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Two direct regularization methods

In this chapter we present two direct regularization methods, namely the Backus–Gilbert
method and the maximum entropy regularization. Although these approaches have been
designed for linear problems they can be applied to nonlinear problems as well.

9.1 Backus–Gilbert method

In the framework of Tikhonov regularization, the generalized inverse is not explicitly com-
puted and is merely an analysis tool. The goal of the so-called mollifier methods is the
computation of an approximate generalized inverse, which can then be used to obtain an
approximate solution. Mollifier methods have been introduced by Louis and Maass (1990)
in a continuous setting, and applied for discrete problems by Rieder and Schuster (2000).

To describe mollifier methods, we consider a semi-discrete Fredholm integral equation
of the first kind

yi =
∫ zmax

0

ki (z)x (z) dz, i = 1, . . . , m, (9.1)

and introduce a smoothing operator Aμ : X → X by the relation

(Aμx) (z0) =
∫ zmax

0

aμ (z0, z) x (z) dz. (9.2)

The parameter-dependent function aμ in (9.2) is called mollifier and it is chosen such that
Aμx → x as μ → 0 for all x ∈ X . Next, we assume that aμ can be expressed as

aμ (z0, z) =
m∑

i=1

ki (z) k†
μi (z0) , (9.3)

where k†
μi are referred to as the contribution functions. In the framework of mollifier meth-

ods we choose a mollifier āμ and compute the contribution functions k†
μi as the solution of
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the constrained minimization problem

min
k†

μi

∫ zmax

0

[āμ (z0, z) − aμ (z0, z)]2 dz (9.4)

subject to
∫ zmax

0

aμ (z0, z) dz = 1,

with aμ being given by (9.3). The normalization condition in (9.4) just means that for
x ≡ 1, Aμx ≡ 1 (cf. (9.2)). Once the contribution functions are known, we use the
representation (cf. (9.1), (9.2) and (9.3))

(Aμx) (z0) =
m∑

i=1

[∫ zmax

0

ki (z) x (z) dz

]
k†

μi (z0) =
m∑

i=1

k†
μi (z0) yi, (9.5)

to compute the mollified solution of the linear equation (9.1) with noisy data yδ
i as

xδ
μ (z0) =

m∑
i=1

k†
μi (z0) yδ

i . (9.6)

Thus, in the framework of mollifier methods, instead of solving (9.1), we choose the mol-
lifier and solve (9.3) with respect to the contribution functions as in (9.4). Equation (9.3)
is also ill-posed as soon as equation (9.1) is, but the calculation of the mollified solution,
according to (9.4) and (9.6), is expected to be a stable process because there are no errors
in the data.

The transpose vector k†T
μ = [k†

μ1, . . . , k
†
μm] reproduces the row vector of the general-

ized inverse K†
μ corresponding to the altitude height z0, and aμ (z0, z) can be interpreted

as a continuous version of the averaging kernel matrix K†
μK.

The function aμ (z0, z) determines the resolution of the mollifier method at z0, and
for xδ

μ (z0) to be meaningful, aμ (z0, z) should peak around z0. To make aμ (z0, z) as
localized as possible about the point z0, we have to choose the mollifiers as smooth regular
functions approximating a Dirac distribution. In fact, the choice of mollifiers depends on
the peculiarities of the solution, and frequently used choices are (Louis and Maass, 1990)

āμ (z0, z) =
{

c,
0,

|z − z0| ≤ μ,
otherwise,

āμ (z0, z) = c sinc (μ (z − z0)) ,

āμ (z0, z) = c exp

(
− (z − z0)

2

2μ2

)
,

where the parameter μ controls the width of the δ-like functions and c is a normalization
constant.

Another variant of mollifier methods is the Backus–Gilbert method, also known as the
method of optimally localized averages (Backus and Gilbert, 1967, 1968, 1970). In this
approach, the averaging kernel function aμ (z0, z) is controlled by specifying a positive
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δ−1-like function dμ (z0, z) and then solving the constrained minimization problem

min
k†

μi

∫ zmax

0

dμ (z0, z) aμ (z0, z)2 dz (9.7)

subject to
∫ zmax

0

aμ (z0, z) dz = 1.

