How-
ever, we heard they independently found the second-preimage attack during the
SHA-3 conference before we found it.

From a technical viewpoint, the attack found by Ferguson and Lucks [9]
and ours are in the same framework. However, we use 8-block multi-collisions,
whereas [9] uses 9-block multi-collisions. Hence, the attack complexity of [9] is
superior to ours in both collision and second-preimage attacks. The evaluation
for the amount of memory is significantly different, in which our attack requires
2288, whereas their attack [9] requires only 231.5. This difference is based on
the assumption on compression functions rather than attack techniques. Fergu-
son and Lucks assumes that compression functions are “balanced”, whereas our
attack also considers the case where the output distribution is very biased.

More on Key Wrapping

Rosario Gennaro and Shai Halevi

IBM T.J. Watson Research Center
Hawthorne, NY 10532, USA

rosario@us.ibm.com, shaih@alum.mit.edu

Abstract. We address the practice of key-wrapping, where one symmet-
ric cryptographic key is used to encrypt another. This practice is used
extensively in key-management architectures, often to create an “adapter
layer” between incompatible legacy systems. Although in principle any
secure encryption scheme can be used for key wrapping, practical con-
straints (which are commonplace when dealing with legacy systems) may
severely limit the possible implementations, sometimes to the point of
ruling out any “secure general-purpose encryption.” It is therefore desir-
able to identify the security requirements that are “really needed” for the
key-wrapping application, and have a large variety of implementations
that satisfy these requirements.

This approach was developed in a work by Rogaway and Shrimpton at
EUROCRYPT 2006. They focused on allowing deterministic encryption,
and defined a notion of deterministic authenticated encryption (DAE),
which roughly formalizes “the strongest security that one can get without
randomness.” Although DAE is weaker than full blown authenticated
encryption, it seems to suffice for the case of key wrapping (since keys
are random and therefore the encryption itself can be deterministic).
Rogaway and Shrimpton also described a mode of operation for block
ciphers (called SIV) that realizes this notion.

We continue in the direction initiated by Rogaway and Shirmpton.
We first observe that the notion of DAE still rules out many practical
and “seemingly secure” implementations. We thus look for even weaker
notions of security that may still suffice. Specifically we consider notions
that mirror the usual security requirements for symmetric encryption,
except that the inputs to be encrypted are random rather than adver-
sarially chosen. These notions are all strictly weaker than DAE, yet we
argue that they suffice for most applications of key wrapping.

As for implementations, we consider the key-wrapping notion that
mirrors authenticated encryption, and investigate a template of Hash-
then-Encrypt (HtE), which seems practically appealing: In this method
the key is first “hashed” into a short nonce, and then the nonce and
key are encrypted using some standard encryption mode. We consider a
wide array of “hash functions”, ranging from a simple XOR to collision-
resistant hashing, and examine what “hash function” can be used with
what encryption mode.

Keywords: Deterministic Encryption, Key Wrapping, Modes of Oper-
ation, Symmetric Encryption.

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 53–70, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

54 R. Gennaro and S. Halevi

1 Introduction

Key-wrapping roughly refers to encrypting one cryptographic key with another.
In this paper we focus on the use of this practice for symmetric encryption,
where the main application is key-management. Key-management architectures
often include a hierarchy (or tree) of keys, with a master key encrypting sev-
eral lower keys, which in turn encrypt even lower keys, and with the leaf keys
used to encrypt “the real data” (cf. [17, Chapter 6]). Another typical case where
key-wrapping is used is retrofitting an encryption system to work with an in-
compatible key-management architecture, for example an AES encryption sys-
tem with a 3DES key-management. In such cases, one can add a “glue layer”
in between the encryption system and the key management architecture, that
generates data keys as expected by the encryption system (e.g., AES keys) and
uses the keys from the key-management architecture to wrap these data keys
(e.g., using 3DES).

A similar situation arises when the encryption system must use its keys in
a restricted manner, but the key-management architecture is not designed to
keep track of these restrictions. For example, one system that we encountered
was using the GCM encryption mode, and needed to comply with the following
requirement from the NIST standard for GCM [9]:

The total number of invocations of the authenticated encryption function
shall not exceed 232, including all IV lengths and all instances of the
authenticated encryption function with the given key.

However, that system was using a key-management architecture that did not
keep track of the number of times that any single key is being served, and hence
was not able to certify that the requirement from above is being met. Here too,
the solution was to add a key-wrapping adapter layer that generates a new GCM
key every time and wraps it with the given key from key-management.

1.1 What Is a Secure Key-Wrapping?

It is clear that any secure encryption scheme is in particular also a secure key-
wrapping scheme. But using secure encryption may be an overkill for the appli-
cation to key-wrapping. In particular, the usage of key-wrapping as an adapter
between legacy systems sometimes imply severe practical limitations on its im-
plementation, perhaps to the point of excluding general-purpose secure encryp-
tion. We therefore seek weaker notions of security that can be implemented even
in cases where standard secure encryption is impossible, but are still strong
enough for the purpose of key-wrapping.

This approach was taken by Rogaway and Shrimpton in [22], where they fo-
cused on allowing deterministic procedures. Specifically, they investigated deter-
ministic authenticated encryption (DAE), which roughly formalizes “the strongest
security that one can get from deterministic procedures.” Although achieving less
than standard authenticated encryption, DAE appears to be sufficient for key-
wrapping: since the key itself is already random, it seems that randomness is not

More on Key Wrapping 55

really needed in the encryption procedure itself. Indeed, Rogaway and Shrimpton
included in the full version of their work an appendix in which they prove that
DAE is good enough for applications that encrypt high entropy plaintext. (See
more discussion in our Appendix A.)

However, even DAE may sometimes be too much to ask for. In this paper we
show several examples of practical “seemingly secure” schemes that nevertheless
fail to meet the notion of DAE. We thus aim lower, looking for even weaker
notions that still suffice for key wrapping. Noting that the difference between key
wrapping and general-purpose encryption is that the plaintext to be encrypted is
a symmetric cryptographic key (and therefore is random), we consider notions of
security that mirror the usual notions for symmetric encryption, except that the
attack model postulates that the plaintext to be encrypted is random rather than
adversarially controlled. Specifically, in Section 2 we present notions that mirror
CPA-security, CCA-security, and integrity of ciphertext. We argue that these
notions suffice for many application of key-wrapping. We also prove formally
that they suffice for the typical application in which a master-key is used to
encrypt data keys, which themselves are used to encrypt real data.

1.2 How to Achieve Secure Key-Wrapping?

Implementing secure key wrapping can be done using standard secure symmet-
ric encryption, perhaps using generic composition techniques such as encrypt-
then-authenticate [5, 6, 14] (which work for key-wrap just as well as for regular
encryption). Another solution was given by Rogaway and Shrimpton [22], who
designed a mode of operation called SIV that they prove to meet the stronger
notion of DAE. However, applications of key wrapping sometimes place restric-
tions on the implementation. (For example, being deterministic, or using a spe-
cific encryption mode because that mode is already implemented in hardware,
etc.) The thrust of this paper is therefore to examine many different plausible
constructions, trying to separate secure constructions from insecure ones.

We focus specifically on an approach for achieving authenticated key-wrap
that we call Hash-then-Encrypt (HtE). In this method, the key is first “hashed”
into a short nonce, and then the nonce and key are encrypted using some stan-
dard encryption mode. There are several reasons to look at this approach: First,
we may be able to get away with using a very simple “hash function” (maybe as
simple as just XOR), which could be very efficient. Perhaps more importantly,
this template could allow re-use of components that is already implemented in
existing systems.

In this work we consider a wide array of “hash functions”, and examine what
“hash function” can be used with what encryption mode. We show that all
the modes that we considered can be turned into a secure authenticated key-
wrapping scheme by using a second-preimage-resistant function for the hash
function, and many of them (except ECB and maybe CBC) can also use universal
hashing. But resisting collisions is not really necessary in most cases. We show
that for all modes except CTR, a simple fixed linear function is already enough to
get some level of security (but this level of security deteriorates quickly with the

56 R. Gennaro and S. Halevi

Table 1. Security of various Hash-then-Encrypt constructions

Encryption/Hash XOR Linear
2nd-preimage

resistant
universal
hashing

CTR broken broken secure secure
ECB broken somewhat� secure broken
CBC broken somewhat� secure ?

masked ECB/CBC somewhat� somewhat� secure secure
XEX secure secure secure secure

�“somewhat” means concrete security that is worse than the birthday bound

length of the data key), and when using masked versions of ECB and CBC then
even a simple XOR of the key blocks suffices to get the same level of security.
Finally, when using a tweakable encryption mode [16] such as XEX [20], a simple
XOR suffices to get security upto the birthday bound, regardless of the length
of the data keys.1 These results are summarized in Table 1.

1.3 Related Work

We already discussed the work of Rogaway and Shrimpton [22] on the key-wrap
problem. A somewhat similar definition to DAE was later formulated by Ama-
natidis et al. in the context of searchable encryption [2]. An and Bellare studied
authentication via redundancy in the context of standard symmetric encryption
[3]. They argued that public redundancy function is not very useful for achieving
authenticated encryption (although work by Gligor and Donescu [10], Jutla [12],
and Rogaway [19] demonstrated that simple public redundancy is sufficient when
using masked CBC or masked ECB for encryption). In our case we show that
even very simple public redundancy is sufficient in most cases. Also Bellare and
Namprempre [5] and Krawczyk [14] deal with generic composition techniques
of encryption and authentication, and some further results were described by
Canetti et al. [6].

Other related work was done in the area of KEM/DEM schemes for pub-
lic key encryption, where different conditions on the KEM and/or DEM parts
were investigated (e.g., [1, 7, 15]). Also, some recent work addressed public-key
deterministic encryption [4]. Finally, we mention that encryption of “random
messages” was also considered in the very different context of “Entropic secu-
rity” by Russell and Wang [23] and Dodis and Smith [8]: in these works they
attempted to provide statistical security for random messages using as little key
material per message as possible.

Organization. Due to space limitations, some of the results and proofs were
deferred to the final version.
1 Observe that the masked modes and XEX are obtained by adding very simple mask-

ing to ECB and CBC modes, so it makes sense to talk about them here, even though
our paper is focused on dealing with legacy systems.

More on Key Wrapping 57

2 Defining Security for Key Wrapping

Below we adapt the usual notions of security for symmetric encryption to the
case of key-wrapping. The only difference between our notions and the standard
ones is that the plaintext is chosen at random rather than being controlled by the
attacker. We focus on the simplest case of fixed input length and no associated
data, extensions and variations are discussed in the long version.

Syntactically, a key-wrapping scheme is identical to an encryption scheme.
Namely, it includes a wrapping procedureWrap that takes plaintext and wrapping-
key and returns ciphertext, and an unwrapping procedure Unwrap that takes ci-
phertext and wrapping key and returns the plaintext (or an error symbol ⊥). We
have the usual validity condition, asserting that for any wrapping key K and plain-
text D it holds that UnwrapK(WrapK(D)) = D. Below we usually refer to the plain-
text as a data key. We insist that wrapping keys (as well as data keys) are uniformly
random bit strings of some given length. Hence key-generation is implicitly speci-
fied as choosing a random key of the appropriate length. We denote the length of
the wrapping key by k, and the length of the plaintext/data-keys by �. (One can
think of k as the security parameter and � is typically also a parameter.)

2.1 Security for Key-Wrap

LetKW = (Wrap, Unwrap) be a key-wrapping scheme. All the security definitions
are based on probabilistic games, involving an attacker A and the procedures
Wrap and Unwrap. Our definitions use the “left-or-right” style. The basic game is
the Random-Plaintext Attack (RPA), mirroring the usual chosen-plaintext attack:
First a wrapping key W is chosen uniformly at random in {0, 1}k, together
with random “challenge bit” b. Then the attacker interacts with the wrapping
procedure as follows: whenever A invokes the wrapping procedure, two data keys
D0, D1 are chosen uniformly at random in {0, 1}�, and A receives both D0, D1,
and also the ciphertext C = WrapW(Db). The attacker A can keep making such
queries, and eventually it halts and outputs a guess for the value of the challenge
bit b. The RPA-advantage of A is defined as

Advkw.rpa
KW (A) def= Pr[ALR$WrapW ⇒ 1|b = 1]− Pr[ALR$WrapW ⇒ 1|b = 0] (1)

where LR$Wrap is the “left-or-right” procedure described above, A ⇒ 1 is the
event where A outputs the bit ‘1’, and the probability is taken over all the
probabilistic choices in this game.

The Chosen-Ciphertext Attack (CCA) game is similar, except that the at-
tacker is also given access to the unwrapping procedure that on query C returns
UnwrapW(C), but the attacker is prevented from querying it on ciphertexts that
were previously returned from the procedure Wrap. Then the CCA-advantage
of A is defined as

Advkw.cca
KW (A) def=

Pr[ALR$WrapW,UnwrapW ⇒ 1|b = 1]− Pr[ALR$WrapW,UnwrapW ⇒ 1|b = 0] (2)

58 R. Gennaro and S. Halevi

The integrity of ciphertext game (INT) is defined similarly to the RPA game,
except that wrapping queries return only one random data key D and the cor-
responding ciphertext C = WrapW(D), and the attacker’s goal is to output any
ciphertext C∗, different than the ones that were returned from the Wrap proce-
dure, that the unwrap procedure does not reject. Namely, the advantage of A is
defined as

Advkw.int
KW (A) def= Pr[A$Wrap ⇒ C∗ : C∗ is “new” and Unwrap(C∗) �=⊥] (3)

where $Wrap is the procedure above that returns both a random data key and
its encryption.

As usual, we extend the advantage notations to talk about the advantage of
“any attacker within the given limited resources”. For example, Adv(enc = q)
means any attacker that makes at most q queries to its encryption oracle. We
will explicitly specify the relevant resources whenever we use this convention. We
informally say that a scheme is “secure” when the advantage of an attacker is no
more than the birthday bound (i.e., O(q2/2n) where q is the resource bound and
n is a relevant security parameter). We say that a scheme is “somewhat secure”
where the advantage is exponentially small in n but larger than the birthday
bound, and otherwise we say that the scheme is “broken.” Clearly, RPA-security
captures the notion of secrecy for the key against eavesdroppers, CCA-security
ensures key secrecy also against active attackers, and the last notion adds explicit
authentication.

Below we refer to a scheme which is both RPA-secure and has integrity of
ciphertext as authenticated key-wrap. Just as for encryption [5, 13], an easy argu-
ment shows that RPA-security and integrity-of-ciphertext imply CCA-security.
It is also easy to see that requiring both is strictly stronger than requiring
CCA-security (e.g., a random permutation is CCA-secure but does not provide
integrity of ciphertext).

In the long version we discuss some extensions of these definitions, e.g., to
handle variable-input-length, associated data, etc.

2.2 Key-Wrapping Is Weaker Than DAE

We note that the security notions from above are all strictly weaker than the
notion of deterministic authenticated encryption (DAE) of Rogaway and Shrimp-
ton [22]: DAE requires that an attacker that interacts with the Wrap and Unwrap
procedures (with some fixed random secret key W) cannot distinguish them from
a dummy Wrap that returns only random bits, and a dummy Unwrap that re-
jects any “new” ciphertext (i.e., any ciphertext that was not returned by the
Wrap procedure). Obviously, when interacting with the dummy procedures we
have Advkw.rpa(A) = Advkw.int(A) = 0 (and therefore also Advkw.cca(A) = 0),
so DAE implies all of our notions. In fact, Rogaway and Shrimpton proved in an
appendix of the long version of [22] that DAE implies a similar (but stronger)
notion of security, for a case where part of the plaintext is random and another
part is chosen by the attacker. See discussion in our Appendix A.

More on Key Wrapping 59

On the other hand, in the DAE game the attacker can query the wrapping
procedure on inputs of its choice, so it is easy to find examples of schemes that
satisfy our notions but are not DAE. (In fact, some of our “provably secure”
constructions from Section 3 below fail to meet the notion of DAE.) One easy
example is a wrapping procedure based on a block cipher, that wraps a one-block
data-key D using the wrapping key W by setting C = 〈EW(D), EW(D + 1)〉. It
is clear that in all the games as described above, an attacker making at most q
queries to the wrapping procedure has advantage at most O(q2/2n), since the
inputs to the block ciphers will be all disjoint except with that probability. On
the other hand, a DAE attacker that can specify the data keys only needs to
encrypt two keys D0, D1 such that D1 = D0 + 1 and check that the first block
in C1 is the same as the second block in C0.

2.3 Key-Wrapping Is Sufficient for Applications

Although weaker than DAE, we claim that our notions are sufficiently strong for
most application of key wrapping. That is, for any application that uses a key-
wrapping procedure to wrap random keys, it is sufficient for the key-wrapping
to satisfy the notions that we defined above. In some sense this statement is
true by definition: our notions ensure that an attacker cannot distinguish the
“real keys” from random unrelated keys, which means that even after seeing
(and perhaps even manipulating) the wrapped keys, they are still just random
secret keys from the attacker’s perspective. Below we demonstrate formally that
secure key-wrapping is sufficient to get secure symmetric encryption.

Specifically, let KW = (Wrap, Unwrap) be a key-wrapping scheme and let
SE = (Enc, Dec) be a symmetric encryption scheme. Consider the composite
symmetric encryption scheme C, whose key space is that of KW and whose
message space is that of SE . On a given key W and plaintext message M , the
composite encryption chooses a new random data-key D from the key-space of
SE , wraps it using W to get C1 ← WrapW(D), uses it to encrypt the message,
getting C2 ← EncD(M), and outputs the composite ciphertext C = (C1, C2).
The composite decryption first recovers D ← UnwrapW(C1) and if D �=⊥ then
computes and returns M ← DecD(C2).

The following lemma asserts that if KW and SE are secure then so is C. More
specifically, if KW is RPA-secure and SE is CPA-secure then the composite is
CPA-secure, if both are CCA-secure then so is the composite, and if both have
integrity of ciphertext and the key-wrapping is RPA-secure then the composite
also has integrity of ciphertext. One point to note is that since the application
uses each data key only once, then the underlying encryption SE need only be
secure under encryption of a single message.

Lemma 1. Let q, q′ be bounds on the number of encryption/wrapping queries
and the number of decryption/unwrapping, respectively. Then

Advenc.cpa
C (enc = q) ≤ Advkw.rpa

KW (wrap = q) + q ·Advenc.cpa
SE (enc = 1),

Advenc.cca
C (enc = q, dec = q′) ≤

60 R. Gennaro and S. Halevi

Advkw.cca
KW (wrap = q, unwrap = q′) + q ·Advenc.cca

SE (enc = 1, dec = q′),

Advenc.int
C (enc = q) ≤

Advkw.rpa
KW (wrap = q) + Advkw.int

KW (wrap = q) + q ·Advenc.int
SE (enc = 1).

The running-time bounds on the various attackers that are hidden in the expres-
sions above are all about equal: they differ by at most the time that it takes to
compute q encryptions/wrappings and q′ decryptions/unwrappings.

3 Authenticated Key-Wrap

As we said before, in principle one can use any authenticated encryption scheme
to achieve authenticated key-wrap. Another “clean solution” for obtaining au-
thenticated key-wrap is wrap-then-authenticate, where one first employs any RPA-
secure scheme for wrapping and then authenticates the ciphertext with any secure
MAC. As for encryption [5, 6, 14], here too one gets RCCA-security from any MAC
and authenticated key-wrap when the MAC is “strongly unforgeable”.2

Yet another option is to use the carefully-engineered SIV mode of Rogaway
and Shrimpton [22]: In SIV the data key D (and associated data A) are first fed
into a pseudorandom function to get a nonce, N = PRFw(D, A), and then the
data key is encrypted with an IV-based encryption scheme (such as CTR mode
or CBC mode, with a key which is independent of the PRF key). Shrimpton
and Rogaway proved that SIV realizes their notion of DAE (and therefore is
also an authenticated key-wrap) for any PRF and any “pseudorandom IV-based
encryption.”3 They suggested implementing the pseudorandom function using a
variant of CBC-MAC, and the encryption using CTR mode.

But as we argued in the introduction, there are still cases where one may
want to use other implementation strategies. Below we analyze a wide range
of solutions that may be appealing in practice, with a goal to determine what
works and what doesn’t.

3.1 Simplified SIV May Not Work

We remind the reader that the main difference between Rogaway and Shrimp-
ton’s notion of DAE and our notions of security is that the attacker in their
model can choose the plaintext, whereas in our model the data-key is always
chosen at random. One could therefore hope that we can get a secure scheme
even if we weaken SIV by replacing the pseudorandom function with a “weak
pseudorandom function.” (Recall that a weak pseudorandom function [18] is a

2 A MAC is “strongly unforgeable” if the attacker cannot even produce a new valid
authentication tag for a previously-authenticated message.

3 A “pseudorandom IV-based encryption” is one where the ciphertext in a chosen-
plaintext attack is indistinguishable from random. Shrimpton and Rogaway called
this notion “conventional IV-based encryption”.

More on Key Wrapping 61

function F , such that no attacker can distinguish F (x) from random as long as
the points x themselves are chosen at random.)

Unfortunately, this intuition fails: For example, for an n-bit block cipher E
and 2n-bit data keys K1, K2, it is easy to see that the function Fw(K1, K2) =
Ew(K1 ⊕ K2) is a weak pseudorandom function (upto the birthday bound).
But implementing a key-wrap using this function and CTR mode is completely
broken: an attacker that sees the ciphertext C0, C1, C2 that corresponds to the
key K1, K2 can trivially obtain a ciphertext for related keys simply by XOR-
ing the same non-zero block ∆ into both C1 and C2, which would be a valid
ciphertext for the key K1 ⊕ ∆, K2 ⊕ ∆. Similarly, using this function F with
CBC encryption is insecure, since if C0, C1, C2, C3 is a valid ciphertext for the
key K1, K2, K3, then C0, C2, C1, C3 is a valid ciphertext for the key K1, K2 ⊕
C1 ⊕ C2, K3 ⊕ C1 ⊕ C2.

3.2 Hash-then-Encrypt

Next we examine the solution template of “Hash-then-Encrypt” (HtE). That is,
the data-key K to be wrapped is first compressed into a one-block nonce using
some “hash functions”, N = H(K), and then the nonce and key together are
encrypted using a standard encryption mode. Here we consider using CTR mode,
ECB, and CBC. (In the long version we also explore the masked variants ECB-X
and CBC-X, and “narrow block tweakable modes” [16] such as Rogaway’s XEX
[20].) Hash-then-Encrypt is similar to SIV when one thinks of E(H(K)) as the
pseudorandom function of SIV. However, below we also consider weak versions
of H for which E(H(K)) is not a PRF.4

For any “hash function” H , given a wrapping key W (that includes a cipher
key w) and a data key K = 〈K[1], . . . , K[�]〉 (where each K[i] is an n-bit block),
compute N = H(K) and C[0] = Ew(N) and then for i = 1, . . . , � set:

HtCTR. C[i] = K[i]⊕Ew(C[0]+ i− 1) where the addition is modulo 2n (say).
HtECB. C[i] = Ew(K[i]).
HtCBC. C[i] = Ew(C[i− 1]⊕K[i]).
HtECB-X. C[i] = Ew(X [i]⊕K[i])⊕X [i], where the X [i]’s are “XOR universal”

and derived from a different part of the wrapping key W.
HtCBC-X. C[i] = Ew(C[i − 1] ⊕ K[i]) ⊕ X [i], where the X [i]’s are “XOR

universal” and derived from a different part of the wrapping key W.
HtXEX. C[i] = Ew(X [i] ⊕ K[i]) ⊕ X [i], where the X [i]’s are computed as

Xi ← αi−1 · Ew(C[0]), with α a primitive element of GF (2n).

The modes HtCTR, HtECB, and HtCBC are depicted in Figures 1, 2, and 3,
respectively. For the “hashing” part we analyze several different functions, both
keyed and un-keyed. For each encryption mode we seek sufficient and/or
necessary conditions on the hash function to get authenticated key-wrap.

4 Another technical difference is that in our case the key used by E in the “PRF part”
is the same as the key used by E in the “encryption part.”

62 R. Gennaro and S. Halevi

DK1 DK2 DK�H

E

E E E

+1 +1 …

Co C1 C2 C�

…

…

N=x0

x1 x2 x�

y0

y1 y2 y�

Fig. 1. HtCTR

DK1 DK2 DK�H

E E

…
Co

C1 C2 C�

…
N

E E

Fig. 2. HtECB

3.3 Hash-then-CTR

When using counter-mode encryption, it turns out that a necessary and sufficient
condition on the hash function H is that it resists second-preimage collisions.
However, we point out that in our case, the function H is allowed to have a
secret key and moreover the attacker does not get to see the hash value, so it is
easier to get second preimage resistance than in the usual settings where H is
public. (In particular, any universal hash function is second preimage resistant
in our setting.) The definition below formalizes the notion of second-preimage-
resistance that we use:

Resisting second-preimage collisions. Let H be a function that can depend on
a secret key and/or on public parameters. The definition below is formalized
for the case of fixed input length, so we have a parameter � that denotes the
input length of H . We also have parameters n, k′, k′′ denoting the output length

More on Key Wrapping 63

DK1 DK2 DK�H

E E

…
Co

C1 C2 C�

…
N

E E

Fig. 3. HtCBC

and the lengths of the secret key and public parameters (if any). The attack
scenario that we consider is where the secret key, public parameters, and the first
preimage are chosen at random, sk ∈R {0, 1}k′

pp ∈R {0, 1}k′′
, X ∈R {0, 1}�,

the attacker is given the public parameters and the first preimage, and its goal
is to find a second preimage that collides with the first under H . We denote the
second-preimage-advantage of an attacker A by

Advspr
H (A) def=

Pr
sk,pp,X

[A(pp, X)⇒ X ′ : X ′ �= X and H(sk, pp, X) = H(sk, pp, X ′)] (4)

The case where the secret key is empty corresponds to the usual notion of second
preimage resistance for public hash functions (of function families). Below we also
denote by αH the probability that two random inputs collide under a random key,
namely αH

def= Prsk,pp,X,X′ [H(sk, pp, X) = H(sk, pp, X ′)]. (Clearly αH ≤ Advspr
H ,

but αH could sometimes be much smaller.)
Next we show that the HtCTR construction is secure in the sense of authen-

ticated key-wrap if and only if the hash function H is second-preimage resistant
according to the notion above.

Lemma 2. Let H be a (potentially keyed) hash function as above with input
length �n and output length n, and consider the HtCTR construction using H
for the hash function and with a truly random permutation for the block cipher.
Then for any bound q on the number of wrapping queries, we have

Advkw.rpa
HtCTR(wrap = q) ≤ 2

(
q

2

)
αH + O(q2�/2n),

Advkw.int
HtCTR(wrap = q) ≤ qAdvspr

H +
(

q

2

)
αH + O(q2�2/2n),

Advkw.int
HtCTR(wrap = 1) ≥ Advspr

H

The running-time bounds on the various attackers that are hidden in the expres-
sions above are all about equal: they differ by at most the time that it takes to
compute q wrappings.

64 R. Gennaro and S. Halevi

Some constructions that are likely to meet the second-preimage resistant condi-
tion that is needed in Lemma 2 include most of the known cryptographic hash
functions such as SHA1 or SHA256. Observe that when used with AES as the
underlying cipher for encryption, we are limited to using only 128 bits of the
output of the hash function. But second-preimage resistance is a very weak re-
quirement, so it is likely that the SHA family meet this notion even if we only
take 128 bits of output. Another solution would be to key these functions (e.g.,
using HMAC).

Another class of practical functions that meet this condition are universal hash
functions (e.g., the polynomial-evaluation hash, or linear hash functions). These
functions can be proven to meet the condition of second-preimage resistance as
formulated in Eq. (4), but we stress that they only meet it if the hashing key is
kept secret (as part of the key-wrapping key).

When the data-key K is a key for a block cipher E, it may even be plausible
to use N = EK(const) as a checksum, where const is some public constant. For
contemporary ciphers like AES, it may be reasonable to assume that the public
function H(K) = AESK(const) is a second-preimage resistant function.

3.4 Hash-then-ECB and Hash-then-CBC

At first glance, one may suspect that the hash-then-encrypt method cannot be
used with ECB encryption, since in ECB the hash value does not influence in
any way the encryption of the data key itself. Below we show that this is not
really the case, indeed ECB and CBC mode behave very similarly in our context
(with one exception that is described below). For example, in Lemma 4 we prove
that even a public linear function can result in an authenticated key-wrap when
combined with ECB or CBC modes.

We begin with examining a composition of second-preimage resistant hash-
ing with ECB and CBC. For both modes, we prove below that using a public
second-preimage-resistant hashing is secure (under an additional mild structural
condition). Perhaps surprisingly, however, it turns out that at least for ECB,
when using a hash function that depends on a secret key, second-preimage re-
sistance (or even universality) is not sufficient. (For CBC we still don’t know if
universal hashing suffices. We suspect that it is, but so far could not prove it.)

univHash-then-ECB may be insecure. We show a hash function with secret key
(from 2n to n bits), which is second-preimage resistant and yet has the property
that for any X, Y, Z, it holds that X = H(Y, Z)⇔ Y = H(X, Z), and we show
how to use this property in an attack (since in ECB we use the same procedure
to encrypt the nonce as we do the key blocks). Consider the following Hash-
then-ECB scheme for wrapping a two-block data key: the hash function uses
a block cipher E and depends on two secret cipher-keys, which we denote by
h1, h2. Specifically, our hash function is defined as

Hh1,h2(Y, Z) = E−1
h1

(Eh1(Y)⊕ Eh2(Z))

It is not hard to see that this function H is second-preimage-resistant as per the
definition from Eq. (4): if we replace the cipher with two random permutations

More on Key Wrapping 65

then we have Advspr
H = 2−n. (In fact, H is nearly a pairwise-independent hash

function in this case.) On the other hand, if X = Hh1,h2(Y, Z) then

Eh1(Hh1,h2(X, Z)) =
= Eh1(X)⊕ Eh2(Z) = (Eh1(Y)⊕ Eh2(Z))⊕ Eh2(Z) = Eh1(Y)

and therefore also Hh1,h2(X, Z) = Y . An attacker on HtECB, after seeing a
ciphertext C = 〈C0, C1, C2〉 can therefore produce the valid forged ciphertext
C∗ = 〈C1, C0, C2〉.

publicSPR-then-ECB/CBC is secure. When H is a public function, on the other
hand, we show that second-preimage-resistance is sufficient, under a mild struc-
tural condition. Specifically we need to assume that for a random input data-key
K, the nonce N = H(K) is also (close to being) a random n-bit block. Below
we call a function with that property well-spread.

Lemma 3. Let H be a public well-spread hash function with input length �n
and output length n, and consider the construction HtECB, using H for the
hash function and with a truly random permutation for the block cipher. Then
for any bound q on the number of wrapping queries, we have

Advkw.rpa
HtECB(wrap = q), Advkw.rpa

HtCBC(wrap = q) ≤
(

q

2

)
(αH + �2/2n)

Advkw.int
HtECB(wrap = q), Advkw.int

HtCBC(wrap = q) ≤ O(q�) ·Advspr
H

The running-time bounds on the various attackers that are hidden in the expres-
sions above are all about equal: they differ by at most the time that it takes to
compute q wrappings.

Proof. (sketch): Below we only prove the bound on Advkw.int
HtECB, the proof for

Advkw.int
HtCBC is similar, and the RPA-bounds are straightforward. Denote the

transcript of a q-query attack against HtECB by

{(Ki, Ci) : Ki = 〈Ki[1], . . . , Ki[�]〉, Ci = 〈Ci[0], Ci[1], . . . , Ci[�]〉}i∈[1,q]

and let C∗ = 〈C∗[0], C∗[1], . . . , C∗[�]〉 be the attempted forged ciphertext. Also
let K∗[j] = E−1(C∗[j]) for j = 0, 1, · · · , � and N∗ = H(K∗[1], . . . , K∗[�]), so C∗

is valid iff N∗ = H(K∗[0]).
We have three types of ciphertext C∗ to consider: either C∗[0] is different from

all the Ci[j]’s, or it is equal to one of the Ci[0]’s, or it is equal to one of the Ci[j]’s
for j > 0. Denote the probability of C∗ of the first type being valid by ε1 and
probability of C∗ of the second type being valid by ε2, and the probability of C∗

of the third type being valid by ε3. We show three collision-finders for H : one
with success probability ε1−O(q�/2n), the second with with success probability
ε2/q, and the third with success probability ε3/q�.

The first collision finder (that needs to work when C∗[0] �= Ci[j] for all i, j)
gets a random input X and computes N = H(X). (Recall that H is well spread

66 R. Gennaro and S. Halevi

and public, so N is nearly uniform and we can compute it.) Now the collision
finder plays the integrity-of-ciphertext game with the attacker, choosing at ran-
dom values for the Ki’s and for the permutation E and its inverse E−1 as needed.
When the attacker outputs C∗, the collision finder sets E−1(C∗[0]) = N , which
is a valid assignment with probability 1 − q�/2n, and returns K∗ as the second
preimage. Note that K∗ is different from X with overwhelming probability, and
the ciphertext C∗ is valid iff indeed H(K∗) = N .

The second collision finder (that needs to work when C∗[0] = Ci[0] for some i)
also begins by getting some random input X and computing N = H(X). Again,
the collision finder plays the integrity-of-ciphertext game with the attacker, but
now it chooses at random a query i and uses X as the data-key Ki. Clearly If
C∗ is a valid forgery and C∗[0] = Ci[0] (which happens with probability ε2/q)
then K∗ is a second preimage of N .

The third collision finder (that needs to work when C∗[0] = Ci[j] for j > 0)
also begins by getting some random input X and computing N = H(X). Again,
the collision finder plays the integrity-of-ciphertext game with the attacker, but
now it chooses at random a query i and a block h, and uses N as the data-key
block Ki[j]. Again, if C∗ is a valid forgery and C∗[0] = Ci[j] (which happens
with probability ε3/q�) then K∗ is a second preimage of N . ��

XOR-then-ECB/CBC is not secure. It turns out that second preimage resistance
is not a necessary condition when using ECB or CBC. Below we show that even
a simple public linear function may be sufficient in this case. However, not every
linear function works, and in particular just taking the XOR of the key blocks
is not secure. Let K[1], K[2] be a two-block data-key, and let C[0], C[1], C[2] be
the ciphertext corresponding to it using XOR-then-ECB key wrapping. Then one
can check that the ciphertext C[1], C[0], C[2] is a valid ciphertext, corresponding
to the data key K[1]⊕K[2], K[2]. The same attack works also for CBC.

Linear-then-ECB/CBC may be secure. Below we show, however, that the “per-
mutation attack” from above is in some sense the only one that matters when
using ECB or CBC with a public linear function. Specifically, we show that using
a public linear function of the form H(K[1], . . . , K[�]) =

∑
j αjK[j] where the

αj ’s are linearly independent, is already enough to get some level of security.
(For example, we can use αj = αj where α is a primitive element in GF (2n).)
However, the security level deteriorates quickly with �: the advantage bound that
we prove is only (q(� + 1))�+1/2n. For the typical case � = 2 this means security
level of O(2n/3), which may be sufficient in many applications. But for longer
keys this construction may not be secure enough to be used in practice.

Lemma 4. Fix some � < n, and let H(K[1], . . . , K[�]) def=
∑�

j=1 αjK[j], where
the αj’s are linear operations over {0, 1}n such that the set {1, α1, . . . , α�} is
linearly independent. (That is, there is no nontrivial 0-1 combination of the α’s
and 1 that sums up to zero.)

More on Key Wrapping 67

Consider the HtECB and HtCBC constructions using H for the hash function,
and with a truly random permutation for the block cipher. Then for any bound q
on the number of wrapping queries, we have

Advkw.rpa
HtECB(wrap = q), Advkw.rpa

HtCBC(wrap = q) ≤ O(q2�2/2n)

Advkw.int
HtECB(wrap = q), Advkw.int

HtCBC(wrap = q) ≤ O((q(� + 1))�+1/2n)

In the long version we also include analysis for the constructions Hash-then-
ECB-X/CBC-X and Hash-then-XEX. Some variations of our constructions for
variable-input-length and associated-data are mentioned in Appendix B.

4 Conclusions

In this work we examined the practice of key-wrapping, and in particular the
implementation template of Hash-then-Encrypt. We argued that this template
may be attractive in practice, especially in cases where the key-wrapping is used
to “glue” together existing incompatible systems. We considered a wide array of
“hash functions” and encryption modes, showed how to break some combinations
and proved security bounds for others. Although none of the combinations that
we considered meets the notion of deterministic authenticated encryption due
to Rogaway and Shrimpton [22], we argued that some of them are still secure
enough for key-wrapping. To make this argument, we measured them against
weaker notions of security, which are arguably sufficient for most applications of
key-wrapping.

We would like to stress again that given the choice, one should prefer more
robust implementations, such as standard authenticated encryption or the SIV
mode of Rogaway and Shrimpton. But in cases where these options are not
available, we believe that our results may provide guidance to what can or cannot
be used safely.

References

1. Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A new frame-
work for hybrid encryption and a new analysis of Kurosawa-Desmedt KEM. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer,
Heidelberg (2005)

2. Amanatidis, G., Boldyreva, A., O’Neill, A.: Provably-secure schemes for basic query
support in outsourced databases. In: Barker, S., Ahn, G.-J. (eds.) Data and Ap-
plications Security 2007. LNCS, vol. 4602, pp. 14–30. Springer, Heidelberg (2007)

3. An, J.H., Bellare, M.: Does encryption with redundancy provide authenticity? In:
Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 512–528. Springer,
Heidelberg (2001)

4. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

68 R. Gennaro and S. Halevi

5. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

6. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidel-
berg (2003)

7. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1), 167–226 (2003); Preliminary version in CRYPTO 1998

8. Dodis, Y., Smith, A.: Entropic security and the encryption of high entropy mes-
sages. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 556–577. Springer,
Heidelberg (2005)

9. Dworkin, M.: Recommendation for block cipher modes of operation: Galois/counter
mode (GCM) and GMAC. NIST Special Publication 800-38D (2007)

10. Gligor, V.D., Donescu, P.: Fast encryption and authentication: XCBC encryption
and XECB authentication modes. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355,
pp. 92–108. Springer, Heidelberg (2002)

11. Halevi, S., Krawczyk, H.: Strengthening digital signatures via randomized hash-
ing. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 41–59. Springer,
Heidelberg (2006)

12. Jutla, C.S.: Encryption modes with almost free message integrity. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg
(2001)

13. Katz, J., Yung, M.: Characterization of security notions for probabilistic private-
key encryption. Journal of Cryptology 19(1), 67–95 (2006); Earlier version in STOC
2000, pp. 245–254

14. Krawczyk, H.: The order of encryption and authentication for protecting commu-
nications (or: How secure is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 310–331. Springer, Heidelberg (2001)

15. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004)

16. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

17. Meyr, C.H., Matyas, S.M.: Cryptography: A New Dimension in Computer Data
Security. John Wiley & Sons, Chichester (1982)

18. Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and
KDCs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327–346.
Springer, Heidelberg (1999)

19. Rogaway, P.: Authenticated-encryption with associated-data. In: ACM Conference
on Computer and Communications Security - ACM-CCS 2002, pp. 98–107. ACM,
New York (2002)

20. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

21. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 348–359. Springer, Heidelberg (2004)

22. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006)

More on Key Wrapping 69

23. Russell, A., Wang, H.: How to fool an unbounded adversary with a short key. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 133–148. Springer,
Heidelberg (2002)

24. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)

A The Rogaway-Shrimpton KIAE Notion

In an appendix to the long version of their paper [22], Rogaway and Shrimpton
describe a notion of key insertion authenticated encryption that bares some simi-
larities to our notion of authenticated key-wrapping: Specifically, they describe a
setting where one applies a randomized encoding procedure to the adversarially-
controlled message before encryption, and the attacker is given the correspond-
ing ciphertext together with the randomness that was used in the encoding. The
KIAE notion roughly requires that such an attacker cannot distinguish these
(ciphertext, randomness) pairs from just random bits.

The crucial difference between our notions and KIAE is that we insist that
the plaintext to be encrypted is completely random and outside of the attacker’s
control, whereas KIAE still allows the attacker to control parts of the plaintext.5

Namely, our authenticated key-wrapping is a degenerate case of KIAE where the
message and authenticated data are both empty. It thus follows that KIAE is
still strictly stronger than all the security notions that we consider in this work.

In terms of usage, KIAE seems rather far removed from the way that key
wrapping is typically used in practice: A typical applications would apply key-
wrapping to a random data key, and then use that data key as a cryptographic
key in some other scheme (say, to encrypt “real data” or a lower-level key in the
hierarchy). The KIAE case seems to be targeted at applications where the data
key (which is used as a cryptographic key elsewhere) is wrapped together with
some “real data” in the same ciphertext. Hence in that notion the attacker gets
to choose this “real data”, while at the same time the data key is assumed to be
random.

B Variations and Extensions

Variable input length. All the constructions and proofs in this section extend also
to the case of variable input-length. (Although for key-wrap this case may not
be very interesting, since symmetric keys are typically all of the same length.)
When using second-preimage resistant hash function, we need to assume that it
is second-preimage resistant even for variable input-length. The proofs for the
linear hash functions need to be extended by considering the cases where the
attempted forged ciphertext is an extension of the previous ciphertexts that were
5 A smaller difference is that Rogaway-Shrimpton consider associated data as an inte-

gral part of their notion, whereas we view it as an optional extension. There are also
some syntactic differences between these notions, but these are of no consequence.

70 R. Gennaro and S. Halevi

obtained from the encryption oracle. For the “somewhat secure” constructions,
the security bound for ECB and CBC will then be roughly O((q�max)�max) where
�max is the largest allowable length of any data-key (expressed in 128-bit blocks).
For the masked version ECB-X and CBC-X, we get O(q�max), where in this case
�max is the longest data-key that was returned by the wrapping oracle.

Input lengths that are not a multiple of the block length are handled by CTR
without a problem. When using other modes, this can be handled by just padding
the key. If one must preserve the length then ciphertext-stealing will also work.

Associated data. To handle associated data A, one must “hash” it together with
the data-key, computing the nonce as N ← H(D, A). But as opposed to the data
key, the associated data A is not random, so it should be modeled as controlled
by the attacker.

For the constructions using second-preimage hashing, we must now make a
stronger assumption on the hash function. Specifically, the function H(D, A)
must meet the condition of “enhanced TCR” as described in [11], when D is
viewed as the hashing seed: Namely an attacker that chooses A and gets a random
D, should not be able to find different A′, D′ such that H(D, A) = H(D′, A′).
Still we note that since H can depend on a secret key then constructing such
functions is easier, and in particular universal hashing satisfy even this stronger
requirement.

For the constructions based on linear hashing, one way to incorporate as-
sociated data is by applying a PRF to it and then computing the nonce as
N = H(PRF (A)|D), where H is the same linear function from above. Practi-
cally speaking, however, if we are already using a PRF then we might as well
compute N = PRF (A|D) (in which case we get back the SIV construction).

Information Theoretically Secure Multi Party
Set Intersection Re-visited

Arpita Patra�, Ashish Choudhary��, and C. Pandu Rangan���

Dept of Computer Science and Engineering
IIT Madras, Chennai India 600036

arpitapatra10@gmail.com, partho 31@yahoo.co.in, prangan55@gmail.com

Abstract. We re-visit the problem of secure multiparty set intersection
(MPSI) in information theoretic settings. In [15], Li et.al have proposed
a protocol for MPSI with n = 3t + 1 parties, that provides informa-
tion theoretic security, when t out of those n parties are corrupted by
an active adversary having unbounded computing power. In [15], the au-
thors have claimed that their protocol takes six rounds of communication
and communicates O(n4m2) field elements, where each party has a set
containing m field elements. However, we show that the round and com-
munication complexity of the protocol in [15] is much more than what is
claimed in [15]. We then propose a novel information theoretically secure
protocol for MPSI with n ≥ 3t+1, which significantly improves the ”ac-
tual” round and communication complexity of the protocol of [15]. Our
protocols employ several tools which are of independent interest.

Keywords: Multiparty Computation, Information Theoretic Security.

1 Introduction

Secure Multiparty Set Intersection (MPSI): Consider a complete synch-
ronous network N , consisting of n parties P = {P1, . . . , Pn}, who are pairwise
connected by a reliable and private channel. The parties do not trust each other
and the distrust in the network is modeled by a centralized adversary At, who
has unbounded computing power and can actively corrupt at most t parties in
Byzantine fashion, where t < n

3 . A Byzantine (or actively) corrupted party is
under complete control ofAt, who may force the party to behave arbitrarily. Any
protocol over N is assumed to operate in a sequence of rounds. In each round, a
party performs some local computation, sends new messages to the other parties
through the private channels and publicly broadcasts some information, receives
the messages that were sent by the other parties in current round on the private
channels and the messages that were publicly broadcast by the other parties in

� Financial Support from Microsoft Research India Acknowledged.
�� Financial Support from Infosys Technology India Acknowledged.

��� Work Supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for
Secure Communication and Computation Sponsored by Department of Information
Technology, Government of India.

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 71–91, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

72 A. Patra, A. Choudhary, and C.P. Rangan

current round. Here broadcast is a primitive, which allows a party to send some
information identically to all other parties. If a physical broadcast channel is
available in the system, then broadcast will take one round. Otherwise, we can
simulate broadcast using a protocol among the parties in P , which will have the
same effect as a physical broadcast channel. Each party Pi has a private data-
set Si, containing m elements from a finite field F, where |F| ≥ n. The goal of
MPSI is to design a protocol that can compute the intersection of these n sets,
satisfying the following properties:

1. Correctness: At the end of the protocol, each honest party correctly gets
the intersection of the n sets, irrespective of the behavior of At and

2. Secrecy: The protocol should not leak any extra information to the cor-
rupted parties, other than what is implied by the input of the corrupted
parties (i.e., the data-sets possessed by corrupted parties) and the final out-
put (i.e., the intersection of all the n data-sets).

MPSI problem is an interesting secure distributed computing problem and has
huge practical applications such as online recommendation services, medical
databases, data mining etc. [10].

Existing Literature on MPSI: The MPSI problem was first studied in cryp-
tographic model in [10, 14], under the assumption that the adversary has bounded
computing power. By representing the data-sets as polynomials, the set intersec-
tion problem is converted into the task of computing the common roots of n
polynomials in [10, 14]. This is done as follows: Let S = {s1, s2, . . . , sm} be a
set of size m, where ∀i, si ∈ F. Now set S can be represented by a polynomial
f(x) of degree-m, where f(x) =

∏m
i=1(x − si) = a0 + a1x + . . . + amxm. It is

obvious that if an element s is a root of f(x), then s is a root of r(x)f(x) too,
where r(x) is a random polynomial of degree-m over F. Now for MPSI, party Pi

represents his set Si, by a degree-m polynomial f (Pi)(x) and supplies f (Pi)(x)
(i.e. its m+1 coefficients), as his input, in a secure manner. Then all the parties
jointly and securely compute

F (x) = (r(1)(x)f (P1)(x) + r(2)(x)f (P2)(x) + . . . + r(n)(x)f (Pn)(x)) (1)

where r(1)(x), . . . r(n)(x) are n secret random polynomials of degree-m over F,
jointly generated by the n parties. Note that F (x) preserves all the common
roots of f (P1)(x), . . . , f (Pn)(x). Every element s ∈ (S1∩S2∩ . . .∩Sn) is a root of
F (x), i.e. F (s) = 0. Hence after computing F (x) in a secure manner, it can be
reconstructed by every party, who locally checks if F (s) = 0 for every s in his
private set. All s’s at which the evaluation of F (x) is zero forms the intersection
set (S1 ∩ S2 ∩ . . . ∩ Sn). In [14], it has been proved formally that F (x) does not
reveal any extra information to the adversary, other than what is deduced from
(S1 ∩ S2 ∩ . . . ∩ Sn) and input set Si of the corrupted parties.

Remark 1. Even though every s ∈ (S1 ∩ S2 ∩ . . . ∩ Sn) is a root of F (x), there
may exist some s′ ∈ F, such that F (s′) = 0, even though s′ �∈ (S1∩S2∩ . . .∩Sn).
This is possible if s′ happens to be the common root of all r(i)(x)’s. However, as
stated in [14], the probability of this event is negligible.

Information Theoretically Secure MPSI Re-visited 73

In [14], the MPSI problem is solved by securely computing F (x), assuming At to
be computationally bounded. In [15], the authors have presented the first informa-
tion theoretically secure protocol for MPSI, assuming At to be computationally
unbounded and n ≥ 3t + 1. Specifically, the authors have shown how to securely
compute F (x) in the presence of a computationally unbounded At. To the best
of our knowledge, this is the only known information theoretically secure MPSI
protocol. Notice that, although not explicitly stated in [15], the MPSI protocol of
[15] involves a negligible error probability in correctness. This is due to the
argument given in Remark 1.

Our Motivation and Contribution: The authors in [15] claimed that their
MPSI protocol takes six rounds and communicates O(n4m2) elements from F.
However, we show that the round and communication complexity of the MPSI
protocol of [15] is much more than what is claimed in [15]. We then propose a
new information theoretically secure protocol for MPSI with n ≥ 3t + 1, which
significantly improves the ”actual” round and communication complexity of the
MPSI protocol given in [15].

2 Analysis of the MPSI Protocol of [15]

In order to securely compute F (x) given in (1) against a computationally un-
bounded At, the MPSI protocol of [15] is divided into three phases. We briefly
recall the steps performed in first two phases, which are the most expensive
phases in terms of round and communication complexity.

1. Input Phase: Here each party represents his private data-set as a polyno-
mial and t-shares the coefficients of the polynomial among the n parties. To do
so, the parties use a two dimensional verifiable secret sharing (VSS). A two di-
mensional VSS [9, 11, 13], ensures that each party (including a corrupted party)
”consistently” and correctly t-shares the coefficients of his polynomial with ev-
erybody. Now, the authors in [15] claimed that this takes two rounds, where in
the first round, each party does the sharing and in the second round verifica-
tion is done by all parties to ensure whether everybody has received correct and
consistent shares (see sec. 4.2 in [15]). However, no estimation is done for the
communication complexity of this phase. Now it is well known that the minimum
number of rounds taken by any VSS protocol with n ≥ 3t + 1 is at least three
[9, 11, 13]. Moreover, the current best three round VSS protocol with n = 3t+1
requires a private communication of O(n3) and broadcast of O(n3) field ele-
ments [9, 13]. Now in the Input Phase of [15], each party executes (m + 1)
VSS’s to share the coefficients of his secret polynomial. In addition, each party
also executes n(m + 1) VSS’s to share the coefficients of n random polynomials,
each of degree m. These polynomials are used to generate secret random poly-
nomials r(1)(x), . . . , r(n)(x). So the total number of VSS done in Input Phase
is O(n2m). Hence, the Input Phase will take at least three rounds, with a
private communication of O(n5m) and broadcast of O(n5m) field elements. If
the broadcast channel is not available, then simulation of broadcast of a single

74 A. Patra, A. Choudhary, and C.P. Rangan

field element requires a private communication of O(n2) field elements and Ω(t)
rounds [16]. Thus, in the absence of broadcast channel, the Input Phase will
require Ω(t) rounds and a communication complexity of O(n7m) field elements.

2. Computation Phase: Given that the coefficients of f (P1)(x), . . . , f (Pn)(x),
r(1)(x), . . . , r(n)(x) are t-shared, in the computation phase, the parties jointly
try to compute F (x) = r(1)(x)f (P1)(x) + r(2)(x)f (P2)(x) + . . . + r(n)(x)f (Pn)(x),
such that the coefficients of F (x) are t-shared. For this, the parties execute a
sequence of steps. But we recall only first two steps, which are crucial in the
communication and round complexity analysis of Computation Phase.

During step 1, the parties locally multiply the shares of the coefficients of
r(i)(x) and f (Pi)(x), for 1 ≤ i ≤ n. This results in 2t-sharing of the coefficients
of f (Pi)(x)r(i)(x) for 1 ≤ i ≤ n. During step 2, each party invokes a re-sharing
protocol and converts the 2t-sharing of the coefficients of f (Pi)(x)r(i)(x) into
t-sharing, for 1 ≤ i ≤ n. The re-sharing protocol enables a party to generate t-
sharing of an element, given the t′-sharing of the same element, where t′ > t. In
[15], the authors have given the reference of [12] for the details of re-sharing pro-
tocol and claimed that the re-sharing and other additional verifications will take
only three rounds, with a private communication of O(n4m2) field elements (see
sec. 4.2 of [15]). However, [12] presents a protocol for general secure Multiparty
Computation (MPC), which uses ”circuit based approach” to securely evaluate
a function. Specifically, the MPC protocol of [12] assumes that the (general)
function to be computed is represented as an arithmetic circuit over F, consist-
ing of addition, multiplication, random, input and output gates. The re-sharing
protocol of [12] was used to evaluate a multiplication gate. But the protocol was
non-robust in the sense that it fails to achieve its goal when at least one of the
parties misbehaves, in which case the protocol outputs a pair of parties such
that at least one of them is corrupted. In fact, the MPC protocol of [12] takes
Ω(t) rounds in the presence of broadcast channel in the system, whereas in the
absence of broadcast channel it will take Ω(t2) rounds. The authors in [15] have
not mentioned what will be the outcome of their protocol if the re-sharing pro-
tocol (whose details they have not given) fails during the computation phase.
In fact, computing t-sharing of the coefficients of F (x) by using the ideas of best
known general MPC protocol with n = 3t+1 [2, 8, 12] will require a communica-
tion complexity of Ω(m2n2) field elements and round complexity of Ω(t) rounds
in the presence of a broadcast channel.

To summarize, a more accurate estimation of the round complexity and com-
munication complexity of the MPSI protocol of [15] in the presence and in the
absence of a physical broadcast channel is as follows:

1. If a physical broadcast channel is available in the system, then the Input
Phase will require a private communication of Ω(n5m) field elements and
broadcast of Ω(n5m) field elements. Moreover, the Computation Phase
will take Ω(t) rounds and communication complexity of Ω(m2n2).

2. If a physical broadcast channel is not available in the system, then the In-
put Phase will require a private communication of Ω(n7m) field elements.

Information Theoretically Secure MPSI Re-visited 75

Moreover, the Computation Phase will take Ω(t2) rounds and communi-
cation complexity of Ω(m2n2) field elements.

3 Our Results

We propose a new, information theoretically secure MPSI protocol with n =
3t + 1, tolerating a computationally unbounded At. Our protocol is based on
the approach of solving the MPSI by securely computing the function given in
(1). Moreover, our protocol involves a negligible error probability in correctness.
However, as mentioned in Remark 1, any protocol for MPSI, based on comput-
ing the function in (1) will involve a negligible error probability. In the following
tables, we compare the round complexity (RC) and communication complexity
(CC) of our MPSI protocol with the estimated RC and CC of the MPSI proto-
col of [15] (as stated in previous section). In the tables, the CC is in terms of
field elements. Moreover, CC/RC with (out) BC stands for communication com-
plexity/round complexity in presence (absence) of physical broadcast channel1.

Reference CC with BC RC with BC
Private Broadcast

[15] Ω(n5m + m2n2) Ω(n5m) Ω(t)
This Paper O((m2n3 + n4 log(|F|)) O(m2n3 + n4 log(|F|)) 58

Reference CC without BC RC without BC
Private

[15] Ω(n7m) Ω(t2)
This Paper O(m2n5 + n6 log(|F|)) O(t)

From the table, we find that our MPSI protocol significantly improves the esti-
mated round and communication complexity of the MPSI protocol of [15].

3.1 Our MPSI Protocol vs. Existing General MPC Protocols

The MPSI problem is a particular variant of general secure MPC problem [20].
Informally, in MPC problem, each party Pi has a private input xi ∈ F. There is a
publicly known function f : Fn → Fn. At the end of computation of f , party Pi

gets yi ∈ F, such that (y1, . . . , yn) = f(x1, . . . , xn). The goal of any general MPC
protocol is to securely compute f , where at the end of the protocol, all parties
(honest) receive correct outputs, irrespective of the behavior of At. Moreover,
the messages seen by At during the protocol, should contain no additional in-
formation about the inputs and outputs of honest parties, other than what can
be computed from the inputs and outputs of corrupted parties. The function f
is represented as an arithmetic circuit over the finite field F, consisting of five
type of gates, namely addition, multiplication, random, input and output. The

1 If a physical broadcast channel is not available, then we use the protocol of [4, 5],
which takes O(t) rounds and private communication of O(n2�) bits to simulate
broadcast of � bit message.

76 A. Patra, A. Choudhary, and C.P. Rangan

number of gates of these types are denoted by cA, cM , cR, cI and cO respectively.
Any general MPC protocol tries to securely evaluate the circuit gate-by-gate,
keeping all the inputs and intermediate results of the circuit as t-shared [3, 18].

The MPSI problem can be solved using any general MPC protocol. However,
since a general MPC protocol does not exploit the nuances and the special
properties of the problem, it is not efficient in general. Moreover, we do not
know how to customize the generic MPC protocols to solve MPSI problem in an
optimal fashion. However, we outline below a general approach and use the same
to estimate the complexity of MPSI protocols, that could have been derived from
general MPC protocols.

Suppose, we try to solve MPSI by computing the function given in (1), us-
ing general MPC protocol. The arithmetic circuit, representing the function in
(1), will roughly require cI = n(m + 1) input gates (every party Pi inputs
(m + 1) coefficients of f (Pi)(x)), cR = n(m + 1) random gates (n polynomials
r(1)(x), . . . , r(n)(x) have n(m + 1) random coefficients), cM = n(m + 1)2 mul-
tiplication gates (computing r(1)(x)f (Pi)(x) requires (m + 1)2 co-efficient mul-
tiplications) and cO = 2m + 1 output gates (the 2m + 1 coefficients of F (x)
should be output). In the following tables we give the round complexity (RC)
and communication complexity (CC) of best known general MPC protocols with
n = 3t + 1, to securely compute (1) with above number of gates.

Reference CC with BC RC with BC
Private Broadcast

[3] O(n5m2) O(n5m2) O(1)
[12] O(n4m2) O(n2) O(n)
[8] O(n2m2) O(n2) O(n)
[2] O(n2m2) O(n3) O(n)

This Paper O(m2n3 + n4 log(|F|)) O(m2n3 + n4 log(|F|)) 58

Reference CC without BC RC without BC
Private

[3] O(n7m2) O(n)
[12] O(n6m2) O(n2)
[8] O(n4m2) O(n2)
[2] O(n4m2 + n5) O(n2)

This Paper O(m2n5 + n6 log(|F|)) O(n)

From the table, we find that our protocol incurs much lesser communication
complexity than the protocol of [3], while keeping round complexity same. But
the protocols of [2, 8, 12] provides slightly better communication complexity than
ours at the cost of increased round complexity. Round complexity and communi-
cation complexity are two important parameters of any distributed protocol. If
we ever hope to practically implement MPSI protocols, then we should look for
a solution, which tries to simultaneously optimize both these parameters. In this
context, our MPSI protocol fits the bill more appropriately, than the protocols
mentioned in the table.

Though our main motive in this paper is to present a clean solution for MPSI,
as a bi-product we have shown that our protocol simultaneously improves both

Information Theoretically Secure MPSI Re-visited 77

communication and round complexity, whereas existing general MPC protocols
(when applied to solve MPSI) improve only one of these two parameters.

3.2 Overview of Our Protocol

As mentioned earlier, our MPSI protocol tries to securely compute the function
given in (1). Our protocol is divided into three phases, namely (a) Input and
Preparation phase; (b) Computation Phase and (c) Output Phase. In the Input and
Preparation phase, the parties t-share the coefficients of their input polynomials.
Moreover, the parties jointly generate the t-sharing of the secret random r(i)(x)
polynomials. To achieve the first task, we design a new protocol called 1DShare,
which further uses a new information checking protocol (ICP) called Multi-Secret-
Multi-Verifier-ICP. The second task is achieved by a sub-protocol called Random.
In the Computation Phase, the parties generate the t-sharing of the coefficients
of r(i)(x)f (i)(x). For this, we use sub-protocol Mult, which is a combination
of few existing ideas from the literature and few new ideas presented in this
paper. Finally, in the Output Phase, the coefficients of F (x) are reconstructed
by each party, by using sub-protocol ReconsPublic. In the next section, we give
the technical details of each of the above mentioned sub-protocols.

4 Tools Used

Here we present a number of sub-protocols each solving a specific task. Finally,
we combine them to design our MPSI protocol. All the sub-protocols that are
presented here are designed to concurrently deal with � ≥ 1 values. In the litera-
ture, the sub-protocols that achieve the same functionality as ours, were designed
to deal with single value at a time. Our sub-protocols, concurrently dealing
with � values, are better in terms of communication complexity, than � concur-
rent executions of the existing sub-protocols working with single value. Thus,
our sub-protocols harness the advantage offered by dealing with multiple values
concurrently (this fact will be more clear in the following sections).

For convenience, we analyze the round and communication complexity of the
sub-protocols assuming the existence of physical broadcast channel in the system.
While presenting the sub-protocols, we assume that all computations and com-
munications are done over a finite field F, where F = GF (2κ) and κ is the error
parameter. Thus, each field element can be represented by log(F) = O(κ) bits.
Moreover, without loss of generality, we assume that n = poly(κ).

4.1 Information Checking Protocol and IC Signatures

Information Checking Protocol (ICP) is a tool for authenticating messages in
the presence of At. The notion of ICP was first introduced by Rabin et.al [18].
As described in [7, 18], an ICP is executed among three parties: a dealer D, an
intermediary INT and a verifier R. The dealer D hands over a secret value s ∈ F
to INT . At a later stage, INT is required to hand over s to R and convince R
that s is indeed the value which INT received from D.

78 A. Patra, A. Choudhary, and C.P. Rangan

The basic definition of ICP involves only a single verifier R and deals with
only one secret s [7, 18]. We extend this notion to multiple verifiers, where all the
n parties in P act as verifiers. Thus our ICP is executed among three entities:
the dealer D ∈ P , an intermediary INT ∈ P and entire set P acting as verifiers.
This will be later helpful in using ICP as a tool in our MPSI protocol. Moreover,
we extend our ICP to deal with multiple secrets, denoted by S, which contains
� ≥ 1 secret values. Thus, our ICP is executed with respect to multiple verifiers
and deals with multiple secrets concurrently. We call our ICP as Multi-Secret-
Multi-Verifier-ICP. Now similar to the ICP defined in [7, 18], our Multi-Secret-
Multi-Verifier-ICP is a sequence of following three protocols:

1. Distr(D, INT,P , S): is initiated by D, who hands over secret S = (s(1) . . .
s(�)), containing � ≥ 1 elements from F to INT . In addition, D hands over some
authentication information to INT and verification information to the
individual parties (verifiers) in P .

2. AuthVal(D, INT,P , S): is initiated by INT to ensure that in RevealVal, secret
S held by INT will be accepted by all (honest) parties (verifiers) in P .

3. RevealVal (D, INT,P , S): is carried out by INT and the verifiers. Here INT
produces S, along with authentication information and individual verifiers
in P produce verification information. Depending upon the values produced
by INT and verifiers, either S is accepted or rejected by all the parties.

The authentication information, along with S, which is held by INT at the
end of AuthVal is called D’s IC signature on S, denoted as ICSig(D, INT, S).
Multi-Secret-Multi-Verifier-ICP satisfies the following properties (which are almost
same as the properties, satisfied by the ICP of [7, 18]):

1. If D and INT are uncorrupted, then S will be accepted in RevealVal by each
honest verifier.

2. If INT is uncorrupted, then at the end of AuthVal, INT knows an S, which
will be accepted in RevealVal by each honest verifier, except with probability
2−Ω(κ).

3. If D is uncorrupted, then during RevealVal, with probability at least 1 −
2−Ω(κ), every S′ �= S produced by a corrupted INT will be rejected by each
honest verifier.

4. If D and INT are uncorrupted, then at the end of AuthVal, At has no
information about S.

We now present our novel protocol Multi-Secret-Multi-Verifier-ICP, with n = 3t+
1. The high level idea of the protocol is as follows: D selects a random polynomial
F (x) of degree � + nκ over F, whose lower order � coefficients are elements of
S. In addition, D also selects a random polynomial R(x) of degree � + nκ over
F, which is independent of F (x). D hands over F (x) and R(x) to INT . D then
associates κ random evaluation points with each verifier Pi and gives the value
of F (x), R(x) at those evaluation points to Pi. This prevents with very high
probability, a corrupted INT , to produce an incorrect F (x) during RevealVal,
without being un-noticed by an honest verifier Pi. This ensures third property

Information Theoretically Secure MPSI Re-visited 79

of ICP. In order to ensure second property, an honest INT has to ensure that
his F (x) is consistent with the evaluation points of the honest verifiers. For
this, INT and the verifiers interact in a zero knowledge fashion and check the
consistency of F (x) and secret evaluation points. To maintain the secrecy of S
during the zero knowledge interaction, INT uses the R(x) polynomial.

Multi-Secret-Multi-Verifier-ICP(D, INT,P , �, S = (s(1), . . . , s(�)))

Distr(D, INT,P , �, S) Round 1: D selects a random polynomial F (x) of degree
� + nκ over F, whose lower order � coefficients are elements of S. In addition, D
selects another random polynomial R(x) of degree � + nκ over F. D also selects nκ
random, non-zero, distinct evaluation points from F, denoted by αi,1, αi,2, . . . , αi,κ,
for 1 ≤ i ≤ n. D privately gives F (x) and R(x) to INT . To verifier Pi ∈ P , D
privately gives (αi,l, ai,l, bi,l), for l = 1, . . . , κ, where ai,l = F (αi,l) and bi,l = R(αi,l).

AuthVal(D, INT,P , �, S) Round 2: INT chooses a random d ∈ F \ {0} and
broadcasts (d, B(x) = F (x) + dR(x)). Parallely, each verifier Pi ∈ P broadcasts a
random subset of indices l1, ..., l κ

2
, the evaluation points αi,l1 , ..., αi,l κ

2
and the values

ai,l1 , ..., ai,l κ
2

and bi,l1 , ..., bi,l κ
2
. Notice that each verifier randomly selects the subset

of indices l1, ..., l κ
2
, independent of other verifiers.

Round 3: D checks if for at least 2t+1 verifiers Pi, it holds that ai,l +dbi,l = B(αi,l),
for all l in the set of random indices broadcasted by Pi in Round 2. If the above
condition is not satisfied for at least 2t+1 verifiers, then D broadcasts the polynomial
F (x).

Local Computation (by each party): if F (x) is broadcasted in Round 3, then
INT replaces the F (x) received from D during Round 1, with the F (x) which is
broadcasted in Round 3. Accordingly, each verifier Pi adjust his ai,l (as received in
Round 1), for l = 1, . . . , κ, such that F (αi,l) = ai,l holds. else say that verifier Pi

accepts INT if ai,l +dbi,l = B(αi,l), for all l in the set of random indices, broadcasted
by Pi in Round 2.

The polynomial F (x) is called D’s IC signature on S = (s(1), . . . , s(�)) given to
INT , which is denoted by ICSig(D, INT, S).

RevealVal(D, INT,P , �, S): (a) Round 4: INT broadcasts F (x); (b) Round 5: Each
verifier Pi ∈ P broadcasts all the evaluation points αi,l which were not broadcasted
during Round 2 and ai,l corresponding those indices.

Local Computation (by each party): Say that verifier Pi re-accepts INT if for
at least one of the newly revealed (by Pi) points, it holds that ai,l = F (αi,l). If
there are at least t + 1 verifiers who re-accepts INT , then accept the lower order �
coefficients of F (x) as S = (s(1), . . . , s(�)). In this case, we say that D’s signature on
S is correct. Else reject F (x) broadcasted by INT and we say that INT has failed
to produce D’s signature.

Lemma 1 (Property 1). If D and INT are honest, then each honest verifier
will accept S at the end of RevealVal, without any error.

Lemma 2 (Property 2). If D is uncorrupted, then at the end of AuthVal,
INT knows an S, which will be accepted in RevealVal by each honest verifier,
except with probability 2−Ω(κ).

80 A. Patra, A. Choudhary, and C.P. Rangan

Proof: If D is honest, then the proof follows from Lemma 1. So we consider the
case when D is corrupted. Now there are two possible sub-cases. If D broadcasts
F (x) during Round 3, then the lemma holds trivially, without any error. So
we consider the case, when D (corrupted) has not broadcasted F (x) during
Round 3. This implies that at least 2t + 1 verifiers have accepted INT during
AuthVal. Now, out of these 2t + 1 verifiers, at least t + 1 are honest. If we can
show that these honest verifiers will re-accept INT during RevealVal with high
probability, then the proof is over. So we now proceed to prove the same.

In order that an honest Pi accept INT during AuthVal but does not re-accept
it during RevealVal, it must be the case that the data (evaluation points and
values) that Pi exposed during AuthVal satisfies the polynomial B(x) that INT
broadcasted during AuthVal, but on the other hand, out of the remaining evalu-
ation points that are used by Pi in RevealVal, none satisfy the polynomial F (x)
produced by INT . That is, for the selected κ

2 indices l1, ..., lκ
2
, it holds that

ai,l + dbi,l = B(αi,l), for all l in the set of indices {l1, ..., lκ
2
} and F (αi,l) �= ai,l

for all l in the remaining set of indices. Notice that INT chooses d indepen-
dently of the values given by D. Also, Pi chooses the κ

2 indices randomly out
of κ indices. So the probability that the above event happens is 1

(κ
κ/2)
≈ 2−Ω(κ),

which is negligible. This shows that with high probability all honest verifiers (at
least t + 1), who have accepted INT during AuthVal, will re-accept INT during
RevealVal, thus proving our lemma. �

Lemma 3 (Property 3). If D is uncorrupted, then during RevealVal, with
probability at least 1 − 2−Ω(κ), every S′ �= S produced by a corrupted INT will
be rejected by each honest verifier.

Proof: If a corrupted INT produces S′ �= S during RevealVal, then it implies
that INT has broadcasted F ′(x) �= F (x) during Round 4. Moreover, while
broadcasting F ′(x), INT will have no information about the κ

2 random secret
evaluation points (which were not broadcasted during AuthVal), corresponding to
each honest verifier. Without knowing the κ

2 secret evaluation points of an honest
verifier, say Pi, the probability that INT will be re-accepted by Pi is at most
�+nk
|F| . Thus, the total probability that any honest verifier will accept INT (who

broadcasts F ′(x) �= F (x)) is (�+nk)(2t+1)
|F| ≈ 2−Ω(k). �

Lemma 4 (Property 4). If D and INT are honest, then At will have no
information about S at the end of AuthVal.

Proof: For simplicity, let the first t verifiers are corrupted. So in the Round 1,
the adversary will know κt points on F (x) and R(x). In Round 2, the adversary
will come to know about additional k

2 (2t+1) points on F (x) and R(x). Moreover,
since D and INT are both honest, 2t + 1 honest verifiers will accept INT and
hence D will not broadcast F (x) during Round 3. So at the end of AuthVal,
adversary will know κt + κ

2 (2t + 1) points on each of F (x) and R(x). However,
since n = 3t+1 and degree of F (x) and R(x) is �+nκ, the adversary will have no
information about the lower order � coefficients of F (x). �

Information Theoretically Secure MPSI Re-visited 81

Lemma 5. Protocol Multi-Secret-Multi-Verifier-ICP takes five rounds and cor-
rectly generates IC signature on � field elements, by privately communicating
O((� + nκ)κ) bits and broadcasting O((� + nκ)κ) bits. The protocol works
correctly, except with error probability of 2−Ω(κ).

Important Notation: In the rest of the paper, whenever we say that D hands
over ICSig(D, INT, S) to INT , we mean that Distr and AuthVal are executed
in the background. Similarly, INT reveals ICSig(D, INT, S) can be interpreted
as INT , along with other parties, invoking RevealVal.

Remark 2 (Comparison with Existing ICP). The current best known ICP is due
to [7], which privately communicates and broadcasts O(nκ) bits, to generate IC
signature on a single secret (though the ICP of [7] is designed with n = 2t+1, the
protocol when executed with n = 3t + 1, will result in the same communication
complexity). Had we executed � times the ICP of [7], dealing with single secret,
the communication complexity would turn out to be O(�nκ) bits (both private
and broadcast). However, the communication complexity of Multi-Secret-Multi-
Verifier-ICP considering all the � secrets concurrently is O((� + nκ)κ) bits (both
private and broadcast). This clearly shows that if � is significantly large, which is
the case in our MPSI protocol, then executing a single instance of Multi-Secret-
Multi-Verifier-ICP, dealing with multiple secrets concurrently, is advantageous
over executing multiple instances of ICP of [7], dealing with single secret. The
same principle holds for other sub-protocols, which are described in the sequel.

4.2 Generating � Length Random Vector

We now present a protocol called RandomVector(P , �), which allows the parties
in P to jointly generate a vector, containing � random elements from F. Fol-
lowing the idea of [8], protocol RandomVector uses Vandermonde Matrix and its
capability to extract randomness.

(r(1), . . . , r(�)) = RandomVector(P , �)

1. Every party Pi ∈ P selects L = � �
2t+1

� random elements r(1,Pi), . . . , r(L,Pi) from
F.

2. Every party Pi ∈ P as a dealer invokes Sharing Phase of four round VSS protocol
of [11] with n ≥ 3t + 1 for sharing each of the values r(1,Pi), . . . , r(L,Pi).

3. For reconstructing the values r(1,Pi), . . . , r(L,Pi) (shared by Pi in Sharing Phase),
the Reconstruction Phase of four round VSS of [11] with n ≥ 3t+1 is invoked for L
times separately. Now corresponding to every Pi ∈ P , the values r(1,Pi), . . . , r(L,Pi)

are public.
4. Now parties compute (r(1,1), . . . , r(1,2t+1)) = (r(1,P1), . . . , r(1,Pn))V ,

(r(2,1), . . . , r(2,2t+1)) = (r(2,P1), . . . , r(2,Pn))V, . . ., (r(L,1), . . . , r(L,2t+1)) =
(r(L,P1), . . . , r(L,Pn))V . Here V is a n × (2t + 1) publicly known Vandermonde
matrix over F.

The values r(1,1), . . . , r(1,2t+1), . . . , r(L,1), . . . , r(L,2t+1) constitute the elements of �
length random vector.

82 A. Patra, A. Choudhary, and C.P. Rangan

Protocol RandomVector also uses the four round perfect VSS (verifiable secret
sharing) protocol of [11] (see Fig 2 of [11]) as black box. The perfect VSS (see
the definition of VSS in Section 2.1 of [11]) with n ≥ 3t+1 parties consists of two
phases, namely Sharing Phase and Reconstruction Phase. The Sharing Phase takes
four rounds and allows a dealer D (which can be any party from the set of n par-
ties) to verifiably share a secret s ∈ F by privately communicating O(n2 log |F|)
bits and broadcasting O(n2 log |F|) bits where |F| ≥ n. The Reconstruction Phase
takes single round and allows all the (honest) parties to reconstruct the secret s
(shared by D in Sharing Phase) by broadcasting O(n log |F|) bits in total. Notice
that, in our context, |F| = 2κ ≥ n. The VSS protocol has an important property
that once D (possibly corrupted) shares a secret s during Sharing Phase, then D
is committed to s. Later, in the Reconstruction Phase, irrespective of the behavior
of the corrupted parties, the same s will be reconstructed. Thus a corrupted D
will not be able to change his commitment from s to any other value, with the
help of corrupted parties, during Reconstruction Phase.

Lemma 6. Protocol RandomVector generates � length random vector in five
rounds and privately communicates O(�n2κ) bits and broadcasts O(�n2κ) bits.

4.3 Unconditional Verifiable Secret Sharing and Reconstruction

Definition 1 (d-1D-sharing [1]). : We say that a secret s is d-1D-shared, if
there exists a degree-d polynomial f(x), with f(0) = s, such that each (honest)
Pi in P holds the ith share f(i) = si of s. The vector (s1, s2, . . . , sn) of shares is
called a d-sharing of s and is denoted as [s]d. We may skip the subscript d when
it is clear from the context.

If s is d-1D-shared by D ∈ P , then we denote it as [s]Dd . In the sequel, we
describe a new protocol 1DShare, which allows a dealer D ∈ P to t-1D-share �
secret values s(1), . . . , s(�), where � ≥ 1, with very high probability. If D behaves
correctly during the protocol, then each honest Pi ∈ P will hold ith shares
s
(1)
i , . . . , s

(�)
i , of s(1), . . . , s(�) (respectively), at the end of the protocol.

Notice that the desired sharing for each s(i) (separately) can be produced using
a perfect (i.e., without any error) VSS protocol with n ≥ 3t + 1 [9, 11, 13].
However, this will involve more communication complexity than 1DShare which
performs the same task with less communication complexity (but with a negligible
error probability). 1DShare achieves this by incorporating one of the ideas used
in [8] and using Multi-Secret-Multi-Verifier-ICP as building block.

The goal of 1DShare is as follows: (a) If D is honest, then the protocol
generates [s(1)]t, . . . , [s(�)]t with very high probability, such that the secrets
s(1), . . . , s(�) remain information theoretically secure from At. (b) If D is cor-
rupted and has not generated t-1D-sharing of secrets, then with high prob-
ability, D will be detected as corrupted during a public verification process.
Moreover, every honest party accepts a pre-defined t-1D-sharing of � 1’s, namely
[1]t, [1]t, . . . , [1]t (� times), on behalf of D.

Informally, the protocol works as follows: D chooses �+1 random polynomials
f (0)(x), . . . , f (�)(x) over F, each of degree t, such that f (0)(0) = r and f (l)(0) =

Information Theoretically Secure MPSI Re-visited 83

s(l) for l = 1, . . . , �. Here r is a random non-zero element from F. D then hands
over his IC signature on ith points of f (l)(x) polynomials concurrently to party
Pi. After this, the parties jointly produce a non-zero random value z. Now D
is asked to broadcast a linear combination of the � + 1 polynomials, where the
scalars of the linear combination are function of z. At the same time, each party
Pi is asked to broadcast his corresponding linear combination of points. Ideally,
the linear combination of points, broadcasted by the individual parties, should lie
on the linear combination of the polynomial broadcasted by D. If this happens,
then with very high probability, D has correctly t-1D-shared each s(l). Otherwise,
there is a party, say Pi, for which the above condition is not satisfied. In this case,
Pi is asked to reveal D’s signature on the ith points of f (l)(x) polynomials that
he has received from D. In case Pi is able to correctly produce the signature, D is
detected to be corrupted and the protocol terminates, with each party assuming
predefined t-1D-sharing of � 1’s, namely [1]t, [1]t, . . . , [1]t, on behalf of D.

([s(1)]Dt , . . . , [s(�)]Dt) = 1DShare(D,P , �, s(1), s(2), . . . , s(�))

1. For l = 1, . . . , �, D picks a random polynomial f (l)(x) over F of degree-t, with
f (l)(0) = s(l). D also chooses a random polynomial f (0)(x) of degree-t with
f (0)(0) = r where r is a random, non-zero element from F. For i = 1, . . . , n,
let Si = (ri, s

(1)
i , s

(2)
i , . . . , s

(�)
i), where ri = f (0)(i) and s

(l)
i = f (l)(i). D hands over

ICSig(D, Pi, Si) to party Pi.
2. All the parties in P invoke RandomVector(P , 1) to generate a non-zero random

value z ∈ F.
3. D broadcasts the polynomial f(x) = f (0)(x) +

∑�
l=1 f (l)(x)zl =

∑�
l=0 f (l)(x)zl.

Parallely, every party Pi computes and broadcasts yi = ri +
∑�

l=1 s
(l)
i zl.

4. If the polynomial f(x) broadcasted by D is of degree more than t, then each party
agrees that D is corrupted and outputs t-1D-sharing of � 1’s i.e [1]t, [1]t, . . . , [1]t.
The protocol terminates here.

5. Every party checks whether f(i) ?= yi for all i = 1, . . . , n. If yes then every-
body accepts the t-1D-sharings [s(1)]t, [s(2)]t, . . . , [s(�)]t and the protocol termi-
nates. Otherwise, let Pi ∈ P , such that f(i) �= yi. In this case, Pi reveals
ICSig(D, Pi, Si). If Pi succeeds to prove D’s signature on Si = (ri, s

(1)
i , . . . , s

(�)
i)

and f(i) �= ri +
∑�

l=1 s
(l)
i zl, then each party agrees that D is corrupted and

outputs t-1D-sharing of � 1’s i.e [1]t, [1]t, . . . , [1]t (� times) and the protocol ter-
minates here. We say that Pi has raised a valid complaint against D. But if the
signature is invalid then ignore Pi’s complaint against D and everybody accepts
[s(1)]t, . . . , [s(�)]t.

Lemma 7. In protocol 1DShare, if D is honest, then t-1D-sharing of s(1), . . . ,
s(�) are generated, except with error probability of 2−Ω(κ). Moreover, At will
have no information about the secrets. On the other hand, if D is corrupted and
any of the values r, s(1), . . . , s(�) is not t-1D-shared, then D will be caught, ex-
cept with error probability of 2−Ω(κ). The protocol takes eleven rounds, privately
communicates O((�n + n2κ)κ) bits and broadcasts O((�n + n2κ)κ) bits.

Proof: The communication and round complexity can be checked easily by
inspection. We now prove the correctness. If D is honest, then f(i) = yi will

84 A. Patra, A. Choudhary, and C.P. Rangan

hold, corresponding to every honest Pi. However, a corrupted party Pi may
broadcast incorrect y′

i �= yi , such that y′
i �= f(i). Moreover, Pi can forge honest

D’s IC signature on corresponding incorrect r′i �= ri or/and s
′(j)
i �= s

(j)
i , for

j = 1 . . . �. In this case, everybody will reject the sharing done by D. However,
from properties of Multi-Secret-Multi-Verifier-ICP protocol, this can happen with
probability 2−Ω(κ). The secrecy of s(1), s(2), . . . , s(�) for an honest D, follows from
the fact that At will have only t shares for each s(i), 1 ≤ i ≤ n and random r. In
addition, the value f(0) is blinded with a random value r, chosen by D. Thus,
At will have no information about the secrets.

Next, we consider the case, when D is corrupted and the sharing of at least
one of the values r, s(1), s(2), . . . , s(�) is not a correct t-1D-sharing, i.e., the shares
of the honest parties lie on a polynomial of degree higher than t. Let H be the
set of honest parties in P . Moreover, let h0(x), . . . , h�(x) denote the minimum
degree polynomial, defined by the points on f (0)(x), . . . , f (�)(x) respectively, held
by the parties in H . Then according to the condition, degree of at least one of the
polynomials h0(x), . . . , h�(x) is more than t. Moreover, degree of h0(x), . . . , h�(x)
can be at most |H |−1. This is because |H | distinct points can define a polynomial
of degree at most |H | − 1. Now the value yi broadcasted by an honest Pi can be
defined as yi =

∑�
j=0 zjhj(i).

We next claim that if degree of at least one of h0(x), . . . , h�(x) is more than t,
then the minimum degree polynomial, say hmin(x), defined by yi’s, correspond-
ing to Pi ∈ H will be of degree more than t, with very high probability. This will
clearly imply that f(x) �= hmin(x) and hence yi �= f(i), for at least one Pi ∈ H .

So we proceed to prove that hmin(x) will be of degree more than t, when one
of h0(x), . . . , h�(x) has degree more than t. For this, we show the following:

1. We first show that hdef (x) = Σ�
j=0z

jhj(x) will of degree more than t with
very high probability, if one of h0(x), . . . , h�(x) has degree more than t.

2. We then show that hmin(x) = hdef (x), implying that hmin(x) will be of
degree more than t with very high probability

The first claim is easy to prove. If one of h0(x), . . . , h�(x) has degree more than
t, then the linear combination of these polynomials, namely hdef (x), can be
written as hdef (x) = hdef

1 (x)+hdef
2 (x). Here hdef

1 (x) contains all the coefficients
of hdef (x), having exponent more than t, while hdef

2 (x) contains all the remaining
coefficients of hdef (x). Now hdef (x) will be of degree-t, if hdef

1 (x) = 0, which can
happen for at most � possible values of z. Since z is generated randomly from
F \ {0}, independent of h0(x), . . . , h�(x), the probability that hdef

1 (x) = 0 is at
most �

|F|−1 ≈ 2−Ω(κ). This implies that hdef (x) will be of degree tm > t. Notice
that each yi broadcasted by an honest Pi, will lie on hdef (x).

Now we will show that hmin(x) = hdef (x) and thus hmin(x) has degree at
least tm, which is greater than t. So consider the difference polynomial dp(x) =
hdef (x)−hmin(x). Clearly, dp(x) = 0, for all x = i, where Pi ∈ H . Thus dp(x) will
have at least |H | roots. On the other hand, maximum degree of dp(x) could be
tm, which is at most |H |−1. These two facts imply that dp(x) is zero polynomial,
implying that hdef (x) = hmin(x) and thus hmin(x) has degree tm > t.

Information Theoretically Secure MPSI Re-visited 85

Since hmin(x) has degree more than t, it implies that hmin(x) �= f(x) (which
is of degree-t and broadcasted by D). This further imply that f(i) �= yi, for at
least one Pi ∈ H . So Pi will raise a valid complaint against D by revealing
ICSig(D, Pi, Si), where Si = (ri, s

(1)
i , . . . , s

(�)
i). Since Pi is honest, the signature

will be revealed successfully, except with an error probability of 2−Ω(κ) (this
follows from the properties of Multi-Secret-Multi-Verifier-ICP). Moreover, every-
body will publicly verify that f(i) �= ri +

∑�
l=1 s

(l)
i zl and hence will catch the

corrupted D with very high probability. �

Reconstruction of t-1D-Sharing: We now present a protocol called Recon-
sPublic, that reconstructs a secret s, given [s]t. In the protocol, every party broad-
casts his share of s. Now out of these n shares, at most t could be corrupted.
But since n = 3t+1, by applying Reed-Solomon error correction algorithm (e.g.
Berlekamp Welch Algorithm [17]), s can be recovered.

s = ReconsPublic(P , [s]t)

Each party Pi broadcasts his share si of s. The parties apply error correction to
reconstruct s from the n shares.

Lemma 8. ReconsPublic takes one round and broadcasts O(nκ) bits.

Important Notation: We now define few notations which are used in subse-
quent sections (these notations are also commonly used in the literature). By say-
ing that parties in P compute (locally) ([y(1)]d, . . . , [y(�′)]d) = ϕ([x(1)]d, . . . ,
[x(�)]d) (for any function ϕ : F� → F�′), we mean that each Pi computes (y(1)

i , . . . ,

y
(�′)
i) = ϕ(x(1)

i , . . . , x
(�)
i). Note that applying an affine (linear) function ϕ to a

number of d-1D-sharings, we get d-1D-sharings of the outputs. So by adding two
d-1D-sharings of secrets, we get d-1D-sharing of the sum of the secrets, i.e. [a]d +
[b]d = [a + b]d. However, by multiplying two d-1D-sharings of secrets, we get
2d-1D-sharing of the product of the secrets, i.e. [a]d[b]d = [ab]2d. ♦

4.4 Upgrading t-1D-Sharing to t-2D-Sharing

Definition 2. A value s is d-2D-shared among the parties in P, if there exists
degree-d polynomials f, f1, f2 . . . , fn with f(0) = s and for i = 1, . . . , n, f i(0) =
f(i). Moreover, every (honest) party Pi ∈ P holds a share si = f(i) of s, the
polynomial f i(x) for sharing si and share-share sji = f j(i) for the share sj of
every other (honest) party Pj. We denote d-2D-sharing of s as [[s]]d.

If a secret s is d-2D-shared by a party D ∈ P , then we denote it as [[s]]Dd .
Notice that if s is d-2D-shared, then its ith share si is d-1D-shared. We now
present a new protocol, called Upgrade1Dto2D for upgrading t-1D-sharing to t-
2D-sharing. Specifically, given t-1D-sharing of � secrets, namely [s(1)]t, . . . , [s(�)]t,
Upgrade1Dto2D, outputs t-2D-sharing [[s(1)]]t, [[s(2)]]t, . . . , [[s(�)]]t, except with
probability of 2−Ω(κ). Moreover, At learns nothing about the secrets during
Upgrade1Dto2D. Furthermore, if a party tries to cheat during the protocol, then
with very high probability, he will be caught.

86 A. Patra, A. Choudhary, and C.P. Rangan

Lemma 9. Protocol Upgrade1Dto2D upgrades t-1D-sharing of � secrets to t-2D-
sharing, except with negligible error probability. The protocol consumes twenty
eight rounds, privately communicates O((�n2+n3κ)κ) bits and broadcasts O((�n2

+ n3κ)κ) bits. Moreover, At learns nothing about the secrets.

Proof: The communication and round complexity of the protocol is easy to
follow. We now prove the correctness. Provided � t-1D-sharing [s(1)]t, [s(2)]t, . . . ,
[s(�)]t, every honest party Pi correctly t-1D-shares his shares s

(0)
i , s

(1)
i , . . . , s

(�)
i .

Now for every honest party Ph, the value sh = s
(0)
h +

∑�
l=1 r(l)s

(l)
h will be

reconstructed correctly, where sh is the hth share of s = s(0) +
∑�

l=1 r(l)s(l).

But a corrupted party Pc may share s
(0)
c , s

(1)
c , . . . , s

(�)
c with s

(l)
c �= s

(l)
c for some

l ∈ {0, 1, . . . , �}. In this case with very high probability sc = s
(0)
c +

∑�
l=1 r(l)s

(l)
c

will not be equal to sc (which is the actual cth share of s) as the � length vector
(r(1), . . . , r(�)) is chosen uniformly at random. Hence Reed-Solomon Error correc-
tion algorithm will point s̄c as a corrupted share, in which case Pc will be caught.
It is easy to see that at any stage of the protocol,At learns not more than t shares
for each s(l), 1 ≤ l ≤ �. Hence all the secrets will be secure. �

([[s(1)]]t, [[s(2)]]t, . . . , [[s(�)]]t) = Upgrade1Dto2D(P , �, [s(1)]t, [s(2)]t, . . . , [s(�)]t)

1. Each Pi ∈ P invokes 1DShare(Pi,P , 1, s(0,Pi)) to generate [s(0,Pi)]t, where s(0,Pi) ∈
F \ {0} is a random value.

2. The parties in P computes [s(0)]t =
∑n

j=1[s
(0,Pj)]t.

3. Now every Pi invokes 1DShare(Pi,P , � + 1, s
(0)
i , s

(1)
i , . . . , s

(�)
i) to generate

[s(0)
i]t, [s

(1)
i]t, . . . , [s

(�)
i]t, where s

(0)
i , s

(1)
i , . . . , s

(�)
i are the ith shares of secrets

s(0), s(1), . . . , s(�) respectively.
4. Now to detect the parties Pk (at most t), who have generated

[s(0)
k]t, [s

(1)
k]t, . . . , [s

(�)
k]t such that s

(l)
k �= s

(l)
k for some l ∈ {0, 1, . . . , �}, the

parties in P jointly generate an � length random vector (r(1), . . . , r(�)) by
invoking Protocol RandomVector(P , �). Now all the parties publicly reconstruct
si = s

(0)
i +

∑�
l=1 r(l)s

(l)
i and s = s(0) +

∑�
l=1 r(l)s(l) by executing following steps:

(a) The parties in P compute [si]t = [s(0)
i]t +

∑�
l=1 r(l)[s(l)

i]t and invoke
ReconsPublic(P , [si]t) to publicly reconstruct si, for i = 1, . . . , n.

(b) Every party apply Reed-Solomon error correction algorithm (e.g. Berlekamp
Welch Algorithm [17]) to s1, s2, . . . , sn, to recover s. Reed-Solomon error cor-
rection algorithm also points out the corrupted shares. Hence if si is pointed
as a corrupted share, then [s(0)

i]t, [s
(1)
i]t, . . . , [s

(�)
i]t are ignored by every party.

5. Output [[s(1)]]t, [[s(2)]]t, . . . , [[s(�)]]t.

Remark 3 (Comparison with Existing Protocols). In [1], the authors have given
a protocol to upgrade d-1D-Sharing to d-2D-Sharing, where n = 2t+1. However,
the protocol is non-robust. That is, if all the n parties behave honestly, then the
protocol will perform the upgradation. Otherwise, the protocol will fail to do the
upgradation, but will output a pair of parties, of which at least one is corrupted.

Information Theoretically Secure MPSI Re-visited 87

4.5 Proving c = ab

Given t-1D-sharing of � pairs, ([a(1)]Dt , [b(1)]Dt), . . . , ([a(�)]Dt , [b(�)]Dt), let c(l) =
a(l)b(l) for l = 1, . . . , �. D ∈ P now wants to generate [c(1)]Dt , . . . , [c(�)]Dt such that
the (honest) parties in P know that the shared c(l) values satisfy c(l) = a(l)b(l)

for l = 1, . . . , �. If D is honest, then during this process all a(l), b(l) and c(l)

values should remain secure.
We propose a protocol ProveCeqAB to achieve the above task. The idea of the

protocol is inspired from [7], where a protocol for the same purpose is proposed,
with a single pair of values, namely (a, b). Our protocol concurrently deals with
� pairs, which leads to a gain in communication complexity. Our protocol uses
1DShare as a building block.

([c(1)]Dt , . . . , [c(�)]Dt) = ProveCeqAB(D,P , �, [a(1)]Dt , [b(1)]Dt , . . . , [a(�)]Dt , [b(�)]Dt)

1. D chooses a random non-zero � length tuple (β(1), . . . , β(�)) ∈ F�. D
then invokes 1DShare(D,P , �, c(1), . . . , c(�)), 1DShare(D,P , �, β(1), . . . , β(�)) and
1DShare(D,P , �, b(1)β(1), . . . , b(�)β(�)) to verifiably t-1D-share (c(1), . . . , c(�)),
(β(1), . . . , β(�)) and (b(1)β(1), . . . , b(�)β(�)) respectively. If in any of these 1DShare
protocol, D is found to be corrupted, then every party conclude that D fails in
this protocol and hence this protocol terminates.

2. Now all the parties in P invoke RandomVector(P , 1) to generate a random value
r ∈ F.

3. For every l ∈ {1, . . . , �}, all parties locally compute [Y (l)]t = (r[a(l)]t + [β(l)]t)
and invoke ReconsPublic(P , [Y (l)]t) to reconstruct Y (l). Parallely, D broadcasts
the values Z(1) = (ra(1) + β(1)), . . . , Z(�) = (ra(�) + β(�)). All the parties check
whether Z(l) ?= Y (l). If not then every party concludes that D fails in this protocol
and hence the protocol terminates.

4. For every l ∈ {1, . . . , �}, the parties locally compute [X(l)]t =(
Y (l)[b(l)]t − [b(l)β(l)]t − r[c(l)]t

)
and invoke ReconsPublic(P , [X(l)]t) to recon-

struct X(l). The parties then check X(l) ?= 0. If not then every party concludes
that D fails in this protocol and hence the protocol terminates. Otherwise D has
proved that c(l) = a(l)b(l).

Lemma 10. In protocol ProveCeqAB, if D does not fail, then (a(l), b(l)), c(l)

satisfies c(l) = a(l)b(l) for l = 1, . . . , �, except with negligible error probability.
ProveCeqAB takes eighteen rounds, privately communicates O((�n + n2κ)κ) bits
and broadcasts O((�n + n2κ)κ) bits. Moreover, if D is honest then At learns no
information about a(l), b(l) and c(l), for 1 ≤ l ≤ �.

4.6 Multiplication

Given t-1D-sharing of � pairs of secrets, say ([a(1)]t, [b(1)]t), . . . , ([a(�)]t, [b(�)]t),
we now present a protocol called Mult which allows the parties to compute t-1D-
sharing [c(1)]t, . . . , [c(�)]t such that c(l) = a(l)b(l) for l = 1, . . . , �. Our protocol is
motivated from the protocol of [7], which deals with a single pair of t-1D-sharing.
However, our protocol concurrently deals with � pairs of t-1D-sharing. This leads
to a gain in communication complexity.

88 A. Patra, A. Choudhary, and C.P. Rangan

Lemma 11. Except with negligible error probability, Mult produces [c(1)]t, . . . ,
c(�)]t from � pairs ([a(1)]t, [b(1)]t), . . . , ([a(�)]t, [b(�)]t). The protocol takes 46
rounds, privately communicates O((�n2 + n3κ)κ) bits and broadcasts O((�n2 +
n3κ)κ) bits. Moreover, At learns nothing about c(l), a(l) and b(l), for 1 ≤ l ≤ �.

([c(1)]t, . . . , [c(�)]t) = Mult(P , �, ([a(1)]t, [b(1)]t), . . . , ([a(�)]t, [b(�)]t))

1. All the parties invoke Upgrade1Dto2D(P , �, [a(1)]t, . . . , [a(�)]t) and
Upgrade1Dto2D(P , �, [b(1)]t, . . . , [b(�)]t) to upgrade t-1D-sharings of 2� val-
ues to t-2D-sharings, i.e., to generate [[a(1)]]t, . . . , [[a(�)]]t and [[b(1)]]t, . . . , [[b(�)]]t
respectively.

2. Let (a(l)
1 , . . . , a

(l)
n) and (b(l)

1 , . . . , b
(l)
n) denote the 1D sharings of a(l) and b(l) re-

spectively. Since a(l) and b(l) is t-2D-shared, their ith shares a
(l)
i and b

(l)
i are

t-1D-shared (see the definition of t-2D-sharing). The parties in P locally compute
[c(l)]2t = [a(l)]t[b(l)]t for l = 1, . . . , � where [c(l)]2t = (a(l)

1 b
(l)
1 , . . . , a

(l)
n b

(l)
n).

3. Each party Pi has in his possession ith share of [c(l)]2t i.e. a
(l)
i b

(l)
i for l =

1, . . . , � where both a
(l)
i and b

(l)
i are already t-1D-shared by Pi during Pro-

tocol Upgrade1Dto2D executed in step 1 of this protocol. Now each party
Pi invokes ProveCeqAB(Pi,P , �, [a(1)

i]Pi
t , [b(1)

i]Pi
t , . . . , [a(�)

i]Pi
t , [b(�)

i]Pi
t) to produce

[c(1)
i]Pi

t , . . . , [c(�)
i]Pi

t such that c
(l)
i = a

(l)
i b

(l)
i for l = 1, . . . , �. At most t (corrupted)

parties may fail to execute ProveCeqAB. For simplicity assume first 2t + 1 parties
are successful in executing ProveCeqAB.

4. Now for each l ∈ {1, . . . , �}, first (2t + 1) parties have produced
[c(l)

1]P1
t , . . . , [c(l)

(2t+1)]
P(2t+1)
t . So for l = 1, . . . , �, parties in P compute [c(l)]t as

follows: [c(l)]t = r1[c
(l)
1]P1

t + . . . + r2t+1[c
(l)
(2t+1)]

P(2t+1)
t . Here ri =

∏n
j=1,j �=i

−j
i−j

.
The vector (r1, . . . , r2t+1) is called recombination vector [6] which is public and
known to every party.

4.7 Generating Random t-1D-Sharing

We now present a protocol called Random(P , �), which allows the parties in P to
jointly generate � random t-1D-sharings, [r(1)]t, . . . , [r(�)]t, where each r(i) ∈ F.

Random(P , �)

Every party Pi ∈ P invokes 1DShare(Pi,P , �, r(1,Pi), . . . , r(�,Pi)) to verifiably t-1D-
share � random values r(1,Pi), . . . , r(�,Pi) from F. Now all the parties in P jointly
computes [r(l)]t =

∑n
i=1[r

(l,Pi)]t for l = 1, . . . , �

Lemma 12. With overwhelming probability, Random generates � random t-1D-
sharing [r(1)]t, . . . , [r(�)]t in 11 rounds, by privately communicating O((�n2 +
n3κ)κ) bits and broadcasting O((�n2 + n3κ)κ) bits.

5 Unconditionally Secure MPSI Protocol with n = 3t + 1

We now present our unconditionally secure MPSI protocol with n = 3t + 1.

Information Theoretically Secure MPSI Re-visited 89

Remark 4. In any MPSI protocol that computes the intersection of the sets using
the function given in (1), At may disrupt the security of the protocol by forcing
a corrupted party to input a zero polynomial representing his set [14, 15]. To
avoid this, the authors of [14, 15] specified the following trick. They noticed that
the coefficient of mth degree term in every Pj ’s polynomial f (Pj)(x) is 1 always.
Hence, every party assumes a predefined [1]t on behalf of the mth coefficient
of every f (Pj)(x) (instead of allowing individual parties to t-1D-share the mth

coefficient). This stops the corrupted parties to commit a zero polynomial.

Input and Preparation Phase

1. Every Pi ∈ P represents his set Si = {e(1)
i , e

(2)
i , . . . , e

(m)
i } by a polynomial f (Pi)(x)

of degree m such that f (Pi)(x) = (x−e
(1)
i) . . . (x−e

(m)
i) = a(0,Pi) +a(1,Pi)x+ . . .+

a(m,Pi)xm. Pi then invokes 1DShare(Pi,P , m, a(0,Pi), . . . , a(m−1,Pi)) to generate
[a(0,Pi)]t, . . . , [a(m−1,Pi)]t. Since a(m,Pi) = 1 always, every party in P assumes a
predefined t-1D-sharing for 1, namely [1]t on behalf of a(m,Pi) (see Remark 4).

2. The parties in P invoke n times Random(P ,m+1) parallely, where ith invocation
of Random(P ,m+1) generates m+1 t-1D-sharings [b(0,i)]t, . . . , [b(m,i)]t. Now the
parties assume that r(i)(x) = b(0,i) + b(1,i)x + . . . + b(m,i)xm for i = 1, . . . , n. This
step can be executed parallely with step 1.

Computation Phase

1. Let F (i)(x) = r(i)(x)f (Pi)(x) = c(0,i)+c(1,i)x+. . .+c(2m,i)x2m for i = 1, . . . , n. For
i = 1, . . . , n, to generate [c(0,i)]t, . . . , [c(2m,i)]t, the parties in P do the following:
(a) The parties invoke Mult(P , (m + 1)2, ([a(0,i)]t, [b(0,i)]t), ([a(0,i)]t, [b(1,i)]t), . . . ,

([a(m,i)]t, [b(m−1,i)]t), ([a(m,i)]t, [b(m,i)]t)) with (m + 1)2 pairs
(every coefficient of r(i)(x) should be multiplied with ev-
ery coefficient of f (Pi)(x)) to produce (m + 1)2 t-1D-sharings
[a(0,i)b(0,i)]t, [a(0,i)b(1,i)]t, . . . , [a(m,i)b(m−1,i)]t, [a(m,i)b(m,i)]t.

(b) The parties compute [c(0,i)]t = [a(0,i)b(0,i)]t, [c(1,i)]t = [a(0,i)b(1,i)]t +
[a(1,i)b(0,i)]t, . . . , [c(2m,i)]t = [a(m,i)b(m,i)]t.

2. Let F (x) =
∑n

i=1 F (i)(x) = d(0) + d(1)x + . . . + d(2m)x2m. To generate
[d(0)]t, . . . , [d(2m)]t, the parties compute [d(j)]t =

∑n
i=1[c

(j,i)]t for j = 0, . . . , 2m.

Output Phase

1. The parties invoke ReconsPublic(P , [d(j)]t) to publicly reconstruct d(j) for j =
0, . . . , 2m. Thus now parties have reconstructed F (x).

2. Each Pi with his private set Si = {e(1)
i , . . . , e

(m)
i } locally checks whether F (e(l)

i) ?=
0 for l = 1, . . . , m. If F (e(l)

i) = 0, the Pi adds e
(l)
i in a set ISi (initially ISi = ∅).

Pi outputs ISi as the intersection set S1 ∩ S2 . . . ,∩Sn.

Theorem 1. MPSI protocol with 3t+1 takes 58 rounds, privately communicates
O((m2n3+n4κ)κ) and broadcasts O((m2n3+n4κ)κ) bits, when physical broadcast
channel is available in the system. In the absence of a physical broadcast channel,
the protocol takes O(t) rounds and privately communicates O((m2n5 + n6κ)κ)
bits. The protocol solves MPSI problem with very high probability.

90 A. Patra, A. Choudhary, and C.P. Rangan

6 Open Problem

Designing efficient information theoretically secure MPSI protocol with optimal
resilience (i.e., with n = 2t + 1) is left as an open problem.

References

1. Beerliová-Trub́ıniová, Z., Hirt, M.: Efficient Multi-party Computation with Dispute
Control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328.
Springer, Heidelberg (2006)

2. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-Secure MPC with Linear Communi-
cation Complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230.
Springer, Heidelberg (2008)

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-
Cryptographic Fault Tolerant Distributed Computation. In: 20th ACM Symposium
on Theory of Computing, pp. 1–10. ACM Press, New York (1988)

4. Berman, P., Garay, J.A., Perry, K.J.: Bit Optimal Distributed Consensus. Comp.
Sci. Research, 313–322 (1992)

5. Carter, L., Wegman, M.N.: Universal Classes of Hash Functions. J. of Comp. and
Sys. Sci. 18(4), 143–154 (1979)

6. Cramer, R., Damg̊ard, I.: Multiparty Computation: An Introduction: Contempo-
rary Cryptography. Birkhäuser, Basel (2005)

7. Cramer, R., Damg̊ard, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient Mul-
tiparty Computations Secure Against an Adaptive Adversary. In: Stern, J. (ed.)
EUROCRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999)

8. Damg̊ard, I., Nielsen, J.B.: Scalable and Unconditionally Secure Multiparty Com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007)

9. Fitzi, M., Garay, J., Gollakota, S., Pandu Rangan, C., Srinathan, K.: Round-
Optimal and Efficient Verifiable Secret Sharing. In: Halevi, S., Rabin, T. (eds.)
TCC 2006. LNCS, vol. 3876, pp. 329–342. Springer, Heidelberg (2006)

10. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set In-
tersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 1–19. Springer, Heidelberg (2004)

11. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The Round Complexity of Ver-
ifiable Secret Sharing and Secure Multicast. In: 33rd ACM Symposium on Theory
of Computing, pp. 580–589. ACM Press, New York (2001)

12. Hirt, M., Maurer, U., Przydatek, B.: Efficient Secure Multi-party Computation.
In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 143–161. Springer,
Heidelberg (2000)

13. Katz, J., Koo, C.Y., Kumaresan, R.: Improving the Round Complexity of VSS in
Point-to-Point Networks. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS,
vol. 5126, pp. 499–510. Springer, Heidelberg (2008)

14. Kissner, L., Song, D.: Privacy-Preserving Set Operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

15. Li, R., Wu, C.: An Unconditionally Secure Protocol for Multi-Party Set Intersec-
tion. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 226–236.
Springer, Heidelberg (2007)

Information Theoretically Secure MPSI Re-visited 91

16. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
17. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North-

Holland Publishing Company, Amsterdam (1978)
18. Rabin, T., Ben-Or, M.: Verifiable Secret Sharing and Multiparty Protocols with

Honest Majority. In: 21st ACM Symposium on Theory of Computing, pp. 73–85.
ACM Press, New York (1989)

19. Srinathan, K., Narayanan, A., Pandu Rangan, C.: Optimal Perfectly Secure Mes-
sage Transmission. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
545–561. Springer, Heidelberg (2004)

20. Yao, A.C.: Protocols for Secure Computations. In: 23rd IEEE Symposium on Foun-
dations of Computer Science, pp. 160–164. IEEE Press, Los Alamitos (1982)

Real Traceable Signatures

Sherman S.M. Chow

Department of Computer Science
Courant Institute of Mathematical Sciences

New York University, NY 10012, USA
schow@cs.nyu.edu

Abstract. Traceable signature scheme extends a group signature
scheme with an enhanced anonymity management mechanism. The group
manager can compute a tracing trapdoor which enables anyone to test if
a signature is signed by a given misbehaving user, while the only way to
do so for group signatures requires revealing the signer of all signatures.
Nevertheless, it is not tracing in a strict sense. For all existing schemes,
T tracing agents need to recollect all N ′ signatures ever produced and
perform RN ′ “checks” for R revoked users. This involves a high volume
of transfer and computations. Increasing T increases the degree of paral-
lelism for tracing but also the probability of “missing” some signatures
in case some of the agents are dishonest.

We propose a new and efficient way of tracing – the tracing trapdoor
allows the reconstruction of tags such that each of them can uniquely
identify a signature of a misbehaving user. Identifying N signatures out
of the total of N ′ signatures (N << N ′) just requires the agent to con-
struct N small tags and send them to the signatures holder. N here
gives a trade-off between the number of unlinkable signatures a member
can produce and the efforts for the agents to trace the signatures. We
present schemes with simple design borrowed from anonymous credential
systems. Our schemes are proven secure respectively in the random ora-
cle model and in the common reference string model (or in the standard
model if there exists a trusted party for system parameters initialization).

Keywords: traceable signatures, efficient tracing, group signatures,
anonymity management, bilinear groups, standard model.

1 Introduction

Group signature is one of the important privacy enhancing cryptographic prim-
itives. Each group member can sign a message on behalf of a group such that
anyone can verify that the group signature is produced by someone enrolled
to the group, but not exactly whom. In other words, one can give a proof of
group-membership without revealing the true identity.

Unconditional anonymity may be abused by misbehaving users, and timely
identification of “bad” signatures is of the utmost importance. For example,
consider the use of group signature in the Vehicle Safety Communications (VSC)

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 92–107, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Real Traceable Signatures 93

system from the Department of Transportation in the U.S. [19], any wrong traffic
information purported by a misbehaving driver or a compromised car should be
identified to avoid possibly traffic accident which may cost human life.

Group signatures come with a mechanism which allows the group manager
(GM) to “open” a signature and reveal the true signer by the GM’s decision.
To identity any signatures previously generated by a misbehaving user, the GM
is required to open all signatures. This incurs three problems – it penalizes the
privacy of all other good users, and imposes a high computational overhead on
the GM. Besides, these signatures may be distributed in various locations (e.g.
in the VSC scenario) and the GM needs to re-collect all these signatures, which
may delay the identification of bad signatures. In view of these shortcomings,
Kiayias, Tsiounis and Yung [16] proposed the concept of traceable signatures.

Traceable signature is a group signature with an enhanced anonymity man-
agement mechanism. Opening of the signatures is no longer the only option. The
GM can compute a user-specific tracing trapdoor which enables anyone to test
if a signature is signed by a given user. In this way, the objective of identify-
ing all the signatures produced by a misbehaving user can be achieved, without
compromising the privacy of all other good users.

Nevertheless, we found that the latter two problems remain unsolved. The
tracing mechanism of the existing schemes [10,13,16,18] actually does not trace
the signatures. Instead, it checks whether a signature was issued by a given user.
The GM may delegate the trapdoor to many tracing agents (TA’s) to check
in parallel, but the TA’s still need to recollect all N ′ signatures ever produced
and perform RN ′ invocations of the “tracing” algorithm for R revoked users in
total. This involves a high volume of transfer and computations. There is also
a trade-off between the degrees of parallelism and the trust on the TA’s. The
more TA’s employed, the higher chance that a TA may “miss” some signatures,
either intentionally or accidentally.

In this paper, we propose a new and efficient way of tracing – the user-specific
tracing trapdoor allows the reconstruction of tags such that each of them can
uniquely identify a signature of a misbehaving user. Identifying N signatures just
requires the agent to invoke N tag-reconstruction and send these N small tags
to the signatures holder, instead of requiring the transfer of N ′ >> N signatures
in the traditional approach. Our new traceable signatures still enjoy the original
applications mentioned in [16], namely, transforming an anonymous system to
one with “fair privacy”, a mix-net application where originators of messages can
be opened, and open-bid auctions.

We present schemes with simple design borrowed from existing anonymous
credential systems. In particular, [8] has briefly mentioned that their compact
e-cash system can be viewed as a bounded group signature scheme supporting
efficient tracing. Our schemes are proven secure respectively in the random oracle
(RO) model and in the common reference string (CRS) model (or in the standard
model if there exists a trusted party for system parameters initialization). The
former is more efficient while the latter gives a more modular design and higher
security guarantees.

94 S.S.M. Chow

2 Design of Traceable Signatures and Building Blocks

Before we delve into the formal definition of traceable signature and our construc-
tions, we first talk about its high-level design, which motivates the discussion
of several building blocks. Since traceable signature is an enhancement of group
signature, we start by the latter.

2.1 High Level Designs

Group Signatures. When a user joins a group, the GM gives this new member a
signature. The user presents this signature to a verifier to show the membership.
However, a verifier who got the same signature can claim the membership too.
This means the GM should sign on something that is related to some valuable
secrets of the users, such that they would not share it with other easily. To sign
on behalf of the group, the user should generate another signature as well. This
latter signature can be given by the member’s own private key. The signature of
the GM and the member’s own private key form the credential of a member.

We assume the private key is valuable, and a user does not want to leak
this private key to any one, including the GM (for exculpability). It can be
“hidden” in the form of a commitment. The GM can then give a signature on
the commitment. The GM may also store part of the communication with this
user in an archive. This concludes the joining stage.

A group member wants to preserve anonymity in signing. There should be a
protocol for proof of knowledge (PoK) of a signature. Another feature of group
signature is that it can be opened to reveal the true signer. Thus, it should
contain an encryption of some information that uniquely identifies a user, such
that only a designated party (e.g. the GM) can decrypt it. There should be a
way to let any verifier to know that this encryption has been done correctly, so
another zero-knowledge protocol for showing the correctness of the encryption is
needed. All these proofs by the signer should be verifiable by everyone, hence
they must be non-interactive. The proof should also be witness-indistinguishable
such that it is generated equally likely by each possible credential (the witness).
This concludes our discussions on the idea of group signature.

Traceable Signatures. The traditional way of tracing only tells if a signature is
given by a particular user. We know from the existing schemes that a function
of the user’s private key can serve as this “decisional” trapdoor which supports
an efficient detection mechanism.

For our new way of tracing, we found that it is easier for the GM to generate
the user-specific tracing trapdoor instead, which is also stored in the archive. To
make sure the signature of a member should be related to this chosen value, the
GM should give a signature on a block of messages, i.e. on the trapdoor and a
commitment of the user’s private key. This may not be required for the typical
group signature schemes or the traditional traceable signature schemes.

To enable a tracing agent TA to uniquely identify every signatures produced
by a particular member, everyone is required to compute a deterministic tag

Real Traceable Signatures 95

based on a seed given by the GM. A TA can then reproduce the tag to identify
the signature. The tag is generated by a pseudorandom function taking the secret
seed and the counter value as its input, which makes the signatures produced
by the same user remain unlinkable to any one without the trapdoor.

Now we have a function that is only computable with the help of a secret seed,
but what should be its input? We cannot afford an exponentially-large domain
here since it will be time-consuming for a TA to re-generate all possible tags.
We thus need to confine the domain. The verifier should ensure that this input
value is an integer less than a limit N pre-selected by the GM. This can be done
with the help of a zero-knowledge range proof.

The above idea has actually been employed by compact e-cash systems [4,8] to
support “join once, spend many”. In our case, we use the deterministic recovery
nature to support efficient tracing. A weakness of this approach is that, N gives
a trade-off between the number of unlinkable signature a member can produce
and the efforts to trace the signatures.

2.2 Number-Theoretic Preliminaries

A mapping ê : G1 ×G2 → GT is a bilinear pairing if

– G1 and G2 are cyclic multiplicative groups of prime order p.
– g, h are generators of G1 and G2 respectively.
– ψ : G2 → G1 is a computable isomorphism from G2 to G1, with ψ(h) = g.
– Each group element has a unique binary representation.
– (Bilinear) ∀x ∈ G1, y ∈ G2 and a, b ∈ Zp, ê(xa, yb) = ê(x, y)ab.
– (Non-degenerate) ê(g, h) �= 1.

G1 and G2 can be the same group or different groups. We say that (G1, G2) is
a bilinear group pair if the group action in G1, G2, ψ and ê are all efficiently
computable. We name (p, G1, G2, GT , ê, g, h) as bilinear map context paramsBM .

Definition 1 (Decisional Diffie-Hellman (DDH)). The DDH problem in G
is, on input a quadruple (g, ga, gb, gc) ∈ G4, output 1 if c = ab and 0 otherwise.

Definition 2 (eXternal Diffie-Hellman (XDH)). The XDH problem in a
bilinear group pair (G1, G2) with trace map ψ is to solve the DDH problem in G1.
If XDH is hard, there exists no efficiently computable isomorphism ψ′ : G1 → G2.

Definition 3 (Decisional Linear (DLin)). The DLin problem in G = 〈g〉 is
defined as follow: On input a sextuple (u, v, g, ua, vb, gc) ∈ G6, decide if c = a+b.

Definition 4 (q-Decisional Diffie-Hellman Inversion (q-DDHI)). The q-
DDHI problem in prime order group G = 〈g〉 is defined as follow: On input a
(q + 2)-tuple (g, gx, gx2

, . . . , gxq

, gc ∈ Gq+2), decide if c = 1/x.

Definition 5 (q-Strong Diffie-Hellman (q-SDH)). The q-SDH problem in
a bilinear group pair (G1, G2) with an efficient (computable in polynomial time)
trace map ψ : G2 → G1 is, on input a (q + 2)-tuple (g, h, hγ , hγ2

, . . . , hγq

) ∈
G1×Gq+1

2 where g = ψ(h), output a pair (B, e) ∈ G1×Z∗
p such that B(γ+e) = g.

96 S.S.M. Chow

We say that an X assumption holds if no probabilistic polynomial time algorithm
has non-negligible advantage (over random guessing if X is decisional) in solving
problem X . The q-SDH assumption in (G1, G2) with a trace map ψ : G2 → G1
is shown to be true [5] in the generic group model.

2.3 Cryptographic Building Blocks

Signature with Efficient Protocols. A signature scheme with efficient protocols
refers to a signature scheme with two protocols for the following purposes.

1. The signer only needs a commitment of a block of messages (m1, . . . , mL)
but not the messages themselves to give a signature on (m1, . . . , mL);

2. A signature holder can prove the knowledge of a signature on some block of
messages without revealing the signature nor the block of messages.

Examples include BBS+ signature [2] (a variant of BBS signature in [6] as out-
lined in [9]), and P-signature [3,4]. The latter supports non-interactive zero-
knowledge proofs in the common reference string model, and the construction
in [4] supports L ≥ 1.

In a P-signature, PSigSetup setups the global parameters used by all other
algorithms to be described below. A signer uses PSigKG to generate a pair of
signing / verification key. Any user can use an associated commitment scheme
Com to make a commitment of the message(s) to be signed and run PObtain,
which interacts with the algorithm PIssue executed by the signer. As a result, the
user obtains a P-signature on the message(s). If the privacy of the message(s) is
not a concern, the signer can simply use the PSign algorithm. The possession of
a signature can be shown using the PProve algorithm, which can then be verified
by anyone using the PVer algorithm. Details can be found in [4].

For a BBS+ signature on (m1, m2), the global parameters contain (g, g1, g2, h).
Using a signing key µ, the signer picks a random e and gives the signature as
ς = (ggm1

1 gm2
2)1/(µ+e), which can be verified under the verification key Z =

hµ by checking if ê(ς, Zhe) = ê(ggm1
1 gm2

2 , h). A computational zero-knowledge
proof of signature (for a single message block) has been given in [6]. A perfect
zero-knowledge proof (since the signature is not encrypted) for multiple mes-
sage blocks has been given in [2]. These can be made non-interactive by using
Fiat-Shamir heuristics in the random oracle model.

Pseudorandom Function, Weakly-Secure Signature and Strong One-Time Signa-
ture. We employed a variant of a pseudorandom function (PRF) due to Dodis
and Yampolskiy [11], defined as PRFg,s(x) : x �→ g

1
s+x where Gp = 〈g〉 is a cyclic

group of prime order p, s ∈R Zp is the secret seed and x ∈ Zp is the input. We
use it in our constructions for the tag-generation. Its pseudorandomness relies
on the q-DDHI assumption, see [8,4] for details.

This PRF function appeared in a short signature scheme proposed by Boneh
and Boyen [5]. The secret key is the seed s and the input x encodes the message.
The signature is the PRF value. Verification of signature is possible if we use a
bilinear group pair instead of Gp. (On the other hand, the PRF is pseudorandom

Real Traceable Signatures 97

only if the DDH is hard in Gp.) We will use this signature in the range proof
and the user signing part of our CRS-based construction. It is unforgeable under
a non-adaptive chosen-message attack under the q-SDH assumption. Since it is
deterministic, it is also strongly-unforgeable.

For the “anonymity against CCA attack”, we use a strong one-time signature
in our CRS-based construction, which informally means that the adversary can
ask for the signature on a chosen message, but can neither create a different
signature on that message nor forge a signature on a different message.

Non-Interactive Proofs for Bilinear Groups. Groth and Sahai [15] proposed
an efficient non-interactive zero-knowledge (NIZK) or non-interactive witness-
indistinguishable (NIWI) proof system for statements of the form

Q∏
q=1

ê(aq

M∏
m=1

xαq,m
m , bq

N∏
n=1

yβq,n
n) = t

where t ∈ GT , {aq} ⊂ G1, {bq} ⊂ G2, {αq,m}, {βq,n},⊂ Zp, {xm} ⊂ G1, {yn} ⊂
G2 when given {Cm} – commitments of {xm}, {Dm} – commitments of {yn},
and a CRS paramBM . This is also referred to as pairing product equation.

The proof system can be instantiated by the subgroup decision assumption in
composite order groups, the DLin assumption or the XDH assumption. However,
the associated commitment scheme based on the first assumption is only binding
over one of the prime order subgroups, which gives different PRF values for
two identically distributed commitments of the same value. Hence, the e-cash
scheme in [4] and our CRS-based construction employ either one of the latter
two assumptions. It gives a NIZK protocol for Dodis-Yampolskiy PRF, a NIZK
PoK for a tag-based encryption [17] (to be described), and a NIWI PoK for
Boneh-Boyen signature in [14] It can be seen that the “structures” in all these
primitives conformed to the pairing product equations.

Range Proof. Proving a secret value is within a public range can be done in
this way – the verifier gives signatures on each value in the range, the prover
then makes a commitment of the secret value and proves the knowledge of a
signature that signs on the committed value. This idea appeared in the k-times
anonymous authentication system in [20], and is used in [2,4] and our CRS-based
construction. Camenisch, Chaabouni and shelat [7] gave a generalization of this
approach. By writing the secret value in base-D and commit to these D-ary
digits, this yields a proof of size O(k/(log k − log log k)) instead of O(k), for
proving the secret lies in [0, 2k+1 − 1].

Linear Encryption and Tag-Based Encryption. Linear encryption proposed in
[6] is a natural extension of ElGamal encryption based on the decision linear
assumption, which is secure even in groups where DDH problem is easy. The
encryption key is (u, v, g0) ∈ G3

1 where ua = vb = g0, and the decryption key
is (a, b). An encryption of a message M ∈ G1 is (T1, T2, T3) = (uα, vβ, Mgα+β

0),

98 S.S.M. Chow

where α, β ∈R Z∗
p; which can be decrypted by T3/(T a

1 ·T b
2). The scheme is secure

against chosen-plaintext attacks (CPA) under the DLin assumption.
Kiltz [17] extended this linear encryption to a tag-based encryption which is

secure against selective-tag weak chosen-ciphertext attacks (CCA), under the
same assumption. The encryption key is (u, v, g0, U, V) ∈ G5

1 where ua = vb =
g0, and the decryption key is (a, b). To encrypt a message M ∈ G1 under a
tag (or a label) t ∈ Z∗

p, picks α, β ∈R Z∗
p and returns (T1, T2, T3, T4, T5) =

(uα, vβ , Mgα+β
0 , (gt

0U)α, (gt
0V)β), which can be decrypted by T3/(T a

1 · T b
2) if

ê(u, T4) = ê(T1, g
t
0U) and ê(v, T5) = ê(T2, g

t
0V) hold. The latter check can also

be done without pairing if the discrete logarithm of U, V with respect to u, v re-
spectively are kept. We will call the tag used in tag-based encryption as “label”
to avoid any confusion with the tracing tag in the traceable signature.

3 Framework

3.1 Syntax

Our new model of traceable signature is based on the original framework in [16].
A traceable signature involves three kinds of entities, namely, the group manager
(GM), the users (Ui) and the tracing agents (TA). It consists of nine polynomial
time algorithms or protocols. The following enumerates the syntax.

– Setup. On input a security parameter 1λ for λ ∈ N, a trusted party executes
this algorithm to output the system parameters params. For simplicity of
the framework, we assume that Setup also outputs the group public/private
key (gpk, gsk), and the opening agent public/private key pair (opk, osk). For
brevity, all algorithms below take (params, gpk, opk) implicitly as inputs.

– Join. A (prospective) user Ui joins the group and obtains a member pub-
lic/private key pair (pki, ski) as a result of the interaction with the GM via
this protocol. The GM also adds Ui’s identification and part of the transcript
of the protocol to the membership archive DB, which is kept private.

– Sign. Given a message m and a member private key ski, user Ui uses this
algorithm to give a signature σ on m on behalf of the group gpk.

– Verify. Given a signature σ and a message m, anyone can use this algorithm
to verify if σ is a valid signature on m signed by a member of the group gpk.

– Reveal. On input of the member archive DB and a user’s identification Ui,
the GM outputs a trapdoor si for tracing the signatures produced by Ui.

– Trace. Anyone can use Trace with the trapdoor si generated by Reveal to
output a set of tags which can uniquely identify each of the signatures of Ui.

– Open. Given a valid signature σ, the GM uses the opening secret key osk to
output some information ςi which enables the retrieval of the user’s identi-
fication information Ui in the membership archive DB.

– Claim. Given the member private key ski and a valid signature σ, user Ui

can give an evidence z that proves the original authorship of σ.
– ClaimVer. Given a message m, a valid signature σ and an evidence z produced

by Claim, anyone can verify whether σ is originated from user Ui holding ski.

Real Traceable Signatures 99

3.2 Requirements

Definition 6. A traceable signature scheme (of security parameter λ) is correct
if the four conditions below are satisfied (with overwhelming probability in λ).

– Sign-Correctness. For all messages m, and all ski obtained from the Join
protocol, Verify(Sign(m, ski), m) = �.

– Open-Correctness. For all messages m, all ski obtained from the Join protocol
of user Ui, and all membership archives DB which contain the information
for user Ui, Open(Sign(m, ski), osk,DB) = Ui.

– Trace-Correctness. For all messages m, all ski obtained from the Join pro-
tocol of user Ui, and all membership archives DB which contain the infor-
mation for user Ui, Sign(m, ski) ⊆ Trace(Reveal(DB, Ui)), where σ is in the
set S when a specific component s of σ is in the set S.

– Claim-Correctness. For all messages m and all ski obtained from the Join
protocol, ClaimVer(m, σ, Claim(ski, σ)) = �, where σ = Sign(m, ski).

We briefly recall the security concerns. Formal definition can be found in [16].

– Identification Security. Any subset of colluded users and tracing agents can-
not output a valid signature which cannot be opened to anyone in this col-
lusion group or cannot be traced (by the trapdoors produced by an honest
execution of Reveal algorithm) to one of them.

– Anonymity. No collusion of users and tracing agents can distinguish between
the signatures of two honest group members. (Note that the tracing agents
are not given the user-specific trapdoor of these two honest members.)

– Non-Frameability. There are two different ways an honest user may be
framed. A conspiration of the GM and any subset of colluded users may
construct a signature that opens or trace to an innocent user outside this
group, or may claim a signature that was generated by an honest user as
their own.

Due to the new traceability feature we introduce, our schemes can only be secure
against a weaker variant of anonymity attack described below.

– N -Anonymity. Same as Anonymity Attack, but the adversary can only see at
most N (determined in Setup) signatures from each of the honest members.

Remarks. Since Open is considered as an internal operation (which is different
from Trace), the adversary in the first two attacks are not allowed to query
an “open” oracle. Nevertheless, our CRS-based construction achieves “CCA”
anonymity, i.e. the adversary has an “open” oracle in breaking anonymity, under
the natural constraint that it cannot be queried with the challenge signature.