The function dμ can be chosen as

dμ (z0, z) =
∣∣∣∣z − z0

l

∣∣∣∣μ (9.8)

or as

dμ (z0, z) = 1 − exp
(
−1

2

∣∣∣∣z − z0

l

∣∣∣∣μ) , (9.9)

where l is the correlation length and as before, μ is a parameter which controls the width
of the δ−1-like function.

Although the Backus–Gilbert method has been designed for linear problems, its ex-
tension to nonlinear problems is straightforward. Let us consider the update formula

xδ
k+1 = xδ

k + pδ
k, k = 0, 1, . . . ,

where pδ
k is the Newton step and xδ

0 = xa. Further, let p†
k = x† − xδ

k be the exact step,
where x† is a solution of the nonlinear equation with exact data F (x) = y. It is quite
obvious that p†

k solves the equation (see Appendix H)

Kkp = rk, (9.10)

with
rk = y − F

(
xδ

k

)
− R

(
x†,xδ

k

)
(9.11)

and R
(
x†,xδ

k

)
being the linearization error. As rk is unknown, and only

rδ
k = yδ − F

(
xδ

k

)
, (9.12)

is available, we consider the equation

Kkp = rδ
k, (9.13)

and compute pδ
k as

pδ
k = K†

kr
δ
k. (9.14)

In (9.14), the generalized inverse K†
k is unknown and its row vectors will be deter-

mined one by one. Before doing this, we observe that the ith entry of pδ
k is given by[

pδ
k

]
i
= k†T

i rδ
k, (9.15)
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where k†T
i is the ith row vector of K†

k, partitioned as

K†
k =

⎡⎢⎣ k†T
1
...

k†T
n

⎤⎥⎦ . (9.16)

Now, defining as usual the averaging kernel matrix Ak by

Ak = K†
kKk, (9.17)

and assuming the partitions

Ak =

⎡⎢⎣ aT
1
...

aT
n

⎤⎥⎦ , Kk = [k1, . . . ,kn] ,

we obtain
[ai]j = k†T

i kj , i, j = 1, . . . , n. (9.18)

To compute the row vector k†T
i we proceed to formulate the constrained minimization

problem (9.7) in terms of the averaging kernel aT
i . For this purpose, we discretize the

altitude interval [0, zmax] in n layers and put [ai]j = aμ (zi, zj), where zi is the centerpoint
of the layer i. The objective function in (9.7) can then be expressed as (cf. (9.18))

s (zi) =
∫ zmax

0

dμ (zi, z) aμ (zi, z)2 dz

=
n∑

j=1

dμ (zi, zj) aμ (zi, zj)
2 �zj

=
n∑

j=1

dμ (zi, zj) [ai]
2
j �zj

= k†T
i Qkik

†
i ,

where �zi is the geometrical thickness of the layer i, and

Qki = Kk

[
diag (dμ (zi, zj)�zj)n×n

]
KT

k .

For the choice (9.8) with μ = 2, s (zi) represents the spread of the averaging kernel around
zi, and by minimizing the spread we intend to guarantee that the resolution of the retrieval
is as high as possible. The normalization condition in (9.7) takes the form (cf. (9.18))

1 =
∫ zmax

0

aμ (zi, z) dz =
n∑

j=1

aμ (zi, zj)�zj =
n∑

j=1

[ai]j �zj = kT k†
i ,

with

k =
n∑

j=1

kj�zj ,
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and the constrained minimization problem to be solved reads as

min
k†

k†T Qkik† (9.19)

subject to kT k† = 1.

Via the Lagrange multiplier formalism, the row vector k†T
i is determined by minimizing

the Lagrangian function

L
(
k†, λ

)
=

1
2
k†T Qkik† + λ

(
kT k† − 1

)
, (9.20)

and the result is
k†

i =
1

qT
i k

qi. (9.21)

with
qi = Q−1

ki k.

In practice it is necessary to add regularization when the problem (9.19) is solved
numerically, due to the ill-conditioning of the matrix Qki. Neglecting the linearization
error R

(
x†,xδ

k

)
, the Newton step pδ

k can be expressed as (cf. (9.10)–(9.12) and (9.14))

pδ
k = K†

kr
δ
k = K†

k (rk + δ) = Akp
†
k + K†

kδ,

and it is apparent that the spread accounts only for the smoothed component Akp
†
k of pδ

k.
The ith entry of the noise error vector eδ

nk = −K†
kδ is[

eδ
nk

]
i
= −k†T

i δ,

and for white noise with covariance Cδ = σ2Im, the expected value of the noise error is
given by

n (zi) = E
{[

eδ
nk

]2
i

}
= σ2

∥∥∥k†
i

∥∥∥2 . (9.22)

In this regard, we construct an objective function reflecting a trade-off between spread and
noise error, that is, we consider the constrained minimization problem

min
k†

(
k†T Qkik† + α

∥∥k†∥∥2) (9.23)

subject to kT k† = 1.