Given the deterministic nature of the tracing tag, the GM (or a tracing agent
who “colludes” with the GM) may launch a misidentification or framing attack
by giving a signature with a “legitimate” tracing tag [1]. However, a user can
dispute if the self-claiming component is deterministically determined by the
tracing tag and part of the membership private key which is only known to the

100 S.S.M. Chow

user. Specifically, the existence of two valid signatures with exactly the same
tracing tag but different self-claiming components means that the GM “reused”
the same seed in issuing “different” membership credentials.

4 Constructions

We first give our construction in the common reference string model. This can
be seen as a concrete realization of the design we gave in Section 2. Then we will
present a more efficient construction in the random oracle model.

4.1 Construction in the Common Reference String Model

This somewhat generic and moderately efficient construction is mostly based on
the building blocks we presented in Section 2.3, except we have instantiated the
signature in the range proof by Boneh-Boyen signature and the PRF by Dodis-
Yampolskiy PRF. It is largely based on the compact e-cash scheme in [4]. We
added a tag-based encryption [17] of the user’s identity and the user self-claiming
component, but removed the double-spending detection.

Setup. This algorithm setups all the building blocks. Namely, it runs PSigSetup
and returns the P-signature parameters params, PSigSetup needs to run the
setup of the Groth-Sahai proof system to get its parameters paramsGS , which
in turn contain the bilinear map context paramsBM = (p, G1, G2, GT , ê, g, h).
Let H be a collision-free hash function which maps to Z∗

p. All these should be
determined by the CRS, or executed by a trusted initializer.

For credential issuing, runs PSigSetup to generate a key pair (gpk, gsk).
For opening, setups a key pair (opk, osk) by tag-based encryption’s TEncSetup.
For tracing, manages a list of triple (Ui, pki, si), which is initially empty.

For the range proof system, the GM picks a number N which is polynomial in λ,
runs PSigSetup(params) again to generate another pair of signing key (pkr, skr),
generates and publishes the signatures Σi = PSign(i, skr), ∀i ∈ [1, 2, · · · , N].

Join. User Ui obtains a credential from the GM through the interactions below.

1. User Ui randomly selects xi ∈R Z∗
p, computes a public key pki = gxi , and

a commitment commsk = Com(xi, openxi). Ui sends commsk to the GM,
proves in zero-knowledge the knowledge of openxi, and that commsk corre-
sponds to the secret key used for computing pki.

2. The GM verifies the proof, randomly selects si ∈R Z∗
p, computes commseed =

Com(si, opensi) and sends (si, opensi) to the user. The tracing trapdoor for
this user will be si and the GM should ensure it is unique.

3. The user and the GM run the algorithms PObtain(gpk, (xi, si), (openxi ,
opensi))
↔ PIssue(gsk, (commsk, commsi)) respectively. The user obtains a
P-signature ςi on (xi, si), and stores (ςi, xi, si) as the member private key.

4. The GM adds the entry (Ui, pki, si) to the membership archive.

Real Traceable Signatures 101

Sign(m). User Ui manages a counter ni on the number of signatures produced.

– Ui generates a one-time signature key pair (pko, sko).
– Ui signs on pko by σ = g

1
xi+H(pko) .

– Ui computes the tracing tag S = g
1

si+ni and the self-claiming tag R = Sxi.
– Ui encrypts pki by computing C = TEncopk(pki, H(pko)), where H(pko)

serves as the label of the encryption.
– Ui proves in non-interactive zero-knowledge manner the relations (1) - (6):

1. Ui is in possession of a P-signature ςi from the GM on (xi, si).
2. Ui generated a commitment Csig of σ = g

1
xi+H(pko) , a signature on pko.

3. C is a tag-based encryption of pki with the label H(pko).
4. S is PRFg,si(ni), that is, S = g

1
si+ni .

5. R = Sxi.
6. 0 ≤ ni < N , i.e. Ui is in possession of a P-signature ςi under pkr on ni.

– Ui uses sko to give a signature σots on m concatenated with the above proofs.

All these proofs need to be done non-interactively by Groth-Sahai proof system
or non-interactive P-signature (which utilizes the former). Specifically, Ui

1. runs PProve on ςi and gpk to obtain commitments and proof (Cpk, Cseed, π1)
← PProve(params, gpk, ςi, (xi, si)) for secret key xi and seed si respectively.

2. runs PProve on Σni and pkr to obtain commitment and proof for counter
ni, i.e. (Cctr, π2) ← PProve(params, pkr, Σni , (ni)).

3. uses the Groth-Sahai proof system to construct proofs showing that the
values (R, S, C, Cpk, Cseed, Cctr, Csig) are indeed well formed. This involves
the proofs πS , πR, πO, πC of the following languages:
– LS = {Cs, Cn, y|∃n, s, openn, opens such that

Cs = Com(s, opens) ∧ Cn = Com(n, openn) ∧ y = PRFg,s(n)}
– LR = {Cx, Y, y|∃x, openx such that Cx = Com(s, openx) ∧ Y = yx}
– LO = {Cx, Cσ, pko|∃x, openx, openσ such that

Cx = Com(x, openx) ∧ Cσ = Com(σ, openσ) ∧ σ = g
1

x+H(pko) }
– LC = {Cx, C|∃x, openx such that

Cx = Com(x, openx) ∧ pk = gx ∧ C = TEncopk(pk)}
The signature is (R, S, T, C, pko, σots, Cpk, Cseed, Cctr, Csig , π1, π2, πS , πR, πO,
πC). LR is relatively simple. LS can be found in [4, Section 4.2]. LO,LC are
somewhat simplified variants of the proofs in [14, Section 7].

Verify. To verify a signature, returns true if all of the following checks succeed:

1. PVer(params, gpk, π1, (Cpk, Cseed)) = �.
2. PVer(params, pkr, π2, Cctr) = �.
3. σots is a valid signature on (m||π1||π2||πS ||πR||πO||πC) under pko.
4. πS is a valid proof on (Cseed, Cctr, S).
5. πR is a valid proof on (Cpk, R, S).
6. πO is a valid proof on (Cpk, Csig, pko).
7. πC is a valid proof on (Cpk, C).

102 S.S.M. Chow

Open. Given a valid signature (· · · , C, pko, · · ·), anyone (the GM, or an opening
agent) who holds the decryption key osk recovers pk′ = TDec(C, H(pko)). From
the membership archive {(Ui, pk′, si)}, the GM outputs the corresponding Ui.

Reveal. From the membership archive, the GM retrieves si of the ith user.

Trace. Given si, the TA computes {Sj = g
1

si+j }0≤j<N . If a given signature has
the S component inside this set, the TA concludes that user i is its originator.

Claim. Ui who gave the signature σ = (R, S, · · ·) generates a non-interactive
proof of knowledge πR of the value xi such that R = Sxi as a proof of authorship.

ClaimVer. Verify the proof πR given by Claim.

4.2 Construction in the Random Oracle Model

Our second scheme assumes random oracle and employs CPA linear encryption
instead of weak CCA tag-based encryption for better efficiency. The design is
similar to the traditional-style traceable signature in [10] which is extended from
[6]. However, we have moved the component for tracing component (which also
helps in self-claiming) from GT to Gp. Since GT is usually a subgroup of Zqα , it
is vulnerable to sub-exponential discrete logarithm attacks and needs very large
representation. For example, for 128-bit security, |GT | ≥ 3072 bits. This can
also been as a variant of [2], with a verifiable encryption and the self-claiming
component added and double-spending detection removed.

Our scheme relies on the DLin assumption in G1, the q-SDH assumption in
(G1, G2), and the q-DDHI assumption in Gp. We describe the scheme in (G1, G2)
but these two groups can be the same (since we instantiate the PRF in another
DDH-hard group Gp). Our scheme does not rely on the XDH assumption, this
gives more flexibility in the choices of the underlying elliptic curve. If we are
willing to make the XDH assumption, the signature can be made shorter since
the linear encryption can be replaced by ElGamal encryption [6].

Setup. Let (G1, G2) be a bilinear group pair with computable isomorphism ψ as
discussed such that G1 = 〈g〉, G2 = 〈h〉 and |g| = |h| = p for some prime p of λ
bits. Let Gp = 〈f〉 be a cyclic group of order p where the DDH assumption holds.
Let g1, g1, g2, g2 be random elements in G1, which are for the zero-knowledge
PoK protocols. Let H be a collision-free hash function which maps to Z∗

p.
For credential issuing, the GM randomly selects µ ∈R Z∗

p and computes Z = hµ

as the public key gpk of the group. The GM keeps gsk = µ in secret.
For opening, the GM setups an encryption key pair by picking g0 ∈R G1,

osk = (a, b) ∈R (Z∗
p)2. The public key is opk = (u, v, g0) where ua = vb = g0.

For tracing, the GM manages a list of triple (Ui, si, ςi), which is initially empty;
and picks a number N which is polynomial in λ. The GM also setup a range proof
system, e.g. [7] to be discussed in Appendix A.

Real Traceable Signatures 103

Join. User Ui obtains a credential from the GM through the interaction below.

1. Ui selects xi ∈R Z∗
p, sends yi = gxi

2 to the GM with the proof SPK0
{
(xi) :

yi = gxi
2

}
. This can be done non-interactively by Schnorr signature.

2. The GM verifies the proof, picks si, ei ∈R Z∗
p, computes ςi = (ggsi

1 yi)
1

µ+ei

and sends (ςi, ei, si) to the user. The GM also stores the triple (Ui, si, ςi). The
tracing trapdoor for Ui will be si and the GM should ensure it is unique.

3. Ui checks if ê(ςi, Zhei) = ê(ggsi
1 gxi

2 , h). The member public key and secret
key are (yi, ei) and (xi, ςi, si) respectively.

Sign(m). User Ui manages a counter ni on the number of signatures produced.

– Ui computes the tracing tag S = f
1

si+ni and the self-claiming tag R = Sxi.
– Ui encrypts ςi in (T1 = uα, T2 = vβ , T3 = ςig

α+β
0) where α, β ∈R Z∗

p.
– Ui proves in non-interactive zero-knowledge manner such that (T1, T2, T3) is

a linear encryption of ςi, where (ςi, ei) is a BBS + signature from the GM on
(si, xi), S = f

1
si+ni , R = Sxi and 0 ≤ ni < N . This can be abstracted as

SPK1

{ (
ςi, ei, si, xi, ni, α, β

)
:

ê(ςi, Zhei) = ê(ggsi
1 gxi

2 , h) ∧
(T1, T2, T3) = (uα, vβ , ςig

α+β
0) ∧

(S, R) = (f
1

si+ni , f
xi

si+ni) ∧
0 ≤ ni < N

}
(m)

To conduct SPK1, Ui computes A1 = gei
1 gρ1

2 , A2 = gxi
1 gρ2

2 , A3 = gni
1 gρ3

2 for
ρ1, ρ2, ρ3 ∈R Z∗

p. Next, Ui computes the following two SPK’s.

SPK1A

{ (
ei, si, xi, ni, α, β, ρ1, ρ2, ρ3, γ1, γ2

)
:

A1 = gei
1 gρ1

2 ∧ A2 = gxi
1 gρ2

2 ∧ A3 = gni
1 gρ3

2 ∧
T1 = uα ∧ T2 = vβ ∧

T ei
1 = uγ1 ∧ T ei

2 = vγ2 ∧
f = SsiSni ∧ R = Sxi ∧
ê(T3, Zhei) = ê(ggsi

1 gxi
2 , h)ê(g0, Z

α+βhγ1+γ2)
}
(m)

SPK1B

{
(ni, ρ3) : A3 = gni

1 gρ3
2 ∧ 0 ≤ ni < N

}
(m)

We show how to instantiate SPK1A below and SPK1B in Appendix A.

(Commitment.) Ui picks rei , rsi , rxi , rni , rα, rβ , rρ1 , rρ2 , rρ3 , rγ1 , rγ2 ∈R Z∗
p

and computes
T1 = g

rei
1 g

rρ1
2 , T2 = g

rxi
1 g

rρ2
2 , T3 = g

rni
1 g

rρ3
2 , T4 = urα , T5 = vrβ in G1,

T6 = ê(T3, h)rei ê(g1, h)−rsi ê(g2, h)−rxi ê(g0, Z)−rα−rβ ê(g0, h)−rγ1−rγ2 in GT ,
T7 = T

rei
1 u−rδ3 , T8 = T

rei
2 v−rδ4 in G1, T9 = Srsi Srni , T10 = Srxi in Gp.

(Challenge and Response) Let T = (T1|| . . . ||T10). For a challenge c =
H(m||R||S||T1||T2||T3||T), Ui computes, in Zp, zei = rei−cei, zsi = rsi−csi,
zxi = rxi−cxi, zni = rni−cni, zρ1 = rρ1−cρ1, zρ2 = rρ2−cρ2, zρ3 = rρ3−cρ3,
zγ1 = rγ1 − cαei, zγ2 = rγ2 − cβei, Ui sets z = (zei , zsi , zxi, zni , zρ1 , zρ2 ,
zρ3 , zγ1 , zγ2).

104 S.S.M. Chow

Verify. To verify a signature (S, T1, T2, T3, πSPK), where πSPK denotes the com-
mitments (e.g. A1, A2, A3, T) and the responses (e.g. z) generated by the above
PoK protocol, this algorithm executes the verification algorithm of SPK1.

In particular, SPK1A can be verified by first computing

T′
1 = Ac

1g
zei
1 g

zρ1
2 T′

2 = Ac
2g

zxi
1 g

zρ2
2 T′

3 = Ac
3g

zni
1 g

zρ3
2

T′
4 = T c

1T4 T′
5 = T c

2T5

T′
7 = T

zei
1 u−zγ1 T′

8 = T
zei
2 v−zγ2

T′
9 = f cSzsi Szni T′

10 = RcSzxi

T′
6 = ê(T3, h

zei /Zc)ê(gcg
−zsi
1 g

−zxi
2 , h)ê(g0, Z

−(zα+zβ)h−(zγ1+zγ2))

and checking if c
?= H(m||R||S||T1||T2||T3||T′

1|| . . . ||T′
10). If the equation holds,

(R, S) and (T1, T2, T3) are well-formed, thus outputs �, ⊥ otherwise.

Open. Given a valid signature (m, S, T1, T2, T3, πSPK), anyone who holds the
decryption key (a, b) computes ς ′ = T3/(T a

1 ·T b
2). From the membership archive,

the GM outputs Ui of the entry with the ςi component matches with ς ′.

Reveal. From the membership archive, the GM retrieves si of the ith user.

Trace. Given si, the TA computes {Sj = f
1

si+j }0≤j<N . If a given signature has
the S component inside this set, the TA concludes that user i is its originator1.

Claim. Ui who gave the signature σ = (R, S, · · ·) can provide a proof of author-
ship π by generating a proof of knowledge π of the value xi such that R = Sxi .

ClaimVer. Verify the proof π given by Claim.

4.3 Security Analysis

Since both of our constructions are based on the same design, below we give an
overall picture of the security analysis. The security of both schemes is hinged
upon DLin, q-DDHI and q-SDH assumptions. Our RO-based construction relies
on the DDH assumption, while our CRS-based one relies on the XDH assump-
tion and any others required for the security of the multi-block P-signature [4].
Details for the RO-based construction can be found in [2,6,10] and those for the
CRS-based construction follow from [4,14].

– Identification Security. Misidentification is an attack by a subset of colluded
users and TA’s. To model the former requires the signing oracle of the un-
derlying signature. For our CRS-based construction, the underlying signing
protocol (the credential issuing protocol in our case) of the P-signature has

1 The TA may recover fxi from (R, S), but it does not help in forging a signature.

Nevertheless, the GM can simply send {Sj = f
1

si+j }0≤j<N to the TA to avoid this.

Real Traceable Signatures 105

guaranteed that computing these signatures in such an interactive manner
reveals nothing else about the secret key (by the fact that the protocol can
be simulated by blackbox access of the signing oracle). For the TA’s, they
are just given the seeds (but they cannot choose it), which can be easily
simulated. In fact, the seeds are just part of the messages to be signed by
the underlying signature scheme, and their secrecy is not relevant here.

There are two attacks goals in misidentification attack. The first one is
to output a valid signature which cannot be opened to anyone outside this
collusion group. With the soundness of the ZK proof for the encryption, this
translates to giving an encryption of a credential which the GM never issues.
If this happens, the simulator S can extract this credential and returns it as
the forgery of the signature scheme used for credential issuing.

The second attack goal is to produce a tag that cannot be computed by
the Trace algorithm. There are two possibilities. The adversary A used an
entirely new seed that is never “certified” by the GM, or A used a seed from
the GM but produced something that cannot be produced by the Reveal
algorithm. For the first case, S can decrypt the ciphertext and obtain a
forgery of the underlying signature scheme. The second case will break either
the soundness of the ZK proof for the PRF or that of the range proof.

– N -Anonymity. The compromised parties controlled by an adversary A is
the same as those in misidentification attack. N -anonymity goes by a series
of transformation such that a signature produced by an honest member is
eventually transformed to one produced by another honest member, and
argue that each transformation is computationally indistinguishable to A.

Firstly, we change the parameter for the ZK proofs to a simulated one
such that the commitments are perfect hiding and the ZK proofs involved
in a signature will be “faked” by a simulation instead of giving a real proof.
The adversary cannot notice this change by the security of the ZK proofs.
Now the proofs are faked, we can change the elements that can differentiate
one honest user from another in the signatures. We replace the tracing tag
S with random element, then replace it with the tracing tag of another user.
As long as these honest users produced less than N signatures, the indis-
tinguishability of these changes are guaranteed by the pseudorandomness of
the PRF. We then change the self-claiming tag R, by the DDH assumption
(in Gp or in G1 – XDH). Finally, we encrypt a random element instead of
the signature, by the indistinguishability of the encryption.

– Non-Frameability. The group member gives a signature based on the secret
key xi. The simulator S does not know xi, but it gives out many signatures
by the simulators of the underlying signature scheme and the ZK proofs
(and manipulating the random oracle in our RO-based scheme). Eventually,
the adversary A produces a valid forgery. In our CRS-based construction,
S extracts the knowledge of σ by the extractability of the underlying proof
system, which is a solution of the q-SDH problem as long as H(pko) does
not match with those public keys of a one-time signature scheme pre-selected
by the simulator in the simulation of the signing oracle. In our RO-based
construction, S can use the standard rewinding technique to extract xi.

106 S.S.M. Chow

5 Conclusion

We found that the original idea of tracing signatures is nice but may not fully
solve the problems of the group signature as expected. We propose a new and
efficient way of tracing by borrowing the idea from compact e-cash. Our notion
gives an alternative when timely tracing is important and when the signatures
are scattered around in an anonymous system.

References

1. Au, M.H.: Personal communication (2009)
2. Au, M.H., Susilo, W., Mu, Y.: Constant-Size Dynamic k-TAA. In: De Prisco, R.,

Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg
(2006)

3. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and Nonin-
teractive Anonymous Credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 356–374. Springer, Heidelberg (2008)

4. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: Compact E-Cash and
Simulatable VRFs Revisited. In: Boyen, X., Waters, B. (eds.) Pairing 2009. LNCS,
vol. 5671, pp. 114–131. Springer, Heidelberg (2009)

5. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles and the SDH
Assumption in Bilinear Groups. J. Cryptology 21(2), 149–177 (2008)

6. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin [12], pp.
41–55

7. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient Protocols for Set Membership
and Range Proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
234–252. Springer, Heidelberg (2008)

8. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-Cash. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg
(2005)

9. Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials
from Bilinear Maps. In: Franklin [12], pp. 56–72

10. Choi, S.G., Park, K., Yung, M.: Short Traceable Signatures Based on Bilinear
Pairings. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura,
S.-i. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 88–103. Springer, Heidelberg (2006)

11. Dodis, Y., Yampolskiy, A.: A Verifiable Random Function with Short Proofs and
Keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005)

12. Franklin, M. (ed.): CRYPTO 2004. LNCS, vol. 3152. Springer, Heidelberg (2004)
13. Ge, H., Tate, S.R.: Traceable Signature: Better Efficiency and Beyond. In:

Gavrilova, M., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganà, A., Mun,
Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3982, pp. 327–337. Springer, Heidel-
berg (2006)

14. Groth, J.: Fully Anonymous Group Signatures Without Random Oracles. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer,
Heidelberg (2007)

15. Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

Real Traceable Signatures 107

16. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable Signatures. In: Cachin, C., Ca-
menisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer,
Heidelberg (2004)

17. Kiltz, E.: Chosen-Ciphertext Security from Tag-Based Encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

18. Nguyen, L., Safavi-Naini, R.: Efficient and Provably Secure Trapdoor-Free Group
Signature Schemes from Bilinear Pairings. In: Lee, P.J. (ed.) ASIACRYPT 2004.
LNCS, vol. 3329, pp. 372–386. Springer, Heidelberg (2004)

19. IEEE P1556 Working Group. VSC Project. Dedicated short range communications,
DSRC (2003)

20. Teranishi, I., Sako, K.: k-Times Anonymous Authentication with a Constant Prov-
ing Cost. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 525–542. Springer, Heidelberg (2006)

A Signature-Based Range Proof

To implement a range proof system with D signatures [7], the GM setups a
signing key Z ′ = hν and gives D signatures {σi = g1/ν+i} for each i ∈ ZD.

To conduct SPK1B in Section 4.2, i.e. to prove a secret value t = ni lies in
[0, N = D�), the prover Ui writes t in base u where t =

∑
j(tjD

j) to obtain �

elements {tj}, then picks τj , computes Vj = σ
τj

tj
for j ∈ Z�. Finally, Ui computes:

SPK1C

{
({tj}, {τj}, ρ) : A = (

∏
j g

Dj

1)tj gρ
2 ∧ (∧jVj = σ

τj

j)
}
(m)

which can be instantiated by

(Commitment.) Ui picks rt1 , . . . , rt�
, rτ1 , . . . , rτ�

, rρ ∈R Z∗
p and computes {Uj =

ê(σj , h)−rtj ê(g, h)rτj } and U∗ =
∏

j(g
Djrtj

1)grρ

2 .
(Challenge and Response) Let U = (U1|| . . . ||U�||U∗). For a challenge c =

H(m||U), Ui computes, in Zp, zt1 = rt1 − ctj , . . . , zt�
= rt�

− ct�, zτ1 =
rτ1−cτj , . . . , zτ�

= rτ�
−cτ�, zρ = rρ−cρ and Ui sets z = (zt1 , . . . , zt�

, zτ1 , . . . ,
zτ�

, zρ).

To verify, compute U′
j = ê(Vj , Z

′ch−ztj)ê(g, h)zτj , ∀j ∈ [1, 2, · · · , �], U′′ = Ac
∏

j

(g
Djztj

1)gzρ

2 and check if c
?= H(m||U′) where U′ = (U′

1|| . . . ||U′
�||U′′).

Cryptanalysis of Hash Functions with Structures

Dmitry Khovratovich

University of Luxembourg
dmitry.khovratovich@uni.lu

Abstract. Hash function cryptanalysis has acquired many methods,
tools and tricks from other areas, mostly block ciphers. In this paper
another trick from block cipher cryptanalysis, the structures, is used for
speeding up the collision search. We investigate the memory and the time
complexities of this approach under different assumptions on the round
functions. The power of the new attack is illustrated with the crypt-
analysis of the hash functions Grindahl and the analysis of the SHA-3
candidate Fugue (both functions as 256 and 512 bit versions). The col-
lision attack on Grindahl-512 is the first collision attack on this function.

Keywords: cryptanalysis, hash functions, SHA-3, truncated differentials,
Grindahl, Fugue, structures.

1 Introduction

Since 1990 the MD family of hash functions and its successor SHA family have
been most widely used data integrity primitives. In contrast with few crypt-
analytic results in 90s recent attacks on MD5 [19], SHA-0 [14], and SHA-1 [5]
encouraged the cryptographic community to look for more reliable components
and then motivated the recent SHA-3 competition [16]. The Merkle-Damg̊ard ap-
proach [8,15] to build hash functions from compression functions, has lost a part
of credit due to such generic attacks as multicollisions [11] and second-preimage
search with expandable messages [12].

In contrast to generic attacks like multicollisions, which are applicable to hash
functions with Merkle-Damgard strengthening, attacks on lower level compres-
sion functions are highly dependent on a particular proposal and can rarely be
extended to other functions. Common ideas are mostly related to the notion of
differentials since the fact that two different messages produce the same hash
value (a collision) can be expressed as a zero difference in the output.

The idea of differentials comes from block cipher cryptanalysis and pioneering
papers by Biham and Shamir [3]. As high probability differential characteris-
tics were exploited in attacks on block ciphers as high probability zero-ending
differential trails are used to find collisions for compression functions.

Since block cipher cryptanalysis is a highly developed topic, many cryptana-
lysts try to use the most efficient methods and tools in attacks on hash functions.
However, due to stronger requirements on the results of an attack only few of
them were applied. The use of truncated differentials [17] is an example.

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 108–125, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Cryptanalysis of Hash Functions with Structures 109

In this paper we investigate another tool from block cipher cryptanalysis:
structures. A structure is originally a set of plaintexts that pairwise have some
property (e.g., zero difference in particular bytes). Since the number of pairs
with desired properties in a structure is much larger than the structure size,
such constructions are widely used in order to save memory and time in attacks
on block ciphers [4,6].

Intuitively, structures might have been used in attacks on the hash functions
built on block ciphers [18]. However, the authors are aware of only one such
attack: a recent attack on Snefru [2], though Snefru does not directly fit the
constructions from [18].

We have found that structures are especially useful in attacks on stream-
based hash functions, where parts of a message can independently be controlled.
We analyze the hash functions Grindahl and Fugue. For Grindahl-256, we
improve the best known attack by Peyrin [17], while for Grindahl-512 this
paper presents the first known collision attack. The hash function Fugue [10] is a
strengthened successor to Grindahl, so we did not manage to break its security
claims. However, our attack is substantially faster than a trivial internal-collision
attack.

This paper is organized as follows. First we briefly explain how the use of
structures reduce the cost of collision search. Then we investigate how structures
follow the differential trail and collapse to pairs in some step (Section 3) so that
the standard differential approach can be applied afterwards. We also derive the
memory complexity of the attack.

Then we attack Grindahl and Fugue with structures (Section 4). The num-
ber of computations required ro find a collision for Grindahl-256 is reduced
compared to the attack by Peyrin [17]. We also present the first collision attack
on Grindahl-512 and the first external analysis of Fugue . In the Appendix
the time complexity of the attack is estimated under different assumptions.

2 Idea in Brief

In many attacks on compression functions a cryptanalyst deals with a set of
pairs that are to follow a particular differential trail. Here the trail is a sequence
of differences in the internal state of the hash function. (see [1] for a more formal
approach). At some steps an adversary may vary a message part to be injected
thus increasing the number of pairs that follow the trail (the attack by De
Canniére and Rechberger on SHA-1 [5] is an example). If there is not enough
freedom to satisfy round conditions, the number of candidate pairs tends to
decrease. We show that this effect can be postponed if a differential trail allows
to incorporate pairs into structures.

In order to distinguish the approach when a cryptanalytic deals with pairs
from our approach we call the former one the standard differential attack. It is
also known as the trail backtracking [1]. Our attack is later called the structural
approach, or the structural attack.

Now assume that the trail deals with truncated differentials, and the possible
differences form a linear space R of differences. Then if a pair of states (S1, S2)

110 D. Khovratovich

Fig. 1. Comparative view on the structural and the differential approaches. F is a
round function. In the first case the number of states remains stable till structures
collapse to pairs (middle round).

fits the trail, and a pair (S2, S3) fits the trail, then the pair (S1, S3) fits the trail
too. Such a group of states is called a structure.

Suppose at some step a structure of size Q enters the round with probability
P . Then every state Si will have a desired difference with PQ other states
thus composing a smaller structure. Therefore the initial structure splits into
1/P smaller structures. If the structure collapses into separate pairs then the
differential attack is launched.

Suppose there is now freedom from the message injection, i.e., for a pair of
messages (M, M ′) there are V possibilities for M and D more possibilities for
M ′ (V D pairs at all). So if a round differential has probability P then of T pairs
about V ·D · P · T pairs survive. See Figure 1 for the outline of the situation.

When we work with structures, the value of the injected message can be
chosen freely only for the first state of a new structure, or the leader state; the
messages injected to the other states should have a desired difference with a first
one. Consequently, the message freedom results in structures of size ≈ D ·P ·Q.
The number of states remains the same; however, it can be increased if we take
other states as leading ones.

3 Analysis of Structure Fission

In order to benefit from the number of pairs in a structure an adversary should
keep the size of the structure as big as possible. Let us estimate the size as a
function of the round probability and the freedom given by message injections.
Denote by ∼ the desired binary relation between two states, which can be also
interpreted as the fact that the difference in the state satisfies the trail conditions.

Cryptanalysis of Hash Functions with Structures 111

The particular relation is usually clear from the context. Then a structure is a set
of internal states such that any two states of the set satisfy the binary relation ∼.
In our attacks on Grindahl and Fugue (Section 4) the relation is of form “bytes
(respectively, words) i1, i2, . . . , ik are equal”.

No freedom in the message injection. Suppose a structure of size Q = 2q states
enters a round with probability 2−p. First consider the case where there is no
freedom in message injection due to the differential trail or the message schedule.
After the application of the round function any state has a desired difference
with 2q−p other states, which form a structure of size 2q−p. Therefore, the initial
structure splits into about 2p smaller structures of average size 2q−p.

It is easy to prove that the partition of a structure into structures of equal
size gives a lower bound on the overall number of pairs. If p is high enough
then the structure collapses to separate pairs. Since there were 22q−1 pairs in
the structure, about 22q−1−p pairs come out of one round. Then the pairs are
processed by the standard differential attack.

Value freedom in the message injection. Suppose now there is some freedom in
message injections but the differential trail does not allow to introduce a differ-
ence, or the value of the difference is fixed. Then every state can be transformed
to at most one element of a new structure, so the structures do not grow in this
case. However, one may increase the number of structures and thus the number
of considered states.

The latter approach increase the memory complexity so we do not use it except
for the round when all structures collapse to pairs. Given V = 2v possibilities
for an injected message we get 22q−1+v−p pairs after the round.

Difference freedom in the message injection. Assume that 2d possible differences
can be injected, and they form a linear space. Then we get larger structures
because we have more freedom in steering a state into the structure.

Suppose that state Si has already transformed to state S′
i by message vi:

Si[vi] = S′
i. Let us compute the probability that a randomly chosen state Sj

can be transformed to some state with the desired difference with S′
i by some

message m′, which follows the trail too. The probability can be expressed as
P(∃m′ : Sj [m′] ∼ S′

i, m
′ ∼ m | Si ∼ Sj).

Assuming that the events for particular messages are independent we obtain
the following expression:

P(∃m′ : Sj [m′] ∼ S′
i, m

′ ∼ m | Si ∼ Sj) =

= 1−
∏

m′∼m

P(Sj [m′] � S′
i | Si ∼ Sj) = 1− (1− 2−p)2

d ≈ 2d−p. (1)

Consequently, one structure splits into structures of average size Q′ = 2q+d−p.
Analogously, if q + d − p < 0 the structure collapse to pairs. Since 22q−1+v+d

pairs can be composed about 22q−1+v+d−p come out of the round.

112 D. Khovratovich

Size of the initial structure. By degrees of freedom we understand the base 2
logarithms of the number of admissible values. Suppose that at round i there
are vi degrees of freedom in the values of the injected message, di degrees of
freedom in the differences in injected messages, and pi (bit) conditions to be
satisfied. In the standard differential attack we start with 2c pairs and leave
with one pair in the end. Therefore, we obtain the following equation:

c +
T∑

i=1

(vi + di − pi) = 0.

Here T stands for the number of rounds covered by the trail. We also denote by
c(t) the logarithm of the number of pairs after t-th round:

c(t) = c +
t∑

i=1

(vi + di − pi) = c +
t∑

i=1

vi︸ ︷︷ ︸
v(t)

+
t∑

i=1

di︸ ︷︷ ︸
d(t)

−
t∑

i=1

pi︸ ︷︷ ︸
p(t)

.

Suppose we start with a structure of size 2q, which collapse to pairs after l + 1
rounds, l < T . The structure splits to 2p(l)−d(l) smaller structures after l rounds.
Each structure is of size about 2q+d(l)−p(l). Therefore, about 22q+d(l)−p(l)−1 pairs
come out of round l.

In order to continue the collision search and obtain one pair in the end the
following equation should hold:

2q + d(l)− p(l)− 1 = c(l) ⇔ 2q = c + v(l) + 1 ⇔ q =
c + v(l) + 1

2
.

c(t) = c + v(t) + d(t)− p(t)

q(t) = q + d(t)− p(t)

q

c

states/
pairs of states

l l + 1 T rounds

c+v(t)+1
2

logarithmic scale

Fig. 2. Memory complexity of the collision search with structures

Cryptanalysis of Hash Functions with Structures 113

The memory complexity is thus determined by the maximum of 2q and 2c(l+1)+1.
It can be finally expressed as

min
0≤l<T

max(2
c+v(l)+1

2 , 2c(l+1)+1). (2)

The plot of the memory complexity of the attack with structures compared
to a standard differential attack is drawn in Figure 2. There c stands for the
logarithm of the number of pairs required by the differential attack, q stands for
the logarithm of the size of the structure that is used for the structural attack.

4 Concrete Attacks

4.1 How to Construct a Trail

The trails used in our attacks on Grindahl and Fuguehave been obtained by
a simple backtracking process. The idea is to start with zero-difference state and
step back with introducing differences by all message injections. The differences
spread to the internal state till every byte (or another building block) contains
the difference. The number of steps is subject to the diffusion properties of the
internal transformations.

4.2 Grindahl-256

Description. Grindahl is a family of hash functions proposed by Knudsen,
Rechberger and Thomsen at FSE 2007 [13] as a stream-based hash function. The
round function of Grindahl uses the design components of AES [7]: SubBytes

and the MixColumns operation. Since the internal state of Grindahl is wider
than that of AES (Grindahl-256 can be viewed as a byte matrix of 4 rows and
13 columns) it uses a modified ShiftRows transformation in order to obtain
better diffusion. The other message-independent transformation is AddCon-

stant, which adds a constant to a particular byte.
In Grindahl-256 the message injection is just the overwriting of the first

column with 4-byte message block. The round function is defined as the following
composition of transformations:

P (α, M) = MixColumns ◦ ShiftRows ◦ SubBytes◦
◦AddConstant ◦ InjectMessage(α, M).

Here α denotes the state to be iterated, and M the message block to be injected.
Every message block is used only once.

In order to obtain a hash value the state filled with zeros is iterated till the
message is ended. Then eight blank rounds (no message injection) are applied
and the resulting state is truncated to 256 bits, which is the hash value.

114 D. Khovratovich

Security. The designers of Grindahl-256 claimed the security level of 2128

operations against both collision and second-preimage attack. Peyrin in [17]
found a differential trail, which leads to a full collision in an internal state before
the blank rounds are applied. The trail deals with two values of byte differences:
non-zero and zero. It starts with a pair of states that differ in all bytes and after
9 message injections leads to a collision. Following our notation, he had 55 byte
conditions, 21 byte degrees of value freedom, and 20 byte degrees of difference
freedom thus obtaining complexity 2(55−21−20)·8 = 2112 message pairs. In early
steps there was more freedom that is required by the trail so there was no clear
difference between the value freedom and the difference freedom. However, the
structural approach benefits from the difference freedom so we first exploit the
latter one. There is also an attack on the prefix-MAC built on Grindahl [9].

Although Grindahl-256 is already broken, the goal of our attack is not only
the illustration of structural technique. Peyrin provided some ad-hoc observa-
tions on the fact that his attack is one of the best dealing with the truncated-
differential approach, and 2104 is the lower bound on the complexity of such
attack. Our attack breaks this bound.

Attack. In order to apply the structural approach we first have to modify a
bit the class of truncated differentials. Here and later we consider two-valued
byte-difference: ∗ (random difference, including 0) and 0 (bytes coincide). They
are marked as grey and white cells in Figure 3, respectively. One can easily check
that this not only barely affect the probability of the trail and the complexity
of the collision search but also simplify computations.

The second barrier is that the trail used by Peyrin for collision search is badly
suited for the structural approach due to the distribution of probabilities among
the iterations, which helps the standard differential attack but does not provide
the best results for the structural attack. Table 1 (a) shows that we would have
to start with a structure if 212.5·8 = 2100 states, which does not offer enough
advantage against Peyrin’s attack.

The better complexity is provided by the second trail from [17], which was
proposed for the second-preimage search. However, there is a mistake in Peyrin’s
paper: the byte C inserted before the k-th iteration does not affect column 11 in
the k+1-th iteration. As a result, the complexity of a simple truncated differential
attack is 221·8 = 2168 pairs. However, the structural attack needs only a set of
210.5·8+0.5 = 284.5 states (Table 1 (b)).

The attack works as follows. Iterate Grindahl-256 for 10 rounds with ran-
domly chosen messages and obtain a structure with 284.5 states. Then we keep
the size of the strcture after the first iteration thanks to the 4-byte difference
freedom. After the second round the structure collapses to 272 pairs, and only
one pair comes out of the next iteration.

Time complexity of the attack. Since some message bytes pass several Sub-

Bytes transformations it is not clear how costly the steps when we deal with
structures are. A trivial upper bound is 2q+max(di) ≈ 2116. We propose some
optimizations, which lead to a complexity about 2100 operations though the

Cryptanalysis of Hash Functions with Structures 115

Table 1. Parameters of differential trails for Grindahl-256. Measurement in bytes.

i vi di pi c(i) c+v(i)
2

q(i)
Start − − − 14 7 12.5

1 0 2 2 14 7 12.5
2 3 4 7 14 8.5 9.5
3 4 3 7 14 10.5 5.5
4 4 2 7 13 12.5 1.5
5 4 3 9 11 14.5 −
6 4 4 14 5 16.5 −
7 2 2 9 0 17.5 −

8 − 9 0 0 0 0 17.5 −

i vi di pi c(i) c+v(i)
2

q(i)
Start − − − 21 10.5 10.5

1 0 4 4 21 10.5 10.5
2 4 4 20 9 12 −
3 4 3 15 0 14 −

4 − 5 0 0 0 0 14 −

(a) (b)

technique can probably be improved. The reader may refer to Table 8 for better
understanding.

In the first step there are 4 bytes of difference freedom and 4 bytes where
the difference should be canceled. The leader state of a new structure is defined
by iterating the round function with a random message block. For each next
state S in the structure we must find the message bytes (A, B, C, D) to be
injected (we keep this notation in the further text) that lead to a state colliding
in particular 4 bytes with the leader state. First consider column 7 before the
MixColumns transformation in the second iteration. Three bytes of column 7
are not affected by the message injection and can be derived explicitly. On the
other hand, one byte after the MixColumns transformation is known because
a collision there is needed. Thus, compute both the input and the output of the
MixColumns transformation of column 7 and thus derive the value of D and
the value of second byte in column 9 in the next iteration.

Then try all the values of C. For each value derive one more byte in col-
umn 9 in the third iteration. As a result, two bytes in column 9 are known
before the MixColumns transformation and two bytes are known due to the
fact of collision. As a result, derive the values of A and B and check the Mix-

Columns transformation in column 3 of the second iteration with the latter two
values. On average, 27 trials of C are required.

The second step is actually the bottleneck of our attack, though we believe
that the complexity may be reduced. First vary B and C for each state thus
obtaining 2100.5 states. Then the 16 bytes in the third iteration where zero dif-
ference is desired are fully determined by 6 bytes that are affected by A and D.
This gives us 16 − 6 = 10 byte conditions, which can be used to divide the set
of states into structures. One more condition we get from the second iteration,
where the byte was affected by just fixed B. Therefore, we obtain 2(10+1)·8 = 288

blocks each of size 212.5. In every block we have 6 variables and 6 conditions;
the other conditions are provided by constants. Since we process the blocks in-
dependently, the memory complexity is not increased.

116 D. Khovratovich

Then consider the unknown bytes in columns 3, 5 and 11 that are affected
only by A. Consider two random states in a block and denote by xA and x′

A

the message byte A after the SubBytes transformation. Then the fact of zero
difference in those columns can be expressed as the following system of equations:⎧⎪⎨⎪⎩

a12S(a21xA + c1) + c2 = a12S(a21x
′
A + c′1) + c′2;

a11S(a31xA + c3) + c4 = a11S(a31x
′
A + c′3) + c′4;

a14S(a41xA + c5) + c6 = a14S(a41x
′
A + c′5) + c′6.

Here aij are coefficients of the MixColumns matrix and ci are state-dependent
constants. Due to properties of the AES S-box xA and x′

A are uniquely deter-
mined (if there is a solution) by constants c = (c1, c2, c3, c4, c5, c6) and c′ =
(c′1, c′2, c′3, c′4, c5, c6). Furthermore, this property is transitive, so that we precom-
pute the function f : c→ xA.

As a result, a block of 212 states splits to 28 blocks with 24 states each where
A, B and C are fixed. In order to obtain the value of D repeat the same trick in
columns 7, 11, and 12 thus getting one pair per 24 states, or 296 pairs at all. Only
272 pairs of them pass through 3 conditions in column 9 in the fourth iteration.

In the last third step we have to pass 15 byte conditions given 6 byte degrees
of freedom. Since we deal with separate pairs, the filtering process be maintained
with precomputations (see [17]).

4.3 Grindahl-512

The hash function Grindahl-512 is defined similarly to Grindahl-256, but
the internal state is twice as big as that of Grindahl-512: it has 8 rows and 13
columns. Each injection of a message block substitutes the first column with 8
bytes of a message. The row offset values are defined by the following expression:

ci = i + 1; 0 ≤ i ≤ 7.

The MixColumns matrix is also redefined but the exact coefficients are irrelevant
to our attack. The only property we use is that this matrix is MDS with branch
number 9.

So far there is no collision attack on Grindahl-512 though a weakness of
using Grindahl-512 as the base of prefix-MAC was shown [9].

Attack. We use a 3-round differential trail, which is shown at Figure 4. The trail
is obtained by iterating Grindahl-512 backwards from the zero-difference state.
It is assumed that the last truncation (before the injection) deletes a column
with 6 byte differences, while the first two truncations delete the full-difference
column. The parameters of the trail are listed in Table 2 at the left. However, the
second step becomes so time-consuming that the resulting complexity overcomes
the brute-force one. The reason is that structures are too large to be quickly
recomposed into pairs. On the other hand, if we test all the possible injections,
the time complexity increases as well.

Cryptanalysis of Hash Functions with Structures 117

Table 2. Parameters of the differential trail for Grindahl-512. The second table is
obtained by splitting the second step into two substeps. Measurement in bytes.

i vi di pi c(i) q(i)
− − − 48 28

1 8 8 21 43 15
2 8 8 49 10 −
3 2 2 14 0 −

i vi di pi c(i) q(i)
− − − 48 28

1 8 8 21 43 15
2 - I 0 8 21 36 2
2 - II 8 0 28 10 −

3 2 2 14 0 −

We choose to decompose the second round into two sub-rounds with only slight
increase of the complexity. The idea is as follows. We first process the zeros that
are the result of the second MixColumns transformation and that are affected
by the second message injection. These are 21 zeros in columns 1–8. For any two
states that follow the trail before the second injection the condition of having
zero difference in these positions is equivalent to 21 linear equations with the
differences in the internal state after the S-box application as variables. Since the
message injection can be equivalently swapped with the S-box transformation
we obtain that the 21 equations are 21 linear conditions on 8 differences in the
message block.

Therefore, 213·8 structures of size 215·8 split into 2(13+21−8)·8 = 226·8 structures
of size 22·8. These structures collapse to pairs and are partly filtered out due to
the remaining 28 byte conditions though 8 byte degrees of freedom are still
available. Then we compose all possible 230·8 pairs and filter them out. The
desired values to be injected can be derived from pre-computed tables, which
are applicable since we already deal with pairs. The resulting complexity is
2240 computations and still 2224 memory. The complexity of the last step is
negligible. We also modify the memory complexity table taking into account the
considerations discussed above (Table 2).

4.4 Fugue

Hash family Fugue [10] has been recently submitted to the SHA-3 contest [16],
and has been recently chosen to the second round. It was designed by a group of
researchers in IBM. The design of Fugue resembles that of Grindahl with sev-
eral improvements, that should have increased the security. However, Fugue is
slower than Grindahl, which can be a serious disadvantage during the
competition.

We analyze Fugue with the structural approach and show that its security is
much higher than that of Grindahl. Though we do not break the Fugue secu-
rity claims, the our attack is significantly faster than a trivial internal-collision
attack.

118 D. Khovratovich

Description

Fugue-256. Fugue-256 has internal state, denoted by S, of 120 bytes, which is
viewed as a 4× 30 array. We denote by Si (i = 0 . . . 29) the i-th column of S. A
message, appropriately padded, is split to 4-byte blocks. Each block I is an input
to the round transformation of S, which is defined in pseudo-code as follows:

– TIX(I);
– Repeat 2 times:
• ROR3;
• CMIX;
• SMIX;

TIX, ROR3 and CMIX are linear transformations. TIX consists of the following
steps:

S16+ = S0; S0 = I; S8+ = S0; S1+ = S24,

where + stands for XOR. CMIX is linear as well:

S0+ = S4; S1+ = S5; S2+ = S6; S15+ = S4; S16+ = S5; S17+ = S6.

ROR3 rotates the state three columns to the right.
SMIX is a more complicated transformation. It process bytes in columns S0–

S3. First, the AES S-box is applied to those 16 bytes. Then they are composed
into a 16-byte vector, that is multiplied by matrix N , which is an almost-MDS
matrix with branch number 16.

After all the blocks have been processed, the final round transformation is
applied, and then eight columns of S are taken as hash output. Since we produce
a collision before the final round, we skip its description (see full details in [10]).

Fugue-512. Fugue-512 follows the same philosophy, but has a stronger design:
36 columns (instead of 30) and twice as many operations as Fugue-256 per
round:

– TIX’(I);
– Repeat 4 times:
• ROR3;
• CMIX’;
• SMIX;

The CMIX’ and TIX’ operations have more column additions compared to
Fugue-256, and column indices are different. TIX’:

S22+ = S0; S0 = I; S8+ = S0; S1+ = S24; S4+ = S27; S7+ = S30.

CMIX’:

S0+ = S4; S1+ = S5; S2+ = S6; S18+ = S4; S19+ = S5; S20+ = S6.

Cryptanalysis of Hash Functions with Structures 119

Table 3. Column dependencies in Fugue-256 and Fugue-512. Value −i for column j
means that before r-th round the last message block that affected column j is Mr−i.

Column 0–6 7–12 13 14–17 18–23 24–29
Depend on -1 -2 -3 -1 -2 -3

Column 0–12 13–17 18–26 27–35
Depend on -1 -2 -1 -2

Properties of Internal Transformations. We consider truncated differen-
tials, where difference in one byte may be either zero or random. We assume
that two columns have equal differences with probability 2−32, so every column
addition in CMIX and TIX operations costs us 232 if producing a zero column
from two random ones. The SMIX transformation is more complicated. The ma-
trix N is not MDS but is so called almost MDS with the branch number equal
to 13. As a result, when constructing a trail in the backward direction, we get
no benefit from having few active S-boxes in the input of S-Mix so we always
assumed that any active S-Mix output was produced by the input where all the
16 bytes are active. We certainly assume that this approach may not be optimal
though we do not see any properties of the S-Mix transformation which may
lead to other possibilities.

The designers provide several arguments for the resistance of Fugue to pure
and truncated differential attacks and even provide lower bounds for several
attack modes, which unfortunately do not cover the mode that we use. We only
point out that the complexity of the trivial internal collision attack on Fugue is
about 229·8·2 = 2464 for Fugue-256 and 2560 for Fugue-512.

Analysis of Fugue-256. The optimal trail that we found for Fugue-256 is
a 6-round trail depicted in Table 5. Although differences in round r + 2 can
theoretically be managed with a message injection in round r, this is not the
case for this trail. We use the r-th message injection to get proper differences in
only rounds r and r + 1 (mostly in round r).

We start with a structure of internal states of size 244·8 = 2352. It splits into
2320 structures of 232 states each after three rounds (Table 4). About 224·8 = 2192

pairs come out of the next round, and we get one colliding pair after two more

Table 4. Parameters of differential trails for Fugue-256 and Fugue-512

i vi di pi c(i) q(i)
Start − − − 80 44

−6 0 4 4 80 44
−5 4 4 16 72 32
−4 4 4 32 48 4
−3 4 4 32 24 −
−2 4 4 32 0 −
−1 0 4 4 0 −

i vi di pi c(i) q(i)
Start − − − 116 60

−4 4 4 28 96 36
−3 4 4 56 48 −
−2 4 4 56 0 −
−1 0 4 4 0 −

120 D. Khovratovich

Table 5. Trail for Fugue-256

R\C 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

−5 ∗
−4 ∗ ∗ ∗ ∗ ∗ −− ∗ ∗ ∗ ∗ − ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
−3 ∗ ∗ ∗ − ∗ −−− ∗ ∗ ∗ − − ∗ − − − − ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
−2 ∗ ∗ −− ∗ −−− ∗ − ∗ − − − − − − − − − − − − − ∗ ∗ ∗ ∗ ∗ ∗
−1 ∗ −−−−−−−−− ∗ − − − − − − − − − − − − − − − − − − −
0 −−−−−−−−−− −

Table 6. Summary of our attacks on concrete hash functions

Hash function Attack Memory complexity Time complexity
Grindahl-256 Truncated differential [17] 232 2112

Structural 284 2100

Grindahl-512 Structural 2224 2240

Fugue-256 Internal collision 2464 -
Structural 2352 2352

Fugue-512 Internal collision 2560 -
Structural 2480 2480

Table 7. Optimal trail for Fugue-512

R\C 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26–30 31–35

-4 ∗
-3 ∗ ∗ - - ∗ - ∗ ∗ ∗ ∗ ∗ - ∗
-2 ∗ ∗ - - ∗ - - ∗ ∗ - ∗ - ∗ - - - - - - - - - - - ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
-1 ∗ - - - - - - - - - ∗ - - - - - - - - - - - - - - - ----- -----
0 ----- -----

rounds. Due to big memory complexity of the attack, we assume that we are
allowed to run much precomutation and store the results in tables. We thus
assume that we spend negligible time complexity per each state and each pair,
so the resulting time complexity should be about 2352 as well. This complexity
is clearly much larger than the birthday bound (2128) though it is at the same
time much smaller than a birthday bound for the internal collision (2448). We
would also like to point out that we have not found any non-trivial differential
attack with a comparable complexity.

Analysis of Fugue-512. The optimal trail that we found for Fugue-512 is
a 5-round trail depicted in Table 7. Here we use a message injection to get

Cryptanalysis of Hash Functions with Structures 121

proper differences in the same round. We start with a structure of internal states
of size 260·8 = 2480. It splits into 2192 structures of 2288 states in the next
round (Table 4), and collapse to 2352 pairs after two rounds. Following the same
observation, we again assume that we spend negligible time complexity per each
state and each pair, so the resulting time complexity should be about 2480, which
is still much larger than the birthday bound (2256) and smaller than a birthday
bound for the internal collision (2560).

5 Conclusions and Future Work

We showed how the organization of internal states into structures can drasti-
cally reduce the complexity of collision search providing an appropriate differ-
ential trail. The exact formulas for memory complexity and estimates on time
complexity of the attack with structures have been provided. We successfully
combined our approach with simply obtained differential trails and presented
the best known attacks on Grindahl and the only external analysis of Fugue.
The results are summarized in Table 6.

We conclude that Fugue is much more resistant to attacks with truncated
differentials, that were successfully used for the cryptanalysis of Grindahl. This
is mostly due to a better diffusion and a larger internal state, which prevents from
this style of attacks. We believe that our attacks can be further improved with
other differential trails or better optimization of the maintenance of structures.
The complexity of the attack is now determined by the bottleneck step when
structures collapse to pairs. It is likely that the plot of the complexity function
can be significantly smoothed for some hash functions.

Acknowledgement. I greatly thank anonymous reviewers for their valuable
comments, which helped to improve the paper. I am supported by the PRP
“Security & Trust” grant of the University of Luxembourg.

References

1. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Radiogatun, a belt-and-mill
hash function (2006), http://radiogatun.noekeon.org/

2. Biham, E.: New techniques for cryptanalysis of hash functions and improved at-
tacks on Snefru. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 444–461.
Springer, Heidelberg (2008)

3. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

4. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

5. De Cannière, C., Rechberger, C.: Finding SHA-1 characteristics: General results
and applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

6. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

http://radiogatun.noekeon.org/

122 D. Khovratovich

7. Daemen, J., Rijmen, V.: The Design of Rijndael. AES — the Advanced Encryption
Standard. Springer, Heidelberg (2002)

8. Damg̊ard, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

9. Gorski, M., Lucks, S., Peyrin, T.: Slide attacks on a class of hash functions. In:
Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 143–160. Springer,
Heidelberg (2008)

10. Halevi, S., Hall, W.E., Jutla, C.S.: The hash function fugue. Submission to NIST
(2008)

11. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

12. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

13. Knudsen, L.R., Rechberger, C., Thomsen, S.S.: The Grindahl hash functions. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 39–57. Springer, Heidelberg
(2007)

14. Manuel, S., Peyrin, T.: Collisions on sha-0 in one hour. In: Nyberg, K. (ed.) FSE
2008. LNCS, vol. 5086, pp. 16–35. Springer, Heidelberg (2008)

15. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

16. NIST. Cryptographic hash algorithm competition,
http://www.nist.gov/hash-competition

17. Peyrin, T.: Cryptanalysis of Grindahl. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 551–567. Springer, Heidelberg (2007)

18. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
A synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994)

19. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

A Analysis of Complexity

The time complexity analysis is much harder because we have to arrange states
into structures as fast as possible.

We consider only one structure, because this process is independently applied
for all structures. To obtain the whole complexity one should multiply the derived
values by the current number of structures.

No freedom in message injection. States S′
i and S′

j belong to the same structure
if S′

i ∼ S′
j. On the other hand, if ∼ defines set R of linear differences then the

condition can be expressed in terms of projections to space R⊥ that is orthogonal
to R:

S′
i ∼ S′

j ⇔ prR⊥S′
i = prR⊥S′

j .

As a result, we compute the ordered set of projections of structures and use
binary search to derive the structure a state belongs to. Assuming the sorting

http://www.nist.gov/hash-competition

Cryptanalysis of Hash Functions with Structures 123

and search costs are negligible comparing to the round iteration we derive the
complexity roughly equal to the number of states.

Value freedom in message injection. The fact that there is the value freedom in
message injection does not affect the complexity of the attack if structures do
not collapse into pairs yet. The exact value of the complexity in this case is just
the number of states after the round iteration.

Consider the case where structures are collapsed to pairs and single states. As
mentioned in Section 3, the structure contains 22q−1+v pairs. The further steps
depend on whether we can exploit properties of the round function.

– If the round function is viewed as a black box, we just derive pairs for each
possible message m. The complexity is about 2q+v.

– If we can quickly find solutions m for the equation

prR⊥Si[m] = prR⊥Sj [m] (3)

then it is solved for all possible pairs about 22q−1 times.
– If there exist not only a fast algorithm for solution (3) but also function f

such that (3) has a solution iff f(Si) = f(Sj). Then we compose the ordered
set of f(S) and for each new state look for a pair with negligible cost. The
complexity would be equal to the maximum of the size of the initial structure
(2q) and the number of resulting pairs (22q−1+v−p).

Difference freedom in message injection. Again, first, we investigate the case
where structures do not collapse to pairs. Suppose states S′

1, . . . , S
′
i have been

already distributed into just created structures. We also require that every leader
state is obtained by the same injected message m0. A state Si+1 can be dis-
tributed to the structure with the leader state S′ if there exist a message mi+1
such that m0 ∼ mi+1 and prR⊥S′ = prR⊥Si+1[mi+1]. Denote by S the set of
all such states Si+1[mi+1]. Then the question is whether prR⊥S′ belongs to
prR⊥S.

If S is an affine space, and the linear space does not depend on Si+1 then we
can easily compute the projection and find the corresponding structure using the
ordered set approach. The complexity would be equal to the number of states.
If S is not an affine space but can be represented as a union of affine spaces then
we compute the projection for each space. In the worst case the complexity is
equal to 2d multiplied by the number of states.

Now consider the case where a structure collapse to pairs. This is actu-
ally the most complicated case and can be considered as a bottleneck. Indeed,
about 22q−1+v+d pairs are composed from a structure with 2q states. About
22q−1+v+d−p pairs come out of the round iteration. The possible approaches are
similar to the case where there is no freedom in difference. If the round func-
tion is a black box, the complexity varies from 2q+v to 2q+v+d. If there exists a
function f such that (3) has a solution iff f(Si) = f(Sj), then the complexity is
between 2q and 22q−1+v+d−p).

124 D. Khovratovich

B Trails

M2 Iteration 2

M3 Iteration 3

M4 Iteration 4

M5 Iteration 5

Fig. 3. Differential trail for Grindahl-256 (Table 1 (b))

1

1 11 1 1 1 1 1

1 11 1 1 1 1 1

2

2 2 2 22 2 2 2

2 2 2 22 2 2 2 1 1 1 1

3

3 3

1 11 1 1 1 1 1

2 2 2

3 32 2 2

MC MCMC

SR SR SR
SR

MC

Inj Inj
Inj2 2

22

Fig. 4. Differential trail for Grindahl-512 (Table 2 (b))

Cryptanalysis of Hash Functions with Structures 125

Table 8. Dependencies of the message block in the differential trail for Grindahl-256

Message bytes
It Col Cost 1 2 3

2 1 B
2 3 1 B A

7 1 D

1 2 A
2 2 B
3 3 B A
5 3 C A
6 3 C B

3 7 2 D
8 2 C
9 2 C D AC BD
10 2 D
11 2 D A
12 1 D B

3 3 B A
4 9 3 C D AC BD

11 3 D A
12 3 B

Cryptanalysis of the LANE Hash Function

Shuang Wu, Dengguo Feng, and Wenling Wu

State Key Lab of Information Security, Institute of Software
Chinese Academy of Sciences

Beijing 100190, China
{wushuang,feng,wwl}@is.iscas.ac.cn

Abstract. The LANE[4] hash function is designed by Sebastiaan In-
desteege and Bart Preneel. It is now a first round candidate of NIST’s
SHA-3 competition. The LANE hash function contains four concrete
designs with different digest length of 224, 256, 384 and 512.

The LANE hash function uses two permutations P and Q, which
consist of different number of AES[1]-like rounds. LANE-224/256 uses
6-round P and 3-round Q. LANE-384/512 uses 8-round P and 4-round
Q. We will use LANE-n-(a,b) to denote a variant of LANE with a-round
P , b-round Q and a digest length n.

We have found a semi-free start collision attack on reduced-round
LANE-256-(3,3) with complexity of 262 compression function evaluations
and 269 memory. This technique can be applied to LANE-512-(3,4) to
get a semi-free start collision attack with the same complexity of 262 and
269 memory. We also propose a collision attack on LANE-512-(3,4) with
complexity of 294 and 2133 memory.

Keywords: hash function, collision attack, rebound attack, LANE,
SHA-3 candidates.

1 Introduction

The SHA-3 competition hosted by NIST aims to find a new cryptographic hash
standard as a replacement of SHA-2. 51 of the 64 submitted designs are accepted
to entered the first round. The LANE hash function is one of the first round
candidates.

The attacks on widely used hash standards such as MD5[2] and SHA-1[3]
are based on differential analysis. Many of the first round candidates of SHA-
3 competition use AES[1]-like SPN structures and claim to resist differential
attacks.

Florian Mendel et al. have proposed a new tool of “Rebound”[5] attack for
cryptanalysis of AES-based designs. The main idea of rebound attack is to take
advantage of weakness implied by S-box’s optimal non-linearity. Random input
and output differences of an S-box match with surprisingly high probability of
1/2 and at least two values can be selected for each S-box. The complexity of
one round in the traditional truncated differential path can be totally eliminated

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 126–140, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Cryptanalysis of the LANE Hash Function 127

at the cost of exhausting degrees of freedom of the active state values. In this
paper, we analyze reduced LANE with rebound techniques. There are other
parallel works of improved rebound techniques and applications in [7,8,9].

This paper is organized as follows. In section 2, we briefly describe the LANE
hash function. In section 3, we discuss inner collisions of only two lanes in the
first layer P. Then semi-free start collision attacks on reduced LANE-256 are
described in section 4. Section 5 describes the attacks on reduced LANE-512.
Section 6 is the conclusion.

2 Description of LANE Hash Function

The LANE hash function uses iterative MD structure with counters and out-
put transformation. Digest values of LANE-224 and LANE-384 are truncated
from LANE-256 and LANE-512 separately. Details of padding rules and output
transformation are omitted here since they do not influence this attack.

In this section we briefly describe the compression function of LANE-256
and LANE-512. LANE-256/512 is an iterative hash function, whose compression
function f(Hi−1, Mi, Ci) processes a 512/1024-bit message block, a 512/1024-
bit chaining value, a 64-bit counter, and outputs 256/512-bit digest length. The
chaining state Hi−1 and the message block Mi are expanded to six 256/512-
bit blocks. Each block enters a different lane of P . Different lanes use different
constants and counters. Output of the first three lanes and the last three lanes
are XORed separately as input of the Q permutations. At last, output of both
Q permutations are XORed as the next chaining value Hi. The structure of
compression function in LANE is shown in Figure 1.

Fig. 1. The compression function of LANE

2.1 Message Expansion

The compression function of LANE-256 expands chaining value Hi−1 = h0||h1
and message block Mi = m0||m1||m2||m3 to six 256-bit blocks W0, ...W5 as
shown in equation 1.

128 S. Wu, D. Feng, and W. Wu

W0 = h0 ⊕m0 ⊕m1 ⊕m2 ⊕m3 || h1 ⊕m0 ⊕m2
W1 = h0 ⊕ h1 ⊕m0 ⊕m2 ⊕m3 || h0 ⊕m1 ⊕m2
W2 = h0 ⊕ h1 ⊕m0 ⊕m1 ⊕m2 || h0 ⊕m0 ⊕m3
W3 = h0 || h1
W4 = m0 || m1
W5 = m2 || m3

(1)

The message expansion in LANE-512 is analogous. The only difference is that
all blocks are double-sized.

2.2 Permutations P and Q

P and Q in Figure 1 are permutations with AES-like state update rounds. LANE-
256 uses 6-round P , 3-round Q and LANE-512 uses 8-round P and 4-round Q.
Each round contains five steps. One round of state update operation in LANE-
256 is shown in Figure 2. The difference in LANE-512 is that all operations are
on four 4× 4 matrices.

In this paper, we use Si to denote the state value after the i-th round. Between
Si and Si+1, the state values are denoted as S′

i, S′′
i , S′′′

i and S′′′′
i consecutively.

�Si is used to denote the XOR difference of state Si.
The five steps of one round are:

– SB: the non-linear operation SubBytes applies an S-Box to each byte of
the state. The S-box is the same as the one used in AES[1].

– SR: the cyclical permutation ShiftRows rotates the bytes of the i-th row
leftwards by i positions.

– MC: the diffusion layer MixColumns multiplies each column by a MDS
matrix which is the same as the one in AES.

– AC: the constants and counter additions AddConstants and AddCounter
add the round constants and the counter to the states. We use AC to denote
both of them. The last rounds of both P and Q don’t have AC operations.
Details of the AC operations are omitted here since they have nothing to do
with our attacks.

– SC: the mixing operation between different 4 × 4 states SwapColumns
reorders the columns in the state. LANE-256 and LANE-512 use different
SwapColumns operations which are shown in Figure 3.

Fig. 2. One round of state update operation in LANE-256

Cryptanalysis of the LANE Hash Function 129

Fig. 3. SwapColumns operations used in LANE-256 and LANE-512

3 Construct Inner Collisions Using Rebound Techniques

The LANE hash function has six lanes in the first layer P . In this section, we are
trying to construct collisions between only two lanes, namely the inner collisions.
It’s easy to see that two simultaneous inner collisions could directly lead to a
full collision.

3.1 Optimal Differential Pattern for LANE

The message expansion used in LANE is based on a linear (6,3,4)-code over GF4,
which means for any possible differential path, there are at least four active lanes
in the first layer P . Once the difference enters layer Q, there would be more active
S-Boxes. So we want to eliminate all differences before they enter layer Q.

This is the best differential pattern for LANE with four active lanes P1, P2, P4
and P5. Two inner collisions in layer P ensure no difference enter layer Q as
shown in Figure 4.

Let �m0 = �m2 �= 0 and �h0 = �h1 = �m1 = �m3 = 0, we have four
active lanes P1, P2, P4 and P5 and the differences in W are in the form of (�, 0)
and (0,�). Differential paths with initial difference of (�, 0) and (0,�) behave

Fig. 4. Optimal differential pattern for LANE

130 S. Wu, D. Feng, and W. Wu

Fig. 5. Rebound differential path of an inner collision for LANE-256

Cryptanalysis of the LANE Hash Function 131

in a similar way. So we only need to consider one type of differential path in the
final attack. We will talk about this in section 4.2.

3.2 Rebound Differential Path of Inner Collision

In this section, we only consider an inner collision of two lanes. Using rebound
techniques proposed by Florian Mendel et al. in [5], we can easily attack round 6
of layer P in LANE-256 with a complexity of 2100. The differential path is shown
in Figure 5.

In traditional truncated differential path, difference propagates from initial
state to hash value in forward direction. In a rebound attack, we search for an
inbound differential path in internal states first. Then the outbound part can be
considered as two truncated differential paths in different directions - forward
and backward. Since complexity of the inbound phase can be eliminated, we only
need to consider probability of the outbound phase.

Here, we briefly describe the attack of inner collision. This is similar to the at-
tack on Grøstl[5]. For more details of rebound attack, please refer to the original
paper.

Step 1: We start from choosing random differences in both S′′
2 and S4. Then

compute �S3 from �S′′
2 and �S′

3 from �S4. These difference propagations
�S′

2 →�S3 and �S′
3 ←�S4 hold with probability of 1 because all operations

between them are linear transformations SR, MC, AC and SC.

Step 2: We expect to find a match of possible differential character at the S-box
in the third round with probability of 2−32, because random difference in input
and output of an S-Box matches with probability of 1/2 and there are 32 active
S-boxes. Once we have found a match, we get 232 staring points (attempts) for
the outbound phase, since we have at least two values for each S-Box match. So
we can generate 232 attempts with complexity of 232. For any x ≥ 32 we can
generate 2x attempts with complexity of 2x.

Step 3: Each starting point (attempt) can lead to our demanded differential
pattern in S0 with a probability of 2−48 × 2−8 = 2−56. In other words, we can
generate a successful attempt in one lane with complexity of 256.

Step 4: In order to find a match in the three bytes of difference in S0 and eight
bytes in S′′

5 between two lanes, we need 28×(3+8)/2 = 244 successful attempts
in both lanes. So the complexity is 256 × 244 = 2100 for a inner collision with
the same initial difference in both lanes. The memory requirements of step 4 is
2× 244 = 245.

4 Semi-free Start Collision Attack on LANE-256-(3,3)

Even if we have successfully found two inner collisions of four lanes in layer P ,
we can not get a collision of full LANE. The problem is the message expansion
since rebound attack require a full control of the state values. Four initial state
values of the two inner collisions will probably lead to a contradiction since we

132 S. Wu, D. Feng, and W. Wu

have a degree of freedom for only three states, namely (h0, h1), (m0, m1) and
(m2, m3).

More precisely, from two inner collisions we get the exact values of W1, W2, W4
and W5. Recall equation (1), and we can see that W4 and W5 can determine
values of m0, m1, m2 and m3. By selecting the values of h0 and h1, we can
change the value of (h0 ⊕ h1 ⊕m0 ⊕m2 ⊕m3, h0 ⊕m1 ⊕m2) to W1 which we
have got from the first inner collision. Since all degrees of freedom are used, we
have to leave W2 satisfied by chance.

There are 256 bits left in W2 along with the 24-bit initial difference. We need
2(256+24)/2 = 2140 inner collisions in both P1, P2 and P4, P5 to find a match in
256 + 24 = 280 bits. So in both lanes of one inner collision, we need 2140/2 =
270 times more attempts. The complexity of semi-free start collision attack on
LANE-256 is 2100 × 270 = 2170 > 2128 which exceeds the birthday bound of
256-bit hash functions and this attack fails.

4.1 Rebound Differential Path with Partially Fixed State Values

We are inspired by Dmitry Khovratovich et al. of their meet-in-the-middle at-
tacks on several SHA-3 candidates[6]. The idea is to fix values of certain bits to
get an actually smaller size in the meet-in-the-middle part of the target state
and lower the complexity.

If we fix some bytes in an AES state, they would be affected by other bytes
in at most two rounds. We have got an observation that diffusion in LANE is
not as efficient as in AES. Fixed values in certain positions of the initial state
can proceed to the third round in both LANE-256 and LANE-512.

Combining this small observation and rebound techniques, we have found a
solution for LANE-256-(3,3) as shown in Figure 6.

In this figure, one byte with a mark of “X” means its value can be pre-
computed and fixed during the attack. In our attack, we let all the X bytes
in S0 to be zeros and calculate values of the following ones. When we choose
differences in S′

1 and S′′
2 , we also set the values of fixed bytes in S′

1 and S′′
2 to

what we have pre-computed.
In the four active lanes of this attack, the round constants and counters are

different. So the exact values of fixed bytes in S′
1 and S′′

2 are different in four
lanes. But they would all lead to zero values in the certain positions of initial
states.

We also let the values of marked bytes in h0 and h1 to be zeros. So when we
have got W1, W2, W4 and W5 from two inner collisions, we calculate the values
of the non-zero bytes of h0, h1, m0, m1, m2 and m3 from W1, W4 and W5. Then
there are only 128 bits of state values left unsatisfied in W2 instead of 256 bits,
since all zero bytes are already satisfied in advance.

4.2 Details of the Attack

In this attack, We use two inner collision differential paths with initial differences
of the patterns (�, 0) and (0,�) separately. If we change the position of two
4× 4 matrices in the initial state of one path, the differential path don’t change

Cryptanalysis of the LANE Hash Function 133

Fig. 6. Rebound differential path for LANE-256-(3,3)

134 S. Wu, D. Feng, and W. Wu

Fig. 7. Outline of the attack on LANE-256-(3,3)

substantially. Especially, the positions of fixed bytes don’t change. So we consider
these two differential paths equivalent and only need to analyze one of them in
the following steps. Figure 7 shows outline of this attack.

This attack is described in six steps. Step 1 is the pre-computation. Steps 2 to
4 are the details in one lane of an inner collision. Step 5 is the meet-in-the-middle
step of the initial difference between two lanes. Step 6 is the meet-in-the-middle
step of the state values and the difference byte between two inner collisions
except for the X bytes.

Step 1: Set all fixed bytes in the initial states in four lanes to zeros and compute
the consecutive exact values of all fixed bytes in the following states.

Step 2: Choose random differences in both S′
1 and S′′

2 . Here is a little difference
from the attack above. We choose differences in S′′

2 to be the same in both lanes
of one inner collision. These two differences will remain the same when they
proceed to S3 because of the linear transformations from S′′

2 to S3. Even though
we don’t know the exact value of �S3 in both lanes, they must be the same and
will offset each other before they enter layer Q.

Step 3: We expect to find a match of possible differential character at the S-
box in the second round with probability of 2−32 as in the attack above. Once
we have found a match, we get 232 staring points (attempts) for the outbound
phase. Now assume that we generated 2x attempts with complexity of 2x.

Step 4: We can find a successful attempt in one lane in every 224 attempts.
With 2x attempts, we expect to find 2x−24 successful ones.

Cryptanalysis of the LANE Hash Function 135

Step 5: Now we have 2x−24 successful attempts in both lanes, so we can find
22(x−24)−8 = 22x−56 matches in the only one byte difference in S0. So we have
got 22x−56 inner collisions in P1,P2 and the same number of inner collisions in
P4,P5. This step requires 4× 2x−24 memory.

Step 6: After we select the values of h0 and h1, there are 128 bits in W2 and
8 bits in the initial difference unsatisfied. So we expect 22(2x−56)−136 = 24x−248

matches in these 136 bits. This step requires 2× 22x−56 memory.
If x = 62, we expect to find a final match. Memory requirements of step 5 and

step 6 are 240 and 269. So the semi-free start collision attack on LANE-256-(3,3)
has an overall complexity of 262 and requires about 269 memory.

5 Applications to LANE-512

We can also use rebound techniques to find inner collisions for LANE-512. By
fixing certain bytes in the state values, we can find semi-free collision and collision
attacks on LANE-512-(3,4).

5.1 Inner Collision of LANE-512

For LANE-512, we can proceed to round 8 of P in an inner collision attack of two
lanes. The differential path will be shown in Figure 8 as an appendix. Details of
this attack is similar to inner collision attack on LANE-256 in section 3.2.

For any given attempt, it is successful with probability of 2−24×2−96 = 2−120,
which means we can generate one successful attempt with complexity of 2120.
Then we have to match in 8 × (16 + 16) = 256 bits, and we need 2256/2 = 2128

successful attempts in both lanes. The complexity of inner collision on LANE-
512 is 2120 × 2128 = 2248 and the memory requirement of meet-in-the-middle
step is 2× 2128 = 2129.

5.2 Semi-free Start Collision Attack and Collision Attack on
LANE-512-(3,4)

Using the fixed bytes techniques, we can find a semi-free start collision of reduced
LANE-512-(3,4) with a differential path shown in Figure 9 as an appendix. This
attack is almost the same as the attack in section 4.2 with the same complexity
of 262 and 269 memory.

As you can see in Figure 9, we can fix more bytes in the 3-round path for
LANE-512. If we don’t use the degrees of freedom in the initial chaining values
h0 and h1, we have 16 more bytes in the final meet-in-the-middle part. The
difference is that fixed bytes in W1 and W2 are not set to zeros in the marked
positions. Recall equation 1, since now values of h0 and h1 are fixed, if we set
fixed bytes of W4 and W5 to zeros, values of W1 and W2 in the marked positions
are determined by the value of standard IV = (h0, h1).

Assume that we have generated 2x attempts in each lanes, we expect 22x−56

inner collisions in both P1, P2 and P4, P5. The difference is now we have to match

136 S. Wu, D. Feng, and W. Wu

256 + 8 = 264 bits. So we expect 22×(2x−56)−264 = 24x−376 final matches with
memory requirement of 2× 22x−56. If x = 94, we expect to find one final match.

So, we have found a collision attack on LANE-512-(3,4). The complexity of
collision attack on LANE-512-(3,4) is 294 and memory requirement is 2133.

5.3 Semi-free Start Collision Attack on LANE-512-(4,4)

If we want to attack more than three round in P, we can no longer use fixed val-
ues, since fixed values can only proceed to the third round. Without fixed values,
we can attack LANE-512-(4,4) with a differential path shown in
Figure 10 which is part of the one shown in Figure 8.

Assume that we have generated 2x attempts in each lanes, and only 2x−120

of them will be successful ones. Then we expect 22(x−120)−8 = 22x−248 inner
collisions in both P1, P2 and P4, P5. Here, we have to match 512 + 8 = 520 bits.
So we expect 22×(2x−248)−520 = 24x−1016 final matches with memory requirement
of 2× 22x−248. If x = 254, we expect to find one final match.

So, the complexity of semi-free start collision attack on LANE-512-(4,4) is
2254 and memory requirement is 2261. Though computational complexity is less
than birthday bound, memory requirement of this attack is more than 2256. This
attack can be considered unsuccessful.

6 Conclusion

In this paper, we analyzed the LANE hash function using rebound and meet-in-
the-middle techniques. We give several attacks on reduced variants of LANE-256
and LANE-512. Table 1 shows all the results of these attacks. Notation “ † ” in
this table means the attack can be considered unsuccessful.

The memory requirements of all these attacks come from the meet-in-the-
middle steps. But the memoryless variants seem not easy to be implemented in
our attacks.

We can hardly attack more than three rounds of P with method of fixing
certain bytes, since the fixed values can only proceed to the third round. Our
attacks on reduced variants do not hurt collision resistance of full LANE.

Acknowledgments. The authors would like to thank the anonymous referees
for their valuable comments. Furthermore, this work is supported by the National

Table 1. Results of collision attacks in this paper

hash function P rounds Q rounds collision type complexity memory

LANE-256
6 - inner collision of P 2100 245

3 3 semi-free start collision 262 269

LANE-512

8 - inner collision of P 2248 2129

3 4
semi-free start collision 262 269

collision 294 2133

4 4 semi-free start collision 2254 2261†

Cryptanalysis of the LANE Hash Function 137

High-Tech Research and Development 863 Plan of China (No. 2007AA01Z470),
the National Natural Science Foundation of China (No. 60873259), and the Na-
tional Grand Fundamental Research 973 Program of China (No. 2004CB318004).

References

1. National Institute of Standards and Technology: FIPS PUB 197, Advanced Encryp-
tion Standard (AES). Federal Information Processing Standards Publication 197,
U.S. Department of Commerce (November 2001)

2. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

3. De Cannière, C., Rechberger, C.: Finding SHA-1 characteristics: General results and
applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp.
1–20. Springer, Heidelberg (2006)

4. Indesteege, S., Preneel, B.: The LANE hash function,
http://www.cosic.esat.kuleuven.be/lane/

5. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

6. Khovratovich, D., Nikolić, Weinmann, R.: Meet-in-the-Middle Attacks on SHA-3
Candidates. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 228–245.
Springer, Heidelberg (2009)

7. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved Cryptanalysis of the
Reduced Grøstl Compression Function, ECHO Permutation and AES Block Cipher.
In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867,
pp. 16–35. Springer, Heidelberg (2009)

8. Lamberger, M., Mendel, F., Rechberge, C., Rijmen, V., Schläffer, M.: Rebound
Distinguishers: Results on the Full Whirlpool Compression Function. In: Matsui,
M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912. Springer, Heidelberg (to appear,
2009)

9. Matusiewicz, K., Naya-Plasencia, M., Nikolić, I., Sasaki, Y., Schläffer, M.: Rebound
Attack on the Full LANE Compression Function. In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912. Springer, Heidelberg (to appear, 2009)

http://www.cosic.esat.kuleuven.be/lane/

138 S. Wu, D. Feng, and W. Wu

Appendix

Fig. 8. Rebound differential path of inner collision for LANE-512

Cryptanalysis of the LANE Hash Function 139

Fig. 9. Rebound differential path for LANE-512-(3,4)

140 S. Wu, D. Feng, and W. Wu

Fig. 10. Rebound differential path for LANE-512-(4,4)

Practical Pseudo-collisions for Hash Functions
ARIRANG-224/384

Jian Guo1,�, Krystian Matusiewicz2, Lars R. Knudsen2, San Ling1,
and Huaxiong Wang1

1 Division of Mathematical Sciences,
School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore
{guojian,lingsan,hxwang}@ntu.edu.sg

2 Department of Mathematics,
Technical University of Denmark, Denmark

{K.Matusiewicz,Lars.R.Knudsen}@mat.dtu.dk

Abstract. In this paper we analyse the security of the SHA-3 candi-
date ARIRANG. We show that bitwise complementation of whole registers
turns out to be very useful for constructing high-probability
differential characteristics in the function. We use this approach to find
near-collisions with Hamming weight 32 for the full compression function
as well as collisions for the compression function of ARIRANG reduced to
26 rounds, both with complexity close to 20 and memory requirements
of only a few words. We use near collisions for the compression function
to construct pseudo-collisions for the complete hash functions ARIRANG-
224 and ARIRANG-384 with complexity 223 and close to 20, respectively.
We implemented the attacks and provide examples of appropriate pairs
of H,M values. We also provide possible configurations which may give
collisions for step-reduced and full ARIRANG.

Keywords: practical, pseudo-collision, ARIRANG, hash function.

1 Introduction

ARIRANG [1] is one of the first-round candidates in the SHA-3 competition
organized by NIST. It is an iterated hash function that uses a variant of the
Merkle-Damg̊ard mode augmented by a block counter. The compression func-
tion is a dedicated design that iterates a step transformation that can be seen as
a target-heavy unbalanced Feistel network [9]. Its construction seems to be in-
fluenced by an earlier design called FORK-256 [4] with the important difference
of using a bijective function based on a layer of S-boxes and an MDS mapping
as the source of non-linearity. This prevents attacks similar to the ones devel-
oped for FORK-256 [7,6,2] from working on ARIRANG. A single sequence of 40
steps rather than four parallel branches makes it immune to meet-in-the-middle
attacks [8].
� The paper was partly done during the author’s visit to Technical University of

Denmark and was partly supported by a DCAMM grant there.

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 141–156, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

142 J. Guo et al.

Related Work. To the best of our knowledge, the only published previous work
on ARIRANG is a step-reduced preimage attack by Hong et al [3]. Based on the
meet-in-the-middle preimage attack framework developed by Sasaki et al, Hong
et al were able to find [3-33] step-reduced pseudo-preimages with complexity
2241 and 2481 for ARIRANG-256 and ARIRANG-512, respectively.

Our Contributions. In this paper we report results of our security assessment
of ARIRANG. The initial observation that motivated our analysis was the fact
that differences created by complementing (flipping) all bits in a register propa-
gate quite nicely through the function due to a particular interaction of the layer
of S-boxes and an MDS mapping. We were able to exploit this fact to derive a
range of attacks on the compression function and extend some of them to attacks
on the complete hash function.

After a short description of ARIRANG given in section 2 we explain in de-
tails our ideas of managing all-ones differences in section 3 and show how to
find conforming messages in section 4. After that, we describe two attacks on
ARIRANG. In section 5 we show how to find collisions for 26 out of 40 steps
of the compression function with complexity close to the cost of computing
a single hash value of ARIRANG. Next, we show in Section 6 that by inject-
ing all-ones difference in one of the chaining values we can easily (with com-
plexity close to one evaluation) obtain 32-bit (resp. 64-bit) near collisions for
the full compression function of ARIRANG-256 (resp. ARIRANG-512). We use
the freedom of selecting in which chaining register we want to have differ-
ences to convert those near-collisions for the compression function to pseudo-
collisions for the full hash functions ARIRANG-224 and ARIRANG-384 which we
can obtain with complexity 223 and close to 20 respectively. Finally, we discuss
some open problems and conclude in Section 8. Our results are summarized in
Table 1.

Table 1. Summary of the results of this paper

Compression function

Result Complexity Example
32-bit near-collision for full ARIRANG-256 compress 1 Y
64-bit near-collision for full ARIRANG-512 compress 1 Y

26-step collision for ARIRANG-256/512 1 Y
Hash function

Result Complexity Example
pseudo-collision for full ARIRANG-224/384 hash 223 / 1 Y

2 Brief Description of ARIRANG

We start with providing a minimal description of ARIRANG necessary to un-
derstand our attacks. More details can be found in the original submission
document.

Practical Pseudo-collisions for Hash Functions ARIRANG-224/384 143

Fig. 1. Compression function of ARIRANG

Compression Function. The fundamental building block of the hash function
ARIRANG-256 (ARIRANG-512) is the compression function that takes 256-bit
(512-bit) chaining value and 512-bit (1024-bit) message block and outputs a
new 256-bit (512-bit) chaining value. The function, depicted in Fig. 1, consists
of two main parts: the message expansion process and the iteration of the step
transformation.

The message expansion function takes as input 16 words of the message
M0, . . . , M15 and produces 80 expanded message words in two stages. First, 32
words Wi are generated according to the procedure described in Alg. 1, where
Ki are word constants and ri are fixed rotation amounts. Our attacks do not
depend on their actual values. Next, these 32 words are used 80 times, two in

Table 2. Ordering σ of expanded message words Wi used in step transformations

i σ(i) i σ(i) i σ(i) i σ(i)
0, 1 16, 17 20, 21 20,21 40, 41 24, 25 60, 61 28, 29
2, 3 0, 1 22, 23 3, 6 42, 43 12, 5 62, 63 7, 2
4, 5 2, 3 24, 25 9,12 44, 45 14, 7 64, 65 13, 8
6, 7 4, 5 26, 27 15, 2 46, 47 0, 9 66, 67 3, 14
8, 9 6, 7 28, 29 5, 8 48, 49 2, 11 68, 69 9, 4

10, 11 18, 19 30, 31 22,23 50, 51 26, 27 70, 71 30, 31
12, 13 8, 9 32, 33 11,14 52, 53 4, 13 72, 73 15, 10
14, 15 10, 11 34, 35 1, 4 54, 55 6, 15 74, 75 5, 0
16, 17 12, 13 36, 37 7,10 56, 57 8, 1 76, 77 11, 6
18, 19 14, 15 38, 39 13, 0 58, 59 10, 3 78, 79 1, 12

144 J. Guo et al.

each step transformation, in the order defined by the function σ described in
Table 2.

Algorithm 1. Generation of expanded message words in ARIRANG.
for i = 0, . . . , 15 do

Wi ← Mi

end for
W16 ← (W9 ⊕ W11 ⊕ W13 ⊕ W15 ⊕ K0) ≪ r0

W17 ← (W8 ⊕ W10 ⊕ W12 ⊕ W14 ⊕ K1) ≪ r1

W18 ← (W1 ⊕ W3 ⊕ W5 ⊕ W7 ⊕ K2) ≪ r2

W19 ← (W0 ⊕ W2 ⊕ W4 ⊕ W6 ⊕ K3) ≪ r3

W20 ← (W14 ⊕ W4 ⊕ W10 ⊕ W0 ⊕ K4) ≪ r0

W21 ← (W11 ⊕ W1 ⊕ W7 ⊕ W13 ⊕ K5) ≪ r1

W22 ← (W6 ⊕ W12 ⊕ W2 ⊕ W8 ⊕ K6) ≪ r2

W23 ← (W3 ⊕ W9 ⊕ W15 ⊕ W5 ⊕ K7) ≪ r3

W24 ← (W13 ⊕ W15 ⊕ W1 ⊕ W3 ⊕ K8) ≪ r0

W25 ← (W4 ⊕ W6 ⊕ W8 ⊕ W10 ⊕ K9) ≪ r1

W26 ← (W5 ⊕ W7 ⊕ W9 ⊕ W11 ⊕ K10) ≪ r2

W27 ← (W12 ⊕ W14 ⊕ W0 ⊕ W2 ⊕ K11) ≪ r3

W28 ← (W10 ⊕ W0 ⊕ W6 ⊕ W12 ⊕ K12) ≪ r0

W29 ← (W15 ⊕ W5 ⊕ W11 ⊕ W1 ⊕ K13) ≪ r1

W30 ← (W2 ⊕ W8 ⊕ W14 ⊕ W4 ⊕ K14) ≪ r2

W31 ← (W7 ⊕ W13 ⊕ W3 ⊕ W9 ⊕ K15) ≪ r3

The iterative part uses the step transformation to update the state of 8 chain-
ing registers, a, b, . . . , h. First, the input chaining values H [0], . . . , H[7] are
loaded into chaining registers a, . . . , h. Then, the step transformation is applied
20 times. After 20 steps, the initial chaining values are XOR-ed to the current
chaining values and the computation is carried on for another 20 steps. At the
end, the usual feed-forward is applied by XOR-ing initial chaining values to the
output of the iteration.

The step transformation updates chaining registers using two expanded
message words Wσ(2t), Wσ(2t+1) as follows

T1 ← G(256)(at ⊕Wσ(2t)), T2 ← G(256)(et ⊕Wσ(2t+1)),
bt+1 ← at ⊕Wσ(2t), ft+1 ← et ⊕Wσ(2t+1),

ct+1 ← bt ⊕ T1, gt+1 ← ft ⊕ T2,

dt+1 ← ct ⊕ (T1 ≪ 13), ht+1 ← gt ⊕ (T2 ≪ 29),
et+1 ← dt ⊕ (T1 ≪ 23), at+1 ← ht ⊕ (T2 ≪ 7).

This transformation is illustrated in Fig. 2. In ARIRANG-256, it uses a function
G(256) which splits 32-bit input value into 4 bytes, transforms them using AES

Practical Pseudo-collisions for Hash Functions ARIRANG-224/384 145

13

23

29

7

Wσ(2t) Wσ(2t+1)

at bt ct dt et ft gt ht

at+1 bt+1 ct+1 dt+1 et+1 ft+1 gt+1 ht+1

Fig. 2. Step transformation of ARIRANG updates the state of eight chaining registers

S

S

S

S

M
D

S
4
×

4

Fig. 3. Function G(256) of ARIRANG-256 uses four AES S-Boxes followed by AES MDS
mapping

S-Box and feeds the result to the AES MDS transformation, as presented in
Fig. 3. ARIRANG uses the same finite field as AES, defined by the polynomial
x8 + x4 + x3 + x + 1. MDS mapping for 256 bit variant is defined as

MDS4×4 =

⎡⎢⎢⎣
z z + 1 1 1
1 z z + 1 1
1 1 z z + 1
z + 1 1 1 z

⎤⎥⎥⎦ .

In ARIRANG-512, an analogous function G(512) is defined using a layer of 8
S-boxes and an appropriate 8× 8 MDS matrix.

Hash Function. The hash function ARIRANG is an iterative construction
closely following the original Merkle-Damg̊ard mode. The message is first padded
by a single ‘1’ bit followed by an appropriate number of zero bits and a 64-bit
field containing the length of the original message. After padding and appending
block length field, the message is divided into 512-bit blocks and the compression
function is applied to process each of the blocks one by one. The construction
has one additional variable compared to the plain Merkle-Damg̊ard mode. A new
variable that stores the current message block index is introduced and its value
is XOR-ed into chainings before each application of the compression function.
However, this does not affect our attacks.

146 J. Guo et al.

3 All-One Differences

From the description of ARIRANG-256, it is clear that it uses only three essential
building blocks: XORs, bit rotations and the function G(256), which is the only
part non-linear over F2.

Let us focus on the function G(256) first. First, note that for the AES S-Box
input difference of 0xff maps to output difference 0xff with probability 2−7,
the two values x for which S(x)⊕ S(x⊕ 0xff) = 0xff are 0x7e, 0x81.

The second observation is that for the 256-bit MDS mapping all the vectors
of the form (a, a, a, a) are fixed points since a · z + a(z + 1) + a + a = a.

This means all-one difference will map to all-one difference through MDS4×4.
In turns, there are 16 32-bit values x such that

G(256)(x) ⊕G(256)(x⊕ 0xffffffff) = 0xffffffff

and the probability of such a differential is 2−28.
This means we can consider a differential that uses only all-one differences

in active registers. The big advantage of such differences is that they are rota-
tion invariant, so we can easily model differentials like that by replacing all the
rotations and function G(256) with identity.

MDS mapping for ARIRANG-512 is different and all-ones is not its fixed-point,
but after combining S-box layer with MDS, we get the differential of the same
type with probability 2−56, so the same principle applies to the larger variant as
well.

To minimize the complexity of the attack, we need to use as few active G(256)-
functions as possible in the part of the function where we cannot control input
values to them. Since there are only 216 possible combinations of all-one dif-
ferences in message words and 224 combinations including chaining registers
H [0], . . . , H[7], it is easy to enumerate them all using a computer search.

We note that all-one differences trick is also used in [5].

4 Message Adjustments

The method used to find messages that make the differences in the actual func-
tion to follow the differential can be called a message adjustment strategy.

We have full control over the message words W0, . . . , W15. Through combi-
nations of the message words, we can still control some of the messages Wi for
16 ≤ i ≤ 31. We can modify the messages used in the first 4 steps freely, yet
leaving the output chaining values of 4-th step unchanged by modifying the
corresponding input chaining values H [0], . . . , H[7].

For example, changing W2 and H [6] by the same amount (⊕ both with a same
value) will keep the output of step 3 stable. Beyond step 4, if we change the value
of W6 in step 5, we still make the output of step 5 stable by changing the H [4] by
a same amount. However this change will be propagated by the right G function
in step 1, we can fix this by changing the H [5], H [6] and H [7] by proper values,
respectively. This method applies to W7 in step 5 similarly. In step 6, if W19 is

Practical Pseudo-collisions for Hash Functions ARIRANG-224/384 147

changed, we can still keep the output after step 6 stable. We achieve this by ⊕
with H [7] by the same amount of the change. Note that this difference will be
propagated through the left G function in step 2 (Note we can only do this when
the left G in step 2 is not active). We can fix this by ⊕ with H [0], H [1], H [2] by
proper values, respectively. Then the change in H [0] will be propagated through
the G function in step 1. We then fix this by ⊕ with H [0], H [1], H [2] by proper
values. Similar method applies to W18 in step 6.

5 Collisions for Reduced Round Compression Function

A search for collision configuration that minimizes the overall number of active
G(256) functions shows that the best strategy is to flip all message words. Then
throughout the whole compression function only 16 out of 80 G(256) are active.
When we restrict the attention to steps 20-40 (the part which almost certainly is
beyond any message-modification techniques) we can find a configuration with
only 5 active G(256) and in fact only 3 in steps 22-40. Details of minimal paths
are summarized in Table 3. The second characteristic with probability 2−140 in
steps 21-40 shows that the claim made in [1, section 6.2, page 37] that “there is
no collision producing characteristics which has a probability higher than 2−256

in the last two rounds” is based on assumptions that do not hold in practice.

Table 3. Results of search for collision characteristics in ARIRANG-256

type minimize min. value diffs in message words
collisions total active G 16 0,. . . ,15 (all)
collisions active G rounds 20-40 5 2,3,7,8,9,13

Even though using all-one differences does not seem to allow for finding good
collision differentials for the full compression function, one can use them to mount
an attack on its reduced-round variants. In the rest of this section we illustrate
it with a method that instantly finds collisions for 26 steps of ARIRANG-256.

5.1 Finding Step Reduced Collision Differential

To find the optimal path for reduced-round attack, we searched the all-one dif-
ferentials using the following criteria.

1. We count the number of active G from step 11, as we have a complete control
over the first 10 steps,

2. there are only differences in message words, not in chaining values,
3. the differential should give round reduced collision,
4. the differential should have minimum number of active G,
5. preferably, the active G-s should appear as early as possible.

148 J. Guo et al.

Table 4. 26-step reduced collision characteristics in ARIRANG

Step W (left) Active G (left) W (right) Active G (right)
1 W16 W17

2 W0 W1

3 W2 W3

4 W4 � W5

5 W6 � W7 �
6 W18 � W19

7 W8 W9 �
8 W10 � W11 �
9 W12 � W13 �
10 W14 � W15 �
11 W20 W21 �
12 W3 W6

13 W9 � W12

14 W15 W2

15 W5 � W8

The search result1 shows a differential with differences in message words M4,
M6, M8, M10 and the corresponding active G is shown in Table 4, steps after 16
are not shown because there is no active G between step 16 and step 26 and we
do not consider steps after step 26.

5.2 Finding Step Reduced Collisions

To find the example of the 26-step reduced collision, we need to deal with all
those active G so that the input to the active G are one of those all-one difference
pairs. As our algorithm runs in a deterministic way, we actually force the input
to a chosen pair (γ, γ̄) = (81818181, 7E7E7E7E). In the first 10 steps, whenever
there is an active G, we can fix the input by modifying the immediate message
word. After step 10, we follow the algorithm below:

1. For active G in step 11, we change W21 to the proper value by modifying W1
and W3 by the same amount so that W18 does not change, we compensate
the change of W1 and W3 using the method in section 4.

2. For active G in step 13, we modify the message word W6, which is used one
step before. We modify W2 also by a same amount so that W19 is constant,
and then compensate the changes.

3. For active G in step 15, we modify W5 directly. We compensate the change
of W5 and W18.

As we can see the algorithm is deterministic, so the complexity is 1 with no
memory requirements. An example of the chaining values and a pair of messages
obtained using this procedure is shown in Table 5.
1 Active G may not be paired with active messages, as the differences in message may

be canceled by differences from preceding steps.

Practical Pseudo-collisions for Hash Functions ARIRANG-224/384 149

Table 5. 26-step reduced collision for ARIRANG-256 with differences in M only

input H C0E5A81E 952A32CB 730C4EB7 78730E23 757D7CAC 00000000 D69B0F52 D69B0F52

M
D69B0F52 78730E23 D69B0F52 730C4EB7 E3E3E3E3 952A32CB 1A1A1A1A 49494949
00000000 02020202 D3DCBDB8 D9BDE3CB 562D250E 9B9F0611 662E4BD8 E75B0B2F

M’
D69B0F52 78730E23 D69B0F52 730C4EB7 1C1C1C1C 952A32CB E5E5E5E5 49494949
FFFFFFFF 02020202 2C234247 D9BDE3CB 562D250E 9B9F0611 662E4BD8 E75B0B2F

step 26 B4931778 F1615E8C 0E3756B9 93ED3536 4EBCBBFE 86C9ADD8 34334617 340155F6

6 Pseudo-collisions for ARIRANG-224 and
ARIRANG-384

If we relax the condition of no difference at the output of the compression func-
tion we can find much better differentials. A near-collision attack for the complete
compression function makes use of the three particular features of the compres-
sion function of ARIRANG. The first one is the existence of all-ones differentials.
The second element that enables our attack is the fact that in the first steps we
can manipulate chaining values and message words to adjust input values of G-
functions, similarly to the message modification strategy. Finally, we exploit the
double-feed-forward feature of the compression function (cf. Fig. 1) to restrict
the differences to only first half of the steps.

Once we have such near-collisions for the compression function, we can use
them to construct pseudo-collisions for the complete hash function ARIRANG-
224 and ARIRANG-384. This is possible thanks to the details of message padding
and the way the final digest is produced. Because the final hash value is just
a truncated chaining value, we can introduce the chaining differences in the
register which is going to be truncated when producing the digest. Also, the
padding and appending the length information does not use a separate message
block but rather a few last words of a block. This means we need to deal with
only one message block with the last three words determined by the padding
scheme and the message length.

We will talk about ARIRANG-224, however our attack is not specific to it, so
it also works for ARIRANG-384.

6.1 Finding Near Collision Differential

Based on the same idea and model as used for searching the collision, we did the
search for finding near collisions and we observed an interesting phenomenon.
With input differences in a single chaining variable, we could get differentials that
go through the first twenty steps and collapse back to the same register at step
20. Then after the middle feed-forward, there is no difference in chaining registers
and nothing happens until the final feed-forward. Only then the initial difference
is injected again and results in an output difference restricted to only one register,
32 bits in case of ARIRANG-256. Actually all configurations with differences in
chaining variables behaves similarly, we can treat them as combinations of single
difference.

With difference in H[7], we find it is easy to find the appropriate chaining
values and messages. And advantage of this differential is, H[7] of the final output

150 J. Guo et al.

Table 6. Active G functions in H [7] near collision characteristics for ARIRANG

Step W (left) Active G (left) W (right) Active G (right)
1 W16 W17

2 W0 � W1

3 W2 W3 �
4 W4 � W5 �
5 W6 W7

6 W18 W19

7 W8 W9 �
8 W10 W11 �
9 W12 W13

10 W14 W15

11 W20 W21

12 W3 � W6

13 W9 W12 �
14 W15 � W2 �
15 W5 W8

16 W22 W23

17 W11 W14 �
18 W1 W4 �

is discarded for ARIRANG-224 and ARIRANG-384, hence instead of near collision,
it gives collisions. The differential with corresponding active G is listed in Table 6
and the detailed picture of it can be found in Fig 4. There is no active G after
step 18, and there is no difference in the output before the final feed-forward.
Steps after 18 are not listed in Table 6.

6.2 Finding Chaining Values and Messages

The algorithm used to solve the near collision starts with setting all messages
and chaining values to be a random value, here we make use of 0. To get
pseudo-collisions for the complete hash function, we need to consider the message
padding and the encoding of the block length. In ARIRANG, the message padding
is performed by appending ’1’ followed by as many zeros as necessary and the
message length is encoded in the last two words. To accommodate for this, we
use 13 word long message which we can manipulate freely and fix M13 = 10 · · · 02
and M14, M15 to contain encoded length (which is 13 · 32 for ARIRANG-224 and
13 ·64 for ARIRANG-384). Thanks to that, the input to the compression function
is consistent with the definition of the hash function and we still have a com-
plete control over 13 message words M0, . . . , M12. Now we can focus on finding
a message pair that follows the differential in the compression function and we
proceed as follows.

1. Steps 1-9, whenever there is an active G, we force the input to the G to γ
((γ, γ̄) is one of good input pairs to G(256)) by modifying the immediate W
values.

Practical Pseudo-collisions for Hash Functions ARIRANG-224/384 151

Table 7. Collision Example for ARIRANG-224

input H 969F43DE 781BBD62 E6E7CEC7 075AF1AC EE30CDD2 670D94E4 7AD337C6 60026A7A

input H’ 969F43DE 781BBD62 E6E7CEC7 075AF1AC EE30CDD2 670D94E4 7AD337C6 9FFD9585

M
43F40822 00000000 22EE1F96 30B48FFB AD6E028F 958F43D5 5819FFF7 00000000
00000000 34B65233 00000000 C16DE896 00000000 80000000 00000000 000001A0

output H CBF6A53B 0D7EB2CB ACFD326A 2BA6E962 4C2087AA 2ABD938A 221AED0E

output H’ CBF6A53B 0D7EB2CB ACFD326A 2BA6E962 4C2087AA 2ABD938A 221AED0E

H ⊕ H’ 00000000 00000000 00000000 00000000 00000000 00000000 00000000

2. Step 12, we modify W3. Note that W3 is also used in step 3 and 6 (W18), we
can compensate this change using the method described before.

3. Step 13, we modify W20 through W0, we also modify W2 so that W19 keeps
stable. We compensate the change of W0 and W2 again using the described
method.

4. Step 14, left active G can be dealt with using W6 and W2.
5. Step 15, right active G can be choosing a random W9, we compensate the

change of W9 used in step 7 by modifying H [6]. However the input to the
left G in step 3 changes, we compensate this using W19 in step 6, H [0] and
H [1] in step 1. Again input to left G in step 1 changes as H [0] changes,
we compensate as done for change of W7. Note W19 can only be changed
indirectly, here we use W2 and then compensate using H [6]. We repeat this
step until we find the right active G in step 14 is good. Note we can do the
compensation work only after a good value is found.

6. step 17, we modify W5 which is used in step 15. Then we compensate the
change of W5 and W18

7. Step 18, the active G is dealt with by using W4 and W0.

The only active G left is the one in step 15. We leave this to a chance by looping
over different W9. This requires 228 tries, which is equivalent to around 223

(251 for ARIRANG-384) calls to the compression function as we only need to
compute two G functions in the loop and there are 80 such computations in the
compression function. Examples shown in Table 7 can be found in few seconds
on a standard computer, and the the algorithm has no memory requirements
apart from a few words used for intermediate variables.

6.3 Collisions for ARIRANG-384

We can find collisions for ARIRANG-384 the same way as done for ARIRANG-224.
However, the corresponding complexity of 251 is too high for a standard computer
to handle. To get over this difficulty, we can use the fact that the final transform
for ARIRANG-384 is done by discarding the last two chaining values, i.e. H [6]
and H [7]. So besides H [7]-differential, we can also consider H [6]-differential and
H [6− 7]-differential (Indeed this also gives near collisions with outputs differ in
H [6] and H [7]). Thanks to a different positions of active G-functions, it turns
out that the H [6]-differential can be solved with complexity 1. Table 8 lists the
active G for this differential. Note that this differential works for all instances of

152 J. Guo et al.

Table 8. Active G functions in H [6] near collision characteristics for ARIRANG

Step W (left) Active G (left) W (right) Active G (right)
1 W16 W17

2 W0 W1

3 W2 � W3

4 W4 W5 �
5 W6 � W7 �
6 W18 W19

7 W8 W9

8 W10 W11 �
9 W12 W13 �
10 W14 W15

11 W20 W21

12 W3 W6

13 W9 � W12

14 W15 W2 �
15 W5 � W8 �
16 W22 W23

17 W11 W14

18 W1 W4 �
19 W7 W10 �

ARIRANG. So this also gives another solution for finding 224/256 near collision
for ARIRANG-256 with complexity 1.

Referring to table 8, we can solve this differential (finding chaining values and
messages) using the following procedure:

1. Step 1-9 can be handled as usual.
2. Step 13, we modify W6 in step 12. We compensate the change of W6 and

W19
3. Step 14, we modify W2 directly and then compensate the change of W2 and

W19
4. Step 15, for the left active G, we modify W5 and compensate; for the right

active G, we modify W8. Note that the change of W8 can be compensated
similarly as done for W19.

5. Step 18, we modify W4 and W0 simultaneously.
6. Step 19, we modify W1 as used in step 18 and W7 simultaneously.

As shown above, every step in the algorithm is deterministic, hence it gives
complexity close to 1. Experiments also support the result, collisions can be
found in terms of µs. An example of collision for ARIRANG-384 is shown in
Table 9, note it is also 448/512 near collision for ARIRANG-512.

6.4 Pseudo-preimages

It is possible to further extend the pseudo-near-collision attack to pseudo-
preimages of ARIRANG. Take the configuration H = (0, 1, 0, 0, 0, 0, 0, 0) for

Practical Pseudo-collisions for Hash Functions ARIRANG-224/384 153

Table 9. Pseudo-collision example for ARIRANG-384

input H
BA36BCB93BFD8D20 6B951DB399EB2EDC 1950E807876279AE AF16B3C9901076DC
62372888DECEB1E5 939957A5F4B4EE05 AA31DB9CB0EF684C 49B72A01D8C86B6F

input H’
BA36BCB93BFD8D20 6B951DB399EB2EDC 1950E807876279AE AF16B3C9901076DC
62372888DECEB1E5 939957A5F4B4EE05 55CE24634F1097B3 49B72A01D8C86B6F

M

B5127D606F0860D8 3E2BD987F6626D29 4EF941810127832F 0000000000000000
B5127D606F0860D8 A8FF942B50A3F3F8 A99E61F4B41D9347 F6E3114F3EAAA5E1
AFE28E981D9AE700 0000000000000000 C80D9570708720C3 AD8760D00E4D14C8
0000000000000000 8000000000000000 0000000000000000 0000000000000340

output H
5939B28C23F6435F BFA7FC0F59F0BFF7 FBF8D1923EED2060 AE79BE18FC078E32
F4CE359791C979E7 543F7F214A45D0A9 193A61B727F9BC5A 3E8CFA173B9D48B2

output H’
5939B28C23F6435F BFA7FC0F59F0BFF7 FBF8D1923EED2060 AE79BE18FC078E32
F4CE359791C979E7 543F7F214A45D0A9 E6C59E48D80643A5 3E8CFA173B9D48B2

example, we are able to solve it in time 1 and it gives a near collision with
all-one difference in H [1] of final output. Note that once one such near collision
pair is found, we are able to find 232 pairs by trying different values for W1
(W7, W0, and W4 are changed accordingly) and compensate at the beginning.
To find exact values, we need to compute steps 18 – 40 only, so the complexity
to find one pair is reduced to about 2−1. Given a target t, any match with t or
t ⊕ 0321320192 will give us a pseudo-preimage. So we are able to find a match
by finding 2255 different values, and finding each value costs 2−1. The overall
complexity for finding a pseudo-preimage is 2254 for ARIRANG-256. Similarly,
we can find pseudo-preimage for ARIRANG-512 within 2510. However this does
not give a preimage attack, as converting pseudo-preimage to preimage requires
the complexity to be less than 2n−2 in general.

7 Possible Extensions

With the similar method above, we can see that it is reasonable to count the
active G from step 21, as most of the time, we can handle the first 20 steps using
the message adjustment with low complexity. We did the search and found two
interesting configurations (M = (0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1) and M =
(0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0), where i-th bit of the configuration indicates
whether there is a difference in M [i]) which gives 29-step reduced and 34-step
reduced collisions with 1 and 2 active Gs, respectively. These two configurations
may give step-reduced collisions with complexity less than birthday bound. With
configuration M = (1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0), H = (1, 0, 0, 0, 0, 1, 1, 1)
we may find [2-37] step reduced pseudo-collision as there are only 4 active G after
step 20 and the active G in step 21 seems easy to deal with. With configuration
M = (0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0), we may find semi-free-start collision
for full ARIRANG as there are 5 active Gs after step 20 and seems those 3 active
Gs in step 21 and 23 can be dealt with by modifying the chaining values.

Some investigation shows that similar idea of message adjustment can be
used to find collisions based on semi-free-start collision. Note that when mes-
sages are modified, chaining values are modified in accordingly. We can do the

154 J. Guo et al.

reverse: modify the chaining values to those we required, and change the mes-
sages accordingly. However we need to be careful to ensure that active Gs are
not affected.

8 Conclusions

We presented a range of attacks on ARIRANG. They all use the same type of
differential based on flipping all bits in a register and the fact that all-one dif-
ferences propagate with non-zero probability through the non-linear function
G(256) and are not affected by all the other building blocks of the function.

This approach allowed us to find collisions for step-reduced compression func-
tion and pseudo-collisions for the hash function. Even though this method seems
to be effective when looking for collisions for up to around 30 steps, we do not see
a way to extend it to a collision attack on the full hash function at the moment.

A possible alternative approach would be to consider other types of differences.
Note that we can get high-probability local collision patterns by having only
one S-box active inside of G(256) and canceling the (dense) output differences
in later steps by appropriate differences in message words. With this approach
we can have up to 18 S-boxes active in the part of the function beyond our
message-modification control to beat the birthday bound. The main difficulty
seems to find a superposition of such local patterns that agrees with the message
expansion process.

One could also think about ways to “patch” the design to defend against our
attacks. It seems that the double feed-forward is not a good idea as it enabled us
to skip half of the steps of the function in our pseudo-collision attack. Moreover,
it should not be possible to use all-one differences that easily. To this end, one
could either break the symmetry of rotations somewhere (perhaps in the mes-
sage expansion process as seen in SHA-256 that uses also shifts in addition to
rotations) or modify the MDS mapping to make sure that none of the possible
output differences of the layer of S-boxes obtained for all-one input difference
maps to all-ones difference through the MDS. However, all those fixes are quite
ad-hoc and address only one particular attack strategy exploited in this paper.

Acknowledgements

The work in this paper was supported in part by the National Research Founda-
tion of Singapore under Research Grant NRF-CRP2-2007-03 and the Singapore
Ministry of Education under Research Grant T206B2204.

Krystian Matusiewicz was supported by grant 274-07-0246 from the Danish
Research Council for Technology and Production Sciences.

The authors would like to thank Christian Rechberger, Praveen Gauravaram
and the anonymous reviewers for the helpful comments and Wei Lei for his shell
script.

Practical Pseudo-collisions for Hash Functions ARIRANG-224/384 155

References

1. Chang, D., Hong, S., Kang, C., Kang, J., Kim, J., Lee, C., Lee, J., Lee, J., Lee, S.,
Lee, Y., Lim, J., Sung, J.: ARIRANG: SHA-3 Proposal. NIST SHA-3 candidate,
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/ARIRANG.zip

2. Contini, S., Matusiewicz, K., Pieprzyk, J.: Extending FORK-256 attack to the full
hash function. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861,
pp. 296–305. Springer, Heidelberg (2007)

3. Hong, D., Kim, W.-H., Koo, B.: Preimage attack on arirang. Cryptology ePrint
Archive, Report 2009/147 (2009), http://eprint.iacr.org/2009/147

4. Hong, D., Sung, J., Lee, S., Moon, D., Chee, S.: A new dedicated 256-bit hash func-
tion. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 195–209. Springer,
Heidelberg (2006)

5. Indesteege, S., Mendel, F., Rechberger, C., Schläffer, M.: Practical Collisions for
SHAMATA. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009.
LNCS, vol. 5867, pp. 1–15. Springer, Heidelberg (2009)

6. Matusiewicz, K., Peyrin, T., Billet, O., Contini, S., Pieprzyk, J.: Cryptanalysis of
FORK-256. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 19–38. Springer,
Heidelberg (2007)

7. Mendel, F., Lano, J., Preneel, B.: Cryptanalysis of reduced variants of the FORK-
256 hash function. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 85–100.
Springer, Heidelberg (2007)

8. Saarinen, M.-J.: A Meet-in-the-Middle collision attack against the new FORK-
256. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS,
vol. 4859, pp. 10–17. Springer, Heidelberg (2007)

9. Schneier, B., Kesley, J.: Unbalanced Feistel networks and block cipher design. In:
Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 121–144. Springer, Heidelberg
(1996)

http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/ARIRANG.zip
http://eprint.iacr.org/2009/147

156 J. Guo et al.

b0 c0 d0 e0 f0 g0 h0

13
23

29
7

W9, W11, W13, W15 ⇒ W16 W17 ⇐ W8, W10, W12, W14
a0

b1 c1 d1 e1 f1 g1 h1

13
23

29
7

W0 W1
a1

b2 c2 d2 e2 f2 g2 h2

13
23

29
7

W2 W3
a2

b3 c3 d3 e3 f3 g3 h3

13
23

29
7

W4 W5
a3

b4 c4 d4 e4 f4 g4 h4

13
23

29
7

W6 W7
a4

b5 c5 d5 e5 f5 g5 h5

13
23

29
7

W1, W3, W5, W7 ⇒ W18 W19 ⇐ W0, W2, W4, W6
a5

b6 c6 d6 e6 f6 g6 h6

13
23

29
7

W8 W9
a6

b7 c7 d7 e7 f7 g7 h7

13
23

29
7

W10 W11
a7

b8 c8 d8 e8 f8 g8 h8

13
23

29
7

W12 W13
a8

b9 c9 d9 e9 f9 g9 h9

13
23

29
7

W14 W15
a9

b10 c10 d10 e10 f10 g10 h10

13
23

29
7

W14, W4, W10, W0 ⇒ W20 W21 ⇐ W11, W1, W7, W13
a10

b11 c11 d11 e11 f11 g11 h11

13
23

29
7

W3 W6
a11

b12 c12 d12 e12 f12 g12 h12

13
23

29
7

W9 W12
a12

b13 c13 d13 e13 f13 g13 h13

13
23

29
7

W15 W2
a13

b14 c14 d14 e14 f14 g14 h14

13
23

29
7

W5 W8
a14

b15 c15 d15 e15 f15 g15 h15

13
23

29
7

W6, W12, W2, W8 ⇒ W22 W23 ⇐ W3, W9, W15, W5
a15

b16 c16 d16 e16 f16 g16 h16

13
23

29
7

W11 W14
a16

b17 c17 d17 e17 f17 g17 h17

13
23

29
7

W1 W4
a17

b18 c18 d18 e18 f18 g18 h18

13
23

29
7

W7 W10
a18

b19 c19 d19 e19 f19 g19 h19

13
23

29
7

W13 W0
a19

h1 h2 h3 h4 h5 h6 h7

Fig. 4. Differential path in steps 1-20 used to find near-collisions in the compression
function. There are no differences in steps 21-40.

A More Compact AES

David Canright1 and Dag Arne Osvik2

1 Naval Postgraduate School, Monterey CA 93943, USA
dcanright@nps.edu

2 École Polytechnique Fédérale de Lausanne
dagarne.osvik@epfl.ch

Abstract. We explore ways to reduce the number of bit operations re-
quired to implement AES. One way involves optimizing the composite
field approach for entire rounds of AES. Another way is integrating the
Galois multiplications of MixColumns with the linear transformations of
the S-box. Combined with careful optimizations, these reduce the num-
ber of bit operations to encrypt one block by 9.0%, compared to earlier
work that used the composite field only in the S-box. For decryption,
the improvement is 13.5%. This work may be useful both as a starting
point for a bit-sliced software implementation, where reducing operations
increases speed, and also for hardware with limited resources.

Keywords: AES, tower field, composite Galois field, bitslice.

1 Introduction

There have been many implementations of the Advanced Encryption Standard,
optimized for various criteria, for different applications. Some approaches seek
to minimize circuitry, e.g., [1,2,3,4,5]. For this goal, Rijmen[6] suggested using
subfield arithmetic in the crucial step of computing an inverse in the Galois
Field of 256 elements. [Note: strictly speaking, the operation is not x→ x−1 but
rather x→ x254 so 0→ 0, but we will refer to this as the inverse for convenience;
similarly for subfields.] Rudra et al.[1] gave a detailed implementation using that
subfield approach. This idea was further extended by Satoh et al.[2], using sub-
subfields (the “tower-field” representation of Paar[7], also called the “composite-
field” approach), along with other innovative optimizations, which resulted in the
smallest AES circuit at that point. The S-box architecture of Satoh was improved
by Canright[8], mainly through carefully chosen normal bases, resulting in the
most compact S-box to date. This S-box has been used in bit-sliced software
implementations of AES, by Rebeiro et al.[9], and (slightly improved by [10]) by
Käsper and Schwabe[11].

The present work seeks to further reduce the size of AES, in terms of the
number of bit operations. While [8] showed that normal bases gave a more com-
pact Galois inverter for the S-box, the specific basis chosen did not yield compact
Galois multiplications by the constants used in the MixColumns step; hence that
composite basis was used only for the S-box. Here we reconsider the approach

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 157–169, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

158 D. Canright and D.A. Osvik

of maintaining the composite-field representation throughout the rounds of en-
cryption, as in Rudra et al.[1]. We find that a different choice of basis than in
[8] does indeed give a smaller AES implementation with this approach, in part
through combining the linear transformations of the S-box with the constant
multiplications (or “scalings”) of MixColumns. Moreover, applying optimization
software to certain portions of the logic further reduces the number of opera-
tions. Together, these improvements give a 9.0% reduction in the number of bit
operations needed to encrypt one block with a 128-bit key.

First we briefly review the AES algorithm in Section 2, then detail our method
in Section 3, including choices of basis for the tower field and integration of the
scalings of MixColumns with the linear transformations of the S-box. Finally, we
summarize our results in Section 4 and briefly discuss conclusions in Section 5.

2 AES Algorithm

The Rijndael algorithm, as adopted for the Advanced Encryption Standard, is
a symmetric block cipher with 128-bit blocks and three key sizes: 128, 192, or
256 bits[12]. Here, we give just enough detail to explain our method below.

For encryption, each block of 16 bytes is processed by several rounds: 10, 12,
or 14, depending on key size. From the initial key, the key schedule generates a
different round key for each round. Each round comprises the following steps.

1. SubBytes subjects each byte independently to a nonlinear function, often
called the S-box, and substitutes the result for the original byte. The S-box
function consists of two sequential operations:

(a) first, inversion treats the byte as an element of GF(28), where the bits
are coefficients of a polynomial, and polynomial arithmetic is modulo
the irreducible polynomial q(x) = x8 + x4 + x3 + x + 1; each nonzero
byte is replaced by its multiplicative inverse in this field, while a zero
byte remains unchanged.

(b) then an affine transformation is applied: treating the byte as a vector of
bits, the byte is multiplied by a constant bit matrix M and then a con-
stant byte b is added (with bit arithmetic in GF(2), where multiplication
is AND and addition is XOR), so x→M x + b.

In software, the S-box is often implemented as a table lookup.
2. ShiftRows considers the 16 bytes as a 4 × 4 array and rotates each row to

the left by its position, so row #0 does not move, row #1 moves 1, etc.
3. MixColumns operates independently on each column of the 4× 4 array: the

column, as a vector of four bytes, is multiplied by a constant byte matrix,
where the byte arithmetic is in GF(28) as in the S-box inversion:⎛⎜⎜⎝

x0
x1
x2
x3

⎞⎟⎟⎠→
⎛⎜⎜⎝

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞⎟⎟⎠
⎛⎜⎜⎝

x0
x1
x2
x3

⎞⎟⎟⎠
4. AddRoundKey bitwise adds (XOR) a 128-bit round key to the 128-bit state.

A More Compact AES 159

The first round is preceded by an AddRoundKey step, and the last round skips
the MixColumns step.

For decryption, the whole process is reversed, using the inverse operation for
each step in the reverse order. AddRoundKey is its own inverse, and the inverse
of ShiftRows rotates rows to the right instead of left. The inverse of MixColumns
just multiplies each column by the inverse of the constant byte matrix, so⎛⎜⎜⎝

x0
x1
x2
x3

⎞⎟⎟⎠→
⎛⎜⎜⎝

E B D 9
9 E B D
D 9 E B
B D 9 E

⎞⎟⎟⎠
⎛⎜⎜⎝

x0
x1
x2
x3

⎞⎟⎟⎠
where the constant values are in hexadecimal (the leading 4 bits of each are 0).
For the inverse of SubBytes, first the inverse affine transformation is applied, so
x→M−1 (x + b), then the Galois inversion is its own inverse operation.

Some reordering of the steps in each round is possible. SubBytes commutes
with ShiftRows, and MixColumns and AddRoundKey can be swapped by mod-
ifying the key schedule appropriately; similarly with the inverse operations for
decryption. Commonly, fast software implementations, e.g., those of Bernstein
and Schwabe[13], combine the S-box function with the Galois multiplications
of MixColumns, using each input byte to index a table of 4-byte columns, as
suggested in the Rijndael proposal[14], which called them “T-tables.”

3 Method

Our goal was to develop an implementation of AES with a minimal number of bit
operations. The result could be useful for a bit-sliced software implementation,
or for hardware with limited resources. (Our original inspiration was considering
a bit-sliced AES for the CellBE processor[15].) Our starting point, and baseline
for comparison, was the compact AES of [2], with the improved S-box of [8].

These prior works used a tower-field representation of GF(28) so that the
Galois inversion in the S-box could be calculated compactly. But where [8] opti-
mized the choice of basis for the S-box only, we sought to find the best basis for
whole rounds of AES, as [1] did for a different composite-field representation.

One reason not to do this, i.e., to change back to the standard basis after
the S-box, is that the Galois multiplication by the constant 2 byte, as required
in MixColumns, is very compact in the standard basis: three bitwise XORs.
Nonetheless, we found that overall the advantages of our approach overcame
this disadvantage.

One way we reduced operations is by combining the constant Galois multipli-
cations of MixColumns with the linear part of the affine transformation of the
S-box. We tried different places to put these combined transformations, either
earlier as parts of the S-box or later as parts of MixColumns, as we will describe
in subsection 3.2.

Another way was by finding the tower-field basis that would be most compact
not just for the inverter, but for an entire round of encryption or decryption.

160 D. Canright and D.A. Osvik

There are actually many different tower-field representations possible; here we
only need to examine a small subset of those considered in [16], as discussed in
subsection 3.1 below.

Lastly, we applied state-of-the-art optimizing software to the transformation
matrices and to parts of the inverter operation. The optimizing software employs
heuristics to arrive at very efficient implementations.

3.1 Basis Choices

In [8], 432 different choices of basis were considered for the tower-field represen-
tation of GF(28), where GF(28) is considered as a quadratic extension of GF(24),
which in turn is considered as a quadratic extension of GF(22). We will use the
notation GF(28)/GF(24)/GF(22) to indicate such a tower-field representation; of
course, all representations of GF(28) are isomorphic. Such a representation really
involves three bases: one each for GF(22)/GF(2), for GF(24)/GF(22), and for
GF(28)/GF(24), where each basis consists of two elements linearly independent
over the subfield.

Only polynomial bases (of the form [r, 1]) and normal bases (of the form
[rq, r], where q = 21, 22, or 24 is the size of the subfield, and r, rq are conjugates)
were considered in [8]; other types are generally less efficient. And only choices
with a trace of unity τ = r + rq = 1 were considered, that is, where the minimal
polynomial has the form x2+x+ν and ν = r×rq is the norm of r, since this choice
eliminates some operations. Some other special forms would also eliminate some
operations, such as where the norm is unity ν = 1 or where the trace and norm
are equal τ = ν, but these turned out to be less efficient for the Galois inverter of
the S-box. Normal bases were shown to have a definite advantage for the inverter,
since more factors are shared in the lower level operations. And one particular
choice, #4 of the 432 in [16, App. E], gave the smallest optimized transformation
matrices, and hence the smallest merged S-box (where encryption and decryption
share a Galois inverter), as well as the smallest S-box for encryption only or for
decryption only.

But basis #4 did not give a compact form for the Galois multiplications
needed in MixColumns, so the tower-field representation was only used for the
S-box, with the rest of each round using the standard basis. In particular, for
encryption, MixColumns requires multiplying bytes by the constants 2 and 3 (in
the standard representation), where multiplying by 2 only requires three bitwise
XORs. (In the standard representation, “2” represents a root of the irreducible
polynomial q(x) = x8 + x4 + x3 + x + 1, and “3” = “2” + 1, where 1 is the
multiplicative identity as usual. So multiplication of a byte by 2 involves shifting
left one bit, and if the msb was 1, then XOR with 0x1B.)

We explored whether a different approach might give a more compact imple-
mentation: using a tower-field representation throughout the rounds of encryp-
tion, similar to the approach of [1]. We sought an optimum basis for both the
S-box and MixColumns steps; ShiftRows is just a re-ordering of bytes, and Ad-
dRoundKeys works the same in any basis. To keep the optimization tractable,
we limited consideration to encryption only, or separately for decryption only;

A More Compact AES 161

we did not consider a merged encrypt/decrypt architecture as in [2]. And to keep
the Galois inverter of the S-box small, we only looked at normal bases with unit
trace.

This left 16 possibilities out of the 432 in [16, App. E]: basis numbers 1, 4,
19, 22, 37, 40, 55, 58, 73, 76, 91, 94, 109, 112, 127, and 130. It turns out that
all these cases give a Galois inverter of the same size; though the specifics of the
operations change, the total number of bit operations in the optimized inverter
is the same.

Besides the inverter, the S-box includes the affine transformation, and Mix-
Columns requires Galois multiplication by 2 and 3, or by four different constants
for decryption. We will use the term “scaling” to indicate such Galois multiply-
ing of a byte by a specified constant byte. Then both scaling and the affine part
of the S-box (ignoring the additive constant for now; see subsection 3.3) can each
be represented as a linear transformation: multiplication of an 8-bit vector by
a bit matrix (with all bit arithmetic modulo 2). These transformations can be
combined by simply multiplying the bit matrices. To see more precisely which
matrices would be required in each round, we needed to consider how to imple-
ment MixColumns. Then we could choose the basis that gave the most compact
versions of those matrices.

3.2 MixColumns

Satoh[2] gave an elegant implementation that combined MixColumns with its
inverse, for the architecture with both encryption and decryption merged (with
a selector signal). For just MixColumns, each column, as a vector of four bytes,
is multiplied by a 4× 4 matrix, where scalar multiplication is in GF(28). Satoh
effectively decomposed the matrix as below:⎛⎜⎜⎝

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞⎟⎟⎠ = 2×

⎛⎜⎜⎝
1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

⎞⎟⎟⎠+

⎛⎜⎜⎝
0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

⎞⎟⎟⎠+

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠
This decomposition allowed reuse of certain combinations of bytes[2, (6)], and
each byte multiplication by 2 took three XORs, so altogether each 4-byte column
took 108 XORs.

For decryption, the inverse MixColumns matrix of [2] came from adding more
terms to the MixColumns matrix:⎛⎜⎜⎝

E B D 9
9 E B D
D 9 E B
B D 9 E

⎞⎟⎟⎠ =

⎛⎜⎜⎝
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞⎟⎟⎠+ 4×

⎛⎜⎜⎝
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎞⎟⎟⎠+ 8×

⎛⎜⎜⎝
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞⎟⎟⎠
where the 4 and 8 came from repeated multiplications of common terms by 2, at
3 XORs each. With the reuse of common terms, altogether each 4-byte column
took 195 XORs.

162 D. Canright and D.A. Osvik

We considered similar decompositions that could re-use some byte sums, but
with the constant scaling combined with the affine transformation of the S-box.
Let T2 be the matrix (given in subsection 3.3) below that performs the “times 2”
operation, and similarly for other constants. (Note: T1 = I, the identity matrix.)
So with the matrix M of the affine transformation, the combined transformations
needed for encryption are M , T2 M , and T3 M .

Our approach uses the decomposition below:⎛⎜⎜⎝
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
2 3 0 0
0 3 2 0
0 0 2 3
2 0 0 3

⎞⎟⎟⎠+

⎛⎜⎜⎝
0 0 1 1
1 1 1 1
1 1 0 0
1 1 1 1

⎞⎟⎟⎠
Using the common terms in the last matrix, this approach has 11 byte additions
(88 XORs) per column.

One way to do the transformations is for half the bytes, after the inverter
of the prior S-box, to get transformed with both M and T2 M separately, and
the other half with M and T3 M ; no byte needs both T2 M and T3 M . Another
way is to do half the bytes with just T2 M , the other half with T3 M , and later
apply M only to two common terms: sums of untransformed bytes 0 & 1 and 2
& 3. While the latter (“later” transformations) way has fewer transformations
overall, in the former (“early” transformations) way, pairs of transformations
apply to each byte, allowing additional optimizations of the pairs. We explored
both, and it turned out the early transformation approach was slightly better.

For decryption, the inverse MixColumns matrix has four different constants
(hexadecimal E, B, D, & 9), linearly independent over GF(2), so is more expen-
sive. These scalings can be combined with the inverse affine transformation for
the following inverse S-box, since inverse MixColumns is a linear operation.

We considered a direct, early approach, where after AddRoundKey, each byte
is transformed by the four transformations M−1 TE, M−1 TB, M−1 TD, and
M−1 T9, followed by the 12 byte additions (96 XORs) for inverse MixColumns.
We also considered a decomposition:⎛⎜⎜⎝

E B D 9
9 E B D
D 9 E B
B D 9 E

⎞⎟⎟⎠ =

⎛⎜⎜⎝
3 2 0 0
0 3 2 0
0 0 3 2
2 0 0 3

⎞⎟⎟⎠+ D×

⎛⎜⎜⎝
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎞⎟⎟⎠+ 9×

⎛⎜⎜⎝
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎞⎟⎟⎠
Each byte gets transformed with both M−1 T2 and M−1 T3, and later the two
common expressions, sums of untransformed bytes 0 & 2 and 1 & 3, each get both
M−1 TD and M−1 T9. This still has 12 byte additions but fewer transformations.
Again, we tried both, and this time the later approach was better.

3.3 Transformation Matrices

In the ShiftRows, S-box, and MixColumns steps of a normal encryption round,
each byte is routed to the correct position in a column, is inverted in a Galois

A More Compact AES 163

inverter, then goes through the affine transformation along with 2 or 3 times
that result (as shown above). The affine transformation on a byte x looks like
y = M x + b, or in detail⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y7
y6
y5
y4
y3
y2
y1
y0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x7
x6
x5
x4
x3
x2
x1
x0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
1
0
0
0
1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where bit #7 is the most significant and all bit operations are modulo 2.

To do the same operation in a different basis, we need to apply a similarity
transformation to this matrix M (to account for the change of basis on both
input and output vectors). Let X refer to the 8 × 8 bit matrix that converts a
byte from the tower-field basis to the standard basis, and let u and v be the
tower-field representations of x and y, respectively (so x = X u and y = X v).
Then the affine transformation becomes

v =
(
X−1 M X

)
u + c where c = X−1 b

or equivalently

v =
(
X−1 M X

)
(u + d) where d = X−1 M−1 b

Galois multiplication by the constants 2 and 3 can also be done by matrices; let
T2 and T3 respectively be these matrices with respect to the standard represen-
tation. Then

2× x = T2 x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x7
x6
x5
x4
x3
x2
x1
x0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and T3 = T2 + I. To get the scaling matrices for decryption, let T4 = (T2)

2,
T8 = T4 T2, TC = T8 + T4; then TE = TC + T2, TB = T8 + T3, TD = TC + I,
T9 = T8 + I. Again, to do these same operations in the tower-field basis, we
would apply a similarity transformation to these matrices. Or, if we combine
with the affine transformation, for encryption we get

2× v =
(
X−1 T2 M X

)
(u + d) and 3× v =

(
X−1 T3 M X

)
(u + d)

So for a given byte, with the early transformation strategy, first we apply the
Galois inverter, then apply two transformations, either affine and 2×affine, or

164 D. Canright and D.A. Osvik

affine and 3×affine, depending on in which row of a column it ends up. Thus for a
given basis X we need to optimize the matrix pairs [

(
X−1 M X

)
,
(
X−1 T2 M X

)
]

and [
(
X−1 M X

)
,
(
X−1 T3 M X

)
], where each pair is considered as a single

16×8 matrix. For the later transformation strategy, the three separate matrices(
X−1 M X

)
,
(
X−1 T2 M X

)
and

(
X−1 T3 M X

)
would be optimized.

The additive constant c can usually be included by simply replacing some XORs
by XNORs, or it may be incorporated into the key schedule. Note that, because
the row sum of the constants in the MixColumns matrix (or its inverse) is 1, then
c really only needs to be added to any one of the four terms in the row.

For each of the 16 different normal bases, we applied our optimization software
to minimize (smallest number of XORs) the two 16×8 bit matrices (each would
apply to a pair of bytes per column) of the early transformation strategy, and
also the three 8×8 matrices (again for a pair of input bytes) for the later strategy.

Basis #127 was the winner, with an early strategy optimized total of 17+18 =
35 XORs, barely beating the later strategy at 11+13+12 = 36 XORs. Here are
the basis change matrices for basis #127:

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 1 0 0
0 1 1 0 0 0 1 1
1 1 0 1 1 0 1 1
0 1 0 1 0 1 1 0
0 0 1 0 1 1 1 0
1 0 1 1 0 1 1 1
1 1 0 1 1 1 0 1
1 1 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, X−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 1 1 0 1
0 1 0 1 0 1 0 1
1 1 0 1 1 0 1 1
0 1 1 0 0 1 1 1
1 1 1 1 0 0 0 1
0 1 0 1 1 0 1 1
0 1 1 1 1 0 0 1
1 0 1 1 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Besides the matrix transformations in normal rounds, this approach also uses two
others. Before the first round, each byte must be transformed from the standard
representation to the tower-field basis, by the matrix

(
X−1

)
above; the optimized

version requires 15 XORs per byte, which we treat as part of round 0, the initial
AddRoundKey. And the last round of encryption skips MixColumns and needs
to end up in the standard representation, so after the last inverter, the affine
transformation is combined with the basis change in the matrix (M X); this
requires 13 XORs per byte (with the constant b incorporated into the last round
key; otherwise a NOT is needed).

For decryption, again for each of the 16 normal bases, we optimized the single
32 × 8 bit matrix (four transformations) for the early transformation strategy,
and also the two 16 × 8 matrices for the later strategy. In ranking the results,
recall that the early approach applies the 32× 8 matrix to each input byte; the
later approach applies one 16×8 matrix to each input byte but applies the other
only to the shared sums, half as many bytes. This time, basis #94 won, with
the best later strategy result at 19 + 1

2 × 18 = 28 XORs per byte, better than
the best early strategy result of #58, at 31 XORs. Here are the basis change
matrices for basis #94:

A More Compact AES 165

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 0 1 0 0
0 1 1 1 0 0 1 0
1 0 0 0 1 0 1 1
1 0 1 1 1 1 0 1
1 1 1 1 0 1 1 0
0 0 1 1 1 0 1 0
0 0 1 0 0 0 1 0
0 0 1 0 0 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, X−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 1 0 1 1
0 1 1 1 0 0 1 1
1 1 0 0 0 0 0 1
0 0 1 1 0 0 0 1
0 0 1 1 0 1 1 1
0 0 0 0 0 0 1 1
1 1 0 0 0 0 1 1
1 0 0 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
For the first round of decryption, with no MixColumns, we need the transforma-
tion X−1 M−1, which takes 13 XORs. After the last decryption round, before
the additional AddRoundKey corresponding to encryption round #0, we need
to switch back to the standard basis with X , at 13 XORs.

3.4 Galois Inverter

For the inverter of basis #127, applying (by hand) the OR gate substitution
reduced the inverter size to 56 XORs, 30 ANDs, 10 ORs. This is the same
number of bit operations as the inverter for basis #4 of [8], which, like that for
basis #94, is 56 XORs, 34 ANDs, 6 ORs.

But in the tower-field representation, each 8-bit Galois inverter includes a
4-bit Galois inverter in the subfield. The GF(24) inverter performs a bijection
function, as does a 4 × 4 S-box, and hence is a natural target for optimization
with methods like those in [17]. The result reduced the 4-bit inverter from 9
XORs, 8 ANDs, 2 ORs down to 8 XORs, 5 ANDs, 2 ORs, a savings of 4 bit
operations.

3.5 Round Keys

The AddRoundKey step of each round is a simple bitwise XOR in any basis. In
our approach, each round key must be represented in the tower-field basis. One
way to do this would be to pre-compute the usual round keys by some means,
then apply the X−1 matrix transformation to each byte. Another approach is to
do the whole key schedule in the tower-field representation. First the initial key
needs to be transformed into the tower field. For the last round the round key
needs to be transformed, either back to the standard representation and added
after the data block is transformed back, or transformed by the inverse affine
transformation and added before the data is transformed back.

In our comparisons below we do not consider the cost of the key schedule that
generates the round keys. We assume the round keys have been pre-computed,
including their tower-field representations. This is appropriate to using our ap-
proach for bit-sliced software, where the round keys can be stored and applied
to many blocks. But this assumption is less appropriate to compact hardware
implementations, comparable to that of [2], where storing keys in registers is
expensive, so typically keys are computed on the fly.

166 D. Canright and D.A. Osvik

3.6 Validation

We implemented our approach in the form of Verilog (hardware description
language) code. This code was written mainly for testing purposes, and defines
one module for each kind of round, including the key schedule. We successfully
tested this implementation by compiling and running it on a FPGA in a SRC
6e computer system, with correct results. (The FPGA implementation was only
to check correctness; true optimization for an FPGA would need to exploit their
Look-Up-Table structure.)

4 Results

We have described our methods to reduce the number of bit operations needed
for AES. Our original motivation was to explore bit-slice techniques to imple-
ment AES in software. For that, reducing the number of operations essentially
translates into increasing the speed. Then an appropriate measure is the total
number of bit operations needed to encrypt a block, as shown in Table 1. The
reduction in operations we achieved might also be useful for compact hardware
implementations, where area is limited. We do not propose a specific hardware
design here.

Our baseline for comparison is a compact encryption-only (or decryption-only)
AES implementation using the S-box of [8] and the MixColumns of [2], shown
above in subsection 3.2, and our units of comparison are bit operations: XOR,
AND, OR, NOT. These two implementations are compared in detail in Table 1.

One normal round of encryption took 155 ops/byte in the baseline; our new
approach needs only 139.5 ops/byte, smaller by 10.0%. However, our approach
requires an initial transformation into the composite field (15 ops/byte), which
adds on to the cost of round #0, the initial AddRoundKey (8 ops/byte). The

Table 1. Results. The number of bit operations per byte is given for various opera-
tions up to the full 10-round AES, comparing our approach with a baseline compact
implementation

encryption decryption
baseline new approach baseline new approach

Galois inverter 96 92 96 92
initial transformation 0 15 0 13
round transformations 24 17.5 25 28

last transformation 24 13 25 13
MixColumns 27 22 48.75 24

AddRoundKey 8 8 8 8
round #0 8 23 8 21

normal round 155 139.5 177.75 152
last round 128 113 129 113

10-round AES 1531 1391.5 1736.75 1502

A More Compact AES 167

last round skips MixColumns: the baseline version takes 128 ops/byte; ours takes
113 ops/byte.

For a bit-sliced software approach, a reasonable basis for comparison is the
total number of bit operations. Altogether, for 128-bit keys (10 rounds), the
baseline requires 24496 bit operations to encrypt one block, while ours requires
22264, which is 9.0% smaller. For 256-bit keys, our approach is 9.4% smaller. For
decryption, the improvement is even greater: 13.5% for 128-bit keys and 13.8%
for 256-bit keys.

For a compact hardware approach, comparison is less clear, depending on
the specific architecture. Suppose we assume an encryption-only version of the
compact design in [2]. There, the 32-bit data path goes through four S-boxes
including transformations, a MixColumns operation, and AddRoundKey. Selec-
tors are used to skip MixColumns on the last round and also skip the S-box for
round 0. Data register connections do the ShiftRows. To simply plug in our ap-
proach, the basic round has 10% fewer operations, but the paths for round 0 and
the last round would need different transformations added; the result is actually
8.1% larger than the baseline (based only on the bit operations in the rounds,
excluding selectors and registers). A different architecture would be needed in
order to take advantage of our approach, such as one where just the initial trans-
formation into the tower-field basis, and the last tranformation to the standard
representation, have 8-bit data paths instead; this approach would make those
byte-serial rounds slower, but would reduce the total operations for rounds by
5.5%.

5 Conclusions

We have reduced the number of bit operations for 10-round AES by 9.0%. We
achieved this reduction partly through finding a tower-field representation that
compactly calculates both the Galois inversion and the constant scaling of Mix-
Columns (when combined with the affine transformation). The other contribu-
tion to increased efficiency comes from very effective optimization, both of the
4-bit inverter (within the 8-bit Galois inverter) and of the various transformation
matrices.

Our more compact AES approach may be useful for software bit-slice imple-
mentations, or for hardware with limited resources. Of course, in developing a
bit-sliced program for a specific target processor, then parallelism and register
constraints need to be taken into account, as well as the cost of slicing and unslic-
ing. In fact, soon next-generation Intel and AMD processors will include single
instructions to perform whole AES rounds[18], which may render bit-sliced im-
plementations uncompetitive on such targets. However, current and older Intel
and AMD processors may be promising targets for some time, as well as other
possibilities such as the CellBE processor[15]. And further optimization may be
possible for a particular processor, using a suitable slicing arrangement and tak-
ing advantage of specific instructions; for example, on a CellBE processor, the
GF(24) inverter takes only 8 instructions, compared to the 15 bit operations

168 D. Canright and D.A. Osvik

mentioned in subsection 3.4. Also, Intel’s coming AVX technology, with 256-
bit registers and RISC-style SSE instructions, may make bit-slicing competitive
with the native AES instructions.

Future work includes developing a bitsliced AES implementation for the
CellBE processor, and possibly for others.

Acknowledgements

We would like to thank the reviewers for several helpful suggestions, including
pointing out some recent relevant work.

References

1. Rudra, A., Dubey, P.K., Jutla, C.S., Kumar, V., Rao, J.R., Rohatgi, P.: Efficient
Rijndael encryption implementation with composite field arithmetic. In: Koç, Ç.K.,
Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 171–184. Springer,
Heidelberg (2001)

2. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware
architecture with S-box optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, pp. 239–254. Springer, Heidelberg (2001)

3. Wolkerstorfer, J., Oswald, E., Lamberger, M.: An ASIC implementation of the AES
S-boxes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 67–78. Springer,
Heidelberg (2002)

4. Chodowiec, P., Gaj, K.: Very compact FPGA implementation of the AES algo-
rithm. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779,
pp. 319–333. Springer, Heidelberg (2003)

5. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES implementation on a grain of
sand. In: IEE Proceedings on Information Security, IEE, vol. 152, pp. 13–20 (2005)

6. Rijmen, V.: Efficient implementation of the Rijndael S-box (2001),
http://www.esat.kuleuven.ac.be/~rijmen/rijndael/sbox.pdf

7. Paar, C.: Efficient VLSI Architectures for Bit-Parallel Computation in Galois
Fields. PhD thesis, Institute for Experimental Mathematics, University of Essen,
Germany (1994)

8. Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES
2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)

9. Rebeiro, C., Selvakumar, D., Devi, A.: Bitslice implementation of AES. In:
Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS, vol. 4301, pp. 203–212.
Springer, Heidelberg (2006)

10. Boyar, J., Peralta, R.: New logic minimization techniques with applications to
cryptology. Cryptology ePrint Archive, Report 2009/191 (2009),
http://eprint.iacr.org/

11. Käsper, E., Schwabe, P.: Faster and timing-attack resistant aes-gcm. Cryptology
ePrint Archive, Report 2009/129 (2009), http://eprint.iacr.org/

12. NIST: Specification for the Advanced Encryption Standard (AES), FIPS PUB 197
(2001)

13. Bernstein, D.J., Schwabe, P.: New aes software speed records. In: Chowdhury,
D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 322–
336. Springer, Heidelberg (2008)

http://www.esat.kuleuven.ac.be/~rijmen/rijndael/sbox.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/

A More Compact AES 169

14. Daemen, J., Rijmen, V.: AES proposal: Rijndael (1999),
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf

15. IBM: Introduction to the Cell Broadband Engine (2005),
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/

D21E662845B95D4F872570AB0055404D

16. Canright, D.: A very compact Rijndael S-box. Technical Report NPS-MA-05-001,
Naval Postgraduate School (2005)

17. Osvik, D.A.: Speeding up Serpent. In: AES Candidate Conference, pp. 317–329
(2000)

18. Intel: Advanced encryption standard (AES) instructions set, rev. 2 (2009),
http://software.intel.com/en-us/articles/

advanced-encryption-standard-aes-instructions-set/

http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/D21E662845B95D4F872570AB0055404D
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/D21E662845B95D4F872570AB0055404D
http://software.intel.com/en-us/articles/advanced-encryption-standard-aes-instructions-set/
http://software.intel.com/en-us/articles/advanced-encryption-standard-aes-instructions-set/

Optimization Strategies for Hardware-Based
Cofactorization

Daniel Loebenberger1 and Jens Putzka2

1 b-it
D-53113 Bonn

daniel@bit.uni-bonn.de

http://www.b-it-center.de
2 MPI für Mathematik

D-53111 Bonn
putzka@mpim-bonn.mpg.de

http://www.mpim-bonn.mpg.de

Abstract. We use the specific structure of the inputs to the cofactoriza-
tion step in the general number field sieve (GNFS) in order to optimize
the runtime for the cofactorization step on a hardware cluster. An op-
timal distribution of bitlength-specific ECM modules is proposed and
compared to existing ones. With our optimizations we obtain a speedup
between 17% and 33% of the cofactorization step of the GNFS when
compared to the runtime of an unoptimized cluster.

Keywords: General Number Field Sieve (GNFS), Elliptic Curve Method
(ECM), hardware cluster, cofactorization step.

1 Introduction

Factoring natural numbers using the elliptic curve method (ECM) is based on the
seminal work of Hendrik Lenstra (Lenstra 1987), which is a natural adaption of
Pollard’s (p − 1)-method (Pollard 1974) to elliptic curves. In recent implemen-
tations of the general number field sieve (GNFS), the ECM is used to factor
intermediate sieving results (this is the so called cofactorization step). For ex-
ample in the record factorization of Franke & Kleinjung (2005) the sieving step
produced intermediate numbers of length up to 128 bits. Adapting this to the
factorization problem of the number RSA-768 (RSA Laboratories 2007) results
in the task of factoring roughly 2 · 1012 numbers of length up to 140 bit using
the ECM.

Since cofactorization is a costly part of the GNFS, it is natural to think about
highly specialized hardware realizations of this step, to improve the performance
of the GNFS considerably. In particular, since the task consists of many very
similar steps, a realization as a hardware cluster is suitable. On such a cluster
one has many computational units running in parallel that are able to pro-
cess inputs up to a certain bitlength. The question remains how many of those
bitlength-specific modules should be implemented, regardless of the concrete im-
plementation of the corresponding ECM modules. A straightforward approach

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 170–181, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.b-it-center.de
http://www.mpim-bonn.mpg.de

Optimization Strategies for Hardware-Based Cofactorization 171

would be to construct only modules capable of factoring inputs of any size from
the GNFS. It is clear, however, that this approach is a great waste of logical re-
sources and that a detailed study of the bitlength-structure of the inputs to the
cofactorization step results in much better performance than the näıve approach.
Furthermore we quantify the gain we achieve using our optimized construction
and generalize our result to arbitrary clusters.

2 The General Number Field Sieve

In this section we give a brief overview of the GNFS in the version which was
used by Franke et al. in their record factorization of RSA-640. The GNFS is
asymptotically the best known factorization algorithm for large integers. For
a more detailed explanation, see for example Lenstra & Lenstra (1993). In this
section we will always consider pairs of object, which are indexed by the variable
i ∈ {1, 2}.
Polynomial Selection: FindgoodpolynomialsFi(X, Y) (seeKleinjung (2006)).

Sieving: Choose two bounds Li and two bounds Bi. The task is to find many
coprime pairs of integers (a, b) with b > 0 such that both Fi(a, b) are Li-
smooth. This means that Fi(a, b) decomposes into prime factors smaller than
Li. These pairs (a, b) are called relations. In general it is more than enough
to find π(L1)+π(L2) relations. In practice, however, one takes usually some
more. We can write for each pair (a, b)

Fi(a, b) = Ri(a, b)Si(a, b)

where Ri(a, b) is Bi-rough, i.e. has no factor < Bi and Si(a, b) is Bi-smooth.
Sieve: Approximation of logRi(a, b). This can be done using a lattice sieve

(Franke & Kleinjung 2006).
Find Candidates: Take (R1(a, b), R2(a, b)) for pairs (a, b) if the approxi-

mately computed logRi(a, b) are below a given bound. These pairs are
called candidates. Remove the remaining ones.

Trial Division: For all candidates find the Si(a, b) (using trial divisions)
and calculate the Ri(a, b).

Remove Candidate: If Ri(a, b) > Li do a fast compositeness test and
remove the candidate if Ri(a, b) is pseudoprime.

Apply Strategy: One can precompute a list with pairs of bitlengths which
have the property that integers of that size can be factorized in the next
step with high probability. For example pairs where both Ri(a, b) are
large in some sense can be removed (Kleinjung 2004).

Cofactorization: Find the factors of Ri(a, b) using ECM or MPQS (see for
example Cohen (1997)). In our case this should be done using a hardware
cluster which uses ECM to find the factors.

172 D. Loebenberger and J. Putzka

Simplification: The relations define a sparse matrix. One now uses some
elementary column/row transformations to reduce the size.

Linear Algebra: Solve the resulting system of linear equations.

Computing Square Roots: To be able to find the factor one needs to calcu-
late a square root in a number field.

3 Modelling the Cluster System

Our goal is a model of a hardware cluster (e.g. a COPACOBANA, see Kumar et al.
(2006), using Virtex4 XC4VSX35 FPGAs). In our specific example the cluster has
16 slots, each containing 8 FPGAs (in the following called chips). Each chip can
run several ECM-processes in parallel depending on the size of the corresponding
ECM-module. We assume that each chip can only be filled with ECM modules of
a particular size. This requirement is from a theoretical point of view unnecessary,
but for the concrete realization we have in mind we actually have to require this,
since the device controlling all the chips is in our case not able to perform other-
wise. Of course modules constructed for a given bitlength can also factor shorter
integers. If one wants to factor a number using the cluster, the number is forwarded
to a module suitable for its bitlength. The corresponding module then attempts to
find a nontrivial factor of the input number. If this succeeds after a certain num-
ber of trials (each being a separate run of the ECM with a different elliptic curve),
the factor is sent back to the controlling host computer, otherwise the number is
discarded. If the factor that is sent back or the remaining cofactor is still compos-
ite, another factoring attempt is made. We assume for our estimates that the effort
for these additional factorizations is negligible when compared to the first
factorization attempt.

The first question we have to answer is the following: From an engineering
point of view it is unrealistic to build arbitrary sized ECM modules. What is the
smallest bitlength g ∈ N for which such a construction is practical? We call this
g the granularity of the implementation. Of course one cannot give a general
answer to this question. The answer heavily depends on the type of the chips
one is using and the concrete implementation one has in mind. In our example,
we will have g = 17 due to the design of the Virtex4 XC4VSX35 FPGAs.

Another question is: How can we get rid of modules for which the numbers
of integers having that bitlength is very small? In other words if for a particular
bitlength there are only very few numbers to factor, it would be better to factor
such numbers using modules capable of factoring larger integers. This would
ensure that we would not waste any resources on the cluster, resulting in a
better runtime of the cofactorization step.

We describe now the model of the cluster: Let N denote the number of chips
on the cluster, e.g. N = 128 in our concrete example, and let D denote the set
of inputs to the cofactorization step with M := #D. For d ∈ D let len(d) denote
the bitlength of the number d, i.e. len(d) := 	log2(d)
 + 1. Each of the input

Optimization Strategies for Hardware-Based Cofactorization 173

numbers can be handled by specific modules suitable for their bitlength. The
size for which the modules are designed is always a multiple of g. We denote by
ni the number of parallel ECM modules for an integer having i · g bits and by ci

the average runtime of such an integer on the corresponding chips. We are now
going to model the classes the numbers may fall into. In general, if we are given
an interval I := [x, y] with x, y ∈ N and x ≤ y, a partition of I is a sequence
C := (C0, C1, . . . , Ck) ∈ Nk for some k ∈ N, with x = C0 < C1 < · · · < Ck = y.
We call k the size of the partition C. The interval (Ci−1, Ci] is called the i-th
subinterval of C. If now C1 and C2 are partitions of I, we say that C2 is a
refinement of C1 if for any 0 ≤ i ≤ k there is some j, such that C1

i = C2
j . In

other words that means that we have subdivided the subintervals of C1 into
smaller pieces without changing already existing cuts and we write C1 � C2.
Conversely, C1 is called a coarsening of C2. For our purposes we only consider
partitions C of the interval I = [x, y] where x := 	min(len(d) | d ∈ D)
g and
y := �max(len(d) | d ∈ D)
g, where the notation 	.
g (�.
g) means that the
rounding is done down to (up to) the next multiple of g. Additionally we require
that for any 0 ≤ i < #C the number Ci is a multiple of g. We will call such
partitions g-partitions of the intervall induced by D. In particular the finest
partition we will consider is the g-partition Cf := (x, x + g, x + 2g, . . . , y) and
the possible partitions we may have at the end are always coarsenings of Cf .

For the following, fix a data set D and define K := #Cf −1 = (y−x)/g. Now
given any C � Cf of size k, let ai(C) ∈ N be the number of occurrences in the
i-th subinterval of C, i.e. ai(C) := # {d ∈ D | len(d) ∈ (Ci−1, Ci]}. For later use
we define the input distribution

α(C) :=
(

a1(C)
M

, . . . ,
ak(C)
M

)
∈ Rk.

If we consider the ith subinterval of C the average cost of factoring such a number
is cCi/g. The space used for such a module is roughly 1/nCi/g. Thus the area-time
product for class i is given by

ϑi(C) :=
cCi/g

nCi/g
.

A layout of the cluster is given by an ordered partition � �k N of the N chips
into k summands, one for each class. Thus we have

� �k N :⇐⇒ � = (�1, . . . , �k) ∈ {1, . . . , N}k ∧
∑

1≤i≤k

�i = N,

with �i > 0, implying N ≥ k. That means we assume that the number of chips
is always greater than the number of classes, which is also reasonable. Note that
we have indeed two different notions of partitions here: First a partition of an
interval and second an additive ordered partition of a natural number. This could
of course be unified, but for our work it is preferable to have these two different
notions, since for the former notion we emphasize on the variable number of
subintervals while for the latter we assume a fixed number of summands.

174 D. Loebenberger and J. Putzka

Write C|j for the restriction of C on its first j subintervals. The minimal runtime
for C|j is given by

µC(N, j) := min
�	jN

max
1≤i≤j

ϑi(C|j) · ai(C|j)
�i

(1)

The value µC(N, j) is indeed a time measurement, since ci is given in seconds,
ni has unit 1/ chip and �i has unit chip. We will use the following convention: If
we write µC(N) we actually mean µC(N, #C − 1). Further we define

τ(N) := min
C
Cf

µC(N) (2)

Equation (1) and (2) actually depend on the data set D and we write µD,C(N, j)
and τD(N), respectively, if there is more than one data set under consideration.
In the following we will show how one can compute µCf (N) efficiently, namely
with O(N ·K) arithmetic operations. Note that the imprecision of considering
arithmetic operations only is in our case not a problem, since the size of the
numbers is bounded from above by a constant.

We can compute Equation (1) easily using Bellman’s dynamic programming.
To do so, we need to handle two things:

1. The solutions for the boundaries have to be computed (i.e. for the case
j = 1):

µC(N, 1) =
ϑ1(C|1) · a1(C|1)

N
(3)

2. We need a recursion formula for µC(N, j). Assume we know µC(N ′, j−1) for
all N ′ < N . Then we have

µC(N, j) = min
N ′<N

max
(

µC(N ′, j − 1),
ϑj(C|j) · aj(C|j)

N −N ′

)
(4)

The function µC(N, j) can thus be computed with O(N ·j) arithmetic operations.
Let us now compute the function τ(N). The total number of classes C � Cf is

2K/4. Since K will be small in all our examples of the GNFS, a straightforward
algorithm would just compute µC(N) for all C � Cf and select the classes with
minimal runtime. Employing such an algorithm for the computation of τ(N) will
use O(NK2K) arithmetic operations.

We will now describe a greedy approach which will find in many cases the
optimal classes using only O(K) evaluations of the function µC(N) for various
C � Cf , i.e. compute τ(N) with O(N · K2) arithmetic operations: Let C :=
[C0, C1, . . . , Ck] be any partition of the interval I = [x, y].

For p ∈ [1, K − 1] denote by C(p) the refinement of C at position g · p. Our
algorithm will work as follows: Starting from the partition (x, y), we successively
refine (x, y) until the optimal partition is found. In particular if we are given in
step r a partition C, we compute µC(p)(N) for all p and take in the next round
the partition C(p) with the smallest runtime µC(p)(N). If there are two positions
p1, p2 with the same minimal runtime, we select one of the partitions randomly

Optimization Strategies for Hardware-Based Cofactorization 175

for the next step. This approach is indeed greedy, since we take in every round
the best subdivision. The algorithm terminates if for all p the value µC(p)(N)
is not strictly smaller than µC(N). In this case the partition C is returned.
Observe that this algorithm will in general not find the optimal classes, since
we cannot guarantee that the algorithms terminates in a local minimum. In our
experiments, however, this heuristic indeed computed τ(N) in all our examples.

In order to measure the advantage of our optimization, we compare the esti-
mated runtime of the cluster using our construction with the runtime of a näıvely
constructed cluster, i.e. a cluster only containing bitlength-specific modules for
numbers having y bits. On such a cluster the runtime for a data set D of M
numbers is bounded from below by the following expression:

σ−
D(N) :=

1
N · nK

∑
1≤i≤K

ciai (5)

and bounded from above by

σ+
D(N) :=

McK

NnK
(6)

with K := #Cf − 1 as above. The first estimate is a bit optimistic since the
runtime of a module does not only depend on the input but also on the arithmetic
built into the module. Further the second estimate is too pessimistic, since a
module running on smaller input numbers will also run faster on average.

We use the functions

γ−
D(N) :=

σ−
D(N)− τD(N)

σ−
D(N)

and

γ+
D(N) :=

σ+
D(N)− τD(N)

σ+
D(N)

as lower and upper bounds, respectively, to measure the runtime gain we achieve
with our optimized cluster. This expression is exactly the runtime gain achieved
by the optimization (having runtime τD(N)) in contrast to the näıvely con-
structed cluster (having runtime between σ−

D(N) and σ+
D(N)).

4 Concrete Statistical Analyses

We will now perform a rigorous statistical analysis of six concrete runs of the
GNFS up to the cofactorizations step for the number RSA-768 using Franke and
Kleinjung’s implementation, and study the function τ(N) for these particular
inputs: Each data set D consists of many (2 · 108)-rough composite numbers of
bitlength between 58 and 160, each D being a specific output of the sieving step
of the GNFS for different choices of a polynomial pair and the sieving region
of the lattice siever. Following von zur Gathen et al. (2007), we estimate the

176 D. Loebenberger and J. Putzka

Table 1. Number of parallel ECM-modules per chip depending on the bitlength

Bitlength 17i 17 34 51 68 85 102 119 136 153 170
Processes ni 32 26 22 18 15 12 10 9 8 7

Table 2. Average runtime of the ECM on a Virtex4 XC4VSX35 FPGA

Bitlength 17i 17 34 51 68 85
Cost ci (in µs) 491.49125 673.9225 856.35375 1038.785 1221.21625

Bitlength 17i 102 119 136 153 170
Cost ci (in µs) 1403.6475 1586.07875 1768.51 1950.94125 2133.3725

Table 3. Relative frequencies of the input data

Bitlength 0 − 68 69 − 85 86 − 102 103 − 119 120 − 136 137 − 153
D1 0.0015 0.0553 0.4540 0.0886 0.2826 0.1181
D2 0.0007 0.0547 0.4493 0.0889 0.2823 0.1241
D3 0.0008 0.0540 0.4533 0.0881 0.2836 0.1203
D4 0.0009 0.0567 0.4440 0.0874 0.2902 0.1209
D5 0.0011 0.0518 0.4306 0.0875 0.2992 0.1299
D6 0.0009 0.0461 0.4340 0.0834 0.3031 0.1326
Mean 0.0010 0.0531 0.4442 0.0873 0.2902 0.1243
Stdev. 0.0003 0.0038 0.0099 0.0020 0.0091 0.0058

number of parallel ECM modules and the runtime on the Virtex4 XC4VSX35
FPGAs according to Table 1 and 2, respectively. In the implementation that was
used only modules for 17i bit integers were build. Note that such a module will
also be capable of factoring samller integers.

Let us have a look at the distribution α(Cf) of the input data for the various
data sets (see Table 3). Note the low standard deviation of the corresponding
entries. In Figure 1 a histogram as well as the distribution on the classes Cf is
given for data set D1.

We now employ our model to find an optimal layout for the cluster and
compute the runtime gain we achieved with our optimization. Let the notation be
as in Section 3. In the case of the COPACOBANA we will have N = 8 ·16 = 128.
There are 351306039 ordered partitions of the number 128 in not more than 6
parts. The total number of layouts of the cluster, including the choice of the
classes is in our example 402858941.

After having computed the function τD(128) for all data sets D we obtain
for every set an optimal layout (consisting of the interval partition C and the
distribution of chips �). If we take the result of the optimization for data set D1,
for example, we will have 47 modules for integers of up to 102 bit, 58 for integers
up to 136 bit and 23 for the remaining integers (up to 153 bit). The size of the
first class is in this case 102 bit, the size of the second one 34 bit and of the third
class 17 bit. The results are summarized in Table 4 and 5.

Optimization Strategies for Hardware-Based Cofactorization 177

50 60 70 80 90 100 110 120 130 140 150
0

1000

2000

3000

4000

bit
50 60 70 80 90 100 110 120 130 140 150

0

10000

20000

30000

40000

bit

Fig. 1. Left: Histogram of data set D1. Right: Distribution onto specific modules.

Table 4. Optimal partitions for the data sets D1, D2 and D3

D1 D2 D3

50 60 70 80 90 100 110 120 130 140 150
0

10000

20000

30000

40000

50000

bit
50 60 70 80 90 100 110 120 130 140 150

0

10000

20000

30000

bit
50 60 70 80 90 100 110 120 130 140 150

0

10000

20000

30000

40000

50000

bit

(Ci+1 − Ci)/g (3,2,1) (1,2,2,1) (3,1,1,1)
� (47, 58, 23) (1, 46, 57, 24) (48, 11, 45, 24)
τD (µs) 124966.936 96137.13955 126309.5441
#D 98322 75013 99488
τD/#D 1.271 1.2816 1.2696

Table 5. Optimal partitions for the data sets D4, D5 and D6

D4 D5 D6

50 60 70 80 90 100 110 120 130 140 150
0

10000

20000

30000

40000

bit
50 60 70 80 90 100 110 120 130 140 150

0

2000

4000

6000

8000

10000

12000

14000

bit
50 60 70 80 90 100 110 120 130 140 150

0

5000

10000

15000

20000

bit

(Ci+1 − Ci)/g (3,1,1,1) (3,1,1,1) (3,2,1)
� (47, 11, 46, 24) (45, 11, 47, 25) (44, 59, 25)
τD (µs) 113592.0763 37653.16612 65015.11716
#D 90141 29719 50273
τD/#D 1.2602 1.267 1.2932

Table 6. Performance gain for data set D1 (in percent) of the optimized cluster

D1 D2 D3 D4 D5 D6

γ−
D 17.47 16.97 17.66 18.38 18.4 16.88

γ+
D 33.29 32.73 33.36 33.86 33.5 32.12

In order to measure the advantage of our optimization, we use the estimates
from Section 3. We have here at maximum 153 bit numbers and use the values
in the tables above. The result of our optimization is shown in Table 6.

178 D. Loebenberger and J. Putzka

5 Generalizations to an Arbitrary Number of Clusters

Fix one data set D. In this section we analyze the behaviour of the function
γ−(N) for N →∞.

In practice a growing N would mean that we employ not only one COPA-
COBANA, but a whole collection of these, running simultaneously, and optimize
over the whole set of chips. We will now show that the runtime gain achieved by
this collection of clusters converges to roughly 21% when compared to a collec-
tion of näıvely constructed clusters. It is clear that the actual gain however will
strongly depend on the input data D.

Now let’s say we are going to build m clusters and we wish to optimize the
number of bitlength specific ECM modules as above. The formulae in Section 3
are still valid, except that we will have N = 128m chips in a collection of m
clusters instead of N = 128 as above.

We wish to compute limN→∞ γ±(N). To do so, we first need to compute τ(N)
for N → ∞. Unfortunately, the dynamic programming approach used above is
only useful if we consider fixed N , but does not tell us anything about the limit.
In Figure 2 the value of γ−(N) is plotted for the case of m ∈ {1, . . . , 100} clusters
using data set D1. Note that this observation follows also our intuition, since with
an increasing number of clusters one cannot expect more runtime gain.

Assume we are given classes C � Cf . Set k := #C − 1. In order to be able to
compute the limit, we look at the problem of computing µC(N) over the reals,
i.e. we will have � ∈ Rk. With this simplifications it is clear that the expression

max
1≤i≤k

ϑi(C) · ai(C)
�i

is minimal if and only if

ϑi(C) · ai(C)
�i

=
ϑj(C) · aj(C)

�j
for all i, j ∈ {1, . . . , k}

0 10 20 30 40 50 60 70 80 90 100
17

18

19

20

m

Fig. 2. Lower bound on the runtime gain for an increasing number m of clusters

Optimization Strategies for Hardware-Based Cofactorization 179

Write ϑ′
i(C) := ϑi(C) · ai(C). We end up in solving the following system of

equations:

�1 + · · ·+ �k = N

ϑ′
1(C) · �2 = ϑ′

2(C) · �1

...
...

ϑ′
1(C) · �k = ϑ′

k(C) · �1

This system of k equations is linear in the k unknowns �1, . . . , �k, having the
solution

�i =
ϑ′

i(C)N
ϑ′

1(C) + · · ·+ ϑ′
k(C)

We could have used this approach also for our computation of µC(n) in Section 3.
There we would have computed the approximate partition of N (being a vector
of reals) and would then have rounded the results appropriately. To find the
minimum we would have then to round 2k times resulting in an algorithm that
would have used O(k · 2k) arithmetic operations, which is of course preferable
if k is small compared to N . Back to our question of computing the limit we
have

lim
N→∞

µC(N) = lim
N→∞

1
N

∑
1≤i<#C

ϑ′
i(C) and lim

n→∞
τ(N) = min

C
Cf
lim

N→∞
µC(N).

Furthermore

lim
N→∞

σ−(N) = lim
N→∞

1
N · nK

∑
1≤i≤K

ai · ci and lim
N→∞

σ+(N) = lim
N→∞

McK

NnK

Together

lim
N→∞

γ−(N) = min
C
Cf

1− nK

∑
1≤i<#C ϑ′

i(C)∑
1≤i≤K ci · ai

and

lim
N→∞

γ+(N) = min
C
Cf

1− nK

∑
1≤i<#C ϑ′

i(C)
McK

.

Table 7 shows the results for our six test sets. We observe again that the
corresponding values for the different data sets are very similar. Thus it seems
that only the distribution of the inputs is crucial for the outcome of the
optimization.

180 D. Loebenberger and J. Putzka

Table 7. Bounds on the limit of the runtime gain (in percent) for the various data sets

D1 D2 D3 D4 D5 D6

limN→∞ γ−
D 20.81 20.58 20.70 20.56 20.00 19.81

limN→∞ γ+
D 35.99 35.66 35.82 35.63 34.80 34.51

6 Conclusion

We have described a mathematical model of a hardware cluster like the COPA-
COBANA. Using this model we were able to compute the optimal distribution
of bitlength specific modules on such a cluster efficiently, independent of which
concrete ECM implementation was used. For our optimization it is necessary
to have an estimate of the expected input distribution. This is in the case of
the GNFS a nontrivial question (given some fixed parameter set), but it seems
that the outputs of the GNFS always follow a certain distribution. To study this
distribution in general is a challenging task and requires a deep understanding
of the number theoretical properties of the inputs for the cofactorization step.
Results in this direction are reserved for a forthcoming publication. The methods
that were used are standard and were well studied in the 1960th and the 1970th.
Nonetheless our optimization gives a speedup between 17% and 33% for the
cofactorization step of the GNFS. As far as we know such a mathematical opti-
mization was never done before for a hardware cluster like the COPACOBANA.
Additionally our results are applicable for any scalable problem, when one wants
to implement it efficiently on a dedicated hardware cluster.

Acknowledgements

Both authors were funded by the b-it foundation, the state of Northrhine-
Westfalia and the German Federal Office for Information Security (BSI). The
second author was additionally funded by the MPI and the Hausdorff-Center for
Mathematics in Bonn. We want to express our thanks to Thorsten Kleinjung for
helpful discussions on the output of the sieving step. Additional thanks go to
Jérémie Detrey.

References

1. Bellman, R.: Dynamic Programming. Princeton University Text (1957)
2. Cohen, H.: A course in computational algebraic number theory. Springer, Berlin

(1997)
3. Franke, J., Kleinjung, T.: RSA 640 (2005),

http://www.crypto-world.com/announcements/rsa640.txt

4. Franke, J., Kleinjung, T.: Continued Fractions and Lattice Sieving (Unpublished)
(2006), http://www.math.uni-bonn.de/people/thor/confrac.ps

5. von zur Gathen, J., Güneysu, T., Kargl, A., Loebenberger, D., Paar, C., Putzka,
J.: Faktorisierung großer Zahlen: Hardware für Elliptische Kurven Faktorisierung.
Technical report, HGI Bochum, b-it Bonn & Siemens AG München (2007)

http://www.crypto-world.com/announcements/rsa640.txt
http://www.math.uni-bonn.de/people/thor/confrac.ps

Optimization Strategies for Hardware-Based Cofactorization 181

6. Kleinjung, T.: Cofactorisation Strategies for the Number Field Sieve and an Es-
timate for the Sieving Step for Factoring 1024-bit Integers (Unpublished) (2004),
http://www.math.uni-bonn.de/people/thor/cof.ps

7. Kleinjung, T.: On Polynomial Selection for the General Number Field Sieve. Math-
ematics of Computation 75(256), 2037–2047 (2006),
http://dx.doi.org/10.1090/S0025-5718-06-01870-9

8. Kumar, S., Paar, C., Pelzl, J., Pfeiffer, G., Schimmler, M.: Breaking ciphers with
COPACOBANA –A Cost-Optimized Parallel Code Breaker. In: Goubin, L., Mat-
sui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 101–118. Springer, Heidelberg
(2006), http://dx.doi.org/10.1007/11894063_9

9. Lenstra, A.K., Lenstra Jr., H.W. (eds.): The development of the number field sieve.
Lecture Notes in Mathematics, vol. 1554. Springer, Berlin (1993)

10. Lenstra Jr., H.W.: Factoring integers with elliptic curves. Annals of Mathemat-
ics 126, 649–673 (1987)

11. Pollard, J.M.: Theorems on factorization and primality testing. Proceedings of the
Cambridge Philosophical Society 76, 521–528 (1974)

12. RSA Laboratories. The RSA Challenge Numbers (2007)

http://www.math.uni-bonn.de/people/thor/cof.ps
http://dx.doi.org/10.1090/S0025-5718-06-01870-9
http://dx.doi.org/10.1007/11894063_9

More on the Security of Linear RFID
Authentication Protocols

Matthias Krause and Dirk Stegemann

Theoretical Computer Science
University of Mannheim

Mannheim, Germany

Abstract. The limited computational resources available in RFID tags
implied an intensive search for lightweight authentication protocols in
the last years. The most promising suggestions were those of the HB-
familiy (HB+, HB#, TrustedHB, ...) initially introduced by Juels and
Weis, which are provably secure (via reduction to the Learning Parity
with Noise (LPN) problem) against passive and some kinds of active
attacks. Their main drawbacks are large amounts of communicated bits
and the fact that all known HB-type protocols have been proven to be
insecure with respect to certain types of active attacks. As a possible al-
ternative, authentication protocols based on choosing random elements
from L secret linear n-dimensional subspaces of GF(2)n+k (so called
CKK-protocols) were introduced by Cichoń, Klonowski, and Kutyłowski.
These protocols are special cases of (linear) (n, k, L)-protocols which we
investigate in this paper. We present several active and passive attacks
against (n, k, L)-protocols and propose (n, k, L)++-protocols which we
can prove to be secure against certain types of active attacks. We obtain
some evidence that the security of (n, k, L)-protocols can be reduced to
the hardness of the learning unions of linear subspaces (LULS) prob-
lem. We then present a learning algorithm for LULS based on solving
overdefined systems of degree L in Ln variables. Under the hardness
assumption that LULS-problems cannot be solved significantly faster,
linear (n, k, L)-protocols (with properly chosen n, k, L) could be inter-
esting for practical applications.

Keywords: Lightweight Cryptography, RFID Authentication, Algebraic
Attacks, HB+, CKK, CKK2.

1 Introduction

In lightweight cryptography one tries to solve the problem of determining the
minimal amount of computational resources which have to be invested for reach-
ing certain security goals. This problem implies a lot of interesting and nontriv-
ial theoretical questions. Since weak computational devices (e.g., mobile devices,
RFIDs) are used in practice to a rapidly growing extent, results in lightweight
cryptography are highly desired also from a practical point of view.

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 182–196, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

More on the Security of Linear RFID Authentication Protocols 183

RFID (radio frequency identification) tags are small devices that are equipped
with only little memory and computational power. Their main application is the
identification of objects. In order to prevent cloning and tracing attacks and to
preserve the tagged object’s privacy, RFID tags should reveal their identities only
to legitimate readers. Since most practically relevant RFID tags are too weak to
execute standard authentication protocols, alternative measures are necessary.
Besides technical approaches based on blocking or disturbing the communica-
tion, lightweight authentication protocols and corresponding security models are
intensively discussed (see, e.g., [13,15]).

One of the most promising proposals was the HB+ protocol due to Juels and
Weis [14], which is provable secure (via reduction to the learning parity with
noise (LPN) problem) with respect to passive and some kinds of active attacks.
A severe drawback of the protocol is that presumably secure parameter combina-
tions imply large amounts of transmitted data. Together with the small available
bandwidth in RFID communication, this may add up to authentication times
that are unacceptable for many applications. Another disadvantage is that HB+

and all its variants suggested so far have been broken by man-in-the-middle
(MITM) attacks. Particularly, the HB+-protocol was broken by Gilbert, Rob-
shaw and Sibert in [12], the HB#-protocol introduced by Gilbert, Robshaw and
Seurin in [11] was recently broken by Ouafi, Overbeck and Vaudenay in [16], and
Trusted-HB introduced by Bringer and Chabanne in [3] was broken by Frumkin
and Shamir in [10].

As a possible alternative to HB-type protocols, another class of lightweight
authentication protocols (so called CKK-protocols) were introduced by Cichoń,
Klonowski, and Kutyłowski [4]. These protocols can be generalized to linear
(n, k, L)-protocols, in which the secret key (the identification information in
the RFID tag) consists of the specification of L n-dimensional linear subspaces
V1, . . . , VL of GF(2)n+k, while the identification is performed by collaboratively
generating an element v ∈ Vl for a random l ∈ {1, . . . , L}. In [4], the CKK2-
protocol, a special linear (n, k, 2)-protocol, and the CKKσ,L-protocol, a special
linear (n, k, L)-protocol, were suggested for practical application.

Compared with HB-type protocols, the advantages of (n, k, L)-protocols are
that fewer bits have to be communicated, computational effort and memory
requirements are lower on the prover’s side (essentially, the prover has to generate
random elements from L different n-dimensional subspaces of GF(2)n+k), and
that (n, k, L)-protocols seem to be more resistant against active attacks. The
drawback is that we can not yet prove the security of (n, k, L)-protocols by
reduction to a well-established problem like the LPN-problem. However, in this
paper we show that, similarly to HB-type protocols, the security of (n, k, L)-
protocols can be related to the hardness of a certain learning problem, in this
case the Learning Unions of L linear subspaces (LULS) problem.

Our strategy for designing a lightweight authentication protocol is the same
as in the context of HB-type protocols and consists of the following two steps.

1. Define an appropriate lightweight symmetric encryption function E : X ×
K −→ Y , the basis operation, which guarantees that that the basic

184 M. Krause and D. Stegemann

E-protocol is secure against a passive adversary. Hereby, X denotes an ap-
propriate input-, K an appropriate key-, and Y an appropriate output space.

2. Define a protocol structure P over E such that the security of P with respect
to active adversaries can be reduced to the security of the basic E-protocol
against a passive adversary.

The basic E-protocol is defined as follows: Alice and Bob share a secret key
k ∈ K. In one round, the verifier Alice sends hello to the prover Bob. Receiving
hello, Bob chooses a random element x ∈ X , which is distributed according to
a publicly known probability distribution PrB , and sends Ek(x) back to Alice.
After a predefined number of rounds, Alice decides about accepting or rejecting
by applying a verification operation to the messages sent by Bob. The definition
of the verification operation depends on the definition of E. A passive adversary
has only passive access to the insecure channel between Alice and Bob, i.e., she
has to reach her goal on the basis of a set of observations Fk(x1), . . . , Fk(xm),
where for all i = 1, . . . , m, xi is randomly and independently choosen according
to PrB.

Note that for HB-type protocols, K = GF(2)n, X = Y = GF(2)n × GF(2),
y = GF(2), and the basis operation is defined by

E((x, ν), k) = (x, y) ,

where y = x · k⊕ ν. Bob chooses x with respect to the uniform distribution and
sets the noise bit ν to one with probability p < 0.5. Alice accepts if the number
of rounds in which yi = xi · k is satisfied exceeds a certain threshold.

Obviously, basic E-protocols are vulnerable to replay attacks. In both cases,
HB-type- and linear protocols, the basic E-protocol is also vulnerable to active
key recovery attacks (see [14] and the attack described in subsection 2.4, respec-
tively). Consequently, solving challenge (2.) is an important task, which could
not be done in a satisfactory way so far in the case of HB-type protocols.

Our results and the outline of this paper are as follows. In Subsect. 2.1 we
define the basis operation of linear protocols and specify the adversary models.
In Subsect. 2.2 we take a look at CKK-protocols [4], the first type of linear
protocols occuring in the literature. We present a fast passive (polynomial time)
attack against the CKK2-protocol which allows to recover the secret key for the
proposed parameters (n, k) = (128, 30) in less than a second on a standard PC,
while an earlier (exponential time) attack on CKK2 published in [7] requires a
couple of hours on comparable hardware.

In Subsect. 2.3 we describe special active key recovery attacks against linear
protocols, so called equality attacks, and show that the basic linear (n, k, L)-
protocol and the linear (n, k, L)+-protocol (which is based on the same design
principle as HB+) are vulnerable to these attacks.

In Subsect. 2.4 we introduce (n, k, L)++-protocols and prove their security
against equality attacks.

In Subsect. 2.5 we list some generic attacks against linear protocols. Moreover,
we introduce the Learning Unions of L linear subspaces (LULS) problem. The
complexity of the LULS-problem characterizes the security of linear protocols

More on the Security of Linear RFID Authentication Protocols 185

with respect to passive adversaries. We give a generic exponential time algorithm
to solve this problem, and we show that active adversaries that are able to
efficiently solve the LULS-problem can break the (n, k, L)+-protocol.

In Sect. 3 we present a nontrivial learning algorithm for the LULS-problem.
We outline the algorithm in all details for the case L = 2 and describe how the
ideas can be generalized to the case L > 2. The algorithm is based on generating
and solving k

s special overdefined systems of degree-L equations over GF(2s) for
appropriate s ≤ k. Our hardness assumption is that the running time of this
learning algorithm characterizes the complexity of the LULS-problem and the
complexity of actively attacking (n, k, L)++-protocols.

In Sect. 4 we discuss some aspects of the practical use of (n, k, L)++-protocols.
General (n, k, L)-protocols have a huge keylength of L · n · n + k. One idea
could be to use CKKσ,L-protocols (see [4]), a special (n, 1, L)-protocol which
is still unbroken. Other ideas for reducing the keylength in similar cases were
discussed in the literature, e.g., using keys defined by Toeplitz matrices instead of
random matrices [11], or defined by special Toeplitz matrices generated by Linear
Feedback Shift Registers (LFSRs) [3]. The security analysis of the corresponding
types of special (n, k, L)-protocols remains a matter of further research.

We have experimentally confirmed the correctness and efficiency of our attacks
and algorithms with the computer algebra system Magma [2].

2 Linear (n, k, L)-Protocols

2.1 The Basis Operation and the Adversary Models

In a linear (n, k, L)-protocol, Alice (the verifier, e.g., an RFID reader) and Bob
(the prover, e.g., an RFID tag) share a common secret information (the tag’s ID)
from a certain keyspace. As usual, we assume that the secret key is hardwired in
the RFID tag, while Alice has legal access to a database containing Bob’s secret
information.

We define now the basis operation of linear (n, k, L)-protocols and denote for
a positive integer N the set {1, . . . , N} by [N].

The secret keys of the protocols consist of the specifications of L n-dimen-
sional injective linear functions F1, . . . , FL : GF(2)n −→ GF(2)n+k. The inputs
are pairs (x, l), where x ∈ GF(2)n and l ∈ [L].

Let us denote by V1, . . . , VL the n-dimensional linear subspaces of GF(2)n+k

corresponding to the images of F1, . . . , FL, respectively.
In the basic linear protocol, Alice accepts a message w ∈ GF(2)n+k coming

from Bob if w ∈ Vl for some l ∈ [L].
We analyze the security of (n, k, L)-protocols with respect to passive and

active adversaries. A passive adversary is able to read the messages exchanged
by Alice and Bob. His aim is (partial) key recovery, i.e., to try to compute
nontrivial information about the secret key from a set of messages produced by
the honest parties Alice and Bob.

186 M. Krause and D. Stegemann

An active adversary has the additional abilities

– To corrupt or to replace messages sent from Alice to Bob,
– To corrupt or to replace messages sent from Bob to Alice,
– To retrieve the information whether a (possibly corrupted) transcript has

been accepted or rejected by Alice.

We assume that neither of the adversaries is able to read nor modify the keybits
nor the inner state bits nor the private random bits of Alice or Bob.

2.2 The CKK-Protocols

The protocols CKK1, CKK2 and CKKσ,L suggested by Cichoń, Klonowski and
Kutyłowski in [4] are restricted types of (n, k, L)-protocols.

The protocol CKKσ,L is an (n, k, L)-protocol with the restriction Fl(u) =
σl(u||f(u)) for all l ∈ [L], where σ denotes a secret permutation σ ∈ Sn+k and
f a secret linear function f : GF(2)n −→ GF(2)k. Hence, the secret keys have
the form (f, σ).

The protocol CKK2 is an (n + k, k, 2)-protocol with the additional properties
that F1(u, a) = (u, f(u), a) and F2(u, a) = (u, a, f(u)) for all u ∈ GF(2)n and
a ∈ GF(2)k, where f denotes a secret linear function f : GF(2)n −→ GF(2)k.

CKK2 and CKKσ,L protocols were suggested for practical application in [4],
with the parameters n = 128 and k = 30.

So far, the only nontrivial cryptanalytic result concerning linear (n, k, L)-
protocols is due to Gołebięwski, Majcher and Zagórski [7]. They present an
attack against the CKK2-protocol, which cannot be applied to the general case.
Its running time is proportional to

∑k−1
s=0

(
n
s

)
, i.e., of order nΘ(k).

We now describe a very fast attack against the CKK2-protocol with parameters
(n, k) whose running time is dominated by the effort required for inverting k
(n× n)-matrices.

Let f : GF(2)n −→ GF(2)k denote the secret key, recall that

V1 = {(v, f(v), a), v ∈ GF(2)n, a ∈ GF(2)k} ,

V2 = {(v, a, f(v)), v ∈ GF(2)n, a ∈ GF(2)k} .

Let the functions f1, . . . , fk : GF(2)n −→ GF(2) denote the component func-
tions of the secret function f , i.e., f(v) = (f1(v), . . . , fk(v)) for all v ∈ GF(2)n.
The attack is based on the simple fact that if an observation (v, a, b) satisfies
ar = br for some r ∈ [k], which is true with probability 1/2, then we know that
f r(v) = ar = br.

The attack works as follows.

1. Let e1, . . . , en denote the standard basis of GF(2)n.
2. FOR r ∈ [k]

2.1 Consider a set of messages produced by Bob and extract from it a set
Or = ((vr,1, ar,1, br,1), . . . , (vr,n, ar,n, br,n)) such that vr,1, . . . , vr,n form a
basis of GF(2)n and ar,i(r) = br,i(r) = f r(vr,i) for all i ∈ [n].

2.2 Derive f r(e1), . . . , fr(en) from Or.

More on the Security of Linear RFID Authentication Protocols 187

Table 1. Performance of the passive attack on CKK2

(n, k) approx. number of observations approx. attack time
(128, 30) 311 0.3 s

(1024, 256) 2197 179 s

The correctness of the attack follows straightforwardly from the definitions. The
expected number of messages needed for constructing Or can be estimated based
on the following experiment.

1. Set B := ∅.
2. REPEAT

2.1 Choose a random v ∈ GF(2)n (w.r.t. the uniform distribution).
2.2 V := V ∪ {v}.

3. UNTIL V is a generating system of GF(2)n.

Let p(n) denote the probability that the experiment stops after n iterations (i.e.,
V is a basis of GF(2)n), and E(n) denote the expected number of iterations
of the experiment. It is known that p(n) ≈ 0.2887 and E(n) ≈ n + 1.6067
(see, e.g., [7]). Hence, an estimate for the expected number of messages for
constructing Or is 2 · E(n) ≈ 2n + 3.2134. For the parameter choices proposed
for practical applications, the attack is very efficient already on standard PC
hardware (Magma V2.15-9 [2] on a 3.4 GHz Intel Pentium IV with 4 GB RAM),
see Table 1.

2.3 Basic Protocol Types and Equality Attacks

In the basic linear protocol, Alice starts the communication by sending some
signal triggering Bob to compute a proof w of his identity. In particular, Bob
computes w = Fl(u) for randomly (independently and uniformly) chosen l ∈ [L]
and u ∈ GF(2)n. Alice accepts a proof w̃ if there is an l ∈ [L] such that w̃ ∈ Vl

(see Fig. 1).
Obviously, this protocol is vulnerable to replay attacks, since an adversary can

store a number of proofs and then impersonate Bob by presenting these proofs
to Alice.

Verifier Prover
Alice Bob

RFID reader RFID tag

challenge choose l ∈R [L],

w = Fl(u)
accept if
∃l ∈ {1, . . . , L}
with w ∈ Vl

u ∈R GF(2)n

Fig. 1. Basic Communication Mode

188 M. Krause and D. Stegemann

Verifier Prover
Alice Bob

RFID reader RFID tag

a ∈R GF(2)n/2
choose l ∈R [L],

w = Fl(a, b)
b ∈R GF(2)n/2

let (ã, b̃) = F−1
l (w)

accept if ã = a

if ∃l ∈ {1, . . . , L}
with w ∈ Vl

Fig. 2. (n, k, L)+ Communication Mode

Moreover, an active adversary can successfully recover the key as follows.

1. Collect a set of messages O = {v1, . . . , vs} sent by Bob. The parameter s
should be chosen in such a way that O contains a basis for Vl for all l ∈ [L]
with high probability (This can be achieved for s ∈ Θ(L · E(n)) = Θ(Ln),
see Sect. 2.2.)

2. Construct an s × s-matrix M over {0, 1}, where Mi,j = 1 iff Alice accepts
vi ⊕ vj .

Note that if vi and vj belong to the same subspace Vl, the probability for Mi,j = 1
is one. If {vi, vj} �⊆ Vl for all l ∈ [L] then the probability that Mi,j = 1 equals
the probability that vi ⊕ vj ∈

⋃L
l=1 Vl, which is at most (L − 2)2−k. Hence, it

is possible to efficiently compute specifications of V1, . . . , VL and to impersonate
Bob by replying with w ∈ Vl for arbitrary l ∈ [L].

To prevent this kind of attack we consider the following distributed com-
munication mode, which, analogously to the HB+-protocols, defines (n, k, L)+-
protocols. Alice starts by sending a random a ∈ GF(2)n/2 to Bob. Bob chooses
random values b ∈ GF(2)n/2 and l ∈ [L] and sends w = Fl(a, b) to Alice. Alice
accepts w ∈ GF(2)n+k if there is some l ∈ [L] with w ∈ Vl and the prefix of
length n/2 of F−1

l (w) equals a (see Fig. 2).
However, also (n, k, L)+-protocols can be broken by an MITM attack:

1. Fix a1 �= 0 in GF(2)n/2.
2. Send a1 to Bob and receive w1 ∈ Vl for some l ∈ [L].
3. FOR r = 2, . . . , s

3.1 REPEAT
3.1.1 Catch a from Alice.
3.1.2 Send a′ := a⊕ a1 to Bob and receive w′.

UNTIL Alice accepts w′ ⊕w1 (which happens with probability at least
1/L).

3.2 Define ar := a′ and wr := w′.

The parameter s is chosen such that {w1, . . . , ws} contains a basis of Vl with high
probability (see Sect. 2.2). This procedure will be repeated until specifications
of V1, . . . , VL have been computed.

More on the Security of Linear RFID Authentication Protocols 189

In the next subsection we propose linear (n, k, L)++-protocols, a slightly mod-
ified version of (n, k, L)+-protocols, and show that they are secure against a
certain type of MITM-attack.

2.4 Linear (n, k, L)++-Protocols and Provable Security against
MITM-Attacks

The parameters n, k, L as well as Vl, Fl for l ∈ [L] are defined as above. Let
n = 2N . The (n, k, L)++-protocol works similarly to the (n, k, L)+-protocol, but
uses an additional publicly known invertible function f : GF(2)n −→ GF(2)n,
which we call connection function (see Fig. 3).

1. Alice chooses a random a ∈ GF(2)N , a �= 0, moves to the inner state a and
sends a to Bob.

2. Bob chooses random values b ∈ GF(2)N and l ∈ [L] and sends w = Fl(f
(a, b)) back to Alice.

3. Alice accepts a message w ∈ GF(2)n in inner state a if
– w �= 0, and
– ∃l ∈ [L] such that w ∈ Vl, and
– f−1(F−1

l (w)) has the form (a, b) for some b ∈ GF(2)N .

Note that choosing f to be the identity yields the (n, k, L)+-protocol.
We construct now a connection function f which yields provable security of

(n, k, L)++-protocols with respect to a certain type of MITM-attack which we
call (x, y)-equality attack.

The aim of an (x, y)-equality attacker Eve is to generate two messages w �=
w′ ∈ GF(2)n+k and to efficiently test by MITM-access to the protocol if w and
w ⊕ w′ belong to the same linear subspace Vl for some l ∈ [L]. As described
above, such an attack can be used to efficiently compute specifications of the
subspaces V1, . . . , VL.

Eve works in three phases:

1. Send a message y ∈ GF(2)N to Bob and receive w′ = Fl(f(y, b′)).
2. Observe a challenge a ∈ GF(2)N sent by Alice.

Verifier Prover
Alice Bob

RFID reader RFID tag

a ∈R GF(2)N
choose l ∈R [L],

w = Fl(f(a, b))
b ∈R GF(2)N

let (ã, b̃) = f−1(F−1
l (w))

accept if ã = a

if ∃l ∈ {1, . . . , L}
with w ∈ Vl

Fig. 3. (n, k, L)++ Communication Mode

190 M. Krause and D. Stegemann

3. Compute a value x = x(y, w′, a) ∈ GF(2)N , send it to Bob, receive the
message w = Fr(f(x, b)) and send w ⊕ w′ to Alice.

The success probability of the attack is given by the probability that Alice ac-
cepts w ⊕ w′ given that l = r.

Note that if f is GF(2)-linear (as in the (n, k, L)+-protocol), then setting
x = a⊕ y yields an attack with success probability one.

We define now a connection function which yields provable security against
(x, y)-equality attacks. In the following we identify {0, 1}N with the finite field
K = F2N and denote by +, · the addition and multiplication in K. Let the
function value f(a, b) for all a, b ∈ K be defined by

f(a, b) = (ab, ab3) .

Thus, Alice accepts a message w with F−1
l (w) = (u, v) ∈ K2 in inner state

a ∈ K∗ if (a−1u)3 = a−1v, which is equivalent to u3 = a2v.

Theorem 1. The success probability of an (x, y)-equality attacker against the
(n, k, L)++-protocol is at most 3

2N−1 .

Proof. For given y, a ∈ K∗, Eve has to choose an element x ∈ K∗ such that
w + w′ = (u, v) ∈ K × K will be accepted by Alice in inner state a, where
w = Fl(x, b) and w′ = Fl(y, b′) for some l ∈ [L], and b, b′ ∈ K∗. Note that Eve
has no information about b, b′, and that u = xb + yb′ and v = xb3 + yb′3.

Consequently, Eve’s choice for the value x has to satisfy

(xb + yb′)3 = a2(xb3 + yb′3) .

This is equivalent to
(x + yc)3 = a2(x + yc3) ,

where c = b′(b−1), which is equivalent to P (x, c) = 0, where the polynomial
P (x, d) is for all d ∈ K∗ defined as

P (x, d) = x3 + (yd)x2 + (y2d2 + a2)x + d3(y3 + y2a2) .

Note that there are |K∗| = 2N − 1 different polynomials of type P (x, d) with
respect to the variable x (Look at the coefficient yd of x2).

For all x ∈ K∗ let P (x) = {d, P (x, d) = 0}. Note that P (x, d) is a polynomial
of degree 3 also in the unknown d. This implies that for all x ∈ K∗ it holds
|P (x)| ≤ 3.

Eve has to choose an x that satisfies c ∈ P (x). Since she does not have any
information about c, her success probability is bounded by 3

2N−1 . ��

2.5 Security of (n, k, L)-Protocols and the LULS-Problem

There are several exhaustive search strategies for computing specifications of the
secret subspaces V1, . . . , VL, see, e.g., the search-for-a-basis heuristic described

More on the Security of Linear RFID Authentication Protocols 191

in Appendix A. The parameters (n, k) should be chosen in such a way that
these attacks become infeasible. Moreover, k should be large enough such that
the probability p of a random v ∈ GF(2)n+k belonging to

⋃L
l=1 Vl is negligibly

small. Note that p < L2−k.
The subspaces V1, . . . , VL should have the property Vi ⊕ Vj = GF(2)n+k for

all i �= j ∈ [L], otherwise the effective keylength would be reduced. This implies
n ≥ k.

The Learning Unions of L Linear Subspaces (LULS) Problem refers
to the following communication game between a learner and an oracle. The
oracle holds the specifications of L n-dimensionial linear subspaces V1, . . . , VL

of GF(2)n+k. The learner can send requests hello to the oracle. If the oracle
receives hello, it chooses randomly and uniformly an l ∈ [L] and v ∈ Vl and sends
the (positive) example v to the learner. The aim of the learner is to compute
specifications of V1, . . . , VL from a sufficiently large set v1, . . . , vs of examples
produced by the oracle. Note that this corresponds to a passive key recovery
attack against (n, k, L)-type protocols. As described above, a possible strategy
is the search-for-a-basis heuristic, which we outline in Appendix A together with
implied suggestions on how to choose n and k.

An active adversary who is able to solve the LULS-problem efficiently can
break the (n, k, L)+-protocol. In particular, knowing specifications of the secret
subspaces V1, . . . , VL, he can generate specifications of the subspaces Vl(a) (i.e.,
the image of Fl(a, ·)), for arbitrary a ∈ GF(2)n/2 and l ∈ [L] by repeatedly
sending a to Bob. Then the adversary uses N = n/2 subspaces Vl(ai), . . . , Vl(aN)
for {a1, . . . , aN} linearly independent to forge a response for a challenge a =∑N

i=1 αiai by computing

w =
N∑

i=1

αivi with vi ∈R Vl(ai)

=
N∑

i=1

αiFl(ai, bi)

= Fl(a, b′) with b =
N∑

i=1

bi .

In the case of the (n, k, L)++-protocol, the adversary cannot just return a random
w ∈ Vl(a), but has to make sure that the first half of f−1(F−1

l (w)) corresponds
to a. How such a w can be found efficiently (possibly based on the specifications
of the subspaces Vl(a)) is a matter of further research.

In Sect. 3 we present and discuss an algebraic learning algorithm for LULS.

3 On Solving the LULS-Problem
3.1 A Learning Algorithm for the LULS-Problem

Recall that the LULS-problem with parameters n, k, L consists in computing
specifications of L secret n-dimensional linear subspaces of GF(2)n+k from

192 M. Krause and D. Stegemann

positive examples v produced by an oracle which chooses randomly and uni-
formly l ∈ [L] and v ∈ Vl. In this paper we treat the case L = 2 and consider
the special case that Vl = {(v, f(v)), v ∈ GF(2)n}, l ∈ {1, 2} for secret linear
functions f1, f2 : GF(2)n −→ GF(2)k. Our algorithm computes for all i ∈ [k]
specifications of the i-th component functions f i

1, f
i
2 : GF(2)n −→ GF(2) sepa-

rately, i.e., it suffices to consider the case k = 1. The learning algorithm is based
on the following reasoning.

1. Take a set O = {(v1, w1), . . . , (vn, wn)} ⊆ GF(2)n+1 of examples such that
B = {v1, . . . , vn} forms a basis of GF(2)n. For all i ∈ [n] let xi and yi denote
the variables corresponding to f1(vi) and f2(vi), respectively.

2. For b ∈ {0, 1} let Ib = {i ∈ [n], wi = b}.
3. For all i ∈ [n] let ti = xi ⊕ yi, and for all i < j ∈ [n] let ti,j = xiyj ⊕ xjyi.
4. Observe that for all i ∈ [n] the equality (wi ⊕ xi)(wi ⊕ yi) = 0 holds. This

implies
xiyi = 0 if i ∈ I0 and xiyi = 1⊕ ti if i ∈ I1 . (1)

5. Observe that for each example (v, w) ∈ GF(2)n+1, v �∈ B, the following
holds: If v =

⊕
i∈I vi, (i.e., I ⊆ [n] defines the unique representation of v

w.r.t. B), then (
w ⊕

⊕
i∈I

xi

)(
w ⊕

⊕
i∈I

yi

)
= 0 . (2)

Observe that relation (2) can be rewritten as a relation TB(I, w) in the
variables ti and ti,j in the following way. If w = 0 then relation (2) is equiv-
alent to

⊕
i∈I xiyi⊕

⊕
i<j∈I ti,j = 0. Together with relation (1) this implies⊕

i∈I1∩I(ti ⊕ 1) ⊕⊕i<j∈I ti,j = 0 for w = 0. Consequently, for w = 0 we
define TB(I, w) as⊕

i∈I∩I1

ti ⊕
⊕

i<j∈I

ti,j =
{

0 if |I ∩ I1| is even
1 if |I ∩ I1| is odd .

If w = 1 then relation (2) is equivalent to 1 ⊕⊕i∈I ti ⊕
⊕

i∈I∩I1
(ti ⊕ 1) ⊕⊕

i<j∈I ti,j = 0. Hence, for w = 1 we define TB(I, w) as

⊕
i∈I∩I0

ti ⊕
⊕

i<j∈I

ti,j =
{

0 if |I ∩ I1| is odd
1 if |I ∩ I1| is even .

Note that a relation similar to relation (2) was also exhibited in [1] for designing
an algebraic attack against so-called Ff -protocols.

The learning algorithm now proceeds as follows.

1. Let initially the system LES of linear equations in the 1
2 (n2 + n) variables

ti (i ∈ [n]) and ti,j (i < j ∈ [n]) be empty.
2. REPEAT

2.1 Choose an observation (v, w), v �∈ B ∪ {0}, and compute the unique
subset I ⊆ [n] with v =

⊕
i∈I vi.

More on the Security of Linear RFID Authentication Protocols 193

2.2 Enlarge the system LES by the linear equation TB(I, w).
3. UNTIL the system LES has 1

2 (n2 + n) linearly independent equations.
4. Compute by Gaussian elimination the unique solution θ of the system LES.
5. Compute from θ the unique correct assignments to xi, yi for all i ∈ [n].

The correct assignments to the xi and yi variables (step 5 of the algorithm) can
be computed from θ = (θi)i∈[n] (θi,j)i<j∈[n] as follows.

For b = 0, 1 let Kb denote the set Kb = {i ∈ [n], θi = b}. We know that for all
i ∈ K0 it holds that xi = yi = wi, and for all i ∈ K1 it holds that yi = xi ⊕ 1.
This implies that for all i < j in K1, θi,j satisfies

θi,j = xi(xj ⊕ 1)⊕ xj(xi ⊕ 1) = xi ⊕ xj .

This yields a system LES∗ of 1/2|K1|(|K1|−1) linear equations in the variables
xi, i ∈ K1, of rank |K1|− 1. As it does not matter which of the two secret linear
subspaces we denote by V1 and which by V2, we have the freedom to set xk = 0
for some fixed k ∈ K1. The system LES∗ together with xk = 0 yields a system
of full rank and allows to compute the correct assigment to the xi-variables by
Gaussian elimination.

3.2 Analysis and Experimental Results

The background for the fact that the repeat cycle of the algorithm is left after
a finite number of rounds is that the following (2n − (n + 1)) × (n(n + 1)/2)-
matrix M(n) over GF(2) has full row rank (which is not hard to show). The
row indices of M(n) are all subsets I ⊆ [n] with |I| ≥ 2, the column indices are
[n] ∪ {(i, j), 1 ≤ i < j ≤ n}. We have M(n)I,i = 1 iff i ∈ I and M(n)I,(i,j) = 1
iff {i, j} ⊆ [n].

We do not give here a theoretical analysis of the expected number of rounds
of the repeat cycle. Our experiments show that the algorithm needs only slightly
more than 1

2 (n2 + n) + n observations to compute the secret functions f1 and
f2. Particularly for n = 128, we need approx. 8390 examples and 4 minutes on
a 3.4 GHz Intel Pentium IV with 4 GB RAM and Magma V2.15-9 [2].

How severe is the restriction that the secret subspaces have the special form
V = {(v, f(v)), v ∈ GF(2)n} for some surjective linear mapping f : GF(2)n −→
GF(2)k? Let us consider the general case V = {A ◦ v, v ∈ GF(2)n} for an
(n + k)×n matrix A. V can be written in the special form iff the first n rows of
A are linearly independent. For randomly chosen A this is true with probability
p(n) ≈ 0.2887 (see Sect. 2.2).

We have seen that we could solve the LULS-problem with parameters (n, k, 2)
by solving k LULS-problems with parameters (n, 1, 2).

For the special LULS-problem with parameters (n, 1, L), L > 2, we can define
a similar system LES consisting of degree-L equations in the variables xl

i, i ∈ [n],
l ∈ [L], induced as above by equations of the form(

w ⊕
⊕
i∈I

x1
i

)
. . .

(
w ⊕

⊕
i∈I

xL
i

)
= 0 . (3)

194 M. Krause and D. Stegemann

The problem is that for L > 2 the equations have several symmetries such that
the system can not be solved uniquely. The way out is to

– Choose an appropriate parameter s < k which divides k, let k = s · p,
– Write vectors w ∈ GF(2)k as vectors w ∈ GF(2s)p, and
– Solve the corresponding p LULS-problem with parameters (n, 1, L) over

GF(2s).

How to find the best choices of s is a matter of further theoretical and
experimental research.

We are convinced that there is no faster way to solve an (n, k, L)-LULS-
problem other than solving a system of degree-L equations in Ln variables (if
n, k, L are appropriately chosen). Such a system is defined over at least Φ(n, L) =(

n
L

)
+ 2
∑L−1

k=1

(
n
k

)
different monomials, i.e., solving it by linearization means to

solve a system of linear equations of size Φ(n, L). This will costO(Φ(n, L)3) oper-
ations, which can be considered infeasible already for (n, L) ∈ {(128, 5), (256, 4)},
since Φ(128, 5) ≈ 228 and Φ(256, 4) ≈ 227.

4 Summary

We have seen that the secret key of CKK2-protocols can be computed very quickly
from a sufficiently large set of messages sent by Bob. This kind of protocol should
not be used in practice.

The parameters of (n, k, L)++-protocols have to be chosen in such a way that
solving the LULS problem with parameters (n

2 , k, L) is infeasible. We recommend
to use n = 256, k = 64 and L = 5.

Another interesting question is to search for simpler nonlinear connection
functions f , for which a security proof can be found. In our proposal, for com-
puting f(a, b) Bob has to perform three multiplications in the finite field of order
2n/2.

It is another interesting open question whether the very symmetrically struc-
tured systems of degree-L equations arising in our LULS-algorithm in Sect. 3
can be more efficiently solved by more advanced techniques like the F4- or F5-
algorithm or cube attacks [8,9,5,6]. If one could generate convincing evidence that
such algorithms cannot beat our linearization attack, then (n, k, L)++-protocols
with the above parameters could be seriously considered for practical use.

A problem of (n, k, L)-protocols is the large key length in the case that ran-
dom mappings F1, . . . , FL are used. It is an important task to look for secure and
efficient ways to generate pseudorandom keys. In this context, the (still unbro-
ken) CKKσ,L-protocols could become interesting. However, we conjecture that
CKKσ,L-protocols can be efficently broken.

Interesting suggestions for keylength reductions have been made in [11] and
[3]. Adapting these ideas to (n, k, L)-protocols would mean

– To consider special forms of secret subspaces Vl = {(Al ◦ v), v ∈ GF(2)n},
where Al denotes a secret (n + k)× n Toeplitz matrix [11], and

More on the Security of Linear RFID Authentication Protocols 195

– To define the Toeplitz matrix Al to be generated by a secret Linear Feedback
Shift Register [3].

Checking the feasibility and security of these constructions should be a matter
of further research.

Acknowledgement

We are very thankful to Mirek Kutyłowski for the introduction to the topic, and
to Matthias Hamann, Stefan Lucks, Willi Meier, Frederik Armknecht, and Erik
Zenner for helpful discussions.

References

1. Blass, E.-O., Kurmus, A., Molva, R., Noubir, G., Shikfa, A.: The Ff -family of pro-
tocols for RFID-privacy and authentication, http://eprint.iacr.org/2008/476

2. Bosma, W., Cannon, J., Playoust, C.: The magma algebra system. i. the user
language. J. Symbolic Comput. 24, 235–265 (1997)

3. Bringer, J., Chabanne, H.: Trusted-HB: A low cost version of HB+ secure against
a man-in-the-middle attack. IEEE Trans. Inform. Theor. 54, 4339–4342 (2008)

4. Cichoń, J., Klonowski, M., Kutyłowski, M.: Privacy protection for RFID with hid-
den subset identifiers. In: Indulska, J., Patterson, D.J., Rodden, T., Ott, M. (eds.)
PERVASIVE 2008. LNCS, vol. 5013, pp. 298–314. Springer, Heidelberg (2008)

5. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. Cryptol-
ogy ePrint Archive, Report 2008/385 (2008), http://eprint.iacr.org

6. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009)

7. Gołębiewski, Z., Majcher, K., Zagórski, F.: Attacks on CKK family of RFID au-
thentication protocols. In: Coudert, D., Simplot-Ryl, D., Stojmenovic, I. (eds.)
ADHOC-NOW 2008. LNCS, vol. 5198, pp. 241–250. Springer, Heidelberg (2008)

8. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). J.
Pure Appl. Algebra 139, 61–68 (1999)

9. Faugère, J.-C.: A new efficient algorithm for computing Gröbner basis without
reduction to zero (F5). In: Mora, T. (ed.) ISSAC 2002, pp. 75–83. ACM Press,
New York (2002)

10. Frumkin, D., Shamir, A.: Untrusted-HB: Security vulnerabilities of Trusted-HB.
Cryptology ePrint Archive, Report 2009/044 (2009), http://eprint.iacr.org

11. Gilbert, H., Robshaw, M.J.B., Seurin, Y.: HB#: Increasing the security and effi-
ciency of HB+. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
361–378. Springer, Heidelberg (2008)

12. Gilbert, H., Robshaw, M.J.B., Sibert, H.: Active attack against HB+: A provable
secure lightweight authentication protocol. Electronic Letters 41, 1169–1170 (2005)

13. Juels, A.: RFID privacy: A technical primer for the non-technical reader. In:
Strandburg, K., Raicu, D.S. (eds.) Privacy and Technologies of Identity: A Cross-
Disciplinary Conversation. Springer, Heidelberg (2005)

14. Juels, A., Weis, S.A.: Authenticating pervasive devices with human protocols. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg
(2005)

http://eprint.iacr.org/2008/476
http://eprint.iacr.org
http://eprint.iacr.org

196 M. Krause and D. Stegemann

15. Langheinrich, M.: A survey of RFID privacy approaches. J. Personal and Ubiqui-
tous Comp. 13, 413–421 (2009)

16. Ouafi, K., Overbeck, R., Vaudenay, S.: On the security of HB# against a man-in-
the-middle attack. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
108–124. Springer, Heidelberg (2008)

A The Search-for-a-Basis Heuristic

The search-for-a-basis heuristic tries to construct a set Q of examples which form
a basis of Vl for some l ∈ L. For all linearly independent sets Q of n examples
let p(Q) denote the probability that an example coming from the oracle belongs
to the linear span < Q > of Q. It is quite obvious that p(Q) is maximal if Q
is a basis of Vl for some l ∈ L. If p(Q) is not too small, we can compute an
approximation p̃(Q) of p(q) by testing for w ∈< Q > for a sufficiently large
number of examples w.

For v ∈ Q and w �∈ Q we denote by Q(v, w) the set obtained by replacing v
by w in Q.

The idea of the heuristic is to start with an arbitrary linear independent set
Q of n examples and to try to improve this set by finding v ∈ Q and w �∈ Q such
that p̃(Q) < p̃(Q(v, w)). Iterating this at most n times yields a basis for Vl for
some l ∈ [L].

This kind of heuristic is infeasible if the following condition is fulfilled. For a
random linear independent set Q of n examples the probability p(Q) is negligibly
small with probability 1 − ε, ε negligibly small. The parameters n, k should be
chosen in such a way that this condition is guaranteed.

We estimate the probability p(Q) for the case L = 2. For a linear independent
set Q of n examples let Q = Q1 ∪Q2, where Q1 ⊆ V1 and Q2 ⊆ V2 \V1. W.l.o.g.
let |Q1| = n/2 + s and |Q2| = n/2 − s. The event w ∈< Q > happens iff
w ∈ V1∩ < Q1 > or w ∈ V2 and w ∈ V2∩ < Q1 >, i.e.,

p(Q) ≤ 1
2

(
2s−n/2 + 2−k

)
.

(Note that dim(V1 ∩ V2) = n − k for random n-dimensional subspaces V1, V2).
If n, k are chosen in such a way that 2−k, 2−n/4 and the probability that |v| �∈
[n/4, 3n/4] are negligibly small, then the above condition is fulfilled (note that
the expected value of s is 2−kn/2).

Differential Fault Analysis of Rabbit

Aleksandar Kircanski and Amr M. Youssef

Concordia Institute for Information Systems Engineering
Concordia University

Montreal, Quebec, H3G 1M8, Canada
{a kircan,youssef}@ciise.concordia.ca

Abstract. Rabbit is a high speed scalable stream cipher with 128-bit
key and a 64-bit initialization vector. It has passed all three stages of the
ECRYPT stream cipher project and is a member of eSTREAM software
portfolio. In this paper, we present a practical fault analysis attack on
Rabbit. The fault model in which we analyze the cipher is the one in
which the attacker is assumed to be able to fault a random bit of the in-
ternal state of the cipher but cannot control the exact location of injected
faults. Our attack requires around 128 − 256 faults, precomputed table
of size 241.6 bytes and recovers the complete internal state of Rabbit in
about 238 steps.

1 Introduction

The ECRYPT stream cipher project, also known as eSTREAM, is a project that
aimed to identify new promising stream ciphers. The first call for stream cipher
submissions was made in 2004 and it consisted of profile 1 and profile 2: software
oriented ciphers and hardware oriented ciphers. The ciphers were put through a
three-phase elimination process, finalizing in 2008, when four software oriented
ciphers, including Rabbit, and three hardware oriented ciphers were selected as
members of the eSTREAM portfolio.

After passing all three phases, Rabbit [4] (also see RFC 4503) has become a
member of profile 1 eSTREAM portfolio. While originally designed with high
software performance in mind, Rabbit turns out to be also very fast and compact
in hardware. Fully optimized software implementations achieve an encryption
speed of up to 3.7 clock cycles per byte (CPB) on a Pentium 3, and of 9.7
CPB on an ARM7. It uses a 128-bit secret key, 64-bit IV and generates 128
pseudo-random bits as keystream output at each iteration. The size of the secret
internal state amounts to 513 bits, consisting of two sets of 8 32-bit words and
one additional 1-bit value.

The security of Rabbit has been thoroughly investigated in a series of white
papers published by the crypto lab at Cryptico A/S. These papers include anal-
ysis of the key setup function [9], analysis of IV-setup [13], mod n cryptanalysis
[14], algebraic cryptanalysis [8] and periodic properties [11]. Also, a distinguish-
ing attack requiring 2247 128-bit samples was reported in [2]. The bias utilized in
this attack was resulting from the bias in the Rabbit core function where it was

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 197–214, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

198 A. Kircanski and A.M. Youssef

shown that images of the Rabbit core function, g, have significantly less zeros
than ones at each offset and this was used to show that there exists a bias in the
least significant bit of certain keystream subblocks. This work was extended in
[19], where the probability distribution of several keystream bits together was
calculated by means of Fast Fourier Transform, using the techniques described
in [22]. The complexity of the latter attack is 2158. The authors also presented
an attack in which the 251.5 instantiations of the cipher are analyzed based on
the first three keystream output blocks of each instantiation. The additional as-
sumption is that certain differences expressed in terms of XOR among these 251.5

internal states are known. This attack recovers all 251.5 keys and requires 232

precomputation steps, 232 memory, and 297.5 steps. According to the authors,
the attack is given under an unusual cryptanalytic assumption. This attack was
considered the first known key recovery attack on Rabbit.

In this paper we present a fault analysis attack on Rabbit. The fault model
adopted is the one in which an attacker is assumed to be able to cause a bit-flip at
a random location in the internal state of the cipher. However, the exact position
of the flipped bit is unknown to the attacker. The attacker is also assumed to
be able to reinitialize the cipher sufficient amount of times, iterate and obtain
keystream words. The proposed attack requires around 128− 256 faults, an off-
line precomputed table of size 241.6 bytes and recovers the complete internal
state of Rabbit in about 238 steps.

2 Fault Analysis

Cryptanalytic attacks can be broadly classified into two classes. In the first class
of attacks, the attacker tries to exploit any weakness in the underlying math-
ematical structure of the cipher. This type includes, for example, differential
cryptanalysis, linear cryptanalysis and algebraic attacks. The second class of at-
tacks are implementation dependent attacks, which include side channel attacks,
such as timing analysis [18] and power analysis [17], and fault analysis attacks.
In fault analysis attacks [5], the attacker applies some kind of physical influence
on the internal state of the cryptosystem, such as ionizing radiation which flips
random bits in devices’ memory. By examining the results of cryptographic op-
erations under such faults, it is often possible to deduce information about the
secret key or the secret internal state of the cipher.

Fault attacks were first introduced by Boneh et al. [5] in 1996 where they de-
scribed attacks that targeted the RSA public key cryptosystem by exploiting a
faulty Chinese remainder theorem computation to factor the modulus n. Subse-
quently, fault analysis attacks were extended to symmetric systems such as DES
[3] and later to AES [15] and other primitives. Fault analysis attacks became a
more realistic serious threat after cheap and low-tech methods of applying faults
were presented (e.g., [1,23]).

Hoch and Shamir [16] showed that fault analysis attacks present a powerful
tool against stream ciphers as well. Stream ciphers based on LFSRs, LILI-128
and SOBER-t32 as well as RC4 were shown to be insecure in a fault analysis

Differential Fault Analysis of Rabbit 199

model in which the attacker does not have the ability to choose the exact location
of the induced fault. In the case of RC4, the key recovery attack requires 216

faults and 226 keystream words. In [6], RC4 was assessed using a different fault
model in which the attacker may specify the location at which the fault is induced
but can not specify the value of injected faults. The attack requires 216 induced
faults. Another more advanced fault analysis attack on RC4 which requires 210

faults was also introduced in the same paper.
Hojśık and Rudolf [20] presented an attack on another eSTREAM cipher,

Trivium [7]. The attack recovers the secret internal state using 42 fault injections.
The fault model used is the one in which the attacker is able to flip a random bit
in the internal state of Trivium without being able to exactly control its location.
This work was subsequently improved in [21], providing an attack that recovers
Trivium inner state with only 3.2 fault injections on average. The authors used
different cipher representation and were able to reduce high-degree equations
to linear ones, concluding that a change in the way by which the cipher is
represented may result in a better attack.

In this paper, we use the same model as the one used in fault analysis of
Trivium [20,21]. The attacker is assumed to be able to flip a random bit in the
internal state of the cipher without being able to exactly control its location. In
other words, the exact location of induced fault is assumed to be unknown to
the attacker.

The rest of the paper is organized as follows. The Rabbit specifications that
are relevant to our attack are briefly reviewed in the next section. The main idea
behind our attack is presented in section 4.1. The procedure used to determine
the location of induced faults is described in section 4.2 and the complete at-
tack is described in section 4.3. Finally, the attack success probability and its
associated complexity are analyzed in section 5.

3 Specification of Rabbit Stream Cipher

Internal state of Rabbit consists of 513 bits. It includes: eight 32-bit values: x0,t,
· · ·x7,t, eight 32-bit counters, c0,t, . . . c7,t, and one additional bit φ7,t, used in the
counter update. When the cipher steps from time t to time t + 1, the counter is
updated independently of x values, by adding known ai values, corrected with
carries φ as follows:

c0,t+1 = c0,t + a0 + φ7,t

cj,t+1 = cj,t + aj + φj−1,t+1, 1 ≤ j ≤ 7

where

φj,t+1 =
{

1− 1Z/232Z(c0,t + a0 + φ7,t) if j = 0
1− 1Z/232Z(cj,t + aj + φj−1,t+1) if j > 0

and a0 = a3 = a6 = 4D34D34D, a1 = a4 = a7 = D34D34D3, a2 = a5 =
34D34D34D. Function 1Z/232Z is defined by

1Z/232Z(x) =
{

0 if x ≥ 232

1 if x < 232

200 A. Kircanski and A.M. Youssef

Fig. 1. Simplified view of the state update function of Rabbit, rotations omitted

The x values are updated by

x0,t+1 = g0,t + (g7,t <<< 16) + (g6,t <<< 16)
x1,t+1 = g1,t + (g0,t <<< 8) + g7,t

x2,t+1 = g2,t + (g1,t <<< 16) + (g0,t <<< 16)
x3,t+1 = g3,t + (g2,t <<< 8) + g1,t

x4,t+1 = g4,t + (g3,t <<< 16) + (g2,t <<< 16)
x5,t+1 = g5,t + (g4,t <<< 8) + g3,t

x6,t+1 = g6,t + (g5,t <<< 16) + (g4,t <<< 16)
x7,t+1 = g7,t + (g6,t <<< 8) + g5,t

(1)

where
gj,t = (xj,t + cj,t+1)2 ⊕ [(xj,t + cj,t+1)2 >> 32] (2)

The 128-bit keystream output block s
[127..0]
t+1 , is constructed as follows:

s
[15..0]
t+1 = x

[15..0]
0,t+1 ⊕ x

[31..16]
5,t+1 , s

[31..16]
t+1 = x

[31..16]
0,t+1 ⊕ x

[15..0]
3,t+1

s
[47..32]
t+1 = x

[15..0]
2,t+1 ⊕ x

[31..16]
7,t+1 , s

[63..48]
t+1 = x

[31..16]
2,t+1 ⊕ x

[15..0]
5,t+1

s
[79..64]
t+1 = x

[15..0]
4,t+1 ⊕ x

[31..16]
1,t+1 , s

[95..80]
t+1 = x

[31..16]
4,t+1 ⊕ x

[15..0]
7,t+1

s
[111..96]
t+1 = x

[15..0]
6,t+1 ⊕ x

[31..16]
3,t+1 , s

[127..112]
t+1 = x

[31..16]
6,t+1 ⊕ x

[15..0]
1,t+1

(3)

Figure 1 shows a simplified view of the Rabbit state update function. The de-
scription of the key setup scheme of Rabbit is omitted since it does not play a
role in the attack outlined in this paper.

4 Differential Fault Analysis Attack

Throughout the rest of this paper, faulty words will be denoted same as non-
faulty ones, except that a “′” sign will be added. This way, faulty Rabbit internal

Differential Fault Analysis of Rabbit 201

state words at time t will be denoted by x′
i,t, c′j,t, φ′

7,t. The whole Rabbit internal
state at time t, consisting of [(xi,t)i=0...7, (ci,t)i=0...7, φ7,t], will be denoted by St.
Accordingly, its faulty counterpart will be denoted by S′

t. We will also use “ + ”
to denote addition mod 32, unless otherwise stated.

Faulty keystream output at step t will be denoted by s
′
t. The i-th 16-bit

segment of word s will be denoted by s(i). For example s
(1)
t denotes s[31..16], i.e.,

bits 16 to 31 of word st.
According to our fault analysis model, the attacker has the power to flip a bit

within the internal state of the cipher, that is xi,t, ci,t, i = 0, . . . 7, φ7,t but the
attacker can not control or know the exact location of the induced fault (both
at the bit and at the word level).

4.1 The Main Idea

Before stating the complete attack procedure, we provide a motivational exam-
ple that illustrates the idea behind the attack. Let states of Rabbit at step t,
St and S′

t, differ only in i-th bit of word x0,t. Consequently, x′
0,t + c′0,t+1 =

x0,t + c0,t+1 + σ2i, for some unknown σ ∈ {−1, +1} and i ∈ {0, . . .31}. Then,
with high probability, g′0,t �= g0,t and g′i,t = gi,t for i = 1..7. This implies that
x′

i,t+1 �= xi,t+1, for i = 0, 1, 2 and x′
i,t+1 = xi,t+1 for i = 3..7. In particular, since

x
′[31..16]
5,t+1 = x

[31..16]
5,t+1 and x

′[15..0]
3,t+1 = x

[15..0]
3,t+1 , then using the first line in Eq. (3), the

following holds

s
′[15..0]
t+1 = x

′[15..0]
0,t+1 ⊕ x

[31..16]
5,t+1 s

[15..0]
t+1 = x

[15..0]
0,t+1 ⊕ x

[31..16]
5,t+1

s
′[31..16]
t+1 = x

′[31..16]
0,t+1 ⊕ x

[15..0]
3,t+1 s

[31..16]
t+1 = x

[31..16]
0,t+1 ⊕ x

[15..0]
3,t+1

Thus guessing x
[31..16]
5,t+1 and x

[15..0]
3,t+1 makes a candidate for values x0,t+1 and x′

0,t+1
and consequently, using Eq. (1), a candidate for

x0,t+1 − x′
0,t+1 =

(g0,t + g7,t <<< 16 + g6,t <<< 16)− (g′0,t + g′7,t <<< 16 + g′6,t <<< 16) = g0,t − g′0,t

Since inputs to g0,t and g′0,t differ by ±2i for some unknown i = 0, . . . 31,
this constraint can be described by a set of g function additive differentials
{(±2i, δ)|i = 0, . . . 31}.

Suppose now the attacker obtains two more faulted keystream words s′′t+1
and s′′′t+1, derived from states S′′

t and S′′′
t differing from St on bits j and k of

word x0,t, where k �= j, k �= i, j �= i. Since in all three cases, values x
[31..16]
5,t+1 and

x
[15..0]
3,t+1 do not change, using st+1, s′t+1, s′′t+1 and s′′′t+1 three sets of differentials
{(±2i, δ1)|i = 0, . . . 31}, {(±2i, δ2)|i = 0, . . . 31} and {(±2i, δ3)|i = 0, . . . 31} are
obtained using the same guess in the way described above. As will be shown
later, the probability that there exists an input x for the g function such that it
satisfies all three sets of differentials at once, i.e., such that there exist mutually
different i1, i2 and i3 such that

202 A. Kircanski and A.M. Youssef

g(x)− g(x± 2i1) = δ1,

g(x)− g(x± 2i2) = δ2,

g(x)− g(x± 2i3) = δ3

is small if the guess above is not correct. Thus, the attacker is able to discard
wrong guesses for x

[31..16]
5,t+1 and x

[15..0]
3,t+1 . Also, if the guess is a correct one, the

attacker obtains candidates for g input value x0,t + c0,t+1. In the following we
provide a full internal state recovery algorithm.

4.2 Determining the Position of the Fault

In the attack proposed in this paper, the first step after inducing a fault is to
make restrictions on the position where the fault took place. The induced bit
flipping can happen at one of the bits of words x0,t, . . . x7,t, c0,t, . . . c7,t as well
as at the 1-bit value φ7,t.

In the following we provide a tool for deducing important information on the
location at which the fault occurred. Based on difference among faulty and non-
faulty keystreams, information on the difference among internal states St and
S′

t is deduced. More precisely, only keystream words st and s′t will be used and
according to the fault model, it will be assumed that internal states St and S′

t

differ exactly on one bit.
To express these differences in a convenient way, we introduce the function

dST , describing differences on the internal states and the function dKS , describ-
ing differences among faulty and non-faulty keystream words. Let

dST (S, S′) =
{

0, if a fault occured either at x0,t, c0,t or φ7,t

1 ≤ i ≤ 7, if a fault accured either at xi,t or ci,t

The function dST is defined for every pair of states (S, S′) that differ exactly on
one bit. If s and s′ are two 128-bit keystream words at some step, then we define

dKS(s, s′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, s(5) = s′(5), s(6) = s′(6) and s(i) �= s′(i) for i �= 5, 6
1, s(0) = s′(0), s(5) = s′(5) and s(i) �= s′(i) for i �= 0, 5
2, s(0) = s′(0), s(7) = s′(7) and s(i) �= s′(i) for i �= 0, 7
3, s(2) = s′(2), s(7) = s′(7) and s(i) �= s′(i) for i �= 2, 7
4, s(1) = s′(1), s(2) = s′(2) and s(i) �= s′(i) for i �= 1, 2
5, s(1) = s′(1), s(4) = s′(4) and s(i) �= s′(i) for i �= 1, 4
6, s(3) = s′(3), s(4) = s′(4) and s(i) �= s′(i) for i �= 3, 4
7, s(3) = s′(3), s(6) = s′(6) and s(i) �= s′(i) for i �= 3, 6

If a pair of 128 bit (s, s′) words does not satisfy any of the conditions proposed
by the right-hand side of the equation above, function dKS(s, s′) is undefined.

To understand the motivation behind the above definition, assume that the
injected fault affected the input to the function g0,t. From Figure 1, it is clear
that such fault directly affects the computation of x0,t+1, x1,t+1 and x2,t+1. From
Eq. (3), it follows that these three terms also directly affect the computation of

Differential Fault Analysis of Rabbit 203

all words on the output stream except s′
[95..80]
t+1 = s′

(5) and s′
[111..96]
t+1 = s′

(6)

which explains the first line in the above definition. A similar argument applies
to to rest of entries in the definition of dKS(s, s′).

The criterion for determining the position of the fault dST (St, S
′
t) based on

the first keystream word can now be simply stated as follows:

- If dKS(st+1, s
′
t+1) is defined, put dST (St, S

′
t) = dKS(st+1, s

′
t+1)

- Otherwise, leave dST (St, S
′
t) undefined

During the attack, when after a fault dST (St, S
′
t) value is undefined, the fault

will be discarded and the attacker proceeds by inducing another fault.
The successfulness of this criterion can be measured by two types of errors,

pincorr and pundef . Error pincorr is defined as the probability that the criterion
returns a wrong dST (S, S′) value, while error pundef is defined as the probabil-
ity that the criterion will leave dST (S, S′) undefined. The probability that the
criterion returns correct dST (S, S′) value will be denoted as pcorr.

According to the theoretical estimate of these three probabilities (see Ap-
pendix A), pcorr ≈ 0.98635, pundef ≈ 0.013645 and pincorr ≈ 0. To confirm
these theoretical estimates, the following experiment was conducted. A Rabbit
internal state was randomly initialized and a random fault was induced. The
criterion was applied and it was noted which of the three options happened:
correct position of the fault returned, incorrect position of the fault returned
or position of the fault left undefined. After repeating the experiment for 106

times, the probabilities were obtained as pcorr = 0.98408, pundef = 0.015924,
and pincorr = 0. Hence, given, say 100 faults, correct position will be determined
for around 98 faults and 2 faults will be discarded. For no faults the incorrect
position will be returned. Thus, it can be concluded that the proposed criterion
represents reliable means for determining the position of faults.

4.3 The Complete Attack

Before stating the complete attack we introduce following definitions. Through-
out the following three definitions, let k ∈ {0, 1, 2} and σ ∈ {−1, +1} be fixed
values and let x be restricted to the set Z232 . By (σ2i, δ)k we denote a g function
additive differential where the input difference is σ2i and the output difference
δ, taken after rotating g function output for 8× k bits.

Definition 1. An x value will be considered to satisfy differential (σ2i, δ)k if

[g(x) <<< (8k)]− [g(x + σ2i) <<< (8k)] = δ

Definition 2. A set of differentials

(±2i, δ)k|31i=0 := {(σ2i, δ)k|i = 0..31, σ = −1, +1}

will be called a generalized differential. An x value will be considered to satisfy
generalized differential (±2i, δ)k|31i=0 if it satisfies any of the differentials con-
tained in the set.

204 A. Kircanski and A.M. Youssef

Definition 3. A set of generalized differentials

∆ = {(±2i, δ1)k|31i=0, (±2i, δ2)k|31i=0, . . . (±2i, δn)k|31i=0)}
will be considered satisfiable if at least one x value satisfies them all, i.e., if
there exists an x value as well as distinct values d1, . . . dn, chosen from the set
{±2i|i = 0..31}, such that

[g(x) <<< 8k]− [g(x + dj) <<< 8k] = δj , j = 1, . . . n

For such an x, we shall say that it satisfies set ∆.

The following procedure, flt init(t) induces a sufficient number of faults at
the internal state of the cipher at step t and arranges faulty keystream words to
appropriate sets, using the mechanism described in Section 4.2.

- Let FLTSi = Ø, i = . . . 7.
- While |FLTSi| < 3 for any i = 0 . . . 7

- Reinitialize the cipher, forward to step t and induce a fault. Obtain
s′t+1. If dKS(s′t+1, st+1) is defined, let i = dKS(s′t+1, st+1) and add s′t+1
to FLTSi.

The procedure that follows, derive inf(i,k), utilizes information in FLTSi to
deduce the set of possible values for xi,t + ci,t+1. Parameter k can take values
0,1 and 2 and it determines the way xi,t + ci,t+1 value will be recovered. Namely,
as will be seen from the algorithm, there are three different ways to derive
candidates for this value and the logic of these three ways is encoded through
values of αi,k, βi,k, k = 0, 1, 2 in Table 1. The values for αi,k, βi,k have been
derived utilizing Eq. (3). For example, running derive inf(0,0), returns the
set of candidates for x0,t+c0,t+1 by working on values s

(0)
t+1 and s

(1)
t+1, i.e., guessing

values x
[15..0]
3,t+1 and x

[31..16]
5,t+1 , creating the set of generalized differentials using g0,t−

g′0,t = x0,t+1 − x′
0,t+1 and finally finding g-input values that satisfy it. On the

other hand running derive inf(0,1) aims to recover the same value x0,t +
c0,t+1, but in a different way. Namely, in this case, the procedure operates on
values s

(4)
t+1 and s

(7)
t+1, i.e., guesses x

[15..0]
4,t+1 and x

[31..16]
6,t+1 , derives the generalized

differential set by g0,t <<< 8 − g′0,t <<< 8 = x1,t+1 − x′
1,t+1 and then searches for

g-input values that satisfy the set. The objective of obtaining the same value in
three different ways is to take the intersection afterwards and hence minimize
redundant candidates. Also, in the first case, a difference with no rotation was
obtained and in the second, a difference after 8-bit rotations was found. The table
is encoded so that whenever k = 0, k = 1 and k = 2, the number of rotations in
the obtained difference will be 0, 8 and 16, respectively. This justifies the same
value k present as index both for α, β and for generalized differentials themselves
from ∆k

i (A) sets in the procedure below.
The complete procedure derive inf(i,k) follows:

- Let Sat(∆k
i) = Ø

- For A = 0, . . . 232 − 1

Differential Fault Analysis of Rabbit 205

Table 1. α and β index values used during the attack

i 0 1 2 3 4 5 6 7
αi,0 1 4 3 6 5 0 7 2
βi,0 0 7 2 1 4 3 6 5
αi,1 4 3 6 5 0 7 2 1
βi,1 7 2 1 4 3 6 5 0
αi,2 3 6 5 0 7 2 1 4
βi,2 2 1 4 3 6 5 0 7

- Form the set of generalized differentials as follows:

∆k
i (A) = { (±2l, ([s(αi,k)||s(βi,k)]⊕A)− ([s′(αi,k)||s′(βi,k)]⊕A))k|31l=0

|s′ ∈ FLTSi}
- Let Sat(∆k

i) = Sat(∆k
i) ∪ Sat(∆k

i (A)), where Sat(∆k
i (A)) is the set of

x values that satisfy ∆k
i (A)

where αi,k, βi,k, i = 0 . . . 7, k = 0, 1, 2 are defined by Table 1. The Derivation of
Sat(∆k

i (A)) sets is done using precomputation, as explained in Section 5.2. To
recover g input values at step t, i.e., values xi,t + ci,t+1, the procedure g inp(t)
can be invoked, as follows:

- flt init(t)
- For i = 0, . . . 7

- Call derive inf(i,0), derive inf(i,1) and derive inf(i,2) to find
Sat(∆0

i), Sat(∆1
i) and Sat(∆2

i)
- Cand(xi,t + ci,t+1) = Sat(∆0

i) ∩ Sat(∆1
i) ∩ Sat(∆2

i)

In the next section it will be shown that the probability that there will be more
than one candidate for xi,t +ci,t+1, i.e., that there will be more than one element
in the set Cand(xi,t + ci,t+1), is small.

Finally, the complete internal state at time t = 1 can be recovered by invoking
the previous procedure for t = 0 which yields values xi,0 + ci,1, i = 0 . . . 7. This
in turn yields gi,0, i = 0 . . . 7 values, which yield xi,1, i = 0 . . . 7, by Eq. 1.
Invoking the previous procedure once again for t = 1 yields values xi,1 + ci,2,
i = 0 . . . 7. Subtracting according values reveals ci,2, i = 0 . . . 7. Now ci,1 values
can be recovered by reversing the counter one step backward, according to the
specification of counter update step. Whether φ7,1 = 0 or φ7,1 = 1 is found by
mere trying both options and comparing the resulting keystream words.

5 Attack Success Probability and Complexity

5.1 Success Probability

In this section we show that the procedure from previous section determines
the internal state uniquely. More precisely, it will be shown that |Cand(xi,t +

206 A. Kircanski and A.M. Youssef

ci,t+1)| = 1, for any i = 0 . . . 7 and t ≥ 0 with high probability. This will be
done by modelling g as a random function and then showing that if differences
([s(αi,k)||s(βi,k)]⊕A) - ([s′(αi,k)||s′(βi,k)]⊕A) are chosen uniformly randomly, i.e.,
not corresponding to the actual values produced by the attack procedure, this
set of candidates will have 0 elements with high probability. Then, this proba-
bility can be taken as probability that |Cand(xi,t + ci,t+1)| = 1 since following
the procedure with actual differences and using the real g function guarantees
existence of one correct candidate for xi,t + ci,t+1. According to the way com-
plete internal state is recovered from g input values at times t = 0 and t = 1,
as described by the last paragraph of the previous section, it is clear that from
uniqueness and correctness of g input values, uniqueness and correctness of the
recovered internal state at step t = 1 follows.

Since during the algorithm, Cand(xi,t + ci,t+1) is derived as the intersection
of Sat(∆0

i), Sat(∆1
i) and Sat(∆2

i), the probability distribution of the number of
elements in these three sets is first examined. Assume g is a randomly chosen
function and differences (s(αi,k)|s(βi,k)) ⊕ A − (s′(αi,k)|s′(βi,k)) ⊕ A are chosen
randomly uniformly. Sets Sat(∆k

i), k = 0, 1, 2 are formed as follows, as described
by derive inf(i,k):

Sat(∆k
i) = Sat(∆k

i (0)) ∪ . . . ∪ Sat(∆k
i (232 − 1))

For a given A, consider a generalized differential from ∆k
i (A). The probability

that random 32-bit x value will satisfy it is 63/232. Since each set of generalized
differentials ∆k

i (A) contains at least three generalized differentials

P [x satisfies ∆k
i (A)] ≤ (63/232)3 = 2−78.068

The probability that among 232 possible x values there exists at least one that
will satisfy ∆k

i (A), i.e., the probability that ∆k
i (A) is satisfiable, is

P [Some x ∈ {0, . . . , 232 − 1} satisfies ∆k
i (A)] ≤ 1− (1− 2−78.068)2

32 ≈ 2−46

Finally, the probability that for at least one A there will exist an x that will satisfy
∆k

i (A), i.e., the probability that Sat(∆k
i) is nonempty in a random model, is

P [Sat(∆k
i) is empty] ≥ (1− 2−46)2

32
= 1− 2−14 (4)

The final set of candidates for xi,t + ci,t+1 in procedure g inp is derived as an
intersection of Sat(∆0

i), Sat(∆1
i) and Sat(∆2

i). The probability that, in a random
model, the intersection of these three sets is non-empty is

P [Randomly modelled Cand(xi,t + ci,t+1) nonempty] ≤ (2−14)3 = 2−42 (5)

This can finally be taken as an upper bound for the probability that there will be
an element other than the correct one in Cand(xi,t + ci+1,t). Since Cand(xi,t +
ci,t+1) is calculated for i = 0, . . . 7 at times t = 0, 1 during the attack procedure,
it can be concluded that there will be no redundant candidates for the internal
state after the procedure is completed.

Differential Fault Analysis of Rabbit 207

5.2 Attack Complexity

The attack complexity can be measured by the number of faults required, compu-
tational complexity as well as storage complexity. First, we examine the number
of faults necessary to undertake an attack.

As described above, the input for the attack is a non-faulty keystream word
st+1 as well as certain number of faulty keystream words s′t+1. Also, the set
of faulty states from which s′t+1 values are produced needs to satisfy certain
properties. More precisely, as specified by the flt init procedure, at each of
the following groups of bits

x0,t, c0,t, φ7,t

x1,t, c1,t

x2,t, c2,t

...
...

x7,t, c7,t

(6)

the attacker has to produce at least three different faults and obtain three corre-
sponding s′t+1 values. It follows that the minimal number of required faults that
will need to be induced is 3× 8 = 24. However, since an attacker does not have
the possibility to choose locations of faults he induces, the number of necessary
faults will be higher.

Let n denote the overall number of induced faults. Let p(n) denote the prob-
ability that that there will be at least 3 faults at each one of the 8 groups of
bits above. Let Ai be the event that after inducing n random faults there will
be at most 2 faults at xi,t, ci,t, or xi,t, ci,t, φ7,t if i = 0. Then, Ai = B0

i ∪B1
i ∪B2

i

where Bj
i , j = 0, 1, 2, i = 0 . . . 7 is an event that at xi,t, ci,t or xi,t, ci,t, φ7,t if

i = 0 there will be 0,1 or 2 different faults. Then, p(n) can be approximated as
follows:

p(n) =
1− P [A0 ∪ . . . ∪A7] =
1− P [(B0

0 ∪B1
0 ∪B2

0) ∪ . . . ∪ (B0
7 ∪B1

7 ∪B2
7)] ≈

1− (
7∑

i=0

2∑
j=0

P [Bj
i])− (

7∑
i1=0

2∑
j1=0

7∑
i2=i1+1

2∑
j2=0

P [Bj1
i1
∩Bj2

i2
])

where the fact that P [Bj1
i ∩Bj2

i] = 0 for j1 �= j2 has been used. For i = 0 . . . 7

P [B0
i] = (

7
8
)n, i = 0 . . . 7

P [B1
i] =

∑
k1+k2=n−1

(
7
8
)k1(

1
8
)(

7 × 32 + 1
8× 32

)k2

P [B2
i] =

∑
k1+k2+k3=n−2

(
7
8
)k1(

1
8
)(

7 × 32 + 1
8× 32

)k2(
31

8× 32
)(

7× 32 + 2
8× 32

)k3

and the second order probabilities are provided in Appendix B.

208 A. Kircanski and A.M. Youssef

Substituting the according values of n yields p(64) = 0.900, p(96) = 0.997
and p(128) = 0.999. The quality of the approximation above has been verified
by the following experiment. For 105 times, a data structure equivalent to Rabbit
internal state was initialized with zeros and n faults were simulated by writing
1 to a uniformly random chosen bit location. After each iteration, if there was
at least three 1-bits at each of the groups of bits in question, a counter was
incremented. At the end of the experiment, the probability was obtained by
dividing the counter by 105. Obtained ratios for n = 64, 96, 128 were 0.900,
0.996, 0.999 respectively. Consequently, throughout the rest of the paper, we
assume that 64-128 faults are practically sufficient to guarantee that there will
be at least 3 faults at each one of the 8 groups of bits defined in Eq. (6).

Since during the attack, as described in Section 4.3, procedure flt init is
called two times, the number of necessary faults is around 128− 256.

As for computational and storage complexity, the flt init procedure can
make use of precomputation. In particular, 32 tables T +

0 , . . . T+
31 can be created,

such that cell T +
i [j] contains all the x values such that j = g(x) − g(x + 2i).

Another 32 tables T−
0 , . . . T−

31 can be created, such that cell T−
i [j] contains all

the x values such that j = g(x) − g(x − 2i). Analogous sets of tables can be
created for [g(x) <<< 8] − g(x ± 2i) <<< 8] and [g(x) <<< 16] − g(x ± 2i) <<
< 16]. Thus, the storage complexity is given by 3 × 64 × 232 = 239.6 words,
i.e., 241.6 bytes, and now the computational complexity for a query for x such
that it satisfies a generalized differential is O(1). Since around 2 × 8 × 3 × 232

such queries are made, the computational complexity of the attack is about 238

steps.
To summarize, the proposed attack requires around 128− 256 faults, precom-

puted table of size 241.6 bytes, and recovers the cipher internal state in about
238 steps. Further refitment for the attack complexity and success probability is
provided in Appendix C.

It should be noted that our proposed attack does not work if the induced
faults have a Hamming weight > 1. Extending the ideas presented in this paper
to the case where this assumption is relaxed seems to be a challenging research
problem.

References

1. Anderson, R., Kuhn, M.: Low Cost Attacks on Tamper Resistant Devices. In:
Christianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols 1997.
LNCS, vol. 1361, pp. 125–136. Springer, Heidelberg (1998)

2. Aumasson, J.P.: On a bias of Rabbit. In: Proc. of the State of the Art of Stream
Ciphers, SASC (2007)

3. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

Differential Fault Analysis of Rabbit 209

4. Boesgaard, M., Vesterager, M., Pedersen, T., Christiansen, J., Scavenius, O.: Rab-
bit: A new high-performance Stream Cipher. In: Johansson, T. (ed.) FSE 2003.
LNCS, vol. 2887, pp. 307–329. Springer, Heidelberg (2003)

5. Boneh, D., Demillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

6. Biham, E., Granboulan, L., Nguyen, P.Q.: Impossible Fault Analysis of RC4 and
Differential Fault Analysis of RC4. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005.
LNCS, vol. 3557, pp. 359–367. Springer, Heidelberg (2005)

7. Cannière, C., Preneel, B.: TRIVIUM: A stream cipher construction inspired by
block cipher design principles. In: Katsikas, S.K., López, J., Backes, M., Gritzalis,
S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 171–186. Springer, Heidelberg
(2006)

8. Cryptico A/S, Algebaric Analysis of Rabbit (2003),
http://www.cryptico.com

9. Cryptico A/S, Analysis of the key setup function in Rabbit (2003),
http://www.cryptico.com

10. Cryptico A/S, Hamming weights of the g-function (2003),
http://www.cryptico.com

11. Cryptico A/S, Periodic properties of Rabbit (2003), http://www.cryptico.com
12. Cryptico A/S, Second degree approximations of the g-function (2003),

http://www.cryptico.com

13. Cryptico A/S, Security Analysis of the IV-setup for Rabbit (2003),
http://www.cryptico.com

14. Cryptico A/S, Mod n analysis of Rabbit (2003), http://www.cryptico.com
15. Dusart, P., Letourneux, G., Vivolo, O.: Differential fault analysis on AES. In: Zhou,

J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 293–306. Springer,
Heidelberg (2003)

16. Hoch, J., Shamir, A.: Fault Analysis of Stream Ciphers. In: Joye, M., Quisquater,
J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 240–253. Springer, Heidelberg
(2004)

17. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

18. Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

19. Lu, Y., Wang, H., Ling, S.: Cryptanalysis of Rabbit. In: Wu, T.-C., Lei, C.-L.,
Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 204–214. Springer,
Heidelberg (2008)

20. Hojśık, M., Rudolf, B.: Differential fault analysis of Trivium. In: Nyberg, K. (ed.)
FSE 2008. LNCS, vol. 5086, pp. 158–172. Springer, Heidelberg (2008)

21. Hojśık, M., Rudolf, B.: Floating fault analysis of Trivium. In: Chowdhury, D.R.,
Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 239–250.
Springer, Heidelberg (2008)

22. Maximov, A., Johansson, T.: Fast computation of large distributions and its cryp-
tographic properties. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
313–332. Springer, Heidelberg (2005)

23. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski Jr.,
B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer,
Heidelberg (2003)

http://www.cryptico.com
http://www.cryptico.com
http://www.cryptico.com
http://www.cryptico.com
http://www.cryptico.com
http://www.cryptico.com
http://www.cryptico.com

210 A. Kircanski and A.M. Youssef

24. Zenner, E.: A Cache Timing Analysis of HC-256. In: Avanzi, R., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381. Springer, Heidelberg (2009)

A Estimating pcorr, pincorr and pundef

In this section, we provide an analytical estimate for the probabilities that the
criterion defined in Section 4.2 will return a correct, incorrect or undefined value.

Firstly, we estimate the probability that a fault in one of the ci,t, i = 0..6
values propagates to ci+1,t+1 and not only to ci,t+1 during the update step, via
carry transfer mechanism implemented by auxiliary φi,t+1 value. Suppose the
fault occurred at position ci,t, the probability that ci,t + ai + φi−1,t+1 will have
a carry at 32-nd bit place is approximately equal to

pcr ≈ 1
32

32∑
i=1

1
2i

= 0.03125.

This probability is given by the event that that addition of ±2i, i = 0..31 to
a random 32-bit number x changes value of 1Z/232Z(x). While the ai values in
the actual cipher are fixed (ai ∈ {4D34D34D, D34D34D3,34D34D34D}), our
experimental results confirmed the accuracy of the above approximation.

Then, values pcorr, pincorr, pundef are estimated in what follows. Suppose the
a random fault was induced in the internal state of the cipher. Then, the position
of the bit-flip can be at

- xi,t, i ∈ {0, . . . 7} with probability 256
513 . In this case, our criterion will re-

turn a correct dST (S, S′) value if g(xi,t + ci,t+1) �= g(x′
i,t + ci,t+1), i.e., with

probability 232−1
232 . In case that is not true, the criterion leaves dST (S, S′)

undefined.
- φ7,t with probability 1

513 . In this case, c′0,t+1 �= c0,t+1 with probability 1. Let
z ∈ {0, . . .7} such that c′j,t+1 �= cj,t+1 for j = 0, ..z and c′j,t+1 = cj,t+1 for
j = z + 1, ..7. If

- z = 0, which happens with probability 232−1
232 , and g(x0,t + c0,t+1) �=

g(x′
0,t + c0,t+1), for which the probability is 232−1

232 , then our criterion re-
turns a correct value. If, however, in this case g(x0,t + c0,t+1) = g(x′

0,t +
c0,t+1) which happens with probability 1

232 , the criterion leaves dST (S, S′)
undefined.

- z = 1 which happens with probability 1
232 . In this case, we consider only

the case g(xi,t + ci,t+1) �= g(x′
i,t + ci,t+1), i = 0, 1, probability being

(232−1
232)3 and in this case again our criterion leaves dST (S, S′) undefined.

Other possibilities within the case z = 1 are highly improbable and hence
do not have any practical implications on the success probability of our
attack.

- z ≥ 2 occurs with probability (1
232)2 × 232−1

232 . We do not go into further
consideration since these events are highly improbable.

Differential Fault Analysis of Rabbit 211

- ci,t, i ∈ {0, . . .7}, with probability 256
513 . Again, let z ∈ {0, . . . 7} such that

c′j,t+1 �= cj,t+1 for j = i, . . . i + z and c′j,t+1 = cj,t+1 for j = i + z + 1, ..7. If
- z = 0, which happens with probability 1 − pcr if i ≤ 6 and with proba-

bility 1 if i = 7, the same analysis as with a fault on xi,t values applies.
Namely, the correct dST (S, S′) value will be returned with probability
232−1
232 and otherwise criterion value in question will be left undefined

- z = 1, which happens with probability pcr × 232−1
232 if i ≤ 5, with proba-

bility pcr if i = 6 and with probability 0 if i = 7, the following analysis
applies. If values g(xj,t + cj,t+1) and g(xj+1,t + cj+1,t+1) are both equal
to, or both different than g(x′

j,t + cj,t+1) and g(x′
j+1,t + cj+1,t+1), re-

spectively, the criterion leaves dST (S, S′) undefined and the probability
for this to happen is (232−1

232)2 + (1
232)2. However, if g(xj,t + cj,t+1) =

g(xj,t + c′j,t+1) and g(xj+1,t + cj+1,t+1) �= g(xj+1,t + c′j+1,t+1) the cri-
terion returns the wrong value as an answer. The probability for this
to happen is 1

232 × 232−1
232 . In case g(xj,t + cj,t+1) �= g(xj,t + c′j,t+1) and

g(xj+1,t + cj+1,t+1) = g(xj+1,t + c′j+1,t+1), which occurs with the same
probability, the criterion returns the right answer.

- z = 2, which happens with probability pcr × 1
232 × 232−1

232 if i ≤ 4, with
probability pcr× 1

232 if i = 5 and with probability 0 if i ≥ 6, the following
consideration applies. In the case where all three g values are changed,
dST (S, S′) value is left undefined and the probability for this case is
(232−1

232)3. Other cases are highly improbable and we do not consider
them.

- z ≥ 3 occurs with probability pcr × 1
232 × 232−1

232 . We do not go into
consideration of further cases since their corresponding probabilities are
negligible.

Using the probabilities from the discussion above, but ignoring parts that are
less than 1

232 , provides a practically accurate estimate for the probability that
the criterion will return a correct dST (S, S′) value as follows:

pcorr ≈ 256
513

232 − 1
232 +

1
513

(
232 − 1

232)2 +

7× 32
513

(1− pcr)
232 − 1

232 +
32
513

(1 × 232 − 1
232) = 0.98635

Again, ignoring terms that are less than 1
232 , probability of dST (S, S′) being left

undefined is given by

pundef ≈ 6× 32
513

× pcr × 232 − 1
232 ((

232 − 1
232)2 + (

1
232)2) +

32
513

× pcr × ((
232 − 1

232)2 + (
1

232)2) = 0.013645

Finally, ignoring terms less than 1
232 yields probability for the criterion to return

a false dST (S, S′) value is pincorr ≈ 0.

212 A. Kircanski and A.M. Youssef

B Second Order Terms in p(n) Probability

As defined in section 5.2, p(n) denotes the probability that there will be at least 3
faults at each one of the eight groups of bits defined in Eq. (6). In the following
we provide formulas for second-order terms participating in the equation for
p(n):

P [B0
i1 ∩B0

i2] = (
6
8
)n

P [B0
i1 ∩B1

i2] =
∑

k1+k2=n−1

(
6
8
)k1

1
8
(
6× 32 + 1

8× 32
)k2

P [B0
i1 ∩B2

i2] =
∑

k1+k2+k3=n−2

(
6
8
)k1

1
8
(
6× 32 + 1

8× 32
)k2

31
8× 32

(
6 × 32 + 2

8× 32
)k3

P [B1
i1 ∩B2

i2] =

3×
∑

k1+k2+k3+k4=n−3

(
6
8
)k1

1
8
(
6× 32 + 1

8× 32
)k2

1
8
(
6× 32 + 2

8× 32
)k3

31
8× 32

(
6× 32 + 3

8× 32
)k4

P [B2
i1 ∩B2

i2] =

6×
∑

k1+k2+k3+k4+k5=n−4

(
6
8
)k1

1
8
(
6 × 32 + 1

8× 32
)k2

1
8
(
6× 32 + 2

8× 32
)k3

31
8× 32

(
6× 32 + 3

8× 32
)k4

31
8× 32

(
6× 32 + 4

8× 32
)k5

C On the Non-surjectiveness Property of the Function
Used to Derive Differences

In this appendix, we examine the expression

([s(αi,j)||s(βi,j)]⊕A)− ([s′(αi,j)||s′(βi,j)]⊕A)

which is used to derive differences in derive inf(i,j) procedure. One set of
generalized differentials is created by fixing A and applying the expression to
pairs of groups of bits of non-faulty and faulty keystream words (s, s′), (s, s′′).
If the function described by the expression above was 1− 1, the number of such
different sets when A goes from 0, . . . 232 − 1 would be 232. However, since the
expression above is not a 1 − 1 function, the question of what is the degree of
repetition of generalized differential sets when A changes arises. In this section,
we give an answer to this question and show how this can be used to provide
some minor improvements in the computational complexity of the attack. Better
lower bounds for the attack success probabilities are also provided.

Isolating the function given by the expression above yields

Φx,y(A) = x⊕A− y ⊕A

Differential Fault Analysis of Rabbit 213

where x, y and A are 32-bit values. Clearly, the function is not 1−1. For example,
for A and A′ such that d(A, A′) = {31}, Φx,y(A) = Φx,y(A′) where d(·, ·) denotes
the set of bit positions on which the enclosed bit strings differ, least significant bit
being bit 0 (e.g., d(0000, 1010) = {0, 2}). Rephrasing the question from previous
paragraph yields the problem of how many different sets

{Φs,s′(A), Φs,s′′ (A), . . . Φs,s′···′ (A)} (7)

is expected to be constructed when A goes from 0 to 232 − 1.
To start, we are interested for which A, A′ will Φx,y(A) = Φx,y(A′) hold. Let

z = Φx,y(A) and z′ = Φx,y(A′). Then, zi = xi ⊕ Ai ⊕ yi ⊕ Ai ⊕ ci, where zi

denotes i-th bit of z. Cancelling out Ai and same reasoning for z′ gives

zi = xi ⊕ yi ⊕ ci (8)

z′i = xi ⊕ yi ⊕ c′i (9)

where

ci =

⎧⎪⎪⎨⎪⎪⎩
0 if (xi−1 ⊕Ai−1, yi−1 ⊕Ai−1, ci−1) ∈

{(1,0,0), (1,0,1), (1,1,0), (0,0,0)}
1 if (xi−1 ⊕Ai−1, yi−1 ⊕Ai−1, ci−1) ∈

{(0,1,0), (0,1,1), (0,0,1), (1,1,1)}
(10)

and c′i is defined analogously, with A′ instead of A.
As already noted, if d(A, A′) = {31}, Φx,y(A) = Φx,y(A′) for every x and y.