The objective function in (9.23) is as in (9.19), but with Qki + αIm in place of Qki; the
solution of (9.23) is then

k†
αi =

1
qT

αik
qαi, (9.24)

with
qαi = (Qki + αIm)−1 k. (9.25)
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Once the row vectors of the generalized inverse have been computed, the Backus–Gilbert
step is determined via (cf. (9.15))

[
pδ

kα

]
i
= k†T

αi r
δ
k =

qT
αir

δ
k

qT
αik

, i = 1, . . . , n. (9.26)

Let us discuss some practical implementation issues by following the analysis of
Hansen (1994). Defining the diagonal matrices

Di =

[
diag

(√
dμ (zi, zj)

)
n×n

]
, Z =

[
diag (�zj)n×n

]
,

and denoting by e the n-dimensional vector of all ones, i.e., e = [1, . . . , 1]T , we express
Qki as

Qki = KkDiZDiKT
k .

Setting
K̄ki = KkDiZ

1
2 , ei = D−1

i Z
1
2 e,

and noting that
k = KkZe = K̄kiei,

we write qαi as (cf. (9.25))

qαi =
(
K̄kiK̄T

ki + αIm

)−1
K̄kiei. (9.27)

Moreover, we have (cf. (9.24))

k†
αi =

1
qT

αiK̄kiei
qαi

and (cf. (9.26)) [
pδ

kα

]
i
=

qT
αir

δ
k

qT
αiK̄kiei

. (9.28)

Note that the singularity of D−1
i at j = i can be removed in practice by approximating

dμ (zi, zi) ≈ dμ (zi, zi + �z) ,

with �z sufficiently small, e.g., �z = 1 m. An inspection of (9.27) reveals that qαi

minimizes the Tikhonov function

Fα (q) =
∥∥ei − K̄T

kiq
∥∥2 + α ‖q‖2

.

Thus, if (σ̄j ; v̄j , ūj) is a singular system of K̄ki, we obtain the representation

qαi =
n∑

j=1

σ̄j

σ̄2
j + α

(
v̄T

j ei

)
ūj ,
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and the useful expansions

qT
αiK̄kiei =

n∑
j=1

σ̄2
j

σ̄2
j + α

(
v̄T

j ei

)2
, (9.29)

and

qT
αir

δ
k =

n∑
j=1

σ̄2
j

σ̄2
j + α

1
σ̄j

(
v̄T

j ei

) (
ūT

j rδ
k

)
. (9.30)

The Backus–Gilbert solution can be computed for any value of the regularization parameter
α, by inserting (9.29) and (9.30) into (9.28).

To reveal the regularizing effect of the Backus–Gilbert method we mention that the
characteristic features of the singular vectors of Kk carry over to the singular vectors of
K̄ki, and that the filter factors in (9.30) damp out the noisy components in the data as the
Tikhonov filter factors do.

To compute the regularization parameter we may impose that the noise error (9.22)
has a prescribed value, that is,

nα (zi) = εn [xa]
2
i , (9.31)

for some relative error level εn. Another selection criterion can be designed by taking into
account that the spread is an increasing function of α and that the noise error is a decreasing
function of α. Thus, we may follow the idea of the L-curve method, and compute the
regularization parameter which balances the spread and noise error. For any value of α,
the computable expressions of the quantities of interest are

sα (zi) =
1(

qT
αiK̄kiei

)2 n∑
j=1

(
σ̄2

j

σ̄2
j + α

v̄T
j ei

)2

,

nα (zi) =
σ2(

qT
αiK̄kiei

)2 n∑
j=1

(
σ̄j

σ̄2
j + α

v̄T
j ei

)2

,

and the regularization parameter, corresponding to the point on the curve at which the
tangent has the slope −1, is chosen as the minimizer of the function (Reginska, 1996),

β (α) = x (α) + y (α) , (9.32)

with x (α) = sα and y (α) = nα.
In Figure 9.1 we plot the solution errors for the O3 retrieval test problem. The δ−1-like

functions (9.8) and (9.9) yield similar accuracies but for different domains of variation of
the regularization parameter. The regularizing effect of the Backus–Gilbert method is also
apparent in this figure: by increasing the signal-to-noise ratio, the minimum solution error
as well as the optimal value of the regularization parameter (the minimizer) decrease.