Let S1 = {i|xi = yi, i �= 31}.
Lemma 1. Φx,y(A) = Φx,y(A′)⇔ d(A, A′) ⊆ S1 ∪ {31}

Proof. Let z = Φx,y(A) and z′ = Φx,y(A′).
(⇒:) Assuming that the negation of the right side of equation is true, the goal
is to prove that z �= z′. According to (8) and (9), it is sufficient to show that
ci �= c′i for some i = 0, . . . 30. Let i0 = min{i|i ∈ d(A, A′), i /∈ S1}. According to
(10), since if ci+1 = 1, then c′i+1 = 0 and vice versa. Thus, zi0+1 �= z′i0+1 and
z �= z′.
(⇐:) It is sufficient to prove that ci = c′i for i = 0, . . . 30. We do this by induction.
Let i0 = min(d(A, A′)). Obviously, ci = c′i for i = 0, . . . i0− 1. According to (10)
and using that ci0−1 = c′i0−1 yields ci0 = c′i0 . Now let in ∈ d(A, A′). By induction
hypothesis, cin−1 = c′in−1. Again, using (10) yields cin = cin , which proves this
part of the Lemma.

In other words, for any given A, changing bits from S1 ∪ {31} will not change
Φx,y(A). On the other hand, changing any other bits in A changes Φx,y(A).
Hence

|Im(Φx,y)| = 232−(|S1|+1) (11)

Since the expected value for |S1| is 15.5, the expected number for E(|Im(Φx,y)|) =
232−15.5−1 = 215.5. Analogous analysis can be used to estimate the expected

214 A. Kircanski and A.M. Youssef

number of different sets (7) when A goes from 0, . . . 232 − 1. Denote s
′

by s[1],
s
′′

by s[2], etc. Define the set Sn as follows

Sn = {i|si = s
[1]
i = . . . = s

[n]
i , i �= 31}

A generalization of the previous lemma can be used:

Lemma 2

(Φs,s[1](A), . . . , Φs,s[n](A)) = (Φs,s[1](A′), . . . , Φs,s[n](A′))
⇔ d(A, A′) ⊆ Sn ∪ {31}

To calculate E(|Sn|), let Xi, i = 0, ..30 denote a random variable which takes
value 1 if si = s

[1]
i = . . . = s

[n]
i and value 0 otherwise. It is easy to see that

E(Xi) = 1
2n , i = 0, . . . 30. Then, for some particular instantiation of s values, the

number of mutually equal bits is given by X = X0 + . . .X30, the most significant
bit being excluded. Hence E(X) = E(X0 + . . .+X30) = E(X0)+ . . .+E(X30) =
31× 1

2n .
Now the question from the beginning of this appendix can be answered by

En = E(|{Φs,s[1](A), Φs,s[2](A), . . . Φs,s[n](A)}232−1
A=0 |) ≈

E(|(Φs,s[1](A), . . . , Φs,s[n](A))2
32−1

A=0 |) = 232−(|Sn|+1) = 232−((31
2n)+1)

Table 2 shows the expected number of different ∆j
i (A) sets when A varies

from 0 to 232 − 1, for different |FLTSi| = n sizes.
Thus the complexity and success probability of the attack can now be further

refined as follows:

- Computational complexity: in procedure derive inf(i,j), in the main loop,
it is possible not to go through the whole set of A values, by fixing bit po-
sitions from determined by set Sn, i.e., bit positions on which s, s′, . . ., are
mutually equal. If |FLTSi| = 3, the loop will not have 232 steps, but 227.125

steps on average. Consequently, the overall attack complexity is now reduced
to 232.71 steps on average.

- Success probability: Eq. (4) now becomes

P [Sat(∆j
i) is empty] ≥ (1− 2−46)k

where instead of k = 232, k takes values from the table, depending on
|FLTSi| = n. For |FLTSi| = 3, the above value becomes equal to 1− 2−18.9

instead of 1−2−14 and probability that the algorithm will return more than
one element in set Cand(xi,t + ci,t+1) given by (5) will be 2−56 instead of
2−42.

Table 2. Expected number of different ∆j
i (A) sets

n 3 4 5 6 7 8
En 227.125 229.062 230.031 230.516 230.758 230.879

An Improved Recovery Algorithm for Decayed
AES Key Schedule Images

Alex Tsow

The MITRE Corporation�

atsow@mitre.org

Abstract. A practical algorithm that recovers AES key schedules from
decayed memory images is presented. Halderman et al. [1] established
this recovery capability, dubbed the cold-boot attack, as a serious vulner-
ability for several widespread software-based encryption packages. Our
algorithm recovers AES-128 key schedules tens of millions of times faster
than the original proof-of-concept release. In practice, it enables reliable
recovery of key schedules at 70% decay, well over twice the decay capacity
of previous methods. The algorithm is generalized to AES-256 and is em-
pirically shown to recover 256-bit key schedules that have suffered 65%
decay. When solutions are unique, the algorithm efficiently validates this
property and outputs the solution for memory images decayed up to 60%.

Keywords: anti-tamper, digital forensics, decayed memory, cold-boot
attack, AES, key schedule.

1 Introduction

Cold-boot attacks are another troubling example of the increasingly sophisti-
cated threats to security and privacy. In response to these threats we investigate
defensive anti-tamper techniques in the hopes of better understanding the po-
tential of specific attack vectors. In this paper we report on our investigation
of cold boot attacks and demonstrate that the problem is more serious than
previously thought. We present AES key recovery techniques that handle over
twice the decay rate of prior methods at comparable computational effort.

The cold-boot attack [1] is a serious vulnerability for software-based encryp-
tion packages—including BitLocker, FileVault and the open-source project
TrueCrypt—where one can recover secret keys from decayed memory images.
Decryption with decayed AES keys does not produce original plaintexts. How-
ever, the redundancy of key material inherent in the AES key schedule can rectify
these faults. When combined with asymmetric decay, where bits overwhelmingly
decay to their ground state rather than their charged state, this redundancy en-
ables reconstruction of the original key. Heninger and Halderman have developed
a recovery algorithm for AES-128 that recovers keys from 30% decayed data in
less than 20 minutes about half the time.
� Approved for Public Release; Distribution Unlimited; Tracking Number 09-1872.

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 215–230, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

216 A. Tsow

Our algorithm recovers keys up to several orders of magnitude faster than
Heninger and Halderman’s method. One case that took their algorithm more
than 10 days to solve was solved by our improved method in 0.047 seconds.
The speed increase enables key recovery from more severely degraded memory
images. In an experimental evaluation, our algorithm recovered all keys from a
5,000 case test suite at 70% decay, with 4,927 instances recovered in less than
20 minutes—more than twice decay rate with almost double the success rate
in 20 minutes. The speed increase also makes it feasible to enumerate all keys
from which an image could have decayed, rather than halt on the first key that
satisfies the decay and schedule constraints. In particular, the algorithm can
determine that a solution is unique. Benchmarks demonstrate feasibility up to
60% decay where there is approximately a 2.5× slowdown compared with the
halt-on-first-key search. The algorithm generalizes to 256-bit AES with only a
moderate drop in the recovery capability. Empirically, the benchmarks show that
AES-256 recovery begins to degrade around 65%; there are no other performance
claims in the open literature about AES-256 recovery.

The AES key-schedule is the primary source of key redundancy. For the 128-bit
version, the original key is bijectively mapped to 10 additional round-keys [2,3].
The mappings form a system of byte-level equations that constrain the space of
likely key candidates.

The asymmetric decay property of DRAM provides a second set of constraints.
When the refresh cycle of DRAM is interrupted, the data overwhelmingly decays
to 0 (or 1 assuming the complementary encoding for the ground state) because
the capacitance is lost over time. Occasionally bits invert to the charged state,
although Halderman et al. bound these effects at 0.1%. The asymmetric decay
property suggests a compatibility criterion for key candidates: if a candidate
schedule subset differs from the decayed memory image only by inversions from
the ground state, then it is compatible with the decayed memory image. The
performance claims for our algorithm, and indeed those in [1] and [4], are based
on the perfect asymmetry assumption, where no bit in the ground state ever
inverts. The algorithm has also been adapted to accommodate inversions to the
charged state by generalizing the compatibility criterion to allow a bounded
number of such cases. No other logic changes are necessary.

Key reconstruction is possible because key candidates must satisfy both the
asymmetric decay property and the system of equations defined by the AES
key schedule. Our algorithm explores a tree of one-byte guesses. At each stage,
or tree-depth, the new byte candidate and all bytes implied by the schedule
equations are checked against the decayed image. The algorithm guesses bytes
in an order such that guess n implies values for n schedule bytes for n < 11 in
the 128-bit version; guesses 11-14 imply an additional 10 bytes each and the last
guess implies the schedule’s remaining 65 bytes.

Byte guessing proceeds in a depth-first manner. Each stage has 256 possi-
bilities, but the schedule and decay-compatibility constraints quickly prune the
possibilities, particularly in the later stages where a single byte guess implies
several byte values. The selection and order of byte guessing is not unique.

An Improved Recovery Algorithm for Decayed AES Key Schedule Images 217

Section 3.4 describes a path selection heuristic for byte guesses which improves
recovery times by a factor of several hundred for decay rates over 50%, when
compared with the static path implementation.

We make the following contributions: 1) our recovery algorithm is several
orders of magnitude faster than the best previously published method, 2) the
new method enables key recovery from images with significantly more decay, 3)
it enumerates all solutions to a decay image and 4) we generalize the method to
AES-256 with little loss of decay performance.
Organization: Section 2 reviews related works. Section 3 describes the algo-
rithm in detail, including a heuristic to optimize the exploration path. Section 4
presents benchmarks for the algorithm with and without the path optimiza-
tion heuristic. Benchmarks for the unique determination capability and AES-256
key recovery are also presented. Section 5 makes some observations about the
benchmark results. Section 6 concludes the paper.

2 Related Work

Halderman et al. [1] established the cold-boot attack as a low-cost way to ex-
tract private key information from computers running software encryption. In
particular, they extracted private keys for full-disk encryption packages such
as BitLocker, FileVault, and the cross-platform open-source project TrueCrypt.
Heninger and Halderman released proof-of-concept implementation that recov-
ers 128-bit AES key-schedules.1 It implements the algorithm from [1] which they
have found to recover keys from 30% decayed memory within 20 minutes about
half the time. Their archives also contain a recovery algorithm for the RSA
cryptosystem.

Heninger and Shacham [4] vastly improved the ability to recover RSA private
keys from decayed memory images. They improve recovery from 6% decay (run-
ning on the order of minutes) to 46% decay (running on the order of seconds)
when p, q, d, dp, and dq are in the image. The paper further casts their recovery
algorithm in terms of known bits, so that the bits may be randomly selected
rather than simply the result of an asymmetric memory decay. We note that
a perfect memory image maps to 50% known bits under the asymmetric decay
assumption, since valid ground-state values theoretically could have decayed.

Nearly a decade before the cold boot attack was demonstrated, Handschuh,
Paillier, and Stern modeled probing attacks [5] on the square-and-multiply
algorithm for modular exponentiation, DES, and RC5. They reconstruct cryp-
tographic secrets by tracing a few critical bits over the target operation’s exe-
cution. Since cold-boot attacks capture a snapshot of the execution state, these
techniques only apply if a trace has been preserved in memory.

Akavia, Goldwasser, and Vaikuntanathan [6] present a model of cold-boot
memory attacks in terms of experiments with probabilistic polynomial time play-
ers. The recovery player chooses a sequence of probing functions that map private

1 http://citp.princeton.edu/memory/code/

http://citp.princeton.edu/memory/code/

218 A. Tsow

keys to bit vectors; this models key material leakage. They define adaptive and
non-adaptive variants which may or may not alter the choice of probing function
in response to the results of previous probes. They further show that the Regev
public key cryptosystem [7] is secure under both definitions, but with different
leak parameters.

Naor and Segev [8] revisit the above formalism for memory attacks and develop
a schema for constructing public key cryptosystems that are resilient against key
leakage. The schema relies on the assumptions of a universal hash proof system [9]
enabling decisional Diffie-Hellman, quadratic residuosity, and Paillier’s compos-
ite residuosity problem to instantiate the cryptosystem. Alwen, Dodis, and Wichs
also examine leakage resilient public key cryptosystems, including identification
schemes and authenticated key agreement protocols [10]. They extend their re-
sults to the bounded retrieval model, where they consider extremely large keys
and an adversary can not learn more than a predetermined bound over a lifetime.
Katz further constructs a leakage resistant signature scheme in the standard
model [11].

Chari et al. propose the first theoretical model for power analysis [12]. Coron,
Naccache, and Kocher develop a similar formalism for characterizing leakage
immunity, and present several leakage detection tests [13]. Micali and Reyzin
propose a general framework for security against side-channel analysis [14]. These
models do not account for memory remanence or cold-boot attacks.

Countermeasures to cold-boot attacks remain scarce within the current tech-
nology paradigms. Migrating to hardware embedded encryption, such as that
proposed by the Trusted Computing Group’s Opal platform [15], will mitigate
cold-boot attacks on full-disk encryption. Enck et al. [16] propose an encrypt-
ing memory controller that writes only encrypted data to main memory, but
decrypts it on reads into the processor or cache. There have also been attempts
to manipulate the Intel x86 cache-coherence model to ensure that keys and
key-derived state (such as key schedules) remain in L2 caches, but not in main
memory.2 The feasibility of this approach has yet to be demonstrated with the
current architectures, however vendor modification of the instruction set may
indeed make this approach a reality.

Intel has developed specialized instructions for executing AES operations [17].
There are six kinds instructions (encrypt round, encrypt last round, decrypt
round, decrypt last round, inverse mix columns, and key schedule assist) which
use the 128-bit XMM registers to hold round keys and block data. In addition to
improving execution speed, these instructions have been designed to eliminate
vulnerabilities from cache attacks [18], an interprocess side-channel that exploits
timing differences for operations dependent upon cached and uncached data. In-
tel does not claim that these instructions mitigate cold-boot attacks, however we
speculate that the schedule derivation assistance may improve the performance
of just-in-time round-key derivation, thereby reducing the number of round keys
stored in memory.

2 Jürgen Pabel. http://frozencache.blogspot.com/

http://frozencache.blogspot.com/

An Improved Recovery Algorithm for Decayed AES Key Schedule Images 219

3 Algorithmic Description

This primary exposition details the recovery algorithm for AES-128, although the
concepts generalize to the 192-bit and 256-bit cases (Section 3.5). Their differing
block and key sizes create more potential for confusion when referencing schedule
elements. We have implemented the 128-bit and 256-bit cases; Section 4 presents
performance results for both cases.

3.1 Preliminaries

A 128-bit AES key schedule expands a four by 32-bit-word key into a 44 word
sequence. Schedule components are addressed with the following notation: Let
sans-serif variables, S, refer to entire key schedule. Subscripting expresses a hi-
erarchical view of schedule components. Let Sr refer to the four words of round
r. Let Sr,w refer to word w of round r. Let Sr,w,b refer to byte b of word w
of round r. It is also convenient to index the schedule in a flat manner. Let
Sw

i refer to word i of the schedule. Let Sb
i refer to byte i of the schedule.

The notation follows the least-significant-byte-first convention. Some additional
function notation is necessary to express the key schedule. Let sbox(Sb

i) ap-
ply the AES substitution box to the byte Sb

i. For convenience, let sbox(Sw
i)

apply the substitution box to each constituent byte when Sw
i is a word. Let

rot(Sw
i) rotate the word Sw

i by eight bit positions of increasing significance;
e.g. rot(Sr,w,0, Sr,w,1, Sr,w,2, Sr,w,3) = (Sr,w,3, Sr,w,0, Sr,w,1, Sr,w,2), in the least-
significant-byte-first representation. The round constants, denoted by rcon[i],
are the (i− 1)th exponent of 2 in the field GF (28) for the least significant byte
and 0 for the other bytes.

For the 128-bit schedule, the first four words are the key itself. The subsequent
words are prescribed by two equation schema.

Sw
i=Sw

i−1⊕sbox(rot(Sw
i−3))⊕ rcon[i/4], when i mod 4 = 0

Sw
i=Sw

i−1⊕Sw
i−3, when i mod 4 �= 0 (1)

The table below illustrates the indexing schema for the 128-bit key schedule.
The column headings indicate the byte and word indices. Row labels indicate
the round. This particular table shows how the flat byte-level references relate
to the hierarchical tags. For instance, S8,2,3 refers to the same byte as Sb

139.

w 0 1 2 3
r�b 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 Sb
0 Sb

1 Sb
2 Sb

3 Sb
4 Sb

5 Sb
6 Sb

7 Sb
8 Sb

9 Sb
10 Sb

11 Sb
12 Sb

13 Sb
14 Sb

15

1 Sb
16 Sb

17 Sb
18 Sb

19 Sb
20 Sb

21 Sb
22 Sb

23 Sb
24 Sb

25 Sb
26 Sb

27 Sb
28 Sb

29 Sb
30 Sb

31

2 Sb
32 Sb

33 Sb
34 Sb

35 Sb
36 Sb

37 Sb
38 Sb

39 Sb
40 Sb

41 Sb
42 Sb

43 Sb
44 Sb

45 Sb
46 Sb

47

3 Sb
48 Sb

49 Sb
50 Sb

51 Sb
52 Sb

53 Sb
54 Sb

55 Sb
56 Sb

57 Sb
58 Sb

59 Sb
60 Sb

61 Sb
62 Sb

63

4 Sb
64 Sb

65 Sb
66 Sb

67 Sb
68 Sb

69 Sb
70 Sb

71 Sb
72 Sb

73 Sb
74 Sb

75 Sb
76 Sb

77 Sb
78 Sb

79

5 Sb
80 Sb

81 Sb
82 Sb

83 Sb
84 Sb

85 Sb
86 Sb

87 Sb
88 Sb

89 Sb
90 Sb

91 Sb
92 Sb

93 Sb
94 Sb

95

6 Sb
96 Sb

97 Sb
98 Sb

99 Sb
100Sb

101Sb
102Sb

103 Sb
104Sb

105Sb
106Sb

107 Sb
108Sb

109Sb
110Sb

111

7 Sb
112Sb

113Sb
114Sb

115 Sb
116Sb

117Sb
118Sb

119 Sb
120Sb

121Sb
122Sb

123 Sb
124Sb

125Sb
126Sb

127

8 Sb
128Sb

129Sb
130Sb

131 Sb
132Sb

133Sb
134Sb

135 Sb
136Sb

137Sb
138Sb

139 Sb
140Sb

141Sb
142Sb

143

9 Sb
144Sb

145Sb
146Sb

147 Sb
148Sb

149Sb
150Sb

151 Sb
152Sb

153Sb
154Sb

155 Sb
156Sb

157Sb
158Sb

159

10 Sb
160Sb

161Sb
162Sb

163 Sb
164Sb

165Sb
166Sb

167 Sb
168Sb

169Sb
170Sb

171 Sb
172Sb

173Sb
174Sb

175

220 A. Tsow

A candidate key schedule byte, Cb
i, with ground states specified by Mb

i is com-
patible with the decayed byte, Db

i, when Db
i preserves all ground-state bits in

Cb
i, or expressed equationally, when (Cb

i ⊕ Db
i) ∧ (Cb

i ⊕Mb
i) = 0.

3.2 Maximizing the Implied Schedule Bytes

For the first guess, the candidate byte, Cb
i0 , is only constrained by the known

bits in corresponding decayed byte, Db
i0 . Yet in the second stage, for a properly

chosen i1, Cb
i1 is constrained by Db

i1 and a second byte Db
j . A properly selected

i1 will instantiate a byte slice of one of the two schedule generating equations, (1).
For example Cb

4 ⊕ Cb
16 = Cb

20 is the first byte-slice of the generating equation
for Cw

5 = (Cb
20, C

b
21, C

b
22, C

b
23). If i0 = 4 and i1 = 20, then the implied byte is

at index j = 16 and equals Cb
20 ⊕ Cb

4. Thus Db
16 constrains the implied value

of Cb
20 ⊕ Cb

4.
This algorithm makes use of the following observations: 1) Each schedule byte

Sb
i, 16 ≤ i < 160 is involved in three equations. 2) There are 256 solutions to

each equation when any one variable is fixed. There is a unique solution to each
equation when any two variables are fixed. 3) Guessing a single byte at stage n
implies up to n other byte values for properly structured guessing orders.

Item 1 follows from the fact that every word is generated by its preceding
word and the one 4 words ago; simply limit the scope to the byte-slice of the
concerned byte. For example, consider S1,0,0=Sb

16, the first byte of Sw
4.

S0,0,0 ⊕ sbox(S0,3,1) ⊕ 0x01 = S1,0,0

S0,1,0 ⊕ S1,0,0 = S1,1,0
S1,0,0 ⊕ sbox(S1,3,1) ⊕ 0x02 = S2,0,0

(2)

Item 2 is implied by the fact that ⊕ is the field addition operation for GF (28)
and that sbox() is a bijection in GF (28).

To see item 3, consider the following candidate exploration order, C, for a
decayed schedule D. First choose a candidate for C0,0,0; it is only constrained
by the known bits at that position. The next guess, C1,0,0, is constrained by
the known bits from D1,0,0. Additionally, one can solve the equation C0,0,0 ⊕

Table 1. An order for byte-guesses and consequent values in AES-128; the end of
Section 3.2 describes the scripting notation

w 0 1 2 3
r�b 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 00 1410 1310 1210 11 149
1 10 139 129 22 148 21 138
2 20 128 33 147 32 137 31 127
3 30 44 146 43 136 42 126 41 55 145
4 40 54 135 53 125 52 66 144 51 65 134
5 50 64 124 63 77 143 62 76 133 61 75 123
6 60 74 88 142 73 87 132 72 86 122 141 71 85 99
7 70 84 98 131 83 97 121 140 82 96 1010 130 81 95 109
8 80 94 108 120 1510 93 107 1110 159 92 106 119 158 91 105 118
9 90 104 117 157 103 116 156 102 115 155 101 114 154
100 100 113 153 112 152 111 151 110 150

An Improved Recovery Algorithm for Decayed AES Key Schedule Images 221

sbox(C0,3,1) = C1,0,0 for C0,3,1, since C0,0,0 and C1,0,0 have candidate values.
Thus the second guess is constrained by the known values at D0,3,1 as well. By
the same logic, D2,0,0, D1,3,1, and D1,2,1 constrain the compatible guesses for
C2,0,0. Because Cr−1,3 rotates when computing Cr,0, continuing to propose bytes
in the column Cr,0,0 causes the implied byte indices increment modulo 4 when
the word index wraps around modulo 4.

Table 1 illustrates this behavior by enumerating the order of byte guesses
and their consequent bytes. In the table entries, the full-sized number indicates
the guessing stage and the subscript indicates the sequence of implied bytes. In
particular, i0 indicates a guess for stage i and i1 is the first implied byte from
this candidate. For example, C5,0,0 is guess number 5. This value combined with
the value for C4,0,0 (chosen in step 4), allows one to solve for C4,3,1. The following
equations make the order of solution explicit.

C4,3,1=sbox−1(C5,0,0 ⊕ C4,0,0 ⊕ 01)
C4,2,1=C4,3,1 ⊕ C3,3,1
C4,1,1=C4,2,1 ⊕ C3,2,1
C4,0,1=C4,1,1 ⊕ C3,1,1

C3,3,2=sbox−1(C4,0,1 ⊕ C3,0,1 ⊕ 01)

(3)

After selecting candidates for bytes 0-10, there are a number of ways to guess
bytes 11-15. Table 1 illustrates a choice for these positions that implies values
for an additional 10 bytes for each guess. The last guess implies 65 bytes because
it causes round 8 to be fully specified; the entire schedule may be derived from
any complete round.

3.3 The Recovery Algorithm

The algorithm, recoverKeyRec, explores the candidate space one byte at a time.
It exploits the constraints on guesses and their consequent bytes to prune its ex-
ploration tree. For each guess, recoverKeyRec considers all 256 possible values.
If the candidate satisfies all constraints imposed by the decayed image, D, then
it guesses a value for the next step. Exploration proceeds in a depth-first man-
ner, so that guess i is incremented to the next compatible candidate when all of
descendant candidates have been ruled out.

A breadth-first search is also possible, however this strategy greatly increases
the memory utilization. The advantage of the breadth-first method is that one
could track the distance from decayed data for each candidate and explore the
closest options first. The first implementations of this algorithm maintained the
candidates on a binary heap indexed by their cost. In practice, there were many
cases in the 60-70% decay range, where the process exceeded its 31-bit address
space and halted before recovering the key. On the other hand, recovery speeds
of depth-first search up to the 70% rate have proven fast enough in most cases
and solvable in all attempted cases. The need to solve more cases with less
memory dictated a transfer to depth-first search which consumes a fixed amount
of memory, about 4.2 MB in the experimental implementation. Because depth-
first search has a small memory footprint, it is also inexpensive to halt tree

222 A. Tsow

recoverKeyRec(CandidateMatrix c, DecaySchedule d):

if (c.length()==16):

return c.key()

for i=0 to 255:

if(d.isCompatible(c.guess(i))):

key = recoverKeyRec(c.guess(i),d)

if (key != NULL)

return key

return NULL

Fig. 1. Recursive expression of key recovery; Appendix A details the core methods

exploration and resume later. The only data necessary to save is the candidate
being examined at the halting time. Breadth-first search would require one to
save the binary heap of candidates.

The following describes the semantics for tokens in recoverKeyRec (Figure 1).
For simplicity of expression assume that operations do not mutate objects, but
return newly constructed objects. Italicized tokens refer to classes and teletype
tokens refer to fields and methods.

Let c be a CandidateMatrix that contains candidates for schedule bytes in the
order indicated by Table 1. CandidateMatrix maintains a count of how many
guesses have been made (0-16) and a flat schedule representation of 176 bytes
to store byte candidates and their consequent bytes. The method guess(Byte
b), returns a new CandidateMatrix whose array has been updated to contain
b at position count0 and its consequent bytes at positions as specified by the
path matrix (e.g., Table 1). In particular, guessing the 16th byte completes the
entire schedule. The key() method returns the key once all 16 bytes have been
guessed and validated. The new CandidateMatrix() constructor simply creates
an empty array with count set to 0.

Let DecaySchedule contain the decayed key schedule and a predicate, is-
Compatible(CandidateMatrix), that indicates whether or not a guess and its
consequent bytes are compatible the decayed schedule. Compatibility is deter-
mined by checking that the CandidateMatrix contains all the known bits from
the corresponding bytes of the decayed schedule.

The function recoverKeyRec(CandidateMatrix,DecaySchedule) returns a key
whose schedule is decay-compatible and is the result of extending the incom-
ing CandidateMatrix. It returns NULL when there is no compatible key sched-
ule extension to the specified candidate prefix. Proper usage asserts that the
starting CandidateMatrix and DecaySchedule are compatible. The initial call
to recoverKeyRec begins with an empty CandidateMatrix. The recursive ex-
pression in Figure 1 makes the control logic explicit. Figure 1 halts on the first
compatible key schedule, however one could modify it to halt after a full search
of the key space; simply replace the return with a print on the third line.
Section 4 benchmarks both variants.

An Improved Recovery Algorithm for Decayed AES Key Schedule Images 223

3.4 Path Prioritization

The exploration path illustrated by Table 1 maximizes the number of implied
schedule bytes with the goal of minimizing the number of compatible candidates
at each stage. There are many ways to grow the selection path, and Table 1
illustrates just one of them. For instance, there are 3 symmetric alternatives
obtained by rotating the bytes of each word. Different paths will encounter dif-
ferent constraints and therefore will result in varying recovery times. Within the
stages 0-10, the selection order of Sx,0,0 may be altered and still obtain the same
consequent bytes after 10 candidate stages. Growing the path with guesses adja-
cent to the body of previous guesses will preserve the set of inferred bytes; this
claim has been verified experimentally. The following matrix shows that guesses
may be grown from the middle of the schedule:

The exploration path in Table 2 starts at S5,0,0. To maintain adjacency, the
next choice may be S4,0,0 or S6,0,0. The path grows by extending either the top or
bottom of previous choices in Sx,0,0, where 0 ≤ x < 11. This allows the number
of inferred bytes to grow by one at each stage.

A first heuristic for choosing the best path might be to count up the known
bits in the exploration path and its consequent bytes. However within a set of
guesses and implied bytes, the selection order can also make a difference. Past
a certain threshold, adding more constraints does not prune the exploration
anymore because the byte is already uniquely determined (or its parent has
been ruled out). Consider the case when the decayed data in the candidate
position is 0xFF. If the last guess corresponds to this position, then all of the
consequent bytes are wasted constraints because the byte is uniquely determined.
On the other hand, that byte position would make an excellent initial position
for stage 0 because the first guess never produces any consequent bytes. The
final algorithm’s path comparison heuristic estimates the number of branches at
each stage. At a stage, the estimate simply counts the number of known bits in
the initial and consequent positions. The intuition is that each known bit will
reduce the number of valid branches by a factor of 2. Thus, the branch estimate
for a stage i is 2min(8,ki) where ki is the number of known bits in the ith stage’s
initial and consequent byte positions. This is clearly only an estimate, as some

Table 2. An exploration path starting in round 5; script notation parallels the example
at the end of Section 3.2

w 0 1 2 3
r�b 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 100 101
1 70 102 71
2 60 103 72 61
3 30 104 73 62 31 105
4 20 74 63 32 106 21 75
5 00 64 33 107 22 76 11 65
6 10 44 108 43 77 42 66 41 55 109
7 40 54 88 53 87 52 86 1010 51 85 99
8 50 84 98 83 97 82 96 81 95
9 80 94 93 92 91
10 90

224 A. Tsow

Table 3. AES-256 exploration path template; script notation parallels the example at
the end of Section 3.2

0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

00157 237317 147227 307 137217 297 127207287 106186266 96176256 86166 24631611156236
10146 226306 136216 296 126206 286 105185265 95 175255 8516524531522155 23530521145225
20135 215295 125205 285 104184 264 94 174254 84 164244 3143315423430432144 22429431134214
30124 204284 103183 263 93 173 253 83 163243 313 44 153233 3034314322329342133 21328341123203
40102 182262 92 172 252 82 162 242312 55 152232 302 54 142222 2925313221228252122 20226151101181
50 91 171251 81 161 241311 66 151 231301 65 141221 291 64 131211 2816312120126062100 18025061 90 170
60 80 160240310 77 150 230300 76 140 220290 75 130210 280 74 120200 2767311619627572115 19527471114194
70113 193273 112192 272 111191 271 110190270

bits may constrain portions of the guess that have already been determined. The
total branching estimate is the product of the stage estimates. Since the stage
estimates are all powers of two, it suffices to sum their exponents. Thus, the
heuristic ranks paths by the scalar value

∑15
i=0 min(8, ki).

The algorithm considers variants of Table 1 along two axes. One axis is byte
slice selection; Table 1 initiates on slice 0, although three other may be obtained
by rotating all schedule words by the same amount. The other axis is byte
guessing order within stages 0-10 as described above; choose a initial round and
then extend the guesses by adding to the adjacent round on the top or the
bottom. There are other paths not reached by these variables; e.g., growth may
be rooted in words 1-3 of the round key rather than 0. Performance may well
improve by selecting these paths from a larger space, however no additional path
analysis is investigated in this work.

3.5 Generalizing to Other Instances of AES

Generalizing the algorithm to operate on 192-bit and 256-bit variants of AES is
straightforward. One needs to construct a different path template and update
the isCompatible() method to incorporate the schedule generating equations
of the larger keys. Table 3 illustrates the path template used by the 256-bit
implementation. The heuristic considers paths on the same axes as the 128-bit
version. Since the key size is twice the length of the block size, the matrix is only
8 deep and therefore the heuristic considers fewer paths.

4 Benchmarks

Test cases are generated with OpenSSL’s RAND bytes() function. For a given
decay rate d, the test generator derives a key schedule from randomly selected
key bytes and then randomly zeroes d% of the bits. Tests assume a ground-
state encoding of 0. Performance was evaluated on Dell Precision Workstation
7400 running a 3.4 Ghz quad-core Xeon processor with 4GB of RAM. The C99
reference implementation of the algorithm is compiled with the MinGW version
of gcc-3.4.5 at the highest level of optimization, -O4. All computations cases
were run to completion in a serial manner. Time was measured by entry and exit
calls to clock() from the time.h library; clock resolution is 64 Hz. The original

An Improved Recovery Algorithm for Decayed AES Key Schedule Images 225

Table 4. Run-time results for four versions of the algorithm; each decay rate test suite
contains 10,000 cases

Case Key size Path selection Halting condition

PathOpt-128 128 bits Heuristically chosen (Section 3.4) First match
PathOpt-256 256 bits Heuristically chosen (Section 3.4) First match
Basic-128 128 bits Fixed to Table 1 First match
Exhaust-128 128 bits Heuristically chosen (Section 3.4) End of key space

PathOpt-128 — Run-time (seconds)
Decay 30% 40% 50% 60%

Total 90.120 93.559 142.322 1,736.321
Avg. 0.009 0.009 0.014 0.174
Med. 0.015 0.015 0.015 0.031
Max 0.015 0.015 0.078 2.094
Min 0.000 0.000 0.000 0.000
St.Dev 0.007 0.008 0.015 0.772

Basic-128 — Run-time (seconds)
Decay 30% 40% 50% 60%

Total 219.204 1,526.308 32,551.469 1,638,788.166
Avg. 0.022 0.153 3.255 163.879
Med. 0.015 0.015 0.078 1.968
Max 9.562 266.390 3,354.890 343,656.375
Min 0.000 0.000 0.000 0.000
St.Dev. 0.140 2.994 55.563 3,753.608

PathOpt-256 — Run-time (seconds)
Decay 30% 40% 50% 60%

Total 17.046 26.185 123.250 6,954.231
Avg. 0.002 0.003 0.012 0.695
Med. 0.000 0.000 0.000 0.062
Max 0.016 0.062 2.125 352.015
Min 0.000 0.000 0.000 0.000
St.Dev. 0.005 0.006 0.044 5.920

Exhaust-128 — Run-time (seconds)
Decay 30% 40% 50% 60%

Total 96.403 112.350 258.568 4,497.599
Avg. 0.010 0.011 0.026 0.450
Med. 0.015 0.015 0.015 0.110
Max 0.031 0.468 0.875 75.203
Min 0.000 0.000 0.000 0.000
St.Dev. 0.007 0.009 0.036 1.921

keys were found for all test cases, using the heuristically chosen path and halting
on the first match.

Table 4 summarizes the benchmark results for four variants of the algorithm:
PathOpt-128, PathOpt-256, Basic-128, and Exhaust-128. There are 10,000 cases
for each of the four decay rates, 30%, 40%, 50%, and 60%. The 128-bit variants
have been run on the same test cases, so their results are directly comparable.
All times are measured in seconds. A time of 0.000 means that the computation
finished in less than 1/64 second, or about 53 million processor cycles.

Additional testing (Table 5) was performed to estimate the maximum recov-
erable decay rates for PathOpt-128 and PathOpt-256. Only 5,000 cases were
examined due to extended recovery times.

5 Analysis

PathOpt-128 solves all cases at 50% decay and less in under half a second. At
60% decay, PathOpt-128 recovered the worst case in 35.500 seconds while solving
the average case in 0.174 seconds. At the extended decay rate of 70%, recovery
time averages grew to just over 6 minutes with the median time at just under
five seconds. Nearly half of the 17.4 day run was consumed by solving the worst
case of the test suite; the second slowest case was over six times faster. 4927
cases were recovered in less than 20 minutes.

PathOpt-128 runs faster than Basic-128 across the board and the speedup
quickly grows as the decay rate increases. The speedups for 30%, 40%, 50%, and

226 A. Tsow

Table 5. Extended decay rate runs; each decay rate test suite has 5,000 cases

Case Total Avg. Med. Max Min St.Dev.
PathOpt-128 @ 70% decay 1,504,487.119 s 300.897 s 4.938 s 737,266.687 s 0.000 s 10,677.913 s
PathOpt-256 @ 65% decay 446,879.849 s 89.376 s 0.875 s 194,410.875 s 0.000 s 2,843.061 s

60% are 2.43×, 16.3×, 228×, and 943×, respectively. At 70%, only 10 cases had
completed after a week when the experiment was terminated. The path selection
heuristic makes 70% decay a feasibly solvable problem in the test environment.
Even for the low decay rates, Basic-128 has a much higher standard deviation;
their worst cases with Basic-128 are several orders of magnitude worse than their
worst cases with PathOpt-128.

The profound impact of heuristic path selection at high decay rates suggests
that a more thorough search for the best path could further extend the maximum
feasible decay capacity. Only a small subset of possible paths are considered. The
current analysis takes less than 1/64 second, as evidenced by the 0.000 timing
results, so there is ample room for more startup analysis.

Full search of the key space appears to be a small factor slower than stopping
at the first compatible key. It widens as the decay increases, but by 60% the
Exhaust-128 only takes 2.590 times longer. We note that all 90,000 test cases
had precisely one solution, so the exhaustive search seems unnecessary at the
tested decay rates.

PathOpt-256 performs well up 60% decay rates, solving cases in an average
of 0.695 seconds and in no more than 352.015 seconds. At 70%, no cases were
solved in the test suite during a 1 week trial. At 65% the results are promising:
the 5,000 cases have been solved in an average of 89.676 seconds. The longest
case took 2.25 days to recover, while 99.4% of the cases have been recovered in
less than 20 minutes.

Interestingly, the PathOpt-256 is slightly faster than PathOpt-128 on decay
rates at 50% and below. The average solution times for these cases is within
two units of the 64 Hz clock resolution. We conjecture that the heuristic path
analysis takes less time with the 256-bit version since there are fewer paths to
consider, due to the flatness of the path matrix (Section 3.5).

As a point of comparison, the original algorithm [1] was compiled in the same
environment and run against the same test suite of 30% and 40% decayed AES-
128 schedules. After three weeks of execution, only the first four cases at 30%
had been solved and the first case at 40% had not yet finished.

6 Conclusion

We presented a new class of recovery capability that is several orders of magni-
tude faster than previous methods, particularly for higher decay rates. It more
than doubles the decay rate recovery feasibility of prior work. The tree-pruning
constraints enable efficient and exhaustive key space searches to determine so-
lution uniqueness. We have generalized the implementation to AES-256 while
maintaining excellent performance up to 65% decay.

An Improved Recovery Algorithm for Decayed AES Key Schedule Images 227

Acknowledgements

I owe a special debt of gratitude to Dr. Adam L. Young for his insight and wisdom
regarding writing, presentation, and the scientific community. I have additionally
benefited from the thoughtful review of Kerry A. McKay. I am further indebted
to Charles C. Howell, Steven M. Godin, and Eileen M. Boettcher for their strident
advocacy—without which this paper would not be possible.

References

1. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold boot
attacks on encryption keys. In: USENIX Security Symposium, pp. 45–60. USENIX
Association, Berkeley (2008)

2. Daemen, J., Rijmen, V.: The block cipther Rijndael. In: Schneier, B., Quisquater,
J.-J. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 277–284. Springer, Heidelberg
(2000)

3. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002)
4. Heninger, N., Shacham, H.: Reconstructing RSA private keys from random key

bits. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 1–17. Springer,
Heidelberg (2009)

5. Handschuh, H., Paillier, P., Stern, J.: Probing attacks on tamper-resistant devices.
In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 303–315. Springer,
Heidelberg (1999)

6. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

7. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: STOC, pp. 84–93. ACM, New York (2005)

8. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

9. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

10. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
36–54. Springer, Heidelberg (2009)

11. Katz, J.: Signature schemes with bounded leakage resilience. Cryptology ePrint
Archive: Report 2009/133 (March 22, 2009)

12. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999)

13. Coron, J.S., Naccache, D., Kocher, P.: Statistics and secret leakage. ACM Trans.
Embed. Comput. Syst. 3(3), 492–508 (2004)

14. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

228 A. Tsow

15. TCG storage security subsystem class: Opal version 1.0,
http://www.trustedcomputinggroup.org/ (January 27, 2009)

16. Enck, W., Butler, K., Richardson, T., McDaniel, P., Smith, A.: Defending against
attacks on main memory persistence. In: ACSAC, Washington, DC, USA, pp. 65–
74. IEEE Computer Society, Los Alamitos (2008)

17. Gueron, S.: Advanced encryption standard (AES) instructions set (April 27, 2009),
http://www.intel.com/

18. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

A Extended Pseudocode

path = ((0),

(16, 13),

(32, 29, 25),

(48, 45, 41, 37),

(64, 61, 57, 53, 49),

(80, 77, 73, 69, 65, 62),

(96, 93, 89, 85, 81, 78, 74),

(112,109,105,101, 97, 94, 90, 86),

(128,125,121,117,113,110,106,102, 98),

(144,141,137,133,129,126,122,118,114,111),

(160,157,153,149,145,142,138,134,130,127,123),

(173,169,165,161,158,154,150,146,143,139,135),

(131,119,107, 95, 82, 70, 58, 46, 33, 21, 9),

(124,115,103, 91, 79, 66, 54, 42, 30, 17, 5),

(120,108, 99, 87, 75, 63, 50, 38, 26, 14, 1),

(174,170,166,162,159,155,151,147,140,136,132))

class CandidateMatrix:

Int count

Byte m[176]

def guess (Byte b):

c = copy(self)

c.count = count + 1

c.m[path[count][0]] = b

if count == 0:

return c

for i = 1 to len(path[count]):

if defined(c.m[path[count][i]-16]):

b4 = path[count][i-1]

b3 = path[count][i]

b0 = b4-16

if inFirstWordOfRoundKey(b4):

c.m[b3] = unsbox(c.m[b4] XOR c.m[b0]

XOR rcon[getRound(b4)][getBytePos(b4)]

else:

c.m[b3] = c.m[b0] XOR c.m[b4]

http://www.trustedcomputinggroup.org/
http://www.intel.com/

An Improved Recovery Algorithm for Decayed AES Key Schedule Images 229

else:

b0 = path[count][i]

b3 = path[count][i-1]

b4 = b0 + 16

if inFirstWordOfRoundKey(b4):

c.m[b0] = sbox(c.m[b3]) XOR c.m[b4]

XOR rcon[getRound(b4)][getBytePos(b4)]

else:

c.m[b0] = c.m[b3] XOR c.m[b4]

if c.count == 16:

c = deriveFullScheduleFromRound8(c)

return c

def key ():

return m[0:16]

class DecaySchedule:

Byte decaySched[176]

Byte gndEnc[176]

def isCompatible (CandidateMatrix candidate):

for i = 0 to 176:

if defined(candidate.m[i]):

if (candidate.m[i] XOR decaySched[i])

AND (candidate.m[i] XOR gndEnc[i]):

continue

else:

return FALSE

return TRUE

def recoverKeyRec(CandidateMatrix c, DecaySchedule d):

if (c.length()==16):

return c.key()

for i=0 to 255:

if(d.isCompatible(c.guess(i))):

key = recoverKeyRec(c.guess(i),d)

if (key != NULL):

return key

return NULL

The pseudocode follows a Python-like syntax, but with some additional ex-
plicit typing and field declaration. Variables may hold their declared types or
undefined values—a property checked by defined().

The path variable encodes the guessing and inference order of Table 1
in the flat byte-level schedule view. The recursive exploration function,
recoverKeyRec(), is the same as in Fig. 1.

The CandidateMatrix class is dominated by the guess method which guesses
a value for the position determined by path[count][0] and infers the conse-
quent bytes. The inference logic splits into two cases: when the unknown byte
is in the first word, Sw

i−4, of the schedule generating equations (see (1)) or

230 A. Tsow

in the middle word, Sw
i−1. The variable names, b0, b3, and b4 reflect the

relative position of their encapsulating words in the schedule; if b0 comes from
an arbitrary word in the first 10 rounds, then b3 and b4 come from the words
three and four words ahead of b0, respectively. The inference sequence in path
has been chosen to account for the necessary rotations in byte slices when solv-
ing the s-box version of the generating equations. Upon completion of the 16
guesses the eighth round becomes fully specified, implying the remainder of the
schedule. The key() method simply returns the first 16 bytes of completed key
schedule.

DecaySchedule holds the observed decayed data and ground state encoding
for each byte. Its one method isCompatible() checks that each defined bit of
the candidate schedule equals the decayed data or the ground state.

Cryptanalysis of the Full MMB Block Cipher

Meiqin Wang1, Jorge Nakahara Jr.2, and Yue Sun1

1 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan 250100, China

2 EPFL, Lausanne, Switzerland
mqwang@sdu.edu.cn, jorge.nakahara@epfl.ch, yuesun@mail.sdu.edu.cn

Abstract. The block cipher MMB was designed by Daemen, Govaerts
and Vandewalle, in 1993, as an alternative to the IDEA block cipher. We
exploit and describe unusual properties of the modular multiplication
in ZZ232−1, which lead to a differential attack on the full 6-round MMB
cipher (both versions 1.0 and 2.0). Further contributions of this paper
include detailed square and linear cryptanalysis of MMB. Concerning
differential cryptanalysis (DC), we can break the full MMB with 2118

chosen plaintexts, 295.91 6-round MMB encryptions and 264 counters,
effectively bypassing the cipher’s countermeasures against DC. For the
square attack, we can recover the 128-bit user key for 4-round MMB
with 234 chosen plaintexts, 2126.32 4-round encryptions and 264 mem-
ory blocks. Concerning linear cryptanalysis, we present a key-recovery
attack on 3-round MMB requiring 2114.56 known-plaintexts and 2126 en-
cryptions. Moreover, we detail a ciphertext-only attack on 2-round MMB
using 293.6 ciphertexts and 293.6 parity computations. These attacks
do not depend on weak-key or weak-subkey assumptions, and are thus
independent of the key schedule algorithm.

Keywords: MMB block cipher, differential cryptanalysis, square
cryptanalysis, linear cryptanalysis, modular multiplication.

1 Introduction

The block cipher MMB (Modular Multiplication Based) block cipher [3] was
designed by Daemen, Govaerts and Vandewalle in 1993, and its main innovation
was the use of cyclic multiplication in the ring ZZ2n−1, where n is the word size
of the cipher. All internal operations of MMB are on n-bit words. The designers
suggested n = 32, leading to the ring ZZ232−1. Note that 232−1 = (216 +1) ·(28+
1)·(24+1)·(22+1)·(2+1) = 65537·257·17·5·3 = 4294967295, the product of all five
known Fermat primes. MMB is an iterated cipher, composed of six rounds. MMB
operates on 128-bit text blocks and uses 128-bit key. MMB was proposed as an
alternative to the IDEA block cipher [7]. MMB has been designed particularly to
resist differential cryptanalysis [5]. This paper presents differential, square and
linear cryptanalysis of the MMB cipher. Previous cryptanalysis of MMB was
a related-key attack and only applied to MMB version 1.0, according to [5]. In
order to resist the related-key attack, MMB version 2.0 was proposed by revising

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 231–248, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

232 M. Wang, J. Nakahara Jr., and Y. Sun

only the key schedule algorithm. As far as we know, there is no previous attack
on MMB version 2.0. However, our attacks are independent of the key schedule
algorithm, so they can be applied to both versions 1.0 and 2.0.

In this paper, firstly we present differential cryptanalysis of the full 6-round
MMB. Five-round differential characteristics have been identified, and we can
recover the 128-bit user key with 2118 chosen plaintexts (CP), 295.91 6-round
MMB encryptions and 264 memory blocks. Secondly, we investigate the square
attack on reduced-round MMB. We distinguished a new word type: X word,
based on which we have found 2.75-round square distinguishers and applied the
square attack to 4-round MMB. We can recover the 128-bit user key with 234

CP, 2126.32 4-round encryptions and 264 memory blocks. Thirdly, we apply linear
cryptanalysis to reduced-round MMB. We identified two linear approximations
with bias 2−55.78 for 3-round MMB and recover one-bit subkey information for
3-round MMB with 2114.56 known plaintexts (KP) and equivalent parity com-
putations; then recover 128-bit key for 3-round MMB with 2114.56 KP and 2126

3-round MMB encryptions. Moreover, we can attack 2-round MMB with 293.6

ciphertexts only (CO). From our attacks, particularly concerning differential
cryptanalysis, we disprove the claims of the designers that MMB can resist DC.

The paper is organized as follows. Sec. 2 describes the MMB cipher. Sect. 3
presents the differential attack on the full MMB, and Sect. 4 details a square
attack on a 4-round MMB. The linear attack on reduced-round MMB is provided
in Sect. 5. Sect. 6 concludes the paper.

2 Description of the MMB Block Cipher

The MMB block cipher has a Substitution-Permutation Network (SPN) struc-
ture and operates on 128-bit text blocks, uses a 128-bit key, and iterates six
rounds. One round of MMB consists of four transformations [5]:

– σ[kj]: exclusive-or each data word with the j-th round subkey kj . Formally,

σ[kj](a0, a1, a2, a3) = (a0 ⊕ kj
0, a1 ⊕ kj

1, a2 ⊕ kj
2, a3 ⊕ kj

3),

where ⊕ denotes bitwise exclusive-or, ai, k
j
i ∈ ZZ232 , for 0 ≤ i ≤ 3. The

σ[kj] operation is an involution, and is the only key-dependent operation in
a round.

– γ: modular multiplication of each data word with fixed 32-bit constants Gi,

γ(a0, a1, a2, a3) = (a0 ⊗G0, a1 ⊗G1, a2 ⊗G2, a3 ⊗G3),

where a ⊗ b = a ∗ b mod (232 − 1), G0 = 025F1CDBx, G1 = 2 ⊗ G0 =
04BE39B6x, G2 = 8⊗G0 = 12F8E6D8x, and G3 = 128⊗G0 = 2F8E6D81x

which can be efficiently computed since (A ∗ 2x) mod (232 − 1) = (A ≪
x) mod (232 − 1). There is a wrap-around effect in multiplication modulo
232 − 1, since 232 ≡ 1 mod (232 − 1), which means that the bits at the
(32 + i)-th LSB position are shifted to the i-th LSB position. This effect is

Cryptanalysis of the Full MMB Block Cipher 233

similar to the multiplication operation modulo 216 + 1 in IDEA. As cited in
[5], the ⊗ operation can be expressed as:

a⊗ b = a ∗ b mod (232 − 1) = (a ∗ b mod 232 + 	a ∗ b

232
) mod (232 − 1).

Notice that γ is invertible but is not an involution. Each 32-bit multiplication
can be interpreted as a huge 32 × 32-bit S-box, since one of the operands
in the multiplication is always fixed. There are two fixed points for any Gi:
0⊗Gi = 0, and (232 − 1)⊗Gi = 232 − 1.

– η: a data-dependent transformation operating on two out of the four input
words (a0, a1, a2, a3):

η(a0, a1, a2, a3) = (a0 ⊕ (lsb(a0) ∗ δ), a1, a2, a3 ⊕ ((1 ⊕ lsb(a3)) ∗ δ)),

where ’lsb’ denotes the least significant bit, and δ = 2aaaaaaax; η is an
involution and a non-linear operation. η is used to resist the propagation of
the differential characteristics with probability 1.

– θ: the only diffusion operation in MMB. Formally,

θ(a0, a1, a2, a3) = (a3 ⊕ a0 ⊕ a1, a0 ⊕ a1 ⊕ a2, a1 ⊕ a2 ⊕ a3, a2 ⊕ a3 ⊕ a0),

where ai ∈ ZZ232 , with 0 ≤ i ≤ 3. θ is an involution and has branch number
four (see [10]).

There are two pairs of operations that can be interchanged: (θ, σ[kj]) and (η,
σ[kj]). In each case, the key kj is transformed into an equivalent key θ(kj) or
η(kj), respectively.

The j-th (full) round transformation of MMB can be denoted:

ρ[kj](X) = θ ◦ η ◦ γ ◦ σ[kj](X) = θ(η(γ(σ[kj](X)))) . (1)

The full MMB encryption of a plaintext P can be denoted:

MMB(P) = σ[k6] ◦ ρ[k5] ◦ ρ[k4] ◦ ρ[k3] ◦ ρ[k2] ◦ ρ[k1] ◦ ρ[k0](P) , (2)

where σ[k6] is the output transformation or post-whitening operation.
In the original key schedule of MMB version 1.0, the first round subkey is

simply the 128-bit user key K = (k0, k1, k2, k3). Successive subkeys use K rotated
by 32 bits to the left. So, for instance, (k1, k2, k3, k0), (k2, k3, k0, k1) and so forth.
A redesigned key-schedule to avoid related-key attacks has led to a tweaked
cipher called MMB version 2.0 [5] in which a constant value is xored to the
leftmost 32-bit subkey word after each rotation.

3 Differential Cryptanalysis of the Full MMB

Differential cryptanalysis (DC) [2] exploits the propagation of particular differ-
ences of plaintext pairs across a cipher, to certain differences of the resultant
ciphertext pairs. The designers of MMB claimed that an important design cri-
terion was resistance against DC in [3], but we break the full MMB using DC.

234 M. Wang, J. Nakahara Jr., and Y. Sun

3.1 Differential Characteristics for MMB

The main component in the round function of MMB responsible for the confu-
sion property (according to C. Shannon) is γ. Thus, for the analyst it is very
important to minimize the number of active multiplications in order to maximize
the probability of the differential characteristics. The possible distributions of
active modular multiplications are listed in Table 2. In the leftmost column, the
input difference is said to cause (denoted with an arrow, 1r→) the given output
difference after one round. The second column shows the number of active multi-
plications. The rightmost column shows the restrictions on the output difference
of active multiplications, which account for η. Due to θ, the output differences
from the active multiplications in one round all have to be equal. For each row
in Table 2, we denote the input difference as ∆ij , (0 ≤ j ≤ 3) and the output
difference as ∆o.

In order to identify 2-round characteristics for MMB with the highest prob-
ability, we only consider two active multiplications per round. An important
property for the modular multiplication operation γ has been described in [5]

Rp(0̄
γ→ 0̄) = 1,

where 0̄ = 232 − 1 = ffffffffx. This property means that the differential
characteristic 0̄

γ→ 0̄ holds with probability 1, leading to the following 2-round
characteristic with probability 1:

(0, 0̄, 0̄, 0)
σ[k0]→ (0, 0̄, 0̄, 0)

γ→ (0, 0̄, 0̄, 0)
η→ (0, 0̄, 0̄, 0) θ→ (0̄, 0, 0, 0̄)

σ[k1]→ (0̄, 0, 0, 0̄)
γ→ (0̄, 0, 0, 0̄)

η→ (0̄⊕ δ, 0, 0, 0̄⊕ δ) θ→ (0, 0̄⊕ δ, 0̄⊕ δ, 0).

where a single 0 denotes a 32-bit zero difference word. Then, we further extend
the 2-round characteristic by two rounds above it and one round below it. For
the lower round, the following differential characteristic needs to be determined:

(0, 0̄⊕ δ, 0̄⊕ δ, 0)
σ[k2]→ (0, 0̄⊕ δ, 0̄⊕ δ, 0)

γ→ (0, α1, α2, 0).

We identified the characteristics 0̄ ⊕ δ
G1→ fcfbdfffx and 0̄ ⊕ δ

G2→ f3ef7fffx,
both of which have probability about 2−18. With them, we construct a 3-round
differential characteristic with probability 2−36 as follows:

(0, 0̄, 0̄, 0) 1r→ (0̄, 0, 0, 0̄) 1r→ (0, 0̄⊕ δ, 0̄⊕ δ, 0)
σ[ki]→ (0, 0̄⊕ δ, 0̄⊕ δ, 0)

γ→ (0, fcfbdfffx, f3ef7fffx, 0) η→ (0, fcfbdfffx, f3ef7fffx, 0)
θ→ (fcfbdfffx, 0f14a000x, 0f14a000x, f3ef7fffx).

For the upper round, the following differential characteristic needs to be
determined:

(β0, 0, 0, β3)
σ[ki]→ (β0, 0, 0, β3)

γ→ (0̄⊕ δ, 0, 0, 0̄⊕ δ)
η→ (0̄, 0, 0, 0̄) θ→

(0, 0̄, 0̄, 0) 1r→ (0̄, 0, 0, 0̄) 1r→ (0, 0̄⊕ δ, 0̄⊕ δ, 0) 1r→
(fcfbdfffx, 0f14a000x, 0f14a000x, f3ef7fffx).

Cryptanalysis of the Full MMB Block Cipher 235

In order to further extend the above 4-round characteristic by one round above it,
we only consider the cases β0 = β3. In this way, we identified the characteristics
a7cfdf7fx

G0→ 0̄⊕δ and a7cfdf7fx
G3→ 0̄⊕δ, both with probability about 2−21. So,

a 4-round characteristic with probability 2−42·2−36 = 2−78 has been constructed.
Then, we further extend the 4-round characteristic. The following characteristic
needs to be determined,

(0, ξ1, ξ2, 0)
σ[ki]→ (0, ξ1, ξ2, 0)

γ→ (0, a7cfdf7fx, a7cfdf7fx, 0)
η→ (0, a7cfdf7fx, a7cfdf7fx, 0) θ→ (a7cfdf7fx, 0, 0, a7cfdf7fx)

1r→ (0, 0̄, 0̄, 0) 1r→ (0̄, 0, 0, 0̄) 1r→ (0, 0̄⊕ δ, 0̄⊕ δ, 0)
1r→ (fcfbdfffx, 0f14a000x, 0f14a000x, f3ef7fffx).

We identified the characteristics 9bd3fdf7x
G1→ a7cfdf7fx and e6f4ff7dx

G2→
a7cfdf7fx, both with probability about 2−14. With them, we construct a 5-
round characteristic with probability 2−28 · 2−78 = 2−106 as follows:

(0, 9bd3fdf7x, e6f4ff7dx, 0) 1r→ (a7cfdf7fx, 0, 0, a7cfdf7fx) (3)
1r→ (0, 0̄, 0̄, 0) 1r→ (0̄, 0, 0, 0̄) 1r→ (0, 0̄⊕ δ, 0̄⊕ δ, 0)

1r→ (fcfbdfffx, 0f14a000x, 0f14a000x, f3ef7fffx).

With the 5-round characteristic in (3), we cannot attack the full 6-round MMB
because the S/N is too small. In order to increase the S/N, we found another
5-round differential characteristic with probability 2−110 as follows:

(0, 9bd3fdf7x, e6f4ff7dx, 0) 1r→ (a7cfdf7fx, 0, 0, a7cfdf7fx)
1r→ (0, 0̄, 0̄, 0)

1r→ (0̄, 0, 0, 0̄) 1r→ (0, 0̄⊕ δ, 0̄⊕ δ, 0) 1r→ (40404040x, 0, 0, 40404040x), (4)

where the characteristics 0̄ ⊕ δ
G1→ 40404040x and 0̄ ⊕ δ

G2→ 40404040x have
probability about 2−20. Although the probability of (4) is lower than that of
(3), the ratio of the counted to all pairs of ciphertext decreases prominently.
Therefore we use (4) to attack the full 6-round MMB cipher.

The 6-round MMB encryption of a plaintext P is depicted in (2). In order to
decrease the time complexity, we move σ[k6] to the front of θ in the 6th round;
σ[k6] will be transformed to σ[k6′], where k6

0
′ = k6

0 ⊕ k6
1⊕ k6

3 ; k6
1
′ = k6

0 ⊕ k6
1⊕ k6

2 ;
k6
2
′ = k6

1 ⊕ k6
2 ⊕ k6

3 and k6
3
′ = k6

0 ⊕ k6
2 ⊕ k6

3 . Thus, we will recover the equivalent
subkey k6′.

3.2 Attack Algorithm

We choose 254 structures of 264 chosen plaintexts each. In each structure, the
second and third words of the plaintext can together take 264 possible values.
There are 263 plaintext pairs with the difference (0, 9bd3fdf7x, e6f4ff7dx, 0) in
each structure. So, the total number of pairs in 254 structures is 254 · 263 = 2117.

236 M. Wang, J. Nakahara Jr., and Y. Sun

The differential characteristic has probability 2−110, so the number of the right
pairs is 2117 · 2−110 = 27 = 128. For each structure, there are about 263 pairs of
plaintexts to be considered in total.

Since the output difference of the 5th round for a right pair is (40404040x, 0,
0, 40404040x), the difference of the ciphertext pairs should be (α⊕β, α, β, α⊕β),
with α, β ∈ ZZ232 , so we can use this to discar wrong pairs. Thus, about 263 ·
2−64 = 2−1 candidates for the right pairs remain from each structure.

The input difference of the 6th round is (40404040x, 0, 0, 40404040x). We found
that the numbers of possible output difference values given the input difference
40404040x for the modular multiplication G0 or G3 is 6738641/232 = 2−9.32,
so about 2−1 · 2−18.64 = 2−19.64 candidates for the right pairs remain for each
structure. The total number of remaining pairs in all the 254 structures is 254 ·
2−19.64 = 234.36.

For each remaining ciphertext pair (C0, C1, C2, C3) and (C0
′, C1

′, C2
′, C3

′), we
guess the equivalent subkey words k6

0
′ and k6

3
′, and the total number of guessed

subkey bits is 64. Then, calculate ξ0 = (G−1
0 ⊗ (η(C0⊕C1⊕C3⊕k6

0
′)))⊕ (G−1

0 ⊗
(η(C0

′ ⊕C1
′ ⊕C3

′ ⊕ k6
0
′))) and ξ3 = (G−1

3 ⊗ (η(C0 ⊕C2 ⊕C3 ⊕ k6
3
′)))⊕ (G−1

3 ⊗
(η(C0

′⊕C2
′⊕C3

′⊕k6
3
′))). If both ξ0 and ξ3 are equal to 40404040x, the counter

corresponding to (k6
0
′
, k6

3
′) will be incremented by one. For G0 and G3 with the

inputxor 40404040x and any given outputxor, there will be at most 217 pairs, so
the maximum count per counted pair of the subkey words will be 217 ·217 = 234.

In our attack, the signal-to-noise ratio is computed as follows:

S/N = p·2k

α·β = 2−110·264

2−64−18.64·234 = 22.64 = 6.23.

The success probability is computed as follows[11]:

Ps =
∫∞
−

√
µS/N−Φ−1(1−2−a)√

S/N+1

Φ(x)dx = 0.99999999,

where a = 64 is the number of subkey bits involved in the decryption and µ is
the number of right pairs which can be obtained µ = p ·N = 2−110 · 2117 = 128.
With probability 0.99999999 the right key can be recovered.

The attack needs 2118 CP and 235.36 ·264 ·2 = 2100.36 modular multiplications,
which is no more than 2100.36/4 = 298.36 1-round MMB encryptions, equivalent
to 298.36/6 = 295.91 6-round MMB encryptions. The memory requirements are
about 264 64-bit counters. The remaining 64-bit equivalent subkey k6

1
′ and k6

2
′

can be recovered by exhaustive search with about 264 6-round MMB encryptions.
Finally, the 128-bit user key can be derived. In all, the data complexity is 2118

CP, the time complexity is 295.91 6-round MMB encryptions and the memory
requirements are 264 64-bit blocks.

4 Square Analysis of MMB

MMB is a word-oriented cipher. More precisely, it operates on neatly partitioned
32-bit words. This wordwise behavior motivates our square analysis. Our attacks
use Λ-sets of 232 CP. We use the terminology of [6].

Cryptanalysis of the Full MMB Block Cipher 237

4.1 Square Distinguisher

Due to the special property for modular multiplication, we discovered a new
word type: X word, which can propagate across γ. The X word is very useful
for us to identify four chains of Λ-sets, each of which represents a 2.75-round
square distinguisher if we consider every round transformation σ, γ, η and θ as
a fraction of 0.25 of a (full) round.

– (A, C, C, C) 1r→ (A, A, C, A) 1r→ (X, B, B, E)
σ[k2]→ (X, B, B, E)

γ→ (X, ?, ?, E)
η→ (B, ?, ?, E),

– (C, A, C, C) 1r→ (A, A, A, C) 1r→ (B, B, E, B)
σ[k2]→ (B, B, E, B)

γ→ (?, ?, E, ?)
η→ (?, ?, E, ?),

– (C, C, A, C) 1r→ (C, A, A, A) 1r→ (B, E, B, B)
σ[k2]→ (B, E, B, B)

γ→ (?, E, ?, ?)
η→ (?, E, ?, ?),

– (C, C, C, A) 1r→ (A, C, A, A) 1r→ (E, B, B, X)
σ[k2]→ (E, B, B, X)

γ→ (E, ?, ?, X)
η→ (E, ?, ?, B),

where ’A’ indicates an active word; ’C’ denotes a passive (or constant) word; ’B’
denotes a balanced word, that is, the xor sum of whose contents gives zero; ’X ’
denotes another special balanced word in which any value x and ¬x appear the
same number of times; ’E’ denotes a special balanced word in which each value
appears an even number of times [1]; ’?’ indicates that the xor sum of the 32-bit
in that word is an unpredictable value. The proofs of the propagation of Λ-sets
can be found in Appendix A.

4.2 Square Attack on 4-Round MMB

With any of the above square distinguishers, the key-recovery attack on 4-round
MMB can be applied.

Consider the square distinguisher (A, C, C, C) 1r→ (A, A, C, A) 1r→ (X, B, B, E)
σ[k2]→ (X, B, B, E)

γ→ (X, ?, ?, E)
η→ (B, ?, ?, E). A full 4-round MMB consists of

σ[k4] ◦ θ ◦ η ◦ γ ◦ σ[k3] ◦ θ ◦ η ◦ γ ◦ σ[k2] ◦ θ ◦ η ◦ γ ◦ σ[k1] ◦ θ ◦ η ◦ γ ◦ σ[k0].

We aim at recovering k4 by partial decryption. We also move σ[k4] across θ. We
denote the modified key as k4′. Further, we can remove θ because it is invertible
and key independent.

The attack procedure is as follows:

– Step 1: Choose 232 plaintexts (x, c1
0, c2

0, c3
0), x ∈ ZZ232 , c1

0, c2
0 and c3

0 are
constants.

– Step 2: Guess the 32-bit words k4
0
′, k4

1
′ and k4

3
′ of k4′. Apply the inverse

of η and γ, xor the three words to obtain a new word. If the new word is
balanced, save the subkey value. On average, 264 subkey values are saved.

– Step 3: for i := 1 to 3 do

238 M. Wang, J. Nakahara Jr., and Y. Sun

• Step 3.1: Choose a new group of 232 plaintexts (x, c1
i, c2

i, c3
i), x ∈ ZZ232 ,

c1
i, c2

i and c3
i are constants.

• Step 3.2: For each saved subkey value, apply the inverse of η and γ, xor
the three words to obtain the new word. If the new word is not balanced,
delete the subkey value.

– Step 4: The remaining subkey value should be the right subkey with high
probability.

The total number of guessed subkey bits is 96, only one Λ-set cannot identify the
right subkey; on average, 264 wrong guesses also satisfy the balanced property.
So, we choose different constant values of the later three words in plaintexts to
construct four Λ-sets. We expect any wrong subkey value to satisfy the balanced
property with probability 2−32, but, the right subkey value must satisfy the
balanced property always.

In total, the complexity is about (296 + 264 + 232 + 1) · 232 = 2128 1.25-round
decryptions; 234 CP, and memory of 264 96-bit counters. For the third word
of k4′, we can recover it by exhaustive search. In total, the time complexity is
2128 · 1.25 + 6 · 232 = 2128.32 1-round decryptions, or equivalently, 2128.32/4 =
2126.32 full 4-round MMB encryptions. The data complexity will be 234 CP. The
memory complexity is 264 text blocks.

5 Linear Attacks on MMB

Linear cryptanalysis typically works in a known-plaintext or ciphertext-only set-
ting (in the latter, assuming the plaintext is ASCII text), and its origin dates
back to the works of Matsui on DES [8,9].

The main concept for this attack is the linear relation, which consists of a linear
combination of text and key bits, holding with a high parity deviation from
the uniform parity distribution. Initially, linear relations are obtained for each
individual cipher component. Further, more extensive relations are obtained by
the combination of smaller relations from consecutive cipher components, up to
full round, and then for multiple rounds. The effectiveness of a linear relation is
measured by a parameter called bias, which is the absolute value of the deviation
of the parity of the linear relation from 1/2 (the expected value for an unbiased
relation). The higher the bias, the more attractive the linear relations, since they
demand less plaintext-ciphertext pairs. These linear relations form the core of a
linear distinguisher, namely, a tool that allows one to distinguish a given cipher
from a random permutation, or to recover subkey bits.

5.1 Linear Approximations for MMB

In MMB, the main non-linear operation that limits the effectiveness of linear
approximations, is the multiplication in ZZ232−1, namely γ. Let Mi = (mi0, mi1,
mi2, mi3) and Mo = (mo0 ,mo1, mo2, mo3) denote the linear input mask and the

Cryptanalysis of the Full MMB Block Cipher 239

linear output mask of γ, respectively. Any nonzero mij (and moj), for 0 ≤ j ≤ 3,
represents an active multiplication.

As in the differential cryptanalysis in Sect.3, the possible distributions for
active multiplications in linear approximation are listed in Table 3. mo and
mij , (0 ≤ j ≤ 3) represent the input mask and the output mask, respectively.
Besides the γ component, η is also non-linear. To avoid the effect of η on linear
approximations, it is necessary to guarantee that the output mask mo for the
active Gi satisfies mo · δ = 0, where · is the dot product.

We recall the rotational invariant property [4] of multiplication modulo 232−1,

a⊗ (x << k) = (a⊗ x) << k.

The linear approximation for one multiplication can be used to obtain the linear
approximation for the other three multiplications. The bias ε for mi1

G1→ mo and
the bias ε′ for mi1 ≪ 2 G2→ mo will be equal. In particular, with the rotational
property, for mi = 0̄ and mo = 0̄, the biases for the linear approximation of mul-
tiplication for all Gi are equal (to 2−12.0897). But, the mask 0̄ is not appropriate
concerning η. The corresponding bias for a one-round linear approximation is
zero because 0̄ · δ = 1.

In order to construct multi-round linear approximations, the output masks
for different active multiplications must be equal. From the experiments of dif-
ferent masks for Gi, we conjecture that the linear approximations for modular
multiplication with maximum bias have the following forms:

mmmmmmmmx
Gi→ nnnnnnnnx,

m0m1m0m1m0m1m0m1x
Gi→ n0n1n0n1n0n1n0n1x,

m0m1m2m3m4m5m6m7x
Gi→ m0m1m2m3m4m5m6m7x,

(5)

where m, n, mi, ni ∈ ZZ24 , 0 ≤ i ≤ 7. The probability for the above linear re-
lations with the maximum bias decreases gradually. We have only searched the
first two linear approximations in (5). The last linear relation needs too large a
test space, so we have not searched it.

Linear Approximations for Modulo Multiplication:

The best linear approximations we identified have bias 2−8.8 for each Gi, and
some of them are

3c3c3c3cx
G0→ 0f0f0f0fx, 3c3c3c3cx

G1→ 1e1e1e1ex,

3c3c3c3cx
G2→ 78787878x, 3c3c3c3cx

G3→ 87878787x.

Based on the above linear approximations for Gi, one-round linear approxima-
tions with only one active multiplication can be obtained with bias 2−8.8.

240 M. Wang, J. Nakahara Jr., and Y. Sun

Two-Round Linear Approximations

Two-round linear approximations can be obtained with only two active modular
multiplications in each round. For active G0 and G2, for instance

(mi0, 0, mi2, 0) 1r→ (m2, 0, m2, 0) 1r→ (m3, 0, m3, 0), (6)

where mi0, mi2, m2 and m3 are independent 32-bit masks. The following local

approximations are required: mi0
G0→ m2, mi2

G2→ m2 and m2
Gj→ m3 for j ∈ {0, 2}

with nonzero bias. The maximum bias we identified was 2−36.82 for 2-round
linear approximation:

(1b1b1b1bx, 0, 63636363x, 0) 1r→ (6c6c6c6cx, 0, 6c6c6c6cx, 0)
1r→ (72727272x, 0, 72727272x, 0),

(7)

where the linear approximations for G0 and G2 are

1b1b1b1bx
G0→ 6c6c6c6cx, ε = 2−9.40; 63636363x

G2→ 6c6c6c6cx, ε = 2−9.40;
6c6c6c6cx

G0→ 72727272x, ε = 2−9.78; 6c6c6c6cx
G2→ 72727272x, ε = 2−11.24.

In addition, we identified 2-round linear approximation for active G1 and G3 as
follows:

(0, mi1, 0, mi3)
1r→ (0, m2, 0, m2)

1r→ (0, m3, 0, m3). (8)

We identified the maximum bias 2−36.95 for 2-round linear approximation as
follows:

(0, 99999999x, 0, 66666666x)
1r→ (0, 33333333x, 0, 33333333x)

1r→ (0, 66666666x, 0, 66666666x),
(9)

where the linear approximations for G1 and G3 are

99999999x
G1→ 33333333x, ε = 2−9.56; 66666666x

G3→ 33333333x, ε = 2−9.56;
33333333x

G1→ 66666666x, ε = 2−9.56; 33333333x
G3→ 66666666x, ε = 2−11.27.

Three-Round Linear Approximations

We found the 3-round linear approximation for active G0 and G2 as follows:

(d8d8d8d8x, 0, 1b1b1b1bx, 0) 1r→ (63636363x, 0, 63636363x, 0)
1r→ (36363636x, 0, 36363636x, 0) 1r→ (63636363x, 0, 63636363x, 0),

where the linear approximations for G0 and G2 are

d8d8d8d8x
G0→ 63636363x, ε = 2−9.40; 1b1b1b1bx

G2→ 63636363x, ε = 2−9.40;
63636363x

G0→ 36363636x, ε = 2−13.76; 63636363x
G2→ 36363636x, ε = 2−10.56;

36363636x
G0→ 63636363x, ε = 2−13.76; 36363636x

G2→ 63636363x, ε = 2−10.56.

Cryptanalysis of the Full MMB Block Cipher 241

The bias for the 3-round linear approximation is 2−9.40·2−13.76·2−10.56·2+5 =
2−62.44. Moreover, if G1 and G3 are active, we identified two linear
approximations for 3-round MMB with the maximum bias 2−55.78 as follows:

(0, 99999999x, 0, 66666666x)
1r→ (0, 33333333x, 0, 33333333x)

1r→ (0, 66666666x, 0, 66666666x)
1r→ (0, 33333333x, 0, 33333333x),

(10)

(0, 33333333x, 0, ccccccccx) 1r→ (0, 66666666x, 0, 66666666x)
1r→ (0, 33333333x, 0, 33333333x)

1r→ (0, 66666666x, 0, 66666666x),
(11)

where the linear approximations for G1 and G3 are

99999999x
G1→ 33333333x, ε = 2−9.56; 66666666x

G3→ 33333333x, ε = 2−9.56;
33333333x

G1→ 66666666x, ε = 2−9.56; 33333333x
G3→ 66666666x, ε = 2−11.27;

66666666x
G1→ 33333333x, ε = 2−11.27; ccccccccx

G3→ 66666666x, ε = 2−9.56.

The bias for the two 3-round linear approximations is 2−9.56·2−9.56·2−11.27·2+5 =
2−55.78.

In Appendix B, we list a linear approximation for four rounds, but whose
bias is too low for an effective attack.

5.2 Linear Attack on Reduced-Round MMB

Known Plaintext Linear Attack

With the 3-round linear approximation in (10), a linear relation involving some
plaintext bits, ciphertext bits and subkey bits can be derived. Using Algorithm
1 in [8], we can deduce the XOR value for the subkey bits involved in the linear
relation. So, we can recover one bit of key information from 3-round MMB using
8 · (2−55.78)−2 = 2114.56 KP and equivalent parity computations. Further, we
can use the 3-round linear approximation in (11) to recover another one bit of
key information from 3-round MMB. In all, two bits of key information can be
recovered. For this step, the time complexity is 2115.56 parity computations. The
remaining 126-bit subkey can be obtained by exhaustive search with about 2126

3-round encryptions. In all, we can recover 128-bit key for 3-round MMB with
2114.56 known plaintexts and 2126 3-round encryptions.

Ciphertext-Only Linear Attack

If the plaintexts are ASCII, then particular bitmasks involving only the most
significant bit of each plaintext byte may allow a ciphertext-only (CO) linear
attack on MMB. This is a more attractive attack setting than the conventional

242 M. Wang, J. Nakahara Jr., and Y. Sun

known-plaintext (KP) setting, since an opponent only needs ciphertext blocks.
For MMB, we have identified 2-round linear relations with bitmasks that involve
only the most significant bits of bytes in plaintext blocks. The linear relation with
active G0 and G2 is identified as follows:

(80808080x, 0, 80808080x, 0) 1r→ (65656565x, 0, 65656565x, 0)
1r→ (1e1e1e1ex, 0, 1e1e1e1ex, 0),

(12)

where the linear approximations for G0 and G2 are 80808080x
G0→ 65656565x,

with ε = 2−15.74; 80808080x
G2→ 65656565x, with ε = 2−8.85; 65656565x

G0→
1e1e1e1ex, with ε = 2−15.57; 65656565x

G2→ 1e1e1e1ex, with ε = 2−11.54. The
bias for relation (12) is 2−15.74−8.85−15.57−11.54+3 = 2−48.70. The linear relation
with active G1 and G3 is identified as follows:

(0, 80808080x, 0, 80808080x)
1r→ (0, 59595959x, 0, 59595959x)

1r→ (0, 74747474x, 0, 74747474x),
(13)

where the linear approximations for G1 and G3 are 80808080x
G1→ 59595959x,

with ε = 2−8.85; 80808080x
G3→ 59595959x, with ε = 2−16.83; 59595959x

G1→
74747474x, with ε = 2−11.85; 59595959x

G3→ 74747474x, with ε = 2−10.77. The
bias for relation (13) is 2−8.85−16.83−11.85−10.77+3 = 2−45.30. This bias only leads
to a distinguishing attack on 2-round MMB, with 8 · (2−45.30))−2 = 293.60 CO,
and equivalent number of parity computations.

6 Conclusions

This paper described the first detailed differential, square and linear attacks on
versions 1.0 and 2.0 of the MMB block cipher, a design by Daemen, Govaerts
and Vandewalle, dated from 1993, as an alternative to the IDEA block cipher.
For differential cryptanalysis, the characteristic 0̄

γ→ 0̄ with probability 1 is the
key point towards successful attack of the full MMB cipher. For square attack,
the identical property of 0̄

γ→ 0̄ leads us to identify a new word type, the X
word, which is relevant to identify 2.75-round square distinguishers. Without
it, only 2-round square distinguishers can be found. For linear cryptanalysis,
although the designers did not claim resistance of the MMB cipher against linear
cryptanalysis, it is interesting that we were able to find better differential attacks
than linear ones.

A summary of our attacks is in Table 1. We have presented both distinguishing-
from-random and key-recovery attacks on the full and reduced-round MMB
cipher. Our attacks apply equally well to MMB version 2.0 [5], which only dif-
fers from the original MMB in the key schedule algorithm, designed to avoid
related-key attacks.

An unusual property of the θ and γ layers of MMB under a square attack is
described in Appendix C. This attack demonstrates the importance of the η
layer in MMB, in order to resist square attacks.

Cryptanalysis of the Full MMB Block Cipher 243

Table 1. Summary of attacks on MMB

#Rounds Time Data Memory Type

2 293.6 PC 293.6 CO — LC, DR
3 2114.56 PC 2114.56 KP — LC, DR
3 2126 EN 2114.56 KP — LC, KR
4 2126.32 EN 234 CP 264 SC, KR
6 295.91 EN 2118 CP 264 DC, KR

PC: number of parity computations; EN: number of encryptions;
LC, DR: Linear Distinguishing Attack;
LC, KR: Key-recovery Attack with Linear Cryptanalysis;
DC, KR: Key-recovery Attack with Differential Cryptanalysis;
SC, KR: Key-recovery Attack with Square Cryptanalysis.

Acknowledgements

It is a pleasure to acknowledge Xiaoyun Wang for various discussions on this
paper. We would like to thank Yinglong Wang and Jinshan Pan in Shandong
Computer Science Center for their providing the cluster computers to finish our
experiments. We would also like to thank the anonymous reviewers for their very
important comments.

This research is supported by 973 Program of China (Grant No.
2007CB807902) and National Outstanding Young Scientist fund of China (Grant
No. 60525201).

References

1. Biryukov, A., Shamir, A.: Structural Cryptanalysis of SASAS. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 394–405. Springer, Heidelberg
(2001)

2. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Jour-
nal of Cryptology 4(1), 3–72 (1991)

3. Daemen, J., Govaerts, R., Vandewalle, J.: Block Ciphers Based on Modular Mul-
tiplication. In: Wolfowicz, W. (ed.) Proceedings of 3rd Symposium on State and
Progress of Research in Cryptography, Fondazione Ugo Bordoni, pp. 80–89 (1993)

4. Daemen, J., Van Linden, L., Govaerts, R., Vandewalle, J.: Propagation Proper-
ties of Multiplication Modulo 2n − 1. In: Proceedings of the 13th Symposium on
Information Theory in the Benelux, Werkgemeenschap voor informatie- en Com-
municatietheorie, Enschede, The Netherlands, pp. 111–118 (1992)

5. Daemen, J.: Cipher and Hash Function Design – Strategies based on Linear and
Differential Cryptanalysis. PhD Thesis, Dept. Elektrotechniek, Katholieke Univer-
siteit Leuven, Belgium (1995)

6. Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

7. Lai, X.: On the Design and Security of Block Ciphers. In: Massey, J.L. (ed.) ETH
Series in Information Processing, vol. 1. Hartung-Gorre Verlag, Konstanz (1995)

244 M. Wang, J. Nakahara Jr., and Y. Sun

8. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

9. Matsui, M.: The First Experimental Cryptanalysis of the Data Encryption Stan-
dard. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1–11. Springer,
Heidelberg (1994)

10. Rijmen, V., Daemen, J., Preneel, B., Bosselaers, A., De Win, E.: The Cipher
SHARK. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 99–111. Springer,
Heidelberg (1996)

11. Selçuk, A.A., Biçak, A.: On Probability of Success in Linear and Differential Crypt-
analysis. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576,
pp. 174–185. Springer, Heidelberg (2003)

Appendix

Table 2. One-round differential characteristics for MMB: ∆ij(0 ≤ j ≤ 3), and ∆o are
nonzero 32-bit xor difference values

input difference 1r→ output difference # active multiplications restriction on ∆o

(∆i0, 0, 0, 0) 1r→ (∆o, ∆o, 0, ∆o) 1 lsb(∆o)=0
(0, ∆i1, 0, 0) 1r→ (∆o, ∆o, ∆o, 0) 1 —
(0, 0, ∆i2, 0)

1r→ (0, ∆o, ∆o, ∆o) 1 —
(0, 0, 0, ∆i3)

1r→ (∆o, 0, ∆o, ∆o) 1 lsb(∆o)=0
(∆i0, ∆i1, 0, 0) 1r→ (0, 0, ∆o, ∆o) 2 lsb(∆o)=0
(∆i0, 0, ∆i2, 0)

1r→ (∆o, 0, ∆o, 0) 2 lsb(∆o)=0
(∆i0, 0, 0, ∆i3)

1r→ (0, ∆o, ∆o, 0) 2 lsb(∆o)=0
(0, ∆i1, ∆i2, 0)

1r→ (∆o, 0, 0, ∆o) 2 —
(0, ∆i1, 0, ∆i3)

1r→ (0, ∆o, 0, ∆o) 2 lsb(∆o)=0
(0, 0, ∆i2, ∆i3)

1r→ (∆o, ∆o, 0, 0) 2 lsb(∆o)=0
(∆i0, ∆i1, ∆i2, 0)

1r→ (0, ∆o, 0, 0) 3 lsb(∆o)=0
(∆i0, ∆i1, 0, ∆i3)

1r→ (∆o, 0, 0, 0) 3 lsb(∆o)=0
(∆i0, 0, ∆i2, ∆i3)

1r→ (0, 0, 0, ∆o) 3 lsb(∆o)=0
(0, ∆i1, ∆i2, ∆i3)

1r→ (0, 0, ∆o, 0) 3 lsb(∆o)=0
(∆i0, ∆i1, ∆i2, ∆i3)

1r→ (∆o, ∆o, ∆o, ∆o) 4 lsb(∆o)=0

A Proofs of Square Distinguishers

A.1 Proof of the First Distinguisher

For the first distinguisher, we denote each word after η in the first round as
S(v); S is the status for the word, such as A, B, E and X , and v represents the
variable; the first distinguisher can be written as

Cryptanalysis of the Full MMB Block Cipher 245

(A, C, C, C)
σ[k0]→ (A, C, C, C)

γ→ (A, C, C, C)
η→ (A(x), C(c1), C(c2), C(c3))

θ→ (A(x ⊕ c1 ⊕ c3), A(x ⊕ c1 ⊕ c2), C(c1 ⊕ c2 ⊕ c3), A(x⊕ c2 ⊕ c3))
σ[k1]→ (A(x⊕ c1 ⊕ c3 ⊕ k1

0), A(x⊕ c1 ⊕ c2 ⊕ k1
1), C(c1 ⊕ c2 ⊕ c3 ⊕ k1

2),
A(x ⊕ c2 ⊕ c3 ⊕ k1

3))
γ→ (A(G0 ⊗ (x⊕ c1 ⊕ c3 ⊕ k1

0)), A(G1 ⊗ (x⊕ c1 ⊕ c2 ⊕ k1
1)),

C(G2 ⊗ (c1 ⊕ c2 ⊕ c3 ⊕ k1
2)), A(G3 ⊗ (x⊕ c2 ⊕ c3 ⊕ k1

3)))
η→ (A(η(G0 ⊗ (x⊕ c1 ⊕ c3 ⊕ k1

0))), A(G1 ⊗ (x ⊕ c1 ⊕ c2 ⊕ k1
1)),

C(G2 ⊗ (c1 ⊕ c2 ⊕ c3 ⊕ k1
2)), A(η(G3 ⊗ (x⊕ c2 ⊕ c3 ⊕ k1

3))))
θ→ (X(y0), B(y1), B(y2), E(y3))

σ[k2]→ (X(y0 ⊕ k2
0), B(y1 ⊕ k2

1), B(y2 ⊕ k2
2), E(y3 ⊕ k2

3))
γ→ (X(z0), ?(z1), ?(z2), E(z3))
η→ (B(u0), ?(u1), ?(u2), E(u3)).

In the above transitions, the first output word of η in the first round is an A
word and the other three output words are constants, so we denote them as the
variables x, c1, c2 and c3, respectively. In addition, η only affects the output
of the first and the last words. We denote the four status variables after the
operation of θ in the second round as yi(0 ≤ i ≤ 3), the four words after γ in

Table 3. One-round linear relations for MMB: mij(0 ≤ j ≤ 3), and mo are nonzero
32-bit masks

input mask 1r→ output mask #active multiplications restriction on mo

(mi0, 0, 0, 0) 1r→ (mo, mo, 0, mo) 1 mo · δ = 0
(0, mi, 0, 0) 1r→ (mo, mo, mo, 0) 1 —
(0, 0, mi, 0)

1r→ (0, mo, mo, mo) 1 —
(0, 0, 0, mi)

1r→ (mo, 0, mo, mo) 1 mo · δ = 0
(mi0, mi1, 0, 0) 1r→ (0, 0, mo, mo) 2 mo · δ = 0
(mi0, 0, mi2, 0)

1r→ (mo, 0, mo, 0) 2 mo · δ = 0
(mi0, 0, 0, mi3)

1r→ (0, mo, mo, 0) 2 mo · δ = 0
(0, mi1, mi2, 0)

1r→ (mo, 0, 0, mo) 2 —
(0, mi1, 0, mi3)

1r→ (0, mo, 0, mo) 2 mo · δ = 0
(0, 0, mi2, mi3)

1r→ (mo, mo, 0, 0) 2 mo · δ = 0
(mi0, mi1, mi2, 0)

1r→ (0, mo, 0, 0) 3 mo · δ = 0
(mi0, mi1, 0, mi3)

1r→ (mo, 0, 0, 0) 3 mo · δ = 0
(mi0, 0, mi2, mi3)

1r→ (0, 0, 0, mo) 3 mo · δ = 0
(0, mi1, mi2, mi3)

1r→ (0, 0, mo, 0) 3 mo · δ = 0
(mi0, mi1, mi2, mi3)

1r→ (mo, mo, mo, mo) 4 mo · δ = 0

246 M. Wang, J. Nakahara Jr., and Y. Sun

the third round as zi(0 ≤ i ≤ 3), and the four words after η in the third round
as ui(0 ≤ i ≤ 3). The square distinguisher can be proved in three steps.

1. Prove that y0 is X , y3 is E and both y1 and y2 are B words.
2. Prove that z0 is an X word and z3 is an E word.
3. Prove that u0 is a B word and u3 is an E word.

Step 1: Prove That y0 is X, y3 is E and Both y1 and y2 are B Words

We extend yi as follows:

y0 = η(G0 ⊗ (x⊕ c1 ⊕ c3 ⊕ k1
0))⊕ (G1 ⊗ (x⊕ c1 ⊕ c2 ⊕ k1

1))⊕
η(G3 ⊗ (x⊕ c2 ⊕ c3 ⊕ k1

3)), (14)

y1 = η(G0 ⊗ (x⊕ c1 ⊕ c3 ⊕ k1
0))⊕ (G1 ⊗ (x⊕ c1 ⊕ c2 ⊕ k1

1))⊕
(G2 ⊗ (c1 ⊕ c2 ⊕ c3 ⊕ k1

2)), (15)

y2 = (G1 ⊗ (x⊕ c1 ⊕ c2 ⊕ k1
1))⊕ (G2 ⊗ (c1 ⊕ c2 ⊕ c3 ⊕ k1

2))⊕
η(G3 ⊗ (x⊕ c2 ⊕ c3 ⊕ k1

3)), (16)

y3 = η(G0 ⊗ (x⊕ c1 ⊕ c3 ⊕ k1
0))⊕ (G2 ⊗ (c1 ⊕ c2 ⊕ c3 ⊕ k1

2))⊕
η(G3 ⊗ (x⊕ c2 ⊕ c3 ⊕ k1

3)). (17)

In (14)–(17), x is a variable of an A word, so the input x and ¬x must appear
once each. Then, we have

y0(x)⊕ y0(¬x) = η(G0 ⊗ (x⊕ c1 ⊕ c3 ⊕ k1
0))⊕ η(G0 ⊗ (¬x⊕ c1 ⊕ c3 ⊕ k1

0))
⊕(G1 ⊗ (x⊕ c1 ⊕ c2 ⊕ k1

1))⊕ (G1 ⊗ (¬x⊕ c1 ⊕ c2 ⊕ k1
1))

⊕η(G3 ⊗ (x⊕ c2 ⊕ c3 ⊕ k1
3))⊕ η(G3 ⊗ (¬x⊕ c2 ⊕ c3 ⊕ k1

3)).

Due to

Gi ⊗ (¬x⊕ c) = Gi ⊗ (0̄⊕ x⊕ c) = Gi ⊗ (0̄⊕ (x ⊕ c))
= Gi ⊗ (0̄ − (x⊕ c)) = (Gi ⊗ 0̄)−Gi ⊗ (x ⊕ c)
= 0̄−Gi ⊗ (x ⊕ c) = 0̄⊕Gi ⊗ (x⊕ c) = ¬(Gi ⊗ (x⊕ c))

(18)

and

η(w)⊕ η(¬w) = δ ⊕ 0̄ = d5555555x, (19)

we obtain

y0(x) ⊕ y0(¬x) = η(G0 ⊗ (x ⊕ c1 ⊕ c3 ⊕ k1
0))⊕ η(¬(G0 ⊗ (x⊕ c1 ⊕ c3 ⊕ k1

0)))
⊕(G1 ⊗ (x ⊕ c1 ⊕ c2 ⊕ k1

1))⊕ ¬(G1 ⊗ (x⊕ c1 ⊕ c2 ⊕ k1
1))

⊕η(G3 ⊗ (x⊕ c2 ⊕ c3 ⊕ k1
3))⊕ η(¬(G3 ⊗ (x⊕ c2 ⊕ c3 ⊕ k1

3)))
= d5555555x⊕ 0̄⊕ d5555555x = 0̄.

Cryptanalysis of the Full MMB Block Cipher 247

We derive y0(x) = ¬y0(¬x). As a variable of an A word, both x and ¬x must
appear once each. So, y0(x) and y0(¬x) = ¬y0(x) must appear just as often.
There are 231 pairs of (x,¬x), so there are 231 pairs of (y0,¬y0), which means
that the xor sum of 232 y0 is zero (equal to 231 times of the xor sum of 0̄).
Therefore, y0 is an X word.

y3(x)⊕ y3(¬x) = η(G0 ⊗ (x⊕ c1 ⊕ c3 ⊕ k1
0))⊕ η(G0 ⊗ (¬x⊕ c1 ⊕ c3 ⊕ k1

0))
⊕(G2 ⊗ (c1 ⊕ c2 ⊕ c3 ⊕ k1

2))⊕ (G2 ⊗ (c1 ⊕ c2 ⊕ c3 ⊕ k1
2))

⊕η(G3 ⊗ (x⊕ c2 ⊕ c3 ⊕ k1
3))⊕ η(G3 ⊗ (¬x⊕ c2 ⊕ c3 ⊕ k1

3))
= d5555555x⊕ d5555555x = 0

We obtain y3(x) = y3(¬x), i.e. any value of y3 will appear an even number of
times, so y3 is an E word.

y1(x) ⊕ y1(¬x) = η(G0 ⊗ (x ⊕ c1 ⊕ c3 ⊕ k1
0)))⊕ η(G0 ⊗ (¬x⊕ c1 ⊕ c3 ⊕ k1

0)))
⊕(G1 ⊗ (x ⊕ c1 ⊕ c2 ⊕ k1

1))⊕ (G1 ⊗ (¬x ⊕ c1 ⊕ c2 ⊕ k1
1))

⊕(G2 ⊗ (c1 ⊕ c2 ⊕ c3 ⊕ k1
2))⊕ (G2 ⊗ (c1 ⊕ c2 ⊕ c3 ⊕ k1

2))
= d5555555x⊕ 0̄ = δ

We cannot assure that y1 and ¬y1 appear at the same time, so y1 is not an X
word. But, 231 pairs of (x,¬x) result in the xor sum of 232 y1 is zero (equal to
231 times of the xor sum of δ). So, y1 is a B word. In this way, we can prove y2
is also a B word.

Step 2: Prove That z0 is an X Word and z3 is an E Word

We extend yi as the following equations,

z0 = G0 ⊗ (y0 ⊕ k2
0), z1 = G1 ⊗ (y1 ⊕ k2

1),
z2 = G2 ⊗ (y2 ⊕ k2

2), z3 = G3 ⊗ (y3 ⊕ k2
3).

We have proved y0 is an X word which means that y0 and ¬y0 must appear at
the same time. From (18), G0 ⊗ (y0 ⊕ k2

0) = ¬G0 ⊗ (¬y0 ⊕ k2
0), we can obtain

z0(y0) = ¬z0(¬y0), which means any value of z0 and ¬z0 will appear at the same
time. So z0 is also an X word.

In addition, y3 is an E word which means that any value of y3 will appear an
even number of times and results any value of z3 will appear an even number
of times too. Thus, z3 should be an E word, too. Because y1 and y2 are B
words, and B words cannot usually cross γ, so the status for z1 and z2 cannot
be decided.

Step 3: Prove That u0 is a B Word and u3 is an E Word

We extend ui as the following u0 = η(z0), u1 = η(z1) = z1, u2 = η(z2) = z2,
u3 = η(z3). Recall that z0 is an X word, which means that any value of z0 and
¬z0 will appear at the same time. From (19), u0(z0) ⊕ u0(¬z0) = d5555555x.
There are 231 pairs of (u0(z0), u0(¬z0)). So, the xor sum of 232 u0 is zero (equal
to 231 times of the xor sum for d5555555x). Therefore, u0 is a B word but not
an X word. Since z3 is an E word, it follows that any value of u3(z3) will appear
even times. So, u3 is an E word. After θ in the third round, the balanced property
will be destroyed in all four words.

248 M. Wang, J. Nakahara Jr., and Y. Sun

A.2 Proof of the Other Three Distinguishers

The proof of the other three distinguishers is similar to the above proof for the
first distinguisher.

B Four-Round Linear Approximation

We have identified a 4-round linear relation with bias 23·(−9.56−11.27)−9.56·2+7 =
2−74.61 which is given as follows:

(0, 99999999x, 0, 66666666x)
1r→ (0, 33333333x, 0, 33333333x)

1r→ (0, 66666666x, 0, 66666666x)
1r→ (0, 33333333x, 0, 33333333x)

1r→ (0, 66666666x, 0, 66666666x).

C A Note on the θ ◦ γ ◦ σ Layer

Consider a modified MMB cipher whose round structure does not include η (call
it MMB−η, read “MMB minus η”), that is, a full round consists of only θ ◦γ ◦σ.

We have verified very peculiar Λ-set propagations in MMB−η, such as (A, C,
C, C) 1r→ (A, A, C, A) 1r→ (X, E, E, E) 1r→ (X, X, E, X) 1r→ (X, E, E, E). After the
fourth round, the patterns (X, X, E, X) and (X, E, E, E) alternate, that is, bal-
anced Λ-sets propagate indefinitely (for an arbitrary number of rounds).
This unusual behavior can be explained similarly to that of other patterns in
Sect. 4. We concluded that

– This property does not depend on the round subkeys, or on the user key or
even on the key schedule;

– This property is independent of the particular permutation used in the initial
A word, or the constants used in the C words;

– It highlights the importance of the η layer (a data-dependent, nonlinear
operation) in the security of the original MMB against square attacks, since
its presence destroys the propagation of balanced Λ-sets after 2.75 rounds;

– The above distinguish-from-random attack applies to an arbitary number of
rounds of MMB-η and costs only 232 CP, an equivalent number of encryptions
and negligible memory.

Weak Keys of Reduced-Round PRESENT for
Linear Cryptanalysis

Kenji Ohkuma1,2

1 Corporate R & D Center, Toshiba Corporation
2 IT Security Center, Information-technology Promotion Agency, Japan

Abstract. The block cipher PRESENT designed as an ultra-light
weight cipher has a 31-round SPN structure in which the S-box layer
has 16-parallel 4-bit S-boxes and the diffusion layer is a bit permutation.
The designers claimed that the maximum linear characteristic deviation
is not more than 2−43 for 28 rounds and concluded that PRESENT is
not vulnerable to linear cryptanalysis. But we have found that 32% of
PRESENT keys are weak for linear cryptanalysis, and the linear de-
viation can be much larger than the linear characteristic value by the
multi-path effect. And we discovered a 28-round path with a linear de-
viation of 2−39.3 for the weak keys. Furthermore, we found that linear
cryptanalysis can be used to attack up to 24 rounds of PRESENT for
the weak keys.

1 Introduction

The block cipher PRESENT designed as an ultra-light weight cipher has a 31-
round SPN structure in which the S-box layer has 16-parallel 4-bit S-boxes and
the diffusion layer is a bit permutation. The data randomizing part has a 31-
round SPN structure of 64-bit block size, where each round consists of a key
addition layer (addKeyLayer), an S-box layer (sBoxLayer) with 16 parallel 4-bit
S-boxes, and a bit permutation layer (pLayer) as shown in Figure 1. Two key
lengths, 80 bits and 128 bits, are supported. We consider 80-bit key in this paper.

PRESENT is similar to AES in structure, as the S-box layer consists of 16 S-
boxes and each S-box is connected to 4 S-boxes in the next round. But there is a
big difference in design philosophy between the two ciphers. The MDS matrices in
AES’s mixColumn operations are based on the wide-trail strategy, and there are
25 or more active S-boxes in 4 successive rounds for both linear and differential
cryptanalyses. On the contrary, PRESENT’s pLayer only permutes the order of
bits and the trail can be very narrow. As a matter of fact, we can easily find a
linear path with only one active S-box per round. We call such a path a single-bit
path.

There are some security evaluations of PRESENT. The designers insist that
the differential characteristic is upper-bounded by 2−100(< 2−64) for 25 rounds,
and that the absolute value of linear characteristic deviation are upper-bounded
by 2−43(< 2−32) for 28 rounds [1]. These evaluations are very loose, and do not
show how many rounds are vulnerable to attack.

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 249–265, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

250 K. Ohkuma

M.R. Z’aba et al. applied an integral attack for bit-patterns, and showed
that 7-round PRESENT can be attacked [7]. M. Wang demonstrates 16-round
PRESENT can be attacked by differential cryptanalysis [6]. M. Albrecht and C.
Cid applied the differential cryptanalysis strengthened by algebraic techniques,
and found 16-round PRESENT can be attacked [8]. B. Collard and F.-X. Stan-
daert applied a statistical saturation attack which works up to 24 rounds in
theory [?].

The designers evaluated the resistance of PRESENT against linear cryptanal-
ysis by using linear characteristic deviation [1]. But, the absolute value of linear
deviation can be much larger than is that of linear characteristic deviation as
T. Shimoyama et al. showed for RC6 in FSE 2002 [5]. In fact, we found that
PRESENT has many linear single-bit paths with the same input/output masks
for 4 or more rounds, and that the linear deviation can be very large for some
portion of keys, which we call weak keys. We show that 24-round reduced round
PRESENT can be cryptanalysed with 263.5 known plaintexts for 32% of the
80-bit keys.

The construction of this paper is as follows. Section 2 describes the structure
of PRESENT and some notations. In Section 3, some properties of linear single-
bit paths are analyzed. In Section 4, reduced round PRESENTs are attacked
with linear cryptanalysis. Section 5 is devoted to concluding remarks.

2 Description of PRESENT Encryption

Fig. 1 shows the structure of encryption for PRESENT. The data radomiz-
ing part consists of 31 iterations of key addition (addRoundKey), S-box layer
(sBoxLayer), bit permutation (pLayer) followed by the final addRoundKey.

sBoxLayer consists of 16 parallel 4-bit S-boxes described in Table 1.
pLayer permutates the output bits of sBoxLayer. When the rightmost bit is

0-th and the leftmost bit is 63rd, the �-th bit moves to P (�)-th where P is given
by the following equation.

pl ai nt ext

sBoxLayer

pLayer

sBoxLayer

pLayer

ci pher t ext

r egi s t er

updat e

updat e

addRoundKey

addRoundKey

Fig. 1. Structure of PRESENT

Weak Keys of Reduced-Round PRESENT for Linear Cryptanalysis 251

Table 1. S-box

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

S S S S S S S S S S S S S S S S

S S S S S S S S S S S S S S S S

3210 =k

j =0j =1j =2j =3

i =0i =1i =2i =3

Fig. 2. Round structure

P (16 ∗ i + 4 ∗ j + k) = 16 ∗ k + 4 ∗ i + j, 0 ≤ i, j, k ≤ 3 (1)

Successive sBoxLayers connected by pLayer are shown in Fig. 2. Here, ad-
dRoundKeys just before sBoxLayer is not shown for simplicity.

As we focus on linear single-bit paths where only one bit is active in all masks,
we represent the location of a bit using i, j, k as in Equation 1. The �-th key bit
in the r-th round1 is denoted k

(r)
i,j,k, and the bit just before is denoted x

(r)
i,j,k.

Therefore, the �-th bit of the plaintext is x
(0)
i,j,k and the �-th bit of the ciphertext

is x
(31)
i,j,k. A variable without the 3rd subscript k, such as x

(0)
i,j means a 4-bit set

for the 4 ∗ i + j-th S-box.
The key schedule of PRESENT for an 80-bit key is as follows. 80-bit key vari-

ables for the r-th round(0 ≤ r ≤ 31) is denoted κ
(r)
79 κ

(r)
78 . . . κ

(r)
0 . The encryption

key is used as κ(0)(r = 0), and its leftmost 64 bits are used as the 1st round key.
The 80-bit key variable is updated 31 times according to the following steps, and
its leftmost 64 bits are used as each round key.

k
(r)
63 | k(r)

62 | . . . | k(r)
0 = κ

(r)
79 | κ(r)

78 | . . . | κ(r)
16

After a 19-bit right rotation, the leftmost 4 bits are transformed by an S-box,
and 5 bits from the 15-th to the 19-th positions are XORed with a counter value.

κ
′(r)
79 κ

′(r)
78 . . . κ

′(r)
0

κ
′(r)
i = κ

(r)
i+19(mod 80)

1 r = 0 for the round key just after the plaintext.

252 K. Ohkuma

κ
(r+1)
79 | κ(r+1)

78 | κ(r+1)
77 | κ(r+1)

76 = S(κ
′(r)
79 | κ′(r)

78 | κ′(r)
77 | κ′(r)

76)

κ
(r+1)
19 | κ(r+1)

18 | κ(r+1)
17 | κ(r+1)

16 | κ(r+1)
15 = κ

′(r)
19 | κ′(r)

18 | κ′(r)
17 | κ′(r)

16 | κ′(r)
15 ⊕(r+1)

κ
(r+1)
i = κ

′(r)
i (i ∈ {0, . . . , 14, 20, . . . , 75})

3 Single-Bit Paths

The most important part of linear cryptanalysis is to find the paths with the
largest linear deviation in absolute value. And a path with fewer active S-boxes
tends to have a larger absolute linear deviation. As the linear layer of PRESENT
pLayer only permutes the bits, it is easy to find linear paths in which only one
active S-box appears per round. Thus, we focus on paths where only one bit is
active in every round.

3.1 Single-Bit Masks for S-Box

Table 2 shows the linear deviation for the S-box of PRESENT.
There are 36 masks with the largest absolute linear deviation 2−2, which do

not include those with only one bit active in both input and output. Figure 3
shows 8 masks with one bit active in both input and output, which have non-
zero absolute linear deviation(2−3). Note that the 0-th bit is never active in the
figure, but all combinations of the other 3 input and output bits appear, except
for the combination in which the 3rd input bit and the 2nd output bit are active.

Table 2. Linear deviation of S-box(with sign)

input masks
1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

1x 0 0 0 0 0 0 0 0 1
4

0 − 1
4

0 1
4

0 1
4

2x 0 1
8

1
8
− 1

8
− 1

8
0 0 1

8
− 1

8
1
4

0 0 1
4

1
8
− 1

8

3x 0 1
8

1
8

1
8

1
8
− 1

4
1
4
− 1

8
− 1

8
0 0 0 0 1

8
1
8

4x 0 − 1
8

1
8
− 1

8
− 1

8
0 1

4
0 0 1

8
− 1

8
− 1

8
− 1

8
− 1

4
0

5x − 1
4
− 1

8
− 1

8
− 1

8
1
8

0 0 0 0 1
8
− 1

8
− 1

8
− 1

8
1
4

0
6x 0 0 − 1

4
0 0 − 1

4
0 − 1

8
1
8

1
8

1
8
− 1

8
1
8
− 1

8
− 1

8

7x − 1
4

0 0 1
4

0 0 0 1
8
− 1

8
− 1

8
− 1

8
− 1

8
1
8
− 1

8
− 1

8

8x 0 1
8
− 1

8
− 1

8
1
8

0 0 − 1
8
− 1

8
0 − 1

4
1
4

0 − 1
8
− 1

8

9x 0 − 1
8

1
8
− 1

8
1
8
− 1

4
− 1

4
1
8
− 1

8
0 0 0 0 − 1

8
1
8

Ax 0 0 − 1
4

0 − 1
4

0 0 0 − 1
4

0 0 0 0 0 1
4

Bx 0 1
4

0 − 1
4

0 0 0 0 0 − 1
4

0 − 1
4

0 0 0
Cx 0 0 0 0 1

4
1
4

0 − 1
8
− 1

8
1
8

1
8
− 1

8
1
8
− 1

8
1
8

Dx − 1
4

1
4

0 0 0 0 0 1
8

1
8

1
8

1
8

1
8
− 1

8
− 1

8
1
8

Ex 0 − 1
8
− 1

8
− 1

8
1
8

0 1
4

1
4

0 − 1
8

1
8

1
8

1
8

0 0
Fx

1
4

1
8
− 1

8
1
8

1
8

0 0 1
4

0 1
8
− 1

8
− 1

8
− 1

8
0 0

Weak Keys of Reduced-Round PRESENT for Linear Cryptanalysis 253

Fig. 3. Single-bit masks for S-box (absolute linear deviation: 2−3)

3.2 Continuable 1-Round Single-Path

As we saw in the previous subsection, S-box’s single-bit masks do not contain
the 0-th bit in both input and output. From this property it follows that the
1-round single-bit paths that can be included in single-bit paths with 3 or more
rounds are limited to the 72 shown in Figure 4.

That is, single-bit paths with an arbitrary number of rounds can be con-
structed by connecting paths in Figure 4.

The above 72 masks have the property that none of i, j, k is 0 when the
position of an active input or output bit is denoted (i, j, k). The reason that 0
does not appear for an active input bit can be explained as follows.

i = 0 case. Input bit (0, j, k) proceeds to (j′, k′, 0) after 2 rounds, and the
single-bit path can not continue any more. That means the single-bit path can
not continue to 3 or more rounds in the case of i = 0.

j = 0 case. Input bit (i, 0, k) proceeds to (k′, i, 0) after 1 round, and the single-
bit path can not continue any more. That means the single-bit path can not
continue to 2 or more rounds in the case of j = 0.

k = 0 case. The active input bit is the rightmost for the S-box, and the single-bit
path terminates here.

S S S S S S S S S S S S S S S S

S S S S S S S S S S S S S S S S

S S S S S S S S S S S S S S S S

S S S S S S S S S S S S S S S S

S S S S S S S S S S S S S S S S

S S S S S S S S S S S S S S S S

S S S S S S S S S S S S S S S S

S S S S S S S S S S S S S S S S

Fig. 4. Continuable 1-Round Single-bit Paths

254 K. Ohkuma

Table 3. The number of single-bit paths for optimal input-output masks

rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
paths 1 1 1 3 9 27 72 192 512 1,344 3,528 9,261 24,255 63,525 166,375
rounds 16 17 18 19 20 21 22
paths 435,600 1,140,480 2,985,984 7,817,472 20,466,576 53,582,633 140,281,323
rounds 23 24 25 26 27
paths 367,261,713 961,504,803 2,517,252,696 6,590,254,272 17,253,512,704
rounds 28 29 30 31
paths 45,170,283,840 118,257,341,400 309,601,747,125 810,547,899,975

3.3 Single-Bit Paths with the Same Input-Output Mask

In the previous subsection, we show that single-bit paths with 3 or more rounds
can be made by connecting 1-round paths in Figure 4. For 4 or more rounds,
there appear more than 1 single-bit paths with the same input-output mask.
Figure 5 shows single-bit paths with the same input-output mask Γ2,1,2-Γ3,3,3.
There are 3 paths for 4 rounds. The number of paths increases rapidly, as the
number of rounds goes up (Table 3).

Fig. 5. 4-round single-bit paths with the same input-output mask (Γ2,1,2-Γ3,3,3)

The above case is for the input-output mask Γ2,1,2-Γ3,3,3, and we found this
input-output mask has the maximum number of single-bit paths for all rounds.
If we call this propery as optimal, there are 64 optimal input-output masks
including the above one, which are given as arbitrary combinations of the 8
input masks

Γ1,1,1, Γ1,1,2, Γ1,2,1, Γ1,2,2, Γ2,1,1, Γ2,1,2, Γ2,2,1, Γ2,2,2,

and the 8 output masks

Γ1,1,1, Γ1,1,3, Γ1,3,1, Γ1,3,3, Γ3,1,1, Γ3,1,3, Γ3,3,1, Γ3,3,3.

Table 3 shows the number of single-bit paths for R rounds L(R) for the optimal
input-output masks.

Weak Keys of Reduced-Round PRESENT for Linear Cryptanalysis 255

Table 4. Linear deviations with multiple-path effects for weak keys

R 16 17 18 19 20 21 22 23
log2(ε

(R)) -23.634 -24.939 -26.245 -27.551 -28.857 -30.162 -31.468 -32.774

R 24 25 26 27 28 29 30 31
log2(ε

(R)) -34.080 -35.385 -36.691 -37.997 -39.303 -40.608 -41.914 -43.220

3.4 Multiple-Path Effect and Weak Keys

As shown in the previous subsection, there are more than 1 single-bit paths for 4
or more rounds. For the case of R rounds, the absolute value of linear deviation
for each path is evaluated as 2−2R−1 by using Matsui’s Piling-up lemma [4]. It
should be noted that the sign of each path depends on the S-box’s single-bit
approximation and the encryption key. Denote the number of positive paths by
N+, and the number of negative paths by N−. Then, the linear deviation for
the mask is approximated by 2−2R−1(N+ −N−), which has been confirmed by
computer simulations with random plaintexts. This is the multiple-path effect.
Appendix A shows the theoretical analysis for the 3 single-bit path case, which
can be regarded as a simplification of Figure 5.

Multiple-path effect depends on the extended key. If we assume the extended
key distributes uniformly, the sign of each single-bit path follows the binary
distribution of probability 1/2. When the number of paths L(R) is sufficiently
large, the binary distribution is approximated by the normal distribution with
the deviation

√
L(R). Then the absolute deviation is considered to be not less

than
√

L(R) times larger than the deviation for a single-path for 32% of keys.
In fact, by a computer simulation, we confirmed that the standard deviation
of (N+ − N−) and the rate where | N+ − N− | is larger than the standard
deviation are well fitted to the theoretical results.

We call the 32% of keys satisfying | N+ −N− | >=
√

L(R) weak keys. The
lower bound of absolute value of linear deviation for the weak keys is evaluated
as follows.

ε(R) = 2−2R−1
√

L(R) (2)

Table 4 shows their logarithms. For 28 rounds, linear deviation is about 2−39.3.
This is larger than 2−43 which is the upper bound estimated by the designers
using the linear characteristic deviations.

4 Key Recovery Attack

In the linear cryptanalysis with the linear deviation ε and the number of known
plaintexts N , we assume the number of guessed keys is m-bits and they are inde-
pendent. Then, the success rate of key guess p is denoted as follows (Appendix B).

256 K. Ohkuma

Table 5. The number of known plaintexts needed for an (R+1)-round attack of upper
1-round elimination type

R 18 19 20 21 22
plaintexts(log2) 55.384 57.996 60.607 63.219 65.830

p =
{
erf
(√

Nε
)}2m

(3)

erf() is the Gaussian error function defined as follows here.

erf(x) =
1√
2π

∫ x

−∞
e−y2/2dy (4)

In reverse, the number of plaintexts N needed for the success rate p is evaluated
as follows.

N =
{
erf−1

(
p1/2m

)
/ ε
}2

(5)

By taking the logarithm with base 2, the equation transforms as follows.

log2 N = 2 log2

{
erf−1

(
p1/2m

)}
+ 4R + 2− log2 {L(R)} (6)

In the following, we apply linear cryptanalysis for 80-bit key PRESENT, with
the linear approximation for an optimal single-bit path Γ1,1,1 − Γ1,1,1. More
specifically, 5 types of key guesses shown in Figures 7∼11 of Appendix C have
been applied.

4.1 Upper 1-Round Elimination Attack (Γ1,1,1-Γ1,1,1)

Figure 7 shows the (R + 1)-round attack for R-round optimal single-bit path
(Γ1,1,1-Γ1,1,1) in which we guess key bits for 1 preceding round. We search for
the 4-bit key which gives the largest absolute linear deviation.

Pr
(
x

(1)
1,1,1 ⊕ x

(R+1)
1,1,1 = 0

)
− 1/2

Let γ1 be a mask which takes 1st bit(2nd rightmost bit), then the above equation
is transformed as follows.

Pr
(
γ1 · S

(
x

(0)
1,1 ⊕ k

(0)
1,1

)
⊕ x

(R+1)
1,1,1 = 0

)
− 1/2 (7)

Round key k
(0)
1,1 is selected such that the absolute value of the above equation

is the largest. In this case, the number of guessed bits m is 4 for one S-box.
Table 5 shows the logarithm of the number of plaintexts needed for 95% suc-
cessful key guessing 2 log2(erf(0.951/24

)/ε). The attack in Figure 7 is available

Weak Keys of Reduced-Round PRESENT for Linear Cryptanalysis 257

Table 6. The number of known plaintexts needed for an (R+2)-round attack for upper
1-round & lower 1-round elimination type

R 18 19 20 21 22
plaintexts(log2) 56.137 58.749 61.360 63.972 66.583

up to 22 rounds, and 263.219 known texts are needed. The exhaustive search for
the remaining key bits requires the calculation of 276 encryptions.

4.2 Upper 1-Round & Lower 1-Round Elimination Attack
(Γ1,1,1-Γ1,1,1)

Figure 8 shows the (R + 2)-round attack for R-round optimal single-bit path
(Γ1,1,1-Γ1,1,1) in which we guess keys bits for 1 preceding and 1 following rounds.
We search for the 8-bit key which gives the largest absolute linear deviation.

Pr
(
x

(1)
1,1,1 ⊕ x

(R+1)
1,1,1 = 0

)
− 1/2

Using γ1, the above equation is transformed as follows.

Pr
(
γ1 · S

(
x

(0)
1,1 ⊕ k

(0)
1,1

)
⊕ γ1 · S−1

(
x

(R+2)
1,1 ⊕ k

(R+2)
1,1

)
= 0
)
− 1/2 (8)

Round key
(
k

(0)
1,1 , k

(R+2)
1,1

)
is selected such that the absolute value of the above

equation is the largest. In this case, the number of guessed bits m is 8 for 2
S-boxes. Table 6 shows the logarithm of the number of plaintexts needed for
95% successful key guessing 2 log2(erf(0.951/28

)/ε). The attack in Figure 8 is
available up to 23 rounds, and 263.972 known texts are needed. The exhaustive
search for the remaining key bits requires the calculation of 272 encryptions.

4.3 Upper 2-Round Elimination Attack (Γ1,1,1-Γ1,1,1)

Figure 9 shows the (R + 2)-round attack for R-round optimal single-bit path
(Γ1,1,1-Γ1,1,1) in which we guess keys bits for 2 preceding rounds. We search for
the 20-bit key which gives the largest absolute linear deviation.

Pr
(
x

(2)
1,1,1 ⊕ x

(R+2)
1,1,1 = 0

)
− 1/2

Using γ1, the above equation is transformed as follows.

Pr
(
S
(
γ1 · S(x(0)

1,3 ⊕ k
(0)
1,3) | γ1 · S(x(0)

1,2 ⊕ k
(0)
1,2) | γ1 · S(x(0)

1,1 ⊕ k
(0)
1,1) |

γ1 · S(x(0)
1,0 ⊕ k

(0)
1,0)⊕ k

(1)
1,1

)
⊕ x

(R+2)
1,1,1 = 0

)
− 1/2 (9)

258 K. Ohkuma

Table 7. The number of known plaintexts needed for an (R+2)-round attack of upper
2-round elimination type

R 18 19 20 21 22
plaintexts(log2) 57.319 59.930 62.542 65.153 67.765

Table 8. The number of known plaintexts needed for an (R+3)-round attack for upper
2-round & lower 1-round elimination type

R 18 19 20 21 22
plaintexts(log2) 57.569 60.181 62.792 65.404 68.015

Round key
(
k

(0)
1,0 , k

(0)
1,1 , k

(0)
1,2 , k

(0)
1,3 , k

(1)
1,1

)
is selected such that the absolute

value of the above equation is the largest. In this case, the number of guessed
bits m is 20 for 5 S-boxes. Table 7 shows the logarithm of the number of plain-
texts needed for 95% successful key guessing 2 log2(erf(0.951/220

)/ε). The attack
in Figure 9 is available up to 22 rounds, and 262.542 known texts are needed.
The exhaustive search for the remaining key bits requires the calculation of 260

encryptions.

4.4 Upper 2-Round & Lower 1-Round Elimination Attack
(Γ1,1,1-Γ1,1,1)

Figure 10 shows the (R + 3)-round attack for R-round optimal single-bit path
(Γ1,1,1-Γ1,1,1) in which we guess key bits for 2 preceding and 1 following round.
We search for the 24-bit key which gives the largest absolute linear deviation.

Pr
(
x

(2)
1,1,1 ⊕ x

(R+2)
1,1,1 = 0

)
− 1/2

Using γ1, the above equation is transformed as follows.

Pr
(
γ1 · S

(
γ1 · S(x(0)

1,3 ⊕ k
(0)
1,3) | γ1 · S(x(0)

1,2 ⊕ k
(0)
1,2) | γ1 · S(x(0)

1,1 ⊕ k
(0)
1,1) |

γ1 · S(x(0)
1,0 ⊕ k

(0)
1,0)⊕ k

(1)
1,1

)
⊕ γ1 · S−1

(
x

(R+3)
1,1 ⊕ k

(R+3)
1,1

)
= 0
)
− 1/2 (10)

Round key
(
k

(0)
1,0 , k

(0)
1,1 , k

(0)
1,2 , k

(0)
1,3 , k

(1)
1,1 , k

(R+3)
1,1

)
is selected such that the

absolute value of the above equation is the largest. In this case, the number of
guessed bits m is 24 for 6 S-boxes. Table 8 shows the logarithm of the num-
ber of plaintexts needed for 95% successful key guessing 2 log2(erf(0.951/224

)/ε).
The attack in Figure 10 is available up to 23 rounds, and 262.792 known texts are

Weak Keys of Reduced-Round PRESENT for Linear Cryptanalysis 259

Table 9. The number of known plaintexts needed for an (R+4)-round attack for upper
2-round & lower 2-round elimination type

R 18 19 20 21 22
plaintexts(log2) 58.285 60.897 63.508 66.120 68.731

needed. The exhaustive search for the remaining key bits requires the calculation
of 256 encryptions.

4.5 Upper 2-Round & Lower 2-Round Elimination Attack
(Γ1,1,1-Γ1,1,1)

Figure 11 shows the (R + 4)-round attack for R-round optimal single-bit path
(Γ1,1,1-Γ1,1,1) with 2 preceeding and 2 following rounds for key guess. We search
for the 40-bit key which gives the largest absolute linear deviation.

Pr
(
x

(2)
1,1,1 ⊕ x

(R+2)
1,1,1 = 0

)
− 1/2

Using γ1, the above equation is transformed as follows.

Pr
(
γ1 · S

(
γ1 · S(x(0)

1,3 ⊕ k
(0)
1,3) | γ1 · S(x(0)

1,2 ⊕ k
(0)
1,2) | γ1 · S(x(0)

1,1 ⊕ k
(0)
1,1) |

γ1 · S(x(0)
1,0 ⊕ k

(0)
1,0)⊕ k

(1)
1,1

)
⊕ γ1 · S−1

(
γ1 · S−1(x(R+4)

1,3 ⊕ k
(R+4)
1,3) | γ1 · S−1(x(R+4)

1,2 ⊕ k
(R+4)
1,2) |

γ1 ·S−1(x(R+4)
1,1 ⊕k

(R+4)
1,1) | γ1 ·S−1(x(R+4)

1,0 ⊕k
(R+4)
1,0) ⊕ k

(R+3)
1,1

)
= 0
)
−1/2 (11)

Round key
(
k

(0)
1,0 , k

(0)
1,1 , k

(0)
1,2 , k

(0)
1,3 , k

(1)
1,1 , k

(R+3)
1,1 , k

(R+4)
1,0 , k

(R+4)
1,1 , k

(R+4)
1,2 ,

k
(R+4)
1,3

)
is selected such that the absolute value of the above equation is the

largest. In this case, the number of guessed bits m is 40 for 10 S-boxes. Table
9 shows the logarithm of the number of plaintexts needed for 95% successful
key guessing 2 log2(erf(0.951/240

)/ε). The attack in Figure 11 is available up to
24 rounds, and 263.508 known texts are needed. The exhaustive search for the
remaining key bits requires the calculation of 240 encryptions.

5 Concluding Remarks

The block cipher PRESENT is designed so that the implementation is very small.
As a bit permutation is used in the linear layer, the avalanche effect is very low,
and it is easy to find single-bit paths with only one bit active in every round.
We found that there are many such paths with the same input-output mask for
4 or more rounds.

260 K. Ohkuma

Each single-bit path for the same input-output mask has its sign, and the
absolute value of linear deviation is large when the portion of one sign is much
larger than 1/2. Let L(R) be the number of single-bit paths for R rounds. Under
the assumption that the signs follows the binary distribution, we determined
that for 32% of all keys, which we call weak keys, the absolute linear deviation
is not less than

√
L(R) times of single path linear deviation. This phenomenon

is called the multi-path effect.
By considering the multi-path effect, the linear deviation for 28 rounds is

evaluated as 2−39.3 for weak keys, which is larger than 2−43 given by the de-
signers with sigle-path evaluation. We applied 5 types of linear cryptanalysis to
PRESENT, and 24-round reduced PRESENT is vulnerable with 263.5 known
plaintexts.

In this paper 32% key is weak keys for PRESENT, but the evaluation is for
only one input-output mask. There are 64 masks with the same number of single-
bit paths, and if a key is weak at least for one mask, it can be regarded as a
weak key.

References

1. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

2. Kaliski Jr., B.S., Robshaw, M.J.B.: Linear Cryptanalysis Using Multiple Approxima-
tions. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39. Springer,
Heidelberg (1994)

3. Kaliski Jr., B.S., Robshaw, M.J.B.: Linear Cryptanalysis Using Multiple Approxi-
mations and FEAL. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 249–264.
Springer, Heidelberg (1995)

4. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

5. Shimoyama, T., Takenaka, M., Koshiba, T.: Multiple Linear Cryptanalysis of a
Reduced Round RC6. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365,
pp. 76–88. Springer, Heidelberg (2002)

6. Wang, M.: Differential Cryptanalysis of Reduced-Round PRESENT. In: Vaudenay,
S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 40–49. Springer, Heidelberg
(2008)

7. Z’aba, M.R., Raddum, H., Henricksen, M., Dawson, E.: Bit-Pattern Based Integral
Attack. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 363–381. Springer,
Heidelberg (2008)

8. Collard, B., Standaert, F.-X.: A Statistical Saturation Attack against the Block
Cipher PRESENT. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 195–
210. Springer, Heidelberg (2009)

A Analysis of 3 Single-Bit Path Model

In this Appendix, multiple-path effect is analyzed for the simplest case.

Weak Keys of Reduced-Round PRESENT for Linear Cryptanalysis 261

Fig. 6. 3 single-bit path model

Table 10. Linear deviation for 3-path model

κ1 + κ2 + κ3 0 1 2 3
η 3ε − 4ε3 ε + 4ε3 −ε − 4ε3 −3ε + 4ε3

Figure 6 is a simplified model for Figure 5. 2 S’s are the S-boxes of PRESENT,
3 A’s are mutually independent paths with a positive linear deviation ε, and O is
a path with 0 deviation. The deviation of A can take both positive and negative
signs. But, without loss of generality, we can assume the positive sign, as the
sign can be absorbed in the key bits κ’s.

Pr(x⊕A(x) = 0) = 1/2 + ε

Pr(x⊕O(x) = 0) = 1/2

Table 10 shows the deviation η for an equation x1 ⊕ y1.

Pr(x1 ⊕ y1 = 0) = 1/2 + η

κ1 + κ2 + κ3 means the number of paths with negative correlation for x1 ⊕ y1.
When κ1 +κ2 +κ3 = 0, all 3 paths induce positive correlations. To the contrary,
when κ1 +κ2 +κ3 = 3, all 3 paths induce negative correlations. When κ1 +κ2 +
κ3 = 1 or κ1 + κ2 + κ3 = 2, one positive and one negative are canceled out, one
positive or negative correlation remains.

The 1st order terms of ε in Table 10 shows an effect which agrees with the
above consideration. The 3rd order terms of ε is regarded as shifts from the
simple sum of 3 correlations, which can be negligible for a sufficiently small ε.
Let the number of κi = 0 as N+ and the number of κi = 1 as N− in Figure 6,
then, the linear deviation η is approximated as follows.