In our numerical analysis we used a discrete version of the regularization parameter
choice methods (9.31) and (9.32), that is, for the set {αj} with αj = σ̄2

j , j = 1, . . . , n, we
chose the regularization parameter αj� as the smallest αj satisfying nαj� (zi) ≤ εn [xa]

2
i ,

or as the minimizer of β (αj). The plots in Figure 9.2 illustrate that the noise error is
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Fig. 9.1. Relative solution errors for the Backus–Gilbert method with the quadratic function (9.8)
(left) and the exponential function (9.9) (right). The parameters of calculation are μ = 2 and l = 1.0
km for the quadratic function, and μ = 2 and l = 10.0 km for the exponential function.
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Fig. 9.2. Noise error curve (left) and L-curve (right) for a layer situated at 30.6 km.

a decreasing function of the regularization parameter and that the L-curve has a distinct
corner.

The solution errors given in Table 9.1 show that the noise error criterion yields suf-
ficiently accurate results. By contrast, the L-curve method predicts a value of the regu-
larization parameter which is considerably smaller than the optimal value. As a result,
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Table 9.1. Relative solution errors for the Backus–Gilbert method with the noise error (NE) criterion
and the L-curve (LC) method.

δ−1-like function SNR Method ε εopt

100 NE 6.65e-2 4.21e-2
quadratic LC 2.30e-1

300 NE 5.74e-2 2.51e-2
LC 1.42e-1

100 NE 5.88e-2 4.26e-2
exponential LC 3.15e-1

300 NE 5.41e-2 2.55e-2
LC 2.42e-1

the retrieved profiles are undersmoothed (Figure 9.3). Note that the failure of the L-curve
method is because we use a very rough discrete search procedure to minimize β.

In the framework of mollifier methods, the approximate generalized inverse is deter-
mined independently of the data, and therefore, mollifier methods can be viewed as being
equivalent to Tikhonov regularization with an a priori parameter choice method. In prac-
tice, the methods are computationally very expensive because for each layer, we have to
solve an optimization problem. However, for the operational usage of a near real-time soft-
ware processor, this drawback is only apparent; when the approximate generalized inverse
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Fig. 9.3. Retrieved profiles computed with the Backus–Gilbert method using the quadratic function
(9.8) (left) and the exponential function (9.9) (right). The curves correspond to the optimal value of
the regularization parameter (the minimizer in Figure 9.1), the noise error criterion and the L-curve
method. The signal-to-noise ratio is SNR = 300 and the parameters of calculation are as in Figure 9.1.
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is (a priori) computed and stored, the processing of data is much faster than, for example,
Tikhonov regularization with an a posteriori parameter choice method, because it involves
only matrix-vector multiplications.

9.2 Maximum entropy regularization

First proposed as a general inference procedure by Jaynes (1957) on the basis of Shan-
non’s axiomatic characterization of the amount of information (Shannon, 1949; Shannon
and Weaver, 1949), the maximum entropy principle emerged as a successful regulariza-
tion technique due to the contributions of Frieden (1972), and Gull and Daniel (1978).
Although the conventional maximum entropy regularization operates with the concept of
absolute entropy (or Shannon entropy), we describe a formulation based on relative and
cross entropies, which allows a better exploitation of the available a priori information
(Engl et al., 2000).

To sketch the maximum entropy regularization we consider a discrete random variable
X with a finite number of realizations x1, . . . , xn, and suppose that we make some a priori
assumptions about the probability mass function of X ,

pa (x) =
{

pai, X = xi,
0, otherwise,

n∑
i=1

pai = 1.

By measurements we obtain additional information on X , which lets us change our a priori
probability mass function into the a posteriori probability mass function,

p (x) =
{

pi, X = xi,
0, otherwise,

n∑
i=1

pi = 1.

We recall that in statistical inversion theory, the a posteriori probability mass function rep-
resents the conditional probability density of X given the measurement data. The goal of
our analysis is the computation of the a posteriori probability mass function by considering
the new data.

In information theory, a natural distance measure from the probability mass function
p to the probability mass function pa is the Kullback–Leibler divergence defined by

D (p; pa) =
n∑

i=1

pi log
(

pi

pai

)
.

Essentially, the Kullback–Leibler divergence signifies the amount of useful information
about X , that can be obtained given the measurements. The negative of the Kullback–
Leibler divergence represents the relative entropy

Hr (p; pa) = −
n∑

i=1

pi log
(

pi

pai

)
.

Note that as opposed to the absolute entropy H (p) = −
∑n

i=1 pi log pi, the relative en-
tropy Hr is negative (cf. (9.35) below) and attains its global maximum Hrmax = 0 at
p = pa.
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To compute the a posteriori probability mass function, we minimize the Kullback–
Leibler divergence D (or maximize the relative entropy Hr) with the data and the normal-
ization condition

∑n
i=1 pi = 1 as constraints. If x is the state vector to be retrieved and xa

is the a priori state, we define the normalized vectors

x̄ =
1

n∑
i=1

[x]i

x, x̄a =
1

n∑
i=1

[xa]i

xa,

and under the assumptions [x]i > 0 and [xa]i > 0 for i = 1, . . . , n, we interpret the com-
ponents of these vectors as the probabilities pi and pai, respectively. As data we consider
the nonlinear model yδ = F (x) + δ, and impose the feasibility constraint∥∥yδ − F(x)

∥∥2 ≤ Δ2.

The constrained minimization problem then takes the form

min
x

Λr (x) =
n∑

i=1

[x̄]i log
(

[x̄]i
[x̄a]i

)
(9.33)

subject to
∥∥yδ − F (x)

∥∥2 ≤ Δ2.

By virtue of the Lagrange multiplier formalism, the problem (9.33) is equivalent to the
minimization of the Tikhonov function

Fα (x) =
1
2

∥∥yδ − F (x)
∥∥2 + αΛr (x) . (9.34)

Using the inequality

log z ≥ 1 − 1
z
, z > 0, (9.35)

we find that

Λr (x) ≥
n∑

i=1

([x̄]i − [x̄a]i) = 0.

Evidently, the global minimizer of Λr is attained for x̄ = x̄a, which reiterates the role of
xa as a priori information.

If x and xa are not normalized, the non-negative functions (Eggermont, 1993)

ΛB (x) =
n∑

i=1

[
log
(

[x]i
[xa]i

)
+

[xa]i
[x]i

− 1
]

and

Λc (x) =
n∑

i=1

[
[x]i
[xa]i

log
(

[x]i
[xa]i

)
− [x]i

[xa]i
+ 1
]

,

representing the negative of the Burg’s entropy and the cross entropy, respectively, can be
used as penalty terms. A Taylor expansion of the cross entropy about the a priori yields

Λc (x) =
1
2

(x − xa)
T

[
diag

(
1

[xa]
2
i

)
n×n

]
(x − xa) + O

(
‖x − xa‖3

)
,
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and we see that in the neighborhood of the a priori, the cross entropy regularization matrix
behaves like a diagonal matrix.

Ramos et al. (1999), following the work of Landl and Anderson (1996), developed
two entropic regularization techniques by using penalty functions which are similar to
the discrete difference operators. The first-order penalty function (corresponding to the
entropy of the vector of first-order differences of x) is defined by

Λ1 (x) =
n−1∑
i=1

(n − 1) d1i∑n−1
i=1 d1i

log

(
(n − 1) d1i∑n−1

i=1 d1i

)
,

where the d1i can be chosen as

d1i =
(
[x]i+1 − [x]i

)
+ (xmax − xmin) + ς, i = 1, . . . , n − 1, (9.36)

or as
d1i =

∣∣[x]i+1 − [x]i
∣∣+ ς, i = 1, . . . , n − 1. (9.37)

Here, ς is a small positive constant, while xmin and xmax are the lower and the upper
bounds of all entries in x, that is, and xmin ≤ [x]i ≤ xmax, i = 1, . . . , n. By (9.35), we
have