η " (N+ −N−)ε. (12)

262 K. Ohkuma

B Evaluation of Successful Key Recovery Rate

Let ε be the absolute value of linear deviation. Then, the probability that a
linear approximation is satisfied is considered to be 1/2± ε for the correct key
guess, and 1/2 for the wrong key guess. Without loss of generality, we assume
the sign is negative.

When known plaintexts are assumed to be uniformly distributed, both valid
linear approximation rates are considered to follow the binary distribution. When
the number of plaintexts is N , the average and the variance for both rates are
evaluated as follows

correctkey average : µT = 1/2− ε

standarddeviation : σT =
√

(1/4− ε2)/N
wrongkeys average : µF = 1/2

standarddeviation : σF = 2/
√

N

When N is sufficiently large, the 2 distributions can be approximated by the
normal distributions. Let x0 be the value for the cross point. When we compare
the correct key and one wrong key, and choose the key with the probability
which is more distant from 1/2, the probability to choose the correct key ps is
given as follows.

ps =
∫ x0−µT

−∞

1√
2πσT

e−(x−µT)2/2σ2
Tdx (13)

When ε is sufficiently small, terms of order ε2 are negligible, and the next ap-
proximated equations are given.

σT = 1/2
√

N

x0 = 1/2− ε/2

From the above equations and the next transform

y = (x− µT)/σT,

ps is evaluated as follows.

ps =
∫ (x0−µT)/σT

−∞

1√
2πσT

e−y2/2 σT dy

=
∫ √

Nε

−∞

1√
2π

e−y2/2dy = erf
(√

Nε
)

When m-bit key is guessed, 2m−1 keys are wrong, and the probability of correct
key selection p is (2m − 1)-th power of ps

p = p2m−1
s =

{
erf
(√

Nε
)}2m−1

When m is sufficiently large, deleting −1 is a good approximation for this
equation.

Weak Keys of Reduced-Round PRESENT for Linear Cryptanalysis 263

C Figures of Key Recovery Attacks

Fig. 7. Upper 1-round elimination attack

Fig. 8. Upper 1-round & lower 1-round elimination attack

264 K. Ohkuma

Fig. 9. Upper 2-round elimination attack

Fig. 10. Upper 2-round & lower 1-round elimination attack

Weak Keys of Reduced-Round PRESENT for Linear Cryptanalysis 265

Fig. 11. Upper 2-round & lower 2-round elimination attack

Improved Integral Attacks on MISTY1�

Xiaorui Sun and Xuejia Lai

Department of Computer Science
Shanghai Jiao Tong University

Shanghai, 200240, China
sunsirius@sjtu.edu.cn, lai-xj@cs.sjtu.edu.cn

Abstract. We present several integral attacks on MISTY1 using the
FO Relation. The FO Relation is a more precise form of the Sakurai-
Zheng Property such that the functions in the FO Relation depend on
16-bit inputs instead of 32-bit inputs used in previous attacks, and that
the functions do not change for different keys while previous works used
different functions.

We use the FO Relation to improve the 5-round integral attack. The
data complexity of our attack, 234 chosen plaintexts, is the same as pre-
vious attack, but the running time is reduced from 248 encryptions to
229.58 encryptions. The attack is then extended by one more round with
data complexity of 234 chosen plaintexts and time complexity of 2107.26

encryptions. By exploring the key schedule weakness of the cipher, we
also present a chosen ciphertext attack on 6-round MISTY1 with all the
FL layers with data complexity of 232 chosen ciphertexts and time com-
plexity of 2126.09 encryptions. Compared with other attacks on 6-round
MISTY1 with all the FL layers, our attack has the least data complexity.

1 Introduction

The MISTY1 algorithm is a block cipher with a 64-bit block size and a 128-bit
key size proposed by Matsui [8]. It was recommended by the European NESSIE
project and the CRYPTREC project, and became an ISO standard in 2005.
The cipher generally uses an 8-round Feistel structure with a round function
FO. Before each odd round and after the last round, there is an additional FL
layer.

Many cryptanalysis results on MISTY1 have been published [1, 2, 3, 4, 5, 6,
7, 10, 11]. The integral attack on 5 rounds with all but the last FL layers [4]
requires 234 chosen plaintexts, and has a time complexity of 248 encryptions.
The impossible differential attack on 6 rounds with all the FL layers [2] requires
251 chosen plaintexts, and has a time complexity of 2123.4 encryptions. With all
the FL functions absent, the impossible differential attack [2] could break the 7
rounds with data complexity of 250.2 known plaintexts and time complexity of
2114.1 encryptions.
� This work was supported by NSFC Grant No.60573032, 60773092 and 11th PRP of

Shanghai Jiao Tong University.

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 266–280, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Improved Integral Attacks on MISTY1 267

In this paper, we present several integral attacks using a more precise form
of the variant Sakurai-Zheng Property for the round function FO. We call this
new property the FO Relation. Sakurai-Zheng Property was founded by Sakurai
and Zheng in [9]. Knudsen and Wagner used a variation of this property for the
FO function to attack the 5-round MISTY1 [4]. Compared with the variant
Sakurai-Zheng property, there are two merits of the FO Relation: the inputs
of the functions in the FO Relation are shortened from 32 bits to 16 bits, and
these functions do not change for different keys while the previous property used
different functions for different keys.

We use this new relation to improve the integral attack [4] on 5 rounds with all
but the last FL layers. The data complexity of our improved attack is 234 chosen
plaintexts, and the time complexity of the attack is 229.58 encryptions. Compared
with the 5-round integral attack [4], the time complexity of our attack is reduced
from 248 encryptions to 229.58 encryptions with the same data complexity.

Next, we extend the 5-round attack by one more round. Using the equivalent
description of the FO function [5,11] and the FO Relation, we modify the par-
tial decryption process of computing the required intermediate values to reduce
the key bits needed.The data complexity of this 6-round attack is 234 chosen
plaintexts, and the time complexity of the attack is 2107.26 encryptions.

Table 1. Attacks on MISTY1

Rounds Attack FL functions Data Time Ref.
5 Higher-Order Differential None 210.5 CP 217 [1]
6 Impossible Differential None 254 CP 261 [5]
6 Impossible Differential None 239 CP 2106 [5]
6 Impossible Differential None 239 CP 285 [7]
7 Impossible Differential None 250.2 KP 2114.1 [2]
4 Impossible Differential Most 223 CP 290.4 [5]
4 Impossible Differential Most 238 CP 262 [5]
4 Collision Search Most 220 CP 289 [5]
4 Collision Search Most 228 CP 276 [5]
4† Slicing All 222.25 CP 245 [6]
4 Slicing All 227.2 CP 281.6 [6]
4 Impossible Differential All 227.5 CP 2116 [6]
5∗ Integral Most 234 CP 248 [4]
5† Impossible Differential All 238 CP 246.45 [2]
6 Impossible Differential All 251 CP 2123.4 [2]
5∗ Integral Most 234 CP 229.58 Section 4
6 Integral Most 234 CP 2107.26 Section 5
6 Integral All 232 CC 2126.09 Section 6

KP - Known Plaintext CP - Chosen Plaintext CC - Chosen Ciphertext
None - the version of MISTY1 without all the FL layers
Most - the version of MISTY1 without the final FL layer

All - the version of MISTY1 with all the FL layers
† - the attack retrieves 41.36 bits of information about the key.
∗ - the attack retrieves 50 bits of information about the key.

268 X. Sun and X. Lai

We also provide an attack on 6 rounds with all the FL layers. The attack
is a chosen ciphertext attack starting from the FL3, FL4 layer to the end of
the cipher. We explore the key schedule weakness to speed up the computation
of the required intermediate values. The data complexity of the attack is 232

chosen ciphertexts, and the time complexity of the attack is 2126.09 encryptions.
Compared with other attacks on 6 rounds with all the FL layers, our attack
has the least data complexity. The summarization of our attacks and previous
attacks is listed in Table 1, where the data complexity is measured by the number
of plaintexts/ciphertexts and the time complexity is measured by the number of
encryptions needed in the attack.

The paper is organized as follows: In Section 2 we give a brief description of
MISTY1 block cipher. We present the FO Relation in Section 3, and then use
this new property to improve the integral attack on 5-round MISTY1 with all
but the last FL layers in Section 4. Section 5 extends the 5-round attack to 6
rounds with all but the last FL layers. In Section 6 we present the attack on 6
rounds with all the FL layers. Section 7 concludes this paper.

2 The MISTY1 Block Cipher

MISTY1 is a block cipher with a 64-bit block size and a 128-bit key size. Let
P and C denote the 64 bit plaintext and ciphertext, respectively. We use the
superscript without brackets to distinguish the values corresponding to different
plaintexts, e.g. C1 and C2 denote the ciphertexts for P 1 and P 2 respectively.
The superscript with brackets denotes the bits of the words, e.g. C1(1...7) denote
the left 7 bits of C1. The subscript(without brackets) is used to distinguish the
intermediate values for different rounds.

MISTY1 has a recursive structure. As shown in Figure 1(a), the cipher gener-
ally uses an 8-round Feistel structure with a round function FO. In each round,
the left 32-bit part is functioned with the FO function, and then is XORed with
the right 32 bits. This new 32-bit value is the left 32-bit input of the next round
and the right 32-bit input of the next round is the original 32 left bits. Before
each odd round and after the last round, there is an additional FL layer. We also
use subscripted FO(or FL) to distinguish FO(or FL) functions with different
keys, e.g, FO3 denote FO function keyed with AKO3 and AKI3.

In the original specification of MISTY1 [8], the round function FO uses a
112-bit key. Several equivalent descriptions of the FO function [5,11] have been
proposed, which use less key bits. Here we use the equivalent FO description
similar to [5] as Figure 1(b) and (c). The round function FOi itself has a 3-round
Feistel-like structure. The 32-bit input of FOi is divided into two blocks of 16
bits, denoted as ILi and IRi, respectively. In each round, the left 16-bit part is
XORed with a subkey AKOi,1 and then functioned with FI using a 9-bit key
AKIi,1. The output of the FI is XORed with the right 16 bits. The left 16 bits
and the right 16 bits are then swaped. The same procedure is repeated three
times, the left 16 bits and the right 16 bits after the third round are denoted
as MLi and MRi. OLi is the XOR of MLi and the subkey AKOi,4, and ORi

Improved Integral Attacks on MISTY1 269

,1iFI

,1iAKO

,1iAKI

,2iFI

,2iAKO

,2iAKI

,3iFI

,3iAKO

,3iAKI

,4iAKO ,5iAKO

FL
1,AKO

FL2KL

FO

FO

1KL

1AKI

2 ,AKO 2AKI

FL
3,AKO

FL4KL

FO

FO

3KL

3AKI

4 ,AKO 4AKI

FL
5 ,AKO

FL6KL

FO

FO

5KL

5AKI

6 ,AKO 6AKI

FL
7 ,AKO

FL8KL

FO

FO

7KL

7AKI

8 ,AKO 8AKI

FL FL10KL9KL

9S

7S

,i jAKI

9S

iIL iIR

iOL iOR

iML iMR

()a

()b

()c

()d

P

C

Fig. 1. (a) MISTY1 general structure (b) FO function (c) FI function (d) FL function

270 X. Sun and X. Lai

Table 2. The Key Schedule for MISTY1

Subkey Correspondence
KLi,1 K i+1

2
(odd i) or K′

i
2 +2

(even i)

KLi,2 K′
i+1
2 +6

(odd i) or K i
2+4(even i)

AKOi,1 Ki

AKOi,2 Ki+2

AKOi,3 Ki+7 ⊕ K
′(1...7)
i+5 ||00||K′(1...7)

i+5

AKOi,4 Ki+4 ⊕ K
′(1...7)
i+5 ||00||K′(1...7)

i+5 ⊕ K
′(1...7)
i+1 ||00||K′(1...7)

i+1

AKOi,5 K
′(1...7)
i+5 ||00||K′(1...7)

i+5 ⊕ K
′(1...7)
i+1 ||00||K′(1...7)

i+1 ⊕ K
′(1...7)
i+3 ||00||K′(1...7)

i+3

AKIi,1 K
′(8...16)
i+5

AKIi,2 K
′(8...16)
i+1

AKIi,3 K
′(8...16)
i+3

is the XOR of MRi and AKOi,5. The output of FOi is OLi||ORi (|| denotes
concatenation). All the AKOi,k(1 ≤ k ≤ 5) are 16-bit subkeys, and all the
AKIi,k(1 ≤ k ≤ 3) are 9-bit subkeys, hence the FOi function uses a 107-bit
key. Since AKO

(8...9)
i,5 is zero and AKO

(1...7)
i,5 is equal to AKO

(10...16)
i,5 , the FOi

function actually takes a 98-bit key.
The FI function also has a 3-round Feistel-like structure. In the first round,

the left 9-bit input enters a S-box S9, and then is XORed with the right 7-bit
input(padded two zero bits left to the 7 bits). Swap the left and the right parts.
In the second round, the left 7-bit part enters a S-box S7 and then is XORed
with the right 9 bits(truncated the left 2 bits). The right 9-bit part is XORed
with AKIi,1 and then is swaped with the left 7 bits. The third round of FI is
the same as the first round.

In the FL layer, the left 32 bits and the right 32 bits are put into the FL
functions. In each FL function, the 32-bit input is divided into two blocks of 16
bits. The left 16-bit part is ANDed with the subkey KLi,1, and then XORed
with the right 16 bits to produce the right 16-bit output. This right 16-bit output
is ORed with the subkey KLi,2 and then XORed with left 16 bits to produce
the left 16-bit output.

The key schedule of MISTY1 divides the 128-bit key into eight blocks of
16-bit words K1, K2, . . . , K8. Another eight 16-bit words are computed by
K ′

i = FIKi+1(Ki). The correspondence of these 16 bit words and the subkeys
used in the encryption is listed in Table 2.

3 The FO Relation

The following proposition on the FO function, which is a variant for Sakurai-
Zheng Property [9], is presented in [4].

Improved Integral Attacks on MISTY1 271

Proposition 1 ([4]). 1 For the FO function of round i, the following equation
holds

OL
(1...7)
i = fAKOi,1(ILi||IRi)⊕ gAKOi,2(ILi||IRi)⊕ k (1)

where fAKOi,1 and gAKOi,2 are functions related to the subkeys AKOi,1 and
AKOi,2, respectively, and k is a constant related to the key used in this FOi

function.

As shown in Figure 2, MLi is the XOR of the values corresponding to the point
α and β, hence OL

(1...7)
i = α ⊕ β ⊕ AKO

(1...7)
i,4 . Since the left 7 bits of the

values at α and β are not related to AKIi,1 and AKIi,2, Equation (1) holds
by letting fAKOi,1(ILi||IRi) correspond to the left 7 bits of the value at α,
gAKOi,2(ILi||IRi) correspond to the left 7 bits of the value at β and the key-
related constant k correspond to AKO

(1...7)
i,4 . Expanding fAKOi,1 and gAKOi,2 ,

Equation (1) is

OL
(1...7)
i = [FI(1...7)(ILi ⊕ AKOi,1) ⊕ IR

(1...7)
i] ⊕ [FI(1...7)(IRi ⊕ AKOi,2)] ⊕ AKO

(1...7)
i,4 (2)

where FI(1...7) denotes the partial FI function which inputs 16-bit input of FI,
and outputs the left 7-bit output of FI. By identical transformation, Equation
(2) can be rewritten as follows:

OL
(1...7)
i =[FI(1...7)(ILi ⊕ AKOi,1)] ⊕ [FI(1...7)(IRi ⊕ AKOi,2) ⊕ (IRi ⊕ AKOi,2)(1...7)]

⊕ [AKO
(1...7)
i,4 ⊕ AKO

(1...7)
i,2] (3)

Let fAKOi,1(ILi||IRi) be FI(1...7)(ILi⊕AKOi,1), gAKOi,2(ILi||IRi) be FI(1...7)

(IRi ⊕ AKOi,2) ⊕ (IRi ⊕ AKOi,2)(1...7) and the key-related constant k be
AKO

(1...7)
i,4 ⊕ AKO

(1...7)
i,2 , Equation (1) still holds, but fAKOi,1 is not related

to IRi and gAKOi,2 is not related to ILi. Hence Proposition 1 can be refined as
follows:

Lemma 1 (the FO Relation). For the FO function of round i, the following
equation holds

OL
(1...7)
i = f(ILi ⊕AKOi,1)⊕ g(IRi ⊕AKOi,2)⊕ k (4)

where f and g are two fixed functions, and k is a constant related to the key used
in this FOi function.

The FO Relation can be viewed as an improvement of Proposition 1. There are
two folds of the improvement:

1 The description of this proposition in [4] uses the subkeys KOi,1 and KOi,2 corre-
sponding to the original form of the FO function described in [8]. Here we use the
subkeys AKOi,1 and AKOi,2 as described in Section 2. The proposition does not
change because AKOi,1 = KOi,1 and AKOi,2 = KOi,2.

272 X. Sun and X. Lai

,1iFI

,1iAKO

,1iAKI

,2iFI

,2iAKO

,2iAKI

,3iFI

,3iAKO

,3iAKI

,4iAKO ,5iAKO

9S

7S

,1iAKI

9S

iIL iIR

iOL iOR

iML iMR

9S

7S

,2iAKI

9S

β α

Fig. 2. The FO Relation. The thick lines denote the pathes related to the calculation
of OL

(1...7)
i .

Improved Integral Attacks on MISTY1 273

1. The functions f and g used in Lemma 1 rely only on the 16-bit partial
input of the FO function instead of the whole 32-bit input used in Proposi-
tion 1 (the original Sakurai-Zheng Property [9] is similar to this form, how-
ever, Proposition 1 for the FO function proposed in [4] does not have this
property).

2. The functions f and g are not related to the subkeys AKOi,1 and AKOi,2.
The Subkeys AKOi,1 and AKOi,2 are moved into the inputs of the functions
f and g.

These two merits will benefit our attack.
Based on the FO Relation, the following theorem can be obtained:

Theorem 1. Let IL1||IR1, IL2||IR2, . . . ,IL2n||IL2n denote 2n inputs of the
FO function of round i for some even number 2n, the following equation holds:

2n⊕
j=1

OL
j(1...7)
i =

2n⊕
j=1

f(ILj
i ⊕AKOi,1)⊕

2n⊕
j=1

g(IRj
i ⊕AKOi,2) (5)

This theorem indicates that to obtain the value of
⊕2n

j=1 OL
j(1...7)
i , we can

treat the left 16 bits and the right 16 bits separately to compute the value
of
⊕2n

j=1 f(ILj
i ⊕AKOi,1) and

⊕2n
j=1 g(IRj

i ⊕AKOi,2). Based on this theorem,
we are ready to present our attacks.

4 Improved Integral Attack on 5-Round MISTY1

The integral attack on 5-round MISTY1 with all but the last FL layers, which
was proposed in [4], uses the following four-round integral:

Proposition 2 ([4]). Consider a structure (named integral structure) of 232

plaintexts where the left 32 bits are held constant and the right 32 bits take on all
possible values. The four round integral after FL6(the XOR of all the 232 32-bit
corresponding intermediate values of the structure after FL6) is equal to zero.

The main idea of the previous attack is to partially decrypt the encryptions of
the structure and check whether Proposition 2 holds. Proposition 1 shown in
Section 3 is used for fast checking whether the left seven bits of the integral are
equal to zero predicated by Proposition 2.

We improve the above attack by using the FO Relation, which provides a more
efficient method for checking the left seven bits of the integral than Proposition
1. The improved attack is as follows:

1. Ask for the encryptions of four different integral structures. Each structure
includes all plaintexts that have the same left 32 bits and all possible right
32 bits.

2. For encryptions of each integral structure:
(a) For every possible AKO5,1, compute the value of

⊕232

j=1 f(ILj
5⊕AKO5,1).

274 X. Sun and X. Lai

(b) For every possible AKO5,2, compute the value of
⊕232

j=1 g(IRj
5⊕AKO5,2).

(c) Discard all the AKO5,1, AKO5,2 pairs such that
⊕232

j=1 f(ILj
5⊕AKO5,1)

⊕⊕232

j=1 g(IRj
5 ⊕AKO5,2) does not equal to

⊕232

j=1 Cj(1...7).

3. For the remaining AKO5,1, AKO5,2 pairs, guess all the possible values of
AKI5,1, AKI5,2 to get full 16 bit

⊕232

j=1 OLj , discard all guesses such that
Proposition 2 is not satisfied.

For each integral structure in Step 2(a), directly computing
⊕232

j=1 f(ILj
5 ⊕

AKO5,1) for each possible AKO5,1 takes about 248 encryptions. We develop
one one technique when implementing this step to reduce the time needed from
248 encryptions to 226.58 encryptions for each integral structure as follows.

There are only 216 possible different IL5 values. For one 16-bit value that
occurs an even number of times in all ILj

5 (1 ≤ j ≤ 232), the XOR of all the
corresponding f(ILj

5 ⊕ AKO5,1) is zero. Hence, in Step 2(a) the attack first
counts the occurrences of each 16-bit value in all ILj

5. Then for each guessed
AKO5,1, using the 16-bit values that occur odd times in all ILj

5 to compute⊕232

j=1 f(ILj
5 ⊕AKO5,1).

For an integral structure in Step 2(a), counting the occurrences of every pos-
sible 16 bits among all ILj

5 can be accomplished by 232 simple instructions.
Since each simple instruction takes about 2−6 encryptions, the workload of
the counting is 226 encryptions. There are expected 215 different 16 bit values
which occur odd times in all ILj

5. So, for one fixed AKO5,1 we could compute⊕232

j=1 f(ILj
5 ⊕ AKO5,1) by computing 215 times function f . If we precompute

all the possible value of function f(the time for this preprocess is neglectable
compared with the total time complexity), it is possible to use table look-up
to speed up. Since one table look-up takes no more than 2−6 encryptions, the
running time for one integral is no more than 226 +215 ·2−6 ·216 = 226.58 encryp-
tions for an integral structure. Hence, Step 2(a) needs about 226.58 · 4 = 228.58

encryptions for all the four integral structures. By using similar technique,
Step 2(b) also needs about 228.58 encryptions.

In Step 2(c), each guess of AKO5,1, AKO5,2 pair has a probability of 2−7

passing the check of an integral structure. For each integral structure, if we
generate all the values could pass this check and then check whether they have
already been discarded, there are at most 232 · 2−7 = 225 candidates need to
check. Since checking one pair needs only one table look-up, this step needs
about 225 · 2−6 · 4 = 221 encryptions, which is neglectable compared with the
time used in Step 2(a) and 2(b).

After checking of four integral structures, the probability of one AKO5,1,
AKO5,2 pair not being discarded is 2−28, thus there are about 24 such pairs
entering Step 3. Using similar technique of Step 2, it is possible to finish this
step within 24·219 = 223 encryptions. After Step 3, only the correct guess remains
and the wrong guesses are all discarded with high probability.

Improved Integral Attacks on MISTY1 275

As shown above, the total time needed is dominated by Step 2(a) and
Step 2(b). Hence, the time complexity of this attack is about 228.58 + 228.58 =
229.58 encryptions.

5 Attack on 6-Round MISTY1 without the Last FL
Layer

In this section, we extend the improved 5-round integral attack to 6-round with-
out the last FL layer. To apply the method of the 5-round integral attack, the
6-round attack needs to recover the actual value of the input of FO5, which
means the attack needs to partially decrypt the sixth round. However, directly
guessing 98 key bits used in FO6 will make the attack slower than exhaustive
key search. To reduce the time needed, we start from the following observation.

As shown in Figure 3, the input of FO5, IL5||IR5, can be written as C(1...16)⊕
ML6⊕AKO6,4||C(17...32)⊕MR6⊕AKO6,5. The corresponding form of Equation
(5) is then

2n⊕
j=1

OL
j(1...7)
5 =

2n⊕
j=1

f(Cj(1...16)⊕MLj
6⊕AKO6,4⊕AKO5,1)⊕

2n⊕
j=1

g(Cj(17...32)⊕MRj
6⊕AKO6,5⊕AKO5,2)

(6)

where AKO5,1 and AKO5,2 are then replaced by AKO5,1⊕AKO6,4 and AKO5,2
⊕ AKO6,5, respectively, and the input of FO5 is then replaced by C(1...16) ⊕
ML6||C(17...32) ⊕ MR6, because the subkeys AKO6,4, AKO6,5, AKO5,1 and
AKO5,2 are not related to compute ML6 and MR6.

To compute the intermediate values C(1...16) ⊕ML6 and C(17...32) ⊕MR6,
AKO6,1, AKO6,2, AKO6,3, AKI6,1, AKI6,2 and AKI6,3 are required. These six
subkeys, which are corresponding to K6, K8, K5⊕K

′(1...7)
3 ||00||K ′(1...7)

3 , K
′(8...16)
3 ,

K
′(8...16)
7 , K

′(8...16)
1 , only take 75 key bits. The attack can be described as follows:

1. Ask for the encryptions of four different integral structures. Each structure
includes all plaintexts that have the same left 32 bits and all possible right
32 bits.

,AKO AKI

ML MR

||IL IR

Fig. 3. Partial decryption in the attack on 6-round MISTY1 with all but the last FL
layers

276 X. Sun and X. Lai

2. Guess 75 key bits, and partially decrypt all the 234 encryptions to obtain
the value of C(1...16) ⊕ML6 and C(17...32) ⊕MR6.

3. For each integral structure:
(a) For every possible AKO6,4 ⊕ AKO5,1, compute the value of

⊕232

j=1

f(Cj(1...16) ⊕MLj
6 ⊕AKO6,4 ⊕AKO5,1).

(b) For every possible AKO6,5 ⊕ AKO5,2, compute the value of
⊕232

j=1

f(Cj(17...32) ⊕MRj
6 ⊕ AKO6,5 ⊕AKO5,2).

(c) Discard all AKO6,4⊕AKO5,1, AKO6,5⊕AKO5,2 pairs such that
⊕232

j=1

f(Cj(1...16) ⊕MLj
6 ⊕AKO6,4 ⊕AKO5,1)⊕

⊕232

j=1 g(Cj(17...32) ⊕MRj
6 ⊕

AKO6,5 ⊕AKO5,2) does not equal to
⊕232

i=1 Cj(33...39)

4. For the guessed keys that are not discarded, exhaustively search for remain-
ing key bits.

For each guessed 75-bit key, Step 2 partially decrypts 234 encryptions. Each
partial decryption takes no more than 1/4 encryption. So this step needs about
232 encryptions for each guessed 75-bit key.

As shown in Section 4, Both Step 3(a) and 3(b) need 228.58 encryptions for
the four integral structures, and Step 3(c) needs neglectable time compared with
Step 3(a) and 3(b).

There are expected 24 out of 232 possible AKO5,1 ⊕ AKO6,4, AKO5,2 ⊕
AKO6,5 pairs entering Step 4 for each guessed 75 bits in Step 2. For each guess
entering Step 4, the attack exhaustively searches the 221 possible remaining key
bits. So the running time of this step is about 225 encryptions for each guessed
75-bit key in Step 2.

As a result, the total time complexity of this attack is 275 · (232 + 228.58 +
228.58 + 225) = 2107.26 encryptions.

6 Attack on 6-Round MISTY1 with All FL Layers

In this section, we extend the attack presented in last section to 6-round with all
FL layers. If we simply extend the MISTY1 used in last section with FL9 and
FL10, the attack will slower than exhaustive key search. By exploring the key
schedule algorithm, we can perform a chosen ciphertext attack on last 6 round
MISTY1 block cipher with all FL functions. The encryption then starts before
the FL3, FL4 layer and ends at the end of the cipher.

In this attack, we also make use of the 4-round integral. Since the attack is a
chosen ciphertext attack, the four round integral corresponds to the XOR of all
the 232 32-bit intermediate values of the integral structure before FL5. We also
use Theorem 1 for fast checking the integral. As shown in Figure 4, the Equation
(5) of Theorem 1 for the forth round can be rewritten as:

2n⊕
j=1

OL
j(1...7)
4 =

2n⊕
j=1

f(Dj(33...48)⊕MLj
3⊕AKO3,4⊕AKO4,1)⊕

2n⊕
j=1

g(Dj(49...64)⊕MRj
3⊕AKO3,5⊕AKO4,2)

(7)

Improved Integral Attacks on MISTY1 277

,AKO

KL

AKI
ML MR

||IL IR

Fig. 4. Partial decryption in attack on 6-round MISTY1 with all layers

where D denotes the result of the plaintext P passing through the first FL3 and
FL4 layer as shown in Figure 4.

We need to obtain the values of D(33...48) ⊕ML3 and D(49...64) ⊕MR3 from
decryptions. For one decryption, if the attack partially decrypts for these values
directly, it needs to guess at least total 105 key bits. Such a guess together with
232 partial decryption will make the attack slower than exhaustive key search.
However, to check Equation (7), we could obtain all the 232 Dj(33...48)⊕MLj

3 to
compute

⊕232

j=1 f(Dj(33...48)⊕MLj
3⊕AKO3,4⊕AKO4,1) and obtain all the 232

Dj(49...64) ⊕MRj
3 to compute

⊕232

j=1 g(Dj(49...64) ⊕MRj
3 ⊕ AKO3,5 ⊕ AKO4,2)

separately.
By exploring the key schedule weakness, we notice that none of the two pro-

cesses needs all the 105 key bits. To obtain D(33...48), the attack needs KL4,1 and
KL4,2, which are K ′

4 and K6. To obtain ML3 from the plaintext P , the attack
needs only the subkeys KL3,1, KL3,2, AKO3,1, AKO3,2, AKI3,1 and AKI3,2,
which correspond to K2, K ′

8, K3, K5, K
′(8...16)
8 , K

′(8...16)
4 . Thus, only K ′

4, K2,
K ′

8, K3, K5 and K6 are required.

Proposition 3. For one decryption, computing D(33...48)⊕ML3 from plaintext
needs only 96 key bits.

Consider the process of computing D(49...64) ⊕MR3. To obtain D(49...64), the
attack only needs to know KL4,1(K ′

4) but not KL4,2(K6). To obtain MR3, the
attack needs only KL3,1, KL3,2, AKO3,1, AKO3,2, AKO3,3, AKI3,1, AKI3,2

and AKI3,3, which correspond to K2, K ′
8, K3, K5, K2 ⊕ K

′(1...7)
8 ||00||K ′(1...7)

8 ,
K

′(8...16)
8 , K

′(8...16)
4 , K

′(8...16)
6 , as Table 2.

Proposition 4. For one decryption, computing D(49...64)⊕MR3 from plaintext
needs only 89 key bits.

278 X. Sun and X. Lai

When computing the value of
⊕232

j=1 f(Dj(33...48) ⊕MLj
3 ⊕ AKO3,4 ⊕ AKO4,1)

for an integral structure, the AKO4,1 and AKO3,4 used correspond to K4 and
K7⊕K

′(1...7)
8 ||00||K ′(1...7)

8 ⊕K
′(1...7)
4 ||00||K ′(1...7)

4 . The subkey K7 is not included
in the guessed 96 key bits. Hence K7 should be guessed after obtaining all the
D(33...48) ⊕MLj

3.
To obtain

⊕232

j=1 g(Dj(49...64)⊕MRj
3⊕AKO3,5⊕AKO4,2), the attack still needs

to guess K6⊕K6′(1...7)||00||K6′(1...7). This guess can be done after obtaining all
the D(49...64) ⊕MRj

3.
The attack is as follows:

1. Ask for decryptions of one integral structure in which all ciphertexts have
the same left 32 bits and all possible right 32 bits.

2. For each guess of the 80-bit K2, K ′
8, K3, K5, K ′

4:
(a) Compute the value of

⊕232

j=1 Dj(1...7).
(b) Guess 16-bit K6 and obtain all the 232 Dj(33...48) ⊕MLj

3. Continue to
guess 16 bit words K7 and compute

⊕232

j=1 f(Dj(33...48)⊕MLj
3⊕AKO3,4⊕

AKO4,1).
(c) Guess 9-bit K

′(8...16)
6 and obtain all the 232 Dj(49...64) ⊕ MRj

3. Con-
tinue to guess 16 bit words K6 ⊕K

′(1...7)
6 ||00||K ′(1...7)

6 and obtain
⊕232

j=1

g(Dj(49...64) ⊕MRj
3 ⊕AKO3,5 ⊕AKO4,2).

(d) Discard all guesses of K6, K7, K
′(8...16)
6 and K6 ⊕ K

′(1...7)
6 ||00||K ′(1...7)

6
such that Equation (7) does not hold or the guesses that result in conflict
(K6 and K7 do not produce K ′

6 corresponding to K
′(8...16)
6 and K6 ⊕

K
′(1...7)
6 ||00||K ′(1...7)

6).
3. For the guesses not discarded, exhaustively search for the remaining key bits.

In Step 2(a), the computation of
⊕232

j=1 Dj(1...7) takes no more than 232 ·1/4 = 230

encryptions for each guessed 80 key bits.
In Step 2(b), for each guessed 16-bit K6, the calculation of 232 Dj(33...48) ⊕

MLj
3 takes no more than 232 ·1/4 = 230 encryptions. For each K7, the calculation

of
⊕232

j=1 f(Dj(33...48) ⊕MLj
3 ⊕ AKO3,4 ⊕ AKO4,1) takes about 215 table look-

ups, which is equivalent to about 215 · 2−6 = 29 encryptions. Hence, the running
time of Step 2(b) is no more than 216 · (230 + 216 · 29) = 246.04 encryptions for
each guessed 80 key bits. Similarly, Step 2(c) needs about 239.04 encryptions for
each guessed 80 key bits.

In Step 2(d), for each K6 and K7, we calculate the value of K
′(8...16)
6 and

K6 ⊕ K
′(1...7)
6 ||00||K ′(1...7)

6 , and then check whether Equation (7) holds. Hence
Step 2(d) checks 232 guesses, and the time needed is also neglectable to Step 2(b).
For each guess of the 32 bit K6 and K7, the probability of satisfying Equation
(7) is 2−7. Hence, for each guessed 80 bits in Step 2, there are expected 225

guesses out of 232 possible K6, K7 entering Step 3. We notice that for each guess
entering Step 3, the attack still needs to exhaustively search for the remaining
16 key bits. Therefore, Step 3 takes 241 encryptions for each guess in Step 2.

Improved Integral Attacks on MISTY1 279

The running time of the whole attack is dominated by Step 2(b). The time
complexity of the attack is (230 +246.04 +239.04 +241) ·280 = 2126.09 encryptions.

7 Conclusion

In this paper, we presented several integral attacks on reduced MISTY1 block
cipher. Our attack improved the 5-round integral attack presented in [4] with
the use of the FO Relation. We also extended the attack to 6-round with all FL
layers by exploring the key schedule algorithm.

The existence of the FO Relation stems from the structure of the FO function
and the fact that the key is XORed in the FO function; the resulting diffusion
effect is too weak to defeat popular cryptanalysis techniques, such as differential
cryptanalysis and integral cryptanalysis.

Our attack also indicates that the correspondence between subkeys used and
the 128-bit key might be simple. Further exploration of this weakness of the key
schedule is still worthy studying.

Acknowledgement

The authors would like to acknowledge Zheng Gong and Ruoyao Shi for their
helpful advices.

References

1. Babbage, S., Frisch, L.: On MISTY1 Higher Order Differential Cryptanalysis. In:
Won, D. (ed.) ICISC 2000. LNCS, vol. 2015, pp. 22–36. Springer, Heidelberg (2001)

2. Dunkelman, O., Keller, N.: An Improved Impossible Differential Attack on
MISTY1. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 441–454.
Springer, Heidelberg (2008)

3. Hatano, Y., Tanaka, H., Kaneko, T.: An Optimized Algebraic Method for Higher
Order Differential Attack. In: Fossorier, M.P.C., Høholdt, T., Poli, A. (eds.)
AAECC 2003. LNCS, vol. 2643, pp. 61–70. Springer, Heidelberg (2003)

4. Knudsen, L.R., Wagner, D.: Integral Cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

5. Kühn, U.: Cryptanalysis of Reduced-Round MISTY. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 325–339. Springer, Heidelberg (2001)

6. Kühn, U.: Improved Cryptanalysis of MISTY1. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 61–75. Springer, Heidelberg (2002)

7. Lu, J., Kim, J., Keller, N., Dunkelman, O.: Improving the Efficiency of Impossible
Differential Cryptanalysis of Reduced Camellia and MISTY1. In: Malkin, T.G.
(ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 370–386. Springer, Heidelberg (2008)

8. Matsui, M.: New Block Encryption Algorithm MISTY. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 54–68. Springer, Heidelberg (1997)

9. Sakurai, K., Zheng, Y.: On Non-Pseudorandomness from Block Ciphers with Prov-
able immunity Against Linear Cryptanalysis. In: Fossorier, M.P.C., Imai, H., Lin,
S., Poli, A. (eds.) IEICE Trans. Fund., vol. E80-A(1), pp. 19–24 (1997)

280 X. Sun and X. Lai

10. Tanaka, H., Hatano, Y., Sugio, N., Kaneko, T.: Security Analysis of MISTY1. In:
Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 215–226.
Springer, Heidelberg (2008)

11. Tanaka, H., Hisamatsu, K., Kaneko, T.: Strength of MISTY1 without FL Function
for Higher Order Differential Attack. In: Fossorier, M.P.C., Imai, H., Lin, S., Poli,
A. (eds.) AAECC 1999. LNCS, vol. 1719, pp. 221–230. Springer, Heidelberg (1999)

New Results on Impossible Differential
Cryptanalysis of Reduced–Round Camellia–128

Hamid Mala1, Mohsen Shakiba1, Mohammad Dakhilalian1,
and Ghadamali Bagherikaram2

1 Cryptography & System Security Research Laboratory, Department of Electrical
and Computer Engineering, Isfahan University of Technology, Isfahan, Iran

{hamid−mala@ec, m.shakiba@ec, mdalian@cc}.iut.ac.ir
2 Department of Electrical and Computer Engineering, University of Waterloo,

Waterloo, Ontario, Canada
gbagheri@cst.uwaterloo.ca

Abstract. Camellia, a 128–bit block cipher which has been accepted
by ISO/IEC as an international standard, is increasingly being used in
many cryptographic applications. In this paper, using the redundancy in
the key schedule and accelerating the filtration of wrong pairs, we present
a new impossible differential attack to reduced–round Camellia. By this
attack 12–round Camellia–128 without FL/FL−1 functions and whiten-
ing is breakable with a total complexity of about 2116.6 encryptions and
2116.3 chosen plaintexts. In terms of the numbers of the attacked rounds,
our attack is better than any previously known attack on Camellia–128.

1 Introduction

Camellia [1] is a 128–bit block cipher that supports several key lengths. For the
sake of simplicity, Camellia with n–bit keys is denoted by Camellia–n, n=128,
192, 256. Camellia was jointly proposed in 2000 by NTT and Mitsubishi and
then was submitted to several standardization and evaluation projects. It was
selected as a winner of CRYPTREC e-government recommended ciphers in 2002
[5], NESSIE block cipher portfolio in 2003 [17] as well as the standardization
activities at IETF [18]. Finally Camellia was selected as an international stan-
dard by ISO/IEC in 2005 [9]. As one of the most widely used block ciphers,
Camellia has received a significant amount of cryptanalytic attention. The most
efficient cryptanalytic results on Camellia include linear and differential attacks
[19], truncated differential attack [5,10,13,20], higher order differential attack
[7,11], collision attack [14,21], square attack [8,14,24], a square like attack [6]
and impossible differential attack [15,20,22,23].

Impossible differential cryptanalysis, an extension of the differential attack
[4], is one of the most powerful methods used for block cipher cryptanalysis.
This method was first introduced by Biham [3] and Knudsen [12] independently.
Impossible differential attacks use differentials that hold with probability zero
(impossible differentials) to eliminate the wrong keys and leave the right key.

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 281–294, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

282 H. Mala et al.

The most efficient impossible differential attacks, recently proposed to reduced
variants of Camellia, are as follows. The initial analysis of the security of Camellia
to impossible differential cryptanalysis was given in [20]. They presented some
7–round impossible differentials for Camellia. In [23] Wu et al. introduced a
nontrivial 8–round impossible differential that lead to an impossible differential
attack on Camellia–192 and Camellia–256 without the FL/FL−1 functions with
complexity of about 2118 chosen plaintexts and a time complexity of about 2126

memory accesses. Introducing the early abort technique, Lu et al. improved
the impossible differential attack on Camellia in [16]. Later in [22] Wu et al.
found a flaw in [16] and presented an impossible differential attack on 12–round
Camellia–128 and claimed that their attack has a data complexity of 265 chosen
plaintexts and a time complexity of about 2111.5 encryptions. In this paper, we
point out a flaw in their attack and show that its time complexity is more than
exhaustive key search. However, their work is the first impossible differential
attack on Camellia that considers the weakness in its key schedule.

In this paper, using the same 8–round impossible differential of [23], consid-
ering the weakness in the key schedule of Camellia–128, and also exploiting a
hash table to simplify the selection of proper pairs, we present the first successful
12–round attack on Camellia–128. The proposed attack requires 2116.3 chosen
plaintexts and has a total time complexity equivalent to about 2116.6 encryptions.
We summarize our results along with previously known results on Camellia–128
in Table 1. The results of [16] in Table 1 come from its early version reported in
Lu’s PhD thesis [15], so we mark them with ”†”. In this table, time complexity
is measured in encryption units unless MA is mentioned for memory accesses.

The rest of this paper is organized as follows: Section 2 provides a brief descrip-
tion of Camellia. We propose our new impossible differential attack on 12–round
Camellia–128 in Section 3. Section 3 includes the previously known 8–round im-
possible differential (in Subsection 3.1), some observations on the key schedule
of Camellia–128 (in Subsection 3.2), the proposed attack procedure on 12–round

Table 1. Summary of previous attacks and our new attack on Camellia–128

#Rounds FL/FL−1 Data Time Attack type Source

8 no 283.6 255.6 Truncated Diff. [13]
8 no 220 2120 Higher Order Diff. [7]
9 no 292 2111 Higher Order Diff. [7]
9 yes 248 2122 Square. [14]
9 no 2113.6 2121 Collision. [21]
9 no 288 290 Square. [14]
9 no 2105 2105 Differential. [19]
9 no 266 284.8 Square like. [6]
10 no 2120 2121 Linear. [19]
11 no 2118 2126MA&2118 Impossible Diff. [16]†
11 no 2118 2126MA Impossible Diff. [16]†
12 no 2116.3 2116.6 Impossible Diff. This work

New Results on Impossible Differential Cryptanalysis 283

Camellia–128 (in Subsection 3.3), and the analysis of the attack complexity (in
Subsection 3.4). Finally, we conclude the paper in Section 4.

2 Preliminaries

2.1 Notations

In this paper, we will use the following notations:

Lr−1 : the left 64–bit half of the r–th round input,
Rr−1 : the right 64–bit half of the r–th round input,
kr : the subkey used in r–th round,
kr

l : the l–th byte of a subkey kr,
kr

l [i− j] : the i–th to the j–th bits of kr
l , i, j = 1, 2, ..., 8, i ≤ j,

x|y : bit string concatenation of x and y,
⊕ : bit-wise exclusive or operation,
x <<<l : the rotation of x by l bits to the left.

2.2 Description of Camellia

The 128–bit block cipher Camellia [1] has an 18–round (for 128 bit keys) or 24–
round (for 192/256–bit keys) Feistel structure. The FL/FL−1 functions layer is
inserted every 6 rounds. Before the first round and after the last round, there are
pre– and post–whitening layers. In this paper we will consider a reduced vari-
ant of Camellia without FL/FL−1 functions and whitening layers. The Feistel
structure of the r–th round is

Lr = Rr−1 ⊕ F (Lr−1, kr) , Rr = Lr−1,

where function F consists of a key–addition layer, a substitution transformation
S and a diffusion layer P . The S transformation contains 4 types of 8×8 S–boxes
s1, s2, s3 and s4 as follows:

S(x1|x2|x3|x4|x5|x6|x7|x8)
= s1(x1)|s2(x2)|s3(x3)|s4(x4)|s2(x5)|s3(x6)|s4(x7)|s1(x8).

The transformation P : ({0, 1}8)8 → ({0, 1}8)8 maps (z1, ..., z8) to (z′1, ..., z
′
8).

This transformation and its inverse, P−1, are defined as:

z′1 = z1 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8 z1 = z′2 ⊕ z′3 ⊕ z′4 ⊕ z′6 ⊕ z′7 ⊕ z′8
z′2 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8 z2 = z′1 ⊕ z′3 ⊕ z′4 ⊕ z′5 ⊕ z′7 ⊕ z′8
z′3 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8 z3 = z′1 ⊕ z′2 ⊕ z′4 ⊕ z′5 ⊕ z′6 ⊕ z′8
z′4 = z2 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7 z4 = z′1 ⊕ z′2 ⊕ z′3 ⊕ z′5 ⊕ z′6 ⊕ z′8
z′5 = z1 ⊕ z2 ⊕ z6 ⊕ z7 ⊕ z8 z5 = z′1 ⊕ z′2 ⊕ z′5 ⊕ z′7 ⊕ z′8
z′6 = z2 ⊕ z3 ⊕ z5 ⊕ z7 ⊕ z8 z6 = z′2 ⊕ z′3 ⊕ z′5 ⊕ z′6 ⊕ z′8
z′7 = z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z8 z7 = z′3 ⊕ z′4 ⊕ z′5 ⊕ z′6 ⊕ z′7
z′8 = z1 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7 z8 = z′1 ⊕ z′4 ⊕ z′6 ⊕ z′7 ⊕ z′8

284 H. Mala et al.

F

F

2C

1C
(128) (128)L Rk k

(128)Lk

F

F

4C

3C

(128)Ak

(128)Rk

F

F

6C

5C

(128)Bk

x

y

Fig. 1. Key schedule of Camellia

Table 2. The first 12 round keys of Camellia–128

Round Subkey Value Round Subkey Value
1 k1 (kA <<<0)L 7 k7 (kL <<<45)L

2 k2 (kA <<<0)R 8 k8 (kL <<<45)R

3 k3 (kL <<<15)L 9 k9 (kA <<<45)L

4 k4 (kL <<<15)R 10 k10 (kL <<<60)R

5 k5 (kA <<<15)L 11 k11 (kA <<<60)L

6 k6 (kA <<<15)R 12 k12 (kA <<<60)R

Fig. 1 shows the key schedule of Camellia. For Camellia–128, two 128–bit
variables kL and kR are defined as follows. The 128–bit user key is used as kL, and
kR is a 128–bit string of 0 bits. Two 128–bit variables kA and kB are generated
from kL and kR as shown in Fig. 1, in which Ci, i = 1, ..., 6 are constants used as
the keys of the Feistel round function. The round keys of Camellia are rotations
of variables kA, kB, kL and kR. Note that kB is used only if the length of the user
key is 192 or 256 bits. Here, we only give the first 12 round keys for Camellia–128
in Table 2.

2.3 Analysis of Wu et al.’s Attack on Camellia–128

In step (3.c.iii) of Section 4.1 in [22], the authors write: ”Furthermore, the prob-
ability that a subkey guess may remain after this test is about (1 − 2−8).” At
the first look, it seems to be true, but we show that this statement and thus
the resulted complexity are not true. We show that the correct value for this
probability is (1 − 2−68), and also we calculate the dominant part of the time
complexity of the attack on Camellia–128 proposed in [22].

At the end of step (3.b) there remain 25+m pairs. Below, we specify the list
and the number of subkeys that are determined for each of these pairs:

New Results on Impossible Differential Cryptanalysis 285

1. Only one value for subkey bytes (k1
1 , k

1
2 , k

1
3 , k

1
5 , k

1
8) and (k12

1 , k12
2 , k12

3 , k12
5 , k12

8)
that satisfy the required differences in Round 1 and 12, and the 28–bit con-
dition suggested by Property 1–1,

2. 216 guesses of the 16 unknown bits (k1
4 [1− 4], k1

6, k
1
7 [1− 4]),

3. according to Property 1-3, only one value for the (k12
4 , k12

6 , k12
7),

4. only one value for k2
1 which is obtained from the difference distribution table

of S-boxes, and
5. 2−8 value for k11

1 , because the only value obtained for (k11
1 in step (c.ii) must

also satisfy the 8–bit condition k11
1 = (k1

8 [5 − 8]|k2
1[1− 4]).

Thus, the number of 76–bit target subkeys that satisfy the impossible differential
for each of the 25+m remaining pairs is 1× 1× 216× 1× 1× 2−8 = 28. Thus, the
probability that a 76–bit target subkey guess be discarded by each of these 25+m

pairs is 28

276 = 2−68. Hence the number of 76–bit wrong subkeys remained at the
end of the attack procedure is (276 − 1).(1 − 2−68)2

m+5
. If we choose m = 9, as

[22] proposes, the number of remaining wrong subkeys becomes:

(276 − 1).(1− 2−68)2
14 ≈ 276.e−2−54 ≈ 276

If we accept that only one wrong subkey remains, m can be obtained as below:

(276 − 1).(1− 2−68)2
m+5

= 1⇒ m ≈ −5 + 68 + log2(
76

log2 e
) ≈ 68.7

Thus, the number of the required chosen plaintexts is about 2m+56 = 2124.7.
Also the dominant part of time complexity which is related to step 2, will be
about 250 × 2124.7 = 2174.7 memory accesses. Hence, this attack is infeasible. It
seems that there is a similar mistake in computing the complexity of the attack
on Camellia-256 proposed in [22].

3 Impossible Differential Cryptanalysis of Reduced
Camellia–128

In this section, we first present the 8–round impossible differential of Camellia
introduced in [23], then we propose an impossible differential attack on 12–
round Camellia–128 without the FL/FL−1 functions. Finally, we analyze the
complexity of our attack in Section 3.4.

3.1 8–Round Impossible Differentials of Camellia

In 2007, Wu et al. [23] found the following 8–round impossible differentials
of Camellia: (0|0|0|0|0|0|0|0, a|0|0|0|0|0|0|0)→8(h|0|0|0|0|0|0|0, 0|0|0|0|0|0|0|0),
wherea and h are any twonon–zerobytes. Fig. 2 illustratesmore details. A detailed
explanation of these 8–round impossible differentials is given in [23].

286 H. Mala et al.

0 (0 | 0 | 0 | 0 | 0 | 0 | 0 | 0)L

PKS

PKS

PKS

PKS

0 (| 0 | 0 | 0 | 0 | 0 | 0 | 0)R a

1 (| 0 | 0 | 0 | 0 | 0 | 0 | 0)L a (| 0 | 0 | 0 | 0 | 0 | 0 | 0)b
(| | | 0 | | 0 | 0 |)b b b b b

2 (| | | 0 | | 0 | 0 |)L b b b b b 1 2 3 5 8(| | | 0 | | 0 | 0 |)b b b b b
1 2 3 4 5 6 7 8(| | | | | | |)c c c c c c c c

3
1 2 3

4 5 6 7 8

(| |
| | | | |)

L a c c c
c c c c c

PKS

PKS

PKS

PKS

1 2 3

4 5 6 7 8

(| |
| | | | |)
X c a f c f c f
c c f c c c f

5 (| | | 0 | |
0 | 0 |)

L f f f f
f 1 2 3 5 8(| | | 0 | | 0 | 0 |)e e e e e

1 2 3 4 5 6 7 8(| | | | | | |)d d d d d d d d

6 (| 0 | 0 | 0 | 0 | 0 | 0 | 0)L h (| 0 | 0 | 0 | 0 | 0 | 0 | 0)f
(| | | 0 | | 0 | 0 |)f f f f f

7 (0 | 0 | 0 | 0 | 0 | 0 | 0 | 0)L

8 (| 0 | 0 | 0 | 0 | 0 | 0 | 0)L h 8 (0 | 0 | 0 | 0 | 0 | 0 | 0 | 0)R

4
1 2 3

4 5 6 7 8

(| |
| | | | |)

L h d d d
d d d d d

1
1 2

3 5 8

6 7

() (| |
| | | 0 | 0 |)

0

P X b a b a
b a a b a b a
d d

6 7 20 0d d e
Contradiction!

Fig. 2. 8–round impossible differentials of Camellia

3.2 Some Observations on the Key Schedule of Camellia–128

Redundancy in the Key Schedule: We first consider the relation between
the target subkeys in our attack. The 18–byte target subkeys include the 8 bytes
of k1, the byte k2

1 , the byte k11
1 and 8 bytes of the last round key, k12. Considering

the key schedule of Camellia–128, we immediately observe that these 144 target
bits are not distinct. From Table 2 we know that the four additional round keys
k1, k2, k11, k12 are rotations of the intermediate value kA, as below:

k1 = (kA <<<0)L , k2 = (kA <<<0)R,

k11 = (kA <<<60)L and k12 = (kA <<<60)R

New Results on Impossible Differential Cryptanalysis 287

Table 3. Target subkeys in the attack represented in Fig. 4

Target Byte Equivalent 8 bits of kA Target Byte Equivalent 8 bits of kA

k1
1 k1|k2...|k8 k11

1 k61|k62...|k68

k1
2 k9|k10...|k16 k12

1 k125|...|k128 |k1|...|k4

k1
3 k17|k18...|k24 k12

2 k5|k6...|k12

k1
4 k25|k26...|k32 k12

3 k13|k14...|k20

k1
5 k33|k34...|k40 k12

4 k21|k22...|k28

k1
6 k41|k42...|k48 k12

5 k29|k30...|k36

k1
7 k49|k50...|k56 k12

6 k37|k38...|k44

k1
8 k57|k58...|k64 k12

7 k45|k46...|k52

k2
1 k65|k66...|k72 k12

8 k53|k54...|k60

Let us denote the intermediate value kA by its bits as kA = k1|k2|...|k128. Then we
can distinguish 18 target subkey bytes in bit strings of kA in
Table 3. It is obvious that the 18 target bytes are composed of only 76 dis-
tinct bits. This fact will help us to reduce the complexity of our attack. These
distinct 76 bits include k1|k2|...|k72 in Rounds 1, 2 and the four bits k125|...|k128
in the last round. This fact has previously been considered in [22].

Relation between kL and kA: Since in our attack some bits of kA are recov-
ered, here we investigate the relation between the master key of Camellia–128,
kL = kL

L |kR
L and the intermediate key value kA = kL

A|kR
A . In other words, we

will show that kL can be extracted from kA. According to the key schedule of
Camellia–128, kR is zero. Let the outputs of round functions F in first and sec-
ond rounds of the key schedule be denoted by x and y, respectively. According
to Fig. 1, we can obtain x and y as functions of only kA as below:

y = (kL
A ⊕ FC4(k

R
A)⊕ kL

L)⊕ kL
L = kL

A ⊕ FC4(k
R
A)

x = (kR
A ⊕ FC3(k

L
A ⊕ FC4(k

R
A))⊕ kR

L)⊕ kR
L = kR

A ⊕ FC3(k
L
A ⊕ FC4(k

R
A))

= kR
A ⊕ FC3(y)

In a same way kL can be represented in terms of x and y as below:

kR
L = F−1

C2
(y)⊕ x kL

L = F−1
C1

(x)

So according to above equations we can obtain the master key of Camellia–128,
kL = kL

L |kR
L in terms of kA as below:

kR
L = F−1

C2
(kL

A ⊕ FC4(kR
A))⊕ kR

A ⊕ FC3(kL
A ⊕ FC4(kR

A))

kL
L = F−1

C1
(kR

A ⊕ FC3(k
L
A ⊕ FC4(k

R
A)))

Hence, the complexity of obtaining kL from kA is about four 1–round Camellia
encryptions.

3.3 Impossible Differential Attack on 12–Round Camellia–128

In this section, we present the first successful impossible differential attack on
12 rounds of Camellia–128 without the FL/FL−1 functions and whitening. We

288 H. Mala et al.

ki S

1iL

P-1

P

1iR

iL iR

Fig. 3. Equivalent structure for one round of Camellia

attack Rounds 1 to 12, and use the 8–round impossible differential in Rounds 3
to 10. The attack is illustrated in Fig. 4. For the sake of simplicity, in Fig. 4 we
use the equivalent round functions of Camellia in the Rounds 1, 2 and 12. The
equivalent round function, which is shown in Fig. 3, is obtained by moving the P
function to the output of the XOR operation and applying a transformation P−1

to the data line entering the XOR operation. According to Fig. 3, the equivalence
of this modified structure to the original version can be verified easily as below:

Ri = Li−1,

Li = P (S(ki ⊕ Li−1)⊕ P−1(Ri−1))
= P (S(ki ⊕ Li−1))⊕Ri−1

= F (Li−1, ki)⊕Ri−1

In a traditional impossible differential attack where there exist additional rounds
on both sides of the impossible differential, the attacker first checks a series of
conditions in one side and choose pairs (or keys) that satisfy these conditions.
She moves to the other side when she finishes checking all the conditions in the
first side. When analyzing the Camellia, we observed that its structure allows
us to change the side before finishing the investigation of all the conditions of
one side. Thus we can check the condition that filters a greater number of pairs
(or keys) before the other conditions. This strategy reduces the time complexity
without any effect on the data complexity. So in the proposed attack, we first
check some conditions in Round 1, then we conduct the attack in Rounds 12
and 11, and then we return to Rounds 1 and 2.

The attack procedure is as follows:

1. Take 2n structures of plaintexts such that each structure contains 256

plaintexts Pi = L0
i |R0

i with:

L0
i = (a′|a′|a′|α4|a′|α6|α7|a′),

R0
i = P (y′

1|y′
2|y′

3|β4|y′
5|β6|β7|y′

8)⊕ (y′|γ2|γ3|γ4|γ5|γ6|γ7|γ8)

where the 7 bytes (a′, y′, y′
1, y

′
2, y

′
3, y

′
5, y

′
8) take all the possible values, and

the bytes with the forms α×, β× and γ× are fixed values in each structure.

New Results on Impossible Differential Cryptanalysis 289

k1 S

k2 S

8-round ID

k11 S P

k12 S

0 (| | | 0 | | 0 | 0 |)L a a a a a 0
1 2 3 5 8(| | | 0 | | 0 | 0 |)

(| 0 | 0 | 0 | 0 | 0 | 0 | 0)
R P y y y y y

y

1 (| 0 | 0 | 0 | 0 | 0 | 0 | 0)L y

P-1

P

2 (0 | 0 | 0 | 0 | 0 | 0 | 0 | 0)L

P-1

P

10 (| 0 | 0 | 0 | 0 | 0 | 0 | 0)L h 10 (0 | 0 | 0 | 0 | 0 | 0 | 0 | 0)R

11 (| | | 0 | | 0 | 0 |)L g g g g g

12 (| | | 0 | | 0 | 0 |)R g g g g g12
1 2 3 4 5 8(| | | | | 0 | 0 |)L P z z z z h z z

P-1

P

2 (| 0 | 0 | 0 | 0 | 0 | 0 | 0)R y

1 (| 0 | 0 | 0 | 0 | 0 | 0 | 0)R a

1 0 1

1 2 3 5 8

1 2 3 5 8

()
((| | | 0 | | 0 | 0 |)
(0 | | | | | 0 | 0 |))
(| | | 0 | | 0 | 0 |)

W P R S
y y y y y
y y y y y

a a a a a

1 12 12

1 2 3 5 8

1 2 3 5 8

()
(| | | | | 0 | 0 |)
(| | | 0 | | 0 | 0 |)

V P L S
z z z h z z
g g g g g

1S

2S

12S

11S

Fig. 4. 12–round impossible differential attack on reduced-round Camellia–128

It is obvious that each structure proposes about 256 plaintexts, and 2111

plaintext pairs can be obtained from each structure. Totally, we can collect
about 2n+56 plaintexts and 2n+111 plaintext pairs with the difference ∆L0 =
(a|a|a|0|a|0|0|a) and ∆R0 = P (y1|y2|y3|0|y5|0|0|y8)⊕ (y|0|0|0|0|0|0|0).

2. Obtain the ciphertexts of each structure and keep only the pairs that satisfy
the following ciphertext difference:

∆L12 = P (z1|z2|z3|h|z5|0|0|z8) and ∆R12 = (g|g|g|0|g|0|0|g)

where h, g and z× are any non–zero byte values. The probability of this
condition is 2−16 × 2−56 = 2−72.

Thus the expected number of the remaining pairs is 2n+111×2−72 = 2n+39.
3. Perform the following substeps:

(a) Guess the 8–bit value of k1
1 and partially encrypt every remaining plain-

text pair to get ∆W1 in the output of the XOR of Round 1 (see Fig. 4).
Keep only the pairs whose ∆W1 is zero. The probability of this event is
2−8, thus we expect about 2n+39 × 2−8 = 2n+31 pairs remain.

290 H. Mala et al.

(b) For l = 2, 3, 5, 8 guess the 8–bit value of k1
l and partially encrypt every

remaining plaintext pair to get ∆Wl. Keep only the pairs whose ∆Wl

is equal to y (consider that y is already determined by ∆R0 for each
plaintext pair). The probability of this event for each l is 2−8, thus the
expected number of remaining pairs is 2n+31 × 2−8×4 = 2n−1.

4. In this step consider the corresponding ciphertext pairs (C, C∗) of the re-
maining pairs then perform the following substeps:

(a) Guess the 8-bit value of k12
1 . Notice that according to Table 3, four bits

of k12
1 is already fixed by k1

1 previously guessed in step 3.a. Partially
decrypt every remaining ciphertext pair (C, C∗) to get the first byte of
the intermediate value ∆V in the output of the XOR of Round 12 (see
Fig. 4). Keep only the pairs whose ∆V1 is equal to zero. The probability
of this condition is 2−8, thus we expect about 2n−1 × 2−8 = 2n−9 pairs
remain.

(b) For l = 2, 3 obtain the 8–bit value of k12
l . Notice that according to Table

3, all bits of k12
l is already fixed by k1

1,2,3 previously guessed in step 3.
Partially decrypt every remaining ciphertext pair (C, C∗) to get the l–
th byte of the intermediate value ∆V . Keep only the pairs whose ∆Vl

is equal to h (consider that h is already determined by ∆L12 for each
remaining ciphertext pair). The probability of this event for each l is 2−8,
thus the expected number of remaining pairs is 2n−9 × 2−8×2 = 2n−25.

(c) For l = 5, 8 guess the 8–bit value of k12
l . Notice that according to Table 3,

four bits of k12
5 and four bits of k12

8 are already fixed by previously guessed
k1
5 and k1

8 , respectively. Partially decrypt every remaining ciphertext pair
(C, C∗) to get the l–th byte of the intermediate value ∆V . Keep only
the pairs whose ∆Vl is equal to h (consider that h is already determined
by ∆L12 for each of the remaining ciphertext pairs). The probability of
this event for each l is 2−8, thus the expected number of remaining pairs
is 2n−25 × 2−8×2 = 2n−41.

(d) Guess the 24-bit value of k12
4,6,7. Notice that according to Table 3, four

bits of k12
4 and four bits of k12

6 are already fixed by previously guessed k1
3

and k1
5 , respectively. Partially decrypt every remaining ciphertext pair

(C, C∗) to get the exact value of intermediate pairs (L10
1 , L∗10

1). Consider
that with probability 1, ∆V4,6,7 = h|0|0. So this step does not affect the
number of the remaining pairs.

5. Guess the 8-bit value of k11
1 . Notice that according to Table 3, four bits of

k11
1 is already fixed by k1

8 previously guessed in step 3. For every remaining
pair, partially decrypt the (L10

1 , L∗10
1) through the first s-box of Round 11 to

obtain ∆S11
1 and check if ∆S11

1 is equal to g, where g is already determined
by ∆R12 for each ciphertext pair (see Fig. 4). The probability of this event
is 2−8, thus the expected number of remaining pairs is 2n−41×2−8 = 2n−49.

In this stage of the attack, for every 72–bit guess of the subkeys
k1
1,2,3,5,8, k

12
7 , 4 bits of k12

1,4,5,6,8, and 4 bits of k11
1 we expect to obtain about

2n−49 pairs that satisfy the output difference of the 8–round impossible dif-
ferential and also satisfy the difference ∆L1 = ∆R2 = (y|0|0|0|0|0|0|0).

New Results on Impossible Differential Cryptanalysis 291

6. In this step, consider the corresponding plaintext pairs (P, P ∗) of the re-
maining pairs then obtain the 24–bit value of k1

4,6,7 (Notice that according
to Table 3, all these 24 bits are already fixed by k12

4,5,6,7,8). Now all bytes
of k1 are known, so partially encrypt every remaining pair to get the ex-
act value of intermediate pairs (L1

1, L
∗1
1). Consider that with probability 1,

∆W4,6,7 = y|0|0. So this step does not affect the number of the remaining
pairs.

7. Guess the 8–bit value of k2
1 . Notice that according to Table 3, four bits of k2

1
is already fixed by k11

1 previously guessed in step 5. Then partially encrypt
the (L1

1, L
∗1
1) through the first s–box of Round 2 to obtain ∆S2

1 and check if
∆S2

1 is equal to a, where a is already determined by ∆L0 (see Fig. 4). If there
exists a pair that passes this test, i.e. a pair that meets the input difference
of the 8–round impossible differential, then discard the 76–bit subkey guess,
and try another; otherwise for every 76-bit subkey guess, exhaustively search
for the remaining 52 bits to recover the whole of kA. Considering the relation
between kL and kA, described in Section 3.2, this will lead to recovering the
master key kL.

3.4 Complexity of the Attack

In step 7, the probability that the difference ∆S2
1 is equal to a fixed value a, is

about 2−8. So we expect only about ε = 276(1 − 2−8)2
n−49

guesses for 76–bit
target subkey remain. If we accept the ε be equal to 1, then n will be 62.7. Thus
the attack requires 2n+56 = 2118.7 chosen plaintexts.

In step 2, to get the qualified pairs, we first store the ciphertexts of each
structure in a hash table indexed by the 4–th, 6–th and 7–th bytes of R12, the
XOR of the 1–st and 2–nd bytes of R12, the XOR of the 1–st and 3–rd bytes of
R12, the XOR of the 1–st and 5–th bytes of R12, the XOR of the 1–st and 8–th
bytes of R12, the 6–th and 7–th bytes of P−1(L12) . Thus, every 2 ciphertexts
with the same index in this table have the proper difference:

∆C = ∆L12|∆R12 = P (z1|z2|z3|h|z5|0|0|z8)|(g|g|g|0|g|0|0|g).

Computing the 6–th and 7–th bytes of P−1(L12), requires 8 XOR operations,
while each round of Camellia requires 24 XOR operations and 8 substitutions
[2]. Thus, the total time complexity of computing the 6–th and 7–th bytes of
P−1(L12) is less than about 8×2118.7× 1

24× 1
12 ≈ 2113.5 encryptions. Considering

the complexity of obtaining the ciphertexts, step 2 requires about 2118.7+2113.5 ≈
2118.7 encryptions. At the end of this step, we expect about 2n+39 = 2101.7 proper
pairs to be accessible.

According to procedure described in section 3.3 the time complexity (in terms
of encryption units) of steps 3–7 for recovering 76 bits of kA is as follows:

Step 3(a) : 2× 1
8
× 1

12
× 2n+39 × 28 =

1
12
× 2n+45

Step 3(b) : 2× 1
8
× 1

12
×

3∑
i=0

(2n+31−8i × 28+8×(i+1)) =
1
12
× 2n+47

292 H. Mala et al.

Step 4(a) : 2× 1
8
× 1

12
× 2n−1 × 240+4 =

1
12
× 2n+41

Step 4(b) : 2× 1
8
× 1

12
×

1∑
i=0

(2n−9−8i × 244) ≈ 1
12
× 2n+33

Step 4(c) : 2× 1
8
× 1

12
×

1∑
i=0

(2n−25−8i × 244+4×(i+1)) =
1
12
× (2n+21 + 2n+19)

Step 4(d) : 2× 3
8
× 1

12
× 2n−41 × 252+4+4+8 = 2n+23

Step 5 : 2× 1
8
× 1

12
× 2n−41 × 268+4 =

1
12
× 2n+29

Step 6 : 2× 3
8
× 1

12
× 2n−49 × 272+0 = 2n+19

Step 7 : 2× 1
8
× 1

12
× 272+4 ×

2n−49−1∑
i=0

(1 − 2−8)i ≈ 1
12
× 282 × (1− e−2n−57

)

Thus the dominant part of time complexity to recover 76 bits of kA is related
to steps 2, 3(a) and 3(b) which is about 1

12 × (2n+45 + 2n+47) + 2118.7 ≈ 2118.7

encryptions. In order to recover the whole of master key (kL), for each of the
76-bit candidates (outputs of the procedure described in Section 3.3 which is
expected to be about ε) we have to exhaustively search the remaining 52 bits
of kA. Then using the second result of Section 3.2, we can obtain kL for each of
these 52–bit guesses. As we described in Section 3.2, this operation requires about
ε× 4× 252× 1

12 encryptions. Also one additional encryption is required to check
the key with a plaintext/ciphertext pair. Finally, the overall time complexity
to recover the master key is about 2118.7 + ε × 252 × (4

12 + 1) . For ε = 1, the
complexity will be about 2118.7 encryptions.

If we let the ε be about 262, then n will be equal to 60.3. Thus, data com-
plexity of the proposed attack reduces to 2n+56 = 2116.3 and the dominant time
complexity is composed of the time complexity of steps 2, 3(a), 3(b) and the
exhaustive search in step 7, as below

2n+56 +
1
12
× (2n+45 + 2n+47) + ε× 252 × (

4
12

+ 1) ≈ 2116.6.

4 Conclusion

In this paper, we proposed a new impossible differential attack on 12–round
Camellia–128 without the FL/FL−1 functions. The attack uses a previously
known 8–round impossible differential to retrieve the whole of the master key.
The proposed attack exploits the redundancy in the key schedule of Camellia–
128 to reduce the complexity. In this attack also we use the strategy of moving
between the additional rounds in a zigzag path to accelerate the filtration of
wrong pairs for each key guesses. Using these techniques along with a hash table
to simplify the selection of proper pairs, the proposed attack requires about 2116.3

New Results on Impossible Differential Cryptanalysis 293

plaintexts, and has a time complexity equivalent to about 2116.6 encryptions.
Our attack is the first successful impossible differential attack on 12 rounds of
Camellia–128.

References

1. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: a 128-bit Block Cipher Suitable for Multiple Platforms-Design and
Analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
39–56. Springer, Heidelberg (2001)

2. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Specification of Camellia – a 128-bit Block Cipher. version 2.0 (2001),
http://info.isl.ntt.co.jp/crypt/eng/camellia/specifications.html

3. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

4. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

5. CRYPTREC – Cryptography Research and Evaluation Committees, report,
Archive (2002), http://www.ipa.go.jp/security/enc/CRYPTREC/index-e.html

6. Duo, L., Li, C., Feng, K.: Square Like Attack on Camellia. In: Qing, S., Imai, H.,
Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 269–283. Springer, Heidelberg
(2007)

7. Hatano, Y., Sekine, H., Kaneko, T.: Higher Order Differential Attack of Camellia
(II). In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 129–146.
Springer, Heidelberg (2003)

8. He, Y., Qing, S.: Square Attack on Reduced Camellia Cipher. In: Qing, S.,
Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 238–245. Springer,
Heidelberg (2001)

9. International Standardization of Organization (ISO), International Standard -
ISO/IEC 18033-3, Information technology - Security techniques - Encryption al-
gorithms - Part 3: Block ciphers (July 2005)

10. Kanda, M., Matsumoto, T.: Security of Camellia against Truncated Differential
Cryptanalysis. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 119–137.
Springer, Heidelberg (2002)

11. Kawabata, T., Kaneko, T.: A Study on Higher Order Differential Attack of Camel-
lia. In: The 2nd open NESSIE workshop (2001)

12. Knudsen, L.R.: DEAL – a 128-bit Block Cipher. Technical report, Department of
Informatics, University of Bergen, Norway (1998)

13. Lee, S., Hong, S., Lee, S., Lim, J., Yoon, S.: Truncated Differential Cryptanalysis
of Camellia. In: Kim, K.-c. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 32–38. Springer,
Heidelberg (2002)

14. Lei, D., Chao, L., Feng, K.: New Observation on Camellia. In: Preneel, B., Tavares,
S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 51–64. Springer, Heidelberg (2006)

15. Lu, J.: Cryptanalysis of Block Ciphers. PhD Thesis, Department of Mathematics,
Royal Holloway, University of London, England (2008)

16. Lu, J., Kim, J., Keller, N., Dunkelman, O.: Improving the Efficiency of Impossible
Differential Cryptanalysis of Reduced Camellia and MISTY1. In: Malkin, T.G.
(ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 370–386. Springer, Heidelberg (2008)

http://info.isl.ntt.co.jp/crypt/eng/camellia/specifications.html
http://www.ipa.go.jp/security/enc/CRYPTREC/index-e.html

294 H. Mala et al.

17. NESSIE – New European Schemes for Signatures, Integrity, and Encryption, final
report of European project IST-1999-12324. Archive (1999),
https://www.cosic.esat.kuleuven.be/nessie/Bookv015.pdf

18. NTT Information Sharing Platform Laboratories: Internationally Standardized
Encryption Algorithm from Japan“Camellia”,
http://info.isl.ntt.co.jp/crypt/camellia/dl/Camellia20061108v4_eng.pdf

19. Shirai, T.: Differential, Linear, Boomerang and Rectangle Cryptanalysis of
Reduced-Round Camellia. In: Proceedings of 3rd NESSIE workshop (November
2002)

20. Sugita, M., Kobara, K., Imai, H.: Security of Reduced Version of the Block Cipher
Camellia against Truncated and Impossible Differential Cryptanalysis. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 193–207. Springer, Heidelberg
(2001)

21. Wu, W., Feng, D., Chen, H.: Collision Attack and Pseudorandomness of Reduced-
Round Camellia. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS,
vol. 3357, pp. 252–266. Springer, Heidelberg (2004)

22. Wu, W., Zhang, L., Zhang, W.: Improved Impossible Differential Cryptanalysis of
Reduced-Round Camellia. In: Avanzi, R., Keliher, L., Sica, F. (eds.) SAC 2008.
LNCS, vol. 5381, pp. 442–456. Springer, Heidelberg (2009)

23. Wu, W., Zhang, W., Feng, D.: Impossible Differential Cryptanalysis of Reduced-
Round ARIA and Camellia. Journal of Computer Science and Technology 22(3),
449–456 (2007)

24. Yeom, Y., Park, S., Kim, I.: On the security of Camellia against the Square attack.
In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 89–99. Springer,
Heidelberg (2002)

https://www.cosic.esat.kuleuven.be/nessie/Bookv015.pdf
http://info.isl.ntt.co.jp/crypt/camellia/dl/Camellia20061108v4_eng.pdf

Format-Preserving Encryption

Mihir Bellare1, Thomas Ristenpart1, Phillip Rogaway2, and Till Stegers2

1 Dept. of Computer Science & Engineering, UC San Diego, La Jolla, CA 92093, USA
2 Dept. of Computer Science, UC Davis, Davis, CA 95616, USA

Abstract. Format-preserving encryption (FPE) encrypts a plaintext of
some specified format into a ciphertext of identical format—for example,
encrypting a valid credit-card number into a valid credit-card number.
The problem has been known for some time, but it has lacked a fully
general and rigorous treatment. We provide one, starting off by formally
defining FPE and security goals for it. We investigate the natural ap-
proach for achieving FPE on complex domains, the “rank-then-encipher”
approach, and explore what it can and cannot do. We describe two fla-
vors of unbalanced Feistel networks that can be used for achieving FPE,
and we prove new security results for each. We revisit the cycle-walking
approach for enciphering on a non-sparse subset of an encipherable do-
main, showing that the timing information that may be divulged by cycle
walking is not a damaging thing to leak.

1 Introduction

Background. During the last few years, format-preserving encryption (FPE)
has emerged as a useful tool in applied cryptography. The goal is this: under
the control of a symmetric key K, deterministically encrypt a plaintext X into
a ciphertext Y that has the same format as X . Examples include encryption
of US social security numbers (SSNs), credit card numbers (CCNs) of a given
length, 512-byte disk sectors, postal addresses of some particular country, and
jpeg files of some given length. In our formalization of FPE, the format of a
plaintext X will be a name N describing a finite set XN over which the encryption
function induces a permutation. For example, with SSNs this is the set of all
nine-decimal-digit numbers.

The FPE goal is actually quite old. For one thing, a blockcipher itself can be
seen as one kind of FPE: each N -bit string, where N is the block size, is mapped
to some N -bit string. But what makes FPE an interesting and powerful idea is
that the notion reaches far beyond blockciphers, which normally encipher strings
of some one, convenient length.

Some prior work. In FIPS 74 (1981) [27], a DES-based approach is de-
scribed to encipher strings over some fixed alphabet, say the decimal digits
D = {0, 1, . . . , 9}. Each plaintext X ∈ DN would be mapped to a ciphertext
Y ∈ DN . Here each plaintext X ∈ D∗ has a unique format N = |X | and we must
encipher X relative to the set XN = DN .

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 295–312, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

296 M. Bellare et al.

Brightwell and Smith (1997) [6] considered a more general scenario, identify-
ing what they termed datatype-preserving encryption. They wanted to encrypt
database entries of some particular datatype without disrupting that datatype.
A field containing an SSN (a nine-digit decimal string) should get mapped to
another SSN. The authors colorfully explain the difficulty of doing this, saying
that, with conventional encryption schemes, a “Ciphertext . . . bears roughly the
same resemblance to plaintext . . . as a hamburger does to a T-bone steak. A
social security number, encrypted using the DES encryption algorithm, not only
does not resemble a social security number but will likely not contain any num-
bers at all” [6, p. 142]. The authors provide a proposed solution, though, as with
FIPS 74, definitions or proofs for it are not likely or claimed.

Black and Rogaway [4] provided a provable-security investigation of a special
case of FPE, asking how to make a cipher E : K × X → X with an arbitrary
domain X. Their solutions focused on X = ZN , the integers {0, 1, . . . , N − 1}.
The authors offer no general definition for FPE but they clearly intend that
ciphers with domains of ZN be used to construct schemes with other domains,
like the set of valid CCNs of a given length.

The term format-preserving encryption is due to Terence Spies, Voltage Se-
curity’s CTO [40]. Voltage, Semtek and other companies have been active in
productizing FPE and explaining its utility [39]. FPE can enable a simpler mi-
gration path when encryption is added to legacy systems and databases, as
required, for example, by the payment-card industry’s data security standard
(PCI DSS) [34]. Use of FPE enables upgrading database security in a way trans-
parent to many applications, and minimally invasive to others. Spies has gone on
to submit to NIST a proposed mechanism, FFSEM, that combines cycle walking
and an AES-based balanced Feistel network [41].

Syntax. The current paper aims to help cryptographic theory “catch up” with
cryptographic practice in this FPE domain. We initiate a general treatment
of the problem, doing this within the provable-security tradition of modern
cryptography.

We begin with a very general definition for FPE. Unlike a conventional cipher,
an FPE scheme has associated to it a collection of domains, {XN}N∈N. We call
each XN a slice (the overall domain is their union, X =

⋃
N XN). The set N is

the format space. For every key K, format N , and tweak T the FPE scheme E
names a permutation EN,T

K on XN . We are careful to make FPEs tweakable [20]
because, in this context, use of a tweak can significantly enhance security.

Returning to the CCN example, suppose we want to do FPE of CCNs with a
zero Luhn-checksum [18]. Let’s assume that the map should be length-preserving
and that the possible lengths range from 12 to 19 decimal digits. Then we could
let N = {12, . . . , 19} and let XN be the set of all N -digit numbers X such that
LuhnOK(X) is true. Now an FPE scheme E with slices {XN}N∈N does the job.
You encrypt CCN X with key K and tweak T by letting Y = EN,T

K (X), where
N = len(X).

Format-Preserving Encryption 297

Security notions. We define multiple notions of security for FPE schemes.
Our strongest adapts the traditional PRP notion to capture the idea that FPE
is a good approximation for a family of uniform permutations on the slices.
Our weaker notions are denoted SPI, MP, and MR. SPI (single-point indistin-
guishability) is a variant of the PRP notion in which there is a only a single
challenge point. MP (message privacy) lifts semantic security to the FPE set-
ting by adapting earlier notions of deterministic encryption [3,5]. MR (message
recovery) formalizes an adversary’s inability to recover a challenge message, in
its entirety, from the message’s ciphertext. All of these notions can be made with
respect to an adaptive or nonadaptive adversary, and can also be strengthened
to allow chosen-ciphertext attacks (for PRP, this would result in what is called
a strong PRP).

Why bother with SPI, MP, and MR when they are implied by PRP? SPI
is useful because it is easy to work with and implies MP and MR with a tight
bound. MP and MR are interesting because they, even in their nonadaptive form,
are what an application will most typically need. An attack against the PRP
notion may be no threat in practice, and achieving good PRP security may be
overkill. Good concrete security bounds become particularly a focus when slices
are small: a bound permitting q ≈ 2n/4 queries provides limited assurance when
n = 20 bits.

Constructions. We next investigate the construction of FPE schemes. Suppose
we wish to build an FPE scheme E with a complex specification—the slices {XN}
on which it should encipher. A natural approach is to arbitrarily number the
points in each XN , say XN = {X0, X1, . . . , Xn−1} where n = |XN |. Then, to
encipher X ∈ XN , find its index i in the enumeration, encipher i to j in Zn,
and then return Xj as the encryption of X . We call this strategy the rank-
then-encipher approach. It’s the obvious, one could say folklore, approach. To
implement it, we need an integer FPE that can encipher on Zn for any needed n,
as well a ranking function, rank, that maps each (N, X) with X ∈ XN to a point
in Zn with rank(N, ·) : XN → Zn a bijection for all N ∈ N.

We will show how to build ranking functions for any FPE problem whose
domain is a regular language (the slices being strings of each possible length).
This includes many practical problems. This can be extended to domains that
are context-free languages having unambiguous grammars.

Our starting point for building integer FPEs is the construction of Black and
Rogaway [4], which combines a generalization of an unbalanced Feistel network
(the left and right hand side are numbers in Za and Zb rather than strings) and a
technique the authors call cycle walking, a method apparently going back to the
rotor machines of the early 1900’s [37]. We extend their work to handle multiple
slices with the same key, and to incorporate tweaks.

The type of unbalanced Feistel network that was extended in [4] is the type due
to Lucks [22]. It is not the only kind of unbalanced Feistel network. An equally
natural possibility is the unbalanced Feistel design of Schneier and Kelsey [36].
Extended to ZN where N = ab, we call this a type-1 Feistel, as opposed to the
type-2 unbalanced Feistel network of [4,22]. Our FPE schemes FE1 and FE2,

298 M. Bellare et al.

based on type-1 and type-2 unbalanced Feistel networks, comprise a flexible,
efficient, and customizable means for enciphering domains ZN where N = ab is
the product of integers greater than one. Its round function can be based, for
example, on AES. Combining FE1 or FE2 with the rank-then-encipher approach
lets one achieve FPE in a wide variety of contexts.

Security. Ideally, we would like to prove good bounds on the strong-PRP
security for FE1 and FE2, assuming the round function to be a good PRF.
But we run into a limitation, namely that the proven strength of Feistel ci-
phers [4,21,24,26,28,29,30,31,32,33], in terms of quality of bounds, falls short of
what is wanted, and what appears to be the actual strength of the techniques.
We address this in a couple of ways.

First, proofs have always targeted PRP. Instead, we target MP and MR,
thereby getting better bounds more easily. We prove that FE2 with only three
rounds hides all partial information with respect to a nonadaptive chosen-
plaintext attack: one achieves nonadaptive SPI, MP, and MR security with rea-
sonable bounds. Even then, we feel that being guided purely by what can be
proved would lead to an overly quite pessimistic security estimate. The most
realistic picture may be obtained by also assessing resistance to attacks. We
consider known attacks and discuss their implications for our parameter choices
(principally the number of rounds). We also provide a novel attack against (heav-
ily) unbalanced type-2 Feistel networks, one that achieves message recovery with
success probability exponentially small in the number of rounds. The attack is
damaging if the number of rounds is too small.

Finally, reaching beyond PRP/SPI/MP/MR security, we consider a particular
kind of side-channel attack. The use of cycle-walking in the rank-then-encipher
approach raises the fear of timing attacks: might the number of times one has to
apply the underlying cipher leak adversarially valuable information? We prove
that cycle-walking will not, on its own, give rise to timing attacks. This is because
the correct distribution on the number of iterations of the cipher on any input
can be computed by a simulator that does not attend to the inputs. Due to space
constraints, we present this result in the full version only [1].

The future. We expect FPE to be increasingly deployed. The complex systems
that process financial transactions impose a powerful legacy constraint. Using
classical blockcipher-based modes would require far larger changes to these sys-
tems, which is costly and error-prone. FPE can be realized by simple, AES-based
modes of operation, avoiding the need to design and review any fundamentally
new primitive. Besides the enciphering of database fields, FPE may prove use-
ful in networking applications, allowing datagrams to have their fields protected
without changing their format. What one might lose in security when employing
a deterministic encryption scheme can often be erased by sensibly tweaking the
FPE scheme [20]. Moreover, such loss of security may be entirely overshadowed
by the reduced need for random bits and disruption in infrastructure, protocols,
and code.

Format-Preserving Encryption 299

2 FPE Syntax

Syntax. A scheme for format-preserving encryption (FPE) is a function E : K×
N × T × X → X ∪ {⊥} where the sets K, N, T , and X are called the key
space, format space, tweak space, and domain, respectively. All of these sets are
nonempty and ⊥ 	∈ X. We write EN,T

K (X) = E(K, N, T, X) for the encryption
of X with respect to key K, format N , and tweak T . We require that whether
or not EN,T

K (X) = ⊥ depends only on N, X and not on K, T , and let

XN = {X ∈ X : EN,T
K (X) ∈ X for all (K, T) ∈ K× T }

be the N -indexed slice of the domain. We demand that a point X ∈ X live in at
least one slice, X ∈ XN for some N (if X is in no slice it should not be included
in E’s domain). We demand that there be finitely many points in each slice,
meaning XN is finite for all N ∈ N. We require that EN,T

K (·) be a permutation
on XN for any (K, T) ∈ K × T . Its inverse D : K × N × T × X → X ∪ {⊥}
is defined by DN,T

K (Y) = D(K, N, T, Y) = X if EN,T
K (X) = Y . In summary,

an FPE enciphers the points within each of the (finite) slices that collectively
comprise its domain.

A practical FPE scheme E : K×N×T ×X→ X∪ {⊥} must be realizable by
efficient algorithms: an algorithm E to encrypt, an algorithm D to decrypt, and
an algorithm to sample uniformly from the key space K. Thus K, N, T , and X

should consist of strings or points easily encoded as strings, and E and D should
return ⊥ when presented a point outside of K×N× T ×X. We will not draw
any distinction between an integer element of X , say, and a string that encodes
such a point.

The format of a point. Let E : K × N × T × X → X ∪ {⊥} be an FPE
scheme. Then we can speak of X ∈ X as having format N if X ∈ XN . One could
associate to E a format function ϕ : X→ P(N) \ {∅} that maps each X ∈ X to
its possible formats; formally, ϕ(X) = {N ∈ N : X ∈ XN}.

Note that, under our definitions, a point may have multiple formats. But often
this will not be the case: each X ∈ X will belong to exactly one XN . In that case
we can regard the format function as mapping ϕ : X→ N and interpret ϕ(X) as
the format of X . FPE is somewhat simpler to understand for such unique-format
FPEs: you can examine an X and know from it the slice Xϕ(X) on which you
mean to encipher it. For a unique format FPE one can write ET

K(X) rather than
EN,T

K (X) since N is determined by X .

Specifications. An FPE problem, as needed by some application, will specify
the desired collection of slices, {XN}N∈N. It will also specify the desired tweak
space T . Typically it is easy to support whatever tweak space one wants, but it
may be quite hard to support a given collection of slices {XN}N∈N (indeed it may
be hard to accommodate a single slice, depending on what it is). We therefore call
the collection of slices {XN}N∈N the specification for an FPE scheme. We will
write X = {XN}N∈N for a specification, only slightly abusing notation because
the domain X is the union of slices in {XN}N∈N. The question confronting the

300 M. Bellare et al.

cryptographer is how to design an FPE scheme with a given specification. We
now provide some example possibilities.

Examples. (1) AES-128 can be regarded as an FPE with a single slice, {0, 1}128.
The key space is K = {0, 1}128 and the format space and tweak space are
trivial (have size one). (2) To encipher 16-digit decimal numbers, take X =
{0, 1, . . . , 9}16 and just the one slice. (3) To encipher 512-byte disk sectors using
an 8-byte sector index as the tweak, let X = {0, 1}4096, T = {0, 1}64, and just the
one slice. (4) Suppose you want to encipher CCNs of 12–19 digits with a proper
Luhn checksum, the ciphertext having the same length as the plaintext. Then
the specification could be X = {XN}N∈N where N = {12, 13, . . . , 18, 19} and XN

is the set of all strings X ∈ {0, 1, . . . , 9}N satisfying the predicate LuhnOK(X).
Here |XN | = 10N−1. (5) One nice FPE has slices that are {0, 1}N for each
N ≥ 0. It allows length-preserving encryption of any binary string. (6) One can
FPE rather unusual spaces. For example, slice XN could encode all N -vertex
graphs. Or XN could be all valid C-programs on N bytes. Designing an efficient
FPE with this specification might be impossible. All of the examples just given
are unique-format FPEs. The following example is not.

Integer FPEs. The specification for a particularly handy kind of FPE is the
following. The slices are XN = ZN , for N ∈ N ⊆ N. This allows enciphering
natural numbers with respect to any permitted modulus N . Assuming the tweak
space is similarly rich, say T = {0, 1}∗, we call such scheme an integer FPE.
When used within the rank-then-encipher paradigm, integer FPEs enable the
construction of FPEs with quite complex specifications.

3 FPE Security Notions

Games. Our definitions and proofs use code-based games [2], so we first review
that material. A game has an Initialize procedure, an optional Finalize pro-
cedure, and any number of additional procedures. A game G is executed with
an adversary A as follows. First, Initialize executes, possibly returning an out-
put s, and then A(run, s) is run (s = ε if Initialize returns no string). As A
executes it may call any procedure G (but not Initialize or Finalize) provided
by G. If there is no Finalize procedure, the output of A is the output of the
game. If the game does specify a Finalize, then, when A terminates, A’s output
is Finalize’s input and the game’s output is that of Finalize. Game procedures
may call A(identifier[, x]), which invokes an instance of the caller with distinct
coins for each distinct identifier. Conceptually, then, each identifier thus names
a separate adversarial algorithm. State is not shared among them. Let GA ⇒ y
denote the event that the game outputs y. We write S ∪← x as shorthand for
S←S ∪ {x}. Later we write c

+← d for c← c + d.
Boolean variables, including bad, are silently initialized to false, set vari-

ables to ∅, integer variables to 0. Games G and H are said to be identical-
until-bad if their code differs only in the sequel of statements that first set
bad to true. We say that “GA sets bad ” for the event that game G, when

Format-Preserving Encryption 301

executed with adversary A, sets bad to true. If G, H are identical-until-bad
and A is an adversary then Pr

[
GA sets bad

]
= Pr

[
HA sets bad

]
. It is also

standard (“the fundamental lemma”) that if G, H are identical-until-bad then
Pr
[
GA ⇒ y

]− Pr
[
HA ⇒ y

] ≤ Pr
[
GA sets bad

]
.

Security notions. We will extend the standard PRP notion to our setting, but
we will also describe notions weaker than it, because they can be achieved with
better proven concrete security for the same efficiency and, at the same time,
they suffice for typical applications. Coming at it from the latter perspective, the
most basic and often sufficient requirement is security against message recovery
(MR), under either an adaptive or nonadaptive attack. We define this as well as
a stronger notion of message privacy (MP) that requires that partial information
about the message is not leaked by the ciphertext. We also consider a weakening
of the PRP notion that we call SPI. The reason for considering this notion is
that it is simpler than MP and MR to work with yet implies them; at the same
time, it can be achieved with better concrete security bounds than we currently
know how to get for the ordinary PRP notion.

In the following let E : K × N × T × X → X ∪ {⊥} be an FPE scheme.
We consider the games in Figure 1. It is assumed that any query of the form
(N, T, X) satisfies N ∈ N, X ∈ XN , and T ∈ T .

PRP security. The standard notion of PRP security is extended to FPE schemes
via game PRPE and the corresponding adversary advantage is

Advprp
E (A) = 2 · Pr

[
PRPA

E ⇒ true
]− 1 .

In the game Perm(XN) is the set of all permutations on XN .

SPI security. Single-point indistinguishability (SPI) requires that the adversary
be unable to distinguish between the encryption of a single chosen message or
a random range point, even when given adaptive access to a true encryption
oracle. The formalization is based on game SPIE . An adversary A is allowed
to make only a single Test query, and this must be its first oracle query. Its
associated advantage is

Advspi
E (A) = 2 · Pr

[
SPIAE ⇒ true

]− 1 .

The SPI notion is closely related to (and inspired by) a definition originally
from [12], variants of which were also considered in [9,25]. It is easy to see that
PRP security implies SPI security, but there is an additive loss of q/M in the
advantage bound, where q is the number of queries by the adversary and M is the
minimum size of XN over all N ∈ N. This is perhaps unfortunate, but SPI is only
used as a tool anyway. A hybrid argument following [9,12] shows that SPI security
likewise implies PRP security. Here, Advspi

E (A) ≤ q ·Advprp
E (B) + q2/M where

q is the number of Enc queries of starting prp adversary A, and constructed spi
adversary B makes q − 1 Enc queries.

Message recovery. An FPE scheme secure against message recovery is one for
which an adversary is unable to recover plaintexts from ciphertexts, even given an
encryption oracle and a favorable distribution of plaintexts, formats, and tweaks.

302 M. Bellare et al.

Initialize
b

$←{0, 1} ; K
$←K

for (N, T) ∈ N × T
do πN,T

$←Perm(XN)

Enc(N, T, X)
if b = 1 then ret EN,T

K (X)
if b = 0 then ret πN,T (X)

Finalize(b′) //Game PRPE

ret (b = b′)

Initialize
b

$←{0, 1} ; K
$←K

Enc(N, T, X)
if (N, T, X)∈S then

ret ⊥
S ∪← (N, T, X)
ret EN,T

K (X)

Test(N∗, T ∗, X∗)
if (N∗, T ∗, X∗)∈S then

ret ⊥
S ∪← (N∗, T ∗, X∗)
if b = 1 then

Y ∗ ←EN∗,T∗
K (X∗)

else Y ∗ $←XN∗

ret Y ∗

Finalize(b′) //Game SPIE
ret (b = b′)

Initialize
K

$←K

(N∗, T ∗, X∗) $←A(dist)
Y ∗ ←EN∗,T∗

K (X∗)
ret (N∗, T ∗)

Enc(N, T, X)
ret EN,T

K (X)

Eq(X)
ret (X = X∗)

Test //Game MPE

ret Y ∗

Finalize(Z)
ret (Z = A(func, X∗))

Initialize

K
$←K

(N∗, T ∗, X∗) $←A(dist)
Y ∗ ←EN∗,T∗

K (X∗)
ret (N∗, T ∗)

Enc(N, T, X)
ret EN,T

K (X)

Eq(X)
ret (X = X∗)

Test //Game MRE

ret Y ∗

Finalize(X)
ret (X = X∗)

Fig. 1. Games used for defining FPE security notions SPRP, PRP, SPI, MP, and MR.
Procedure A, invoked by games MP and MR, denotes the caller of the game.

If the encryption were randomized we would require that the target ciphertext Y ∗

and encryption oracle EK be of no use in recovering the plaintext, but this is
too much to ask for with a deterministic encryption scheme, as an adversary can
always encrypt candidate messages X1, . . . , Xq to ciphertexts Y1, . . . , Yq and,
if Yi = Y ∗ for some i, it will know that the target plaintext is X∗ = Xi.
Our security definition will formalize that this attack is (up to the adversary’s
advantage) the best one possible.

The idea is formalized as game MRE in Figure 1. An MR-adversary A must
begin with a Test query and have QTest(A) = 1 and QEq(A) = 0, while a simu-
lator S for A is an adversary that has S(dist) = A(dist), QTest(S) = QEnc(S) = 0
and QEq(S) = QEnc(A). Here QProc(C) is the maximum number of calls that
adversary C might make to procedure Proc, the maximum over all coins of C and
all possible oracle responses. The MR-advantage of adversary A is then defined
as

Advmr
E (A) = Pr

[
MRA

E ⇒ true
]− pA

where pA = maxS Pr
[
MRS

E ⇒ true
]

with the maximum over all simulators S
for A. Translating our formalism into English, an adversary making a Test query

Format-Preserving Encryption 303

and some number of Enc-queries could do just as well forgoing its Test query
and trading its Enc queries for Eq queries.

In our experiment defining pA it is easy to see what strategy an optimal S
should use: it makes q Eq-queries, X1, . . . , Xq, where X1 is a most likely point
output by A(dist) for the known (N∗, T ∗); X2 is a second most likely point
(X2 	= X1); X3 is a third most likely point (X3 	∈ {X1, X2}); and so on. If
the Eq-oracle returns true for some Xi then S calls Finalize(Xi); otherwise,
it calls Finalize(Xq+1) where Xq+1 /∈ {X1, . . . , Xq} is the next most likely
point after Xq. In this way S will win with probability pA =

∑q+1
i=1 pi where

pi = Pr[A(dist)⇒(N, T, Xi) | (N, T) = (N∗, T ∗)].

Message privacy. In message privacy we are trying to measure the ability of an
adversary with an encryption oracle to compute some function of a challenge
plaintext X∗ from its encryption C∗. If the encryption is randomized we would
require that the challenge ciphertext C∗ is of no use in such an attack. The
formalization of this is semantic security [13]. For deterministic encryption, the
intuition we aim to capture is that the adversary should do no better than it
could if the encryption were ideal. In this case, the encryption oracle provides no
more than the capability of testing whether a message of the adversary’s choice
equals the challenge message.

Our formalization closely resembles that for MR. A difference is that A is
asked not only to come up with the distribution on plaintexts, but also the func-
tion on which it hopes to do well. See game MP in Figure 1. An MP-adversary
A must begin with a Test query and have QTest(A) = 1 and QEq(A) = 0, while
a simulator S for A is an adversary that has S(dist) = A(dist), QTest(S) =
QEnc(S) = 0, QEq(S) = QEnc(A) and S(func) = A(func). The advantage of A is
defined as

Advmp
E (A) = Pr

[
MPA

E ⇒ true
]− pA

where pA = maxS Pr
[
MPS

E ⇒ true
]

with the maximum over all simulators S
for A. Translating our formalism into English, an adversary making a Test
query and some number of Enc-queries could do just as well in guessing Z =
A(func, X∗) forgoing its Test query and trading its Enc queries for Eq queries.
Note that MR-security amounts to a special case of MP-security where the
function A(func, ·) is the identity function.

Relations between notions. One can pictorially describe the relationships
between our four security notions like this:

PRP SPI MP MR

The solid arrows indicate tight implications and the broken arrows indicate lossy
ones. We already noted the implications between PRP and SPI above. These can
be shown to be the best possible, with the counter-example in the first case be-
ing a perfect FPE scheme and in the second case following [9]. We also noted
that MP tightly implies MR. The non-obvious implication is that SPI tightly

304 M. Bellare et al.

implies MP, and is proved below. Finally, MP does not imply SPI, and MR does
not imply MP. For the former separation, consider an FPE scheme that has a
fixed point for all keys; for the latter separation, consider an FPE that always
leaks a single bit of the plaintext. The proof of the following is given in the full
version [1].

Proposition 1. [SPI ⇒ MP] Let E : K×N×T ×X → X ∪ {⊥} be an FPE
scheme and let A be an MP adversary. Then there is an SPI adversary B such
that Advmp

E (A) ≤ Advspi
E (B). In addition, adversary B runs in time that of A

and QEnc(B) = QEnc(A). �

Nonadaptive security, strong security. We expect that nonadaptive ad-
versaries (the “static” security setting) are sufficient for many applications of
FPE—the constructed scheme is not so much a tool as an end. We consider
the class of static adversaries S. An adversary A ∈ S, on input run, decides at
the beginning of its execution the sequence of queries it will ask, their number
and their kind being fixed. The relations between the non-adaptive notions of
security remain the same as for their adaptive counterparts as described above.

In the other direction, the notions can be strengthened to require CCA-
security. This is done by adding to the games a decryption procedure. In the PRP
case, procedure Dec(N, T, Y) would return DN,T

K (Y) if b = 1 and π−1
N,T (Y) oth-

erwise, where D = E−1 denotes the inverse of E, as defined earlier. The resulting
notion is the FPE analog of what is sometimes called strong-PRP (SPRP). In
the games for SPI, MP and MR, Dec(N, T, Y) would return DN,T

K (Y). The ad-
versary is not allowed to call it on inputs N∗, T ∗, Y ∗ and the simulator is not
allowed to call it at all.

Asymptotic notions. We can adapt our definitions to the asymptotic setting.
We illustrate this for PRP-security. Recall first that, in speaking of complexity,
we assume that K, E, and D are all given by algorithms. Also, algorithm K took
no input. We must slightly adjust the syntax of our FPE schemes. In particular,
we provide K an input of the form 1k. The algorithm must run in probabilistic
polynomial time. Algorithm E and its inverse D must run in deterministic poly-
nomial time in the sum of their input lengths. We then say that E is PRP-secure
if, for any PPT adversary A, the function ε(k) = Advprp

E (A(1k)) is negligible,
meaning ε(k) ∈ k−ω(1). We emphasize that it is the key K output by K that,
presumably, grows with the security parameter k; the specification X = {XN}
does not grow with or otherwise depend on the security parameter.

4 The Rank-then-Encipher Approach

The idea. Suppose we want to build an FPE scheme E the slices of which
may be quite complex. As an example, we might want to do length-preserving
encryption of credit cards of various lengths, the CCNs of each length hav-
ing a particular checksum and satisfying specified constraints on allowable sub-
strings. It would be undesirable to design an encryption schemes whose internal

Format-Preserving Encryption 305

workings were tailored to the specialized task in hand. Instead, what one can
do is this. First, arbitrarily order and then number the points in each slice,
XN = {X0, X1, . . . , Xn−1} where n = |XN |. Then, to encipher X ∈ XN , find its
index i in the enumeration, encipher i to j in Zn using an integer FPE scheme,
and then return Xj as the encryption of X . We call this strategy the rank-then-
encipher approach. The method will be efficient if there is an efficient way to
map each point X to its index i, to encipher i to j, and to map j back to the
corresponding point Xj. Details now follow, attending more closely to formats
and tweaks, and also allowing the enumeration used for mapping j to Xj to
differ from that used for ranking.

Definitions. To formalize RtE encryption, we first define a ranking and an
unranking function for a specification X = {XN}. A ranking function is a map
rank : N×X→ N∪{⊥} for which rankN (·) = rank(N, ·) is a bijection from XN to
Z|XN |. In addition, rankN (X) = ⊥ if N 	∈ N or X 	∈ XN . An unranking function
is a map unrank : N × N → X ∪ {⊥} for which unrankN (·) = unrank(N, ·) is a
bijection from Z|XN | to XN . In addition, unrankN (i) = ⊥ if i 	∈ Z|XN |.

For the asymptotic tradition, we say that a specification X = {XN} can
be efficiently ranked if there are (deterministic) polynomial-time computable
ranking and unranking functions for X = {XN}. Polynomiality is in the sum
of the input lengths. Note that the security parameter is not an input to the
ranking or unranking functions, but it is already built in that larger slices may
take more time to rank and unrank, as the input to these functions includes the
format N .

The scheme. Suppose one aims to create an FPE scheme E with specification
X = {XN}N∈N. Let the desired tweak space for E be the set T . Let N0 =
{|XN | : N ∈ N} ⊆ N be the sizes of the different slices. Then we can construct
our desired FPE scheme E if we have in hand: (1) an integer FPE scheme E : K×
N0×{0, 1}∗ → N (it enciphers points in Zn for each n ∈ N0), and (2) a ranking
function rank and an unranking function unrank for X = {XN}N∈N. Given such
objects, define E = RtE[E, rank, unrank] as the map E : K×N×T ×X→ X∪{⊥}
with

EN,T
K (X) = unrankN (E|XN |,〈N,T 〉

K (rankN (X)))

when X ∈ XN , and EN,T
K (X) = ⊥ otherwise. We call this rank-then-encipher

approach. In words: convert the N -formatted string X to its corresponding num-
ber i; encipher i ∈ Z|XN | to some j ∈ Z|XN |, employing a tweak that encodes
both the format N of X and the tweak of E ; finally, convert j back to a domain
point in Y ∈ XN using a possibly unrelated enumeration of points.

We will omit formalizing and proving the rather obvious statements that,
if E is secure with respect to the strong-PRP, PRP, SPI, MP, or MR notion
of security, then so too will be the FPE scheme E = RtE[E, rank, unrank], the
reduction being tight and having time complexity that is approximately the sum
of the times to perform the ranking and unranking.

306 M. Bellare et al.

By way of the rank-then-encipher approach, one can take an integer FPE
(based, e.g., on the techniques described in [4]) and create from it an FPE with
a quite intricate specification X = {XN}N∈N.

For many specifications the needed ranking and unranking functions are sim-
ple to design and fast to compute: an ad hoc approach will work fine. But what
can one say in general about the power of the rank-then-encipher FPE approach?
We now turn our attention to this.

5 FPE for Arbitrary Regular Languages

The problem. Let Σ be a (finite) alphabet and let L ⊆ Σ∗ be a language over
it. We say that an FPE scheme E : K×N×T ×X→ X∪{⊥} is an FPE scheme
for L if X = L, N = N, and the slices are Xn = Ln = L ∩ Σn for all n ∈ N. In
this section we show how to build an FPE for an arbitrary regular language L
by describing how to compute a corresponding ranking and unranking function.

Why attend to regular languages? Many FPE specifications can be cast as
asking for an FPE for a regular language. This is trivially true when the domain
is finite. Some important domains are finite and without an easily summarized
structure; a domain like “a valid postal address” is likely to be defined by a
database such as the US Address Information System (AIS) and, given such
a database, ranking is easy. Other finite domains are large but have a concise
description as a regular language, either in terms of a regular expression or
a DFA. For example, a US social security number is a string in the regular
language (0 ∪ 1 ∪ · · · ∪ 9)9. Alternatively, one may subtract from this any set
of numbers that have not been assigned, such as those starting with an 8 or 9,
having 0000 as the last four digits, or having 00 as the preceding two digits, but
the resulting set will again have a concise description. For credit card numbers,
a simple 20-state DFA M recognizes the language LuhnR of strings that are
the reversals of numbers with a valid Luhn checksum [18]. Namely, the DFA is
M = (Q, Σ, δ, q0, F) with states Q = Z10 × Z2, final states F = {0} × Z2, start
state q0 = (0, 0), and transition rule δ((a, b), d) = (a+2d+a�d/5�mod 10, 1−b).
We will continue to use the M = (Q, Σ, δ, q0, F) syntax below, following the
convention of Sipser’s book [38].

Rank computation for regular languages. We will describe efficient
ranking and unranking functions for the specification X = {XM} where M is a
DFA and XM = L(M) is its language. First impose a total order a1 ≺ · · · ≺ a|Σ|
on the elements of the alphabet Σ = {a1, . . . , a|Σ|} and extend this to the lex-
icographic order ≺ on each Σn. For a ∈ Σ let ord(a) be the index i such that
a = ai and for every n ∈ N let the ranking function be given by rankL(X) =
|{Y ∈ L : |X | = |Y | = n and Y ≺ X}|. We omit the argument n = |X | because
it is determined by X . Assume we have an integer FPE scheme E. Provided
that we can efficiently compute each rankL(·) and its inverse unrankL(·), apply-
ing the RtE paradigm gives a practical FPE E = RtE[E, rankL, unrankL] with
E : K×N × T × L→ L ∪ {⊥}.

Format-Preserving Encryption 307

algorithm BuildTable(n)

for q ∈ Q do
if q ∈ F then T [q, 0]← 1

for i← 1, . . . , n do
for q ∈ Q do

for a ∈ Σ do
T [q, i] +← T [δ(q, a), i − 1]

algorithm rank(X)

q← q0 ; c← 0 ; n←|X|
for i← 1, . . . , n do

for j ← 1, . . . , ord(X[i]) − 1 do
c

+← T [δ(q, aj), n − i]
q← δ(q, X[i])

ret c

algorithm unrank(c)

X ← ε ; q ← q0 ; j ← 1
for i← 1, . . . , n do

while c ≥ T [δ(q, aj), n − i] do
c← c − T [δ(q, aj), n − i] ; j

+← 1
X[i]←aj ; q ← δ(q, x[i]) ; j ← 1

ret X

Fig. 2. Bottom left: Algorithm for computing the rank of a word in the regular
language L of a DFA M = (Q, Σ, δ, q0, F). Top: Initializing the table T . Each T [·, ·]
starts at zero. Bottom right: How to compute the inverse of the ranking function.

Let M = (Q, Σ, δ, q0, F) be a DFA recognizing the regular language L ⊆ Σ∗.
Let X [i] denote the i-th character of X ∈ Σ∗ (numbering from the left and
starting at 1). Extend δ to Q×Σ∗ so that δ(q, X) is the state we end up in by
starting from q and following X ∈ Σ∗. Formally, set δ(q, ε) = q for all q ∈ Q and
recursively define δ(q, x) = δ(δ(q, X [1] · · ·X [n− 1]), X [n]) for all q ∈ Q and all
X ∈ Σ∗ with n = |X | ≥ 1.

We compute the ranking function for M by dynamic programming, follow-
ing [11]. Let T [q, n] be the number of strings X ∈ Σn such that δ(q, X) ∈ F . The
first algorithm of Figure 2, on input n, uses dynamic programming to compute,
for all q ∈ Q and j ∈ [1 .. n], the number T [q, j] of accepting paths of length j
that start at q. The rank of a word in L can be computed based on T as shown
by the second algorithm in Figure 2. The third algorithm in the figure computes
the inverse, deriving a word in L by its rank. In the unit-cost model of compu-
tation, where arbitrary integer multiplications and additions are performed in
unit time, rankM and unrankM can be computed in O(|Σ| · n) time, while the
preprocessing step BuildTable(n) takes time O(|Q| · |Σ| · n) time.

We comment that ranking can be further sped up to require about n sums
instead of n|Σ| by precomputing the needed partial sums, adding a third coor-
dinate to T . The unranking function would need a binary search, or some other
method, to map a number into the corrected (precomputed) interval [0..β1),
[β1..β2), . . . , [βσ−1, βσ) that contains it, where σ = |Σ|. Regardless, ranking and
unranking are linear-time for any regular language L, with modest constants in
terms of the DFA representation of L.

On the importance of representations. It is important that we repre-
sented our regular language in terms of a DFA; had L been represented in terms
of an NFA or a regular expression, we could not have efficiently computed the

308 M. Bellare et al.

ranking and unranking functions. In particular, remember that it is NP-hard
(even PSPACE-hard) to decide if the language of an NFA M (or a regular ex-
pression α) is Σ∗ [10, #AL1], [14]. Consequently, if P 	= NP, we can’t compute
unrank(2n − 1) efficiently for all n, as such functionality would provide imme-
diate means to decide if L(M) = Σ∗. Formally, if P 	=NP then XM can’t be
efficiently ranked, where XM = L(M) is the language of the NFA M . Note,
however that this does not imply an inability to make an efficient FPE scheme
for this specification—it only means that such a scheme could not use the RtE
approach.

Ranking non-regular languages. Beyond regular languages, we can also
apply the RtE approach with Mäkinen’s ranking algorithm for the language
generated by an unambiguous context-free grammar [23]. Efficient ranking al-
gorithms exist for various other classes of combinatorial objects. For example,
if we wish to encrypt the domain Xn! consisting of the set of permutations on
n elements, the Lucas-Lehmer encoding [16] provides an efficient ranking. Other
examples are spanning trees of a graph [7], B-trees [19], and Dyck languages [17].
Efficient rankings have also been studied in coding theory, starting with [8].

Given the ease of ranking regular languages and beyond, it is natural to ask if
every language for which there is an efficient FPE scheme admits an RtE-style
one. In the full version [1] we show that the answer is no. More specifically,
we exhibit a specification X = {XN}N∈N where efficient FPE is possible but
efficient ranking is not.

6 Feistel-Based Integer FPEs

We present two Feistel-based constructions of integer FPE schemes E : K×N×
T × X → X ∪ {⊥} with format space N = N × N and X such that XN = Zab

for N = (a, b) with a ≤ b. Both are parameterized by the following: (1) a round
function F : K× N × T × N× N→ N; and (2) a function r : N→ N specifying
the number of rounds.

Figure 3 defines encryption and decryption for the two integer FPE schemes
FE1 and FE2. We refer to Feistel networks, such as FE1, that utilize the same
kind of round function every round as type-1. Type-1 Feistel networks were pre-
viously treated in [26,36] for the case of bit strings. We refer to Feistel networks,
such as FE2, that alternate the kind of round function as type-2. Type-2 Feistel
networks for the case of bit strings are due to Lucks [22]. Type-2 Feistel networks
with modular arithmetic were first used in [4].

Round functions. The round functions should be PRFs. It is not clear what
this means when the range is the infinite set N. To specify a round function,
we will first specify a range function w : N → N such that for all N ∈ N we
have w(N) ≥ b where N = (a, b). The PRF advantage of an adversary A is then
defined by

Advprf
F (A) = Pr

[
AF (K,·,·,·,·) ⇒ 1

]
− Pr

[
A$(·,·,·,·) ⇒ 1

]

Format-Preserving Encryption 309

algorithm FE1N,T
K (X)

(a, b)←N ; X0 ←X

for i = 1, . . . , r(N) do
Li−1 ←Xi−1 div b

Ri−1 ←Xi−1 mod b

Wi ←Li−1 +FK(N, T, i, Ri−1) mod a

Xi ← aRi−1 + Wi

ret Xr(N)

algorithm FD1N,T (Y)

(a, b)←N ; Yr(N) ←Y

for i = r(N), . . . , 1 do
Wi ←Yi mod a

Ri−1 ←Yi div b

Li−1 ←Wi−FK(N, T, i, Ri−1) mod a

Yi−1 ← aRi−1 + Zi

ret Y0

algorithm FE2N,T
K (X)

(a, b)←N

L0 ←X mod a ; R0 ←X div a

for i = 1, . . . , r(N) do
If i mod 2 = 1 then s← a else s← b

Li ←Ri−1

Ri ←Li−1 + FK(N, T, i, Ri−1) mod s

ret sLr(N) + Rr(N)

algorithm FD2N,T
K (Y)

(a, b)←N

If r(N) mod 2 = 1 then s← a else s← b

Rr(N) ←Y mod s ; L0 ←Y div s

for i = r(N), . . . , 1 do
If i mod 2 = 1 then s← a else s← b

Ri−1 ←Li

Li−1 ←Ri − FK(N, T, i, Ri−1) mod s

ret sR0 + L0

Fig. 3. Top: Encryption and decryption algorithms for the integer FPE scheme FE1
where K ∈ K, T ∈ T , F ∈ N, and X, Y ∈ XF . Here xdiv y is short-hand for �x/y�.
Bottom: Encryption and decryption algorithms for the integer FPE scheme FE2.

FK

L0 R0

1

FK

L1 R1

2

FK

L2 R2

3

L3 R3

L0 R0

L1 R1

L2 R2

L3 R3

1FK

FK

FK

2

3

Fig. 4. Diagrams of three rounds of FE1 (left) and FE2 (right) for format N =
(a, b) = (2n0 , 2n1) and input X ∈ Zab. For both mechanisms, L0, L1, L2, L3 ∈ Za and
R0, R1, R2, R3 ∈ Zb.

310 M. Bellare et al.

where A’s oracle in the second case returns a random point in Zw(N) in response
to a query F, T, i, X . Adversary A is not allowed to repeat an oracle query.

In cases of practical interest, we can build suitable round functions based on
block ciphers (e.g. 3DES or AES) or cryptographic hash functions (e.g. SHA-
256). In the full version [1] we detail example instantiations. We also discuss
there the use of precomputation for speed improvements (deriving from the fact
that several of the inputs to F are the same across all rounds).

Discussion. The round function takes as input the format and tweak, which
effectively provides “separate” instances of the cipher for each format, tweak
pair. To ensure independence between rounds, the round number is also input
into the PRF.

FE1 and FE2 support domains of the form Zab and only provide security
when a > 1. To handle arbitrary Zn one can choose N = (a, b) so that ab > N
and then utilize the cycle walking technique with FE1 or FE2 (see [4] for a
treatment). Alternatively, one might utilize the off-by-one construction (see [4])
to avoid cycle-walking. But for typical applications like the encryption of credit
card numbers, the requisite domains will be Zn for which n = ab for a and b
that are almost balanced.

Security of FE1,FE2. In the full version [1] we discuss in detail the security
of FE1 and FE2 in terms of best known attacks and proven security bounds.
Beyond prior results, we give a novel MR attack that breaks FE2 when it is used
with very unbalanced (a, b) and a relatively small number of rounds. We also
give novel provable SPI security bounds for both schemes, which by Proposition 1
establishes MP and MR security.

Acknowledgments

Rogaway thanks Terence Spies for many useful discussions, and for sparking
his interest in this topic. Rogaway and Stegers were supported by NSF grant
CNS 0904380. Bellare and Ristenpart thank Clay Mueller, Lance Nakamura and
Semtek for useful discussions and support.

References

1. Bellare, M., Ristenpart, T., Rogaway, P., Stegers, T.: Format-Preserving Encryp-
tion. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS,
vol. 5867, pp. 295–312. Springer, Heidelberg (2009)

2. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

3. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
definitional equivalences and constructions without random oracles. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008)

4. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.)
CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002)

Format-Preserving Encryption 311

5. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic en-
cryption, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

6. Brightwell, M., Smith, H.: Using datatype-preserving encryption to enhance data
warehouse security. In: 20th NISSC Proceedings, pp. 141–149 (1997),
http://www.csrc.nist.gov/nissc/1997

7. Colbourn, C., Day, R., Nel, L.: Unranking and ranking spanning trees of a graph.
Journal of Algorithms 10(2), 271–286 (1989)

8. Cover, T.: Enumerative source encoding. IEEE Transactions on Information The-
ory 19(1), 73–77 (1977)

9. Desai, A., Miner, S.: Concrete security characterizations of pRFs and pRPs: Reduc-
tions and applications. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976,
pp. 503–516. Springer, Heidelberg (2000)

10. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, New York (1979)

11. Goldberg, A., Sipser, M.: Compression and Ranking. In: 17th Annual ACM Sym-
posium on the Theory of Computing (STOC 1985), pp. 440–448. ACM Press, New
York (1985)

12. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Jour-
nal of the ACM 33(4), 792–807 (1986)

13. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

14. Hopcroft, J., Ullman, J.: Formal Languages and their Relation to Automata.
Addison-Wesley, Reading (1969)

15. Jerrum, M.: A very simple algorithm for estimating the number of k-colorings of
a low-degree graph. Random Structures and Algorithms 7(2), 157–165 (1995)

16. Knuth, D.: The Art of Computer Programming, 3rd edn. Seminumerical Algo-
rithms, vol. 2. Addison-Wesley, Reading (1997)

17. Liebehenschel, J.: Ranking and unranking of a generalized Dyck language and the
application to the generation of random trees. Séminaire Lotharingien de Combi-
natoire 43 (2000)

18. ISO/IEC 7812-1:2006. Identification cards – Identification of issuers – Part 1: Num-
bering system

19. Kelsen, P.: Ranking and unranking trees using regular reductions. In: Puech, C.,
Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 581–592. Springer, Heidel-
berg (1996)

20. Liskov, M., Rivest, R., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

21. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM Journal of Computing 17(2), 373–386 (1988)

22. Lucks, S.: Faster Luby-Rackoff ciphers. In: Gollmann, D. (ed.) FSE 1996. LNCS,
vol. 1039, pp. 189–203. Springer, Heidelberg (1996)

23. Mäkinen, E.: Ranking and unranking left Szilard languages. Report A-1997-2, De-
partment of Computer Science, University of Tampere (1997)

24. Maurer, U., Pietrzak, K.: The security of many-round Luby-Rackoff pseudo-random
permutations. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 544–
561. Springer, Heidelberg (2003)

25. Morris, B., Rogaway, P., Stegers, T.: How to encipher messages on a small domain:
deterministic encryption and the Thorp shuffle. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 286–302. Springer, Heidelberg (2009)

http://www.csrc.nist.gov/nissc/1997

312 M. Bellare et al.

26. Naor, M., Reingold, O.: On the construction of pseudorandom permutations: Luby-
Rackoff revisited. Journal of Cryptology 12(1), 29–66 (1999)

27. National Bureau of Standards. FIPS PUB 74. Guidelines for Implementing and
Using the NBS Data Encryption Standard (April 1, 1981)

28. Patarin, J.: New results on pseudorandom permutation generators based on the
DES Scheme. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 301–
312. Springer, Heidelberg (1992)

29. Patarin, J.: Generic attacks on Feistel schemes. In: Boyd, C. (ed.) ASIACRYPT
2001. LNCS, vol. 2248, pp. 222–238. Springer, Heidelberg (2001)

30. Patarin, J.: Luby-Rackoff: 7 rounds are enough for 2n(1−ε) security. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 513–529. Springer, Heidelberg (2003)

31. Patarin, J.: Security of random Feistel schemes with 5 or more rounds. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 106–122. Springer, Heidelberg (2004)

32. Patarin, J., Nachef, V., Berbain, C.: Generic attacks on unbalanced Feistel schemes
with contracting functions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 396–411. Springer, Heidelberg (2006)

33. Patel, S., Ramzan, Z., Sundaram, G.: Efficient constructions of variable-input-
length block ciphers. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS,
vol. 3357, pp. 326–340. Springer, Heidelberg (2004)

34. PCI Security Standards Council. Payment Card Industry Data Security Standard
Version 1.2,
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml

35. Petrank, E., Rackoff, C.: CBC MAC for real-time data sources. J. of Cryptol-
ogy 13(3), 315–338 (2000)

36. Schneier, B., Kelsey, J.: Unbalanced Feistel networks and block cipher design. In:
Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 121–144. Springer, Heidelberg
(1996)

37. Schroeppel, R.: Personal communication, approximately (2001)
38. Sipser, M.: Introduction to the Theory of Computation, 2nd edn. Thomson Press

(2006)
39. Spies, T.: Format preserving encryption. Unpublished white paper,

www.voltage.com Database and Network Journal (December 2008), Format pre-
serving encryption: www.voltage.com

40. Spies, T.: Personal communications (February 2009)
41. Spies, T.: Feistel finite set encryption mode. Manuscript, posted on NIST’s website

on (February 6, 2008),
http://www.csrc.nist.gov/groups/ST/toolkit/BCM/documents/

proposedmodes/ffsem/ffsem-spec.pdf

42. Valiant, L.: The complexity of computing the permanent. Theoretical Computer
Science 8, 189–201 (1979)

https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
www.voltage.com
www.voltage.com
http://www.csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ffsem/ffsem-spec.pdf
http://www.csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ffsem/ffsem-spec.pdf

BTM: A Single-Key, Inverse-Cipher-Free Mode
for Deterministic Authenticated Encryption

Tetsu Iwata1 and Kan Yasuda2

1 Dept. of Computational Science and Engineering, Nagoya University, Japan
iwata@cse.nagoya-u.ac.jp

2 NTT Information Sharing Platform Laboratories, NTT Corporation, Japan
yasuda.kan@lab.ntt.co.jp

Abstract. We present a new blockcipher mode of operation named
BTM, which stands for Bivariate Tag Mixing. BTM falls into the cate-
gory of Deterministic Authenticated Encryption, which we call DAE for
short. BTM makes all-around improvements over the previous two DAE
constructions, SIV (Eurocrypt 2006) and HBS (FSE 2009). Specifically,
our BTM requires just one blockcipher key, whereas SIV requires two.
Our BTM does not require the decryption algorithm of the underlying
blockcipher, whereas HBS does. The BTM mode utilizes bivariate poly-
nomial hashing for authentication, which enables us to handle vectorial
inputs of dynamic dimensions. BTM then generates an initial value for its
counter mode of encryption by mixing the resulting tag with one of the two
variables (hash keys), which avoids the need for an implementation of the
inverse cipher.

Keywords: Bivariate, universal hash function, counter mode, random-
until-bad game, systematic proof.

1 Introduction

The modes of operation for blockciphers can be divided into the following three
groups: encryption modes, message authentication codes, and authenticated en-
cryption modes. The first group achieves privacy, the second ensures integrity,
and the third does both at the same time. On one hand, the third group is
attractive to users for its providing both kinds of security concurrently. On the
other hand, the third group tends to employ rather complex mechanisms, since
authenticated encryption modes are essentially a combination of an encryption
mode and a message authentication code [2].

The complexity of authenticated encryption adds variety to the constructions,
such as CCM [16], GCM [10] and OCB [14]. These constructions, however, have
one thing in common—their security is based on the so-called nonce assumption.
The assumption requires that nonce values be never repeated. Otherwise, the
security of the overlying scheme is seriously compromised, which is a difficult
aspect of the nonce-based constructions.

The problem of the nonce assumption was settled by the notion of Determinis-
tic Authenticated Encryption (DAE), which Rogaway and Shrimpton introduced

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 313–330, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

314 T. Iwata and K. Yasuda

at Eurocrypt 2006 [15]. DAE constructions are more robust than nonce-based
ones. Namely, a DAE construction can be used as a nonce-based one by embed-
ding a nonce value into part of its input, in which case the DAE construction
achieves the same security level as a nonce-based one. Furthermore, a DAE
construction maintains a certain level of security even when no nonce value is
combined with. In such a scenario, an adversary can detect a repetition of exactly
the same inputs being encrypted, but nothing more.

Though more robust, DAE modes are also more difficult to construct than
nonce-based ones. To date, there have been two concrete DAE constructions,
SIV [15] and HBS [7]. The SIV construction utilized blockcipher iteration both
for its encryption algorithm and for authentication. SIV had a number of attrac-
tive features but had one major disadvantage that it required two blockcipher
keys. This disadvantage was removed by the more recent single-key HBS con-
struction. HBS also accelerated the speed by employing polynomial hashing,
rather than blockcipher iteration, for its authentication algorithm.

Nevertheless, at the same time, the HBS construction sacrificed many of SIV’s
advantages in the interest of single-key usage and of polynomial-hashing design.
In the following we point out those disadvantages which HBS suffered.

1. Inverse-Cipher Requirement. The decryption process of the HBS mode
required the decryption algorithm of the underlying blockcipher. This re-
quirement involved numerous drawbacks. First, HBS increased the size of
its footprint (e.g., the number of gates or slices). Second, the security proof
of HBS relied on the stronger SPRP (Strong Pseudo-Random Permutation)
assumption about the underlying blockcipher. Third, the tag size of HBS
was fixed to the full n-bit, disabling any kind of tag truncation for saving
the bandwidth. These problems did not exist within the SIV construction,
which worked without the inverse cipher.

2. Worse Security Bound. The security bound of HBS was of the form
�2q2/2n, where � denotes the maximum length of each query and q the total
number of queries. This should be contrasted with the security bound of SIV
which was of the form σ2/2n, where σ denotes the maximum query complex-
ity (i.e., the total length of all queries). The former becomes markedly worse
than the latter when queries are of varying lengths.

3. Inflexible Vector Dimensions. HBS needed to fix in advance the di-
mension of vectorial inputs (i.e., the maximum number of headers). Note
that handling flexible vector dimensions is an important advantage, because
some applications may be unable to set a limit reflecting the unpredictable
nature of the dimension, or some applications may want to update and in-
crease the limit on the dimension while maintaining backward compatibility.
HBS suggested using the square-root operation √ as a remedy for dynamic
changes in the dimension, but such a technique was more complex and less
elegant than the vectorized-CMAC [6,13] solution offered by SIV.

4. Enlarged Counter Register. The HBS mode specified an unusual in-
crement method S⊕1n, S⊕2n, . . . , where S denotes an initial value, ⊕ the
bitwise xor operation, and an an n-bit binary representation of an integer a.

BTM: A Single-Key, Inverse-Cipher-Free Mode 315

Table 1. Comparison between SIV, HBS and BTM. The figures show the number
of computations for a single header H and a message M , where h = �|H |/n� and
m = �|M |/n�.

SIV HBS BTM

of blockcipher keys 2 1 1

Inverse-cipher-free yes no yes
Blockcipher assumption PRP SPRP PRP

Tag truncation possible impossible possible

Security bound O(σ2/2n) O(�2q2/2n) O(σ2/2n)
Vector dimension dynamic static dynamic
Counter register size n-bit 1.5n-bit n-bit

Total # of computations h + 2m + 2 h + 2m + 4 h + 2m + 2
of blockcipher calls h + 2m + 2 m + 2 m + 3

of multiplications 0 h + m + 2 h + m − 1

This method required a 1.5n-bit register in order to maintain the current
counter value, namely n bits for keeping the value S and 0.5n bits for in-
crementing a. On the other hand, SIV worked with almost any increment
method, such as S +1, S +2, . . . (arithmetic addition modulo 2n) and 2n ·S,
22

n · S, . . . (doubling in the finite field of 2n elements). These usual methods
require only an n-bit register and maintain smaller sizes of footprints.

5. Increased Number of Computations. Although HBS accelerated the
speed for large data by employing polynomial hashing, the total number of
computations, which is the sum of the number of blockcipher calls plus that
of finite-field multiplications, increased by 2. This caused the degradation in
performance for short messages, depending on implementations.

The goal of the current work is to overstep this line of tradeoff and to construct
a new single-key, polynomial-hashing DAE mode of operation which does not
counterbalance any of the advantages that SIV had. For this, we propose a new
mode of operation called BTM, which stands for Bivariate Tag Mixing. See
Table 1 for summary. The BTM construction achieves our goal by utilizing the
following two techniques.

1. Bivariate Polynomial Hashing. Our polynomial hashing utilizes two
variables (keys) L and U , which are derived from a single blockcipher key
K as L := EK(0n) and U := EK(1n). The bivariate hashing is capable of
handling vectorial inputs of dynamic dimensions. The bivariate hashing also
contributes to reducing the number of finite-field multiplications.

2. Tag Mixing. The tag value T is mixed with the hash key U via a special
type of arithmetic addition, for which we write T � U . The mixed value is
used as an initial value for the counter mode of encryption. In this way we
avoid the use of the inverse cipher. In addition, this mixing allows us to use
the increment �1n, saving the register size of the counter.

316 T. Iwata and K. Yasuda

2 Preliminaries

Notation. We have already introduced the symbols X ⊕ Y , an and X · Y .
The symbol X‖Y denotes the concatenation of two strings X and Y . Given a
string X , we write |X | to represent its length in bits. If X is a finite set, then |X |
denotes its cardinality. We write x

$← X for sampling an element from the set X
uniformly at random and assigning its value to the variable x. Given a positive
integer a and a string X such that a ≤ |X |, msb(a, X) represents the leftmost a
bits of the string X . The set {0, 1}n of n-bit strings is regarded in multiple ways.
It corresponds to the set {0, 1, . . . , 2n− 1} of non-negative integers less than 2n.
It is also treated as the finite field GF (2n) of 2n elements (with respect to some
irreducible polynomial).

Blocks and Vectors. Throughout the paper we fix the block size n. Typical
values of n are 64 and 128. The block decomposition X [0] · · ·X [x− 1] of a string
X ∈ {0, 1}∗ is computed as follows. If X = ∅ (the null string), then we set
x ← 1 and X [0] ← ∅. Otherwise (i.e., when |X | ≥ 1), we set x ← ⌈|X |/n�,
and blocks X [0], . . . , X [x− 1] are defined as the unique set of strings satisfying
the conditions X [0]

∥∥ · · · ∥∥ X [x − 1] = X ,
∣∣X [0]

∣∣ = · · · = ∣∣X [x − 2]
∣∣ = n, and

1 ≤ ∣∣X [x− 1]
∣∣ ≤ n. We call x the block length of the string X .

Given a string X ∈ {0, 1}∗ such that |X | ≤ n, we define

π(X) :=

{
X‖1‖0n−1−|X| if 0 ≤ |X | ≤ n− 1,

X if |X | = n,

so that we always have
∣∣π(X)

∣∣ = n. Similarly, we define

δ(X) :=

{
1n if 0 ≤ |X | ≤ n− 1,

2n if |X | = n.

We consider d-dimensional vectors
−→
X = (X0, . . . , Xd−2, Xd−1) of strings Xi ∈

{0, 1}∗ for i = 0, . . . , d− 2, d− 1.

Headers and Messages. A plaintext (i.e., data which is input to the encryp-
tion algorithm) consists of header information

−→
H = (H0, . . . , Hd−2) and a mes-

sage M , being a d-dimensional vector
(−→
H, M

)
= (H0, . . . , Hd−2, M) of strings.

In the paper it is understood that when d = 1 the notation
(−→
H, M

)
represents

the 1-dimensional vector (M) (i.e., the case of no header information). Note that
the message part M of a plaintext gets both authenticated and encrypted, while
header information

−→
H gets authenticated but remains unencrypted.

Blockciphers and DAEs. A blockcipher is a family of permutations. We often
write E : {0, 1}k × {0, 1}n → {0, 1}n for a blockcipher, where K ∈ {0, 1}k
is a key and EK := E(K, ·) : {0, 1}n → {0, 1}n is the permutation specified

BTM: A Single-Key, Inverse-Cipher-Free Mode 317

by the key K. An adversary A is an oracle machine that outputs a bit. The
goal of a PRP(Pseudo-Random Permutation)-adversary A is to distinguish the
blockcipher EK (with a random key K) from a truly random permutation P :
{0, 1}n → {0, 1}n [9,1]. The success probability of A is measured by

Advprp
E (A) := Pr

[
AEK(·) = 1

]− Pr
[
AP (·) = 1

]
,

where in the first game A has access to the EK oracle and in the second the
P oracle. We fix a model of computation and a choice of encoding. We write
Advprp

E (t, σ) := maxA Advprp
E (A), where max runs over adversaries A whose

time complexity is at most t and whose query complexity is at most σ. The time
complexity is the running time plus the code size. The query complexity is the
total length in blocks of the queries made to the oracles.

A DAE scheme is a pair of algorithms EK and DK . The encryption algo-
rithm EK takes a vectorial input

(−→
H, M

)
and outputs a pair of a tag T and

a ciphertext C, where |T | = n and |C| = |M |. The decryption DK takes an
input

(−→
H, T, C

)
and outputs either the corresponding plaintext M or a special

symbol ⊥. The goal of a DAE-adversary A is to distinguish between the pair
(EK ,DK) and the pair (R,⊥), where R is an oracle that returns, upon a query(−→
H, M

)
, random strings of n + |M | bits, and ⊥ is an oracle that always returns

the ⊥ symbol. We define

Advdae
E,D(A) := Pr

[
AEK(···),DK(···) = 1

]− Pr
[
AR(···),⊥(···) = 1

]
,

where trivial queries are excluded. As before we also define Advdae
E,D(t, σ).

3 Bivariate Polynomials and L-Polynomials

A bivariate polynomial is a polynomial in two variables L and U over the field
of 2n elements, i.e., an element of GF (2n)[L, U]. A function G of two arguments
L and U is said to be an L-polynomial if the following conditions are satisfied.

1. G(L, U) is a polynomial in the variable L. Let x be the degree of G(L, U) as
a polynomial in L.

2. We then have x ≥ 1.
3. The coefficient of the leading term Lx is a polynomial function of U . Let y

be the degree of this coefficient function as a polynomial in U .

We define degL G := x and degU
L G := y. Observe that any non-constant bivariate

polynomial is either an L-polynomial or a U -polynomial (or both). Also note that
if G is a bivariate polynomial, then we have degU

L G ≤ degU G. Now the following
lemma is a basic result, and its proof can be found in Appendix A.

Lemma 1. Let G be an L-polynomial. We have

Pr
[
G(L, U) = 0n

∣∣ L $← {0, 1}n, U
$← {0, 1}n] ≤ degU

L G + degL G

2n
.

318 T. Iwata and K. Yasuda

4 Specification of BTM

In this section we give the specification of the BTM algorithms. First, we define
the bivariate polynomial hashing FL,U . Second, we describe the way of mixing
the tag value with one of the hash keys. Finally, we give the definition of the
BTM encryption and decryption algorithms.

4.1 Bivariate Hashing FL,U

We begin with defining a polynomial fL in one variable L. Given a string X ∈
{0, 1}∗, define

fL(X) := δ
(
X [x− 1]

) · (Lx ⊕ Lx−1 ·X [0]⊕ · · · ⊕ L ·X [x− 2]⊕ π(X [x− 1])
)
,

where the addition and the multiplication are done in the finite field GF (2n) of 2n

elements, so that fL(X) is an element of GF (2n)[L]. Recall that the polynomial
fL(X) can be computed recursively, using the relation

fL(X) = δ
(
X [x− 1]

) · ((· · · ((L ⊕X [0]) · L⊕X [1]
) · · ·) · L⊕ π(X [x− 1])

)
.

Note that the polynomial fL(X) always has a degree x due to the leading
term Lx.

Now we define the polynomial FL,U in two variables L and U as

FL,U

(−→
H, M

)
:= Ud−1 · fL(H0)⊕ · · · ⊕ U · fL(Hd−2)⊕ fL(M),

which is an element of GF (2n)[L, U]. Roughly speaking, we first hash each of
H0, H1, . . . , Hd−2, M in terms of the variable L, which results in d-many hash
values fL(H0), . . ., fL(M), and then we hash these values in terms of the vari-
able U . See Fig. 1 for an illustration.

Observe that fL(X) requires x − 1 multiplications by L. Neglecting the xor
operations and the last multiplication by 1n/2n, the computation of fL(X) can

Fig. 1. Illustration of the bivariate hashing FL,U (H0, H1, . . . , Hd−2, M). The symbol
X � Y denotes the multiplication X · Y in the field of 2n elements. The multiplication
by 1n/2n corresponds to the function δ

(
π(X[x − 1])

)
.

BTM: A Single-Key, Inverse-Cipher-Free Mode 319

Algorithm BTM.EncK

(−→
H, M

)
1. L ← EK(0n), U ← EK(1n)
2. T ← MACL,U

K

(−→
H, M

)
3. C ← CTRT�U

K (M)
4. return (T, C)

Subroutine MACL,U
K

(−→
H, M

)
1. S ← FL,U

(−→
H, M

)
2. T ← EK(S)
3. return T

Algorithm BTM.DecK

(−→
H, (T, C)

)
1. L ← EK(0n), U ← EK(1n)
2. M ← CTRT�U

K (C)
3. T ′ ← MACL,U

K

(−→
H, M

)
4. if T �= T ′ then
5. M ← ⊥
6. end if
7. return M

Subroutine CTRN
K(X)

1. x ←
⌈
|X|/n

⌉
2. for i ← 0 to x − 1 do
3. R[i] ← EK

(
N � in

)
4. end for
5. R ← R[0]

∥∥ · · ·
∥∥ R[x − 1]

6. Y ← X ⊕ msb
(
|X|, R

)
7. return Y

Fig. 2. Pseudocode of the BTM encryption and decryption algorithms. The subroutines
MAC and CTR are extracted from the algorithms and shown on the right-hand side.

be done in about x − 1 finite-field multiplications. This means that for a two-
dimensional vector (H, M) the computation of FL,U (H, M) can be done in about
(h − 1) + (m − 1) + 1 = h + m − 1 finite-field multiplications (The last “+1”
comes from the multiplication by U). This explains the figures in Table 1. More
generally, for a d-dimensional vector

(−→
H, M

)
, it takes about

(h0−1)+(h1−1)+ · · ·+(hd−2−1)+(m−1)+d−1 = h0+h1+ · · ·+hd−2+m−1

finite-field multiplications to compute the bivariate hashing FL,U

(−→
H, M

)
(the

value hi being the block length of Hi and m that of M).
It can be directly verified that if

(−→
H, M

) 	= (−→H ′, M ′) are two distinct inputs,
then we have an inequality of polynomials FL,U

(−→
H, M

) 	= FL,U

(−→
H ′, M ′). This

fact plays an important role in our security analysis.

4.2 Tag Mixing T � U

The operation � is defined as follows. For two strings X, Y ∈ {0, 1}n, divide
them into two equal-length parts as X = X1‖X2 and Y = Y1‖Y2, so that
X1, X2, Y1, Y2 ∈ {0, 1}n/2.1 Then define

X � Y := (X1 + Y1)‖(X2 + Y2),

where the addition + is done modulo 2n/2. We use � rather than + modulo 2n,
because � is less costly and is sufficient for security up to the birthday bound.
1 We assume that the block size n is an even number.

320 T. Iwata and K. Yasuda

Fig. 3. Illustration of the BTM encryption algorithm

4.3 BTM Encryption and Decryption Algorithms

We are now ready to describe our BTM mode of operation. The encryption
algorithm BTM.Enc and the decryption BTM.Dec are described in Fig. 2. See
also Fig. 3 for a diagrammatic representation of the BTM encryption algorithm.

Note that when |M | = 0 (i.e., M = ∅ the null string), the algorithm BTM.Enc
returns only the tag T . Also note that the one-dimensional input (M) (without
a header) and the two-dimensional input (H, M) with H = ∅ generally result in
different outputs for the same value of M .

5 Security Analysis of BTM

We prove the security of our BTM mode as a DAE construction. We first in-
troduce a simple tool which makes our analysis easy. We then prove the privacy
and the integrity of BTM. Thanks to the tool, our proofs are quite systematic,
consisting of counting “bad” events and computing their probabilities.

5.1 A Simple Tool: Random-Until-Bad Games

We consider a special type of game called a “random-until-bad” game. This
type of game can be systematically analyzed, making our security proofs simple
and easy.

In a random-until-bad game, the adversary’s goal is to set a bad flag written
somewhere in the description of the overlying game. There may be multiple bad
flags, as bad[0], bad[1], etc. The adversary wins the game as soon as one of
the bad flags gets set. The only way for the adversary to set a bad flag is by
making a query to its oracle. A query is processed according to the description
of the game. If a query sets a bad flag, then the game terminates immediately.
Otherwise, the oracle returns a truly random string of a specified length2 to the
adversary.

In a random-until-bad game, we only need to consider non-adaptive adver-
saries. Recall that oracles only return random strings to an adversary until the
2 We consider the special symbol ⊥ as a random string of length zero.

BTM: A Single-Key, Inverse-Cipher-Free Mode 321

game terminates. This means that any adaptive adversary can be transformed
into a non-adaptive one without changing its winning probability, by feeding a
random tape to the adversary. More precisely, let A be an adaptive adversary
which makes (exactly) q queries. Using A, we can construct a non-adaptive ad-
versary B which has about the same running time as A and exactly the same
winning probability, as follows: We let B run A by simulating A’s oracles via
B’s internal random coins. The adversary B records A’s queries x1, x2, . . . , xq.
Then B outputs the sequence of queries x1, x2, . . . , xq. Note that at this point B
has made no queries to B’s oracles, and the values of the queries x1, x2, . . . , xq

have been already fixed. Hence we see that B is non-adaptive. It is also easy to
see that B’s winning probability is exactly the same as that of A.

Furthermore, we only need to consider deterministic adversaries. For this,
we show that for any non-adaptive, probabilistic adversary there exists a non-
adaptive, deterministic adversary having the same or better winning probabil-
ity. So let A be a non-adaptive, probabilistic adversary making q queries to its
oracles. For each sequence of queries x1, x2, . . . , xq (the total length being no
more than σ) the adversary A outputs this sequence with some probability. The
winning probability of A is the weighted average (arithmetic mean) of the win-
ning probabilities over all sequences x1, x2, . . . , xq. Then there exists a sequence
x∗

1, x
∗
2, . . . , x

∗
q having the maximum winning probability. So let A∗ be the ad-

versary that always outputs the sequence x∗
1, x

∗
2, . . . , x

∗
q . Then we see that the

winning probability of A∗ is no less than that of A.
In a random-until-bad game, we can systematically compute each probability

that a bad flag gets set and then sum up the probabilities. This gives us the
bound of the adversaries’ winning probability.

5.2 From Computational to Information-Theoretic

The first step is to replace the blockcipher EK (using a random key K) with
a random permutation P : {0, 1}n → {0, 1}n. We write BTM[P] for such a
DAE scheme. Let A be a DAE-adversary whose time and query complexities are
at most t and σ, respectively. We can directly construct an adversary B that
uses A and tries to distinguish between the blockcipher EK and the random
permutation P . The simulation requires two calls to E for computing L and U , q
calls to E for computing tags (together with necessary polynomial hashing), and
σ calls to E for encrypting the messages. Any difference between Advdae

BTM[E](A)
and Advdae

BTM[P](A) contributes to B’s advantage Advprp
E (B), so we have

Advdae
BTM[E](t, σ) ≤ Advprp

E (t′, 2 + q + σ) + Advdae
BTM[P](σ),

where the running time t′ is about t plus the complexity to compute 2+q+σ times
the blockcipher E (and the complexity to perform corresponding polynomial
hashing). Note that we have omitted the time complexity from the notation,
since it becomes irrelevant to the context of BTM[P].

322 T. Iwata and K. Yasuda

We then replace P with a random function F : {0, 1}n → {0, 1}n (not to be
confused with FL,U). Using the PRP/PRF switching lemma [3], we obtain

Advdae
BTM[P](σ) ≤

(
2 + q + σ

2

)
· 1
2n

+ Advdae
BTM[F](σ).

Therefore, it amounts to evaluating the security of the scheme BTM[F].
Now let EF and DF denote the encryption and decryption algorithms of the

BTM[F] scheme, respectively. For an adversary A we have

Advdae
BTM[F](A) = Pr

[
AEF (···),DF (···) = 1

]− Pr
[
AR(···),⊥(···) = 1

]
= Pr

[
AEF (···),DF (···) = 1

]− Pr
[
AEF (···),⊥(···) = 1

]
(integrity)

+ Pr
[
AEF (···),⊥(···) = 1

]− Pr
[
AR(···),⊥(···) = 1

]
. (privacy)

We shall evaluate the privacy first and then integrity.

5.3 Privacy Proof of BTM[F]

Theorem 1. Let A be an adversary whose total query complexity is at most σ
blocks. Then we have

Pr
[
AEF (···),⊥(···) = 1

]− Pr
[
AR(···),⊥(···) = 1

] ≤ 8σ2

2n
.

Proof. Consider the eight bad events listed in Table 2. These bad flags are
placed in the description of the EF oracle. Observe that these bad events cause
the EF oracle to return some non-random values by invoking the function F on
some “old” inputs. In other words, as long as none of these bad flags gets set,
the EF oracle behaves exactly the same as the ideal R oracle, since the values
returned by the EF oracle are then outputs of the random function F on some
fresh inputs.

Therefore, by the fundamental lemma of game playing [3], we get

Pr
[
AEF (···),⊥(···) = 1

]− Pr
[
AR(···),⊥(···) = 1

] ≤ Pr
[
AEF (···),⊥(···) sets bad

]
,

and now the game under consideration is random-until-bad. Hence, we can
systematically compute the winning probability of A. We simply sum up the
probabilities in Table 2 as

Pr
[
AEF (···),⊥(···) sets bad

] ≤ σ + · · ·+ 2(q − 1)(σ − q)
2n

≤ 8σ2

2n
,

which gives us the desired bound. ��

5.4 Integrity Proof of BTM[F]

Theorem 2. Let A be an adversary whose total query complexity is at most σ
blocks. Then we have

Pr
[
AEF (···),DF (···) = 1

]− Pr
[
AEF (···),⊥(···) = 1

] ≤ 11σ2

2n
.

BTM: A Single-Key, Inverse-Cipher-Free Mode 323

Table 2. The bad events in the privacy game. The superscript (i) means that the
variable comes from the i-th query. The adversary makes q queries. The indices run
over 1 ≤ i ≤ q, 1 ≤ j ≤ i− 1, 0 ≤ α ≤ m(i) − 1 and 0 ≤ β ≤ m(j) − 1, where m(i) is the
length in blocks of the queried message M (i). The computations of the probabilities
can be found in Appendix B.

flag event type probability

bad[0] S(i) = 0n σ/2n

bad[1] S(i) = 1n σ/2n

bad[2] S(i) = S(j) bivariate polynomial (q − 1)σ/2n

bad[3] S(i) = T (j) � U � β
n

L-polynomial σ2/2n

bad[4] T (i) � U � αn = 0n σ/2n

bad[5] T (i) � U � αn = 1n σ/2n

bad[6] T (i) � U � αn = S(j) L-polynomial σ2/2n

bad[7] T (i) � U � αn = T (j) � U � β
n

2(q − 1)(σ − q)/2n

Proof. The two games are identical unless the DF oracle returns something other
than ⊥. Therefore, by the fundamental lemma of game playing, we have

Pr
[
AEF (···),DF (···) = 1

]− Pr
[
AEF (···),⊥(···) = 1

] ≤ Pr
[
AEF (···),DF (···) forges

]
.

Using the adversary A, we shall construct a new adversary B that finds a forgery
of the message authentication code GF :

(−→
H, M

) �→ T . We let B gain access to
an auxiliary oracle OF , which returns the value F (U � W) upon a query W ∈
{0, 1}n. Here recall that U := F (0n). We let B simulate oracles for A in the
natural way. This yields

Pr
[
AEF (···),DF (···) forges

] ≤ Pr
[
BGF (···),VF (···),OF (·) forges

]
,

where VF is the verification oracle of the message authentication code GF . We
note that B makes at most σ − q queries to the OF oracle.

Now we introduce a random oracle Rn
n : {0, 1}n → {0, 1}n (independent of F)

and replace OF with the ideal Rn
n. Then we have

Pr
[
BGF (···),VF (···),OF (·) forges

]
≤ Pr

[
BGF (···),VF (···),OF (·) forges

]− Pr
[
BGF (···),VF (···),Rn

n(·) forges
]

(1)

+ Pr
[
B̃GF (···),VF (···) forges

]
, (2)

where B̃ is the adversary that runs B by simulating the Rn
n oracle using B̃’s

internal random coins.
First we evaluate the quantity (1). The two games proceed exactly the same

as long as the oracle OF returns only random strings. Consider the bad flags
listed in Table 3. The flags bad[8− 11] are placed in the description of the OF

oracle, with the hash values S(i) being recorded upon queries to the GF and VF

324 T. Iwata and K. Yasuda

Table 3. The bad events in the integrity game. The index runs over 1 ≤ r ≤ σ − q.
The computations of the probabilities can be found in Appendix C.

flag event type probability

bad[8] W (r) � U = 0n (σ − q)/2n

bad[9] W (r) � U = 1n (σ − q)/2n

bad[10] W (r) � U = S(j) L-polynomial (σ − q)(σ + q)/2n

bad[11] S(i) = W (r) � U L-polynomial (σ − q)(σ + q)/2n

bad[12] S(i) = 0n σ/2n

bad[13] S(i) = 1n σ/2n

bad[14] S(i) = S(j) bivariate polynomial (q − 1)σ/2n

bad[15] VF (· · ·) �= ⊥ q/2n

oracles. The OF oracle behaves just like the ideal Rn
n unless one of these bad

flags gets set. Therefore, by the fundamental lemma of game playing, we get

(1) ≤ Pr
[
BGF (···),VF (···),OF (·) sets bad[8− 11]

]
.

Using the adversary B, we shall construct a new adversary C that has access
only to the GF and OF oracles. The adversary C simulates the VF oracle in
the natural way using its GF oracle. We add more flags bad[12 − 14], listed in
Table 3, to the description of the GF oracle. Clearly we have

Pr
[
BGF (···),VF (···),OF (·) sets bad[8− 11]

] ≤ Pr
[
CGF (···),OF (·) sets bad[8− 14]

]
,

and we see that C plays a random-until-bad game. Therefore, we have

Pr
[
CGF (···),OF (·) sets bad[8− 14]

] ≤ σ + · · ·+ σ

2n
≤ 6σ2

2n
,

rather than 7σ2/2n, since one of the σ’s gets cancelled out by (q− 1)σ = qσ− σ
in bad[14].

It remains to evaluate the quantity (2). For this, we introduce a random oracle
Rn which returns an n-bit random string upon a query

(−→
H, M

)
. We replace the

GF oracle with the ideal Rn, as

Pr
[
B̃GF (···),VF (···) forges

]
= Pr

[
B̃GF (···),VF (···) forges

]− Pr
[
B̃Rn(···),VF (···) forges

]
(3)

+ Pr
[
B̃Rn(···),VF (···) forges

]
. (4)

By the fundamental lemma of game playing, we see that

(3) ≤ Pr
[
B̃GF (···),VF (···) sets bad[12− 14]

]
,

BTM: A Single-Key, Inverse-Cipher-Free Mode 325

where the bad flags are placed across the two oracles GF and VF . We obtain the
following random-until-bad games.

(3) ≤ Pr
[
B̃GF (···),VF (···) sets bad[12− 15]

] ≤ 4σ2

2n
, and

(4) = Pr
[
B̃GF (···),VF (···) sets bad[15]

] ≤ σ2

2n
,

which gives us (6 + 4 + 1)σ2/2n = 11σ2/2n as desired. ��

6 Alternative Way of Tag Mixing

Here we mention a variant of BTM. We could use T ⊕U in place of T �U . Then
the counter increment is done via the multiplication by 2n in the finite field of
2n elements. This variant has both advantages and disadvantages. After careful
consideration, we have decided to choose T � U .

The T ⊕U method does not require the arithmetic addition, which somewhat
reduces the size of hardware footprint. Moreover, there exist quite efficient hard-
ware implementations of the multiplication by 2n. On the other hand, however,
the software implementations of the multiplication by 2n become a bit costly,
depending on the block size n and on the available word size(s) of the platform.

We have observed that the software inefficiency of the T ⊕U method appears
to be a little high price to pay for the hardware efficiency. There also exist fairly
efficient hardware implementations of the � operation, and the �1n increment
gains much better software performance on most of the platforms.

7 Improving Security via Tweakable Blockciphers

BTM gives excellent performance but provides security only up to the standard
birthday bound. Here we consider the problem of constructing DAE whose se-
curity is beyond the birthday bound (BBB). The problem was addressed in [7],
and BBB constructions are of particular interest if we consider key wrap [12],
an important application of DAE. With a key-wrap algorithm, one encrypts and
authenticates specialized data such as cryptographic keys, where one might de-
sire to ensure the highest security possible. BBB constructions can be used also
when one prefers to use a 64-bit blockcipher as the underlying primitive and at
the same time ensure security better than the O(232) birthday bound.

The BBB construction described in [7] requires about twelve blockcipher calls
to encrypt two blocks of a message, which is hopelessly inefficient and imprac-
tical. Here we present a BBB construction that uses a tweakable blockcipher [8]
as the underlying primitive, instead of using an ordinary blockcipher. Our con-
struction is somewhat more efficient than the one in [7] in a situation where one
can start with such a tweakable blockcipher.

Let ẼK : T × {0, 1}n → {0, 1}n be a tweakable blockcipher, where T =
{0, 1}n is a tweak space. First construct a 2n-to-2n-bit blockcipher E′

K1,K2,K3
:

326 T. Iwata and K. Yasuda

{0, 1}2n → {0, 1}2n, by using the sENR (simplified Extended Naor-Reingold)
construction [11], where K1 and K2 are the keys for the underlying tweakable
blockcipher, and K3 ∈ {0, 1}n. Recall that one call to E′ requires one multipli-
cation over GF (2n) and two calls to Ẽ. Then construct the BTM mode having
a block size of 2n bits, using E′ as its underlying blockcipher. This construction
ensures security beyond the O(2n/2) bound. The construction is not too ineffi-
cient; to encrypt two blocks of a message, it requires about one multiplication
over GF (22n), one multiplication over GF (2n), and two calls to Ẽ.

Unfortunately, the construction still has the following problems.

1. The key length is more than n bits; the key space of E′ is rather large.
2. The tag size is 2n bits instead of n bits; the ciphertext is somewhat long.

It remains open to provide a BBB construction (based on a tweakable blockci-
pher) which resolves the two problems. Also, our unorthodox method involves
using a tweakable blockcipher as the underlying primitive, which itself must have
BBB security. This implies that the standard construction of a tweakable blockci-
pher in [8] is not suitable for our purpose. Although the constructions in [5,4,11]
stand as potential candidates for our Ẽ, there is no known construction that
completely fulfills our requirements. The basic problem of designing an efficient
tweakable blockcipher with BBB security, possibly from scratch, still remains to
be solved.

Acknowledgments

The authors would like to express their thanks to the anonymous reviewers of
SAC 2009 for their helpful comments.

References

1. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining
message authentication code. J. Comput. Syst. Sci. 61(3), 362–399 (2000)

2. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

3. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

4. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein hash function family. Submission to NIST (2008),
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html

5. Goldenberg, D., Hohenberger, S., Liskov, M., Schwartz, E.C., Seyalioglu, H.: On
tweaking Luby-Rackoff blockciphers. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 342–356. Springer, Heidelberg (2007)

6. Iwata, T., Kurosawa, K.: OMAC: One-key CBC MAC. In: Johansson, T. (ed.) FSE
2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)

http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html

BTM: A Single-Key, Inverse-Cipher-Free Mode 327

7. Iwata, T., Yasuda, K.: HBS: A single-key mode of operation for deterministic
authenticated encryption. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665,
pp. 394–415. Springer, Heidelberg (2009)

8. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

9. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

10. McGrew, D.A., Viega, J.: The security and performance of the Galois/counter
mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)

11. Minematsu, K.: Beyond-birthday-bound security based on tweakable block cipher.
In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 308–326. Springer, Hei-
delberg (2009)

12. NIST: AES key wrap specification (2001)
13. NIST: Recommendation for block cipher modes of operation: The CMAC mode

for authentication (2005)
14. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A block-cipher mode of

operation for efficient authenticated encryption. In: ACM CCS, pp. 196–205. ACM
Press, New York (2001)

15. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006)

16. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). Submis-
sion to NIST (2002),
http://csrc.nist.gov/groups/ST/toolkit/BCM/index.html

A Proof of Lemma 1

We have

Pr
[
G(L, U) = 0n

∣∣ L, U
$← {0, 1}n]

=
∑

U0∈{0,1}n

Pr
[
U = U0 ∧G(L, U) = 0n

∣∣ L, U
$← {0, 1}n]

=
∑

U0∈{0,1}n

Pr
[
U = U0

∣∣ U $← {0, 1}n] · Pr
[
G(L, U0) = 0n

∣∣ L $← {0, 1}n].
Now put x := degL G and let Z ⊂ {0, 1}n be the set of U0 which makes the
coefficient of Lx zero. Note that we have |Z| ≤ degU

L G. We get∑
U0∈Z

Pr
[
U = U0

∣∣ U $← {0, 1}n] · Pr
[
G(L, U0) = 0n

∣∣ L $← {0, 1}n]
+
∑

U0 /∈Z

Pr
[
U = U0

∣∣ U $← {0, 1}n] · Pr
[
G(L, U0) = 0n

∣∣ L $← {0, 1}n]
≤|Z| · 1

2n
· 1 +

∑
U0 /∈Z

1
2n
· degL G

2n

≤degU
L G + degL G

2n
,

as desired.

http://csrc.nist.gov/groups/ST/toolkit/BCM/index.html

328 T. Iwata and K. Yasuda

B Computing the Probabilities in Table 2

In the following computations we introduce a variable

µ := max{h0, . . . , hd−2, m}.
In other words, µ denotes the maximum length of a component in the vec-
tor
(−→
H, M

)
. We also introduce a new variable

λ := h0 + · · ·hd−2 + m.

The superscript (i) denotes the fact that the variable comes from the i-th query.
We compute the probabilities one by one. We start with bad[0]. This event

corresponds to outputting the hash key L. From Lemma 1 we have

Pr
[
bad[0]

] ≤ q∑
i=1

Pr
[
FL,U

(
H

(i)
0 , . . . , H

(i)
d(i)−2, M

(i)) = 0n

]
≤

q∑
i=1

d(i) − 1 + µ(i)

2n
≤

q∑
i=1

λ(i)

2n
,

which is then bounded by σ/2n.
The probability of bad[1] can be done in the exactly same manner, as this cor-

responds to outputting the other hash key U . We have Pr
[
bad[1]

]
= Pr

[
bad[0]

]
≤ σ/2n.

The event bad[2] means a collision among the hash values. Using Lemma 1,
we compute

Pr
[
bad[2]

] ≤ q∑
i=2

i−1∑
j=1

Pr
[
FL,U

(−→
H (i), M (i)) = FL,U

(−→
H (j), M (j))]

≤
q∑

i=2

i−1∑
j=1

max
{
d(i) − 1, d(j) − 1

}
+ max

{
µ(i), µ(j)

}
2n

≤ (q − 1)
q∑

i=1

d(i) − 1 + µ(i)

2n
≤ (q − 1)

q∑
i=1

λ(i)

2n
,

which is then bounded by (q − 1)σ/2n.
We proceed to bad[3]. We use Lemma 1 to get

Pr
[
bad[3]

] ≤ q∑
i=2

i−1∑
j=1

m(j)−1∑
β=0

Pr
[
FL,U

(
H

(i)
0 , . . . , H

(i)
d(i)−2, M

(i)) = T (j) � U � β
n

]

≤
q∑

i=2

i−1∑
j=1

m(j)−1∑
β=0

d(i) − 1 + µ(i)

2n

≤
q∑

i=2

i−1∑
j=1

m(j)−1∑
β=0

λ(i)

2n
=

q∑
i=2

λ(i)

2n

i−1∑
j=1

m(j)−1∑
β=0

1 =
q∑

i=2

λ(i)

2n

i−1∑
j=1

m(j),

BTM: A Single-Key, Inverse-Cipher-Free Mode 329

which we can bound as σ/2n · σ = σ2/2n.
The quantity Pr

[
bad[4]

]
can be evaluated relatively easily. We get

Pr
[
bad[4]

] ≤ q∑
i=2

m(i)−1∑
α=0

Pr
[
T (i) � U � αn = 0n

]
≤

q∑
i=2

m(i)

2n
,

which must be less than σ/2n.
The event Pr

[
bad[5]

]
can be treated in a way similar to Pr

[
bad[4]

]
. We have

Pr
[
bad[5]

]
= Pr

[
bad[4]

] ≤ σ/2n.
Also, the quantity Pr

[
bad[6]

]
is exactly the same as Pr

[
bad[3]

]
. We have

Pr
[
bad[6]

]
= Pr

[
bad[3]

] ≤ σ2/2n.
Lastly, we go on to treat the event bad[7]. We have

Pr
[
bad[7]

] ≤ q∑
i=2

i−1∑
j=1

Pr
[m(i)−1∨

α=0

m(j)−1∨
β=0

(
T (i) � U � αn = T (j) � U � β

n

)]

≤
q∑

i=2

i−1∑
j=1

Pr
[m(j)−1∨

γ=−m(i)+1

(
T (i) = T (j) � γ

n

)]

≤
q∑

i=2

i−1∑
j=1

m(i) + m(j) − 2
2n

≤ (q − 1)
q∑

i=1

2m(i) − 2
2n

,

which is less than 2(q − 1)(σ − q)/2n. This concludes the computation of the
probabilities in Table 2.

C Computing the Probabilities in Table 3

Again we use the variable

µ := max{h0, . . . , hd−2, m}.
As usual, the superscript (i) denotes the fact that the variable comes from the
i-th query that the adversary makes.

We begin with Pr
[
bad[8]

]
. We get

Pr
[
bad[8]

] ≤ σ−q∑
r=1

Pr
[
W (r) � U = 0n

] ≤ σ−q∑
r=1

1
2n

,

which must be bounded by (σ − q)/2n.
The event bad[9] can be treated in a similar way. We obtain Pr

[
bad[9]

]
=

Pr
[
bad[8]

] ≤ (σ − q)/2n.

330 T. Iwata and K. Yasuda

Next we evaluate the probability Pr
[
bad[10]

]
. Using Lemma 1, we compute

as

Pr
[
bad[10]

] ≤ σ−q∑
r=1

q∑
j=1

Pr
[
W (r) � U = FL,U

(
H

(j)
0 , . . . , H

(j)
d(j)−2, M

(j))]

≤
σ−q∑
r=1

q∑
j=1

max{d(j) − 1, 1}+ µ(j)

2n
,

which can be bounded by (σ − q)(σ + q)/2n.
The probability Pr

[
bad[11]

]
is exactly the same as Pr

[
bad[10]

]
. We have

Pr
[
bad[11]

]
= Pr

[
bad[10]

] ≤ (σ − q)(σ + q)/2n.
The events bad[12], bad[13] and bad[14] can be treated in ways similar to

bad[0], bad[1] and bad[2], respectively, whose probabilities have been already
computed in Appendix B. We get

Pr
[
bad[12]

]
= Pr

[
bad[0]

] ≤ σ

2n
,

Pr
[
bad[13]

]
= Pr

[
bad[1]

] ≤ σ

2n
,

Pr
[
bad[14]

]
= Pr

[
bad[2]

] ≤ (q − 1)σ
2n

,

as expected.
Lastly, we handle bad[15]. Observe that this event is nothing but a forgery

by making random guesses. So we obtain

Pr
[
bad[15]

] ≤ q∑
i=1

Pr
[VF (· · ·) 	= ⊥] ≤ q

2n
.

Thus we have completed computing the probabilities in Table 3.

On Repeated Squarings in Binary Fields

Kimmo U. Järvinen

Helsinki University of Technology (TKK)
Department of Information and Computer Science

P.O. Box 5400, FI-02015 TKK, Finland
kimmo.jarvinen@tkk.fi

Abstract. In this paper, we discuss the problem of computing repeated
squarings (exponentiations to a power of 2) in finite fields with poly-
nomial basis. Repeated squarings have importance, especially, in ellip-
tic curve cryptography where they are used in computing inversions in
the field and scalar multiplications on Koblitz curves. We explore the
problem specifically from the perspective of efficient implementation us-
ing field-programmable gate arrays (FPGAs) where the look-up table
(LUT) structure helps to reduce both area and delay overheads. In fact,
we show that the optimum construction depends on the size of the LUTs.
We propose several repeated squarer architectures and demonstrate their
practicability for FPGA-based implementations. Finally, we show that
the proposed repeated squarers can offer significant speedups and even
improve resistivity against side-channel attacks.

1 Introduction

Squaring is the operation where an element is multiplied by itself. We explore
the problem of computing repeated squarings, i.e. several successive squarings, in
finite binary fields, F2m , with polynomial basis and present hardware solutions
for it. In this paper, we consider repeated squarings mainly in the context of el-
liptic curve cryptography [1,2], but generalizations to other application domains
are straightforward.

Repeated squarings have two important applications in elliptic curve
cryptography:

1. Itoh-Tsujii inversion [3] is a method based on Fermat’s Little Theorem that
finds the multiplicative inverse of a ∈ F2m by efficiently computing a2m−2. In
this exponentiation the number of squarings is considerably higher than the
number of multiplications and, hence, it includes many repeated squarings.
Originally, Itoh-Tsujii inversion was proposed for binary fields over normal
basis where (repeated) squarings are trivial, but it is a viable solution also
for polynomial basis [4].

2. Koblitz curves [5] are a class of elliptic curves over F2m , where fast Frobe-
nius maps can be used instead of computationally more demanding point
doublings resulting in considerably faster computations. Frobenius is com-
puted by squaring the coordinates of a point on the curve; thus, successive
Frobenius maps require a repeated squaring for each coordinate.

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 331–349, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

kimmo.jarvinen@tkk.fi

332 K.U. Järvinen

Recent studies show that when the above cases are implemented in hardware, a
considerable portion of the total computation time is consumed in squarings [6,7];
hence, they motivate the research on efficient computation of repeated squarings.

Field-programmable gate arrays (FPGAs) are popular implementation plat-
forms for cryptographic algorithms because their combination of speed and
programmability offers many advantages over general-purpose processors and
application specific circuits [8]. The basic building blocks of an FPGA are n-to-1
bit look-up tables (n-LUTs). The most typical LUT size is n = 4, but larger n
are used in some contemporary FPGA architectures. Despite the vast amount
of papers describing FPGA-based cryptographic implementations, the effects of
LUT size have been studied surprisingly little. Papers introducing finite field
arithmetic units, e.g. multipliers, typically consider only 2-to-1 bit gates. In
this paper, we demonstrate how optimizations for a specific LUT structure can
considerably improve finite field arithmetic units.

There are only few studies on hardware implementation of repeated squar-
ings. Lutz and Hasan [9] showed how repeated squarings can be accelerated by
attaching a register directly after a squarer and feeding its content back to the
input of the squarer. This removed the need of storing intermediate values out-
side the squarer and, as a result, computing e repeated squarings required only
e clock cycles [9]. Similar repeated squarers were later used by Järvinen and
Skyttä [6]. Recently, Rebeiro and Mukhopadhyay [7] observed that quading, i.e.
a4, is only slightly more expensive than squaring in FPGAs. They utilized this
observation by building a repeated squarer using a chain of quadings and used
it for accelerating Itoh-Tsujii inversions.

This paper contributes in the following ways:

– We provide simple tools for analyzing repeated squarings in binary fields
defined by arbitrary irreducible polynomials and use them for analyzing
repeated squarings in fields defined by NIST in [10];

– We generalize the observation of [7] and demonstrate how LUTs can be
exploited in designing efficient circuitries for repeated squarings;

– We develop efficient repeated squarers with (a) fixed exponents and (b)
varying exponents and provide implementation results on Xilinx FPGAs
(Spartan-3A 3S1400-5 and Virtex-5 5VLX50-3) demonstrating the practica-
bility of the repeated squarers; and

– We show how repeated squarings can improve speed of Itoh-Tsujii inversions
(or, more generally, exponentiations in binary fields) and elliptic curve cryp-
tography on Koblitz curves and even increase resistivity against side-channel
attacks.

We begin by introducing the preliminaries of repeated squarings in Sec. 2. In
Sec. 3, we analyze repeated squarings with a focus on fields defined by NIST
in [10]. Based on the results of the analysis, we design repeated squarers with
both a fixed exponent and a varying exponent in Sec. 4 and present results on
Xilinx FPGAs in Sec 5. We end with conclusions and possible directions for
future research in Sec. 6.

On Repeated Squarings in Binary Fields 333

2 Squaring in Binary Fields

A binary field, F2m , is generated from the ring of polynomials over F2, F2[x], with
an irreducible polynomial, p(x), with a degree m by setting F2m : F2[x]/p(x). In
polynomial basis, an element of F2m is represented as a binary polynomial with
a degree at most m− 1, i.e.,

a(x) =
m−1∑
i=0

aix
i. (1)

Operations in polynomial basis are computed modulo p(x). Addition, a(x)+b(x),
is simply a bitwise exclusive-or (xor). Multiplication, a(x) × b(x), is more com-
plicated and divides into two steps: (1) multiplication in F2[x] and (2) reduction
modulo p(x). Squaring is a special case of multiplication where a(x) = b(x). For
squaring the first step of multiplication is performed simply by inserting zeros
between each bit in the bitvector representing a(x). Thus, squaring becomes

a2(x) =
m−1∑
i=0

aix
2i mod p(x) (2)

and it essentially requires only the reduction part of the multiplication (if imple-
mented in hardware). The reduction is computed by taking the remainder after
a division with p(x) in F2[x].

Squaring, b(x) = a2(x), can be seen as a linear transformation described by
the matrix multiplication b = Qa where a =

[
a0a1 · · · am−1

]T represents a(x),

b =
[
b0b1 · · · bm−1

]T represents the result b(x), and the m ×m matrix Q with
elements in F2 is given by [4]:

Q =

⎡⎢⎢⎢⎣
1 q0,1 q0,2 · · · q0,m−1
0 q1,1 q1,2 · · · q1,m−1
...

...
...

. . .
...

0 qm−1,1 qm−1,2 · · · qm−1,m−1

⎤⎥⎥⎥⎦ . (3)

See, e.g., [4] for description of the calculation of the coefficients qi,j ∈ F2. A
repeated squaring, b(x) = a2e

(x) with e ≥ 1, is given by: b = Qea [4,11].
Using normal basis is another way of representing the elements of F2m . A

normal basis is constructed by taking a normal element in F2m , i.e., an ele-
ment α ∈ F2m for which α, α2, α22

, . . . , α2m−1
are linearly independent. Then,

an element a ∈ F2m is represented by

a =
m−1∑
i=0

aiα
2i

(4)

Because α2m

= α, squaring in normal basis is simply a rotation of the bitvector
and, as a consequence, essentially free in hardware. Similarly, a repeated squaring

334 K.U. Järvinen

is free if e is fixed (rotation by e bits). A repeated squaring in normal basis can
be described with a squaring matrix defined by qi,j = 1 if i ≡ (j + e) mod m,
else qi,j = 0. Despite the efficiency of (repeated) squarings in hardware, normal
bases are less frequently used in contemporary cryptosystems than polynomial
bases. The main reasons are their inefficiency on software and the complexity of
multiplications. It should be also noted that if e varies, then squaring is not free
in normal basis either, but still cheaper than in polynomial basis.

2.1 Inversion with Fermat’s Little Theorem

The element b ∈ Fq is the multiplicative inverse of an element a ∈ Fq if they
satisfy a×b = 1. Inversion is a common problem in both cryptography and codes.
There are essentially two ways to compute it: Extended Euclidean Algorithm and
Fermat’s Little Theorem. In this paper, we discuss the latter one.

Fermat’s Little Theorem states that ap ≡ a (mod p) and it follows that:

a−1 = aq−2 (5)

for all a ∈ Fq. Hence, an inversion in F2m is an exponentiation to the power
2m−2. Because 2m−2 = 〈11 . . .1110〉, the binary method (see, e.g, [12]) requires
m−2 multiplications and m−1 squarings, none of which are repeated squarings.
A more efficient method, here referred to as Itoh-Tsujii inversion, was proposed
in [3] requiring �log2(m−1)�+w(m−1)−1 multiplications and m−1 squarings
where w(·) is the Hamming weight, i.e., the number of nonzeros in the expansion.
Itoh-Tsujii inversion requires only �log2(m−1)�+w(m−1) repeated squarings [4].

2.2 Elliptic Curve Cryptography

Elliptic curve cryptosystems [1,2] are build around an operation called scalar
multiplication, kP , where P is a point on the curve and k is an integer. Scalar
multiplication is computed with algorithms that are analogous to exponentiation
algorithms (see, e.g., [12] for a review) with the exception that multiplications
are replaced with operations on the curve. For instance, the binary method for
exponentiation has the following analogue on an elliptic curve: k is represented
using binary expansion and scanned one bit, ki, at a time. Each bit requires a
point doubling and ki = 1 yields a point addition. An �-bit k hence requires �
point doublings and w(k) point additions.

Koblitz curves [5] are appealing because point doublings can be replaced with
cheap Frobenius endomorphisms which map a point (x, y) to the point (x2, y2).
Thus, on Koblitz curves a string of e− 1 zeros in the expansion of k results in e
consecutive Frobenius maps which are performed by computing (x2e

, y2e

), i.e.,
with two repeated squarings. A common way to compute scalar multiplications
on Koblitz curves is to represent k in a width-ω τ -adic non-adjacent form (τNAF)
with w(k) ≈ m/(ω+1) so that there are no adjacent nonzeros [13]. For example,
if k (or part of k) in width-2 τNAF is 〈1001̄0001〉, it results in (from left to
right) point addition, two repeated squarings (x23

and y23
), point subtraction,

two repeated squarings (x24
and y24

), and point addition. Hence, the total cost is

On Repeated Squarings in Binary Fields 335

w(k) point additions(/subtractions) and 2w(k) or 2(w(k)−1) repeated squarings
depending on whether the last digit is zero or nonzero, respectively. Points are
often represented in projective coordinates, e.g. [14], and, in that case, Frobenius
involves three squarings changing the costs accordingly. Repeated squarings can
be useful also on general curves because scalar multiplication always requires at
least one inversion.

The binary method is inherently vulnerable to power analysis side-channel
attacks [15] because different operations are performed depending on whether a
bit is zero or nonzero. Hasan [16] noted that using repeated squarings in nor-
mal basis is an efficient countermeasure because then the number of consecutive
Frobenius maps, and thus the number of consecutive zeros in k, is not distin-
guishable with the power analysis. In polynomial basis, however, such solutions
have not existed prior to this paper.

3 Analysis of Repeated Squarings

We begin with definitions and theorems which are used in analyzing implemen-
tation aspects of repeated squarings.

Definition 1. Weight, W(Qe), is the number of ones in Qe.

Fig. 1 plots W(Qe) with 1 ≤ e ≤ 25 for all fields defined by NIST in [10]. Fig. 1
shows that repeated squarings with small(ish) exponents, e, have small weights,
but when e grows, the weights quickly become approximately m(m− 1)/2 [11].
The benefits gained from the sparseness of irreducible polynomials are clearly
visible in the figure: the weights increase considerably slower for the fields defined
by trinomials (F2233 and F2409) than pentanomials (F2163 , F2283 , and F2571). In the
following, we focus on the NIST field, arguably, having the most contemporary
relevance, F2233 : F2[x]/x233 + x74 + 1, but the results and conclusions that
follow are easy to generalize also for other NIST fields (or to any field defined
by a sparse irreducible polynomial).

While the weight gives some insight into the actual cost, it is far too simplistic
for our purposes. For example, it does not take the characteristics of an imple-
mentation platform into account, and neither does it say anything about the
delay of the computation, both of which are highly relevant for an implementor.

Definition 2. Row-weight, Wi(Qe), is the number of ones on the ith row of Qe.

The row-weights reflect the costs of computing individual bits of the result. The
row-weight is a valuable tool for computing the cost of a repeated squaring
circuitry, as will be shown in the following.

Definition 3. Area, An(Qe), is the number of n-LUTs required to
implement Qe.

336 K.U. Järvinen

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18
x 10

4

Exponent, e

W
ei

gh
t,

W
(Q

e
)

NIST F2163

NIST F2233

NIST F2283

NIST F2409

NIST F2571

Fig. 1. The weights W(Qe) for the fields defined by NIST

Theorem 1. It is possible to implement Qe with a circuit whose area An(Qe)
satisfies

An(Qe) ≤
m∑

i=1

⌈Wi(Qe)− 1
n− 1

⌉
. (6)

Proof. (Sketch) Let L be the number of n-LUTs in a tree computing xor of its
inputs. The number of inputs in the tree is L(n− 1) + 1 (If L = 1, all n inputs
of the LUT are available. After that, the output of each new LUT consumes
one of the existing inputs, thus, increasing the number of inputs by only n− 1).
Because computing the ith row of Qe requires a xor of Wi(Qe) bits, it follows
directly from the previous that the number of LUTs is given by

L =
⌈Wi(Qe)− 1

n− 1

⌉
. (7)

Summing over all rows gives the upper bound of (6). It might be possible to
share resources between rows and, as a result, produce an even smaller circuit;
hence, the inequality. ��
Definition 4. Critical path, Dn(Qe), is the length of the longest path of
consecutive n-LUTs in the circuit computing Qe.

On Repeated Squarings in Binary Fields 337

Theorem 2. Critical path, Dn(Qe), is bounded by

Dn(Qe) ≤ max
i
�lognWi(Qe)�. (8)

Proof. (Sketch) As mentioned in the proof of Theorem 1, the tree corresponding
to the ith row of Qe must haveWi(Qe) inputs and it is easy to show that the tree
has the depth �lognWi(Qe)�. The maximum is taken because, by Definition 4,
the critical path is the longest path required by the repeated squaring. Again,
resource sharing may enable even shorter critical paths. ��
Example 1. Consider repeated squaring in F2[x]/x4 + x + 1. Let us analyze the
case e = 2 which gives us the following repeated squaring matrix:

Q2 =

⎡⎢⎢⎣
1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎤⎥⎥⎦ . (9)

Clearly, we have W(Q2) = 9 and W1(Q2) = 4, W2(Q2) = 2, W3(Q2) = 2,
and W4(Q2) = 1. Using (6) we find out that the number of 2-LUTs (xor gates)
required in implementation is bounded by A2(Q2) ≤ 5. Indeed, we can reduce
the cost to A2(Q2) = 4 by reusing either the xor of the 2nd row or the 3rd row
on the 1st row. With 4-LUTs used in many FPGAs, we have the minimum cost:
A4(Q2) = 3. (8) gives the critical paths D2(Q2) = 2 and D4(Q2) = 1.

Example 2. Table 1 shows the upper bounds of (6) and (8) for NIST F2233 with
n ∈ [2, 7] and e ∈ [1, 6]. Squaring (e = 1) in NIST F2233 requires 153 LUTs with
all n. The benefits of larger n are clear: e.g., if n = 2, repeated squaring with
e = 4 consumes 7.5 times more area and 4.0 times more delay than a squaring
but, if n = 7, the differences are only 1.9 and 2.0 times1.

Table 1. Area and delay estimates given by (6) and (8) for F2233

An(Qe) Dn(Qe)
n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

e = 1 153 153 153 153 153 153 1 1 1 1 1 1
e = 2 361 245 230 230 230 230 2 2 2 1 1 1
e = 3 676 385 349 238 233 233 3 2 2 2 1 1
e = 4 1141 616 466 358 349 291 4 3 2 2 2 2
e = 5 1844 973 699 550 466 396 4 3 2 2 2 2
e = 6 2892 1511 1035 812 663 580 5 3 3 2 2 2

Next, we show how to implement efficient repeated squarers by exploiting the
fact that repeated squarings are cheap with small e (as demonstrated in Table 1).
1 Notice that this does not imply that the time required in computation with n = 7

is shorter than with n = 2 because the delays of LUTs with different n are not the
same; i.e., a LUT with small n is probably faster than one with large n.

338 K.U. Järvinen

4 Architectures for Repeated Squarers

4.1 Fixed Exponent

First, we consider the case where the exponent e is fixed; i.e, the problem is to
produce a circuitry that computes only a2e

(x) optimally with respect to some
metric, such as, area, delay, or area-delay product.

There are two simple approaches to compute a repeated squaring with e:

1. Direct where one produces a circuitry directly from the matrix Qe; and
2. Square chain where one produces a combinatorial circuitry of e successive

squarings2.

Let || denote a concatenation of two circuits, i.e., the outputs of the circuit on the
left are fed to the inputs of the circuit on the right. Because a2e

(x) = (a2e1)2
e2 (x)

if e = e1+e2, a repeated squaring with an exponent e can be implemented with a
chain Qe1 ||Qe2 || . . . ||QeN where

∑N
i=1 ei = e. The direct approach is the special

case where N = 1 and e1 = e and the square chain is the special case where
N = e and ei = 1 for all i.

Example 3. Q3||Q2 denotes a circuit that given an input a(x), first, computes
a23

(x) with a direct approach using Q3 and then feeds its result b(x) to a circuit
that computes b22

(x) with Q2. Hence, the result from the entire circuit is a25
(x).

Clearly, area and delay of concatenated circuits are bounded by

An(Qe1 || . . . ||QeN) ≤
N∑

i=1

An(Qei) and (10)

Dn(Qe1 || . . . ||QeN) ≤
N∑

i=1

Dn(Qei). (11)

The upper bounds reflect the case where the circuits are concatenated as such
without any optimizations between blocks. In practice, optimizations between
concatenated circuits can reduce both area and delay. Nevertheless, in the fol-
lowing analysis, we assume the worst case, i.e., the equality in (10) and (11). We
also assume the following ordering for the exponents: e1 ≥ e2 ≥ . . . ≥ eN .

Remark 1. Although synthesis usually manages to perform optimizations so that
the resulting area and delay satisfy the bounds of (10) and (11), it is also pos-
sible that the synthesis fails and results in a larger area and/or delay. Even in
that case, the above bounds are always achievable by preventing synthesis from
performing optimizations between blocks.

Next, setups optimized for delay, area, and their product are discussed in more
detail. In all cases, the task is to find a concatenation Qe1 ||Qe2 || . . . ||QeN that
minimizes the metric under optimization.
2 Notice that this is different from the repeated squarer of [9] which iterates a squarer

for e clock cycles.

On Repeated Squarings in Binary Fields 339

Minimum Area. The task is to find {e1, e2, . . . , eN} with e =
∑N

i=1 ei that
minimizes

∑N
i=1An(Qei).

Using only two inputs of an n-LUT costs as much as using all n inputs. As
a consequence, even though W(Qe) grows rapidly when e increases (see Fig. 1),
taking unused inputs in use attenuates the growth of the number of LUTs. The
number of LUTs hence grows only moderately with small e as shown in Table 1.
In the following, the goal is to utilize the region of moderate growth also for
large e by using concatenations.

In order to design a repeated squarer for a large e with minimal area, it is
critical to minimize the area used per squaring. We call the exponent, ê, that
minimizes An(Qê)/ê with ê ≤ e the optimal exponent, eopt.

Example 4. Fig. 2 plots An(Qê)/ê for NIST F2233 with 2 ≤ n ≤ 7 and ê ≤
8. It shows that the number of LUTs required per squaring first decreases if
n > 2. Consider the case n = 4 (e.g., Spartan 3-A) and e = 6. Then, eopt = 2
and it is more area efficient to use a concatenation Q2||Q2||Q2 than any other
concatenation or direct Q6 (actually, direct Q6 requires the largest area because
A4(Q6)/6 > A4(Qê)/ê for all 1 ≤ ê < 6).

The phenomenon of Example 4 happens for all fields defined by NIST in [10], but
the benefits are expectedly larger for the fields defined by trinomials. Notice that

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

800

900

Exponent, ê

A
n
(Q

ê
)/

ê

2-LUT
3-LUT
4-LUT
5-LUT
6-LUT
7-LUT

Fig. 2. Area per exponent, An(Qê)/ê, with different LUT sizes for NIST F2233

340 K.U. Järvinen

because A2(Qê)/ê is strictly increasing, the phenomenon remains unobserved if
one considers only 2-to-1 bit gates (2-LUTs).

A concatenation with minimal area can be found with an exhaustive search
through all possible concatenations. Another approach to find a concatenation
with a minimal or near-minimal area is a straightforward application of the
greedy algorithm which results in a concatenation of t = �e/eopt� instances of
Qeopt followed by Qe−teopt if eopt � e. The greedy algorithm guarantees an opti-
mal concatenation if eopt | e. However, if eopt � e, a concatenation with ê > eopt
may result in a smaller area. Obviously, the greedy algorithm is computation-
ally much simpler than the exhaustive search, especially, with large e; however,
the computational complexity of the exhaustive search is insignificant if it is
performed offline, as it typically is.

Example 5. Consider using 6-LUTs (e.g., Virtex-5) for implementing a repeated
squarer for NIST F2233 with a fixed exponent e = 9. Fig. 2 shows that eopt = 3.
Because 3 | 9, both exhaustive search and the greedy algorithm return the same
optimal concatenation: Q3||Q3||Q3, which has an area estimate of 699 LUTs.
However, if e = 10, exhaustive search gives Q4||Q3||Q3 with an area estimate
of 757 LUTs but, because 3 � 10, the greedy algorithm fails to find the optimal
concatenation and returns Q3||Q3||Q3||Q with an estimated area of 852 LUTs.

Minimum Delay. The task is to find {e1, e2, . . . , eN} with e =
∑N

i=1 ei that
minimizes

∑N
i=1Dn(Qei).

Because delay grows logarithmically to Wi(Qe) as shown in (8), it is clear
that Dn(Qe) ≤ Dn(Qe1 || . . . ||QeN), and the minimum delay is always achieved
with a direct circuit for Qe.

Minimum Area-Delay Product. The task is to find {e1, e2, . . . , eN} with
e =

∑N
i=1 ei that minimizes

(∑N
i=1An(Qei)

)(∑N
i=1Dn(Qei)

)
.

These optimizations are analogous to the minimum area optimizations; rather
than minimizing An(Qe), one minimizes the product An(Qe)Dn(Qe). Hence, we
omit further analysis.

4.2 Varying Exponent

In Sec. 4.1, e was assumed fixed. However, many practical applications require
support for varying e and, in the following, we discuss two solutions for providing
such a support. The first solution is a simple generalization of the fixed exponent
repeated squarer and suits for cases requiring support for distinct exponents. The
second solution targets to situations where support for all exponents in a certain
range is needed (for simplicity and without any loss of generality3, we assume
that the range is 0 ≤ e ≤ emax).

3 The general case, emin ≤ e ≤ emax, can be realized by using a fixed exponent squarer
with emin to reach the lower bound and then the second solution for the range
0 ≤ e ≤ emax − emin.

On Repeated Squarings in Binary Fields 341

QQ Q2Q2 Q3Q3Q4

Fig. 3. The repeated squarer of Example 6

The First Solution. Let E = {e1, . . . , e�}, where ei > ei−1 for all i, denote the
set of exponents supported by a repeated squarer and let ∆i = ei − ei−1 (with
e0 = 0). The first solution is to produce fixed exponent circuits for each ∆i by
using the tools of Sec. 4.1 and to concatenate the resulting circuits in increasing
order starting from ∆1. A multiplexer with i as the selector is used to collect
the wanted result from the chain.

Example 6. Consider using 6-LUTs (e.g., Virtex-5) for implementing an area
optimized repeated squarer for NIST F2233 that supports the exponents: E =
{1, 2, 4, 8, 16}. We get ∆1 = 1, ∆2 = 1, ∆3 = 2, ∆4 = 4, and ∆5 = 8. Using
exhaustive search for each ∆i with area minimization as an optimization strat-
egy and concatenating the resulting circuits and a multiplexer gives the circuit
depicted in Fig. 3. Area and delay estimates (without the multiplexer) are 1600
LUTs and 8 LUTs, respectively.

Remark 2. The first solution is a generalization of the circuitry presented by
Rebeiro and Mukhopadhyay [7]. Their circuitry, called quad-block4, computes
a4s

(x) with s ∈ {2, 3, 4, 5, 7, 9}. It is a special case of the first solution which is
implemented for an exponent set E = {4, 6, 8, 10, 14, 18} with Q2 blocks only.
They showed that the circuit can be efficiently used for accelerating inversions.
They used the addition chain (1, 2, 3, 6, 7, 14, 28, 29, 58, 116, 232) for the inversion
whereas (1, 2, 4, 8, 16, 32, 64, 128, 192, 224, 232), where e is a power of two in all
repeated squarings, would make the circuit simpler, i.e., the same latency could
be achieved with E = {1, 2, 4, 8, 16} (the circuit of Example 6).

The Second Solution. If a squarer must support all exponents from a given
range, then ∆i = 1 for all i and the first solution results in a squaring chain
from which the output is selected with a multiplexer from the outputs of each
squarer in the chain. This is clearly very inefficient and we present the following
second solution to overcome this problem.

The second solution splits computation for two chains, the first of which is
a concatenation Qeopt ||Qeopt || . . . ||Qeopt with a length of �emax/eopt� and the

4 Squaring and quading are not supported by the quad-block, but they are available
elsewhere in the processor.

342 K.U. Järvinen

QQ

Q3Q3Q3Q3

enc.

Fig. 4. The repeated squarer of Example 7

second is a square chain (Q||Q|| . . . ||Q) with a length of eopt − 1. The input
to the second chain is selected from the input, the intermediate values, and the
output of the first chain with a (�emax/eopt� + 1)-to-1 multiplexer. The output
of the entire repeated squarer is obtained with an eopt-to-1 multiplexer from the
square chain. The select signals of the multiplexers are derived from e with a
simple encoder.

Example 7. Consider using 6-LUTs (e.g. Virtex-5) for implementing a repeated
squarer for NIST F2233 that supports exponents in the range 0 ≤ e ≤ emax = 14.
Using the tools of Sec. 3 with area optimization, we get eopt = 3. Thus, the first
chain consists of four repeated squarers for Q3 and the second chain is a square
chain with two squarers. The repeated squarer is depicted in Fig. 4. Area and
delay estimates (without the multiplexers and encoder) are 1238 LUTs and 6
LUTs, respectively.

Remark 3. The second solution results in an exponent range 0 ≤ e ≤ eupper =
(�emax/eopt�+ 1) eopt − 1 from which it follows that eupper = emax if and only
if eopt | emax + 1, else emax < eupper < emax + eopt. If a lower bound starting
from one is wanted, it can be easily realized either by designing the encoder so
that it does not allow exponent e = 0 or by attaching a squarer in front of the
repeated squarer. However, the feature that also a20

(x) = a(x) is supported can
be very useful because it allows using the repeated squarer directly as a dummy
operation.

Remark 4. Delay can be reduced by replacing the square chain with direct re-
peated squarers. For instance, in the case of Example 7 (Fig. 4), the second Q
would be replaced by Q2 taking its input directly from the multiplexer. This
would reduce the delay to 5 LUTs but increase area by 77 LUTs.

On Repeated Squarings in Binary Fields 343

5 Implementation Results

All VHDL was generated automatically with Matlab scripts5 (Matlab 7.7.0.471
(R2008b)). The VHDL is device independent. We compiled the code for two
Xilinx FPGAs: Spartan-3A 3S1400A-5 (n = 4) and Virtex-5 5VLX50-3 (n =
6) which represent low-cost and high-end FPGAs, respectively. Synthesis and
place&route were performed with Xilinx ISE 10.1.03 WebPACK using default
options. The inputs and outputs were registered, otherwise the whole chip area
was devoted for the repeated squarers. Several different designs were compiled
and Table 2 collects the results. The areas in Table 2 represent the areas of
combinatorial parts and the delays give the critical paths from the input registers
to the output registers as reported by Xilinx ISE.

5.1 Discussion on the Results

In order to be feasible in practice, the repeated squarers should consume only
moderate area and have a delay that is shorter than the critical paths of existing
elliptic curve cryptography processors (this ensures that repeated squarings do
not become the bottleneck for clock frequency). To the best of our knowledge, the
two fastest FPGA-based elliptic curve processors have been presented by Chel-
ton and Benaissa [17] for general binary curves and Järvinen and Skyttä [6]
for Koblitz curves. The areas of the processors are 26364 4-LUTs (Virtex-4
4VLX200-11) and 34604 7-LUTs (Adaptive LUTs of Stratix II S180C3), re-
spectively [17,6]. Compared to these, the areas listed in Table 2 are small. The
critical paths of the processors are 6.50 ns and 5.33 ns, respectively [17,6]. The
delays in Table 2 are of the same magnitude. However, both processors use NIST
F2163 , whereas we provided results for a larger field, F2233 . It is likely that both
area and critical paths of the processors would be significantly larger with the
larger field. Hence, it is safe to say that the proposed repeated squarers are,
indeed, feasible components for elliptic curve cryptography processors.

The delays of the circuits computing Qe directly are only slightly faster (and in
some cases even slower) than the delays of concatenated circuits. The reasons for
this originate from the more difficult place&route of direct circuits that degrades
their results. Hence, the proposed repeated squarers can be very competitive
against direct circuits even with respect to delay.

Table 2 shows that (with only few exceptions) the setup declared as area opti-
mal by the analysis, indeed, is the best concatenation also after the compilation.
Of course, the number of compiled concatenations for each set of exponents is
rather small; hence, it is not clear whether a concatenation resulting in an even
smaller area exists or not. Most of the exceptions are for Spartan-3A. This is
due to the fact that based on the analysis eopt = 2 (see Table 1) whereas in
reality based on the values from Table 2 it is eopt = 3. This difference is caused
by resource sharing between rows that was not considered by the analysis. The
resource sharing between rows is not the only synthesis optimization which is not

5 The scripts are available at http://www.tcs.hut.fi/~kjarvine/codes/

http://www.tcs.hut.fi/~kjarvine/codes/

344 K.U. Järvinen

Table 2. Results for F2233 on Spartan-3A 3S1400A-5 and Virtex-5 5VLX50-3

Spartan-3A Virtex-5
e Concatenation1 Area (LUTs) Delay (ns) Area (LUTs) Delay (ns)

1 1 (4,6) 153 3.45 153 2.78

2 2 (4,6) 230 4.61 230 3.01

3 3 (4,6) 289 5.82 233 2.52

4 2,2 (4) 436 5.99 299 2.86
4 4 (6) 433 6.09 330 2.89

5 3,2 (4,6) 546 7.01 372 3.58
5 5 656 6.52 476 3.63

6 2,2,2 (4) 711 6.78 651 3.51
6 3,3 (6) 637 6.91 434 4.06
6 6 996 6.59 659 3.55

8 2,2,2,2 (4) 939 6.62 1415 4.49
8 3,3,2 (6) 916 7.80 587 5.00
8 8 2090 7.27 1576 4.47

16 2,...,2 (4) 1691 12.30 1525 8.25
16 4,3,...,3 (6) 1733 12.35 1368 8.86
16 16 5727 12.89 4398 6.48

{1, 2, 4} 1,1,2 (4,6) 810 5.77 580 4.07

{1, 2, 4, 8} 1,1,2,2,2 (4) 1350 8.85 1227 5.30
{1, 2, 4, 8} 1,1,2,4 (6) 1396 7.80 1189 5.83

{1, 2, 4, 8, 16} 1,1,2,...,2 (4) 2694 14.82 2015 8.07
{1, 2, 4, 8, 16} 1,1,2,4,3,3,2 (6) 2784 15.68 1823 8.23

0 ≤ e ≤ 7 2 (4) 1365 8.40 1319 6.03

0 ≤ e ≤ 11 2 (4) 2525 12.65 2113 7.72
0 ≤ e ≤ 11 3 (6) 2005 11.00 1809 8.10

0 ≤ e ≤ 13 2 (4) 2412 15.78 2694 8.66

0 ≤ e ≤ 14 3 (6) 2773 13.58 1911 8.67
1 The subscript shows n for which the concatenation is area optimal based on the analysis.

considered in the analysis. The synthesis also performs optimizations between
different concatenated blocks.

In general, compensating these deficiencies in the analysis without any feed-
back from the synthesis is extremely difficult because optimizations depend heav-
ily on the target device (on more than simply n) and the synthesis program as
well as on the options given for the synthesis. However, the following procedure
using feedback from the synthesis compensates the resource sharing between
rows of Qe nearly completely:

On Repeated Squarings in Binary Fields 345

1. Synthesize repeated squaring matrices Qê starting from ê = 1 until eopt is
found.

2. Collect the areas from the results of the synthesis and use them as An(Qe)
in the analysis instead of the estimates given by (6).

This procedure takes resource sharing between rows into account in the analysis
and makes the predicted values considerably more accurate. Synthesis programs
typically include options that prevent optimizations between design blocks and
they can be used for improving the accuracy of the analysis. However, we did not
use such options, because the optimizations between blocks typically reduce both
area and delay considerably from the predicted values and, hence, preventing
them reduces the quality of results.

6 Conclusions

Previously in the paper, we analyzed repeated squarings and presented several
possibilities of how to realize repeated squarers. The results presented in Sec. 5
proved the feasibility of repeated squarers by showing that they can be imple-
mented with reasonable area and that they are fast enough not to become the
bottleneck.

We conclude by discussing the following benefits of using repeated squares
compared to the existing solutions:

Faster Inversions in Binary Fields. Repeated squarers (the first solution)
offer a relatively cheap way to implement fast inversions. For example, an
Itoh-Tsujii inversion in NIST F2233 requires 10 multiplications and 232 squar-
ings. These squarings can be computed with only 19 repeated squarings using
a repeated squarer (first solution) with E = {1, 2, 4, 8, 16} (a component that
was shown practical in Sec. 5). Speedups up to 88% can be achieved with
this repeated squarer compared to an iterative repeated squarer. Naturally,
the faster the multiplications are and the larger is the ratio of squarings com-
pared to multiplications, the larger are the speedups. See Appendix A.1 for
more information on the computation model, latencies, and speedups with
different repeated squarers.

Faster General Exponentiations in Binary Fields. InversionusingFermat’s
Little Theorem is simply an exponentiation to the power 2m − 2 in the field.
Obviously, repeated squarers can be used for accelerating any exponentiation
in a similar way and, again, the larger is the ratio of squarings compared to
multiplications, the better improvements are achievable.

Faster Scalar Multiplications on Koblitz Curves. Withan iterative squarer
computing e successive Frobenius maps requires either 2e or 3e clock cycles de-
pending on the coordinate system. Repeated squarers (the second solution) re-
duce this to 2�e/emax� or 3�e/emax� clock cycles. Defining speedups in the case
of scalarmultiplications isnot as straightforwardas itwas for Itoh-Tsujii inver-
sions, because they depend on k that varies. We ran 100000 experiments with

346 K.U. Järvinen

random width-2 τNAFs using two computation models based on existing el-
liptic curve processors in order to determine the speedups. According to these
experiments, repeated squarers can lead to average speedups of over 13% in the
latency of scalar multiplication. Expectedly, the faster are the multipliers the
larger are the speedups also in this case. Increasing the width ω of τNAF also
increases the speedups. Furthermore, methods that reduce either the memory
consumption of window methods [18] or the weight w(k) [19] by using more
Frobenius maps have been proposed recently and efficient computation of re-
peated squarings is essential for them. Appendix A.2 presents details on the
experiments.

Improved Side-Channel Resistivity. Replacing an iterative repeated squarer
with a repeated squarer (the second solution) makes attacking scalar multipli-
cations on Koblitz curves with side-channel attacks considerably harder. In-
stead of counting clock cycles from the power trace, the adversary must be
able to distinguish the exponent e from a single clock cycle in the power trace,
i.e, after observing a single clock cycle in the trace, the adversary only knows
that the number of Frobenius maps is≤ emax. Therefore, launching a success-
ful side-channel attack is considerably more difficult. If emax is small and/or ω
large, situations where e > emax occur commonly (see Appendix A.2) which
may lead to certain side-channel weaknesses. It may also be possible to learn
some information about e fromthepower consumption of the repeated squarer,
e.g., with differential power analysis. Hence, it is clear that this approach does
not remove the possibility of a successful power analysis attack entirely, but it
is equally clear that it makes attacking significantly harder.

6.1 Future Research

Designing repeated squarers still requires some trial-and-error type optimiza-
tions, mainly because resource sharing is hard to incorporate into the analysis.
However, the trials are easy and fast to do thanks to the automated VHDL
generation provided by the Matlab scripts. Nonetheless, we are searching for
heuristics compensating resource sharing.

Modern FPGAs commonly have a structure which cannot be modelled accu-
rately with simple n-LUTs. As a consequence, optimizations for more advanced
LUT structures, such as, Stratix ALUTs, 6-to-2 bit LUTs, etc., will be a topic
for future research.

Square root can be implemented with fewer resources than squaring if the ir-
reducible is a trinomial [20]. Hence, it might be possible to reduce the complexity
of a repeated squaring (especially, varying exponent with the second solution)
by, first, “shooting over” the required exponent e with an eopt chain and, then,
reversing back with (repeated) square roots, rather than using fewer eopt’s and
then reaching e with a few repeated squarings.

The effects of the LUT size, in general, have been surprisingly little studied
considering how popular FPGAs are for implementing finite field arithmetic.
As shown in this paper, the LUT structure may have significant consequences
and could, therefore, open ways to further optimize existing designs on FPGAs;

On Repeated Squarings in Binary Fields 347

hence, also other operations, such as finite field multiplications, should be studied
from this point of view.

Acknowledgments

This work was supported by the European Commission’s 7th Framework Pro-
gramme (FP7) under contract number ICT-2007-216499 (CACE). The author
would like to thank Billy Bob Brumley and the anonymous reviewers for valuable
comments and improvement suggestions.

References

1. Miller, V.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO
1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

2. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987)
3. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in

GF (2m) using normal bases. Inf. Comput. 78, 171–177 (1988)
4. Guajardo, J., Paar, C.: Itoh-Tsujii inversion in standard basis and its application

in cryptography and codes. Designs Codes Cryptogr. 25, 207–216 (2002)
5. Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J.

(ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992)
6. Järvinen, K., Skyttä, J.: Fast point multiplication on Koblitz curves: Parallelization

method and implementations. Microprocess. Microsyst. 33, 106–116 (2009)
7. Rebeiro, C., Mukhopadhyay, D.: High speed compact elliptic curve cryptoproces-

sor for FPGA platforms. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) IN-
DOCRYPT 2008. LNCS, vol. 5365, pp. 376–388. Springer, Heidelberg (2008)

8. Wollinger, T., Guajardo, J., Paar, C.: Security on FPGAs: State-of-the-art imple-
mentations and attacks. ACM Trans. Embedd. Comput. Syst. 3, 534–574 (2004)

9. Lutz, J., Hasan, A.: High performance FPGA based elliptic curve cryptographic
co-processor. In: International Conference on Information Technology: Coding and
Computing, vol. 2, pp. 486–492. IEEE Computer Society, Los Alamitos (2004)

10. National Institute of Standards and Technology (NIST): Digital signature standard
(DSS). Federal Information Processing Standard, FIPS PUB 186-2 (2000)

11. Ahmadi, O., Hankerson, D., Rodŕıguez-Henŕıquez, F.: Parallel formulations of
scalar multiplication on Koblitz curves. J. Univers. Comput. Sci. 14, 481–504 (2008)

12. Gordon, D.M.: A survey of fast exponentiation methods. J. Algorithms 27, 129–146
(1998)

13. Solinas, J.A.: Efficient arithmetic on Koblitz curves. Designs Codes Cryptogr. 19,
195–249 (2000)

14. López, J., Dahab, R.: Improved algorithms for elliptic curve arithmetic in GF (2m).
In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 201–212. Springer,
Heidelberg (1999)

15. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

16. Hasan, M.A.: Power analysis attacks and algorithmic approaches to their counter-
measures for Koblitz curve cryptosystems. IEEE Trans. Comput. 50, 1071–1083
(2001)

17. Chelton, W.N., Benaissa, M.: Fast elliptic curve cryptography on FPGA. IEEE
Trans. Very Large Scale Integr (VLSI) Syst. 16, 198–205 (2008)

348 K.U. Järvinen

18. Vuillaume, C., Okeya, K., Takagi, T.: Short-memory scalar multiplication for
Koblitz curves. IEEE Trans. Comput. 57, 481–489 (2008)

19. Dimitrov, V.S., Järvinen, K.U., Jacobson, M.J., Chan, W.F., Huang, Z.: Provably
sublinear point multiplication on Koblitz curves and its hardware implementation.
IEEE Trans. Comput. 57, 1469–1481 (2008)

20. Rodŕıguez-Henŕıquez, F., Morales-Luna, G., López, J.: Low-complexity bit-parallel
square root computation over GF (2m) for all trinomials. IEEE Trans. Comput. 57,
471–480 (2008)

21. Al-Daoud, E., Mahmod, R., Rushdan, M., Kilicman, A.: A new addition formula
for elliptic curves over GF (2n). IEEE Trans. Comput. 51, 972–975 (2002)

A Speedup Evaluations

A.1 Itoh-Tsujii Inversion

We consider Itoh-Tsujii inversion in NIST F2233 with the addition chain {1, 2, 4, 8,
16, 32, 64, 128, 192, 224, 232} and the following computation model. Let multipli-
cation require M clock cycles and repeated squaring one clock cycle. Assuming
that the latency consists of only multiplications and repeated squarings (easily
achievable, for example, with the architecture from [6]), an Itoh-Tsujii inversion
in NIST F2233 requires 10M + R clock cycles where R is the number of repeated
squarings. Table 3 lists speedups compared to an iterative squarer.

Table 3. Latencies and speedups of Itoh-Tsujii inversion in F2233 with different re-
peated squarers and multiplication latencies

E R M = 233 M = 18 M = 6 M = 1

{1} 232 2562 412 292 242

{1, 2} 117 2447(-4.5%) 297(-27.9%) 177(-39.4%) 127(-47.5%)
{1, 2, 4} 60 2390(-6.7%) 240(-41.7%) 120(-58.9%) 70(-71.1%)
{1, 2, 4, 8} 32 2362(-7.8%) 212(-48.5%) 92(-68.5%) 42(-82.6%)

{1, 2, 4, 8, 16} 19 2349(-8.3%) 199(-51.7%) 79(-72.9%) 29(-88.0%)
{1, 2, 4, 8, 16, 32} 13 2343(-8.5%) 193(-53.2%) 73(-75.0%) 23(-90.5%)

{1, 2, 4, 8, 16, 32, 64} 11 2341(-8.6%) 191(-53.6%) 71(-75.7%) 21(-91.3%)

A.2 Scalar Multiplication on Koblitz Curves

We consider scalar multiplication on a Koblitz curve NIST K-233 [10] with width-
2 τNAF using two computation models. Model 1 represents a generic elliptic
curve processors (similar, e.g., to [17]) having one multiplier with a latency M
and all other operations having a latency of one. We assume that point additions
are computed as proposed in [21] requiring 8 multiplications, 5 squarings, and
8 additions on K-233. Thus, we assume a latency of (w(k) − 1)(8M + 13) + 3R
for scalar multiplication (without the final inversion), where R is the number of

On Repeated Squarings in Binary Fields 349

repeated squarings per coordinate required in computation of Frobenius maps.
Model 2 is taken directly from [6] representing the fastest elliptic curve processor
available in the literature. With that processor the latency of scalar multiplica-
tion is (w(k) − 1)(2M + 2) + R. Table 4 presents results after evaluating both
models with 100000 random width-2 τNAFs (obtained as proposed in [13]).

Table 4. Average latencies and speedups in scalar multiplications on NIST K-233
and width-2 τNAF with different repeated squarers and multiplication latencies using
two computation models. Coverage gives the percentage of Frobenius maps where one
coordinate can be mapped with a single repeated squaring; the value in parentheses
gives the percentage of scalars where all Frobenius maps had this property.

emax Model Coverage M = 17 M = 12 M = 8 M = 5

1 1 0.33% (0.00%) 12133 9062 6604 4762

2 1 50.40% (0.00%) 11826(-2.5%) 8754(-3.4%) 6297(-4.7%) 4454 (-6.5%)
3 1 75.31% (0.00%) 11738(-3.3%) 8667(-4.4%) 6210(-6.0%) 4367 (-8.3%)
7 1 98.48%(29.57%) 11676(-3.8%) 8605(-5.0%) 6148(-6.9%) 4305 (-9.6%)
11 1 99.91%(93.07%) 11673(-3.8%) 8602(-5.1%) 6145(-7.0%) 4302 (-9.7%)
14 1 99.99%(99.15%) 11673(-3.8%) 8601(-5.1%) 6144(-7.0%) 4301 (-9.7%)

1 2 0.33% (0.00%) 2995 2227 1613 1152

2 2 50.40% (0.00%) 2893(-3.4%) 2125(-4.6%) 1510(-6.4%) 1050 (-8.9%)
3 2 75.31% (0.00%) 2863(-4.4%) 2095(-5.9%) 1481(-8.2%) 1020(-11.4%)
7 2 98.48%(29.57%) 2843(-5.1%) 2075(-6.8%) 1461(-9.4%) 1000(-13.2%)
11 2 99.91%(93.07%) 2842(-5.1%) 2074(-6.9%) 1459(-9.5%) 999(-13.3%)
14 2 99.99%(99.15%) 2842(-5.1%) 2074(-6.9%) 1459(-9.5%) 999(-13.3%)

Highly Regular m-Ary Powering Ladders

Marc Joye

Thomson R&D, Security Competence Center,
1 avenue de Belle Fontaine, 35576 Cesson-Sévigné Cedex, France

marc.joye@thomson.net

http://joye.site88.net/

Abstract. This paper describes new exponentiation algorithms with
applications to cryptography. The proposed algorithms can be seen as
m-ary generalizations of the so-called Montgomery ladder. Both left-to-
right and right-to-left versions are presented.

Similarly to Montgomery ladder, the proposed algorithms always re-
peat the same instructions in the same order, without inserting dummy
operations, and so offer a natural protection against certain implementa-
tion attacks. Moreover, as they are available in any radix m and in any
scan direction, the proposed algorithms offer improved performance and
greater flexibility.

Keywords: Exponentiation algorithms, Montgomery ladder, SPA-type
attacks, safe-error attacks.

1 Introduction

We consider the general problem of evaluating y = gd in a (multiplicatively
written) group G with identity element 1G, on input g ∈ G and d ∈ Z>0. The
m-ary expansion of d is given by d =

∑�−1
i=0 di mi with 0 � di < m and d�−1 	= 0.

Integer � = �(m) represents the number of digits (in radix m) for the m-ary
representation of d and is called the m-ary length of d.

1.1 Left-to-Right Algorithms

The most widely used exponentiation algorithm is the binary method (a.k.a.
“square-and-multiply” algorithm) [15, Section 4.6.3]. It relies on the simple
observation that gd =

(
gd/2

)2
if d is even, and gd =

(
g(d−1)/2

)2 · g if d is
odd.

The binary method extends easily to any radix m. Let Hi =
∑�−1

j=i dj mj−i.
Since Hi =

(∑�−1
j=i+1 dj mj−i

)
+ di = mHi+1 + di, we get

gHi =

{(
gHi+1

)m if di = 0 ,(
gHi+1

)m · gdi otherwise .
(1)

Noting that gd = gH0 , the previous relation gives rise to an exponentiation
algorithm. It can be readily programmed by scanning the m-ary representation

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 350–363, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://joye.site88.net/

Highly Regular m-Ary Powering Ladders 351

of d from left to right. As, at iteration i, for �− 2 � i � 0, the method requires
a multiplication by gdi when di 	= 0, the values of gj with 1 � j � m − 1
are precomputed and stored in (m− 1) temporary variables; namely, R[j]← gj

for 1 � j � m − 1. If the successive values of gHi are kept track of in an
accumulator A, Equation (1) then translates into

A←
{

Am if di = 0
Am · R[di] otherwise

(for �− 2 � i � 0)

and where A is initialized to R[d�−1]. The corresponding algorithm is referred to
as the (left-to-right) m-ary algorithm.

1.2 Right-to-Left Algorithms

It is also possible to devise a similar algorithm based on a right-to-left scan of
exponent d. This may be convenient when the m-ary length of d is unknown
in advance. In the binary case (i.e., when m = 2), letting d =

∑�−1
i=0 di 2i the

binary expansion of d, the method makes use of the relation gd =
∏

0�i��−1
di �=0

g2i

.

An accumulator A is initialized to g and squared at each iteration, so that it
contains g2i

at iteration i. Another accumulator, say R[1], initialized to 1G, is
multiplied with A if di 	= 0. Hence, we see that at iteration � − 1, accumulator
R[1] contains the value of

∏
0�i��−1

di �=0
g2i

= gd.

Although less known than its left-to-right counterpart, as shown by Yao [29],
this method can be extended to higher radices. The basic idea remains the same.
If d =

∑�−1
i=0 di mi denotes the m-ary expansion of d, we can write

gd =
∏

0�i��−1
di=1

gmi ·
∏

0�i��−1
di=2

g2·mi · · ·
∏

0�i��−1
di=m−1

g(m−1)·mi

=
m−1∏
j=1

(Lj)j where Lj =
∏

0�i��−1
di=j

gmi

. (2)

Hence, using (m−1) accumulators, R[1], . . . , R[m−1], to keep track of the values
of Lj, 1 � j � m− 1, and an accumulator A that stores the successive values of
gmi

, at iteration i, the accumulators are updated as{
R[di]← R[di] · A if di 	= 0
A← Am

(for 1 � i � �− 1)

where A is initialized to g and R[1], . . . , R[m−1] are initialized to 1G. Equation (2)
says that gd is then given by A← ∏m−1

j=1 R[j]j. The so-obtained algorithm, also
known as Yao’s algorithm, is referred to as the right-to-left m-ary algorithm.

352 M. Joye

1.3 Implementation Attacks

If not properly implemented, exponentiation algorithms may be vulnerable to
side-channel attacks [16,17] (see also [6,19]). Another threat against implemen-
tations of exponentiation algorithms resides in fault attacks [5] (see also [2,11]).

Two implementation attacks, namely SPA-type attacks and safe-error attacks,
are particularly relevant in the context of exponentiation.

SPA-Type Attacks. By observing a suitable side channel, such as the power
consumption [16] or electromagnetic emanations [10,24], an attacker may re-
cover secret information. For exponentiation-based cryptosystems, the goal of
the attacker is to recover the value of exponent d (or a part thereof) used in
the computation of gd in some group G. SPA-type attacks1 assume that the at-
tacker infers secret information (typically one or several bits of d) from a single
execution of gd.

Consider for example the square-and-multiply algorithm (that is, the left-to-
right m-ary algorithm with m = 2).2

Algorithm 1. Square-and-Multiply Algorithm
Input: g ∈ G, d =

∑�−1
i=0 di 2i

Output: gd

R[1] ← g; A ← 1G1

for i = � − 1 down to 0 do2

A ← A23

if (di �= 0) then A ← A · R[1]4

end5

return A6

Each iteration comprises a ‘square’ and, when the bit exponent is non-zero, a
subsequent ‘multiply’. Since the algorithm behaves differently depending on the
bit values, this may be observed from a suitable side channel. The information
thus gleaned may enable the attacker to deduce one or more bits of exponent d.

One way of preventing an attacker from recovering the bit values is to execute
the same instructions regardless of the value of input bit di. Such an algorithm
is said to be regular. There are several implementations of this idea.

– The test of whether a digit is nonzero may be removed if Line 1 in Algo-
rithm 1 is replaced with A ← A · R[di] and where temporary variable R[0]
is initialized to 1G. Alternatively, a fake multiply may be performed when
di = 0, as suggested in [9]. Doing so, there will be no longer conditional
branchings: at each iteration, there is a square always followed by a multiply.

1 SPA stands for “Simple Power Analysis.”
2 We slightly differ from the presentation of Section 1.1 and initialize accumulator A

with 1G. This prevents the necessity of requiring d�−1 �= 0 and therefore � may denote
any upper bound on the binary length of d. If �′ � � is the exact binary length of d,
observe that accumulator A is correctly set in the for-loop to gd�′−1 , as required.

Highly Regular m-Ary Powering Ladders 353

This algorithm is known as the “square-and-multiply-always” algorithm.
However, as will be explained in a moment, the resulting implementation
now becomes vulnerable to safe-error attacks.

– Another possibility to get a regular exponentiation is to recode exponent d
in such a way that none of the digits are zero [21,23,27,28]. As exemplified
in [26], this however supposes that the recoding algorithm itself is resistant
to SPA-type attacks.

The above analysis is not restricted to the square-and-multiply algorithm and
generalizes to the m-ary exponentiation algorithms mentioned in Sections 1.1 and
1.2. While it may argued that, for larger m, m-ary exponentiation algorithms are
more regular and therefore more resistant to SPA-type attacks, these algorithms
are not entirely regular since two cases are to be distinguished: di = 0 and di 	= 0.

Safe-Error Attacks. By timely inducing a fault during the execution of an
instruction, an attacker may deduce whether the targeted instruction is fake: if
the final result is correct then the instruction is indeed fake (or dummy); if not,
the instruction is effective. This knowledge may then be used to obtain one or
more bits of exponent d. Such attacks are referred to as safe-error attacks [30,31].

Back to the “square-and-multiply-always” algorithm, an attacker can induce a
fault during a multiply. If the final result is correct then the attacker may deduce
that the corresponding exponent bit is a zero (i.e., fake multiply); otherwise, the
attacker may deduce that the exponent bit is a one. Safe-error attacks apply
likewise to higher-radix similar m-ary methods to distinguish zero digits.

1.4 Our Contributions

Using the terminology of [12], we deal in this paper with highly regular
exponentiation algorithms, that is, exponentiation algorithms that

– are regular; i.e., always repeat the same instructions in the same order for
any inputs;

– do not insert dummy operations.

Highly regular exponentiation algorithms protect against SPA-type attacks and
safe-error attacks, at the same time [14]. Examples of such algorithms include
the so-called Montgomery ladder [22] and a recent powering ladder presented at
CHES 2007 [12, Algorithm 1′′]. These two algorithms are depicted below.

Algorithm 2. Montgomery Ladder
Input: g ∈ G, d =

∑�−1
i=0 di 2i

Output: gd

R[0] ← 1G; R[1] ← g1

for i = � − 1 down to 0 do2

R[1 − di] ← R[1 − di] · R[di]3

R[di] ← R[di]24

end5

return R[0]6

354 M. Joye

Algorithm 3. Joye’s Square-Multiply Ladder
Input: g ∈ G, d =

∑�−1
i=0 di 2i

Output: gd

R[0] ← 1G; R[1] ← g1

for i = 0 to � − 1 do2

R[1 − di] ← R[1 − di]2 · R[di]3

end4

return R[0]5

Montgomery ladder and Joye’s square-multiply ladder both rely on specific
properties of the binary representation. In particular, it is unclear how to gen-
eralize these two algorithms to higher radices.

In this paper, we present a new method to derive highly regular exponentia-
tion algorithms by considering a representation of d−1 rather than that of plain
exponent d. The proposed method is independent of the radix representation
and of the scan direction (left-to-right or right-to-left). Interestingly, when par-
ticularized to m = 2, the method yields algorithms dual to Algorithms 3 and 2;
i.e., similar algorithms but with the opposite scan direction.

Outline of the Paper. The rest of this paper is organized as follows. The
next section is the core of our paper. We describe our new exponentiation algo-
rithms. In Section 3, we present some applications thereof. Finally, we conclude
in Section 4.

2 New Exponentiation Algorithms

As aforementioned, the goal is to evaluate y = gd given an element g ∈ G
and an �-digit exponent d =

∑�−1
i=0 di mi. Our algorithms rely on the following

proposition.

Proposition 1. Let d =
∑�−1

i=0 di mi denote the m-ary expansion of d. Then

d = (d�−1 − 1)m�−1 +

(
�−2∑
i=0

(di + m− 1)mi

)
+ 1 .

Proof. Straightforward by noting that
∑�−2

i=0 (di + m − 1)mi =
∑�−2

i=0 di mi +∑�−2
i=0(m− 1)mi = (d− d�−1 m�−1) + (m�−1 − 1). ��

2.1 General Case

Proposition 1 can be rewritten as

d− 1 =
�−1∑
i=0

d∗i mi where d∗i =

{
di + m− 1 for 0 � i � �− 2
d�−1 − 1 for i = �− 1

. (3)

Highly Regular m-Ary Powering Ladders 355

Left-to-Right Algorithm. If d > 0, it follows that d�−1 � 1 and so d∗�−1 �
0. Remember that the m-ary algorithm can accommodate a leading zero digit
(i.e., when d∗�−1 = 0); see Footnote 2. It is also important to note that all the
subsequent digits are nonzero (i.e., d∗i > 0 for i � �−2). We can therefore devise
a regular method to get the value of gd−1 for some d > 0. The value of y = gd

is then obtained as y = gd−1 · g.
The algorithm is an adaptation of the m-ary algorithm, as described in

Section 1.1. It makes use of an accumulator A, initialized to gd∗
�−1 . At each

iteration of the main loop, accumulator A is raised to the power of m and then
always multiplied by gd∗

i (remember that d∗i 	= 0). Since d∗i ∈ {m−1, . . . , 2m−2},
the values of gm−1, . . . , g2m−2 are precomputed and stored in temporary vari-
ables R[1] . . . , R[m]. At the end of the main loop, the accumulator is multiplied
by g to get the correct result.

Precomputation & Initialization. Accumulator A has to be initialized to gd∗
�−1

with d∗�−1 = (d�−1 − 1) in {0, . . . , m − 2} and this must be done in a regular
manner. Moreover, since (i) the values of gm−1, . . . , g2m−2 have to be precom-
puted and stored in registers R[1], . . . , R[m − 1] before entering the main loop
and (ii) d�−1 ∈ {1, . . . , m− 1}, it is possible to

1. write gj−1 in R[j] for 1 � j � m,
2. assign A to the corresponding register so that it contains gd�−1−1 (i.e., A←

R[d�−1]), and
3. multiply registers R[1], . . . , R[m] by gm−1 so that they contain gm−1, . . . ,

g2m−2, respectively;

or algorithmically, we replace Lines 1 and 2 in Algorithm 4 with

� Precomputation & Initialization
R[1]← 1G; R[2]← g; for i = 3 to m do R[i]← R[i− 1] · R[2]1

A← R[d�−1]; for i = 1 to m do R[i]← R[i] · R[m]2

Doing so, the evaluation of gd�−1−1 is regular.

Algorithm 4. Regular Left-to-Right Exponentiation (General description)

Input: g ∈ G, d =
∑�−1

i=0 di mi (d > 0)
Output: gd

Uses: A and R[1], . . . , R[m]

� Precomputation & Initialization

for i = 1 to m do R[i] ← gm+i−21

A ← gd�−1−12

� Main loop

for i = � − 2 down to 0 do3

A ← Am · R[1 + di]4

end5

� Final correction

A ← A · g6

return A7

356 M. Joye

Yet another way of obtaining a regular evaluation is to force the leading digit
to a predetermined value by adding to d a suitable multiple of the order of g prior
to the exponentiation. When applicable, this method should be preferred. Fur-
thermore, it nicely combines with the classical DPA countermeasure consisting
in adding to d a random multiple of the order of g [9].

Final correction. The final correction can be avoided by replacing d with d + 1
prior to the exponentiation, d ← d + 1. This may be useful when the memory
is scarce and that the value of g is not available in memory. Note also that this
step may be combined with the addition of a multiple of the order of g.

Right-to-Left Algorithm. We can likewise devise a right-to-left m-ary ex-
ponentiation algorithm. We follow the presentation of Section 1.2. From Equa-
tion (3), we have

gd−1 =
(
gm�−1)d∗

�−1 ·
m−1∏
j=1

(L∗
j)

m+j−2 where L∗
j =

∏
0�i��−2

d∗
i =j

gmi

. (4)

The algorithm makes use of m accumulators, R[1], . . . , R[m], to keep track of the
values of L∗

j , 1 � j � m, and an accumulator that keeps track of the successive
values of gmi

. Accumulators R[1], . . . , R[m] are initialized to 1G and accumulator
A is initialized to g. Again, it is to be noted that all digits d∗i are nonzero (i.e.,
d∗i ∈ {m−1, . . . , 2m−2} for 0 � i � �−2). As a consequence, at each iteration i,
an accumulator R[j] is updated (namely, R[d∗i]← R[d∗i] ·A) and accumulator A is
updated as A← Am. Hence, we see that the evaluation of L∗

j is regular. It then
remains to evaluate the above relation in a regular manner to obtain a regular
right-to-left m-ary exponentiation algorithm to get gd−1 and thus y = gd as
gd−1 · g.

Initialization. In certain groups, the neutral element 1G requires special treat-
ment (e.g., elliptic curves given by the Weierstraß form).3 In such groups, the
multiplication of two elements A and B is typically implemented by checking
whether A or B is 1G: if this is the case, then the other element is returned;
if not, the ‘regular’ multiplication, A · B, is evaluated and returned. As this
may be observed through SPA, this can leak the first occurrence of a digit in
{0, . . . , m−1} in the m-ary representation of d. One way to prevent this leakage
is to initialize R[1], . . . , R[m] to values different from 1G.
3 By special treatment, we mean that the group operation is not unified. The usual ad-

dition formulas obtained by the chord-and-tangent rule on Weierstraß elliptic curves
are not valid for 1G (i.e., the point at infinity). In contrast, in G = Z∗

N , neutral
element 1G = 1 does not require a special treatment. Further, in this latter case, it
is easy to get SPA-resistance even if multiplication by 1 modulo N may be observed
through some side channel. For example, this can be achieved by working in Z∗

2wN

and replacing 1 with an equivalent representation 1 + αN ; the correct result is then
obtained by reducing the final output modulo N .

Highly Regular m-Ary Powering Ladders 357

Algorithm 5. Regular Right-to-Left Exponentiation (General description)

Input: g ∈ G, d =
∑�−1

i=0 di mi (d > 0)
Output: gd

Uses: A and R[1], . . . , R[m]

� Initialization
for i = 1 to m do R[i] ← 1G1

� Main loop

A ← g2

for i = 0 to � − 2 do3

R[1 + di] ← R[1 + di] · A4

A ← Am5

end6

� Aggregation

A ← Ad�−1−1 ·
∏m

i=1 R[i]m+i−27

� Final correction

A ← A · g8

return A9

As an example R[1], . . . , R[m] are initialized to g. Since each R[i] will be raised
to the power of (m + i− 2) during the aggregation step, we subtract

∑m
i=1(m +

i− 2) = 3m(m−1)
2 from d prior to the exponentiation. In more detail, we replace

Line 1 in Algorithm 5 with

� Initialization
for i = 1 to m do R[i]← g1a

d← d− 3m(m− 1)/21b

In groups where inverses can be easily obtained (e.g., on elliptic curves), another
option is to keep the value of d unchanged but to correct the result at the end
of the computation. This can be for example achieved by replacing Line 8 in
Algorithm 5 with

� Final correction

A← A · g3m(m−1)/2+18

Alternatively, R[1], . . . , R[m] can be initialized to elements of small order in G.
Suppose that R[1], . . . , R[m] are all initialized to h with ordG(h) = t. Define
b = 3m(m − 1)/2 mod t. At the end of the computation, accumulator A then
contains a multiplicative surplus factor of hb. Hence, the correct result is obtained
by multiplying A by ht−b. For example, in RSA groups G = Z∗

N , we can take
h = N − 1, which is of order t = 2.

Aggregation. If done naively, the aggregation step at Line 5 (i.e., the evaluation
of
∏m

i=1 R[i]m+i−2) can be somewhat expensive. We extend a technique described
in [15, p. 634] to suit our present needs. It requires an accumulator A initialized
to R[m]. If we set R[i] ← R[i] · R[i + 1] and A ← A · R[i] for i = m − 1, . . . , 1,

358 M. Joye

we end up with R[1] ← ∏
1�i�m R[i] and A ← ∏m

i=1 R[i]i. Therefore, writing∏m
i=1 R[i]m+i−2 as

∏m
i=1 R[i]i · (∏m

i=1 R[i])m−2, we can use the above technique
to get it as A ·R[1]m−2. In our case, accumulator A is initialized to Ad�−1−1 ·R[m]
to get the value of gd−1 as per Eq. (4).

� Aggregation

A← Ad�−1−1; A← A · R[m]7a

for i = m− 1 down to 1 do7b

R[i]← R[i] · R[i + 1]; A← A · R[i]7c

end7d

A← A · R[1]m−27e

The initialization of accumulator A (i.e., A← Ad�−1−1) must be performed in a
regular manner. An easy way to do so is to add to d a suitable multiple of the
order of g so as to force the leading digit of the resulting d to a predetermined
value. An alternative method is described in Appendix A.

Final correction. As for the left-to-right version, the final correction can be
avoided by replacing d with d + 1. Again, this step can be combined with other
steps, including the initialization step when neutral element needs a special treat-
ment or the initialization of accumulator A in the aggregation step to force the
leading digit.

2.2 Binary Case

The m-ary algorithms we developed are subject to numerous variants. We present
now algorithms tailored to the binary case.

In the binary case, we have m = 2 and thus, provided that d > 0, d�−1 = 1.
Equation (3) then simplifies to d− 1 =

∑�−2
i=0 d∗i 2i with d∗i = di + 1.

Left-to-Right Algorithm. We can use Algorithm 4 as is, where m is set to 2
and accumulator A is initialized to gd�−1−1 = 1G. Alternatively, assuming d > 1
(and thus � � 2), we can initialize the accumulator to gd∗

�−2 and start the loop
at index �− 3; this avoids dealing with neutral element 1G.

Algorithm 6. Regular Left-to-Right Binary Exponentiation
Input: g ∈ G, d =

∑�−1
i=0 di 2i (d > 1)

Output: gd

R[1] ← g; R[2] ← R[1]21

A ← R[1 + d�−2]2

for i = � − 3 down to 0 do3

A ← A2 · R[1 + di]4

end5

A ← A · R[1]6

return A7

Highly Regular m-Ary Powering Ladders 359

Right-to-Left Algorithm. A direct application of Algorithm 5 with m = 2
yields a regular right-to-left algorithm. To prevent the final correction,4 assuming
d > 1, we can initialize accumulators R[1] to gd0 and R[2] to g. We then swap
the order of squaring and multiplication and start the loop at index 1.

Algorithm 7. Regular Right-to-Left Binary Exponentiation
Input: g ∈ G, d =

∑�−1
i=0 di 2i (d > 1)

Output: gd

R[1] ← gd0 ; R[2] ← g1

A ← R[2]2

for i = 1 to � − 2 do3

A ← A24

R[1 + di] ← R[1 + di] · A5

end6

A ← R[1] · R[2]27

return A8

Implementation notes. In some cases, exponent d is known to be odd (this is for
example the case in RSA [25]). If so, R[1] can be initialized to g. When the least
significant bit of d is arbitrary, R[1] and R[2] can be initialized as R[1] ← 1G;
R[2] ← g; R[1]← R[1] · R[1 + d0]. Yet another strategy, provided that the order
of g is odd, is to add a suitable multiple thereof to force the parity of d.

Comparison. It is striking to see the resemblance between the so-obtained
algorithms (i.e., Algorithms 6 and 7) and Algorithms 3 and 2, respectively. For
Algorithm 7 and Montgomery ladder, this is even more apparent from the general
description (i.e., when the multiply is performed prior the squaring). Actually,
our algorithms when m = 2 may be considered as dual of Algorithms 3 and 2
in the sense that they execute similar instructions but scan the exponent in the
opposite direction.

3 Further Results

The proposed exponentiation algorithms apply to any group G. In this section,
we exploit some of their features to get faster yet secure implementations in
certain groups. Our focus will be on the group of points of an elliptic curve over
a large prime field. We note however that similar speed-ups may be available in
other groups.

Composite Group Operations. Elliptic curves over prime field Fp are usually
implemented using Jacobian coordinates. A point P on elliptic curve E given by

E/Fp
: Y 2 = X3 + a4XZ4 + a6Z

6

4 Note that, contrarily to the left-to-right version, the value of g is not readily available
from R[1].

360 M. Joye

is then represented as a triple (X1 : Y1 : Z1). Such a representation is not unique:
(X2 : Y2 : Z2) ∼ (X1 : Y1 : Z1) if X2 = λ2X1, Y2 = λ3Y1 and Z2 = λZ1 for
some nonzero λ ∈ Fp. We refer the reader to [3,4] for state-of-the-art formulas
for point addition and point doubling in Jacobian coordinates.

In [20], Meloni developed new point addition formulas for points with the
same Z-coordinate. This technique was successfully applied in [18] to derive ef-
ficient composite point addition formulas of the form kP + Q for some k � 2.
The key observation is that the intermediate calculations in the computation
of P + Q = (X3 : Y3 : Z3) with Z3 = αZ1 involve quantities α2X1 and α3Y1.
Initial point P can then be viewed as (α2X1 : α3Y1 : Z3) and the evaluation
of 2P + Q can be done as (P + Q) + P where P and P + Q have the same
Z-coordinate. This technique can be used recursively to obtain the value of
kP + Q.

As the main loop of our regular left-to-right exponentiation algorithm (Algo-
rithm 4) consists of evaluating such a composite operation (i.e., mA + R[1 + di]
in additive notation), it can benefit from these improved formulas for faster
computation of a point multiple on E.

Repeated Powerings. Building on [7], Cohen et al. [8] suggested considering
mixed coordinate systems for representing points. An interesting case for point
doubling is when curve parameter a4 is equal to −3 as it saves some multiplica-
tions (in Fp). Similar performance for an arbitrary parameter a4 can be achieved
by representing points in modified Jacobian coordinates, namely tuples of the
form (X1 : Y1 : Z1 : W1) where W1 = a4Z1

4.
For efficiency purposes, m is usually chosen as a power of 2, say m = 2k, in

m-ary exponentiation algorithms. Raising to the power of m (resp. multiplying
by scalar m, in additive notation) then amounts to computing k squarings (resp.
k doublings). As in [13], our right-to-left m-ary algorithm (Algorithm 5) repeat-
edly updates accumulator A as A ← Am (resp. A ← mA). The key observation
here is that accumulator A is only modified in this step during the main loop
(i.e., Line 5 in Algorithm 5).

As a consequence, back to elliptic curves, dP can be evaluated using mixed
coordinate systems: R[1], . . . , R[m] are tuples (X : Y : Z) representing points in
Jacobian coordinates and A is a tuple (X : Y : Z : W) representing a point in
modified Jacobian coordinates. Line 5 (i.e., R[1+di]← R[1+di]+A using additive
notation) only use the three first coordinates of A to evaluate a regular Jacobian
point addition whereas Line 5 (i.e., A ← 2kA in additive notation) updates
accumulator A as a series of k doublings in modified Jacobian coordinates. This
allows one to have a fast point doubling without increasing the cost of a point
addition, regardless of the value of a4. More precisely, the evaluation of dP can
be implemented using the fastest formulas [3] for both point doubling (i.e., the
same speed as when a4 = −3 even if a4 	= −3) and point addition.

Other improvements using different mixed coordinate systems for right-to-left
algorithms can be found in [1].

Highly Regular m-Ary Powering Ladders 361

4 Conclusion

In this paper, we developed new m-ary exponentiation algorithms. Remarkably,
the proposed algorithms are highly regular: they always repeat the same (effec-
tive) instructions in the same order. This feature is useful in the implementation
of exponentiation-based cryptosystems protected against SPA-type attacks and
safe-error attacks. Contrary to previous regular exponentiation algorithms, our
algorithms are not restricted to radix 2 but are available in any radix m. They
can also accommodate a left-to-right or a right-to-left exponent scanning. Both
scan directions have their own advantages. Furthermore, being generic, we note
that the proposed algorithms can easily be combined with other known counter-
measures to protect against other classes of attacks, including DPA-type attacks
and fault attacks.

Acknowledgments. I am grateful to the anonymous referees for useful
comments.

References

1. Avanzi, R.M.: Delaying and merging operations in scalar multiplication: Applica-
tions to curve-based cryptosystems. In: Biham, E., Youssef, A.M. (eds.) SAC 2006.
LNCS, vol. 4356, pp. 203–219. Springer, Heidelberg (2007)

2. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proceedings the IEEE 94(2), 370–382 (2004);
Earlier version in Proc. of FDTC 2004

3. Bernstein, D.J., Lange, T.: Explicit-formulas database,
http://www.hyperelliptic.org/EFD/jacobian.html

4. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007)

5. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors
in cryptographic computations. Journal of Cryptology 14(2), 110–119 (2001); Ex-
tended abstract in Proc. of EUROCRYPT 1997

6. Koç, Ç.K. (ed.): Cryptographic Engineering. Springer, Heidelberg (2009)
7. Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of numbers generated by addition

in formal groups and new primality and factorization tests. Advances in Applied
Mathematics 7(4), 385–434 (1986)

8. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp.
51–65. Springer, Heidelberg (1998)

9. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

10. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

11. Giraud, C., Thiebeauld, H.: A survey on fault attacks. In: Quisquater, J.-J., et al.
(eds.) Smart Card Research and Advanced Applications VI (CARDIS 2004), pp.
159–176. Kluwer, Dordrecht (2004)

http://www.hyperelliptic.org/EFD/jacobian.html

362 M. Joye

12. Joye, M.: Highly regular right-to-left algorithms for scalar multiplication. In: Pail-
lier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 135–147. Springer,
Heidelberg (2007)

13. Joye, M.: Fast point multiplication on elliptic curves without precomputation. In:
von zur Gathen, J., Imaña, J.L., Koç, Ç.K. (eds.) WAIFI 2008. LNCS, vol. 5130,
pp. 36–46. Springer, Heidelberg (2008)

14. Joye, M., Yen, S.-M.: The Montgomery powering ladder. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidel-
berg (2003)

15. Knuth, D.E.: The Art of Computer Programming, 2nd edn. Seminumerical Algo-
rithms, vol. 2. Addison-Wesley, Reading (1981)

16. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

17. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

18. Longa, P., Miri, A.: New composite operations and precomputation scheme for
elliptic curve cryptosystems over prime fields. In: Cramer, R. (ed.) PKC 2008.
LNCS, vol. 4939, pp. 229–247. Springer, Heidelberg (2008)

19. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

20. Meloni, N.: New point addition formulæ for ECC applications. In: Carlet, C., Sunar,
B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 189–201. Springer, Heidelberg (2007)

21. Möller, B.: Securing elliptic curve point multiplication against side-channel at-
tacks. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 324–334.
Springer, Heidelberg (2001)

22. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation 48(177), 243–264 (1987)

23. Okeya, K., Takagi, T.: The width-w NAF method provides small memory and fast
elliptic scalar multiplications secure against side channel attacks. In: Joye, M. (ed.)
CT-RSA 2003. LNCS, vol. 2612, pp. 328–342. Springer, Heidelberg (2003)

24. Quisquater, J.-J., Samyde, D.: Electromagnetic analysis (EMA): Measures and
counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

25. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

26. Sakai, Y., Sakurai, K.: A new attack with side channel leakage during exponent
recoding computations. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS,
vol. 3156, pp. 298–311. Springer, Heidelberg (2004)

27. Thériault, N.: SPA resistant left-to-right integer recodings. In: Preneel, B., Tavares,
S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 345–358. Springer, Heidelberg (2006)

28. Vuillaume, C., Okeya, K.: Flexible exponentiation with resistance to side channel
attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp.
268–283. Springer, Heidelberg (2006)

29. Yao, A.C.: On the evaluation of powers. SIAM Journal on Computing 5(1), 100–103
(1976)

30. Yen, S.-M., Joye, M.: Checking before output may not be enough against fault-
based cryptanalysis. IEEE Transactions on Computers 49(9), 967–970 (2000)

31. Yen, S.-M., Kim, S.-J., Lim, S.-G., Moon, S.-J.: A countermeasure against one
physical cryptanalysis may benefit another attack. In: Kim, K.-c. (ed.) ICISC 2001.
LNCS, vol. 2288, pp. 414–427. Springer, Heidelberg (2002)

Highly Regular m-Ary Powering Ladders 363

A Regular Aggregation

In the general description of the regular right-to-left exponentiation algorithm
(i.e., Algorithm 5), the aggregation step consists in evaluating the product
Ad�−1−1 · ∏m

i=1 R[i]m+i−2. When multiplication by 1G can be distinguished
through SPA, the initialization of A ← Ad�−1−1 is not sufficient to prevent the
leakage of d�−1. We present here an alternative method for evaluating Ad�−1−1 ·∏m

i=1 R[i]m+i−2 in such a case. For concreteness, we detail it for the ternary case
(i.e., m = 3) but it can easily be extented to other radices. The case m = 2 is
treated in § 2.2.

For m = 3, the aggregation step becomes Ad�−1−1 ·∏m
i=1 R[i]m+i−2 with d�−1 ∈

{1, 2}. To ease the presentation, we let R[0] denote the accumulator. So, we need
to evaluate {

R[0]← R[1]2 · R[2]3 · R[3]4 if d�−1 = 1
R[0]← R[0] · R[1]2 · R[2]3 · R[3]4 if d�−1 = 2

.

The idea is to rewrite the product so that the different cases appear as a same
series of squarings and multiplications. For example, we can write{

B← R[1]2 and R[0]← (B · R[2]) · (R[3] · R[2] · R[3])2

B← R[3]2 and R[0]← (R[0] · R[2]) · (R[1] · R[2] · B)2

respectively. Moreover, in order not to introduce an additional temporary vari-
able (B in the above description), we make use of R[1] and R[3], respectively. We
have:

d← d�−1 − 1
R[1 + 2d]← R[1 + 2d]2

R[0]← R[2] · R[1− d]
R[2]← R[2] · R[3− 2d]; R[2]← R[2] · R[3]; R[2]← R[2]2

R[0]← R[0] · R[2]

There are many possible variants of this methodology; the proposed implemen-
tation can be modified to better suit a given architecture.

An Efficient Residue Group Multiplication for
the ηT Pairing over F3m

Yuta Sasaki, Satsuki Nishina, Masaaki Shirase, and Tsuyoshi Takagi

Future University Hakodate

Abstract. When we implement the ηT pairing, which is one of the
fastest pairings, we need multiplications in a base field F3m and in a
group G. We have previously regarded elements in G as those in F36m

to implement the ηT pairing. Gorla et al. proposed a multiplication al-
gorithm in F36m that takes 5 multiplications in F32m , namely 15 mul-
tiplications in F3m . This algorithm then reaches the theoretical lower
bound of the number of multiplications. On the other hand, we may also
regard elements in G as those in the residue group F ∗

36m / F ∗
3m in which

βa is equivalent to a for a ∈ F ∗
36m and β ∈ F ∗

3m . This paper proposes an
algorithm for computing a multiplication in the residue group. Its cost
is asymptotically 12 multiplications in F3m as m → ∞, which reaches
beyond the lower bound the algorithm of Gorla et al. reaches. The pro-
posed algorithm is especially effective when multiplication in the finite
field is implemented using a basic method such as shift-and-add.

Keywords: Finite field multiplication, pairing, residue group, Vander-
monde matrix.

1 Introduction

Most public key cryptosystems (PKCs) are mainly computed using multiplica-
tions in finite fields, thus polynomial multiplications are important to efficiently
implement PKCs because elements in the finite fields are represented as polyno-
mials. The algorithms that most efficiently compute polynomial multiplications
are those derived by Karatsuba [12], Toom-Cook [4, 10, 17], Cantor [9], and
Schönhage [15]. Karatsuba’s algorithm is suitable for polynomial multiplications
of small and medium degrees, Toom-Cook’s algorithm is suitable for those of
medium degrees, and Cantor’s and Schönhage’s algorithms are suitable for those
of large degrees. Brent et al. [8] inclusively improved these algorithms for F2[x].

Recently, pairing based cryptosystems (PBCs) such as an identity-based en-
cryption [6], an efficient broadcast encryption [7], and a keyword searchable en-
cryption [5] have been attracting attention. For PBCs, we need multiplications
in a base field Fq and in a group G. We have regarded elements in G as those in
Fqk to implement pairings, where k is an integer called the embedding degree.
PBCs are practical when k is small. Thus multiplications in Fqk are generally
implemented using Karatsuba’s algorithm.

The ηT pairing proposed by Barreto et al. [1] is one of the fastest pairings. It is
defined over F3m or F2m , and the embedding degrees become 6 or 4, respectively,

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 364–375, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

An Efficient Residue Group Multiplication for the ηT Pairing over F3m 365

where m has to be a prime number for PBC security. This paper focuses on
multiplications on F36m to efficiently implement the ηT pairing. Arithmetic in
F36m is generally implemented using a tower of extensions F3m ⊂ F32m ⊂ F36m

that Kerins et al. [13], Gorla et al. [11] and Beuchat et al. [3] used.
Using Karatsuba’s algorithm, a multiplication in F32m is computed by 3 mul-

tiplications and a multiplication in F36m is computed by 6 multiplications. Then
18 multiplications in F3m are needed. Additionally, a polynomial multiplica-
tion of degree t needs at least 2t + 1 multiplications according to the theory of
multiplicative complexity (see Lempel et al. [14] and Winograd [18]). Then a
multiplication in F32m , which needs 3 multiplications in F3m , reaches the lower
bound because elements in F32m are represented as the polynomials degree of 1.
On the other hand, a multiplication in F36m , which needs 6 multiplications in
F32m , does not yet reach the lower bound, which is 5. Gorla et al. proposed a
multiplication algorithm for F36m that takes 5 multiplications in F32m , namely 15
multiplications in F3m , using the 4× 4 Vandermende matrix, all the coefficients
of which are the fourth roots of unity. Thus this algorithm reaches the lower
bound.

In this paper, we regard elements in G as those in the residue group G =
F ∗

36m / F ∗
3m . In G, βa is equivalent to a for a ∈ F ∗

36m and β ∈ F ∗
3m . The aim

of this paper is to propose a residue group multiplication (RGM) algorithm in
G, which is a modification of an algorithm of Shirase et al. [16] to the case
of characteristic 3. The cost of the proposed RGM algorithm is asymptotically
12 multiplications in F3m as m → ∞, which reaches beyond the lower bound
the algorithm of Gorla et al. reaches. In the proposed RGM algorithm, F36m is
directly represented as the sixth extension of F3m unlike current implementation
as done by Kerins et al. [13], Gorla et al. [11], and Beuchat et al [3]. Consequently
we can use a Vandermonde matrix (8×8) bigger than that used in the algorithm
of Gorla et al. (4 × 4). This bigger Vandermond matrix reduces the cost of the
proposed RGM algorithm.

Moreover, we implemented the ηT pairing over F397 , which for security had
1,024-bit RSA on a Core 2 Duo E6320 1.86GHz with 1GB RAM using gcc 3.4.4.
Using the algorithm of Gorla et al. and the proposed RGM algorithm, we then
compared timings of the ηT pairings. Consequently, the timing of the ηT pairing
using the proposed RGM algorithm was almost 5 percent faster than that using
the algorithm of Gorla et al.

This paper is organized as follows: In Section 2 we explain the ηT pairing
over F3m . We explain multiplication algorithm in F36m in Section 3. In Section 4
we present our proposed RGM algorithm. Lastly, we conclude this paper in
Section 5.

2 Implementation of the ηT Pairing over F3m

In this section, we explain implementations of finite fields F3m and F36m , and
the ηT pairing over F3m .

366 Y. Sasaki et al.

2.1 Finite Field F3m and Extension Field F36m

Let F3 = {0, 1, 2} be the prime field with characteristic 3. First, we explain
how F3 is represented on computers by following the method of Kerins et al.
[13]. An element a ∈ F3 is represented by two bits such as a = (ahi, alo) for
ahi, alo ∈ {0, 1}, specifically, (0, 0), (0, 1), (1, 0), mean 0, 1, 2, respectively. Note
that the negative −a for a ∈ F3 is replaced by 2a, and it is represented by
−a = (alo, ahi) for a = (ahi, alo).

Let F3[x] be a set of polynomials with coefficients in F3. Then a finite field
F3m is represented as

F3m = F3[x] / f(x),

where f(x) is an irreducible polynomial of degree m. Let A be an element in
F3m . A can be represented as the polynomial of degree at most m− 1 as

A = am−1x
m−1 + am−2x

m−2 + ... + a1x + a0.

F36m is the sixth extension field of F3m . Let g(σ) and h(ρ) be irreducible poly-
nomials with g(σ) = σ2 + 1 over F3m and h(ρ) = ρ3 − ρ− 1 over F32m . We then
follow the tower field representation of Kerins et al. [13],

F32m = F3m [σ] / g(σ),
F36m = F32m [ρ] /h(ρ).

Let A0, A1, A2 be elements in F32m with A0 = a1σ + a0, A1 = a3σ + a2 and
A2 = a5σ + a4. Then A′ ∈ F36m is represented as

A′ = A2ρ
2 + A1ρ + A0 = a5σρ2 + a4ρ

2 + a3σρ + a2ρ + a1σ + a0.

Then a set {σρ2, ρ2, σρ, ρ, σ, 1} forms a base of F36m over F3m . We call it σρ base
in this paper. Note that the roots of σ2 + 1 are the primitive fourth roots of
unity since σ2 = −1 and σ 	= ±1.

Let F ∗
3m be the multiplicative group of F3m , and let F ∗

36m be the multiplicative
group of F36m . That is, F ∗

3m = F3m − {0} and F ∗
36m = F36m − {0}.

2.2 ηT Pairing over F3m

Let E be a supersingular curve E : y2 = x3 − x + b, b = ±1 over F3m . Then the
ηT pairing is a bilinear map

ηT : E(F3m)[r]× E(F3m)[r]→ F ∗
36m / (F ∗

36m)r,

where r is the largest prime number such that r | #E(F3m), and 6 is the em-
bedding degree. The ηT pairing satisfies the equation ηT (aP, Q) = ηT (P, aQ) =
ηT (P, Q)a for any integer a 	= 0.

We used an algorithm for computing the ηT pairing used in [3], which is
efficient due to it not having a cube root operation (Algorithm 1).

An Efficient Residue Group Multiplication for the ηT Pairing over F3m 367

Algorithm 1. The ηT pairing algorithm without a cube root operation [3]
INPUT: P (xp, yp), Q(xq, yq) ∈ E(F3m)[r]
OUTPUT: ηT (P, Q) ∈ F36m

1: yp ← −yp, d ← 1
2: R0 ← −yp(xp + xq + 1) + yqσ + ypρ
3: for i ← 0 to (n − 1)/2 do
4: v ← xp + xq + d
5: R1 ← −v2 + ypyqσ − vρ − ρ2

6: R0 ← R0R1

7: yp ← −yp

8: xq ← x9
q, yq ← y9

q

9: d ← ((d − 1) mod 3)
10: R0 ← R3

0

11: end for
12: return R0

Remark 1. Elements in F ∗
36m / (F ∗

36m)r have previously been regarded as those in
F36m to implement the ηT pairing. However, note that elements in F ∗

36m / (F ∗
36m)r

may be regarded as those in the residue group G = F ∗
36m / F ∗

3m because (F ∗
36m)r

is a subgroup of F ∗
3m . In G, βa is equivalent to a for a ∈ F ∗

36m and β ∈ F ∗
3m .

3 Multiplication Algorithm in F36m

In this section, we explain Karatsuba’s algorithm [12] and the multiplication
algorithm by Gorla et al. [11].

3.1 Karatsuba’s Algorithm [12]

Karatsuba’s algorithm is generally used in a multiplication algorithm in F36m .
We consider a case in which F36m is implemented using a tower of extensions

F3m ⊂ F32m ⊂ F36m that Kerins et al. [13], Gorla et al. [11], and Beuchat et al.
[3] used.

Let A(ρ), B(ρ) be elements in F36m with A(ρ) = a2ρ
2 + a1ρ + a0 and B(ρ) =

b2ρ
2 + b1ρ + b0. Multiplication in F36m is defined by A(ρ) · B(ρ) mod h(ρ). Let

P (ρ) = A(ρ) · B(ρ) mod h(ρ). Let

t1 = a2(b0 + b2), t2 = a1(b1 + b2), t3 = a0(b0 − b1),
t4 = b2(a0 − a1), t5 = b1(a0 − a1 + a2), t6 = b0(a1 − a2).

P (ρ) is computed by Karatsuba’s algorithm as follows:

P (ρ) = (t1 + t2 + t4)ρ2 + (t1 + t2 + t5 + t6)ρ + (t2 + t3 + t5).

Thus, multiplication in F36m is computed by 6 multiplications in F32m .
Next, let A′(σ), B′(σ) be elements in F32m with A′(σ) = a′

1σ+a′
0 and B′(σ) =

b′1σ + b′0. Let Q(σ) = A′(σ) ·B′(σ) mod g(σ). Q(σ) is computed by Karatsuba’s
algorithm by

368 Y. Sasaki et al.

Q(σ) = (u1 + u3)σ + (u2 + u3),

where u1 = a′
1(b

′
0 + b′1), u2 = a′

0(b
′
0 − b′1), u3 = b′1(a

′
0 − a′

1). Thus, multiplication
in F32m is computed by 3 multiplications in F3m . Therefore, multiplication in
F36m can be obtained by 18 multiplications in F3m .

3.2 Multiplication Algorithm of Gorla et al. [11]

The algorithm of Gorla et al. [11] can compute a multiplication in F36m most
efficiently. Indeed it computes a multiplication in F36m with 5 multiplications in
F32m , which theoretically reaches the lower bound [14, 18] because a polynomial
multiplication of degree m needs at least 2m + 1 multiplications according to
the theory of multiplicative complexity.

The algorithm of Gorla et al. uses the primitive fourth root of unity and the
Vandermonde matrix. Let A(ρ), B(ρ) be elements in F36m with A(ρ) = a2ρ

2 +
a1ρ + a0 and B(ρ) = b2ρ

2 + b1ρ + b0. Let C(ρ) be a product A(ρ) and B(ρ),

C(ρ) = A(ρ) · B(ρ) = c4ρ
4 + c3ρ

3 + c2ρ
2 + c1ρ + c0.

Note that we refer to σ as the primitive fourth root of unity in Section 2.1
and σ as the generator of the base of F32m over F3m . Let Y = (1, σ1, σ2, σ3) =
(1, σ,−1,−σ), and let Vσ be the Vandermonde matrix for Y as follows:

Vσ =

⎛⎜⎜⎝
1 1 1 1
1 σ −1 −σ
1 −1 1 −1
1 −σ −1 σ

⎞⎟⎟⎠ . (1)

Coefficients of C(ρ) satisfy the following matrix.