(n − 1) d1i

d1
log
(

(n − 1) d1i

d1

)
≥ (n − 1) d1i

d1
− 1,

with d1 =
∑n−1

i=1 d1i, and we infer that Λ1 ≥ 0. The minimum value of Λ1 is attained
when all d1i are the same, and the solutions to (9.34) approach the discrete approximation
of a first-order polynomial as α → ∞. The second-order penalty function (corresponding
to the entropy of the vector of second-order differences of x) is given by

Λ2 (x) =
n−1∑
i=2

(n − 2) d2i∑n−1
i=2 d2i

log

(
(n − 2) d2i∑n−1

i=2 d2i

)
,

with

d2i =
(
[x]i+1 − 2 [x]i + [x]i−1

)
+ 2 (xmax − xmin) + ς, i = 2, . . . , n − 1, (9.38)

or

d2i =
∣∣[x]i+1 − 2 [x]i + [x]i−1

∣∣+ ς, i = 2, . . . , n − 1. (9.39)

As before, Λ2 ≥ 0 attains its minimum when all d2i coincide, and the solutions to (9.34)
approach the discrete approximation of a second-order polynomial as α → ∞. In com-
parison, under similar conditions, Tikhonov regularization with the first- and second-order
difference regularization matrices will yield a constant solution and a straight line, respec-
tively.

The minimization of the Tikhonov function (9.34) can be performed by using the
Newton method with

gα (x) = ∇Fα (x) = K (x)T [F (x) − yδ
]
+ α∇Λ (x) ,
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and the Hessian approximation

Gα (x) = ∇2Fα (x) ≈ K (x)T K (x) + α∇2Λ (x) .

To be more concrete, at the iteration step k, the search direction pδ
αk is computed as the

solution of the Newton equation

Gα

(
xδ

αk

)
p = −gα

(
xδ

αk

)
,

the step length τk is determined by imposing the descent condition, and the new iterate is
taken as xδ

αk+1 = xδ
αk + τkpδ

αk.
In Figure 9.4 we plot the retrieved O3 profiles for the cross entropy regularization with

the penalty term Λc. Because in this case, the regularization matrix acts like a diagonal
matrix, the solution errors may become extremely large. Specifically, on a fine grid, the
number densities, with respect to which the retrieval is insensitive, are close to the a priori.
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Fig. 9.4. Retrieved O3 profiles computed with the cross entropy regularization on a retrieval grid
with 36 levels (left) and on a retrieval grid with 24 levels (right). The numbers in parentheses repre-
sent the values of the regularization parameter and of the relative solution error.

The plots in Figure 9.5 illustrate the solution errors for the first- and second-order
entropy regularization with the penalty terms Λ1 and Λ2, respectively. As for Tikhonov
regularization, the error curves possess a minimum for an optimal value of the regulariza-
tion parameter. The minima of the solution errors are 3.32 · 10−2 and 5.05 · 10−2 for the
first-order entropy regularization with the selection criteria (9.36) and (9.37), respectively,
and 3.79 · 10−2 and 2.73 · 10−2 for the second-order entropy regularization with the se-
lection criteria (9.38) and (9.39), respectively. Comparing both regularization methods we
observe that



284 Two direct regularization methods Chap. 9

10
−2

10
−1

10
0

α

0

0.05

0.1

0.15

R
el

at
iv

e 
E

rr
or

second−order (S1)

10
−4

10
−3

10
−2

α

0

0.05

0.1

0.15

R
el

at
iv

e 
E

rr
or

first−order (S1)

10
−7

10
−6

10
−5

10
−4

α

0

0.05

0.1

0.15

R
el

at
iv

e 
E

rr
or

second−order (S2)

10
−7

10
−6

10
−5

10
−4

α

0

0.05

0.1

0.15

R
el

at
iv

e 
E

rr
or

first−order (S2)

Fig. 9.5. Relative solution errors for the first-order entropy regularizations with the selection criteria
(9.36) (S1) and (9.37) (S2), and the second-order entropy regularization with the selection criteria
(9.38) (S1) and (9.39) (S2).

(1) the first- and second-order entropy regularizations yield results of comparable accura-
cies;

(2) the domains of variation of the regularization parameter with acceptable reconstruction
errors are larger for the selection criteria (9.37) and (9.39).

A pertinent analysis of the maximum entropy regularization can be found in Engl et
al. (2000), while for applications of the second-order entropy regularization in atmospheric
remote sensing we refer to Steinwagner et al. (2006).
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