⎛⎜⎜⎝
1 1 1 1
1 σ −1 −σ
1 −1 1 −1
1 −σ −1 σ

⎞⎟⎟⎠
⎛⎜⎜⎝

c0
c1
c2
c3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
c0 + c1 + c2 + c3

c0 + c1σ − c2 − c3σ
c0 − c1 + c2 − c3

c0 − c1σ − c2 + c3σ

⎞⎟⎟⎠

=

⎛⎜⎜⎝
C(1)− c4
C(σ) − c4

C(−1)− c4
C(−σ)− c4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
A(1)B(1) − c4
A(σ)B(σ) − c4

A(−1)B(−1)− c4
A(−σ)B(−σ) − c4

⎞⎟⎟⎠ ,

(2)

where c4 = a2b2. Let

P0 = A(1)B(1), P1 = A(σ)B(σ), P2 = A(−1)B(−1), P3 = A(−σ)B(−σ),
P4 = c4.

(3)

An Efficient Residue Group Multiplication for the ηT Pairing over F3m 369

Then we arrive at⎛⎜⎜⎝
c0
c1
c2
c3

⎞⎟⎟⎠ = V −1
σ

⎛⎜⎜⎝
P0 − P4
P1 − P4
P2 − P4
P3 − P4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 1 1 1
1 −σ −1 σ
1 −1 1 −1
1 σ −1 −σ

⎞⎟⎟⎠
⎛⎜⎜⎝

P0 − P4
P1 − P4
P2 − P4
P3 − P4

⎞⎟⎟⎠

=

⎛⎜⎜⎝
P0 + P1 + P2 + P3 − P4
P0 − P1σ − P2 + P3σ
P0 − P1 + P2 − P3

P0 + P1σ − P2 − P3σ

⎞⎟⎟⎠
using (2) and (3). In the above algorithm, the cost of the multiplication of Vσ

and (c0, c1, c2, c3)T is virtually free. Thus, the above algorithm can compute a
multiplication in F36m by 5 multiplications in F32m , namely 15 multiplications
in F3m . Therefore, the algorithm of Gorla et al. [11] reduces the number of
multiplications in F3m . Note that the algorithm of Gorla et al. theoretically
reaches the lower bound.

4 Proposed Residue Group Multiplication and Timing of
the ηT Pairing

In this section, we present a residue group multiplication (RGM) algorithm in
G = F ∗

36m / F ∗
3m . Its cost becomes 12 multiplications in F3m as m → ∞, which

reaches beyond the lower bound of the algorithm of Gorla et al. The proposed
algorithm is effective when multiplication in the finite field is implemented using
a basic method such as shift-and-add. Note that we can use RGMs at step 6 of
Algorithm 1 due to what we described in Remark 1. Note that m is a prime for
security of the pairing-based cryptography.

Moreover, we compared the timing of the ηT pairings using the algorithm of
Gorla et al. and the proposed algorithm to verify whether the proposed algorithm
is effective.

4.1 z Base

In the proposed RGM algorithm, F36m directly represents the sixth extension
of F3m unlike previous representations in Kerins et al. [13], Gorla et al. [11],
and Beuchat et al. [3]. In other words, elements in F36m are represented as
polynomials with coefficients in F3m of one variable z. Although the m has to
be co-prime to 6, it is satisfied because the m is a prime number. Consequently
we can use a Vandermonde matrix (8 × 8) bigger than that of the algorithm of
Gorla et al. (4×4) (see (1)) to compute multiplications. The bigger Vandermond
matrix reduces the cost of RGMs. Therefore, F36m is represented as F3m [z]/k(z),
where k(z) is an irreducible polynomial with k(z) = z6 + z − 1. Let V be an
element in F36m . Then V can be represented by z base as follows:

370 Y. Sasaki et al.

V = v5z
5 + v4z

4 + v3z
3 + v2z

2 + v1z + v0.

Then a set {z5, z4, z3, z2, z, 1} forms a base of F36m over F3m . We call it z base
in this paper. Let W be an element in F36m represented by σρ base with W =
w5σρ2 +w4ρ

2 +w3σρ+w2ρ+w1σ +w0. If V = W then we can convert between
V and W as follows:⎛⎜⎜⎜⎜⎜⎜⎝

v0
v1
v2
v3
v4
v5

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 1 2 1 0 1
0 1 1 2 0 1
2 0 2 0 0 2
1 2 0 1 0 1
2 0 2 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
w0
w1
w2
w3
w4
w5

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝
w0
w1
w2
w3
w4
w5

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 2 1 2 2 0
2 0 2 1 2 0
2 2 0 1 2 0
1 1 2 0 0 1
0 0 1 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
v0
v1
v2
v3
v4
v5

⎞⎟⎟⎟⎟⎟⎟⎠
σρ base → z base z base → σρ base

Note that these conversions need no multiplications.

4.2 Proposed RGM Algorithm

The proposed RGM algorithm in G = F ∗
36m / F ∗

3m uses the Vandermonde matrix
in the same way as the algorithm of Gorla et al. [11]. Let A(z), B(z) be elements
in F36m with A(z) = a5z

5 + a4z
4 + a3z

3 + a2z
2 + a1z + a0 and B(z) = b5z

5 +
b4z

4 + b3z
3 + b2z

2 + b1z + b0. Let D(z) be an element in F3m [z] with

D(z) = A(z) · B(z) = d10z
10 + d9z

9 + · · ·+ d1z + d0.

Note that there are relationships d0 = a0b0, d9 = a4b5 + a5b4, and d10 =
a5b5. We then have to compute D′ = (d1, d2, d3, d4, d5, d6, d7, d8). Let Z =
(z1, z2, z3, z4, z5, z6, z7, z8) = (1, 2, x, x + 1, x + 2,−x,−(x + 1),−(x + 2)), where
x is the generator of the polynomial base of F3m over F3. Let Vz be the Vander-
monde matrix for Z. Then we have the following matrix equation.

VzD
′T =

⎛⎜⎜⎜⎜⎜⎝
z1 z2

1 · · · z7
1 z8

1
z2 z2

2 · · · z7
2 z8

2
...

...
. . .

...
...

z7 z2
7 · · · z7

7 z8
7

z8 z2
8 · · · z7

8 z8
8

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
d1
d2
...

d7
d8

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
D(z1)− d0 − d9z

9
1 − d10z

10
1

D(z2)− d0 − d9z
9
2 − d10z

10
2

...
D(z7)− d0 − d9z

9
7 − d10z

10
7

D(z8)− d0 − d9z
9
8 − d10z

10
8

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
A(z1)B(z1)− d0 − d9z

9
1 − d10z

10
1

A(z2)B(z2)− d0 − d9z
9
2 − d10z

10
2

...
A(z7)B(z7)− d0 − d9z

9
7 − d10z

10
7

A(z8)B(z8)− d0 − d9z
9
8 − d10z

10
8

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
A(1)B(1) − d0 − d9 − d10

A(2)B(2) − d0 + d9 − d10

...
A(−(x + 1))B(−(x + 1)) − d0 + d9(x + 1)9 − d10(x + 1)10

A(−(x + 2))B(−(x + 2)) − d0 + d9(x + 2)9 − d10(x + 2)10

⎞⎟⎟⎟⎟⎠ . (4)

An Efficient Residue Group Multiplication for the ηT Pairing over F3m 371

Let

P0 = d0 = a0b0, P1 = A(1)B(1),

P2 = A(2)B(2), P3 = A(x)B(x),

P4 = A(x + 1)B(x + 1), P5 = A(x + 2)B(x + 2),

P6 = A(−x)B(−x), P7 = A(−(x + 1))B(−(x + 1)),

P8 = A(−(x + 2))B(−(x + 2)), P9 = d9 = a4b5 + a5b4,

P10 = d10 = a5b5.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5)

Using (4) and (5) we get

D′T = V −1
z

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 − P0 − P9 − P10
P2 − P0 + P9 − P10
P3 − P0 − P9x

9 − P10x
10

P4 − P0 − P9(x + 1)9 − P10(x + 1)10

P5 − P0 − P9(x + 2)9 − P10(x + 2)10

P6 − P0 + P9x
9 − P10x

10

P7 − P0 + P9(x + 1)9 − P10(x + 1)10

P8 − P0 + P9(x + 2)9 − P10(x + 2)10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= V −1

z P ′. (6)

The matrix V −1
z is explicitly represented as 1

β (γij), where β = x6+x4+x2 ∈ F3m

and each γij is presented in Appendix A.
Recall that we may compute (βd0, βd1, · · · , βd10) instead of (d0, d1, · · · , d10)

to compute D(z) = A(z) · B(z) in G due to Remark 1. Let E(z) = βD(z) =
e10z

10 + e9z
9 + · · ·+ e1z + e0. We can compute coefficients of E(z) as follows:

e0 = βP0, (e1, e2, e3, e4, e5, e6, e7, e8)T = (γij)P ′, e9 = βP9, e10 = βP10.

Next, we consider the cost of the proposed RGM algorithm in a number of
multiplications. Let M be the cost of a multiplication in F3m . Then we assume
that the cost of multiplication in a polynomial of degree (m−1) and a polynomial
of degree k is (k+1

m)M with m > k using the shift-and-add method. The cost of
(5) is then 12M . We will explain the cost of (6). First, let α1 be the cost of
computation of the vector P ′. Multiplications that needs to compute P ′ are
P9x

9, P9(x+ 1)9, P9(x+ 2)9, P10x
10, P10(x+ 1)10, P10(x+ 2)10. The degree of P9

and P10 is (m − 1). Then α1 is (10+10+10+11+11+11
m)M = (63

m)M . Next, let α2
be the cost of computation of (γij)P ′. α2 depends on the highest order of the
column in (γij). Then, α2 is (7+7+6+6+6+6

m)M = (48
m)M . Last, let α3 be costs

of e0, e9, e10. β is the polynomial of degree 6. Then α3 is (7+7+7
m)M = (21

m)M .
Therefore, the cost of a multiplication in the proposed algorithm is (12 + α1 +
α2 + α3)M = (12 + 132

m)M . If m→∞, then the multiplication cost is 12M .
The proposed algorithm is especially effective when multiplication in the finite

field is implemented using a basic method, such as shift-and-add, so we used the

372 Y. Sasaki et al.

Table 1. Multiplication cost estimation

Multiplication method The number of multiplications in F3m

Gorla et al. algorithm [11] 15

Proposed RGM algorithm 12 + 132
m

Table 2. Timing on a Core 2 Duo E6320 1.86GHz (m = 97)

Multiplication method Multiplication in F36m ηT pairing
Gorla et al. algorithm [11] 73.2µs 5.01ms

Proposed RGM algorithm 68.3µs 4.76ms

shift-and-add method to estimate the cost of (6). We estimate multiplication
costs in Table 1.

4.3 Timing of the ηT Pairing

Algorithm 2 is an algorithm for computing the ηT pairing modyfing Algorithm 1
with the propsed RGM alorithm and the z-base. We implemented the ηT pairing
over F397 on a Core 2 Duo E6320 1.86GHz with 1GB RAM using gcc 3.4.4. We
show the timing of the multiplication in F36m and the ηT pairing in Table 2.

The number of multiplications for the proposed algorithm is (12 + 132
m). If

m = 97, then the number of multiplications is (12 + 132
97) = (13 + 35

97). However,
in the proposed RGM the number of additions increases by 212 for one multipli-
cation compared to the algorithm of Gorla et al. in our implementation. Then the

Algorithm 2. The ηT pairing algorithm using RGMs and the z base
INPUT: P (xp, yp), Q(xq, yq) ∈ E(F3m)[r]
OUTPUT: ηT (P, Q) ∈ F36m

1: yp ← −yp, d ← 1
2: v ← xp + xq + 1
3: R0 ← −ypv+(yq −yp)z+(yq +yp)z2 +yp(xp +xq)z3− (ypv+yq)z4 +yp(xp +xq)z5

4: for i ← 0 to (n − 1)/2 do
5: v ← xp + xq + d
6: R1 ← −v2 +(ypyq +v)z+(ypyq −v)z2+v(v+1)z3−(v2+ypyq)z4 +(v2 +v+1)z5

7: R0 ← R0R1 (RGM)
8: yp ← −yp

9: xq ← x9
q, yq ← y9

q

10: d ← ((d − 1) mod 3)
11: R0 ← R3

0

12: end for
13: return R0

An Efficient Residue Group Multiplication for the ηT Pairing over F3m 373

timing of the multiplication in F36m is almost 7 percent faster than that of the
multiplication algorithm by Gorla et al., which is 68.3µs. Moreover, the timing
of the ηT pairing was almost 5 percent faster than that of the multiplication
algorithm of Gorla et al., which is 4.76ms.

Remark 2. The loop unrolling technique has been adopted to implement parings
as [3], which can reduce the number of multiplications needed to compute a
pairing. We can use the proposed algorithm together with the loop unrolling
technique.

5 Conclusion

In this study, we developed a residue group multiplication (RGM) algorithm
in F ∗

36m / F ∗
3m to compute the ηT pairing. The proposed RGM algorithm takes

12 + 132
m multiplications in F3m , which reaches beyond the lower bound of the

algorithm for multiplication in F ∗
36m by Gorla et al. We can use the proposed

RGM algorithm to compute the ηT pairing. Moreover, we implemented the ηT

pairing on a Core 2 Duo E6320 1.86GHz with 1GB RAM using gcc 3.4.4 using
the proposed RGM algorithm. The timing of the ηT pairing was almost 5 percent
faster than that of the multiplication algorithm by Gorla et al., which is 4.76ms.

We expect that RGMs are applicable to other pairings, for example the Ate
pairing using the Barreto-Naehrig curve [2], which has the embedding degree
k = 12 defined over a large prime field.

References

1. Barreto, P., Galbraith, S., O’hEigeartaigh, C., Scott, S.: Efficient pairing compu-
tation on supersingular Abelian varieties. Designs, Codes and Cryptography 42(3),
239–271 (2007)

2. Barreto, P., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel,
B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg
(2006)

3. Beuchat, J.-L., Brisebarre, N., Detrey, J., Okamoto, E., Shirase, M., Takagi, T.:
Algorithms and arithmetic operators for computing the ηT pairing in characteristic
three. IEEE Transactions on Computers 57(11), 1454–1468 (2008)

4. Bodrato, M.: Towards optimal Toom-Cook multiplication for univariate and mul-
tivariate polynomials in characteristic 2 and 0. In: Carlet, C., Sunar, B. (eds.)
WAIFI 2007. LNCS, vol. 4547, pp. 116–133. Springer, Heidelberg (2007)

5. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

6. Boneh, D., Franklin, M.: Identity based encryption from the Weil pairing. SIAM
Journal of Computing 32(3), 586–615 (2003)

374 Y. Sasaki et al.

7. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

8. Brent, R., Gaudry, P., Thomé, E., Zimmermann, P.: Faster multiplication in
GF(2)[x]. In: van der Poorten, A.J., Stein, A. (eds.) ANTS-VIII 2008. LNCS,
vol. 5011, pp. 153–166. Springer, Heidelberg (2008)

9. Cantor, D.: On arithmetical algorithms over finite fields. J. Combinatorial Theory,
Series A-50, 285–300 (1989)

10. Cook, S.: On the minimum computation time of functions. PhD thesis, Harvard
University (1966)

11. Gorla, E., Puttmann, C., Shokrollahi, J.: Explicit formulas for efficient multipli-
cation in F36m . In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS,
vol. 4876, pp. 173–183. Springer, Heidelberg (2007)

12. Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata.
Soviet Physics-Doklady 7, 595–596 (1963)

13. Kerins, T., Marnane, W., Popovici, E., Barreto, P.: Efficient hardware for the Tate
pairing calculation in characteristic three. In: Rao, J.R., Sunar, B. (eds.) CHES
2005. LNCS, vol. 3659, pp. 412–426. Springer, Heidelberg (2005)

14. Lempel, A., Winograd, S.: A new approach to error-correcting codes. IEEE Trans-
actions on Information Theory IT-23, 503–508 (1977)

15. Schönhage, A.: Schnelle multiplikation von polynomen über körpern der Charak-
teristik 2. Acta Inf. 7, 395–398 (1977)

16. Shirase, M., Takagi, T., Choi, D., Han, D.-H., Kim, H.: Efficient computation of Eta
pairing over binary field with Vandermonde matrix. ETRI Journal 31(2), 129–139
(2009)

17. Toom, A.: The complexity of a scheme of functional elements realizing the multi-
plication of integers. Soviet Mathematics 3, 714–716 (1963)

18. Winograd, S.: Arithmetic complexity of computations. SIAM, Philadelphia
(1980)

A Elements of Matrix (γij)

When a matrix V −1
z in (6) is represented as V −1

z = 1
β (γij), each element γij is

provided as follows, where x is the generator of the base of F3m over F3 and
β = x6 + x4 + x2.

V −1
z =

1
β

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ11 γ12 γ13 γ14 γ15 γ16 γ17 γ18
γ21 γ22 γ23 γ24 γ25 γ26 γ27 γ28
γ31 γ32 γ33 γ34 γ35 γ36 γ37 γ38
γ41 γ42 γ43 γ44 γ45 γ46 γ47 γ48
γ51 γ52 γ53 γ54 γ55 γ56 γ57 γ58
γ61 γ62 γ63 γ64 γ65 γ66 γ67 γ68
γ71 γ72 γ73 γ74 γ75 γ76 γ77 γ78
γ81 γ82 γ83 γ84 γ85 γ86 γ87 γ88

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

An Efficient Residue Group Multiplication for the ηT Pairing over F3m 375

γ11 = −(x6 + x4 + x2) γ12 = x6 + x4 + x2

γ21 = −(x6 + x4 + x2) γ22 = −(x6 + x4 + x2)
γ31 = 1 γ32 = −1
γ41 = 1 γ42 = 1
γ51 = 1 γ52 = −1
γ61 = 1 γ62 = 1
γ71 = 1 γ72 = −1
γ81 = 1 γ82 = 1

γ13 = −(x5 + x3 + x) γ14 = −(x5 + 2x4 + 2x3 + x2)
γ23 = −(x4 + x2 + 1) γ24 = −(x4 + x3 + x2)
γ33 = x5 γ34 = (x + 1)5

γ43 = x4 γ44 = (x + 1)4

γ53 = x3 γ54 = (x + 1)3

γ63 = x2 γ64 = (x + 1)2

γ73 = x γ74 = (x + 1)
γ83 = 1 γ84 = 1

γ15 = −(x5 + x4 + 2x3 + 2x2) γ16 = x5 + x3 + x

γ25 = −(x4 + 2x3 + x2) γ26 =−(x4 + x2 + 1)
γ35 = (x + 2)5 γ36 = −x5

γ45 = (x + 2)4 γ46 = x4

γ55 = (x + 2)3 γ56 = −x3

γ65 = (x + 2)2 γ66 = x2

γ75 = (x + 2) γ76 = −x

γ85 = γ86 = 1

γ17 = x5 + 2x4 + 2x3 + x2 γ18 = x5 + x4 + 2x3 + 2x2

γ27 = −(x4 + x3 + x2) γ28 = −(x4 + 2x3 + x2)
γ37 = −(x + 1)5 γ38 =−(x + 2)5

γ47 = (x + 1)4 γ48 = (x + 2)4

γ57 = −(x + 1)3 γ58 =−(x + 2)3

γ67 = (x + 1)2 γ68 = (x + 2)2

γ77 = −(x + 1) γ78 = −(x + 2)
γ87 = 1 γ88 = 1

Compact McEliece Keys from Goppa Codes

Rafael Misoczki and Paulo S.L.M. Barreto�

Departamento de Engenharia de Computação e Sistemas Digitais (PCS),
Escola Politécnica, Universidade de São Paulo, Brazil

{rmisoczki,pbarreto}@larc.usp.br

Abstract. The classical McEliece cryptosystem is built upon the class
of Goppa codes, which remains secure to this date in contrast to many
other families of codes but leads to very large public keys. Previous pro-
posals to obtain short McEliece keys have primarily centered around
replacing that class by other families of codes, most of which were shown
to contain weaknesses, and at the cost of reducing in half the capability
of error correction. In this paper we describe a simple way to reduce
significantly the key size in McEliece and related cryptosystems using a
subclass of Goppa codes, while also improving the efficiency of crypto-
graphic operations to Õ(n) time, and keeping the capability of correcting
the full designed number of errors in the binary case.

1 Introduction

Quantum computers can potentially break most if not all conventional cryp-
tosystems actually deployed in practice, namely, all systems based on the integer
factorization problem (like RSA) or the discrete logarithm problem (like tradi-
tional or elliptic curve Diffie-Hellman and DSA, and also all of pairing-based
cryptography).

Certain classical cryptosystems, inspired on computational problems of a na-
ture entirely different from the above and potentially much harder to solve,
remain largely unaffected by the threat of quantum computing, and have thus
been called quantum-resistant or, more suggestively, ‘post-quantum’ cryptosys-
tems. These include lattice-based cryptosystems and syndrome-based cryptosys-
tems like McEliece [16] and Niederreiter [19]. Such systems usually have even
a speed advantage over conventional schemes; for instance, both McEliece and
Niederreiter encryption over a code of length n has time complexity O(n2), while
Diffie-Hellman/DSA and (private exponent) RSA with n-bit keys have time com-
plexity O(n3). On the other hand, they are plagued by very large keys compared
to their conventional counterparts.

It is therefore of utmost importance to seek ways to reduce the key sizes for
post-quantum cryptosystems while keeping their security level. The first steps
� Supported by the Brazilian National Council for Scientific and Technological De-

velopment (CNPq) under research productivity grant 312005/2006-7 and universal
grant 485317/2007-9, and by the Science Foundation Ireland (SFI) as E. T. S. Walton
Award fellow under grant 07/W.1/I1824.

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 376–392, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Compact McEliece Keys from Goppa Codes 377

toward this goal were taken by Monico et al. using low density parity-check
codes [18], by Gaborit using quasi-cyclic codes [8], and by Baldi and Chiaraluce
using a combination of both [1].

However, these proposals were all shown to contain weaknesses [22]. In those
proposals the trapdoor is protected essentially by no other means than a private
permutation of the underlying code. The attack strategy consists of obtaining
a solvable system of linear equations that the components of the permutation
matrix must satisfy, and was successfully mounted due to the very constrained
nature of the secret permutation (since it has to preserve the quasi-cyclic struc-
ture of the result) and the fact that the secret code is a subcode of a public
code.

A dedicated fix to the problems in [1] is proposed in [2]. More recently, Berger
et al. [3] showed how to circumvent the drawbacks of Gaborit’s original scheme
and remove the weaknesses pointed out in [22] by means of two techniques:

1. Extracting block-shortened public codes from very large private codes, ex-
ploiting Wieschebrink’s theorem on the NP-completeness of distinguishing
punctured codes [29];

2. Working with subfield subcodes over an intermediate subfield between the
base field and the extension field of the original code.

These two techniques were successfully applied to quasi-cyclic codes, yet we will
see that their applicability is not restricted to that class.

Our contribution: In this paper we propose the class of quasi-dyadic Goppa
codes, which admit a very compact parity-check or a generator matrix repre-
sentation, for efficiently instantiating syndrome-based cryptosystems. We stress
that we are not proposing any new cryptosystem, but rather a technique to
obtain efficient parameters and algorithms for such systems, current or future.
In contrast to many other proposed families of codes [10,11,22,27], Goppa codes
have withstood cryptanalysis quite well, and despite considerable progress in the
area [14,26] (see also [6] for a survey) they remain essentially unscathed since they
were suggested with the very first syndrome-based cryptosystem known, namely,
the original McEliece scheme. Our method produces McEliece-type keys that are
up to a factor t = Õ(n) smaller than keys produced from generic t-error correct-
ing Goppa codes of length n in characteristic 2. In the binary case it also retains
the ability of correcting the full designed number of errors rather than just half as
many, a feature that is missing in all previous attempts at constructing compact
codes for cryptographic purposes, including [3]. Moreover, the complexity of all
typical cryptographic operations become Õ(n); specifically, under the common
cryptographic setting t = O(n/ lg n), code generation, encryption and decryption
all have asymptotic complexity O(n lg n).

The remainder of this paper is organized as follows. Section 2 introduces some
basic concepts of coding theory. In section 3 we describe our proposal of using
binary Goppa codes in quasi-dyadic form, and how to build them. We consider
hardness issues in Section 4, and efficiency issues, including guidelines on how
to choose parameters, in Section 5. We conclude in Section 6.

378 R. Misoczki and P.S.L.M. Barreto

2 Preliminaries

In what follows all vector and matrix indices are numbered from zero onwards.

Definition 1. Given a ring R and a vector h = (h0, . . . , hn−1) ∈ Rn, the dyadic
matrix ∆(h) ∈ Rn×n is the symmetric matrix with components ∆ij = hi⊕j where
⊕ stands for bitwise exclusive-or on the binary representations of the indices. The
sequence h is called its signature. The set of dyadic n × n matrices over R is
denoted ∆(Rn). Given t > 0, ∆(t, h) denotes ∆(h) truncated to its first t rows.

One can recursively characterize a dyadic matrix when n is a power of 2: any
1× 1 matrix is dyadic, and for k > 0 any 2k × 2k dyadic matrix M has the form

M =
[

A B
B A

]
where A and B are 2k−1 × 2k−1 dyadic matrices. It is not hard to see that the
signature of a dyadic matrix coincides with its first row. Dyadic matrices form
a commutative subring of Rn×n as long as R is commutative [12].

Definition 2. A dyadic permutation is a dyadic matrix Πi ∈ ∆({0, 1}n) whose
signature is the i-th row of the identity matrix.

A dyadic permutation is clearly an involution, i.e. (Πi)2 = I. The i-th row (or
equivalently the i-th column) of the dyadic matrix defined by a signature h can
be written ∆(h)i = hΠi.

Definition 3. A quasi-dyadic matrix is a (possibly non-dyadic) block matrix
whose component blocks are dyadic submatrices.

Quasi-dyadic matrices are at the core of our proposal. We will be mainly con-
cerned with the case R = Fq, the finite field with q (a prime power) elements.

Definition 4. Given two disjoint sequences z = (z0, . . . , zt−1) ∈ Ft
q and L =

(L0, . . . , Ln−1) ∈ Fn
q of distinct elements, the Cauchy matrix C(z, L) is the t×n

matrix with elements Cij = 1/(zi − Lj), i.e.

C(z, L) =

⎡⎢⎢⎢⎢⎣
1

z0 − L0
. . .

1
z0 − Ln−1

...
. . .

...
1

zt−1 − L0
. . .

1
zt−1 − Ln−1

⎤⎥⎥⎥⎥⎦ .

Cauchy matrices have the property that all of their submatrices are nonsingu-
lar [25]. Notice that, in general, Cauchy matrices are not dyadic and vice-versa,
although the intersection of these two classes is non-empty in characteristic 2.

Definition 5. Given t > 0 and a sequence L = (L0, . . . , Ln−1) ∈ Fn
q , the Van-

dermonde matrix vdm(t, L) is the t× n matrix with elements Vij = Li
j.

Compact McEliece Keys from Goppa Codes 379

Definition 6. Given a sequence L = (L0, . . . , Ln−1) ∈ Fn
q of distinct elements

and a sequence D = (D0, . . . , Dn−1) ∈ Fn
q of nonzero elements, the General-

ized Reed-Solomon code GRSr(L, D) is the [n, k, r] linear error-correcting code
defined by the parity-check matrix

H = vdm(r − 1, L) · diag(D).

An alternant code is a subfield subcode of a Generalized Reed-Solomon code.

Let p be a prime power, let q = pd for some d, and let Fq = Fp[x]/b(x) for
some irreducible polynomial b(x) ∈ Fp[x] of degree d. Given a code specified
by a parity-check matrix H ∈ Ft×n

q , the trace construction derives from it an
Fp-subfield subcode by writing the Fp coefficients of each Fq component of H
onto d successive rows of a parity-check matrix Td(H) ∈ Fdt×n

p for the subcode.
The related co-trace parity-check matrix T ′

d(H) ∈ Fdt×n
p , equivalent to Td(H)

by a left permutation, is obtained from H by writing the Fp coefficients of terms
of equal degree from all components on a column of H onto successive rows of
T ′

d(H).
Thus, given elements ui(x) = ui,0 + · · · + ui,d−1x

d−1 ∈ Fq = Fp[x]/b(x),
the trace construction maps a column (u0, . . . , ut−1)T from H to the column
(u0,0, . . . , u0,d−1; . . . ; ut−1,0, . . . , ut−1,d−1)T on the trace matrix Td(H), and to
the column (u0,0, . . . , ut−1,0; . . . ; u0,d−1, . . . , ut−1,d−1)T on the co-trace matrix
T ′

d(H).
Finally, one of the most important families of linear error-correcting codes for

cryptographic purposes is that of Goppa codes:

Definition 7. Given a prime power p, q = pd for some d, a sequence L =
(L0, . . . , Ln−1) ∈ Fn

q of distinct elements and a polynomial g(x) ∈ Fq[x] of
degree t such that g(Li) 	= 0 for 0 � i < n, the Goppa code Γ (L, g) over
Fp is the alternant code over Fp corresponding to GRSt(L, D) where D =
(g(L0)−1, . . . , g(Ln−1)−1), and its minimum distance is at least 2t + 1.

An irreducible Goppa code in characteristic 2 can correct up to t errors us-
ing Patterson’s algorithm [23], or slightly more using Bernstein’s list decoding
method [5], and t errors can still be corrected by suitable decoding algorithms if
the generator g(x) is not irreducible1. In all other cases no algorithm is known
that can correct more than t/2 errors (or just a few more).

3 Goppa Codes in Cauchy and Dyadic Form

A property of Goppa codes that is central to our proposal is that they admit a
parity-check matrix in Cauchy form:

1 For instance, one can equivalently view the binary Goppa code as the alternant code
defined by the generator polynomial g2(x), in which case any alternant decoder will
decode t errors. We are grateful to Nicolas Sendrier for pointing this out.

380 R. Misoczki and P.S.L.M. Barreto

Theorem 1 ([28]). The Goppa code generated by a monic polynomial g(x) =
(x− z0) . . . (x− zt−1) without multiple zeros admits a parity-check matrix of the
form H = C(z, L), i.e. Hij = 1/(zi − Lj), 0 � i < t, 0 � j < n.

This theorem (also appearing in [15, Ch. 12, §3, Pr. 5]) is entirely general when
one considers the factorization of the Goppa polynomial over its splitting field,
in which case a single root of g is enough to completely characterize the code.
For simplicity, we will restrict our attention to the case where all roots of that
polynomial are in the field Fq itself.

3.1 Building a Binary Goppa Code in Dyadic Form

We now show how to build a binary Goppa code that admits a parity-check
matrix in dyadic form. To this end we seek a way to construct dyadic Cauchy
matrices. The following theorem characterizes all matrices of this kind.

Theorem 2. Let H ∈ Fn×n
q with n > 1 be simultaneously a dyadic matrix

H = ∆(h) for some h ∈ Fn
q and a Cauchy matrix H = C(z, L) for two dis-

joint sequences z ∈ Fn
q and L ∈ Fn

q of distinct elements. Then Fq is a field of
characteristic 2, h satisfies

1
hi⊕j

=
1
hi

+
1
hj

+
1
h0

, (1)

and zi = 1/hi + ω, Lj = 1/hj + 1/h0 + ω for some ω ∈ Fq.

Proof. Since a dyadic matrix is symmetric, the sequences that define it must
satisfy 1/(zi − Lj) = 1/(zj − Li), hence Lj = zi + Li − zj for all i and j. Then
zi + Li must be a constant α, and taking i = 0 in particular this simplifies to
Lj = α−zj . Substituting back into the definition Mij = 1/(zi−Lj) one sees that
Hij = 1/(zi + zj +α). But dyadic matrices also have constant diagonal, namely,
Hii = 1/(2zi + α) = h0. This is only possible if all zi are equal (contradicting
the definition of a Cauchy matrix), or else if the characteristic of the field is 2,
as claimed.

In this case we see that α = 1/h0, and hence Hij = 1/(zi + zj + 1/h0).
Plugging in the definition Hij = hi⊕j we get 1/Hij = 1/hi⊕j = zi + zj + 1/h0,
and taking j = 0 in particular this yields 1/hi = zi + z0 + 1/h0, or simply
zi = 1/hi + 1/h0 + z0. Substituting back one obtains 1/hi⊕j = zi + zj + 1/h0 =
1/hi + 1/h0 + z0 + 1/hj + 1/h0 + z0 + 1/h0 = 1/hi + 1/hj + 1/h0, as expected.

Finally, define ω = 1/h0 + z0 and substitute into the derived relations zi =
1/hi +1/h0 +z0 and Lj = α−zj to get zi = 1/hi +ω and Lj = 1/hj +1/h0 +ω,
as desired. ��
Therefore all we need is a method to solve Equation 1. The technique we propose
consists of simply choosing distinct nonzero h0 and hi at random where i scans
all powers of two smaller than n, and setting all other values as

hi+j ← 1
1
hi

+
1
hj

+
1
h0

Compact McEliece Keys from Goppa Codes 381

for 0 < j < i (so that i + j = i ⊕ j), as long as this value is well-defined.
Algorithm 1 captures this idea. Since each element of the signature h is assigned
a value exactly once, its running time is O(n) steps. The notation u

$←U means
that variable u is uniformly sampled at random from set U . For convenience
we also define the essence of h to be the sequence ηs = 1/h2s + 1/h0 for s =
0, . . . , �lg n� − 1 together with η�lg n� = 1/h0, so that, for i =

∑�lg n�−1
k=0 ik2k,

1/hi = η�lg n� +
∑�lg n�−1

k=0 ikηk.

Algorithm 1. Constructing a binary Goppa code in dyadic form
Input: q (a power of 2), n � q/2, t.
Output: Support L, generator polynomial g, dyadic parity-check matrix H for a bi-

nary Goppa code Γ (L, g) of length n and design distance 2t + 1 over Fq, and the
essence η of the signature of H .

1: U ← Fq \ {0}
� Choose the dyadic signature (h0, . . . , hn−1). N.B. Whenever hj with j > 0 is taken

from U , so is 1/(1/hj + 1/h0) to prevent a potential spurious intersection between
z and L.

2: h0
$←U

3: η�lg n� ← 1/h0

4: U ← U \ {h0}
5: for s ← 0 to �lg n� − 1 do
6: i ← 2s

7: hi
$←U

8: ηs ← 1/hi + 1/h0

9: U ← U \ {hi, 1/(1/hi + 1/h0)}
10: for j ← 1 to i − 1 do
11: hi+j ← 1/(1/hi + 1/hj + 1/h0)
12: U ← U \ {hi+j , 1/(1/hi+j + 1/h0)}
13: end for
14: end for
15: ω

$←Fq

� Assemble the Goppa generator polynomial:
16: for i ← 0 to t − 1 do
17: zi ← 1/hi + ω
18: end for
19: g(x) ←

∏t−1
i=0 (x − zi)

� Compute the support:
20: for j ← 0 to n − 1 do
21: Lj ← 1/hj + 1/h0 + ω
22: end for
23: h ← (h0, . . . , hn−1)
24: H ← ∆(t, h)
25: return L, g, H , η

Theorem 3. Algorithm 1 produces up to
∏�lg n�

i=0 (q − 2i) Goppa codes in dyadic
form.

382 R. Misoczki and P.S.L.M. Barreto

Proof. Each dyadic signature produced by Algorithm 1 is entirely determined
by the values h0 and h2s for s = 0, . . . , �lg n� − 1 chosen at steps 2 and 7 (ω
only produces equivalent codes). Along the loop at line 5, exactly 2i = 2s+1

elements are erased from U , corresponding to the choices of h2s . . . h2s+1−1. At
the end of that loop, 2 + 2

∑s
�=0 2� = 2s+2 elements have been erased in total.

Hence at the beginning of each step of the loop only 2s+1 elements had been
erased from U , i.e. there are q − 2s+1 elements in U to choose h2s from, and
q − 1 possibilities for h0. Therefore this construction potentially yields up to
(q − 1)

∏�lg n�−1
s=0 (q − 2s+1) =

∏�lg n�
i=0 (q − 2i) possible codes. ��

Theorem 3 actually establishes the number of distinct essences of dyadic signa-
tures corresponding to Cauchy matrices. The roots of the Goppa polynomial are
completely specified by the first �lg t� elements of the essence η together with
η�lg n�, namely, zi = η�lg n� +

∑�lg t�−1
k=0 ikηk, disregarding the ω term which is im-

plicit in the choice of η�lg n�. We see that any permutation of the essence elements
η0, . . . , η�lg t�−1 only changes the order of those roots. Since the Goppa polyno-
mial itself is defined by its roots regardless of their order, the total number of
possible Goppa polynomials is therefore

(∏�lg t�
i=0 (q − 2i)

)
/�lg t�! ≈ (q−t)

(
q

�lg t�
)
.

For n ≈ q/2 the number of dyadic codes can be approximated by qmQ = 2m2
Q

where Q =
∏∞

i=1 (1− 1/2i) ≈ 0.2887881. We will also see that the number
of quasi-dyadic codes, which we describe next and propose for cryptographic
applications, is larger than this. Before we proceed, however, it is interesting to
notice that one of the reasons the attack proposed in [22] succeeds against certain
quasi-cyclic codes, besides the constrained structure of the applied permutation,
is that those schemes start from a known BCH or Reed-Solomon code which is
unique up to the choice of a primitive element from the underlying finite field.
Thus, in those proposals an initial code over F2m is at best chosen from a set
of O(2m) codes. In comparison, we start from a secret code sampled from a
much larger family of O(2m2

) codes. For instance, while those proposals have
only 215 starting points over F216 , our scheme can sample a family with more
than 2254 codes over the same field. The main protection of the hidden trapdoor
is, of course, the block puncturing process and the more complex blockwise
permutation of the initial secret code, as detailed next.

3.2 Constructing Quasi-Dyadic, Permuted Subfield Subcodes

To complete the construction it is necessary to choose a compact generator
matrix for the subfield subcode. Although the parity check matrix H built by
Algorithm 1 is dyadic over Fq, the usual trace construction leads to a generator
of the dual code that most probably violates the dyadic symmetry. However, by
representing each field element to a basis of Fq over the subfield Fp, one can view
H as a superposition of d = [Fq : Fp] distinct dyadic matrices over Fp, and each
of them can be stored in a separate dyadic signature.

A cryptosystem cannot be securely defined on a Goppa code specified directly
by a parity-check matrix in Cauchy form, since this would immediately reveal

Compact McEliece Keys from Goppa Codes 383

the Goppa polynomial g(x): it suffices to solve the overdefined linear system
zi − Lj = 1/Hij consisting of tn equations in t + n unknowns.

Algorithm 1 generates fully dyadic codes. We now show how to integrate the
techniques of Berger et al. with Algorithm 1 so as to build quasi-dyadic subfield
subcodes whose parity-check matrix is a non-dyadic matrix composed of blocks
of dyadic submatrices. The principle to follow here is to select, permute, and
scale the columns of the original parity-check matrix so as to preserve quasi-
dyadicity in the target subfield subcode and the distribution of introduced errors
in cryptosystems. A similar process yields a generator matrix in convenient quasi-
dyadic, systematic form.

For the desired security level (see the discussion in Section 5.1), choose p = 2s

for some s, q = pd = 2m for some d with m = ds, a code length n and a design
number of correctable errors t such that n = �t for some � > d. For simplicity
we assume that t is a power of 2, but the following construction method can be
modified to work with other values.

Run Algorithm 1 to produce a code over Fq whose length N n is a large
multiple of t not exceeding the largest possible length q/2, so that the constructed
t×N parity-check matrix Ĥ can be viewed as a sequence of N/t dyadic blocks
[B0 | · · · | BN/t−1] of size t × t each. Select uniformly at random � distinct
blocks Bi0 , . . . , Bi�−1 in any order from Ĥ , together with � dyadic permutations
Πj0 , . . . , Πj�−1 of size t × t and � nonzero scale factors σ0, . . . , σ�−1 ∈ Fp. Let
Ĥ ′ = [Bi0Π

j0 | · · · | Bi�−1Π
j�−1] ∈ (Ft×t

q)� and Σ = diag(σ0It, . . . , σ�−1It) ∈
(Ft×t

p)�×�. Compute the co-trace matrix H ′ = T ′
d(Ĥ

′Σ) = T ′
d(Ĥ

′)Σ ∈ (Ft×t
p)d×�

and finally the systematic form H of H ′. Notice that, if the systematic form
of T ′

d(Ĥ
′) is H0, then H = U−1H0V where U = diag(σ0It, . . . , σ�−d−1It) and

V = diag(σ�−dIt, . . . , σ�−1It).
The resulting parity-check matrix defines a code of length n and dimension

k = n−dt over Fp, and since all block operations performed during the Gaussian
elimination are carried out in the ring ∆(Ft

p), the result still consists of dyadic
submatrices which can be represented by a signature of length t. Hence the
whole matrix can be stored in an area a factor t smaller than a general matrix.
However, the dyadic submatrices that appear in this process are not necessarily
nonsingular, as they are not associated to a Cauchy matrix anymore; should
all the submatrices on a column be found to be singular (above or below the
diagonal, according to the direction of this process) so that no pivot is possible,
the whole block containing that column may be replaced by another block Bj′

chosen at random from Ĥ as above.
The trapdoor information consisting of the essence η of h, the sequence

(i0, . . . , i�−1) of blocks, the sequence (j0, . . . , j�−1) of dyadic permutation iden-
tifiers, and the sequence of scale factors (σ0, . . . , σ�−1), relates the public code
defined by H with the private code defined by Ĥ . The space occupied by the
trapdoor information is thus m2 + � lg N + �s bits. If one starts with the largest
possible N = 2m−1, this simplifies to the maximal size of m2 + �(m−1+ s) bits.

The total space occupied by the essential part of the resulting generator (or
parity-check) matrix over Fp is dt× (n− dt)/t = dk Fp elements, or mk bits – a

384 R. Misoczki and P.S.L.M. Barreto

factor t better than plain Goppa codes, which occupy k(n− k) = mkt bits. Had
t not been chosen to be a power of 2, say, t = 2uv where v > 1 is odd, the cost
of multiplying t × t matrices would be in general O(2uuv3) rather than simply
O(2uu), and the final parity-check matrix would be compressed by only a factor
2u.

For each code produced by Algorithm 1, the number of codes generated by
this construction is

(
N/t

�

)× �!× t� × (r − 1)�, hence
(
N/t

�

)× �!× t� × (r − 1)� ×∏�lg N�
i=0 (q − 2i) codes are possible in principle.

3.3 A Toy Example

Let F25 = F2[u]/(u5 + u2 + 1). The dyadic signature

h = (u20, u3, u6, u28, u9, u29, u4, u22, u12, u5, u10, u2, u24, u26, u25, u15)

and the offset ω = u21 define a 2-error correcting binary Goppa code
of length N = 16 with g(x) = (x − u12)(x − u15) and support L =
(u21, u29, u19, u26, u6, u16, u7, u5, u25, u3, u11, u28, u27, u9, u22, u2). The associated
parity-check matrix built according to Theorem 1 is

Ĥ =
[
u20 u3 u6 u28 u9 u29 u4 u22 u12 u5 u10 u2 u24 u26 u25 u15

u3 u20 u28 u6 u29 u9 u22 u4 u5 u12 u2 u10 u26 u24 u15 u25

]
,

with eight 2× 2 blocks B0, . . . , B7 as indicated. From this we extract the short-
ened, rearranged and permuted sequence Ĥ ′ = [B7Π

0 | B5Π
1 | B1Π

0 | B2Π
1 |

B3Π
0 | B6Π

1 | B4Π
0] (because in this example the subfield is the base field

itself, all scale factors have to be 1), i.e.:

Ĥ =
[
u25 u15 u2 u10 u6 u28 u29 u9 u4 u22 u26 u24 u12 u5

u15 u25 u10 u2 u28 u6 u9 u29 u22 u4 u24 u26 u5 u12

]
,

whose co-trace matrix over F2 has the systematic form:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [MT | In−k],

from which one readily obtains the k×n = 4×14 generator matrix in systematic
form:

G =

⎡⎢⎢⎣
1 0 0 0 0 1 0 1 0 0 0 1 1 1
0 1 0 0 1 0 1 0 0 0 1 0 1 1
0 0 1 0 0 1 0 0 1 1 1 0 0 0
0 0 0 1 1 0 0 0 1 1 0 1 0 0

⎤⎥⎥⎦ = [Ik |M],

Compact McEliece Keys from Goppa Codes 385

where both G and H share the essential part M :

M =

⎡⎢⎢⎣
0 1 0 1 0 0 0 1 1 1
1 0 1 0 0 0 1 0 1 1
0 1 0 0 1 1 1 0 0 0
1 0 0 0 1 1 0 1 0 0

⎤⎥⎥⎦ ,

which is entirely specified by the elements in boldface and can thus be stored in
20 bits instead of, respectively, 4 · 14 = 56 and 10 · 14 = 140 bits.

4 Assessing the Hardness of Decoding Quasi-Dyadic
Codes

The original McEliece (or, for that matter, the original Niederreiter) schemes are
perhaps better described as a candidate trapdoor one-way functions rather than
full-fledged public-key encryption schemes. Such functions are used in cryptog-
raphy in many different settings, each with different security requirements, and
we do not consider such applications in this paper. Instead we focus purely on
the question of inverting the trapdoor function, in other words, decoding.

As we pointed out in Section 1, the well-studied class of Goppa codes remains
one of the best choices to instantiate McEliece-like schemes. Although our pro-
posal is ultimately based on Goppa codes, one may wonder whether or not the
highly composite nature of the Goppa generator polynomial g(x), or the pecu-
liar structure of the quasi-dyadic parity-check and generator matrices, leak any
information that might facilitate decoding without knowledge of the trapdoor.

Yet, any alternant code can be written in Goppa-like fashion by using the
diagonal component of its default parity-check matrix (see Definition 6) to in-
terpolate a generating polynomial (not necessarily of degree t) that is composite
with high probability. We are not aware of any way this fact could be used to
facilitate decoding without full knowledge of the code structure, and clearly any
result in this direction would affect most of the alternant codes proposed for
cryptographic purposes to date.

Otmani et al.’s attack against quasi-cyclic codes [22] could be modified to
work against Goppa codes in dyadic form. For this reason we adopt the same
countermeasures proposed by Berger et al. to thwart it for cyclic codes, namely,
working with a block-shortened subcode of a very large code as described in
Section 3.2. This idea also build upon the work of Wieschebrink [29] who proved
that deciding whether a code is equivalent to a shortened code is NP-complete.
In our case, the result is to hide the Cauchy structure of the private code in a
general dyadic structure, rather than disguising a quasi-cyclic code as another
one with the same symmetry.

We now give a reduction of the problem of decoding the particular class of
quasi-dyadic codes to the well-studied syndrome decoding problem, classical in
coding theory and known to be NP-complete [4].

Definition 8 (Syndrome decoding). Let Fq be a finite field, and let (H, w, s)
be a triple consisting of a matrix H ∈ Fr×n

q , an integer w < n, and a vector

386 R. Misoczki and P.S.L.M. Barreto

s ∈ Fr
q. Does there exist a vector e ∈ Fn

q of Hamming weight wt(e) � w such that
HeT = sT?

The corresponding problem for quasi-dyadic matrices reads:

Definition 9 (Quasi-Dyadic Syndrome Decoding). Let Fq be a finite field,
and let (H, w, s) be a triple consisting of a quasi-dyadic matrix H ∈ ∆(F�

q)
r×n,

an integer w < �n, and a vector s ∈ F�r
q . Does there exist a vector e ∈ F�n

q of
Hamming weight wt(e) � w such that HeT = sT?

Theorem 4. The quasi-dyadic syndrome decoding problem (QD-SDP) is poly-
nomially equivalent to the syndrome decoding problem (SDP). In other words,
decoding quasi-dyadic codes is as hard in the worst case as decoding general codes.

Proof. The QD-SDP, being an instance of the SDP restricted to a particular
class of codes, is clearly a decision problem in NP.

Consider now a generic instance (H ′, w′, s′) ∈ Fr×n
q × Z × Fr

q of the SDP.
Assume one is given an oracle that solves the QD-SDP over ∆(F�

q) for some
given � > 0. Let v� ∈ F�

q be the all-one vector, i.e. (v�)j = 1 for all j. Define
the quasi-dyadic matrix H = H ′ ⊗ I� ∈ ∆(F�

q)r×n with blocks Hij = H ′
ijI�, the

vector s = s′ ⊗ v� ∈ (F�
q)

r with blocks si = s′iv�, and w = �w′. It is evident that
the instance (H, w, s) ∈ ∆(F�

q)
r×n×Z×(F�

q)
r of the QD-SDP can be constructed

in polynomial time.
Assume now that there exists e ∈ F�n

q of Hamming weight wt(e) � w such
that HeT = sT. For all 0 � i < �, let e′i ∈ Fn

q be the vector with elements
(e′i)j = ei+j�, 0 � j < n, so that the e′i are interleaved to compose e. Obviously
at least one of the e′i has Hamming weight not exceeding w/� = w′, and by the
construction of H any of them satisfies He′Ti = s′T, constituting a solution to
the given instance of the SDP. This effectively reduces the SDP to the QD-SDP
for any given � in polynomial time. Thus, the QD-SDP itself is NP-complete. ��
Although this theorem does not say anything about hardness in the average case,
it nevertheless strengthens our claim that the family of codes we propose is in
principle no less suitable for cryptographic applications than a generic code, in
the sense that, should the QD-SDP problem turn out to be feasible in the worst
case, then all coding-based cryptosystems would definitely be ruled out, regard-
less of which code is used to instantiate them. Incidentally, the expected running
time of all known algorithms for the SDP (and the QD-SDP) is exponential, so
there is empirical evidence that the average case is also very hard. We stress,
however, that particular cryptosystems based on quasi-dyadic codes will usually
depend on more specific security assumptions, whose assessment transcends the
scope of this paper.

5 Efficiency Considerations

Due to their simple structure the matrices in our proposal can be held on a
simple vector not only for long-term storage or transmission, but for processing
as well.

Compact McEliece Keys from Goppa Codes 387

The operation of multiplying a vector by a (quasi-)dyadic matrix is at the
core of McEliece encryption. The fast Walsh-Hadamard transform (FWHT) [12]
approach for dyadic convolution via lifting2 to characteristic 0 leads to the
asymptotic complexity O(n lg n) for this operation and hence also for encod-
ing. Sarwate’s decoding method [24] sets the asymptotic cost of that operation
at roughly O(n lg n) as well for the typical cryptographic setting t = O(n/ lg n).

Inversion, on the other hand, can be carried out in O(n) steps: one can show
by induction that a binary dyadic matrix ∆(h) of dimension n satisfies ∆2 =
(
∑

i hi)2I, and hence its inverse, when it exists, is ∆−1 = (
∑

i hi)−2∆, which
can be computed in O(n) steps since it is entirely determined by its first row.

Converting a quasi-dyadic matrix to systematic (echelon) form involves a
Gaussian elimination incurring about d2� products of dyadic t × t submatri-
ces, implying a complexity O(d2�t lg t) = O(d2n lg n), and hence the overall cost
of formatting is O(n lg n) as long as d is a small constant, which is indeed the
case in practice since maximum size reduction is achieved when Fp is a large
proper subfield of Fq (see Section 5.1). Notice that, contrary to systems based
on quasi-circulant matrices [8, Proposition 3.4], our proposal does not require
a lengthy process, involving expensive O(n3) matrix rank computations to con-
struct a generator matrix in suitable form, often larger than one would expect
for a code of the given dimension.

Table 1 summarizes the asymptotic complexities of code generation (mainly
due to systematic formatting), encoding and decoding, which coincide with the
complexities of key generation, encryption and decryption of typical cryptosys-
tems based on codes.

Table 1. Operation complexity relative to the code length n

operation generic ours
Code generation O(n3) O(n lg n)
Encode/Decode O(n2) O(n lg n)

5.1 Suggested Parameters

Several trade-offs are possible when choosing parameters for a particular appli-
cation. One may wish to minimize the key size, or increase speed, or simplify the
underlying arithmetic, or attaining a balance between them. We present here
some non-exhaustive combinations. The number of errors is always a power of 2
to enable maximum size reduction.

Table 2 shows the influence of varying the subfield degree while keeping fixed
the approximate security level and the number of design errors. In general, codes
over larger subfields allow for smaller keys as already indicated in [3]. For these
parameters the number of possible codes ranges from 2392 to 2731.

2 We are grateful to Dan Bernstein for suggesting the lifting technique to emulate the
FWHT in characteristic 2.

388 R. Misoczki and P.S.L.M. Barreto

Table 2. Sample parameters for a fixed number of errors (t = 128) and approximately
128-bit security level, using a subcode over the subfield F2s of F216

s n k size (bits)
1 4096 2048 32768
2 2560 1536 24576
4 1408 896 14336
8 768 512 8192

Table 3 displays a different trade-off whereby the key size and the subfield
are kept constant at the cost of varying the number of errors and the code
length. The estimated security level on column ‘level’ refers to the approximate
logarithmic cost of the best known attack according to the guidelines in [7].

Table 3. Sample parameters for a fixed key size (8192 bits, corresponding to k = 512),
using a subcode over the subfield F28 of F216

n t level
640 64 102
768 128 136
1024 256 168

One more trade-off is obtained by defining the subfield subcode over the base
field itself, following the common practice for generic codes. The corresponding
settings3 are summarised on Table 4.

Table 4. Sample parameters for a subcode over the base subfield F2 of F216

level n k t size (bits)
80 2304 1280 64 20480
112 3584 1536 128 24576
128 4096 2048 128 32768
192 7168 3072 256 49152
256 8192 4096 256 65536

Table 5 contains a variety of balanced parameters for practical security lev-
els. Although we do not recommend these for actual deployment before further
analysis is carried out, these parameters were chosen to stress the possibilities
of our proposal while giving a realistic impression of what one might indeed

3 The actual security levels computed according to the attack strategy in [7] for the
parameters suggested in Table 4 are, respectively, 84.3, 112.3, 136.5, 216.0, and 265.1.
We are grateful to Christiane Peters for kindly providing these estimates.

Compact McEliece Keys from Goppa Codes 389

adopt in practice. The target security level, roughly corresponding to the es-
timated logarithmic cost of the best known attack according to the guidelines
in [7], is shown on the ‘level’ column. The ‘size’ column contains the amount of
bits effectively needed to store a quasi-dyadic generator or parity-check matrix
in systematic form. The size of a corresponding systematic matrix for a generic
Goppa code at roughly the same security level as suggested in [7] is given on
column ‘generic’. The ‘shrink’ column contains the size ratio between such a
generic matrix and a matching quasi-dyadic matrix. The ‘RSA’ column lists the
typical size of a (quantum-susceptible) RSA modulus at the specified security
level (more accurate RSA estimates can be found in [20,21]). To assess our re-
sults against what can be achieved by other post-quantum settings, column ‘QC’
lists key sizes for quasi-cyclic codes of approximately the specified security level
(although not necessarily for the same code length, dimension, and distance)
as suggested in [3], column ‘LDPC’ does the same for (quasi-cyclic) low-density
parity-check codes as discussed in [2], and finally the ‘NTRU’ column contains
the range (from size-optimal to speed-optimal) of NTRU key sizes as suggested
in the draft IEEE 1363.1 standard [13]. For these very compact parameters the
number of possible codes ranges between 2346 and 2392, less than those of Table 2
but still very large.

Table 5. Sample parameters for a subcode over the subfield F28 of F216

level n k t size generic shrink RSA QC LDPC NTRU
80 512 256 128 4096 460647 112 1024 6750 49152 –
112 640 384 128 6144 1047600 170 2048 14880 – 4411–7249
128 768 512 128 8192 1537536 188 3072 20400 – 4939–8371
192 1280 768 256 12288 4185415 340 7680 – – 7447–11957
256 1536 1024 256 16384 7667855 468 15360 – – 11957–16489

For the parameters on Table 5, we observed the timings on Table 6 (measured
in ms) for generic Goppa codes and quasi-dyadic (QD) codes, and also for RSA
to assess the efficiency relative to a very common pre-quantum cryptosystem. We
made no serious attempt at optimizing the implementation, which was done in
C++ and tested on an AMD Turion 64X2 2.4 GHz. Benchmarks for RSA-15360
were omitted due to the enormous time needed to generate suitable parameters.

Table 6. Benchmarks for typical parameters

level generation encoding decoding
RSA generic QD RSA generic QD RSA generic QD

80 563 375 17.2 0.431 0.736 0.817 15.61 1.016 3.685
112 1971 1320 18.7 1.548 1.696 1.233 110.34 2.123 4.463
128 4998 2196 20.5 3.467 2.433 1.575 349.91 3.312 5.261
192 628183 13482 47.6 22.320 6.872 4.695 5094.10 8.822 17.783
256 – 27161 54.8 – 12.176 6.353 – 15.156 21.182

390 R. Misoczki and P.S.L.M. Barreto

6 Conclusion and Further Research

We have described how to generate Goppa codes in quasi-dyadic form suitable for
cryptographic applications. Key sizes for a typical McEliece-like cryptosystem
are roughly a factor t = Õ(n) smaller than generic Goppa codes, and keys
can be kept in this compact size not only for storing and transmission but for
processing as well. In the binary case these codes can correct the full design
number of errors. This brings the size of cryptographic keys to within a factor 4
or less of equivalent RSA keys, comparable to NTRU keys. Our work provides
an alternative to conventional cyclic and quasi-cyclic codes, and benefits from
the same trapdoor-hiding techniques proposed by Wieschebrink in general [29],
and by Berger et al. for that family of codes [3].

The complexity of all operations in McEliece and related cryptosystems is
reduced to O(n lg n). Other cryptosystems can also benefit from dyadic codes,
e.g. entity identification and certain digital signatures for which double circulant
codes have been proposed [9] could use dyadic codes instead, even random ones
without a Goppa trapdoor. One further line of research is whether one can se-
curely combine the techniques in [2] with ours to define quasi-dyadic, low-density
parity-check (QD-LDPC) codes that are suitable for cryptographic purposes and
potentially even shorter than plain quasi-dyadic codes.

Interestingly, it is equally possible to define lattice-based cryptosystems with
short keys using dyadic lattices entirely analogous to ideal (cyclic) lattices as
proposed by Micciancio [17], and achieving comparable size reduction. We leave
this line of inquiry for future research since it falls outside the scope of this
paper.

Acknowledgments

We are most grateful and deeply indebted to Marco Baldi, Dan Bernstein, Pierre-
Louis Cayrel, Philippe Gaborit, Steven Galbraith, Robert Niebuhr, Christiane
Peters, Nicolas Sendrier, and the anonymous reviewers for their valuable com-
ments and feedback during the preparation of this work.

References

1. Baldi, M., Chiaraluce, F.: Cryptanalysis of a new instance of McEliece cryptosys-
tem based on QC-LDPC code. In: IEEE International Symposium on Information
Theory – ISIT 2007, Nice, France, pp. 2591–2595. IEEE, Los Alamitos (2007)

2. Baldi, M., Chiaraluce, F., Bodrato, M.: A new analysis of the mcEliece cryptosys-
tem based on QC-LDPC codes. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.)
SCN 2008. LNCS, vol. 5229, pp. 246–262. Springer, Heidelberg (2008)

3. Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of
the McEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS,
vol. 5580, pp. 77–97. Springer, Heidelberg (2009),
http://www.unilim.fr/pages_perso/philippe.gaborit/reducing.pdf

http://www.unilim.fr/pages_perso/philippe.gaborit/reducing.pdf

Compact McEliece Keys from Goppa Codes 391

4. Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of
certain coding problems. IEEE Transactions on Information Theory 24(3), 384–
386 (1978)

5. Bernstein, D.J.: List decoding for binary Goppa codes (2008) (preprint),
http://cr.yp.to/papers.html#goppalist

6. Bernstein, D.J., Buchmann, J., Dahmen, E.: Post-Quantum Cryptography.
Springer, Heidelberg (2008)

7. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the mcEliece cryp-
tosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp.
31–46. Springer, Heidelberg (2008),
http://www.springerlink.com/content/68v69185x478p53g

8. Gaborit, P.: Shorter keys for code based cryptography. In: International Workshop
on Coding and Cryptography – WCC 2005, Bergen, Norway, pp. 81–91. ACM
Press, New York (2005)

9. Gaborit, P., Girault, M.: Lightweight code-based authentication and signature. In:
IEEE International Symposium on Information Theory – ISIT 2007, Nice, France,
pp. 191–195. IEEE, Los Alamitos (2007)

10. Gibson, J.K.: Severely denting the Gabidulin version of the McEliece public key
cryptosystem. Designs, Codes and Cryptography 6(1), 37–45 (1995)

11. Gibson, J.K.: The security of the Gabidulin public key cryptosystem. In: Maurer,
U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 212–223. Springer, Heidel-
berg (1996)

12. Gulamhusein, M.N.: Simple matrix-theory proof of the discrete dyadic convolution
theorem. Electronics Letters 9(10), 238–239 (1973)

13. IEEE P1363 Working Group. IEEE 1363-1: Standard Specifications for Public-Key
Cryptographic Techniques Based on Hard Problems over Lattices, Draft (2009),
http://grouper.ieee.org/groups/1363/lattPK/index.html

14. Loidreau, P., Sendrier, N.: Some weak keys in McEliece public-key cryptosystem.
In: IEEE International Symposium on Information Theory – ISIT 1998, Boston,
USA, p. 382. IEEE, Los Alamitos (1998)

15. MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. North-
Holland Mathematical Library, vol. 16 (1977)

16. McEliece, R.: A public-key cryptosystem based on algebraic coding theory. The
Deep Space Network Progress Report, DSN PR 42–44 (1978),
http://ipnpr.jpl.nasa.gov/progressreport2/42-44/44N.PDF

17. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions. Computational Complexity 16(4), 365–411 (2007)

18. Monico, C., Rosenthal, J., Shokrollahi, A.: Using low density parity check codes
in the McEliece cryptosystem. In: IEEE International Symposium on Information
Theory – ISIT 2000, Sorrento, Italy, p. 215. IEEE, Los Alamitos (2000)

19. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems of Control and Information Theory 15(2), 159–166 (1986)

20. European Network of Excellence in Cryptology (ECRYPT). ECRYPT yearly re-
port on algorithms and keysizes (2007-2008). D.SPA.28 Rev. 1.1, IST-2002-507932
ECRYPT, 07/2008 (2008),
http://www.ecrypt.eu.org/ecrypt1/documents/D.SPA.28-1.1.pdf

21. National Institute of Standards and Technology (NIST). Recommendation for key
management – part 1: General (2007),
http://csrc.nist.gov/publications/nistpubs/800-57/
sp800-57-Part1-revised2_Mar08-2007.pdf

http://cr.yp.to/papers.html#goppalist
http://www.springerlink.com/content/68v69185x478p53g
http://grouper.ieee.org/groups/1363/lattPK/index.html
http://ipnpr.jpl.nasa.gov/progressreport2/42-44/44N.PDF
http://www.ecrypt.eu.org/ecrypt1/documents/D.SPA.28-1.1.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf

392 R. Misoczki and P.S.L.M. Barreto

22. Otmani, A., Tillich, J.-P., Dallot, L.: Cryptanalysis of two McEliece cryptosystems
based on quasi-cyclic codes (2008) (preprint),
http://arxiv.org/abs/0804.0409v2

23. Patterson, N.J.: The algebraic decoding of Goppa codes. IEEE Transactions on
Information Theory 21(2), 203–207 (1975)

24. Sarwate, D.V.: On the complexity of decoding Goppa codes. IEEE Transactions
on Information Theory 23(4), 515–516 (1977)

25. Schechter, S.: On the inversion of certain matrices. Mathematical Tables and Other
Aids to Computation 13(66), 73–77 (1959),
http://www.jstor.org/stable/2001955

26. Sendrier, N.: Finding the permutation between equivalent linear codes: the support
splitting algorithm. IEEE Transactions on Information Theory 46(4), 1193–1203
(2000)

27. Sidelnikov, V., Shestakov, S.: On cryptosystems based on generalized Reed-
Solomon codes. Discrete Mathematics 4(3), 57–63 (1992)

28. Tzeng, K.K., Zimmermann, K.: On extending Goppa codes to cyclic codes. IEEE
Transactions on Information Theory 21, 721–726 (1975)

29. Wieschebrink, C.: Two NP-complete problems in coding theory with an application
in code based cryptography. In: IEEE International Symposium on Information
Theory – ISIT 2006, Seattle, USA, pp. 1733–1737. IEEE, Los Alamitos (2006)

http://arxiv.org/abs/0804.0409v2
http://www.jstor.org/stable/2001955

Herding, Second Preimage and Trojan Message
Attacks beyond Merkle-Damg̊ard

Elena Andreeva1, Charles Bouillaguet2, Orr Dunkelman2, and John Kelsey3

1 ESAT/SCD — COSIC, Dept. of Electrical Engineering,
Katholieke Universiteit Leuven and IBBT

elena.andreeva@esat.kuleuven.be
2 Ecole Normale Supérieure

{charles.bouillaguet,orr.dunkelman}@ens.fr
3 National Institute of Standards and Technology

john.kelsey@nist.gov

Abstract. In this paper we present new attack techniques to analyze the
structure of hash functions that are not based on the classical Merkle-
Damg̊ard construction. We extend the herding attack to concatenated
hashes, and to certain hash functions that process each message block
several times. Using this technique, we show a second preimage attack
on the folklore “hash-twice”construction which process two concatenated
copies of the message. We follow with showing how to apply the herding
attack to tree hashes. Finally, we present a new type of attack — the
trojan message attack, which allows for producing second preimages of
unknown messages (from a small known space) when they are appended
with a fixed suffix.

Keywords: Herding attack, Second preimage attack, Trojan message
attack, Zipper hash, Concatenated hash, Tree hash.

1 Introduction

The works of Dean [6] showed that fixed points of the compression function
can be transformed into a long message second preimage attack on the Merkle-
Damg̊ard functions in O (2n/2

)
time (n is the size in bits of the chaining and

digest values). Later, the seminal work by Joux [8] suggested a new method to
efficiently construct multicollisions, by turning � pairs of colliding message blocks
into 2� colliding messages.1 In [10], Kelsey and Schneier applied the multicollision
ideas of Joux to Dean’s attack, and eliminated the need for finding fixed points
in the compression function by building expandable messages, which are a set of
2� colliding messages each of a distinct length.

Another result in the same line of research is the herding attack by Kelsey
and Kohno in [9]. The attack is a chosen-target prefix attack, i.e., the adversary
commits to a digest value h and is then presented with a challenge prefix P .
Now, the adversary efficiently computes a suffix S, such that H(P ||S) = h.
1 We note that in [5] the same basic idea was used for a dedicated preimage attack.

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 393–414, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

394 E. Andreeva et al.

The underlying technique uses a diamond structure, a precomputed data struc-
ture, which allows 2� sequences of message blocks to iteratively converge to the
same final digest value. The latter result, together with the long message second
preimage attack, was used in [1] to exhibit a new type of second preimage attack
that allows to construct second preimages differing from the original messages
only by a small number of message blocks.

We note that the work of Joux in [8] also explores concatenated hashing,
i.e., the hash function H(M) = H1(M)||H2(M). It appears that if one of the
underlying hash functions is iterative, then the task of finding a collision (resp.,
a preimage) in H(M) is only polynomially harder than finding a collision (resp.,
a preimage) for any of the Hi(M).

1.1 Our Contributions

In this section we summarize our results on herding, long-message second preim-
age and trojan message attacks and present the complexities of these attacks in
Tables 1, 2, and 3.

Herding Attacks. We introduce herding attacks on four non-Merkle-Damg̊ard
hash constructions: the concatenated, zipper [11], “hash-twice”and tree hash [12]
functions.

Long-Message Second Preimage Attacks. By reusing the newly presented
herding techniques we apply long-message second preimage attacks on the “hash
twice”. We also show that in tree hashes it is possible to find long-message second
preimages using time-memory-data tradeoff attack.

Trojan Message Attacks. We introduce a new kind of attack, called the trojan
message attack. This involves an attacker producing a poisoned suffix S (the
“Trojan message”) such that, when the victim prepends one of a constrained set
of possible prefixes to it, producing the message P ||S, the attacker can produce a
second preimage for that message. The attack comes in a less and more powerful
form, as is described in Section 9. Note that for both forms of the attack, the
number of message blocks in the Trojan message is at least as large as the number
of possible prefixes.

1.2 Organization of the Paper

Section 2 outlines the definitions used in the paper. Prior work is surveyed in
Section 3. In Section 4 we introduce the diamond structures on κ pipes and use
them to apply the herding attack to concatenated hashes. We use the same ideas
to present herding attacks on the hash-twice and zipper hash in Section 5. These
herding attacks are used in Section 6 to present a second preimage attack on
hash-twice. The new results on herding tree hashes are presented in Section 7,
and in Section 8 we present second preimage attacks on tree hashes. We follow
to introduce the new trojan message attack, in Section 9 and conclude with
Section 10.

Herding, Second Preimage and Trojan Message Attacks 395

Table 1. Complexities of the Suggested Herding Attacks

Construction Precomputation Online 128-bit hash

Concatenated hash O
(

n�κ
2

· (n/2)κ−2 · 2n/2 + κ · 2
n+�
2 +2

)
O
(
κ · 2n−�

)
3 · 288‡

Hash twice O
(
2(n+�)/2+2

)
O
(
2n−�

)
3 · 288

Zipper hash O
(
2(n+�)/2+2 + (n − � + n�

2
) · 2n/2

)
O
(
2n−�

)
2 · 288

Tree hash† 15.08 · 2
n+�
2 2n−(�−1) 299∗

Merkle-Damg̊ard [9] 2
n+�
2 +2 2n−� 288

κ — number of hash functions (chains)
† — for tree hashes, the size of the diamond is restricted by the message length
‡ — for κ = 2
∗ — for message of length � = 230 blocks, and a 128-bit digest size

Table 2. Complexities of the Suggested Second Preimage Attacks

Construction Precomputation Online 128-bit hash

Hash twice O
(
2(n+�)/2+2

)
O
(
2n−� + 2n−κ

)
288†

Tree hash† O
(
2n−κ+1

)
22(n−κ+1) 299∗

Merkle-Damg̊ard [10] 2n+�)/2+2 2n−κ 278‡

2κ — message length
† — for messages of length greater than 242 blocks
‡ — for messages of length 250 blocks
∗ — for message of length � = 230 blocks, and a 128-bit digest size

Table 3. Complexities of the Suggested Trojan Message Attacks

Trojan message attack Precomputation Online 128-bit hash
Collision N · 2n/2 negl. 274†

Herding 2
n+�
2 +2 + N · 2n/2 2n−� 288†

N — number of possible prefixes
† — for N = 1024
∗ — for message of length � = 230 blocks, and a 128-bit digest size

In all the tables, n denotes the digest size, 2� is the size of the diamond structures,
and the figures for the 128-bit hash are derived for the case where the time of the
preprocessing and the online time complexity is the same.

2 Background

General notation. Let n be a positive integer, then {0, 1}n denotes the set of
all bitstrings of length n, and {0, 1}∗ be the set of all bitstrings. If x, y are strings,
then x‖y is the concatenation of x and y. We denote by |x| the length of the

396 E. Andreeva et al.

bitstring x, but in some places we use |M | to denote the length of the message
M in blocks. For M = m1‖m2‖ . . . ‖mL we define M̃ = mL‖mL−1‖ . . . ‖m1.

Let f : {0, 1}n×{0, 1}b→ {0, 1}n be a compression function taking as inputs
bitstrings of length n and b, respectively. Unless stated explicitly we denote the
n-bit input values by h (chaining values) and the b-bit values by m (message
blocks). A function H : {0, 1}∗ → {0, 1}n built on top of some fixed compression
function f is denoted by Hf . To indicate the use of fixed initialization vectors
for some hash functions, with Hf(IV, M) we explicitly denote the result of eval-
uating Hf on inputs the message M and the initialization vector IV .

Merkle-Damg̊ard hash function. MDH f : {0, 1}∗ → {0, 1}n takes a mes-
sage M ∈ {0, 1}∗ as an input to return a digest value of length n bits. Given a
fixed initialization vector IV and a padding function padMD that appends to M
fixed bits (a single 1 bit and sufficiently many 0 bits) together with the message
length encoding of M to obtain a message multiple of the blocksize b, the MDH f

function is defined as:

1. m1, . . . , mL ← padMD(M).
2. h0 = IV .
3. For i = 1 to L compute hi = f (hi−1, mi).
4. MDH f (M) � hL.

Often in the sequel we consider chaining values obtained by hashing a given
prefix of the message. When P is a message whose size is a multiple of b bits, we
denote by f∗(P) the chaining value resulting from the Merkle-Damg̊ard iteration
of f without the padding scheme being applied.

Concatenated hash. CH of κ ≥ 2 pipes is defined as:

CH (M) = Hf1(IV1, M) ||Hf2(IV2, M) || . . . ||Hfκ(IVκ, M).

“Hash-Twice”. This is a folklore hashing mode of operation that hashes two
consecutive copies of the (padded) message. Formally, it is defined by:

HT (M) � Hf (Hf (IV, M), M).

Zipper hash. It is proposed in [11] and is proven indifferentiable from a random
oracle up to the birthday bound even if the compression functions in use, f1 and
f2, are weak (i.e., they can be inverted and collisions can be found efficiently).
The zipper hash ZH is defined as:

ZH (M) � Hf2

(
Hf1(IV, M), M̃

)
.

Throughout the paper, we assume that all Hfi are applications of the Merkle-
Damg̊ard mode of operation and thus the respective padding padMD is present
in the syntax of M , and also M̃ in the case of Zipper hash.

Tree hash. The first suggested tree hash construction dates back to [12]. Let
f : {0, 1}n × {0, 1}n → {0, 1}n be a compression function and padTH be a

Herding, Second Preimage and Trojan Message Attacks 397

padding function that appends a single 1 bit and as many 0 bits as needed to
the message M to obtain padTH(M) = m1‖m2‖ . . . ‖mL, where |mi| = n, L = 2d

for d = �log2(|M |+ 1)�. Then, the tree hash function Tree is defined as:

1. m1‖m2‖ . . . ‖mL ← padTH(M)
2. For j = 1 to 2d−1 compute h1,j = f(m2j−1, m2j)
3. For i = 2 to d:

– For j = 1 to 2d−i compute hi,j = f(hi−1,2j−1, hi−1,2j)
4. Tree(M) � f(hd,1, |M |).

3 Existing Attack Techniques

3.1 Herding Attack

The herding attack is a chosen-target preimage attack on Merkle-Damg̊ard con-
structions [9]. In the attack, an adversary commits to a public digest value hT .
After the commitment phase, the adversary is challenged with a prefix P which
she has no control over, and she is to produce a suffix S for which hT = Hf (P‖S).
Of course, hT is specifically chosen after a precomputation phase by the adver-
sary. The main idea behind this attack is to store 2� possible chaining values
D = {hi} from which the adversary knows how to reach hT . To construct this
data structure, which is in fact a tree, the adversary picks about 2n/2−�/2+1/2

single-block messages mj , and evaluates f(hi, mj) for all i and j. Due to the
large number of values, it is expected that collisions occur, and it is expected
that the adversary knows for all 2� values of hi a corresponding message block
mα(i) such that the set

{
f
(
hi, mα(i)

)}
contains only 2�−1 distinct values. The

process is then repeated �−1 more times until a final digest value is found. These
values (and the corresponding message blocks) are called a diamond structure,
as presented in Figure 1.

In the online phase of the attack, the adversary tries at random message blocks
m∗ until f∗(P ||m∗) ∈ D. Once such a value is found, it is possible to follow the

h1

h2

h3

h4

h7

h8

mα(7)

mα(8)

mα(1)

hT

Fig. 1. A Diamond Structure

398 E. Andreeva et al.

path connecting this value to the committed hash (which is at the “root” of the
diamond) and produce the required suffix S.

The total time complexity of the attack is about 2n/2+�/2+2 offline compression
function evaluations, and 2n−� online compression function evaluations.

3.2 Collisions on Concatenated Hashes

We describe the collision attack of [8] against the concatenated hash CH with two
pipes. Starting from two fixed chaining values IV1 and IV2 in the two pipes, the
adversary first finds a 2n/2-multicollision for the first function f1. The adversary
then evaluates f2 on the 2n/2 messages of the multicollision, all yielding the same
chaining value for f1, while yielding a set of 2n/2 chaining values for f2, as shown
in figure 2. The adversary then looks for the expected collision in this set. To
construct a 2�-multicollision on the two pipes, just replay Joux’s attack using
the two-pipe collision finding algorithm described above � times.

IV1

IV2

Full collision !

Fig. 2. Joux’s attack against concatenated hashes

Joux also shows that this idea can be extended to find (multi)collisions in the
concatenation of κ hash functions. To build a collision on κ parallel pipes, the
adversary proceeds inductively: first construct a 2n/2-multicollision on the first
κ− 1 pipes and hash the 2n/2 messages in the last pipe. Then, by the birthday
bound, a collision is expected amongst the set of 2n/2 values generated in the last
pipe. This collision is present in all the previous κ − 1 pipes, and hence results
in a full collision on all the κ pipes.

The cost of building a collision on κ pipes is the cost of building the multi-
collision, plus the cost of hashing the 2n/2 messages of length (n/2)κ−1. Solving
the recurrence yields a time complexity of κ · (n

2

)κ−1 · 2 n
2 compression function

calls. More generally, the complexity of building a 2�-multicollision on κ pipes is
exactly � times the preceding expression, or � · κ · (n

2

)κ−1 · 2 n
2 .

Herding, Second Preimage and Trojan Message Attacks 399

4 Herding Attack on Concatenated Hashes

We start by showing how to adapt the herding attack to concatenated hashes.
The main idea behind the new attack is to construct multi-pipe diamonds, which
can be done on top of multicollisions. We recall that a multicollision on (κ− 1)
pipes can be used to construct a collision on κ pipes. In the same vein, we succeed
in herding κ pipes by building a κ-pipe diamond using a (κ − 1)-pipe diamond
and (κ− 1)-pipe multicollision.

Assume that the adversary succeeded in herding κ− 1 pipes. Then, she faces
the problem of herding the last pipe. Now, if the adversary tries to connect in
the κ-th pipe with a random block, she is very likely to lose the control over the
previous pipes. However, if she uses a “block” which is part of a multicollision
on the first κ − 1 pipes, she still maintains the control over the previous pipes,
while offering enough freedom for herding the last pipe.

4.1 Precomputation Phase

In the precomputation phase, the adversary starts with the (κ − 1)-diamond
which is already known. The first step is the randomization step: given the
concatenated chaining value the adversary constructs a 2n−�-multicollision on
the first κ− 1 pipes. Let the resulting chaining value be (h1, h2, . . . , hκ−1).

The second step is the actual diamond construction. The adversary picks at
random 2� values for Dκ = {hκ

i }. Then, she generates a set of further (in addition
to the preceding 2n−� multicollisions) 2n/2-multicollisions2 on the first κ−1 pipes,
starting from (h1, h2, . . . , hκ−1). For each possible message in the multicollision,
and any starting point (h1, h2, . . . , hκ−1, hκ

i), the adversary computes the new
chaining values, expecting to reach enough collisions, such that for any hκ

i , there
exists a “message” mi (i.e., a sequence of message blocks in the multicollision)
where #

{
fκ

∗ (hκ
i , mi)

}
= 2�−1. After this step, the same process is repeated.

Figure 3 depicts the process for κ = 2.
The running time is dominated by the generation of the last diamond struc-

ture. First, we need to generate 2n−�+n�
2 -multicollisions on κ − 1 pipes, which

takes (n− � + n�
2) · (κ− 1) · (n/2)κ−2 · 2n/2 compression function calls. Then, we

need to “hash” 2� values under 2
n−�+1

2 message sequences (for the last layer of
the diamond structure). While at a first glance it may seem that we need a very
long time for each message sequence, it can be done efficiently if we take into
consideration the fact that there is no need to recompute all the chaining values
only if the last block was changed. Hence, the actual time required to construct
the diamond structure is 2 · 2 n+�

2 +2 (twice the time needed for a classic diamond
structure). In total, the preprocessing takes

2 We note that fewer multicollisions are needed (herding the first layers takes less
messages). However, for the ease of description we shall assume all layers of the
diamond structure require the same number of multicollisions. Hence, the total of
2n�/2-multicollisions, can be reduced to 2�(n+1−�)/2-multicollisions.

400 E. Andreeva et al.(
n− � +

n�

2

)
· (κ− 1) · (n/2)κ−2 · 2n/2 + (2 · κ− 1) · 2 n+�

2 +2.

One may ask what is the reason for the randomization step. As demonstrated
in the online phase of the attack, the need arises from the fact that herding the
values in the first κ − 1 pipes fixes the value in the κ-th pipe. Hence, we need
enough“freedom”to randomize this chaining value, without affecting the already
solved pipes.

� blocks n − � blocks � · n/2 blocks

2�

2�

h1

h2

Fig. 3. Diamond Structure on two pipes

4.2 Online Phase

Given a precomputed κ-diamond structure, it is possible to apply the herding
attack to κ concatenated hash functions. The adversary is given a prefix P , and
tries various message blocks m∗ until f1

∗(P ||m∗) gives one of the 2� values in
D1 of the diamond structure on the first pipe. Then, the adversary traverses the
first diamond structure to its root, finding the first part of the suffix S1 (so far
all computations are done in the first pipe). At this point, the adversary starts
computing f2

∗(P ||m∗||S1), and for all 2n−� paths of the multicollision in the
randomization path, until one of them hits one of the 2� values in D2. At this
point, the adversary can use the paths inside this second diamond (built upon
a multicollision). This process can start again (with a randomization part, and
traversing the diamond structure) until all κ pipes were herded correctly. We
outline the process for κ = 2 in Figure 4.

We note that once a pipe is herded, there is no longer a need to compute it (as
the multicollision predicts its value), and then it is possible to start analyzing
the next pipe. In each new pipe, we need to evaluate 2n−� “messages” (for all
pipes but the first one, these messages are multicollisions on the previous pipes),
each takes on average (in an efficient implementation) two compression function
calls (besides the first layer). Hence, the online time complexity of the attack is

2n−� · [1 + 2 · (κ− 1)] = (2κ− 1) · 2n−�

compression function calls.

Herding, Second Preimage and Trojan Message Attacks 401

1 block � blocks n − � blocks � · n/2 blocks

h′
1

h′
2

h1

h2

Fig. 4. The Online Phase of the Herding Attack for κ = 2

5 Herding beyond Merkle-Damg̊ard

In this section we show that the previous technique can be applied to two other
hash constructions which previously appeared to be immune to herding attacks
— the Hash Twice construction and Zipper Hash. Both attacks make use of the
two-pipe diamond structure described above.

5.1 Herding the Hash-Twice Function

It follows from the very general result of [7,13] that it is possible to build Joux-
style multicollisions efficiently on the hash-twice construction. In this section,
we extend their results by describing a herding attack against the hash-twice
construction. This attack can then be adapted into a full second-preimage attack,
following the ideas of [1,10] (as described in Section 6).

Because each message block enters the hashing process twice, choosing a mes-
sage block in the second pass may change not only the chaining value going out
but also the chaining value going into the second pass. Choices of the message
intended to affect the second pass must thus be done in a way that does not
randomize the result of the first pass.

Apart from this technicality, the attack is essentially the same as the one
against the concatenation of two hash functions, as shown in figure 5. The ad-
versary commits to h3, and is then being challenged with an unknown prefix P .
Hashing the prefix yields a chaining value hc. Starting from hc, she chooses a
message block m∗ connecting to a chaining value he which is one of the starting
points of the first diamond, then a path S1 inside it yields the chaining value h1
on the first pass, from which we traverse a precomputed 2n−�+n�/2-multicollision,
producing h2 as the input chaining value to the second pass. Starting from h2,
the challenge prefix P leads to a random chaining value hc′ in the second pass.
Then, the second pass can be herded without losing control of the chaining value
in the first pipe thanks to the diamond built on top of a multicollision. Amongst
the 2n−� messages in the multicollision following the first diamond, we expect
one to connect to the chaining value he′ in the starting points of the second

402 E. Andreeva et al.

IV

hc

he

h1

h2
hc′

he′

h3

r

challenge
1 �

1st diamond
n − � � · n

2

2nd diamond

Fig. 5. Herding the Hash-Twice construction

diamond. We can then follow a path inside the second diamond, which is also a
path in the multicollision of the first pipe, that yields the chaining value at the
root of the second diamond, namely h3.

The offline complexity of the attack is the time required for generating a
diamond structure of 2� starting points (which takes 2(n+�)/2+2), finding (n −
�) + n · �/2 collisions (which takes [(n − �) + n · �/2] · 2n/2), and constructing
a two-pipe diamond (which takes 2 · 2(n+�)/2+2). The total offline complexity is
therefore 3 · 2(n+�)/2+2.

The online complexity is composed of finding two connecting “messages”. The
first search takes 2n−�, while the second takes 2 · 2n−�, or a total of 3 · 2n−�.

Attacks on Hash-Thrice. It is relatively clear that the attack can be gen-
eralized to the case where the message is hashed three or more times (by using
multicollisions on 3 pipes, or the respective number of passes). The complexity
of the attack becomes polynomially higher, though.

5.2 Herding the Zipper Hash Function

It is also possible to mount a modified herding attack against the zipper-hash.
The regular herding attack is not feasible, because the last message block going
into the compression function is the first message block of the challenge. There-
fore, an adversary who is capable of doing the herding attack can be used to
invert the compression function. We therefore consider a variant of the herding
attack where the challenge is placed at the end: the adversary commits to a hash
value hT , then she is challenged with a suffix S, and has to produce a prefix P
such that ZH (P ||S) = hT .

Herding, Second Preimage and Trojan Message Attacks 403

IV

hT

he

h1

hm

� · n
2 n − � Challenge S

Fig. 6. Herding the Zipper Hash

The attack is relatively similar to the hash-twice case. The offline part is as
follows:

1. Starting from the IV , build a 2n�/2+n−�-multicollision that yields a chaining
value h1.

2. Build a diamond structure on top of the reversed multicollision (i.e., where
the order of colliding messages in the multicollision is reversed). The chaining
value at the root of the second diamond is hT .

3. Commit to hT .

And the online part:

1. Given a challenge suffix S, compute the chaining value after the two copies
of the challenge: hm = f2

∗
(
f1

∗ (h1, S) , S̃
)
.

2. From hm, find a connecting path in the part of (reversed) multicollision that
is just before the diamond (in the second run) yielding a chaining value
he ∈ D1 of the diamond structure. Then find a path inside the (reversed)
diamond structure towards the committed hash hT .

We note that the fact that two different hash functions f1 and f2 are used in the
two passes has no impact on our results, as the attack technique is independent
of the actual functions used. The precomputation phase takes 2 · 2(n+�)/2+2 +
(n−�+ n�

2) ·2n/2, and the online computation takes 2 ·2n−� compression function
calls.

6 From Herding to Second Preimages: Hash-Twice

If a construction is susceptible to the herding attack, then it is natural to ask
whether the second preimage attack of [1] is applicable. The general idea of this
attack is to connect the root of the diamond structure to some chaining value

404 E. Andreeva et al.

encountered during the hashing of the target message, and then connect into
the diamond structure (either from the corresponding location in the original
message or from a random prefix). This ensures that the new message has the
same length (foiling the Merkle-Damg̊ard strengthening).

In this section, we present a second preimage attack against the Hash-Twice
construction. The general strategy is to build a diamond structure, and try to
connect it to the challenge message (in the second pass). Some complications
appear, because the connection may happen anywhere, and the diamond only
works on top of a multicollision that has to be located somewhere in the first
pass. However, we can use an expandable message [10] to move the multicolli-
sion (and therefore the diamond) around. Here is a complete description of the
attack. Let us assume that the adversary is challenged with a message M of 2κ

blocks.
The offline processing is as follows:

1. Generate a Kelsey-Schneier expandable message which can take any length
between κ and 2κ +κ−1, starting from the IV yielding a chaining value ha.

2. Starting from ha, generate a multicollision of length (n− �) + � · n/2 blocks,
that yields a chaining value hb.

3. Build a diamond structure on top of the multicollision. It yields a chaining
value hx. It is used to herd the second pass.

The online phase, given a message M , is as follows (depicted in Figures 7 and 8):

1. Given hx, select at random message blocks m∗ until f(hx, m∗) equals to a
chaining value hi0 appearing in the second pass of the hashing of M . Let us
denote by m the right message block.

2. To position the end of the diamond at the i0 − 1-th block of M , instantiate
the expandable message in length of i0 − 1− n · �/2− (n− �) blocks.

3. Let hc = f∗(hb, mi0 ||mi0+1|| . . . ||m2κ). Compute the second pass on the
expandable message, until hd is reached. Now, using the freedom in the first
n− � blocks of the multicollision, find a message that sends hd to a chaining
value he occurring in the starting points of the diamond in the second pass.

4. Find a path inside the diamond in the second pass (this is also a path inside
the multicollision of the first pass). It yields the chaining value hx at the
root of the diamond in the second pipe.

5. Append the connection block m and the suffix of M to obtain the second
preimage.

Note that the message forged by assembling the right parts has the same length
as M , therefore the padding scheme act the same way on both.

The offline complexity of the attack is the mostly dominated by the need
to construct a diamond structure on two pipes, i.e., 2 · 2(n+�)/2+2. The online
time complexity is 2n−κ for finding m, and 2 · 2n−� connecting to the diamond
structure. Hence, the total online time is 2n−κ + 2n+1−�.

Herding, Second Preimage and Trojan Message Attacks 405

m

IV

H(M)

IV ha hb

hx

hi0

2k

n − � � · n/2

2k − i0

Fig. 7. Second preimage attack on Hash-Twice: first online step

i0 − (n − �) − � · n/2 − 1 n − � � · n/2 1 2k − i0

m

IV

H(M)

ha hb

hc hd

he

hx hi0

Fig. 8. Second preimage attack on Hash-Twice: online steps 2 to 5

7 Herding Tree Hashes

In this section we introduce a new method for mounting herding attacks on tree
hashes. As in the previous attacks, our method is composed of two steps: offline
computation (presented in Section 7.1) and online computation (presented in
Section 7.2).

406 E. Andreeva et al.

The main differences with the regular herding attacks is the fact that in the
case of tree hashes the adversary may suggest embedding the challenge in any
block she desires (following the precomputation step). Moreover, the adversary,
may publish in advance a great chunk of the answer to the challenge.

7.1 Precomputation Phase

In the offline precomputation phase of the herding attack, the adversary deter-
mines the position for inserting the challenge block and commits to the digest
value hT . The diamond-like structure built in this attack allows for freedom in
choosing the location of the challenge. Let the length of the padded message
(the answer to the challenge, after the embedding of it) be 2� n-bit blocks, and
assume that the compression function is f : {0, 1}n × {0, 1}n → {0, 1}n. The
details of the offline computation are as follows:

1. Determine the location for the challenge block, i.e., m3.
2. Choose some set A1 of 2�−1 arbitrary chaining values for h1,2.
3. Fix the message block m2 (alternatively fix m1, or parts of m1 and m2). For

arbitrary mj
1, and compute hj

1,1 = f(mj
1, m2). For each hi

1,2 find a value hi
1,1,

such that #A2 � {h2,1 = f(hi
1,1, h

j
1,2)} = 2�−2.

4. Fix m6, m7 and m8. For arbitrary mj
5 compute hj

2,2 = f(f(mj
5, m6),

f(m7, m8)). For each hi
2,1, find a value hi

2,2, such that #A3 � {h3,1 =
f(hi

2,1, h
j
2,2)} = 2�−3.

5. Repeat the above step (each time with a larger set of fixed values), until fixing
m2�−1+2, m2�−1+3, . . . , m2� . For m2�−1+1, find two possible values, such that
h�,1 collides for the two values in A�−1.

6. Commit to hT = f(h�,1, |M |).
The chosen points in the set A1 serve as target values for the online stage of
the computation. The goal is to compute the hash digest hT , such that it is
reachable from all points in A1. For that we reduce the size of A1 by a factor
of 2 to form A2 by means of collision search through the possible values of m1.
The same principle is followed until the root hash value is computed.

To reduce the complexity of the precomputation it is more efficient for the
adversary to fix the known message blocks from the precomputation to constants,
rather than to store the exact values needed for each collision in the tree. For a
tree of depth �, the adversary can fix all but � + 1 message blocks, leaving one
message block for the challenge, and controlling the paths in the tree through
the remaining � blocks. The adversary also can publish the fixed message blocks
in advance. However, this is not a strict requirement since these message blocks
are already under the control of the adversary.

The time complexity of the precomputation with 2�−1 starting points is about
2·2 n+(�−1)+1

2 for finding the first layer of collisions. This follows from the fact that
we need to try about 2

n−(�−1)+1
2 possible message blocks for m1 (or its equivalent)

to find collisions between any pair in the target set A1, and we need to perform

Herding, Second Preimage and Trojan Message Attacks 407

2 compression function calls to evaluate h2,1. For the collisions on the second
level 3 · 2 n+(�−1)−1+1

2 + 1 compression function calls are needed (the last term is
due to the computation of f(m7, m8) which can be done once). The third level
requires 4 · 2 n+(�−1)−2+1

2 + 4 compression function calls. Hence, in total we have

�−1∑
j=1

[
(j+1) · 2 n+�−j+1

2 + 2j+1−(j+2)
]
≤
⎛⎝�−1∑

j=1

(j + 1) · 2−j/2

⎞⎠·2 n+�+1
2 +2�+1− �2

2

The sum in the right-hand side admits 1−2
√

2
2
√

2−3
≤ 10.66 as a limit when � goes

to infinity, which yields an approximate offline complexity of 15.08 · 2 n+�
2 com-

pression function calls. The space complexity here is 2� − 1 and is determined
by the amount of memory blocks that are required for the storage of the target
points in A1 and the precomputed values for the non-fixed message blocks (in
this example chosen to be m∗

1, m
∗
5, m

∗
9, . . .).

7.2 Online Phase

Here the adversary obtains the challenge P , and has to:

1. Find m∗
4, such that f(P, m∗

4) = h1,2 where h1,2 ∈ A1. Note that h1,2 fixes
the rest of the message blocks m∗

1, m
∗
5, m

∗
9, . . . , m

∗
2�−1+1.

2. Retrieve the stored value for m∗
1 for which f(f(m∗

1, m2), h2,1) ∈ A2. Trac-
ing the correct intermediate chaining values, arrive to the correct value for
m∗

2�−1+1 which leads to h�,1 and hT .
3. Output m∗

1, m2, P, m∗
4, m

∗
5, m6, m7, m8, m

∗
9, m10, . . . , m� as the answer.

The workload in the online phase of the computation reflects the cost of linking
to a point contained in the set A1. Approximately 2n−(�−1) compression function
calls are required to link correctly to one of the 2(�−1) points in A1.

7.3 Variants and Applications of the Herding Attack on Tree Hash
Functions

Precomputed challenge messages. If there exists a limited set of possible
challenges, it is possible to precompute the points in A1. This allows for a very
efficient connection in the online stage, however, at the cost of losing flexibility–
only the precomputed message blocks can be “herded” to hT .

Herding sequences of adjacent message blocks. The herding attack also
allows for inserting sequences (instead of a single block) of adjacent challenge
blocks. In this case the set of target chaining values A1 has to be embedded
deeper in the tree structure. This results in larger online complexity due to the
evaluation of additional nodes on the path to the target linking set A1.

Herding both sides of the hash tree. The diamond-like structure used for
herding trees can accommodate the insertion of a challenge message blocks on

408 E. Andreeva et al.

both sides of the hash tree due to symmetry of the structure. It is thus no more
expensive to construct a diamond structure that allows 2�−1 choices on both
sides of the root. This means that an adversary can either herd one message
block on the left half of the message, and another on the right, or satisfying two
challenges simultaneously with the same diamond structure.

Applicability. We note that the proposed herding attack is applicable to other
variants of the tree hash function. Even if the employed compression functions
in the tree are distinct (e.g., as considered in MD6 [15]), it is still possible to
apply the attack, because an adversary knows (and controls) the location of the
challenges.3 The attack also works irrespective of the known random XOR masks
(e.g., tree constructions of the XOR tree type [2,16]) applied on the chaining
values at each level.

8 Long-Message Second Preimages in Tree Hashes

Tree hashes that apply the same compression function to each message block (i.e.,
the only difference between f(m2i−1, m2i) and f(m2j−1, m2j) is the position of
the resulting node in the tree) are vulnerable to a long-message second preimage
attack which changes at most two blocks of the message.

We know that h1,j = f(m2j−1, m2j) for j = 1 to L/2 for a message M of
length L = 2κ blocks. Then given the target message M , there are 2κ−1 chaining
values h1,j that can be targeted. If the adversary is able to invert even one of
these chaining values, i.e., to produce (m′, m′′) such that f(m′, m′′) = h1,j for
some 1 ≤ j ≤ 2κ−1, then he has successfully produced a second preimage M ′.
Note, however that (m′, m′′) shall differ than the corresponding pair of message
blocks in the original target message M . Thus, a long-message second preimage
attack on message of length 2κ requires about 2n−κ+1 trial inversions for f(·).

More precisely, the adversary just tries message pairs (m′, m′′), until f(m′, m′′)
= h1,j for some 1 ≤ j ≤ 2κ−1. Then, the adversary replaces (m2j−1||m2j) with
m′||m′ without affecting the computed hash value for M . Note that the number
of modified message blocks is only two. This result also applies to other par-
allel modes where the exact position has no effect on the way the blocks are
compressed.

Furthermore, it is also possible to model the inversion of f as a task for a time-
memory-data attack [4]. The h1,j values are the multiple targets, which compose
D = 2κ−1 data points. Using the time-memory-data curve of the attack from [4],
it is possible to have an inversion attack which satisfy the relation N2 = TM2D2,
where N is the size of the output space of f , T is the online computation,
and M is the number of memory blocks used to store the tables of the attack.
As N = 2n, we obtain that the curve for this attack is 22(n−κ+1) = TM2

(with preprocessing of 2n−κ+1). We note that the trade-off curve can be used

3 Still, note that the herding attack on MD6 has increased offline complexity (com-
pared to our estimates) because of its large internal state and subsequent truncation
in the final output transformation.

Herding, Second Preimage and Trojan Message Attacks 409

as long as M < N, T < N, and T ≥ D2 (see [3] for more details about the
last constraint). Thus, for κ < n/3, it is possible to choose T = M , and obtain
the curve T = M = 22(n−κ+1)/3. For n = 128 with κ = 30, one can apply the
time-memory-data tradeoff attack using 299 pre-processing time and 266 memory
blocks, and find a second preimage in 266 online computation.

The described long message second preimage attack on trees applies to not
only strengthened Merkle trees, but also to XOR-Trees [2] and optimized variants
of these hash functions [16].

9 New Trojan Message Attacks on Merkle-Damg̊ard
Hash Functions

“Do not trust the horse, Trojans. Whatever it is, I fear the Greeks
even when they bring gifts” (Virgil’s Aeneid, Book 2, 19 BC)

In this section, we introduce a new generic attack on many hash function con-
structions, called the Trojan Message attack. A Trojan message is a string S
which is produced offline by an attacker, and is then provided to a victim. The
victim then selects some prefix P from a constrained set of choices, and produces
the message P ||S. However, due to the way S was chosen, the attacker is now
able to find a second preimage for P ||S.

Given a Merkle-Damg̊ard hash for which collisions may be found, Trojan
messages may be produced. In general, the Trojan message requires at least one
message input block, and one collision search, per possible value of P . If there
are 1024 possible values of P , an attacker may produce a 1024-block Trojan
message, requiring 1024 collision searches.

One can imagine a Trojan message attack being practical against applications
which use MD5, and which permit an attacker to provide some victim with ”boil-
erplate” text for the end of his document, while imposing a relatively constrained
set of choice for his part of the document.

Against Merkle-Damg̊ard hashes, Trojan message attacks take two forms:

1. If only straightforward collisions of the compression function are possible,
second preimages for the full message keep the victim’s choice of P , but
introduce a limited change in S. That is, the attacker finds S′ 	= S such that
H(P ||S) = H(P ||S′).

2. If collisions of the compression function starting from different chaining val-
ues are possible, second preimages for the full message give the attacker a
choice of P , and leave S mostly unchanged. That is, the attacker finds P ′

and S′ such that H(P ||S) = H(P ′ ||S′).

Let P = {P1, . . . , PN} be a set of N known prefix messages and hi
0 be the

intermediate chaining value resulting from the computation of f∗(Pi). Note,
that without loss of generality, we can assume that all the prefixes have the
same length (otherwise, we just consider padded versions). Therefore, we safely
disregard strengthening and padding issues.

410 E. Andreeva et al.

9.1 The Collision Trojan Attack

The collision variant of the trojan message attack makes use of a collision finding
algorithm IndenticalPrefixCollision which takes a chaining value as param-
eter and produces a pair of messages colliding from this chaining value. The
attack proceeds as follows:

1. A computes N colliding message pairs (Si, Ti) using the algorithm of figure 9.
2. A sends B a suffix message S = S1 || . . . ||SN .
3. B commits to h = Hf (Pi ||S) where Pi is in P .
4. A finds out Pi through exhaustive search amongst the N possible choices

and outputs:
M ′ = Pi ||S1 || . . . ||Ti || . . . ||SN

We have that Hf(M ′) = h. The hashing of Pi ||S and Pi ||S′ differs only when
Ti replaces Si, but because these two blocks collide, both hash processes do not
diverge.

The only non-trivial part of the attack for A is the first step where A pre-
computes N collisions for each prefix from the set P (in time N · 2n/2), and
evaluates the compression function N2 times. If finding a collision for the hash
function is easy, e.g., like the legacy hash function MD5 [14] the attack can be
even practical. It has recently been shown that finding a collision in MD5 takes
about 216 evaluations of the compression function [17]. For instance, one can
forge in a matter of seconds a suffix S of 46720 bytes permitting to find second
preimages for MD5 if the prefix set P is the set of the days of the year.

h1
0 h1

1 h1
2 h1

3 h1
4

h2
0 h2

1 h2
2 h2

3 h2
4

h3
0 h3

1 h3
2 h3

3 h3
4

h4
0 h4

1 h4
2 h4

3 h4
4

T1

S1

T2

S2

T3

S3

T4

S4

S2 S3 S4

S1 S3 S4

S1 S2 S4

S1 S2 S3

for i = 1 to N do
(Si, Ti) ← IndenticalPrefixCollision

`
hi

i−1

´
for j = 1 to N do

hj
i ← f

`
hj

i−1, Si

´
end for

end for

Fig. 9. Trojan Message Attack, Collision Variant

Herding, Second Preimage and Trojan Message Attacks 411

9.2 The Herding Trojan Attack

The herding variant of the trojan message attack is stronger, and allows for more
freedom for the attacker. In exchange, the preprocessing and the online running
times are larger.

Let K denote the length of all possible prefixes in P . We can extend K to be as
large as we wish. The herding variant of the trojan message attack makes use of
a different, more sophisticated ”chosen-prefix” collision finding algorithm Cho-
senPrefixCollision(h1, h2) that returns the messages m1 and m2, such that
f(h1, m1) = f(h2, m2). In some specific cases this collision is harder to find (for
instance in MD5, such collision takes 241 compression function evaluations [17]).

Another difference between this variant and the previous one, is that in this
variant, the adversary is challenged by a second prefix P ′, not controlled by him,
which he has to herd to the same value as Hf (Pi ||S). The attack proceeds as
follows:

1. A computes a diamond structure with 2� entry points, denoted by D1 = {hi},
converging to the hash value hD

0 , with the constraint that � < K − 2.
2. A generates N colliding message pairs using the algorithm of figure 10.
3. A sends B a suffix message S = S1 || . . . ||SN .
4. B commits to h = Hf (Pi ||S) where Pi ∈ P .
5. A is challenged with an arbitrary prefix P ′ of size at most K − �− 1 blocks,

not necessarily in the known prefix set.
6. A finds (by random trials) a connecting message C of size K−�−|P ′| blocks

such that hi0 = f∗(P ′ ||C) ∈ D1.
7. A forges a new prefix Q = P ′ ||C ||mD

i0
, which is such that f∗(Q) = hD

0 .
8. As in the collision version, A outputs Q ||S′, where S′ = S1 || . . . ||Ti ||

. . . ||SN .

As in the collision variant, we have that Hf (Q ||S′) = h. The reasoning to
establish this fact is essentially the same.

The workload of the attack is step one whereA constructs a diamond structure
with 2� starting points and N collisions for each prefix from the set P . Thus, the
precomputation complexity is of order 2n/2+�/2+2 + N · 2n/2. The online cost is
the connection step for computing the prefix P ′ and is of order 2n−�.

9.3 Applications of the Trojan Attacks

The trojan attack can is highly useful in instances with a set of predictable
prefixes, and where the attacker is able to suggest a suffix to introduce to the
message. Such a case is the X.509 certificate, where the adversary may generate
a second certificate (with the same identification) but with different public keys.
Another possible application is a time stamping service, which signs MDH (ts, M)
where ts is a time stamp and M is the document.

Trojan Attacks on Tree Hashes. The processing of the prefix in tree hashes
is independent of the suffix processing. Thus, A computes independent collisions
for each message input node. In fact, it is only enough that A produces a single

412 E. Andreeva et al.

h1
0 h1

1 h1
2 h1

3 h1
4

h2
0 h2

1 h2
2 h2

3 h2
4

h3
0 h3

1 h3
2 h3

3 h3
4

h4
0 h4

1 h4
2 h4

3 h4
4

hD
0 hD

1 hD
2 hD

3 hD
4

S1 S2 S3 S4

S1 S2 S3 S4

S1 S2 S3 S4

S1 S2 S3 S4

S1 S2 S3 S4

x1

xi0

x2�

mD
i0

for i = 1 to N do
(Si, Ti) ← ChosenPrefixCollision

`
hi

i−1, h
D
i−1

´
for j = 1 to N do

hi
j ← f

`
hi−1

j , Si

´
end for
hD

i ← f
`
hD

i−1, Si

´
end for

Fig. 10. Trojan Message Attack, Herding Variant

colliding suffix block f(Si) = f(Ti) in the first level of the tree evaluation.
Then, for all Pi ∈ P , A can compute Tree(Pi‖S) = Tree(Pi‖S′) where S =
S1‖ . . . ‖Si‖ . . . ‖SL, S′ = S1‖ . . . ‖Ti‖ . . . ‖SL and L may be different than |P|.
The latter is true, because as opposed to Merkle-Damg̊ard, here the length of the
suffix is independent of the size of the prefix set P . This completes the collision
variant of the trojan message attack on tree hashes.

The herding trojan message attack on tree hashes could be applied as follows.
A executes first the herding attack on tree hashes. Instead of selecting arbitrary
chosen target set, here A fixes the target set T to consist of all intermediate
hash values of the known prefixes Pi ∈ P . Then, as in the collision tree variant
of the attack, A computes S′ by creating collision(s) on the top tree node(s)
(distinct from the target set). Now, challenged on P ′, A finds P ′

s, such that
f(P ′‖P ′

s) ∈ T where |P ′‖P ′
s| = |Pi| and |P ′

s| is at least log2(2
n/|P|). Then

Tree(P ′‖P ′
s‖S′) = Tree(Pi‖S), which concludes the herding variant of the attack.

10 Summary and Conclusions

Our results enhance the understanding of the multi-pipe and multi-pass modes
of iteration, such as concatenated hashes, zipper hash, hash-twice, and tree hash

Herding, Second Preimage and Trojan Message Attacks 413

functions. The presented attacks reconfirm the knowledge that there is only a
limited gain by concatenating the output of hash functions when it comes to
security, and that the hash twice construction is not secure.

Moreover, we show that all of the investigated constructions suffer the herding
attack. An interesting result is that domain separation (equivalent to distinct in-
ternal compression function evaluation, e.g., by means of a counter separation)
does not protect any of the existing hash functions against herding attacks. And
while domain separation often does offer protection against second preimage at-
tacks, it appears to be unable to also mitigate herding attacks. An open question
remains to exhibit either a generic herding protective mechanism or a mode of
operation optimally secure against standard and herding attacks.

Acknowledgments

We would like to thank Lily Chen, Barbara Guttman and the anonymous referees
for their useful feedback. This work was supported in part by the IAP Programme
P6/26 BCRYPT of the Belgian State (Belgian Science Policy), and in part by
the European Commission through the ICT programme under contract ICT-
2007-216676 ECRYPT II. The first author is supported by a Ph.D. Fellowship
from the Flemish Research Foundation (FWO–Vlaanderen). The third author
was supported by the France Telecom Chaire.

References

1. Andreeva, E., Bouillaguet, C., Fouque, P.A., Hoch, J.J., Kelsey, J., Shamir, A.,
Zimmer, S.: Second Preimage Attacks on Dithered Hash Functions. In: Smart,
N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 270–288. Springer, Heidelberg
(2008)

2. Bellare, M., Rogaway, P.: Collision-Resistant Hashing: Towards Making UOWHFs
Practical. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484.
Springer, Heidelberg (1997)

3. Biryukov, A., Mukhopadhyay, S., Sarkar, P.: Improved time-memory trade-offs with
multiple data. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp.
110–127. Springer, Heidelberg (2006)

4. Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000)

5. Coppersmith, D.: Another birthday attack. In: Williams, H.C. (ed.) CRYPTO 1985.
LNCS, vol. 218, pp. 14–17. Springer, Heidelberg (1986)

6. Dean, R.D.: Formal Aspects of Mobile Code Security. PhD thesis, Princeton Uni-
versity (January 1999)

7. Hoch, J.J., Shamir, A.: Breaking the ice - finding multicollisions in iterated con-
catenated and expanded (ice) hash functions. In: Robshaw, M.J.B. (ed.) FSE 2006.
LNCS, vol. 4047, pp. 179–194. Springer, Heidelberg (2006)

8. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

414 E. Andreeva et al.

9. Kelsey, J., Kohno, T.: Herding Hash Functions and the Nostradamus Attack. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer,
Heidelberg (2006)

10. Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much Less
than 2n Work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

11. Liskov, M.: Constructing an Ideal Hash Function from Weak Ideal Compression
Functions. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp.
358–375. Springer, Heidelberg (2007)

12. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

13. Nandi, M., Stinson, D.R.: Multicollision attacks on some generalized sequential
hash functions. IEEE Transactions on Information Theory 53(2), 759–767 (2007)

14. Rivest, R.L.: The MD5 message-digest algorithm. RFC1321 (April 1992)
15. Rivest, R.L., Agre, B., Bailey, D.V., Crutchfield, C., Dodis, Y., Fleming, K.E.,

Khan, A., Krishnamurthy, J., Lin, Y., Reyzin, L., Shen, E., Sukha, J., Sutherland,
D., Tromer, E., Yin, Y.L.: The md6 hash function, a proposal to nist for sha-3
(2008)

16. Sarkar, P.: Construction of universal one-way hash functions: Tree hashing revis-
ited. Discrete Applied Mathematics 155(16), 2174–2180 (2007)

17. Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D.A., de
Weger, B.: Short chosen-prefix collisions for md5 and the creation of a rogue ca
certificate. Cryptology ePrint Archive, Report 2009/111 (2009),
http://eprint.iacr.org/

http://eprint.iacr.org/

Cryptanalysis of Dynamic SHA(2)

Jean-Philippe Aumasson1,�, Orr Dunkelman2,��, Sebastiaan Indesteege3,4,���,
and Bart Preneel3,4

1 FHNW, Windisch, Switzerland
2 École Normale Supérieure, INRIA, CNRS, Paris, France

3 Department of Electrical Engineering ESAT/COSIC,
Katholieke Universiteit Leuven, Belgium

4 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium

Abstract. In this paper, we analyze the hash functions Dynamic SHA
and Dynamic SHA2, which have been selected as first round candidates
in the NIST hash function competition. These hash functions rely heav-
ily on data-dependent rotations, similar to certain block ciphers, e.g.,
RC5. Our analysis suggests that in the case of hash functions, where the
attacker has more control over the rotations, this approach is less favor-
able than in block ciphers. We present practical, or close to practical,
collision attacks on both Dynamic SHA and Dynamic SHA2. Moreover,
we present a preimage attack on Dynamic SHA that is faster than ex-
haustive search.

Keywords: Dynamic SHA, Dynamic SHA2, SHA-3 candidate, hash
function, collision attack.

1 Introduction

New generic cryptanalytic techniques for hash functions [1, 2] and the recent
results on MD5 and SHA-1 [3,4,5], along with the fact that the SHA-2 family of
hash functions was designed with a similar structure, have led to the initiation
of the NIST hash function competition [6], a public competition to develop a
new hash standard, which will be called SHA-3.

The competition has sparked a great deal of submissions: 64 new hash func-
tion proposals were submitted to the competition, of which 51 were accepted as
meeting the submission criteria for the first round. Among the 51 candidates,
Dynamic SHA and Dynamic SHA2 stand out as a combination of the SHA family
design with data-dependent rotations.

The concept of data-dependent rotations has been explored for block ciphers in
several constructions, most notably in the RC5 and RC6 block ciphers [7,8]. The
security of such block ciphers has been challenged many times, and a majority
of attacks is based on guessing the distances of the rotations. In cryptanalysis of

� Supported by the Swiss National Science Foundation, project no. 113329.
�� This author was supported by the France Telecom chaire.

��� F.W.O. Research Assistant, Fund for Scientific Research — Flanders (Belgium).

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 415–432, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

416 J.-P. Aumasson et al.

hash functions, however, the internal state is known. The attacker even has con-
trol over (parts of) the internal state, including rotations, though sometimes this
control is only indirect. For example, Mendel et al. [9] exploited data-dependent
rotations to find collisions for the hash function of Shin et al. [10]. Our attacks
on Dynamic SHA and Dynamic SHA2 also exploit data-dependent rotations, to
find (second) preimages and collisions.

2 Brief Description of Dynamic SHA and Dynamic SHA2

Dynamic SHA and Dynamic SHA2 use similar building blocks, but have different
compression functions. This section gives a brief description of these algorithms.

Dynamic SHA and Dynamic SHA2 follow a classical Merkle-Damg̊ard con-
struction, based on a compression function that maps an 8-word chaining value
and a 16-word message to a new 8-word chaining value. The 256-bit versions use
32-bit words, and the 512-bit versions use 64-bit words. We focus on the 256-bit
versions, also called Dynamic SHA-256 and Dynamic SHA2-256. See [11,12] for
details on the 512-bit versions, Dynamic SHA-512 and Dynamic SHA2-512. The
following presents a bottom-up description of the compression function, thus
starting with its building blocks.

The symbol ⊕ stands for exclusive OR (XOR), ∧ for logical AND, ∨ for logical
OR, and + for integer addition. Numbers in hexadecimal basis are written in
typewriter font (e.g., FF = 255). We count bit indices starting from zero at the
least significant bit (LSB). Thus, the first bit of a word w is written as w0,
and more generally we use the notation wi for the bit i of the word w. The
most significant bit (MSB) of w is thus w31 for Dynamic SHA-256, and w63

for Dynamic SHA-512. Note that the i-th bit of a word corresponds to the bit
number i− 1, since we start counting from zero.

2.1 Building Blocks

The function G takes as input three words x1, x2, x3 and an integer t∈{0, 1, 2, 3},
and returns one word, computed as follows:

Gt(x1, x2, x3) =

⎧⎪⎪⎨⎪⎪⎩
x1 ⊕ x2 ⊕ x3 if t = 0
(x1 ∧ x2)⊕ x3 if t = 1
(x1 ∧ x2)⊕ x3 ⊕ ¬x1 if t = 2
(x1 ∧ x2)⊕ x3 ⊕ ¬x2 if t = 3

.

Note that this definition is simplified, but equivalent to the original in [11, 12].
The function R takes as input eight words x1, . . . , x8 and an integer t, and

returns one word computed as follows:

R(x1, . . . , x8, t) = (((((((x1 ⊕ x2) + x3)⊕ x4) + x5)⊕ x6) + x7)⊕ x8) ≫ t .

The function R1 takes as input eight words x1, . . . , x8 and returns one word
computed as follows (in the 256-bit versions):

Cryptanalysis of Dynamic SHA(2) 417

t0 ← (((((x1 + x2)⊕ x3) + x4)⊕ x5) + x6)⊕ x7

t1 ← ((t0 17)⊕ t0) ∧ 0001FFFF
t2 ← ((t1 10)⊕ t1) ∧ 000003FF
t3 ← ((t2 5)⊕ t2) ∧ 0000001F
return x8 ≫ t3

Finally, the COMP function takes as input eight words a, . . . , h representing the
internal state, eight message words w0, . . . , w7, or w8, . . . , w15, and an integer t.
COMP updates the internal state as follows (in the 256-bit versions):

T ← R(a, . . . , h, wt mod 32) T ← R(a, . . . , h, (wt 15) mod 32)
h← g h← g + wt+7
g ← f ≫ ((wt 5) mod 32) g ← f ≫ ((wt 20) mod 32)
f ← e + wt+3 f ← e + wt+6
e← d ≫ ((wt 10) mod 32) e← d ≫ ((wt 25) mod 32)
d← Gwt�30(a, b, c) + wt+2 d← Gt mod 4(a, b, c) + wt+5
c← b c← b + wt

b← a b← a
a← T + wt+1 a← T + wt+4

2.2 Compression Functions

Given a chaining value h0, . . . , h7 and a message block w0, . . . , w15, the compres-
sion function of Dynamic SHA (Dynamic SHA2, respectively) produces a new
chaining value, as described in Algorithm 1 (Algorithm 2, resp.).

The compression function of Dynamic SHA is composed of an initialization,
an iterative part of 48 rounds, and a feedforward of the initial chaining value. It
uses three constants TT0, TT1, TT2.

The compression function of Dynamic SHA2 is composed of an initialization
followed by three iterative parts, and finally by a feedforward. Note that, when
calling COMP with the message words w8, . . . , w15 and an integer t, wt stands
for w8, wt+1 stands for w9, etc. Dynamic SHA2 surprisingly enough, uses no
constants.

3 Collision Attack on Dynamic SHA

This section describes a practical collision attack on Dynamic SHA. It builds
on a 9-step local collision that exploits an important differential property of
the function R1, which we introduce first. The same local collision pattern is
repeated three times to find collisions for the entire compression function. Fur-
thermore, these three instances of the local collision pattern can be decoupled,
which drastically reduces the attack complexity. We present the attack on Dy-
namic SHA-256 here. We could adapt it to Dynamic SHA-512 with only minimal
changes, as detailed in Appendix C.

418 J.-P. Aumasson et al.

Algorithm 1. Compression function of Dynamic SHA

Initialization

a = h0 b = h1 c = h2 d = h3 e = h4 f = h5 g = h6 h = h7

Iterative part

for t = 0, 1 . . . , 47

T ← R1(a, b, c, d, e, f, g, h)

U ← G(a, b, c, t mod 4) + wt mod 16 + TTt�4

(a, b, c, d, e, f, g, h) ← (T, a, b, U, d, e, f, g)

Feedforward

h0 ← h0 + a h1 ← h1 + b h2 ← h2 + c h3 ← h3 + d

h4 ← h4 + e h5 ← h5 + f h6 ← h6 + g h7 ← h7 + h

Algorithm 2. Compression function of Dynamic SHA2

Initialization

a = h0 b = h1 c = h2 d = h3 e = h4 f = h5 g = h6 h = h7

First iterative part

COMP (a, b, c, d, e, f, g, h, w0, w1, . . . , w7, 0)

COMP (a, b, c, d, e, f, g, h, w8, w9, . . . , w15, 0)

Second iterative part

for t = 0, 1 . . . , 8

T ← R1(a, b, c, d, e, f, g, h)

(a, b, c, d, e, f, g, h) ← (T, a, b, c, d, e, f, g)

Third iterative part

for t = 1, 2 . . . , 7

COMP (a, b, c, d, e, f, g, h, w0, w1, . . . , w7, t)

COMP (a, b, c, d, e, f, g, h, w8, w9, . . . , w15, t)

Feedforward

h0 ← h0 + a h1 ← h1 + b h2 ← h2 + c h3 ← h3 + d

h4 ← h4 + e h5 ← h5 + f h6 ← h6 + g h7 ← h7 + h

Cryptanalysis of Dynamic SHA(2) 419

3.1 A Differential Property of the Function R1

To overcome the obstacle of data-dependent rotation, our attack ensures that no
difference occurs in any of the data-dependent rotation amounts. This section
clarifies how to achieve this.

The data-dependent rotations are located in the 8-input function R1. For
Dynamic SHA-256, consider the difference ∆ = 80004000, i.e., only bits 31
and 14 are set. Let one of the first seven inputs to the function R1 have this
difference, i.e., one of x1, . . . , x7. In the first step of R1, an intermediary word
t0 is computed as follows:

t0 ← ((((((x1 + x2)⊕ x3) + x4)⊕ x5) + x6)⊕ x7 .

The difference in the MSB always propagates to t0. Assuming that no carry
occurs for bit 14, the intermediary t0 also has the difference ∆. If t0 has a
difference ∆, this difference is then absorbed by the rest of the function R1.
Indeed, the next step computes the intermediary word t1 as

t1 ← ((t0 17)⊕ t0) ∧ 0001FFFF .

Note that (∆ 17) ⊕ ∆ = 80000000, which is absorbed by the logical AND
operation. We note that there are other differences of Hamming weight 2 that
exhibit the same property and may be used without any change in the attack,
e.g., ∆ = 80000010.

We now estimate the probability that a single ∆-difference in one of the first
seven inputs of the function R1 is absorbed. As a ∆-difference in t0 is absorbed
with certainty, it suffices that a ∆-difference in one of the seven first inputs
propagates to t0. This happens when no carry difference occur for bit 14 in any
of the modular additions. The probability that a one-bit difference in one of the
summands in an addition does not cause a carry difference is 1/2. Thus, the
probability that a ∆-difference is absorbed by the function R1 can be estimated
to 2−k, where k is the number of modular additions the difference propagates
through. For instance, a difference in x3 activates two modular additions, so
k = 2.

However, the actual probability is higher, as the undesirable effects of a carry
difference in one modular addition can be reverted by another carry difference
in a subsequent addition. The combination of modular additions and XOR can
be represented compactly in a trellis, and a variant of the Viterbi algorithm
can be used to efficiently count the probability that a ∆-difference is passed
to t0 unchanged. Our computer aided research revealed that this is indeed an
important effect: For a difference in x3 or x4, the actual probability is 2−1.58

rather than 2−2, and for a difference in x1 or x2, the actual probability is 2−2.07

rather than 2−3. For differences in the other words, only one modular addition
is affected, so no carry differences can be canceled. Hence, in those cases, the
simple estimation is correct.

420 J.-P. Aumasson et al.

Table 1. A 9-step local collision for Dynamic SHA. The difference at step t is the
difference in the state before computing step t.

t a b c d e f g h w Pr

0 0 0 0 0 0 0 0 0 ∆ 2−1

1 0 0 0 ∆ 0 0 0 0 0 2−1.58

2 0 0 0 0 ∆ 0 0 0 0 2−1

3 0 0 0 0 0 ∆ 0 0 0 2−1

4 0 0 0 0 0 0 ∆ 0 0 1
5 0 0 0 0 0 0 0 ∆ 0 2−5

6 ∆ 0 0 0 0 0 0 0 0 2−2.07 · 2−2

7 0 ∆ 0 0 0 0 0 0 0 2−2.07 · 2−2

8 0 0 ∆ 0 0 0 0 0 ∆ 2−1.58 · 2−1

0 0 0 0 0 0 0 0

3.2 A 9-Step Local Collision

We present a simple 9-step local collision for Dynamic SHA in Table 1. A differ-
ence of ∆ = 80004000 is introduced, then, all further diffusion of this difference
is avoided. After seven more steps, the difference has rotated through the internal
state of Dynamic SHA once, and can be canceled via an appropriate difference
in the message word. The characteristic has probability 2−20.3.

In step 0, a ∆-difference is introduced via the message word. Note that the
message word itself can contain any additive difference that can cause a ∆-
difference in the state. In steps 1 to 4, the ∆-difference in one of the state
variables is absorbed by the function R1, as described in Section 3.1. Then, at
the beginning of step 5, there is a ∆-difference in the internal state word h. This
word is rotated by a data-dependent amount, and thus we can require that it is
rotated by zero bits, i.e., not rotated at all. In steps 6 and 7, the ∆-difference
should be absorbed by the G-functions. Any G-function except XOR absorbs
differences in its first two inputs with probability 1/2 per bit. Also, R1 should
absorb the differences in these steps. Finally, in step 8, the difference in the state
variable c is canceled by another ∆-difference coming from the message word.

The probability that the local collision pattern is followed is estimated by
simply multiplying the probabilities of all the events discussed above. The prob-
abilities of each step are indicated in Table 1. This yields an overall probability
of 2−20.3 for the entire 9-step local collision.

3.3 The Attack

Our attack repeats the 9-step collision three times. This made possible by the
simple message schedule, which consists of a simple repetition of the 16 words
in a message block. Thus, the only message words that have a difference are w0,
which introduces the differences, and w8, which cancels them.

A straightforward attack would consist of choosing an arbitrary message block,
and applying a difference of ∆ = 80004000 to w0 and w8. As the local collision

Cryptanalysis of Dynamic SHA(2) 421

is repeated three times, the complexity of this attack would be approximately
(220.3)3 = 261. This can be improved tremendously by making the three local
collisions independent. Then, the three local collision complexities can be added
rather than multiplied.

The first two local collisions can be decoupled in a straightforward manner as
only the message words w0 to w8 influence the first local collision. Therefore, once
suitable values for these message words have been found, there is still enough
freedom remaining in the other message words. The words w0 to w8 can thus
be kept constant, while values for w9 to w15 are searched such that the second
local collision is also achieved.

Controlling Internal State Values. In each step of Dynamic SHA, the new
value of the internal state word d is found as the modular addition of a message
word and an intermediate depending on the internal state words a, b and c. Full
control over message words allows an adversary to give the internal state word d
any desired value. Indeed, it holds that

wt mod 16 = dnew −G(a, b, c, t mod 4)− TTt�4 .

Applying this to eight consecutive steps allows one to almost fully control the
final internal state. In every step, the new value of d is fixed to some desired
value. These values then shift through the internal state words a number of times,
to end up as one of the internal state words after the eighth step. However, a
complication arises with the first three steps, which ends up in the state words a,
b and c. Before a controlled value from d ends up in one of these three state words,
it is be rotated by a data-dependent amount. An obvious way to sidestep this
issue is to choose a rotation-invariant value for these three words, i.e., 00000000
or FFFFFFFF. Then, the data-dependent rotations have no influence.

Decoupling All Three Local Collisions. Our attack consists of three phases,
each dealing with one local collision. The first phase satisfies the first local col-
lision, using the message words w0 to w8. It would be possible to use message
modification techniques here to find a conforming message pair quicker, but as
the later phases of the attack dominate the overall complexity anyway, no sig-
nificant gains can be made in this way.

To satisfy the second local collision, we use the freedom in the remaining
message words. However, we do not choose the remaining message words directly,
but rather choose the internal state after step 15. We then use the words w8 to
w15 to connect to this state, using the technique outlined earlier. We fix the
values of a, b and c to zero, to make them rotation-invariant, and choose the
remaining five words arbitrarily. Note that w8 was already determined in phase 1,
so it should not be modified again, but w8 is used here to force a zero value,
which ends up in the internal state word d after step 15. This issue is solved by
shifting this condition on w8 to phase 1. Instead of arbitrarily choosing w8 there,
it is computed such that the required zero is generated. This does not change
the complexity of the first phase.

422 J.-P. Aumasson et al.

Finally, to satisfy the third local collision, we modify w7. Then, only d changes
after step seven. As the value in w8, which should force d to zero after step
eight, depends only on the internal state words a, b and c before step eight,
modifying w7 does not require a correction in w8. Thus, such modifications do
not change the fact that the first local collision pattern is followed. The values
of w9 to w15 are then updated such that the internal state after step 15 is
unchanged, and so the start of the second local collision will be unaltered. For
the same reasons as before, the change in w7 also does not affect the end of the
second local collision pattern.

Hence, we dispose of a modification algorithm that leaves the first two local
collisions unaffected, but changes the internal state values before the third local
collision randomly. This provides the required freedom to also satisfy this third
and final local collision. Hence, the overall attack complexity can be estimated
at about 221 Dynamic SHA compression function computations. Appendix A
reports on our implementation of the attack, with an example of collision.

4 Preimage Attack on Dynamic SHA

This section describes (first and second) preimage attacks on Dynamic SHA. We
first describe how to find preimages for the compression function of Dynamic
SHA, and then explain how to extend this to first and second preimage attacks.
on the Dynamic SHA hash function. We describe how to attack Dynamic SHA-
256 here, and refer to Appendix C for details on how to adapt the attack to
Dynamic SHA-512.

Conceptually, our preimage attack bears some similarity to the work on SHA-0
and SHA-1 by De Cannière and Rechberger [13], for it finds a preimage bit
slice per bit slice. If all data-dependent rotation amounts in Dynamic SHA are
assumed to be zero, then a bit of any intermediate word cannot be influenced by
any other bit of higher position. This is because, besides rotations, all operations
are either bit-wise or modular additions.

4.1 Preimage Attack on the Compression Function

Assume that the rotations in a block of Dynamic SHA are all zero. Then, all
words in Dynamic SHA can be divided into bit slices, as all computations are
now T-functions [14]. As noted above, bit i of each word can only be influenced
by bits 0 to i of other words. When bits 0 to (i − 1) of each word are known,
bit i of all words can be determined.

In a preimage attack on the Dynamic SHA compression function, the internal
state is given before step 0 and after step 47. Our attack starts by determining
the LSB of each word. To determine this bit of all of the internal state words in
every step, only the LSBs of the 16 message words need to be known. There are
216 choices for these 16 bits. Then, it can be verified whether the LSBs of the
eight internal state words after step 47 are correct. This occurs with probability
2−8, so 28 choices are expected to survive.

Cryptanalysis of Dynamic SHA(2) 423

We then proceed to the next bit slice. Keeping the choice for the LSB slice
fixed, the same procedure can be repeated. For each choice of the LSB slice again
28 choices for the second LSB are expected to survive. For Dynamic SHA-256,
this procedure is repeated until the 28 LSBs (bits 0–27) have been determined. At
that point, one of the bits of each of the 48 rotation constants can be determined,
as it does not depend on the higher bits of any word. Now, it can be verified
if the initial assumption that all rotation constants are zero indeed holds. This
corresponds to a 48-bit condition, i.e., for all rotation constants to be zero, surely
this single bit of each rotation constant has to be zero. Any choices that do not
satisfy this condition are eliminated. Then, the next bit is determined as before,
after which another bit of each rotation constant can be verified. This is repeated
until all bits have been determined.

4.2 Complexity Evaluation

The attack can be described as a simple tree search, where a tree level corre-
sponds to a bit slice, and a node represents an assignment for all bits in the
slice under consideration, and all LSB slices. To expand a node in the tree, one
guesses the 16 message bits of the next slice, and checks that the conditions on
the state words after step 47 are satisfied. As explained above, on average about
28 choices are expected to survive, i.e., the tree has a branching factor of 28.
When the 28 LSB slices are known, however, the average number of child nodes
drops by 2−48 due to the additional filtering. The cost of expanding one node is
about 216 Dynamic SHA compression function evaluations, as 216 choices have
to be investigated. The expected number of solutions is equal to the expected
number of nodes at the deepest level of the tree, which is 28·32 ·2−48·5 = 216. This
agrees with the observation that for a given input/output chaining values of the
compression function, there are expected to be 2256 message blocks that conform
to this combination. For each of these, the probability that all the rotations are
by 0 positions is 2−240, so about 216 remain.

As we aim to find just one solution, i.e., any node on the deepest level of
the tree, a depth-first search is well suited to our application. It requires only
negligible memory and can easily be parallelised. Since, for Dynamic SHA-256,
216 solutions are expected, the depth-first search needs to search only about
a fraction 2−16 of the entire tree before encountering the first solution. Due
to the large branching factor, the total number of nodes in the tree is well
approximated by the number of nodes on the widest level of the tree, which
has 28·27 = 2216 nodes for Dynamic SHA-256. The search is thus expected to
expand about 2200 nodes, each of which costs 216 Dynamic SHA-256 compression
function evaluations, resulting in a total attack complexity of 2216 Dynamic SHA-
256 compression function evaluations.

4.3 Application to the Hash Function

Our preimage attack on the compression function directly gives a second preim-
age attack on the Dynamic SHA hash function with the same complexity,

424 J.-P. Aumasson et al.

provided that there is at least one message block that does not contain any
padding in the challenge message.

For a first preimage, the padding bits limit the control an attacker has over
the message bits. It is not possible to simply copy the padding as in a second
preimage attack. Thus, we use the following approach instead. First, choose a
message length such that the last padded message block only contains 65bits of
padding, which is the minimum. Then, choose an arbitrary message for all but
the last message block. Finally, a modified version of the attack in Section 4.1 is
used to determine the last message block.

The main difference is that the last 65bits of the message block can not be
chosen by the adversary, as they are padding bits. Their contents are fixed by
the choice of the message length. However, the same approach as in Section 4.1
can still be applied, except that fewer bits can be chosen in each bit slice. For
Dynamic SHA-256, the expected number of solutions in the search tree now be-
comes 26·27 · 2−42·4 · 2−43·1 = 2−49. A solution is thus only expected to exist
with probability 2−49, thus the attack is repeated sufficiently many times with a
different message length. The number of nodes at the widest level of the tree is
26·27, and the cost for expanding a single node at this level is 214 Dynamic SHA
compression function calls. Thus, the total attack complexity becomes approxi-
mately 249 · 26·27 · 214 = 2225 Dynamic SHA compression function evaluations.

5 Collision Attack on Dynamic SHA2

To attack Dynamic SHA2, we use similar ideas as for Dynamic SHA. Specifically,
we use the control of the message to ensure that as many rotations as possible
are by the amounts that we need. Moreover, as many of the rotations amounts
are directly determined by the message, our task becomes easier. Our attack
is based on introducing a difference in the most significant bit of two message
words, w8 and w14. As a 32-bit condition is imposed on the chaining value, a two-
block collision finding technique is used, where the first block is searched until
a suitable chaining value is encountered. We describe our attack on Dynamic
SHA2-256 here. It can be adapted to Dynamic SHA2-512, as Appendix C shows.

5.1 First Iterative Part

Given an initial value a, . . . , h, the first iterative part of the compression function
of Dynamic SHA2 updates the chaining value words a, . . . , h by computing

COMP(a, b, . . . , h, w0, w1, . . . , w7) ,

Since there is no difference in the message words w0, . . . , w7 nor in the initial
value, we have no difference at this stage.

Then, Dynamic SHA2 computes

COMP(a, b, . . . , h, w8, w9, . . . , w15) .

Cryptanalysis of Dynamic SHA(2) 425

To follow our characteristic, the difference in w8 and in w14 should lead to a
difference ∆ = 80000000 in c and in f . Below, we show that, to obtain these
differences, it suffices to set w30

8 = 1 and to ensure that b equals FFFFFFFF after
the first COMP. These conditions are easily satisfied, and do not increase the
complexity of our attack.

We note that w14 is used only once in the first iterative part. Thus the differ-
ence ∆ in w14 only propagates to f , when COMP sets f ← e + w14. The word
w8, however, is used eight times, but as only the MSB has a difference, only two
of these require our attention: first, when setting c ← b + w8 (which gives the
difference ∆ in c with probability one), and second when setting

d← Gw8�30(a, b, c) + w10 .

Here, the two MSBs of w8 encode the index of the function used in G. Since we
have a difference in the MSB of w8, different functions are applied to (a, b, c). To
obtain the same output, we require that the functions G1 and G3 are used, that
is, we set the bit w30

8 = 1. The reason for this is that, when b equals FFFFFFFF,
it is ensured that the outputs of both functions are equal, as can readily be seen
from the definition of the G-functions in Section 2.1.

To summarize, a difference ∆ in w8 and w14 yields a difference ∆ in c and f
after the first iterative part. To have b = FFFFFFFF, it is sufficient to start from
a chaining values that gives at the very first COMP a T such that T + w1 =
FFFFFFFF. Such a chaining value can be reached in about 232 trials, and needs
to be precomputed only once. That is, one first needs to find a message block
leading to a chaining value that satisfies T +w1 = FFFFFFFF, before starting the
actual differential attack with a second block. Actually, by using the freedom in
w0 and w1 rather than fixing them a priori, this step can be accelerated further.
However, as the other parts of the attack dominate the overall complexity, no
significant gains can be made in this way.

5.2 Second Iterative Part

Table 2 describes our differential characteristic for the second iterative part of
Dynamic SHA2. Note that no message word enters this part. A set of conditions
that ensure that this characteristic is followed, is relatively simple. Indeed, except
when t = 2 and t = 5, the two differences ∆ vanish in the first step of the
computation of R1, namely when computing

(((((a + b)⊕ c) + d)⊕ e) + f)⊕ g .

Therefore, particular conditions are only required for t = 2 and t = 5.
When t = 2, the difference in e gives a difference of 16 in the rotation amounts,

and so the function R1 returns h ≫ r and (h ⊕ ∆) ≫ (r + 16 mod 32), re-
spectively. In order to obtain, as required by our differential characteristic, the
relation

(h ≫ r)⊕∆ = (h⊕∆) ≫ (r + 16 mod 32) ,

426 J.-P. Aumasson et al.

Table 2. Differential characteristic for the second iterative part of Dynamic SHA2.
The difference at step t is the difference in the state before computing step t.

t a b c d e f g h

0 0 0 ∆ 0 0 ∆ 0 0
1 0 0 0 ∆ 0 0 ∆ 0
2 0 0 0 0 ∆ 0 0 ∆
3 ∆ 0 0 0 0 ∆ 0 0
4 0 ∆ 0 0 0 0 ∆ 0
5 0 0 ∆ 0 0 0 0 ∆
6 ∆ 0 0 ∆ 0 0 0 0
7 0 ∆ 0 0 ∆ 0 0 0
8 0 0 ∆ 0 0 ∆ 0 0

a sufficient condition is to have r = 16, and h invariant under 16-bit rotation,
i.e., (h ≫ 16) = h. This means that h should be of the form XYZTXYZT, which
we call symmetric. When t = 5, we require similar conditions.

Now, observe that the words that should be symmetric are c and f obtained
after the first iterative part. The values of c and f then directly depend on w8
and w14 (see description of COMP in Section 2). We now have to find values of
w8 and of w14 that give symmetric c and f .

Such w8 and w14 can be found as follows: first fix w14 to some arbitrary value,
and search for a w8 that gives a symmetric c, in 216 trials. Then, fix w8 to the
value found, and search for a pair (w5, w14) that gives a symmetric f after the
first iterative part. Here we need w5 to have enough freedom, since for certain
choices of w5, there does not exist a suitable w14. Again, 216 trials are expected.
Then we are enough degrees of freedom in the message words that do not affect
c and f to find rotation r = 16.

Assuming symmetric c and f after the first iterative part, the characteristic
is followed with probability 2−10, since the condition r = 16 is satisfied for both
t = 2 and t = 5 with probability 2−5 × 2−5. By trying several values of, for
example, w9, and leaving the other message words fixed, one can thus find a
conforming message pair for the first two iterative parts in about 210 trials.

5.3 Third Iterative Part

Given the final difference of the second iterative part, we found a characteristic
for the second round that yields no difference in the final state, thus given a colli-
sion. Table 6 in Appendix B describes our differential characteristic. Appendix B
also explains in detail why the characteristic can be followed with probability
2−42, given some conditions on the input.

Combining our differential characteristics with their respective conditions on
the message, we obtain a method for finding a 2-block collision in about 242+10 =
252 trials. The attack succeeds with probability close to one.

Cryptanalysis of Dynamic SHA(2) 427

Table 3. Summary of our results

Hash Function Attack Complexity Section

Dynamic SHA-256 Collision 221 3
Dynamic SHA-512 Collision 222 3,C
Dynamic SHA-256 Second preimage 2216 4
Dynamic SHA-512 Second preimage 2256 4,C
Dynamic SHA-256 First preimage 2225 4
Dynamic SHA-512 First preimage 2262 4,C

Dynamic SHA2-256 Collision 252 5
Dynamic SHA2-512 Collision 285 5,C

6 Conclusion

In this paper we have discussed the security of the two SHA-3 candidates Dy-
namic SHA and Dynamic SHA2. We have analyzed their security, and found out
that, despite their reliance on data-dependent rotations and in the case of Dy-
namic SHA2 even data-dependent functions, their security is subverted by the
vast control and knowledge the adversary has while attacking a hash function.
We also showed that neither Dynamic SHA nor Dynamic SHA2 are suitable to
be selected as SHA-3, following their lack of security. Table 3 summarizes our
results.

Acknowledgements

The research presented in this paper was performed in part while the authors
were visiting Schloss Dagstuhl (http://www.dagstuhl.de/) in January 2009.

This work was supported in part by the IAP Programme P6/26 BCRYPT of
the Belgian State (Belgian Science Policy), and in part by the European Commis-
sion through the ICT programme under contract ICT-2007-216676 ECRYPT II.

References

1. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In: [15], pp. 474–490

2. Kelsey, J., Kohno, T.: Herding hash functions and the Nostradamus attack. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer,
Heidelberg (2006)

3. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: [15], pp. 19–35
4. De Cannière, C., Rechberger, C.: Finding SHA-1 characteristics: General results

and applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

5. Stevens, M., Lenstra, A.K., de Weger, B.: Chosen-prefix collisions for MD5 and
colliding X.509 certificates for different identities. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 1–22. Springer, Heidelberg (2007)

http://www.dagstuhl.de/

428 J.-P. Aumasson et al.

6. National Institute of Standards and Technology. Cryptographic hash algorithm
competition, http://www.nist.gov/hash-competition

7. Rivest, R.L.: The RC5 encryption algorithm. In: Preneel, B. (ed.) FSE 1994. LNCS,
vol. 1008, pp. 86–96. Springer, Heidelberg (1995)

8. Rivest, R.L., Robshaw, M.J.B., Yin, Y.L.: RC6 as the AES. In: AES Candidate
Conference, pp. 337–342 (2000)

9. Mendel, F., Pramstaller, N., Rechberger, C.: Improved collision attack on the hash
function proposed at PKC 1998. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS,
vol. 4296, pp. 8–21. Springer, Heidelberg (2006)

10. Shin, S.U., Rhee, K.H., Ryu, D., Lee, S.: A new hash function based on MDx-
family and its application to MAC. In: Imai, H., Zheng, Y. (eds.) PKC 1998.
LNCS, vol. 1431, pp. 234–246. Springer, Heidelberg (1998)

11. Xu, Z.: Dynamic SHA. Submission to NIST (2008)
12. Xu, Z.: Dynamic SHA2. Submission to NIST (2008)
13. De Cannière, C., Rechberger, C.: Preimages for reduced SHA-0 and SHA-1. In:

Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 179–202. Springer, Heidel-
berg (2008)

14. Klimov, A., Shamir, A.: Cryptographic applications of t-functions. In: Matsui,
M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 248–261. Springer,
Heidelberg (2004)

15. Cramer, R. (ed.): EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg
(2005)

A Practical Results

We have implemented our collision attack on Dynamic SHA. Collisions for Dy-
namic SHA-256 and Dynamic SHA-512 are found in a matter of seconds on
an average desktop PC. A collision example for Dynamic SHA-256 is given in
Table 4. An all-zero block was appended to both messages to circumvent an er-
ror in the padding routine of the Dynamic SHA reference implementation, which
causes part of the last message block to be reused in the padding block.

Table 4. Collision example for Dynamic SHA-256: two messages and their common
digest

34BC5378 1150D86C 3085EB92 7538ECEE 199FB91A 5A9614EC 4D21FB88 728FF21E

22FBFA2E 08CE50DF 95CDE61F 71E5F222 3D30C361 EB7676B8 F1AE9728 758B70AF

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

B4BC9378 1150D86C 3085EB92 7538ECEE 199FB91A 5A9614EC 4D21FB88 728FF21E

A2FBBA2E 08CE50DF 95CDE61F 71E5F222 3D30C361 EB7676B8 F1AE9728 758B70AF

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

703C40F7 9DDFE2C6 8298F6D0 8D2B45B6 664CBB71 8BAB1BE3 DD563F77 0D0901E6

http://www.nist.gov/hash-competition

Cryptanalysis of Dynamic SHA(2) 429

B Differential Characteristic for Dynamic SHA2

This appendix describes the differential characteristic for the third iterative part
of Dynamic SHA2, used in our collision attack presented in Section 5.

A transition in Table 6 has probability 1/2 when there is a difference in a or b
and G1, G2 or G3 is used. In this case, the difference does (not) propagate with
probability 1/2. When there is a difference only in c, it always propagates to the
output of the G function, independent of the function used. We also note that a
difference ∆ in one operand of R is always transferred to T , and thus to a, except
when wt+1 or wt+4 are w8 or w14, in which case the differences vanish. When
two operands of T have a difference ∆, they cancel out and yield no difference
in T .

The probabilities for each step assume some conditions on the message. We
will take as example the first COMP when t = 2: we start with a difference

0 ∆ 0 ∆ 0 0 0 0

in the chaining value a, b, . . . , h. In the computation of COMP (first half), there is
no difference in T , because the ∆ difference in b cancels that of d. The assignment
of the new values of f, g, h requires no condition on the message, for it only
involves words with no difference. To obtain a difference ∆ in e, we need that
d is rotated by zero bit positions, that is, we need the bits 10 to 14 of w2 to
be zero. This is easy as we have direct control over w2. Then, to obtain no
difference in d, we require that the difference in b does not propagate in G. This
is only possible if the Boolean function in G is not x1⊕x2⊕x3 (see Section 2.1).
Since the Boolean function is determined by the last two bits of w2, we require
w30

2 ∨ w31
2 = 1, i.e., these bits should not be both zero. Now, the difference will

not propagate in G with probability 1/2. Finally, we get a difference ∆ in c with
probability 1.

By applying a similar reasoning to all the steps of our differential charac-
teristic, we obtain conditions on the message w0, . . . , w15 that are sufficient to
conform to the characteristic with probability 2−42. Table 5 summarizes these
conditions, along with the conditions for the other iterative parts.

Conditions on w0, . . . , w7 ensure that in the first COMP of each step the
rotations are by bit zero positions, and thus the difference remains in the MSB.
The probabilities smaller than one are the probabilities that the function G
absorbs or passes a difference in a or b. In the second COMP, we need some
rotations to be zero in order the difference to stay in the MSB. This is achieved
by setting conditions on the message, for example at t = 1, the first ten bits of w9
should be zero. Table 5 summarizes these conditions. After satisfying all these
conditions, about 200 bits of freedom remain; indeed, besides w8 and w14, the
message words w1 to w4 have to be fixed to let the symmetric c and f unchanged
after the first iterative part.

At step t = 6, the difference in the MSB of w14 implies that G will apply
different functions to (a, b, c). Similarly to Section 5.1, we will require w30

14 = 1
and b = EFFFFFFF, which will occur with probability 2−32. The MSB of b should

430 J.-P. Aumasson et al.

Table 5. Conditions on the message words w0, . . . , w15 sufficient to follow our differ-
ential characteristic

Word Condition

w0 –

w1 w1 = 0

w2 w10
2 = · · · = w14

2 = 0, w25
2 = · · · = w29

2 = 0, w30
2 ∨ w31

2 = 1

w3 w30
3 ∨ w31

3 = 1

w4 w20
4 = · · · = w29

4 = 0, w30
4 ∨ w31

4 = 1

w5 w5
5 = · · · = w9

5 = 0

w6 w0
6 = · · · = w4

6 = 0, w15
6 = · · · = w19

6 = 0, w20
6 = · · · = w29

6 = 0

w7 w5
7 = · · · = w14

7 = 0, w20
7 = · · · = w24

7 = 0

w8 difference in w31
8 , w30

8 = 1

w9 w0
9 = · · · = w9

9 = 0

w10 w5
10 = · · · = w14

10 = 0

w11 w15
11 = · · · = w29

11 = 0, w30
11 ∨ w31

11 = 1

w12 w10
12 = · · · = w24

12 = 0

w13 w0
13 = · · · = w4

13 = 0, w15
13 = · · · = w24

13 = 0

w14 difference in w31
14 , w10

14 = · · · = w14
14 = 0, w20

14 = · · · = w29
14 = 0, w30

14 = 1

w15 w0
15 = · · · = w9

15 = 0

be zero in order the difference to propagate, which will happen with probability
1/2, thus the total probability for this step 1/2× 2−32 = 2−33.

C Extensions to the 512-Bit Versions

The attacks presented in this paper can be extended to the 512-bit versions
of Dynamic SHA and Dynamic SHA2 in a straightforward way. This appendix
details how the attacks can be adapted.

Collision Attack on Dynamic SHA. The attack on Dynamic SHA-256 can be
adapted to Dynamic SHA-512 with almost no change. Due to the different R1
function, the difference word is ∆ = 8000000080000000. Also, the probability
of the local collision is lowered by about 2−1 compared to Dynamic SHA-256,
as in the fifth step six rotation bits have to be fixed to zero instead of only five.

Preimage Attack on Dynamic SHA. The preimage attack on Dynamic SHA-512
is similar to that on Dynamic SHA-256, except that the 59 LSBs are determined,
instead of the 28 LSBs. Then, when building the tree, 2224 solutions are expected,

Cryptanalysis of Dynamic SHA(2) 431

Table 6. Differential characteristic for the third iterative part of Dynamic SHA2. The
difference at step t is the difference in the state before computing step t. The column
T indicates the difference in the temporary variable T . The probability on a line is the
probability to reach the next difference, when conditions on the message are satisfied.

t (message input) a b c d e f g h T prob.

1 (w1, . . . , w0)
0 0 0 ∆ 0 0 ∆ 0 0 1
0 0 0 0 ∆ 0 0 ∆ 0 1

1 (w9, . . . , w8)
0 0 0 0 0 ∆ 0 0 ∆ 1
∆ 0 0 0 0 0 ∆ 0 0 2−1

2 (w2, . . . , w1)
0 ∆ 0 ∆ 0 0 0 0 0 2−1

0 0 ∆ 0 ∆ 0 0 0 0 1

2 (w10, . . . , w9)
0 0 0 ∆ 0 ∆ 0 0 0 1
0 0 0 0 ∆ 0 ∆ 0 0 1

3 (w3, . . . , w2)
∆ 0 0 0 0 0 0 ∆ 0 2−1

0 ∆ 0 0 0 0 0 0 ∆ 2−1

3 (w11, . . . , w10)
∆ 0 ∆ 0 0 0 0 0 0 2−1

0 ∆ 0 ∆ 0 ∆ 0 0 ∆ 2−1

4 (w4, . . . , w3)
∆ 0 ∆ 0 ∆ 0 ∆ 0 0 2−1

0 ∆ 0 ∆ 0 ∆ 0 ∆ 0 1

4 (w12, . . . , w11)
0 0 ∆ ∆ ∆ 0 ∆ 0 0 1
0 0 0 0 ∆ ∆ 0 ∆ ∆ 1

5 (w5, . . . , w4)
0 0 0 0 0 ∆ ∆ 0 0 1
0 0 0 0 0 0 ∆ ∆ 0 1

5 (w13, . . . , w12)
0 0 0 0 0 0 0 ∆ ∆ 1
0 0 0 0 0 ∆ 0 0 ∆ 1

6 (w6, . . . , w5)
∆ 0 0 0 0 0 ∆ 0 0 1
0 ∆ 0 ∆ 0 0 0 ∆ ∆ 2−1

6 (w14, . . . , w13)
∆ 0 ∆ ∆ ∆ 0 0 0 ∆ 2−33

0 ∆ 0 ∆ ∆ ∆ 0 0 0 2−1

7 (w7, . . . , w6)
0 0 0 ∆ ∆ ∆ ∆ 0 0 1
0 0 0 0 ∆ ∆ ∆ ∆ 0 1

7 (w15, . . . , w14)
0 0 0 0 0 ∆ ∆ ∆ ∆ 1
0 0 0 0 0 0 ∆ ∆ 0 1

0 0 0 0 0 0 0 0

leading to an attack complexity of 2256 on the compression function. Calculations
for preimages on the full hash function (with correct padding bits) give a cost
of of 2262 compression function evaluations.

Collision Attack on Dynamic SHA2. To attack Dynamic SHA2-512 we use a
similar differential path. The changes are that the condition on the first block
is on 64 bits (starting from a chaining value with b = FFFFFFFFFFFFFFFF),
the fact that in the second iterative part the probability is 2−6 for each of the

432 J.-P. Aumasson et al.

Table 7. Conditions on the message words w0, . . . , w15 sufficient to follow our differ-
ential characteristic in Dynamic SHA2-512

Word Condition

w0 –

w1 w1 = 0 ,w18
1 = · · · = w23

1 = 0, w42
1 = · · · = w47

1 = 0, w60
1 = 1, w61

1 = 0

w2 w18
2 = · · · = w29

2 = 0, w42
2 = · · · = w47

2 = 0, w60
2 = 0, w61

2 = 1, w62
2 ∨ w63

2 = 1

w3 w54
3 = · · ·w59

3 = 0, w60
3 = w61

3 = 1, w62
3 ∨ w63

3 = 1

w4 w6
4 = · · · = w11

4 = 0, w18
4 = · · · = w23

4 = 0, w42
4 = · · · = w47

4 = 0,
w60

4 = w61
4 = 0, w62

4 ∨ w63
4 = 1

w5 w6
5 = · · · = w11

5 = 0, w60
5 = 1, w61

5 = 1

w6 w48
6 = · · · = w53

6 = 0, w60
6 = 0, w61

6 = 1

w7 w6
7 = · · · = w23

7 = 0, w36
7 = · · · = w53

7 = 0, w60
7 = w61

7 = 1

w8 difference in w63
8 , w62

8 = 1

w9 w12
9 = · · · = w17

9 = 0,w36
9 = · = w41

9 = 0, w60
9 = 1, w61

9 = 0

w10 w6
10 = · · · = w11

10 = 0, w18
10 = · · · = w23

10 = 0, w42
10 = · · · = w47

10 = 0, w60
10 = 0,

w61
10 = 1

w11 w36
11 = · · · = w41

11 = 0, w48
11 = · · · = w59

11 = 0, w60
11 = w61

11 = 1, w62
11 ∨ w63

11 = 1

w12 w12
12 = · · · = w23

12 = 0, w36
12 = · · · = w47

12 = 0, w60
12 = w61

12 = 0

w13 w36
13 = · · · = w41

13 = 0, w60
13 = 1, w61

13 = 0

w14 difference in w63
14 , w12

14 = · · · = w23
14 = 0, w36

14 = · · · = w53
14 = 0, w60

14 = 0, w61
14 = 1

w15 w6
15 = · · · = w11

15 = 0, w36
15 = · · · = w41

15 = 0, w60
15 = w61

15 = 1

two transitions, the decrease in the probability only of the sixth COMP from
2−33 to 2−65, and the different set of conditions on the message described in
Table 7. Hence, the total time complexity of this attack is 285. We note that in
this approach the attack fixes w60

i and w61
i to i mod 4 (which causes the same

function to be used in this case as in the attack on Dynamic SHA2-256).

A New Approach for FCSRs�

François Arnault1, Thierry Berger1, Cédric Lauradoux2,
Marine Minier3, and Benjamin Pousse1

1 XLIM (UMR CNRS 6172), Université de Limoges
123 avenue Albert Thomas, F-87060 Limoges Cedex - France

first name.name@xlim.fr
2 Information Security Group

UCL / INGI / GSI
2, Place Saint Barbe

B-1348 Louvain-la-Neuve - Belgium
cedric.lauradoux@uclouvain.be

3 Lyon University - CITI Laboratory - INSA de Lyon
6, avenue des arts, 69621 Villeurbanne Cedex - France

marine.minier@insa-lyon.fr

Abstract. The Feedback with Carry Shift Registers (FCSRs) have been
proposed as an alternative to Linear Feedback Shift Registers (LFSRs)
for the design of stream ciphers. FCSRs have good statistical proper-
ties and they provide a built-in non-linearity. However, two attacks have
shown that the current representations of FCSRs can introduce weak-
nesses in the cipher. We propose a new “ring” representation of FCSRs
based upon matrix definition which generalizes the Galois and Fibonacci
representations. Our approach preserves the statistical properties and
circumvents the weaknesses of the Fibonacci and Galois representations.
Moreover, the ring representation leads to automata with a quicker diffu-
sion characteristic and better implementation results. As an application,
we describe a new version of F-FCSR stream ciphers.

Keywords: Stream cipher, FCSRs, �-sequence, ring FCSRs.

1 Introduction

The FCSRs have been proposed by Klapper and Goresky [1,2,3] as an alterna-
tive to LFSRs for the design of stream ciphers. FCSRs share many of the good
properties of LFSRs: sequences with known period and good statistical prop-
erties. But unlike LFSRs, they provide an intrinsic resistance to algebraic and
correlation attacks because of their quadratic feedback function. However, two
recent results [4,5] have shown weaknesses in stream ciphers using either the
Fibonacci or Galois FCSR. Hell and Johansson [5] have exploited the bias in
the carries behaviour of a Galois FCSR to mount a very powerful attack against

� This work was partially supported by the french National Agency of Research:
ANR-06-SETI-013.

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 433–448, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

434 F. Arnault et al.

the F-FCSR stream cipher [6,7]. Fisher et al. [4] have considered an equivalent
of the F-FCSR stream cipher based upon a Fibonacci FCSR to study the linear
behavior of the induced system.

We present a new approach for FCSRs, which we call the ring representa-
tion or ring FCSR. This representation is based on the adjacency matrix of the
automaton graph. A ring FCSR can be viewed as a generalization of the Fi-
bonacci and Galois representations. Similar structure has been widely studied
for the LFSR case as in [8,9,10], and is a building block of the stream cipher
Pomaranch where LFSRs are used [11]. However, we present here for the first
time this structure in the FCSR case.

A Fibonacci FCSR, has a single feedback function which depends on multiple
inputs. A Galois FCSR has multiple feedbacks which all share one common
input. A ring FCSR can be viewed as a trade-off between the two extreme cases.
It has several feedback functions with different inputs. An example of ring FCSR
is shown in Fig. 1.

c6

m6 m5m7

c5

m4 m3

c2

m2

c1

m1 m0

Fig. 1. An example of a ring FCSR (q = −347)

Ring FCSRs have many advantages, while preserving all the good and tradi-
tional properties of Galois/Fibonnacci FCSRs (known period, large entropy,...).
The main one is that the attack of Hell and Johansson [5] does not work
with Ring FCSR. Also, they have better diffusion properties. Moreover, ring
representation allows fine tune in the implementation.

Section 2 gives an overview on FCSRs theory and classical representations.
Section 3 presents ring FCSRs. We discuss implementation in Section 4 and a
new version of F-FCSR is proposed in Section 5.

2 Theoretical Background

First, we will recall some basic properties of 2-adic integers. For a more theoretical
approach the reader can refer to [1,2,12,13,14].

2.1 2-adic Numbers and Period

A 2-adic integer is formally a power series s =
∑∞

i=0 si2i, si ∈ {0, 1}. This series
always converges if we consider the 2-adic topology. The set of 2-adic integers is
denoted by Z2. Addition and multiplication in Z2 can be performed by reporting
the carries to the higher order terms, i.e. 2n + 2n = 2n+1 for all n ∈ N. If there

A New Approach for FCSRs 435

exists an integer N such that sn = 0 for all n ≥ N , then s is a positive integer.
Every odd integer q has an inverse in Z2.

The following property gives a complete characterization of eventually peri-
odic binary sequences in terms of 2-adic integers (see [13] for the proof).

Property 1. Let S = (sn)n∈N be a binary sequence and let s =
∑∞

i=0 si2i be the
corresponding 2-adic integer. The sequence S is eventually periodic if and only
if there exist two numbers p and q in Z, q odd, such that s = p/q.

Moreover, S is strictly periodic if and only if pq ≤ 0 and |p| ≤ |q|. In this
case, we have the relation sn = (p · 2−n mod q) mod 2.

The period of S is the order of 2 modulo q, i.e., the smallest integer T such
that 2T ≡ 1 (mod q). The period satisfies T ≤ |q| − 1. If q is prime, then
T divides |q| − 1. If T = |q| − 1, the sequence S is called an �-sequence. As
detailed in [1,2,13,15], �-sequences have many proved properties that could be
compared to the ones of m-sequences: known period, good statistical properties,
fast generation, etc. In summary, FCSRs have almost the same properties as
LFSRs but they have a nonlinear structure.

2.2 Galois FCSRs

A Galois FCSR (as shown in Fig. 2) consists of an n-bit main register M = (m0,
. . . , mn−1) with some fixed feedback positions d0, . . . , dn−1. All the feedbacks are
controlled by the cell m0, and n − 1 binary carry cells C = (c0, . . . , cn−2). At
time t, an automaton in state (M, C) is updated in the following way:

1. Compute the sums xi = mi+1 + cidi + m0di for all i such that 0 ≤ i < n
with mn = 0 and cn−1 = 0 and where m0 represents the feedback bit;

2. Update the state as follows: mi ← xi mod 2 for all i ∈ [0..n−1] and ci ← xi

div 2 for 0 ≤ i < n for all i ∈ [0..n− 2].

The reader can refer to [13] for a complete description of Galois FCSRs and
some properties. We recall however a very important one, found in [16].

Property 2. Let q = 1 − 2
∑n−1

i=0 di2i and ri =
∑∞

t=0 mi(t)2t (for 0 ≤ i < n);
ri is the 2-adic integer corresponding to the sequence observed in the i-th cell
of the main register M . Then, for all 0 ≤ i < n, there exists pi ∈ Z such that
ri = pi/q.

d0dn−2dn−1

cn−2 c0

mn−1 mn−2 m1 m0

ci(t − 1) ci(t)

x
y s

ci(t) := xy ⊕ xci(t − 1) ⊕ yci(t − 1)

s := x ⊕ y ⊕ ci(t − 1)

Fig. 2. A Galois FCSR and 2-bit adder with carry

436 F. Arnault et al.

÷2

mod 2

d0 d1 dn−1dn−2

mn−1 mn−2 m1 m0

c∑

Fig. 3. A Fibonacci FCSR

In a Galois FCSR, a single cell controls all the feedbacks. As a consequence,
there exist some correlations between the carries values and the feedback value.
This fact is the basis of the attack presented in [5].

2.3 Fibonacci FCSRs

A Fibonacci FCSR (represented in Fig. 3) is composed of a main register M =
(m0, . . . , mn−1) with n binary cells. The binary feedback taps (d0, . . . , dn−1) are
associated to an additional carry register c of wH(d) binary cells, where wH(d)
is the Hamming weight of d = (1 + |q|)/2.

An automaton in state (M, c) is updated in this way:

1. compute the sum x = c +
∑n−1

i=0 midn−1−i;
2. then, update the state: M ← (m1, . . . , mn−1, x mod 2), c← x div 2.

As shown in [13], Property 2 also holds for Fibonacci FCSRs : the sequence
observed in a cell mi is a 2-adic integer.

The cell mn−1 is the only one with a non-linear behaviour in a Fibonacci
FCSR. As shown in [4], an attack can be carried out if a linear filter is used with
a Fibonacci FCSR.

3 A New Approach for FCSRs

Galois and Fibonacci FCSRs are two different automata with similar properties,
as seen in the previous section. In a Galois FCSR, the first cell m0 modifies
wH(d) cells of the main register. In a Fibonacci FCSR, the cell mn−1 is modified
by wH(d) cells of the main register. Ring representation of FCSRs is a trade-off
between these extreme cases.

Definition 1. A ring FCSR is an automaton composed of a main shift register
of n binary cells m = (m0, . . . , mn−1), and a carry register of n integer cells
c = (c0, . . . , cn−1). It is updated using the following relations:{

m(t + 1) = Tm(t) + c(t) mod 2
c(t + 1) = Tm(t) + c(t) div 2 (1)

A New Approach for FCSRs 437

TR =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 4. Matrix and graph representation of FCSR presented in Fig.1

where T is a n×n matrix with coefficients 0 or 1 in Z, called transition matrix,
of this form: ⎛⎜⎜⎜⎜⎜⎜⎝

∗ 1
∗ 1 (∗)

∗ 1
. . .

. . .

(∗) ∗ 1
1 ∗

⎞⎟⎟⎟⎟⎟⎟⎠
Note that ÷2 is the traditional expression: X div 2 = X−(X mod 2)

2 .

Ring FCSRs differ from Fibonacci and Galois FCSRs in the fact that any cell
can be used as a feedback for any other cell. A more convenient way to draw
ring FCSRs is presented in Figure 4, which represents the same FCSR as the
one in Figure 1.

3.1 Remarks on the Transition Matrix

According to Definition 1, we have the following property, where ti,j is the
element at the i-th row and j-th column:

T = (ti,j)0≤i,j<n with ti,j =
{

1 if cell mj is used to update cell mi,
0 otherwise.

As the main register of a ring FCSR is by definition a shift register, the over-
diagonal of the transition matrix T is full of ones, i.e. for all 0 ≤ i < n we have
ti,i+1 mod n = 1. For example, the FCSR presented in Fig.1 has the following
transition matrix TR (and q = −347):

This notation agrees with the one proposed in [13]. In particular, Galois and
Fibonacci FCSRs have respectively transition matrices TG and TF of the form:

TG =

⎛⎜⎜⎜⎜⎜⎜⎝

d0 1
d1 0 1 (0)
d2 0 1
...

. . .
. . .

dn−2 (0) 0 1
1 0

⎞⎟⎟⎟⎟⎟⎟⎠ TF =

⎛⎜⎜⎜⎜⎜⎜⎝

0 1
0 1 (0)

0 1

(0)
. . .

. . .
0 1

1 dn−2 . . . d2 d1 d0

⎞⎟⎟⎟⎟⎟⎟⎠

438 F. Arnault et al.

3.2 Characterizing the Cells Content

Definition 1 introduces the transition matrix of a ring FCSR. We explain now
how the value q can be computed from the transition matrix T .

Let mi(t) denote the content of the i-th cell of the main register at time t and
Mi(t) the series observed in this cell, from time t:

Mi(t) =
∑
k∈N

mi(t + k)2k.

From Equation 1, we derive the following relation

M(t + 1) = TM(t) + c(t) (2)

where M(t) = (M0(t), · · · , Mn−1(t)), and c(t) = (c0(t), · · · , cn−1(t)) is the
content of the carry register at time t.

The series Mi(t) and the vector M(t) play a fundamental role in our approach.
We have the following important generalisation of Property 2.

Theorem 1. The series Mi(t) observed in the cells of the main register are
2-adic expansion of pi/q with pi ∈ Z and with q = det(I − 2T).

Proof. According to the definition of Mi(t) and to Definition 1, we have M(t) =
2M(t + 1) + m(t) where m(t) is a binary vector of size n. Using Equation 2, we
get:

(I − 2T) ·M(t)− 2 · c(t)−m(t) = 0.

Considering the adjugate of I − 2T , we obtain:

det(I − 2T) ·M(t) = Adj(I − 2T)(m(t) + 2 · c(t)).
In this relation, the right member is a vector of integers (p0(t), . . . , pn−1(t)).
Dividing by det(I − 2T), we obtain Mi(t) = pi(t)/ det(I − 2T).

Lemma 1. With the notation of Theorem 1, if q = det(I − 2T) is prime, and
if the order of 2 in Z/qZ is maximal, then each Mi is an �-sequence.

4 Implementation Properties

We detail in this section the new implementation characteristics of ring FCSRs.
All this section applies also to LFSRs by replacing addition with carry with
addition modulo 2.

Path/fan-out – The Galois FCSR is considered in many works [13,17,18] as
the best representation for hardware implementation. It has a better critical
path, i.e, a shorter longest path, than a Fibonacci FCSR. A drawback of the
Galois representation is that the fan-out of the feedback cell m0 is wH(d) with
d = (1+ |q|)/2. At the opposite, the Fibonacci representation has a fan-out of 2.
A ring FCSR allows the designer to tune both the critical path and the fan-out
through the choice of the transition matrix:

A New Approach for FCSRs 439

Table 1. Comparison of the different representations

Fibonacci Galois Ring

Path �log2(wH(d))� 1 max(�log2(wH(ai))�)
Fan-out 2 wH(d) max(wH(bi))

Cost (#adders) wH(d) − 1 wH(d) − 1 wH(T) − n

i0 i2 ifi1 if−2

c0
jcf−1

j cf−2
j c1

j

Fig. 5. A naive adder

– the critical path is given by the row ai with the largest number of 1s;
– the fan-out is given by the column bi with the largest number of 1s.

We compare in Table 1 the critical path, the fan-out and the cost of the different
representations of an FCSR. We have expressed the critical path as the number
of adders crossed. The choice of the adder has also an impact on the path of a
ring FCSR. A naive adder (Fig. 5) composed of a serialisation of generic adder
leads to a path of max(wH(ai))−1 adders. However, it is possible to exploit the
commutativity to perform additions in parallel. This reduces the critical path to
max(�log2(wH(ai))�) adders.

For each given q, it should be possible to find a transition matrix corresponding
to a critical path with only one adder and a fan-out equal to 2. This is the case
of the ring FCSR given in Fig. 1.

Cost – Ring FCSR have implementations which require fewer gates than Fi-
bonacci/Galois equivalent ones. This possibility was first observed in [10] for
LFSRs. However, the solution proposed in [10] is specific to LFSRs and can-
not be applied systematically to FCSRs. The number #adders of 2-bit adders
required in the different representations of an n-bit FCSR is shown in Table 1.
Ring representation is the only one that allows to find an implementation with
less than (wH(d)−1) 2-bit adders. For q = −347, a Galois or Fibonacci represen-
tation leads to #adders = 4. A ring representation with the following transition
matrix TR:

TR =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1
0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

440 F. Arnault et al.

leads to an implementation with #adders = 3, a fan-out of 2 and a critical path
of 1 adder.

Side-channel attacks – It seems possible to work out an equivalent of the side-
channel attack of Joux and Delaunay [18] on Galois FCSR using the results of Hell
and Johansson [5]. Such an attack would exploit the power consumption to recover
the feedback m0 (because of the excessive fan-out of the feedback cell) and there-
fore how the carry cells are modified. As the ring FCSR has a reduced fan-out and
uncorrelated carries, it is a better alternative to prevent side-channel attacks.

5 F-FCSR Based on Ring Representation

In this section, we propose a generic algorithm to construct F-FCSR stream
ciphers based upon a ring FCSR with a linear filter. We give two particu-
lar examples which are F-FCSR-H v3 and F-FCSR-16 v3. Any designer using
the proposed algorithm could generate its own stream cipher according to the
following parameters:

– key length k and IV length v that will provide the corresponding size n :=
k + v of the T matrix (usually k = v);

– the number u of bits output at each clock taken between 1 and n/16 to
ensure a hard inversibility of the filter. Moreover for later design we require
u to be a divisor of n;

– the number of willing feedbacks � usually taken between n/2−5 and n/2+5
to ensure a sufficient non linear structure and a sufficiently weighted filter.

The algorithm is composed of 3 particular steps: the choice of the matrix T , the
choice of the linear filter and the key/IV setup.

5.1 The Choice of the Matrix T

According to the remarks in Section 3, we pick a n× n random matrix T with
the following requirements:

– the matrix must be composed of 0 and 1 and with a general weight equal to
n + �;

– the over-diagonal must be full of 1 and tn−1,0 = 1 (to preserve the ring
structure of the automaton);

– the number of ones for a given row or a given column must be at most two.
This last condition allows a better diffusion by maximizing the number of
cells reached by the feedbacks. It also provides uncorrelated carries and a
fan-out bounded by 2.

For each picked matrix with the previous requirements, test if:

1. log2(q) ≥ n; det(T) 	= 0;
2. q = det(I − 2T) is prime; the order of 2 modulo q is |q| − 1.

A New Approach for FCSRs 441

The first condition ensures a non-degenerated matrix. The second ensures good
statistical properties and a long period.

This matrix completely defines the ring FCSR. The diffusion speed (which
is faster than in Galois/Fibonacci FCSRs) is related to the diameter d of the
transition graph. This diameter is the maximal distance between two cells of
the main register. In other words, d is the distance after which any cell of the
main register have been influenced by any other cell through the feedbacks. It
corresponds to the minimal number of clocks required to have all the cells of the
main register influenced by any other cell. d should be small for better diffusion.

5.2 The Filter

As in the previous versions of F-FCSR [7], we use a linear filter to extract the
keystream in order to break the 2-adic structure of the automaton. This also
prevents linearization attacks over the set of 2-adic numbers. The filter includes
the cells of the main register which receive a feedback to prevent correlation
attacks. The periodic structure of the filter in the previous versions of F-FCSR
has been exploited in [5] to speed up the linear part of the attack. We prefer
now a non periodic structure:

– let F = {mf0 , · · · , mf�−1} be the set of all the cells mi that receive a feedback
and indexed in this way: the row fi of the matrix T has more than one 1 for
0 ≤ i < �, and fi < fi+1.

– The u bits of output are: ∀ 0 ≤ i < u, zi =
⊕

j≡i mod u mfj .

5.3 Key and IV Setup

As shown in [5], if at a given time, the FCSR is in a synchronized state (i.e. a
state from which after a finite number of steps the automaton will return, i.e.
a state belonging to the main cycle), adjacent states of the main cycle could
be directly deduced using only multiplications over Z/qZ. Moreover, as shown
in [16], a Galois FCSR is synchronized in at most n + 4 clocks, but in reality,
few clocks are sufficient. So, to completely avoid the weakness of the key and IV
setup used in [5], we prefer to maintain a non synchronized state during the key
and IV setup. The new key and IV setup creates a transformation that is really
hard to invert, in order to prevent a direct key recovery attack.

However, using a ring FCSR leads to a new problem: we can not ensure the
entropy of the automaton. In the case of F-FCSR with Galois or Fibonacci struc-
ture, zeroing the content of the carry register prevents collisions (i.e. one point
of the states graph with two preimages) and warrants a constant entropy. This
particular property comes from the particular structure of the adjoint matrix
(I − 2T)∗, which has successive powers of two in its first row in case of a Galois
FSCR (in a Fibonacci FCSR, a similar property holds for the last row). In the
ring case, no obvious structure exists in (I−2T)∗. Note that in this case the col-
lisions search becomes an instance of the subset sum problem, with a complexity
equals to 2n/2 (if the carries are zeroes) or 23n/2 (in the general case).

442 F. Arnault et al.

a(r−1)u+1

a(r−1)u a0au

a1au+1

a(r−1)u+u−1 au+u−1 au−1

a(r−1)u+i au+i ai

cji

mjimji+1

Fig. 6. Disposition of the cells a0, . . . , an−1 in u shift registers and connection of a shift
register in position ji

Thus, the new key and IV setup aims to stay on non-synchronized states as
long as possible and to limit the entropy loss. We connect at u different places
shift registers of length r = n/u (this corresponds to adding n binary cells
a0, . . . , an−1 at different places as shown in Fig. 6).

The u positions denoted by J := {j0 < · · · < ju−1} where the u shift registers
are connected have been chosen such that, for all 0 ≤ i < u, no adder exists
between cells mji+1 and mji (i.e. wH(Rji) = 1 where Rji is the jth

i row of the
matrix T). Each shift register is connected using a 2-bit adder with carry (as
shown in Fig. 6). The content of cell mji after transition depends on the values
of mji+1, ai and of the carry cell cji .

With these u shift registers inserted in the ring FCSR, the key and IV setup
works as follows:

– Initialize (a0, . . . , an−1) with (K‖0n−k−v‖IV), M ← 0, C ← 0.
– The FCSR is clocked r times. At each clock, the FCSR is filtered using F to

produce a u bits vector z0, . . . , zu−1 used to fill back a(r−1)u, . . . , a(r−1)u+u−1:
a(r−1)u+i ← zi for 0 ≤ i < u.

– The FCSR is clocked max(r, d + 4) times discarding the output.

The first step of the key and IV setup allows an initial diffusion of the key
through the simple shift registers. The next r clocks helps a complete diffusion
of the IV and of the key in the FCSR. The diffusion is complete at the end of
the key and IV setup. If an attacker is able to recover the state just at the end
of the key and IV setup, he won’t be able to use this information to recover
the key because of the occurence of non-synchronized states that are hard to
inverse: for a given mk+1 bit value of the main register, the values ck and mk

producing mk+1 are not unique and this leads to a combinatorial explosion when
an attacker wants to recover a previous state.

As previously mentioned, this construction does not provide a bijection and
behaves more like a random function. From this point, two attacks are essen-
tially possible: direct collisions search and time memory data trade-off attack for
collisions search built upon entropy loss. As mentioned before, direct collisions
search has a cost of 2(n/2) if the attacker is able to clear the carry bits. With
the use of a ring FCSR that does not allow a direct control of the carry bits
through the feedback bit, the probability to force to 0 the carry bits is about
2−�. Thus such an attack is more expensive than a key exhaustive search. In the
other cases, the corresponding complexity is 2(3n/2) preventing collisions search.

A New Approach for FCSRs 443

TMDTO attacks are possible if a sufficient quantity of entropy is lost. As
studied in [19], considering that the key and IV setup are random function, the
induced entropy loss is about 1 bit, so considering an initial entropy equal to n
bits, the entropy after the key and IV setup is close to n− 1 bits. Is it possible
to exploit this entropy loss for a collisions search in a TMDTO attack? A well-
known study case is the attack proposed in [20] by J. Hong and W.H. Kim
against the stream cipher MICKEY. Even if this attack seems to work, A. Rock
has shown in [19] that the query complexity in the initial states space could not
be significantly reduced and that the attacks based on the problem of entropy
loss are less efficient than expected especially regarding the query complexity.
So, we conjecture, that our key and IV setup behaves as a random function, and
that the induced entropy loss is not sufficient to mount a complete TMDTO
attack for collisions search taking into account the query complexity.

5.4 F-FCSR-H v3 and F-FCSR-16 v3

The details of the two constructions, especially the corresponding T matrices,
are given respectively in Appendix A and B. The respective parameters are the
following ones:

– For F-FCSR-H v3: k = 80, v = 80, � = 82, n = 160, u = 8, d = 24;
– For F-FCSR-16 v3: k = 128, v = 128, � = 130, n = 256, u = 16, d = 28.

These two automata have been chosen with an additional property: (|q| − 1)/2
prime. This condition ensures maximal period for the output stream. However
this condition is hard to fill. So we don’t require this condition in the general
case.

5.5 Resistance against Known Attacks

We do not discuss here resistance against traditional attacks such as correlation
/ fast correlation attacks, guess and determine attacks, algebraic attacks, etc.
Some details about this can be found in [7]. Resistance against TMDTO attacks
was considered in Section 5.3. We focus now on the two recent attacks [5] and
[4] against FCSR and F-FCSR.

The attack presented in [5] against F-FCSR, which is based on a Galois FCSR,
relies on the existence of correlations between the carries and the feedback val-
ues. More precisely, the control of the m0 bit leads to the control of the feedback
values. If the feedback can be forced to 0 during t consecutive clocks, the behav-
ior of the stream cipher becomes linear, and its synthesis is possible by solving a
really simple system. This linear behavior happens with a probability about 2−t

for a Galois FCSR. If instead a ring FCSR is used, this probability decreases to
2−t·k where k is the number of cells of the main register controlling a feedback.
Thus, for k values corresponding to most ring FCSR, the linear behavior proba-
bility becomes so small that the cost of the corresponding attack becomes higher
than an exhaustive search. Also the attack from [5] relies on situations where
the carries remain constant during t consecutive clocks. We made an experiment

444 F. Arnault et al.

with F-FCSR-H v3 to search for states for which carries does not change during
transition. Looking over 238 states, we found only 41 different states for which
carries remains constant after one transition. We found none for which carries
remains constant after two transitions.

In [4], the authors propose a linearization attack against a linearly filtered
Fibonacci FCSR. This attack does not affect any version of F-FCSR. In a Fi-
bonacci FCSR, the carries only influence one bit of the main register at each
clock. Thus, if one could imagine to build a F-FCSR using a Fibonacci FCSR,
such a generator would be subject to an attack where the control of the carries
leads to the control of a part of the main register. Thus, we recommend to NOT
use a Fibonacci FCSR in a linearly filtered stream cipher.

6 Conclusion and Future Work

In this paper, we have presented a new approach for FCSRs that unifies the
two classical representations. We can obtain, with the ring representation, better
diffusion characteristics and faster implementations. The recent attacks designed
against F-FCSR are prevented, when using a ring FCSR, as shown in Section 5.

References

1. Klapper, A., Goresky, M.: 2-adic shift registers. In: Anderson, R. (ed.) FSE 1993.
LNCS, vol. 809, pp. 174–178. Springer, Heidelberg (1994)

2. Klapper, A., Goresky, M.: Feedback shift registers, 2-adic span and combiners with
memory. Journal of Cryptology 10(2), 111–147 (1997)

3. Klapper, A.: A survey of feedback with carry shift registers. In: Helleseth, T.,
Sarwate, D., Song, H.-Y., Yang, K. (eds.) SETA 2004. LNCS, vol. 3486, pp. 56–71.
Springer, Heidelberg (2005)

4. Fischer, S., Meier, W., Stegemann, D.: Equivalent Representations of the F-FCSR
Keystream Generator. In: ECRYPT Network of Excellence - SASC Workshop, pp.
87–94 (2008), http://www.ecrypt.eu.org/stvl/sasc2008/

5. Hell, M., Johansson, T.: Breaking the F-FCSR-H stream cipher in real time. In:
Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 557–569. Springer,
Heidelberg (2008)

6. Arnault, F., Berger, T.P.: F-FCSR: Design of a new class of stream ciphers. In:
Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 83–97. Springer,
Heidelberg (2005)

7. Arnault, F., Berger, T.P., Lauradoux, C.: Update on F-FCSR Stream Cipher.
ECRYPT - Network of Excellence in Cryptology (Call for stream Cipher Prim-
itives - Phase 2 2006) (2006), http://www.ecrypt.eu.org/stream/

8. Roggeman, Y.: Varying feedback shift registers. In: Quisquater, J.-J., Vandewalle,
J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 670–679. Springer, Heidelberg
(1990)

9. Jansen, C.J., Helleseth, T., Kholosha, A.: Cascade jump controlled sequence gen-
erator and pomaranch stream cipher (version 2). eSTREAM, ECRYPT Stream
Cipher Project, Report 2006/006 (2006), http://www.ecrypt.eu.org/stream

10. Mrugalski, G., Rajski, J., Tyszer, J.: Ring generators - new devices for embedded
test applications. IEEE Trans. on CAD of Integrated Circuits and Systems 23(9),
1306–1320 (2004)

http://www.ecrypt.eu.org/stvl/sasc2008/
http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream

A New Approach for FCSRs 445

11. Jansen, C.J., Helleseth, T., Kholosha, A.: Pomaranch version 3. eSTREAM,
ECRYPT Stream Cipher Project (2006), http://www.ecrypt.eu.org/stream

12. Koblitz, N.: p-adic numbers, p-adic analysis and Zeta-Functions. Springer, Heidel-
berg (1997)

13. Goresky, M., Klapper, A.: Fibonacci and Galois representations of feedback-with-
carry shift registers. IEEE Transactions on Information Theory 48(11), 2826–2836
(2002)

14. Arnault, F., Berger, T.P.: Design and Properties of a New Pseudorandom Genera-
tor Based on a Filtered FCSR Automaton. IEEE Transaction on Computers 54(11),
1374–1383 (2005)

15. Lauradoux, C., Röck, A.: Parallel generation of �-sequences. In: Golomb, S.W.,
Parker, M.G., Pott, A., Winterhof, A. (eds.) SETA 2008. LNCS, vol. 5203, pp.
299–312. Springer, Heidelberg (2008)

16. Arnault, F., Berger, T.P., Minier, M.: Some Results on FCSR Automata With Ap-
plications to the Security of FCSR-Based Pseudorandom Generators. IEEE Trans-
actions on Information Theory 54(2), 836–840 (2008)

17. Goldberg, I., Wagner, D.: Architectural considerations for cryptanalytic hardware.
Technical report, Secrets of Encryption Research, Wiretap Politics & Chip Design
(1996)

18. Joux, A., Delaunay, P.: Galois LFSR, embedded devices and side channel weak-
nesses. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp.
436–451. Springer, Heidelberg (2006)

19. Röck, A.: Stream ciphers using a random update function: Study of the entropy
of the inner state. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023,
pp. 258–275. Springer, Heidelberg (2008)

20. Hong, J., Kim, W.H.: TMD-Tradeoff and State Entropy Loss Considerations of
Streamcipher MICKEY. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R.
(eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 169–182. Springer, Heidelberg
(2005)

A Description of the Transition Matrix for F-FCSR-H v3

Input parameters: k = 80 (key length), v = 80 (IV length), � = 82 (number of
feedbacks), n = 160 (size of T), u = 8 (number of output bits), d = 24 (diameter
of the graph).

We give here the description of the transition matrix T = (ti,j)0≤i,j<160 (see
Fig. 7 for graphic representations):

– For all 0 ≤ i < 160, ti,i+1 mod 160 = 1;
– For all (i, j) ∈ S, ti,j = 1, where S = { (1, 121); (2, 133); (4, 44); (5, 82);

(9, 38); (11, 40); (12, 54); (14, 105); (15, 42); (16, 63); (18, 80); (19, 136); (20, 2);
(21, 35); (23, 28); (25, 137); (28, 131); (31, 102); (36, 41); (39, 138); (40, 31); (42,
126); (44, 127); (45, 77); (46, 110); (47, 86); (48, 93); (49, 45); (51, 17); (54, 8);
(56, 7); (57, 150); (59, 25); (62, 51); (63, 129); (65, 130); (67, 122); (73, 148); (75,
18); (77, 46); (79, 26); (80, 117); (81, 1); (84, 72); (86, 60); (89, 15); (90, 89); (91,
73); (93, 12); (94, 84); (102, 141); (104, 142); (107, 71); (108, 152); (112, 92); (113,
83); (115, 23); (116, 32); (118, 50); (119, 43); (121, 34); (124, 13); (125, 74); (127,
149); (128, 90); (129, 57); (130, 103); (131, 134); (132, 155); (134, 98); (139, 24);

http://www.ecrypt.eu.org/stream

446 F. Arnault et al.

Fig. 7. Matrix representation and graph representation of the matrix T chosen for
F-FCSR-H v3

(140, 61); (141, 104); (144, 48); (145, 14); (148, 112); (150, 59); (153, 39); (156,
22); (157, 107); (158, 30); (159, 78) };

– Otherwise, ti,j = 0.

– The corresponding q value is (in decimal notation):

q = 1741618736723237862812353996255699689552526450883

– The set J (for the first part of the Key/IV setup) is:

J = {3, 22, 43, 64, 83, 103, 123, 143}
– The 8 subfilters F0, · · · , F7 are given by:

F0={1, 15, 28, 46, 59, 79, 93, 115, 128, 141, 158}
F1={2, 16, 31, 47, 62, 80, 94, 116, 129, 144, 159}
F2={4, 18, 36, 48, 63, 81, 102, 118, 130, 145}
F3={5, 19, 39, 49, 65, 84, 104, 119, 131, 148}
F4={9, 20, 40, 51, 67, 86, 107, 121, 132, 150}
F5={11, 21, 42, 54, 73, 89, 108, 124, 134, 153}
F6={12, 23, 44, 56, 75, 90, 112, 125, 139, 156}
F7={14, 25, 45, 57, 77, 91, 113, 127, 140, 157}

B Description of the Transition Matrix for F-FCSR-16 v3

Input parameters: k = 128, v = 128, � = 130, n = 256, u = 16, d = 28.
We give here a description of the transition matrix T = (ti,j)0≤i,j<256 (see

Fig. 8 for graphic representations):

A New Approach for FCSRs 447

Fig. 8. Matrix representation and graph representation of the matrix T chosen for
F-FCSR-16 v3

– For all 0 ≤ i < 256, ti,i+1 mod 256 = 1;
– For all (i, j) ∈ S, ti,j = 1, where S = { (0, 52); (2, 150); (3, 2); (5, 169); (6,

89); (8, 100); (9, 1); (11, 156); (12, 9); (13, 46); (19, 146); (20, 206); (26, 204); (31,
254); (32, 151); (38, 144); (40, 108); (46, 167); (47, 198); (48, 70); (49, 98); (50,
213); (53, 214); (56, 87); (57, 55); (58, 162); (62, 160); (63, 13); (64, 192); (65, 59);
(66, 12); (67, 207); (68, 209); (71, 229); (73, 84); (74, 199); (77, 168); (78, 122);
(79, 35); (80, 154); (82, 153); (85, 188); (87, 51); (89, 4); (90, 49); (93, 231); (95,
224); (97, 249); (101, 208); (102, 120); (104, 218); (105, 8); (108, 77); (109, 68);
(110, 250); (113, 237); (115, 252); (116, 17); (118, 73); (119, 182); (123, 29); (124,
234); (127, 138); (132, 190); (134, 244); (136, 219); (141, 228); (142, 205); (143,
58); (144, 230); (145, 210); (146, 44); (147, 137); (148, 130); (150, 79); (152, 111);
(153, 172); (154, 141); (156, 78); (157, 131); (158, 110); (159, 127); (170, 189); (171,
112); (174, 217); (175, 7); (176, 187); (177, 40); (179, 118); (181, 195); (184, 48);
(186, 64); (189, 246); (190, 47); (191, 37); (192, 211); (193, 85); (194, 181); (195,
61); (196, 54); (198, 222); (199, 83); (203, 105); (204, 201); (205, 43); (206, 139);
(208, 20); (210, 242); (211, 124); (213, 253); (215, 243); (216, 69); (218, 176); (220,
30); (222, 19); (223, 232); (224, 239); (225, 220); (227, 102); (231, 185); (232, 15);
(234, 152); (236, 62); (238, 245); (242, 197); (245, 235); (246, 171); (247, 67); (253,
26); (254, 202) };

– Otherwise, ti,j = 0.

– The corresponding q value is (in hexadecimal notation):

q = (B085834B6BFAE1541C54F7D84F42084C

B0568496DDD0FEA5E99AA79C022023241)

– The set J (for the first part of the Key/IV setup) is:

J = {10, 27, 43, 59, 75, 91, 107, 122, 139, 155, 172, 187, 202, 219, 235, 251}

448 F. Arnault et al.

– The 16 subfilters F0, · · · , F15 are given by:

F0={0, 40, 68, 101, 134, 158, 193, 218, 253}
F1={2, 46, 71, 102, 136, 159, 194, 220, 254}
F2={3, 47, 73, 104, 141, 170, 195, 222}
F3={5, 48, 74, 105, 142, 171, 196, 223}
F4={6, 49, 77, 108, 143, 174, 198, 224}
F5={8, 50, 78, 109, 144, 175, 199, 225}
F6={9, 53, 79, 110, 145, 176, 203, 227}
F7={11, 56, 80, 113, 146, 177, 204, 231}
F8={12, 57, 82, 115, 147, 179, 205, 232}
F9={13, 58, 85, 116, 148, 181, 206, 234}

F10={19, 62, 87, 118, 150, 184, 208, 236}
F11={20, 63, 89, 119, 152, 186, 210, 238}
F12={26, 64, 90, 123, 153, 189, 211, 242}
F13={31, 65, 93, 124, 154, 190, 213, 245}
F14={32, 66, 95, 127, 156, 191, 215, 246}
F15={38, 67, 97, 132, 157, 192, 216, 247}

New Cryptanalysis of Irregularly Decimated
Stream Ciphers

Bin Zhang

Laboratory of Algorithmics, Cryptology and Security,
University of Luxembourg,

6, rue Coudenhove-Kalergi, L-1359, Luxembourg
bin.zhang@uni.lu

Abstract. In this paper we investigate the security of irregularly dec-
imated stream ciphers. We present an improved correlation analysis of
various irregular decimation mechanisms, which allows us to get much
larger correlation probabilities than previously known methods. Then
new correlation attacks are launched against the shrinking generator with
Krawczyk’s parameters, LILI-�, DECIMv2 and DECIM-128 to access the
security margin of these ciphers. We show that the shrinking generator
with Krawczyk’s parameters is practically insecure; the initial internal
state of LILI-� can be recovered reliably in 272.5 operations, if 224.1-bit
keystream and 274.1-bit memory are available. This disproves the de-
signers’ conjecture that the complexity of any divide-and-conquer attack
on LILI-� is in excess of 2128 operations and requires a large amount of
keystream. We also examine the main design idea behind DECIM, i.e., to
filter and then decimate the output using the ABSG algorithm, by show-
ing a class of correlations in the ABSG mechanism and mounting attacks
faster than exhaustive search on a 160-bit (out of 192-bit) reduced ver-
sion of DECIMv2 and on a 256-bit (out of 288-bit) reduced version of
DECIM-128. Our result on DECIM is the first nontrivial cryptanalytic
result besides the time/memory/data tradeoffs. While our result con-
firms the underlying design idea, it shows an interesting fact that the
security of DECIM rely more on the length of the involved LFSR than
on the ABSG algorithm.

1 Introduction

Irregular decimation (or irregular clocking) is a well-known strategy in hardware-
oriented stream cipher design. It is commonly believed that such a mechanism
can strengthen the security of the underlying pseudo-random bit generators with
respect to correlation [4, 5, 20, 23, 27] and algebraic attacks [9, 10].

In this paper we consider four well-known stream ciphers using irregular deci-
mation as the main protective mechanism, namely, the shrinking generator (SG)
with Krawczyk’s parameters [8, 19], LILI-$ [7], DECIMv2 and DECIM-128 [1, 2].
So far, the best known attack on the SG with Krawczyk’s parameters is a near-
practical attack in [27]; the best known attack on LILI-$ is a distinguishing at-
tack which requires 2103 bits keystream and 2103 operations [11]. Previous work

M.J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini (Eds.): SAC 2009, LNCS 5867, pp. 449–465, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

450 B. Zhang

[3, 22, 25] on DECIM focused on the initialization phase which does not contain
the ABSG algorithm and there are no known cryptanalytic result on DECIM
exploiting the properties of the ABSG decimation. In order to get better attacks
on these stream ciphers, we first present an improved correlation analysis of var-
ious irregular decimation mechanisms in a unified way, which allows us to get
much larger correlation probabilities in these mechanisms than previously known
results [16, 26]. Then new correlation attacks are launched against the SG with
Krawczyk’s parameters, LILI-$, DECIMv2 and DECIM-128 to precisely access
the security margin of these ciphers. We show that the SG with Krawczyk’s
parameters is practically insecure. We also show that the initial internal state
of LILI-$ can be recovered in 272.5 operations with a success rate of 93.4%,
if 224.1-bit keystream and 274.1-bit memory are available. This disproves the
designers’ conjecture that the complexity of any divide-and-conquer attack on
LILI-$ is in excess of 2128 operations and requires a large amount of keystream.
We also examine the main design idea behind DECIM, i.e., to filter and then
decimate the output using the ABSG algorithm, by showing a class of rather
large correlations in the ABSG mechanism and mounting attacks faster than
exhaustive search on a 160-bit (out of 192-bit) reduced version of DECIMv2 and
on a 256-bit (out of 288-bit) reduced version of DECIM-128. We then extend the
attack to the full length versions and show that our attack, though slower than
exhaustive key search, is 235 times faster than the generic time/memory/data
tradeoffs. This is the first nontrivial cryptanalytic result on DECIM besides the
tricky time/memory/data tradeoffs. While our result confirms the underlying
design idea, it shows an interesting fact that the security of DECIM rely more
on the length of the involved LFSR than on the ABSG algorithm.

This paper is organized as follows. We first introduce the four target stream
ciphers in Section 2. Then an improved correlation analysis of various irregular
decimations in a unified way is presented in Section 3. The application of our
method to the SG with Krawczyk’s parameters, LILI-$, DECIMv2 and DECIM-
128 are given in Section 4 respectively. Finally, some conclusions are provided in
Section 5.

2 Four Irregularly Decimated Stream Ciphers

The shrinking generator (SG) was proposed in [8] at Crypto’93, which is con-
sidered as one of the simplest and strongest stream ciphers currently available.
It consists of two LFSR’s, say the data LFSR B and the control LFSR S. LFSR
B is irregularly decimated by the regularly clocked LFSR S according to the
following rule: the output bit of the data LFSR B is taken iff the current output
bit of the control LFSR S is 1. In [19], Krawczyk suggested to use a SG with the
following parameters, i.e., LFSR B of length 61 and LFSR S of similar length.

The diagrams of LILI and DECIM are presented in Figure 1. In LILI [6, 7],
there are two components, i.e., the data generation subsystem and the clock
control subsystem. The function fc takes two stages from the regularly clocked
LFSR c as inputs and produces an integer cj ∈ {1, 2, 3, 4} which defines the

New Cryptanalysis of Irregularly Decimated Stream Ciphers 451

DECIMLILI

clock control subsystem

LFSR c LFSR d

cf df
jc jz

L

f ABSG

LFSR

()a ()b

L

iu jz

data generation subsystem

Fig. 1. LILI and DECIM

clocking number of LFSR d at time j. After the clocking of LFSR d, some stages
are taken as inputs to a non-linear boolean function fd to generate the keystream
bit. There are two algorithms in this family, i.e., LILI-128 and LILI-$. LILI-$ is
shown to be much stronger than its predecessor LILI-128 in security. We stress
here that our target cipher is not the much weaker version LILI-128, but LILI-$.

DECIM contains a unique component in eSTREAM project [1] and is recog-
nized as interesting additions to the field of stream ciphers.

The ABSG algorithm

Input: (u0, u1, · · ·)
Set: i ← 0 and j ← 0.
Repeat:

1. e ← ui, zj ← ui+1

2. i ← i + 1
3. while (ui = e)i ← i + 1
4. i ← i + 1
5. output zj

6. j ← j + 1

In DECIM, the ABSG algorithm (shown in the block diagram) is used to
generate keystream {zj} by irregularly decimating an input stream {ui} from a
filter generator. Previous work [3, 22, 25] on DECIM focused on the initialization
phase which does not contain the irregular decimation.

DECIM has entered into the third and last phase of the eSTREAM project.
The main reason that DECIM is not selected in the final portfolio is its per-
formance compared to other phase 3 hardware candidates. There are no known
cryptanalytic result on DECIM exploiting the properties of the ABSG algo-
rithm. Since our results on the latter 3 ciphers are structural cryptanalysis, we
only need the relevant parameters of the specific designs, see Table 1.

3 Correlation Analysis of Arbitrary Irregular Decimation
Mechanism

In this section, we present some theoretical results on arbitrary irregular
decimation mechanisms.

452 B. Zhang

Table 1. Parameters of LILI-II, DECIMv2 and DECIM-128 that are relevant for our
structural cryptanalysis

cipher key clock control data generation best linear
size LFSR LFSR approximation

LILI-� 128-bit 128-bit 127-bit 0.513671875
DECIMv2 80-bit - 192-bit 0.5078125

DECIM-128 128-bit - 288-bit 0.5078125

In irregular decimation, there is an input bit stream U = {ui}i≥0 and a
selection function or rule D : i → di, unknown to the attacker, which defines
a nonnegative integer sequence. By applying D to {ui}, another stream Z =
{zi}i≥0 with zi = u∑ i

t=0 dt
is obtained. In practice, the nonnegative integer

sequence {di}i≥0 may be dependent on {ui}, as in the ABSG case.
The starting point of our analysis is the following observation, i.e., any irreg-

ular decimation mechanism can be converted into a shrinking-like mechanism.
More precisely, given an irregular decimation mechanism, we can construct a
bit stream {si}i≥0 as follows: for each i, let s∑ i

t=0 dt
= 1, otherwise let sj = 0.

If we regard {ui}i≥0 as the data source bits, then we have a unified shrinking-
like representation of different irregular decimation mechanisms. Please see the
following example.

Example 1. Consider U = {0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0,
1, 1, 1, 0}. If the ABSG algorithm is applied, we have

0, 1, 0︸ ︷︷ ︸
1

, 1, 1︸︷︷︸
1

, 1, 0, 0, 0, 0, 0, 1︸ ︷︷ ︸
0

, 0, 0︸︷︷︸
0

, 1, 0, 0, 0, 0, 1︸ ︷︷ ︸
0

, 1, 0, 1︸ ︷︷ ︸
0

, 0, 1, 1, 1, 0︸ ︷︷ ︸
1

. (1)

The output is Z = {1, 1, 0, 0, 0, 0, 1} and the corresponding {di}i≥0 is {1, 3, 2, 7, 2,
6, 3}. If we construct a stream {si}i≥0 as {0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,
0, 0, 0, 1, 0, 0, 1, 0, 0, 0}, then the shrinking-like representation is{

si : 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0
ui : 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0

It can be easily checked that the output of the shrinking process is {1, 1, 0, 0, 0,
0, 1}. �

The advantage of the above viewpoint is that we need not know the actual
values of {si} when determining the data source bits. What we really need is
the probabilistic distribution of {si}, which can be determined according to the
irregular decimation mechanism by experiments or by theoretical analysis. In
the following, we always consider the shrinking-like representation and assume
that the distribution of {si} is known.

Denote the input to the irregular decimation by {ui} and the output keystream
by {zj}. It follows that {ui} is the data stream in the shrinking-like represen-
tation, but we do not know the corresponding {si}. Let p1 = P (si = 1) and

New Cryptanalysis of Irregularly Decimated Stream Ciphers 453

p0 = P (si = 0), then the index interval in {zj} that ui probably falls into can be
determined, i.e., if ui (i ≥ 1) (without loss of generality, we assume that s0 = 1
corresponds to u0) was selected into the keystream, then we have ui = z∑ i−1

t=0 st
.

By the central limit theorem, we have
∑ i−1

t=0 st−i·p1√
i·p0p1

→ N (0, 1), where N (0, 1)
is the standard normal distribution. Thus, the probability that the index of
ui in the keystream belongs to the interval Iα = [ip1 − α · √i · p1p0, ip1 + α ·√

i · p1p0] is

PIα = P (
i−1∑
t=0

st ∈ Iα) =
1√
2π

∫ α

−α

e−
x2
2 dx.

Let ni be the closest integer to 2α
√

ip1p0−1
2 , then there are approximately 2ni +1

possible indices in the interval Iα. Thus, we can count the number of times that
0 and 1 appear in Iα and make a majority poll to construct a prediction stream
{ũi} satisfying P (ũi = ui) > 0.5. More precisely, let Nj = #{zi|zi = j, i ∈ Iα}
for j ∈ {0, 1} and denote by b̄ the complement of a bit b, then if Nj > Nj̄ ,
let ũi = j, otherwise let ũi = j̄. Thus, we have a predicted stream {ũi} of
{ui} satisfying the following theorem, which is a generalization of the results in
[12, 26].

Theorem 1. For any irregular decimation mechanism, there always exists a
correlation between {ũi} and {ui}, which is given by

P (ũi = ui) = 0.5 +
p1PIα

22ni+1

(
2ni

ni

)
. (2)

Theorem 1, proved in Appendix A, depicts the basic weakness in any irregular
decimation mechanism. It is worth noting that in (2), the only a priori knowledge
is the distribution of {si}, other elements such as PIα and ni are determined by
the choice of α. Besides, from (2), we have 0.5 < P (ũi = ui) ≤ 0.5 + p1

2 for
any i ≥ 0, where the upper bound is achieved when i = 0. This fact means
that the best correlation we can get is determined by the concrete irregular
decimation algorithm itself. On the other hand, Theorem 1 shows that P (ũi =
ui) decreases with i increasing. This is also the bottleneck of previous methods in
[12, 16, 26]. To get the best correlation maxαP (ũi = ui), we can pre-compute the
optimal values of α for each i. Table 2 lists the average correlations,

∑i−1
j=0 P (ũj =

uj)/i, we get for some i using the optimal values of α corresponding to the two
decimation methods in LILI and DECIM. We made experiments to verify the
theoretical values in Table 2. In LILI-$, when i = 10000, we get the average
correlation of 0.518900 for 220 randomly chosen initial states of LFSR c and
LFSR d, which is even better than the theoretical estimate.

Table 2. The average biases for some i using the optimum values of α

i 1000 2000 10000 20000 40000 140000

LILI 0.0318732 0.0253801 0.0158841 0.0131732 0.010976 0.00794848
ABSG 0.0273437 0.0217052 0.0135262 0.0112084 0.00933383 0.00675565

454 B. Zhang

Remarks. Theorem 1 is achieved based on the premise that each bit in Iα has
the same probability of being correct. In fact, the probability that ui = zr is
P (ui = zr) =

(
i
r

)
pr+1
1 pi−r

0 , which are not the same for different r. Thus, at
least in theory, for a given index interval Iα, it is better to use the following
measure to make a decision: ∆i =

∑
zr∈Iα

P (zr = ui)(1 − zr)−
∑

zr∈Iα
P (zr =

ui)zr =
∑

zr∈Iα

(
i
r

)
pr+1
1 pi−r

0 (1−zr)−
∑

zr∈Iα

(
i
r

)
pr+1
1 pi−r

0 zr. If ∆i > 0, let ũi = 0;
otherwise let ũi = 1. However, in this case, we have to compute a large number of
binomial coefficients for constructing {ũi}. To our knowledge, the most efficient
method for computing binomial coefficient is by the recursion

(
i
r

)
=

(
i

r−1

)
+

(
i−1
r

)
,

which can be computed in about i2 time. While in Theorem 1, the time for
making a decision is at most linear in i. Besides, the probability that we made
a correct decision, P (ũi = ui), under the theoretical method is not significantly
higher than that in Theorem 1. Our experimental results reveal that the average
difference between the two probabilities under the two methods are very small.
For example, the gain by the latter method becomes lower than 10−4 for i ≥ 216.
Therefore, we adopt the method in Theorem 1.

Next, we take a closer look at the method in Theorem 1. For each ũi, the
validity of the majority poll heavily depends on the distribution of 0 and 1 in
the index interval Iα. Denote by ni,0 and ni,1 the number of 0’s and 1’s in Iα,
respectively. Then it is easy to see that the higher the absolute value |ni,0−ni,1|,
the higher the prediction reliability for ũi. This motivates us to make a prediction
decision only at those positions where |ni,0−ni,1| is larger than a threshold value
θ and otherwise we ignore that position. That is, let{

ŭi = 0, if ni,0 − ni,1 ≥ θ
ŭi = 1, if ni,1 − ni,0 ≥ θ.

(3)

In this way, we will get a prediction stream {ŭi} at non-consecutive positions,
e.g., (ŭ0, ∗, ∗, · · · , ∗, · · · , ŭi, ∗, ŭi+2, ∗, · · ·). The following theorem shows that the
correlation between {ŭi} and {ui} can be guaranteed.

Theorem 2. For any irregular decimation mechanism, if we construct {ŭi} fol-
lowing (3), then the correlation between {ŭi} and {ui} for positions i satisfying
|ni,1 − ni,0| ≥ θ is lower bounded by

P (ŭi = ui) ≥ 0.5 + PIα ·
θ

2(2ni + 1)
. (4)

Theorem 2, proved in Appendix B, shows that we can make P (ŭi = ui) greater
than or equal to a value determined by both α and θ. Though we can set a large
value of θ and a large size of Iα to get a good enough correlation, the probability
that we can find such a segment in the keystream is low. There is a tradeoff
between P (ŭi = ui) and the number of points that having this correlation. This
tradeoff is important for the application of Theorem 2.

For simplicity, we denote the prediction stream by {ũi} hereafter. In practice,
we first set a pointer value iT and for i > iT , we use (3) to construct {ũi}; while

New Cryptanalysis of Irregularly Decimated Stream Ciphers 455

for i ≤ iT , we use Theorem 1 to construct {ũi}. Let �x� be the smallest integer
greater than or equal to x and �x� be the biggest integer less than or equal to
x. For i ≥ iT , let Zi = (zti , zti+1, · · · , zti+2ni) with ti = �ip1−α

√
ip1p0�. In (3),

we actually search for such Zi that

WH(Zi) ≥ �2ni + 1 + θ

2
� or WH(Zi) ≤ �2ni + 1− θ

2
� (5)

holds, where WH(·) is the hamming weight of the corresponding vector. Let
Ai = {Zi|WH(Zi) ≥ � 2ni+1+θ

2 � or WH(Zi) ≤ � 2ni+1−θ
2 �}. Then the probability

that (5) occurs around the position i is the proportion between the cardinality
of |Ai| and all the possible values of Zi, which is given approximately by

Pi =
2 ·∑� 2ni+1−θ

2 �
j=0

(2ni+1
j

)
22ni+1 → 2

∫ � 2ni+1−θ
2 �−µi

σi

−µi
σi

1√
2π

e−
x2
2 dx, (6)

where µi = ni + 0.5 and σi =
√

2ni+1
2 . Since Pj is very close to Pi if j is close

to i, for simplicity, we use Pi+� i
2 �

as the average value of Pi in the interval
(i, 2i]. Accordingly, let Ni be the number of points satisfying (3) in (i, 2i] and
we choose the same value of α for the points in (i, 2i], then we have i ·Pi+� i

2 � ≥
Ni ⇒ Pi+� i

2 �
≥ Ni

i . This equation indicates that by properly choosing θ, there
are at least Ni positions constructed in (i, 2i] satisfying (3). If {zi} is of length
Nz, then by dividing the whole index interval (iT , Nz] into several segments
(iT , 2iT] ∪ (2iT , 4iT] ∪ · · · ∪ (2q−1iT , 2qiT] with q = �log2(Nz − α

√
Nzp1p0)�, a

prediction stream {ũi}i≥iT is constructed segment by segment. In each segment,
the average correlation is determined by Theorem 3, proved in Appendix C.

Theorem 3. In (i, 2i], the average correlation P (ũi = ui)|(i,2i] can be approx-

imated by 0.5 + PIα · θ
4 , where θ =

√
2ni + 1 · β with Pi = 2

∫ β

−∞
1√
2π

e−
x2
2 dx

specified in (6).

The validity of Theorem 3 is illustrated in Table 3-6. For the SG, LILI-$,
DECIMv2 and DECIM-128, we give the theoretical estimates given by
Theorem 3 and the corresponding experimental results. For each bias ε in Table
3-6 and the corresponding Ni, we verified the result by randomly assigning the
initial state of the cipher 220 times. We see that the simulation results are very
close to the theoretical values.

As we know, the correlations given in Table 3-6 are the largest correlations
reported for the four stream ciphers for the corresponding keystream length. For

0

iz

Fig. 2. Constructing {ũi} in two directions

456 B. Zhang

Table 3. The theoretical parameters used for constructing {ũi} in SG and the corre-
sponding experimental values

interval α θ Pi+� i
2 � ε(Th 3) ε(found) Ni(Th 3) Ni(found)

(0, 211] 1.35 11 2−3 0.0492344 0.059050 28 27.87

(211, 212] 1.35 14 2−3 0.0384059 0.060397 28 27.71

(212, 213] 1.35 20 2−4 0.0384572 0.060687 28 27.60

(213, 214] 1.36 27 2−5 0.0369315 0.055226 28 28.06

(214, 215] 1.345 36 2−6 0.035035 0.054911 28 27.53

(215, 216] 1.36 43 2−6 0.0293113 0.037803 29 28.95

(216, 217] 1.37 51 2−6 0.0245331 0.028811 210 29.95

(217, 218] 1.42 61 2−6 0.0205909 0.024350 211 211.12

(218, 219] 1.43 73 2−6 0.0172385 0.020377 212 212.06

(219, 220] 1.42 87 2−6 0.014522 0.017915 213 212.94

(220, 221] 1.42 103 2−6 0.0122084 0.013745 214 214.03

(220, 221] 1.42 122 2−8 0.0144604 0.015985 212 212.01

(221, 222] 1.39 133 2−7 0.0112604 0.012340 214 213.99

Table 4. The theoretical parameters used for constructing {ũi} in LILI-� and the
corresponding experimental values with α = 1.41

interval θ Pi+� i
2 � ε(Th 3) ε(found) Ni(Th 3) Ni(found)

(0, 211] 11 2−3 0.0514225 0.0541849 28 27.95

(211, 212] 17 2−4 0.0464443 0.0550815 27 27.01

(212, 213] 23 2−5 0.044389 0.0557402 27 27.01

(213, 214] 31 2−6 0.042073 0.045829 27 26.86

(214, 215] 40 2−7 0.038777 0.045625 27 27.14

(215, 216] 51 2−8 0.0349467 0.037282 27 27.49

(216, 217] 65 2−9 0.0314334 0.042365 27 27.19

(217, 218] 82 2−10 0.0281402 0.038911 27 27.12

Table 5. The theoretical parameters used for constructing {ũi} in DECIMv2 and the
corresponding experimental values with α = 1.41

interval θ Pi+� i
2 � ε(Th 3) ε(found) Ni(Th 3) Ni(found)

(0, 212] 12 2−3 0.0413833 0.042008 29 28.78

(212, 213] 16 2−3 0.0320557 0.036443 29 28.89

(213, 214] 19 2−3 0.0268251 0.026698 210 210.11

(214, 215] 23 2−3 0.0231502 0.021909 211 211.01

(215, 216] 27 2−3 0.0192538 0.037282 212 212.05

(216, 217] 32 2−3 0.0161431 0.015987 213 212.89

(217, 218] 38 2−3 0.013526 0.013160 214 213.90

(218, 219] 45 2−3 0.0113371 0.011347 215 215.02

the SG, our results are at least 3.6 times larger than those reported in [16]. These
large correlations remove the barrier (that the correlation decrease quickly with
the keystream length increasing) identified by previous research [16, 26] to a

New Cryptanalysis of Irregularly Decimated Stream Ciphers 457

Table 6. The theoretical parameters used for constructing {ũi} in DECIM-128 and
the corresponding experimental values with α = 1.41

interval θ Pi+� i
2 � ε(Th 3) ε(found) Ni(Th 3) Ni(found)

(211, 212] 14 2−3 0.0392682 0.042436 28 27.69

(212, 213] 16 2−3 0.0320557 0.034141 29 28.89

(213, 214] 27 2−5 0.0381199 0.048058 28 27.93

(214, 215] 35 2−6 0.0352286 0.054168 28 28.12

(215, 216] 46 2−6 0.0328027 0.047282 28 27.76

(216, 217] 55 2−7 0.027746 0.031999 29 29.29

(217, 218] 65 2−7 0.0231366 0.026944 210 210.137

large extent. Finally, we also need the following theorem to actually construct
{ũi} in our attack.

Theorem 4. If we choose an intermediate time point to be 0 and construct a
prediction stream {ũi} in two directions, as shown in the Figure 2. Then {ũi}
we get will be of double length, while the average correlation will be the same
value as if only half of the keystream (one direction) is employed.

Theorem 4 is just an observation which can be verified easily. Note that the
results in Table 3-6 are only for one direction.

4 Applications

In this section, we use the theoretical results in Section 3 to launch new attacks
against the four target ciphers. We need the following notations of the decoding
algorithm in [27] involved in our attack.

– L is the length of the involved LFSR.
– k (k < L) is the number of initial state bits to be determined first.
– t is the weight of the parity-checks.
– n is the number of the coefficient patterns appearing in all the parity-checks.

4.1 The Shrinking Generator

For the SG with Krawczyk’s parameters, we use the correlations specified in
Table 3 to mount a correlation attack as follows. Assume we know the feedback
polynomial of the data LFSR. We have (27.87 + 27.71 + 27.60 + 28.06 + 27.53 +
28.95 +29.95+211.12 +212.06 +212.94 +212.01) ·2 = 42226 nonconsecutive bits of ũi

associated with ui by the relation P (ũi = ui) = (27.87·0.559050+27.71·0.560397+
27.60·0.560687+28.06·0.555226+27.53·0.554911+28.95·0.537803+29.95·0.528811+
211.12 ·0.524350+212.06 ·0.520377+212.94 ·0.517915+212.01 ·0.515985)/(42226) =
0.521744. In our case, L = 61 and we choose the following decoding parameters:

k = 25, n = 10 and t = 4. We construct 10 · (
42226

4)
261−25 ≈ 224.21 parity-checks with a

time complexity of 422262 = 230.74 operations [20, 27]. Thus, according to [27],

458 B. Zhang

the time and memory complexities for recovering the internal sate of the data

LFSR with a success rate 93% is (225 · 25 + (42226
4)

261−25 · 29) · 10 ≈ 233.1 operations

and 225 · 32 + 10 · (42226
4)

261−25 · (4 · log242226 + 61) ≈ 231.7-bit. From Table 3, the
data complexity is 2 · 221 + 2 · 1.42 ·

√
221 · 0.25 = 222.1 bits. Note that the attack

given in [27] has underestimated the pre-computation complexity, i.e., the true
complexity is 239.9 operations instead of 233.9 operations according to [20]. Thus
our attack is the best known attack against the SG with Krawczyk’s parameters
and shows that it is practically insecure. We have implemented the attack in
C on a computer running under linux. On average, it takes tens of minutes to
recover the state of the data LFSR. This is the first reported experimental result
on the SG with Krawczyk’s parameters.

4.2 LILI-�
First note that it is equivalent for the keystream generation if we put the irreg-
ular clocking after filtering the regularly clocked LFSR d output. Thus, we can
combine {ũi} with the linear approximations of fd to get linear approximations
on the initial state bits of the LFSR d. First look at the clock control subsystem.
We have cj = fc(y1, y2) = 2y1+y2+1, where y1 and y2 are taken from two stages
of LFSR c. If we consider the shrinking-like representation in Section 3 and let
s0 = 1, s∑ i−1

j=0 cj
= 1 for i ≥ 1 and other si’s equal to 0, then the distribution of

{si} is P (si = 1) = 1∑ 4
j=1

1
4 j

= 0.4 and P (si = 0) = 0.6 from the definition of fc.

We have computed the Walsh transform of fd in LILI-$, which is listed in
Table 7.The Walsh transform values marked with a star are used in our attack,
which give W = 236 + 552 + 494 + 364 + 100 + 272 + 78 + 384 = 2480 linear
approximations for each bit of ũi. We first restore the target state of LFSR d,
then the corresponding state of LFSR c can be recovered easily, e.g., using the
method from [10]. From Table 7, the average correlation between the regularly
clocked output of fd and its input is (3·236

256 + 13·100
1024 + 1·552

128 + 5·494
512 + 11·272

1024 + 7·78
512 +

9·364
1024 + 7·384

1024)/W = 0.50926789. For ũi, we set iT = 0 and choose α = 1.41 which
corresponds to PIα = 0.84146 for all the positions in our estimates. From Table
4 and 8, the data complexity is 2 · 223 + 2 · 1.41 · √223 · 0.4 · 0.6 = 224.1 bits. We
divide the index segment (0, 223] into 13 intervals. The corresponding parameters
are listed in Table 4 and 8. From Table 4 and 8, there are 2 · 27 · 14 = 3584
bits of ũi constructed and the average correlation between {ũi} and {ui} is
0.5+28·0.0514225+27·(0.0464443+0.042073+0.038777+0.0349467+0.0314334+

Table 7. The Walsh spectrum of the function fd in LILI-�

Value Number Value Number Value Number
0 280 13

512

∗ 100 11
512

∗ 272
3

128

∗ 236 5
512

256 7
256

∗ 78
1

512
28 3

512
132 7

512

∗ 384
3

256
482 1

64

∗ 552 1
128

276
1

256
162 5

256

∗ 494 9
512

∗ 364

New Cryptanalysis of Irregularly Decimated Stream Ciphers 459

Table 8. The parameters for constructing {ũi} in LILI-� for longer keystream length

interval θ ε2 Pi+� i
2 � Ni

(218, 219] 103 0.0249915 2−11 27

(219, 220] 129 0.0221166 2−12 27

(220, 221] 160 0.0194221 2−13 27

(221, 222] 199 0.0170798 2−14 27

(222, 223] 246 0.0149264 2−15 27

0.0281402 + 0.0249915+ 0.0221166 + 0.0194221 + 0.0170798 + 0.0149264) /(27 ·
14) = 0.5333989. The folded noise in the final linear approximation is 0.5 +
2 · 0.0333989 · 0.00926789 = 0.500619. The decoding parameters for LILI-$ are

t = 6, k = 60 and n = 16. We construct 16 · (
2·14·27 ·W

6)
2127−60 ≈ 266.1 parity-checks with

a time complexity of (2 · 14 · 27 ·W)3 = 269.3 operations. Thus, according to [27],
the time and memory complexities for recovering the internal sate of LFSR d

with a success rate 93.44% is (260 · 60 + (2·14·27·W
6)

2127−60 · 64) · 16 ≈ 272.32 operations

and 260 · 32 + 16 · (2·14·27·W
6)

2127−60 · (6 · log2(2 · 14 · 27 · W) + 127) ≈ 274.1-bit. The
total time complexity of our attack is 272.32 + 269.3 ≈ 272.5 operations, which
is much faster than the exhaustive search for the 128-bit key. Compared to the
distinguishing attack in [11], our attack is a state recovery attack with the 279

times smaller data complexity and the 231 times smaller time complexity. We
have implemented the attack on a reduced version of LILI-$, (LFSR d is of
40-bit), on the same computer as in the SG case. It takes few minutes to recover
the state of the 40-bit LFSR d with 216.1-bit keystream.

4.3 DECIMv2 and DECIM-128

The attack routine is the same as that in LILI-$. To construct {si} for the ABSG
mechanism, we let the bit pair corresponding to (ū, ū) be (10) and let the bit
string corresponding to (ū, ui, ū) be (010 · · ·0) of length i+2. Note that we have
more choices other than (010 · · ·0) here, e.g., we can let it to be (001 · · ·0). It has
no effect on the output keystream. For simplicity, we let (ū, ui, ū) be (010 · · ·0).
Since 1∑+∞

i=1
(1+i)

2i

= 1
3 , we have P (si = 1) = 1

3 and P (si = 0) = 2
3 in the ABSG

case. In DECIM, the Walsh spectrum of the filter function f has W = 4096
points having the value 1

64 , others are all 0.
We also set iT = 0 and α = 1.41. First consider the 160-bit reduced version

of DECIMv2 without buffer. From Table 5 and 9, the data complexity is 2 ·
234 + 2 · 1.41 ·

√
234 · 1

3 · 2
3 = 235.1 bits. We divide the index segment (0, 234] into

23 intervals. The corresponding parameters are listed in Table 5 and Table 9.
From Table 5 and 9, there are 2 · (29 +

∑21
i=9 2i + 222 · 8 + 224) = 54525952 bits

of ũi constructed and the average correlation between {ũi} and {ui}, shown in
Appendix D, is 0.50267488. The folded noise is 0.5+2 ·0.0078125 ·0.00267488 =
0.500042. The decoding parameters are t = 4, k = 66 and n = 18. We construct

460 B. Zhang

Table 9. The parameters for constructing {ũi} in DECIMv2

interval θ ε2 Pi+� i
2 � Ni interval θ ε2 Pi+� i

2 � Ni

(219, 220] 53 0.0094566 2−3 216 (227, 228] 296 0.00330107 2−5 222

(220, 221] 63 0.0079407 2−3 217 (228, 229] 470 0.00311483 2−6 222

(221, 222] 75 0.00668815 2−3 218 (229, 230] 517 0.00288294 2−7 222

(222, 223] 89 0.00561395 2−3 219 (230, 231] 667 0.00263001 2−8 222

(223, 224] 106 0.00472731 2−3 220 (231, 232] 851 0.00237274 2−9 222

(224, 225] 126 0.00397451 2−3 221 (232, 233] 1018 0.00212532 2−10 222

(225, 226] 149 0.00332285 2−3 222 (233, 234] 1034 0.00167847 2−9 224

(226, 227] 216 0.00340647 2−4 222

Table 10. The parameters for constructing {ũi} in DECIM-128

interval θ ε2 Pi+� i
2 � Ni interval θ ε2 Pi+� i

2 � Ni

(0, 227] 324 0.0062582 2−9 218 (231, 232] 665 0.00185414 2−6 225

(227, 228] 158 0.00176206 2−2 225 (232, 233] 869 0.00171327 2−7 225

(228, 229] 251 0.0019793 2−3 225 (233, 234] 1121 0.00156276 2−8 225

(229, 230] 362 0.00201862 2−4 225 (234, 235] 1431 0.00141063 2−9 225

(230, 231] 498 0.00196364 2−5 225

18 · (
2·212·(29+

∑21
i=9 2i+222·8+224)

4)
2160−66 ≈ 256.22 parity-checks with a time complexity of

(2 ·212 ·(29+
∑21

i=9 2i +222 ·8+224)2 = 277.41 operations. Thus, according to [27],
the time and memory complexities for recovering the internal sate of the reduced
length LFSR with a success rate 92% is (266 ·66+277.41 ·70)·18 ≈ 276.3 operations
and 266 · 32 + 18 · 277.41 · (8 · log2(29 +

∑21
i=9 2i + 222 · 8 + 226) + 160) ≈ 271.3-bit.

For the 256-bit reduced version of DECIM-128 without buffer, we set iT = 0

and α = 1.41. The data complexity is 2 · 235 + 2 · 1.41 ·
√

235 · 1
3 · 2

3 = 236.1

bits. We divide the index segment (0, 235] into 9 intervals. The corresponding
parameters are listed in Table 10. From Table 10, there are 2 · (225 · 8 + 218) =
537395200 bits of ũi constructed and the average correlation between {ũi} and
{ui} is 0.5 + 0.0062582 · 218 + 0.00176206 · 225 + 0.0019793 · 225 + 0.00201862 ·
225 + 0.00196364 · 225 + 0.00185414 · 225 + 0.00171327 · 225 + 0.00156276 · 225 +
0.00141063 · 225)/(225 · 8 + 218) = 0.50178741. The folded noise in the final
linear approximation is 0.5+2 ·0.0078125 ·0.00178741 = 0.500028. The decoding

parameters are t = 6, k = 112 and n = 18. We construct 18· (
2·(225 ·8+218)

6)
2256−112 ≈ 292.53

parity-checks with a time complexity of (2 · (225 · 8 + 218))3 = 2123.1 operations.
Thus, according to [27], the time and memory complexities for recovering the
internal sate of the reduced length LFSR in DECIM-128 with a success rate
73.4% is (2112 · 112 + 292.53 · 118) · 18 ≈ 2122.98 operations and 2112 · 32 + 18 ·
292.53 ·(6 · log22 ·(225 ·8+218)+256) ≈ 2117 -bit. We can extend the above attacks
to the full versions of DECIM by guessing the left 32-bit of the state. The results
and comparisons with the time/memory/tradeoffs are given in Appendix E. Our
results on DECIM confirms the underlying design idea, but shows an interesting

New Cryptanalysis of Irregularly Decimated Stream Ciphers 461

fact that the security of DECIM rely more on the length of the involved LFSR
than on the ABSG algorithm. We implemented the attack on a reduced version
of DECIM with 40-bit LFSR. It takes several minutes to restore the state of the
LFSR with 218.1-bit keystream.

5 Conclusions

We presented an improved correlation analysis of arbitrary irregular decimation
mechanism and demonstrated the best known attacks on four well-known stream
ciphers using irregular decimation. We believe that our correlation analysis can
be used to mount efficient attacks against other stream ciphers using irregular
decimation, e.g. the alternating step generator and the self-shrinking generator.

Acknowledgements. The author was with State Key Laboratory of Infor-
mation Security, Institute of Software, Chinese Academy of Sciences, Beijing,
100190, China. This paper is supported by the key programm of the National
Natural Science Foundation of China (Grant No. 60833008) and the general
programm of the National Natural Science Foundation of China (Grant No.
60603018).

References

1. Babbage, S., De Cannière, C., Canteaut A., et al.: The eSTREAM portfolio,
http://www.ecrypt.eu.org/stream/portfolio.pdf

2. Berbain, C., Billet, O., Canteaut, A., Courtois, N., et al.: DECIMv2. In: Robshaw,
M.J.B., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 140–151.
Springer, Heidelberg (2008)

3. Berbain, C., Gouget, A., Sibert, H.: Understanding Phase Shifting Equivalent Keys
and Exhaustive Search, http://eprint.iacr.org/2008/169.ps.gz

4. Canteaut, A., Trabbia, M.: Improved Fast Correlation Attacks Using Parity-Check
Equations of Weight 4 and 5. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 573–588. Springer, Heidelberg (2000)

5. Chose, P., Joux, A., Mitton, M.: Fast Correlation Attacks: An Algorithmic Point of
View. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 209–221.
Springer, Heidelberg (2002)

6. Dawson, E., Clark, A., Golić, J., Fuller, J., et al.: The LILI-128 Keystream Gener-
ator. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 248–261.
Springer, Heidelberg (2001)

7. Clark, A., Dawson, E., Fuller, J., Golić, J., et al.: The LILI-� Keystream Generator.
In: Batten, L.M., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 25–39.
Springer, Heidelberg (2002)

8. Coppersmith, D., Krawczyk, H., Mansour, Y.: The Shrinking Generator. In: Stin-
son, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 22–39. Springer, Heidelberg
(1994)

9. Courtois, N.T., Meier, W.: Algebraic Attacks on Stream Ciphers with Linear Feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003)

http://www.ecrypt.eu.org/stream/portfolio.pdf
http://eprint.iacr.org/2008/169.ps.gz

462 B. Zhang

10. Courtois, N.T.: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Hei-
delberg (2003)

11. Englund, H., Johansson, T.: A New Distinguisher for Clock Controlled Stream
Ciphers. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp.
181–195. Springer, Heidelberg (2005)

12. Ekdahl, P., Johansson, T.: Predicting the Shrinking Generator with Fixed Con-
nections. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 330–344.
Springer, Heidelberg (2003)

16. Golić, J.D., Mihaljević, M.j.: A Generalized Correlation Attack on a Class of
Stream Ciphers Based on the Levenshtein Distance. Journal of Cryptology 3(3),
201–212 (1991)

14. Golić, J.D.: Embedding and Probabilistic Correlation Attacks on Clocked-
Controlled Shift Registers. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS,
vol. 950, pp. 230–243. Springer, Heidelberg (1995)

15. Golić, J.D.: Towards Fast Correlation Attacks on Irregularly Clocked Shift Regis-
ters. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921,
pp. 248–262. Springer, Heidelberg (1995)

16. Golić, J.D.: Correlation Analysis of the Shrinking Generator. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 440–457. Springer, Heidelberg (2001)

17. Gouget, A., Sibert, H., Berbain, C., Courtois, N.T., Debraize, B., Mitchell, C.:
Analysis of the Bit-Search Generator and Sequence Compression Techniques.
In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 196–214.
Springer, Heidelberg (2005)

18. Gouget, A., Sibert, H.: How to Strengthen Pseudo-Random Generators by Using
Compression. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
129–146. Springer, Heidelberg (2006)

19. Krawczyk, H.: The Shrinking Generator: Some Practical Considerations. In: Pre-
neel, B. (ed.) FSE 1994. LNCS, vol. 809, pp. 45–46. Springer, Heidelberg (1994)

20. Johansson, T., Jönsson, F.: Fast Correlation Attacks through Reconstruction of
Linear Polynomials. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp.
300–315. Springer, Heidelberg (2000)

21. Krause, M.: BDD-Based Cryptanalysis of Keystream Generators. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 222–237. Springer, Heidelberg
(2002)

22. Pasalic, E.: Key Differentiation Attacks on Stream Ciphers,
http://eprint.iacr.org/2008/443.pdf

23. Meier, W., Staffelbach, O.: Fast Correlation Attacks on Certain Stream Ciphers.
Journal of Cryptology, 159–176 (1989)

24. Molland, H., Helleseth, T.: An Improved Correlation Attack Against Irregular
Clocked and Filtered Keystream Generators. In: Franklin, M. (ed.) CRYPTO 2004.
LNCS, vol. 3152, pp. 373–389. Springer, Heidelberg (2004)

25. Nakagami, H., Teramura, R., Ohigashi, T., Kuwakado, H.: A Chosen IV Attack
Using Phase Shifting Equivalent Keys Against Decimv2 ,
http://eprint.iacr.org/2008/128.pdf

26. Zhang, B., Wu, H., Feng, D., Bao, F.: A Fast Correlation Attack on the Shrink-
ing Generator. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 72–86.
Springer, Heidelberg (2005)

http://eprint.iacr.org/2008/443.pdf
http://eprint.iacr.org/2008/128.pdf

New Cryptanalysis of Irregularly Decimated Stream Ciphers 463

27. Zhang, B., Feng, D.: An Improved Fast Correlation Attack on Stream Ciphers. In:
Avanzi, R., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 214–227.
Springer, Heidelberg (2009)

A Proof of Theorem 1

Proof. Note that an irregular decimation mechanism is characterized by the
distribution of {si} in the shrinking-like representation. From the shrinking-like
representation and the majority poll, we have

P (ũi = ui) =
1∑

j=0

P (si = j)P (ũi = ui|si = j) = 0.5p0 + p1P (ũi = ui|si = 1)

(7)

= 0.5p0 + p1
{
P (

i−1∑
j=0

sj /∈ Iα|si = 1)P (ũi = ui|
i−1∑
j=0

sj /∈ Iα, si = 1)

+ P (
i−1∑
j=0

sj ∈ Iα|si = 1)P (ũi = ui|
i−1∑
j=0

sj ∈ Iα, si = 1)
}

= 0.5p0 + 0.5p1(1− PIα) + p1PIαP (ũi = ui|
i−1∑
j=0

sj ∈ Iα, si = 1),

where

P (ũi =ui|
i−1∑
j=0

sj ∈ Iα, si =1)=
1∑

b=0

P (ui =b)P (ũi =ui|ui = b,

i−1∑
j=0

sj ∈ Iα, si = 1)

(8)

= 2 · 0.5
2ni∑

j=ni

(
2ni

j

)
1

22ni
=

1
2

+
1

22ni+1

(
2ni

ni

)
.

Substituting (8) into (7), we have (2). �

B Proof of Theorem 2

Proof. First note that from (3) and ni,0 + ni,1 = 2ni + 1, we have

max(ni,0, ni,1) ≥ 2ni + 1 + θ

2

464 B. Zhang

for positions satisfying |ni,1−ni,0| ≥ θ. Then according to the majority poll and
the shrinking-like representation, we have

P (ŭi = ui) = P (ŭi = ui,

i−1∑
j=0

sj /∈ Iα) + P (ŭi = ui,

i−1∑
j=0

sj ∈ Iα) (9)

=P (
i−1∑
j=0

sj /∈ Iα)P (ŭi =ui|
i−1∑
j=0

sj /∈ Iα)+P (
i−1∑
j=0

sj ∈ Iα)P (ŭi =ui|
i−1∑
j=0

sj ∈ Iα)

=
1
2
· (1− PIα) + PI2 · P (ŭi = ui|

i−1∑
j=0

sj ∈ Iα)

=
1
2
· (1− PIα) + PI2 ·

max(ni,0, ni,1)
2ni + 1

≥ 1
2
· (1− PIα) + PI2 ·

2ni+1+θ
2

2ni + 1
= 0.5 + PIα ·

θ

2(2ni + 1)
. �

C Proof of Theorem 3

Proof. From Theorem 2, in the interval (i, 2i], we have

P (ũi = ui)|(i,2i] ≥
∑

j∈(i,2i](0.5 + PIα · θ
2(2nj+1))

Ni
(10)

≥ 0.5 +
1
Ni

∑
j∈(i,2i]

(PIα ·
θ

2(2nj + 1)
)

= 0.5 + PIα ·
θ

2

∑
j∈(i,2i]

(
1

Ni(2nj + 1)
),

where
∑

j∈(i,2i] only sums over the positions satisfying (3). The precise analysis
of

∑
j∈(i,2i](

1
Ni(2nj+1)) is complicated in theory. Instead, we use the numerical

experiments to determine the value of this term. We made experiments to deter-
mine this value in the context of the shrinking generator, LILI-$, DECIMv2 and
DECIM-128, it turns out that we can take this value as 0.5. This is illustrated
by our experimental results, performed 220 times for each ε and Ni, which are
given in Table 3-6.

In addition, note that the probability in (6) can be rewritten as

2
∫ � 2ni+1−θ

2 �−µi
σi

−µi
σi

1√
2π

e−
x2
2 dx ≈ 2

∫ � 2ni+1−θ
2 �−µi

σi

−∞

1√
2π

e−
x2
2 dx (11)

for ni ≥ 50. This fact determines the choice of β. �

New Cryptanalysis of Irregularly Decimated Stream Ciphers 465

D Average Correlation in 160-Bit Reduced Version of
DECIMv2

The average correlation between {ũi} and {ui} is 0.5+(0.0413833·29+0.0320557·
29 +0.0268251 ·210+0.0231502 ·211+0.0192538 ·212+0.0161431 ·213+0.013526 ·
214+0.0113371·215+0.0094566·216+0.0079407·217+0.00668815·218+0.00561395·
219 + 0.00472731 · 220 + 0.00397451 · 221 + 0.00332285 · 222 + 0.00340647 · 222 +
0.00330107·222+0.00311483·222+0.00288294·222+0.00263001·222+0.00237274·
222+0.00212532·222+0.00167847·224)/(29+

∑21
i=9 2i+222 ·8+224) = 0.50267488.

E Attack Complexity on Full Length Versions of DECIM
and Comparisons with TMD

Note that the complexities of the TMD attack are only rough estimates that
ignore the logarithmic factors, while the complexities of our attack are much
more accurate values. Our attack is at least 235 times faster than the TMD
attack in total complexity, while with much smaller data complexity.

Table 11. Attack complexity on full versions of DECIM and comparisons with
time/memory/data tradeoff attack

cipher attack pre-computation time memory data

DECIMv2 Ours 277.41 2108.3 271.3 235.1

TMD O(2144) O(296) O(296) O(248)

DECIM-128 Ours 2123.1 2154.98 2117 236.1

TMD O(2216) O(2144) O(2144) O(272)

Author Index

Andreeva, Elena 393
Arnault, François 433
Aumasson, Jean-Philippe 415

Bagherikaram, Ghadamali 281
Barreto, Paulo S.L.M. 376
Bellare, Mihir 295
Berger, Thierry 433
Bouillaguet, Charles 393

Canright, David 157
Choudhary, Ashish 71
Chow, Sherman S.M. 92

Dakhilalian, Mohammad 281
Dunkelman, Orr 393, 415

Feng, Dengguo 126

Gennaro, Rosario 53
Guo, Jian 141

Halevi, Shai 53

Indesteege, Sebastiaan 1, 415
Iwata, Tetsu 313

Järvinen, Kimmo U. 331
Joye, Marc 350

Kelsey, John 393
Khovratovich, Dmitry 108
Kircanski, Aleksandar 197
Knudsen, Lars R. 141
Krause, Matthias 182

Lai, Xuejia 266
Lauradoux, Cédric 433
Ling, San 141
Loebenberger, Daniel 170

Mala, Hamid 281
Matusiewicz, Krystian 141

Mendel, Florian 1, 16
Minier, Marine 433
Misoczki, Rafael 376

Nakahara Jr., Jorge 231
Nishina, Satsuki 364

Ohkuma, Kenji 249
Osvik, Dag Arne 157

Patra, Arpita 71
Peyrin, Thomas 16
Pousse, Benjamin 433
Preneel, Bart 1, 415
Putzka, Jens 170

Rangan, C. Pandu 71
Rechberger, Christian 16
Ristenpart, Thomas 295
Rogaway, Phillip 295

Sasaki, Yu 36
Sasaki, Yuta 364
Schläffer, Martin 1, 16
Shakiba, Mohsen 281
Shirase, Masaaki 364
Stegemann, Dirk 182
Stegers, Till 295
Sun, Xiaorui 266
Sun, Yue 231

Takagi, Tsuyoshi 364
Tsow, Alex 215

Wang, Huaxiong 141
Wang, Meiqin 231
Wu, Shuang 126
Wu, Wenling 126

Yasuda, Kan 313
Youssef, Amr M. 197

Zhang, Bin 449

	Title Page
	Preface
	Organization
	Table of Contents
	Hash Functions I
	Practical Collisions for SHAMATA-256
	Introduction
	Description of SHAMATA
	The Message Injection
	The State Update Function

	Basic Attack Strategy
	Overview of the Attack
	Choosing the Message Difference
	Linearising ARFr
	Basic Message Modification

	Finding a Good Differential Path
	Low-Weight Codewords
	An Alternative Approach

	Collision Attack on SHAMATA
	Collisions for SHAMATA-256 and SHAMATA-512
	Practical Collisions for SHAMATA-256

	Conclusion
	References
	A Colliding Message Pair for SHAMATA-256

	Improved Cryptanalysis of the Reduced Grøstl Compression Function, {\tt ECHO} Permutation and AES Block Cipher
	Introduction
	Description of AES-Based Primitives
	AES
	The Grøstl Hash Function
	The {\tt ECHO} Hash Function

	Basic Attack Properties
	Improving on the Rebound Attack
	Exploiting Properties of the Round Transformations
	Known-Key Distinguishers

	A Linearized Match-in-the-Middle Attack
	Filtering for Differential Paths
	Solving for Conforming State Pairs
	Application to AES

	A Start-from-the-Middle Technique
	Application to Grøstl-256
	Application to AES

	Results
	Grøstl-256
	AES Block Cipher
	Internal Permutation of {\tt ECHO}

	Conclusion and Future Work
	References
	A Message and Chaining Variable Example for the 6-Round Differential Path of Grøstl-256

	Cryptanalyses of Narrow-Pipe Mode of Operation in AURORA-512 Hash Function
	Introduction
	SHA-3 Requirements and Claimed Security of AURORA
	Our Contribution

	Related Works
	Description of AURORA-512 and AURORA-384
	Description of Randomized Hashing
	Description of HMAC
	Description of Joux’s Multi-collision Attack

	Collision Attack on AURORA-512
	Second-Preimage Attack on AURORA-512 and -384
	Key Recovery Attack on HMAC-AURORA
	Full Key Recovery Attack on HMAC-AURORA-512
	Universal Forgery on HMAC-AURORA-384

	Discussion and Conclusions
	Conclusion
	References
	A Relationship between Our Work and [9]

	Miscellaneous Techniques
	More on Key Wrapping
	Introduction
	What Is a Secure Key-Wrapping?
	How to Achieve Secure Key-Wrapping?
	Related Work

	Defining Security for Key Wrapping
	Security for Key-Wrap
	Key-Wrapping Is Weaker Than DAE
	Key-Wrapping Is Sufficient for Applications

	Authenticated Key-Wrap
	Simplified SIV May Not Work
	Hash-then-Encrypt
	Hash-then-CTR
	Hash-then-ECB and Hash-then-CBC

	Conclusions
	References
	A The Rogaway-Shrimpton KIAE Notion
	B Variations and Extensions

	Information Theoretically Secure Multi Party Set Intersection Re-visited
	Introduction
	Analysis of the MPSI Protocol of [15]
	Our Results
	Our MPSI Protocol vs. Existing General MPC Protocols
	Overview of Our Protocol

	Tools Used
	Information Checking Protocol and IC Signatures
	Generating l Length Random Vector
	Unconditional Verifiable Secret Sharing and Reconstruction
	Upgrading t-1D-Sharing to t-2D-Sharing
	Proving $c = ab$
	Multiplication
	Generating Random t-1D-Sharing

	Unconditionally Secure MPSI Protocol with n = 3t+1
	Open Problem
	References

	Real Traceable Signatures
	Introduction
	Design of Traceable Signatures and Building Blocks
	High Level Designs
	Number-Theoretic Preliminaries
	Cryptographic Building Blocks

	Framework
	Syntax
	Requirements

	Constructions
	Construction in the Common Reference String Model
	Construction in the Random Oracle Model
	Security Analysis

	Conclusion
	References
	A Signature-Based Range Proof

	Hash Functions II
	Cryptanalysis of Hash Functions with Structures
	Introduction
	Idea in Brief
	Analysis of Structure Fission
	Concrete Attacks
	How to Construct a Trail
	Grindahl-256
	Grindahl-512
	Fugue

	Conclusions and Future Work
	References
	A Analysis of Complexity
	B Trails

	Cryptanalysis of the LANE Hash Function
	Introduction
	Description of LANE Hash Function
	Message Expansion
	Permutations P and Q

	Construct Inner Collisions Using Rebound Techniques
	Optimal Differential Pattern for LANE
	Rebound Differential Path of Inner Collision

	Semi-free Start Collision Attack on LANE-256-(3,3)
	Rebound Differential Path with Partially Fixed State Values
	Details of the Attack

	Applications to LANE-512
	Inner Collision of LANE-512
	Semi-free Start Collision Attack and Collision Attack on LANE-512-(3,4)
	Semi-free Start Collision Attack on LANE-512-(4,4)

	Conclusion
	References
	Appendix

	Practical Pseudo-collisions for Hash Functions ARIRANG-224/384
	Introduction
	Brief Description of {\sf ARIRANG}
	All-One Differences
	Message Adjustments
	Collisions for Reduced Round Compression Function
	Finding Step Reduced Collision Differential

	Pseudo-collisions for ARIRANG-224 and ARIRANG-384
	Finding Near Collision Differential
	Finding Chaining Values and Messages
	Collisions for {\sf ARIRANG}-384
	Pseudo-preimages

	Possible Extensions
	Conclusions
	References

	Hardware Implementation and Cryptanalysis
	A More Compact AES
	Introduction
	AES Algorithm
	Method
	Basis Choices
	MixColumns
	Transformation Matrices
	Galois Inverter
	Round Keys
	Validation

	Results
	Conclusions
	References

	Optimization Strategies for Hardware-Based Cofactorization
	Introduction
	The General Number Field Sieve
	Modelling the Cluster System
	Concrete Statistical Analyses
	Generalizations to an Arbitrary Number of Clusters
	Conclusion
	References

	More on the Security of Linear RFID Authentication Protocols
	Introduction
	Linear (n, k, L)-Protocols
	The Basis Operation and the Adversary Models
	The {\sf CKK}-Protocols
	Basic Protocol Types and Equality Attacks
	Linear $(n, k,L)^{++}$-Protocols and Provable Security against MITM-Attacks
	Security of (n, k, L)-Protocols and the LULS-Problem

	On Solving the LULS-Problem
	A Learning Algorithm for the LULS-Problem
	Analysis and Experimental Results

	Summary
	References
	A The Search-for-a-Basis Heuristic

	Differential Fault Analysis of Rabbit
	Introduction
	Fault Analysis
	Specification of Rabbit Stream Cipher
	Differential Fault Analysis Attack
	The Main Idea
	Determining the Position of the Fault
	The Complete Attack

	Attack Success Probability and Complexity
	Success Probability
	Attack Complexity

	References
	A Estimating $pcorr$, $pincorr$ and $pundef$
	B Second Order Terms in $p(n)$ Probability
	C On the Non-surjectiveness Property of the Function Used to Derive Differences

	An Improved Recovery Algorithm for Decayed AES Key Schedule Images
	Introduction
	Related Work
	Algorithmic Description
	Preliminaries
	Maximizing the Implied Schedule Bytes
	The Recovery Algorithm
	Path Prioritization
	Generalizing to Other Instances of AES

	Benchmarks
	Analysis
	Conclusion
	References
	A Extended Pseudocode

	Block Ciphers
	Cryptanalysis of the Full MMB Block Cipher
	Introduction
	Description of the MMB Block Cipher
	Differential Cryptanalysis of the Full MMB
	Differential Characteristics for MMB
	Attack Algorithm

	Square Analysis of MMB
	Square Distinguisher
	Square Attack on 4-Round MMB

	Linear Attacks on MMB
	Linear Approximations for MMB
	Linear Attack on Reduced-Round MMB

	Conclusions
	References
	Appendix
	A Proofs of Square Distinguishers
	B Four-Round Linear Approximation
	C A Note on the S\theta \circ \gamma \circ \sigma$ Layer

	Weak Keys of Reduced-Round PRESENT for Linear Cryptanalysis
	Introduction
	Description of PRESENT Encryption
	Single-Bit Paths
	Single-Bit Masks for S-Box
	Continuable 1-Round Single-Path
	Single-Bit Paths with the Same Input-Output Mask
	Multiple-Path Effect and Weak Keys

	Key Recovery Attack
	Upper 1-Round Elimination Attack $(\Gamma_{1,1,1}-\Gamma_{1,1,1})$
	Upper 1-Round & Lower 1-Round Elimination Attack $(\Gamma_{1,1,1}-\Gamma_{1,1,1})$
	Upper 2-Round Elimination Attack $(\Gamma_{1,1,1}-\Gamma_{1,1,1})$
	Upper 2-Round & Lower 1-Round Elimination Attack $(\Gamma_{1,1,1}-\Gamma_{1,1,1})$
	Upper 2-Round & Lower 2-Round Elimination Attack $(\Gamma_{1,1,1}-\Gamma_{1,1,1})$

	Concluding Remarks
	References
	A Analysis of 3 Single-Bit Path Model
	B Evaluation of Successful Key Recovery Rate
	C Figures of Key Recovery Attacks

	Improved Integral Attacks on MISTY1
	Introduction
	The MISTY1 Block Cipher
	The FO Relation
	Improved Integral Attack on 5-Round MISTY1
	Attack on 6-Round MISTY1 without the Last FL Layer
	Attack on 6-Round MISTY1 with All FL Layers
	Conclusion
	References

	New Results on Impossible Differential Cryptanalysis of Reduced–Round Camellia–128
	Introduction
	Preliminaries
	Notations
	Description of Camellia
	Analysis of Wu et al.’s Attack on Camellia–128

	Impossible Differential Cryptanalysis of Reduced Camellia–128
	8–Round Impossible Differentials of Camellia
	Some Observations on the Key Schedule of Camellia–128
	Impossible Differential Attack on 12–Round Camellia–128
	Complexity of the Attack

	Conclusion
	References

	Modes of Operation
	Format-Preserving Encryption
	Introduction
	FPESyntax
	FPESecurityNotions
	The Rank-then-Encipher Approach
	FPE for Arbitrary Regular Languages
	Feistel-Based Integer FPEs
	References

	BTM: A Single-Key, Inverse-Cipher-Free Mode for Deterministic Authenticated Encryption
	Introduction
	Preliminaries
	Bivariate Polynomials and L-Polynomials
	Specification of BTM
	Bivariate Hashing $F_{L,U}$
	Tag Mixing T \boxplus U
	BTM Encryption and Decryption Algorithms

	Security Analysis of BTM
	A Simple Tool: Random-Until-Bad Games
	From Computational to Information-Theoretic
	Privacy Proof of BTM[F]
	Integrity Proof of BTM[F]

	Alternative Way of Tag Mixing
	Improving Security via Tweakable Blockciphers
	References
	A Proof of Lemma 1
	B Computing the Probabilities in Table 2
	C Computing the Probabilities in Table 3

	Implementation of Public Key Cryptography
	On Repeated Squarings in Binary Fields
	Introduction
	Squaring in Binary Fields
	Inversion with Fermat’s Little Theorem
	Elliptic Curve Cryptography

	Analysis of Repeated Squarings
	Architectures for Repeated Squarers
	Fixed Exponent
	Varying Exponent

	Implementation Results
	Discussion on the Results

	Conclusions
	Future Research

	References
	A Speedup Evaluations
	A.1 Itoh-Tsujii Inversion
	A.2 Scalar Multiplication on Koblitz Curves

	Highly Regular m-Ary Powering Ladders
	Introduction
	Left-to-Right Algorithms
	Right-to-Left Algorithms
	Implementation Attacks
	Our Contributions

	New Exponentiation Algorithms
	General Case
	Binary Case

	Further Results
	Conclusion
	References
	A Regular Aggregation

	An Efficient Residue Group Multiplication for the η_{T} Pairing over ${\mathbb F}_{3^{m}}$
	Introduction
	Implementation of the η_{T} Pairing over ${\mathbb F}_{3^{m}}$
	Finite Field ${\mathbb F}_{3^{m}}$ and Extension Field ${\mathbb F}_{3^{6m}}$
	η_{T} Pairing over ${\mathbb F}_{3^{m}}$

	Multiplication Algorithm in ${\mathbb F}_{3^{6m}}$
	Karatsuba’s Algorithm [12]
	Multiplication Algorithm of Gorla et al. [11]

	Proposed Residue Group Multiplication and Timing of the η_{T} Pairing
	Z Base
	Proposed RGM Algorithm
	Timing of the η_{T} Pairing

	Conclusion
	References
	A Elements of Matrix (γ_${ij}$)

	Compact McEliece Keys from Goppa Codes
	Introduction
	Preliminaries
	Goppa Codes in Cauchy and Dyadic Form
	Building a Binary Goppa Code in Dyadic Form
	Constructing Quasi-Dyadic, Permuted Subfield Subcodes
	A Toy Example

	Assessing the Hardness of Decoding Quasi-Dyadic Codes
	Efficiency Considerations
	Suggested Parameters

	Conclusion and Further Research
	References

	Hash Functions and Stream Ciphers
	Herding, Second Preimage and Trojan Message Attacks beyond Merkle-Damg{\aa}rd
	Introduction
	Our Contributions
	Organization of the Paper

	Background
	Existing Attack Techniques
	Herding Attack
	Collisions on Concatenated Hashes

	Herding Attack on Concatenated Hashes
	Precomputation Phase
	Online Phase

	Herding beyond Merkle-Damg{\aa}rd
	Herding the Hash-Twice Function
	Herding the Zipper Hash Function

	From Herding to Second Preimages: Hash-Twice
	Herding Tree Hashes
	Precomputation Phase
	Online Phase
	Variants and Applications of the Herding Attack on Tree Hash Functions

	Long-Message Second Preimages in Tree Hashes
	New Trojan Message Attacks on Merkle-Damg{\aa}rd Hash Functions
	The Collision Trojan Attack
	The Herding Trojan Attack
	Applications of the Trojan Attacks

	Summary and Conclusions
	References

	Cryptanalysis of Dynamic SHA(2)
	Introduction
	Brief Description of Dynamic SHA and Dynamic SHA2
	Building Blocks
	Compression Functions

	Collision Attack on Dynamic SHA
	A Differential Property of the Function R$_{1}$
	A 9-Step Local Collision
	The Attack

	Preimage Attack on Dynamic SHA
	Preimage Attack on the Compression Function
	Complexity Evaluation
	Application to the Hash Function

	Collision Attack on Dynamic SHA2
	First Iterative Part
	Second Iterative Part
	Third Iterative Part

	Conclusion
	References
	A Practical Results
	B Differential Characteristic for Dynamic SHA2
	C Extensions to the 512-Bit Versions

	A New Approach for FCSRs
	Introduction
	Theoretical Background
	2-adic Numbers and Period
	Galois FCSRs
	Fibonacci FCSRs

	A New Approach for FCSRs
	Remarks on the Transition Matrix
	Characterizing the Cells Content

	Implementation Properties
	F-FCSR Based on Ring Representation
	The Choice of the Matrix T
	The Filter
	Key and IV Setup
	F-FCSR-H v3 and F-FCSR-16 v3
	Resistance against Known Attacks

	Conclusion and Future Work
	References
	A Description of the Transition Matrix for F-FCSR-H v3
	B Description of the Transition Matrix for F-FCSR-16 v3

	New Cryptanalysis of Irregularly Decimated Stream Ciphers
	Introduction
	Four Irregularly Decimated Stream Ciphers
	Correlation Analysis of Arbitrary Irregular Decimation Mechanism
	Applications
	The Shrinking Generator
	LILI-II
	DECIMv2 and DECIM-128

	Conclusions
	References
	A Proof of Theorem 1
	B Proof of Theorem 2
	C Proof of Theorem 3
	D Average Correlation in 160-Bit Reduced Version of DECIMv2
	E Attack Complexity on Full Length Versions of DECIM and Comparisons with TMD

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

