
8

Total least squares

In atmospheric remote sensing, near real-time software processors frequently use approx-
imations of the Jacobian matrix in order to speed up the calculation. If the forward model
F (x) depends on the state vector x through some model parameters bk,

F (x) = F (b1 (x) , . . . ,bN (x)) ,

then, an approximate expression of the Jacobian matrix

K =
N∑

k=1

∂F
∂bk

∂bk

∂x
,

can be obtained by assuming that some bk are insensitive to x, i.e., ∂bk/∂x = 0. For
example, the limb radiance measured by a detector in the ultraviolet or visible spectral
domains can be expressed as

I (λ,x) = Iss (λ,x) + Ims (λ,x) = Iss (λ,x) [1 + cms (λ,x)] , (8.1)

where Iss and Ims are the single and multiple scattering terms, λ is the wavelength, and
cms is a correction factor accounting for the multiple scattering contribution. As the com-
putation of the derivative of cms is quite demanding, the Jacobian matrix calculation may
involve only the derivative of Iss. Similarly, in a line-by-line model, the absorption co-
efficient Cabsm of the gas molecule m is the product of the line strength Sml and the
normalized line shape function gml (cf. (1.12)),

Cabsm (ν, T ) =
∑

l

Sml (T ) gml (ν, T ) ,

where ν is the wavenumber, T is the temperature, and the summation is over all lines l. As
the most important temperature dependence stems from the line strength, the derivative of
the line shape function with respect to the temperature is sometimes ignored.

The total least squares (TLS) method is devoted to the solution of linear problems in
which both the coefficient matrix and the data are subject to errors. The linear data model
can be expressed as

yδ = (KΛ − Λ)x + δ,
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where the matrix KΛ is a perturbation of the exact (unknown) matrix K, KΛ = K + Λ,
and the data are affected by the instrumental noise δ.

The TLS method was independently derived in several bodies of work by Golub and
Van Loan (1980, 1996), and Van Huffel and Vanderwalle (1991). This literature has ad-
vanced the algorithmic and theoretical understanding of the method, as well as its ap-
plication for computing stable solutions of linear systems of equations with highly ill-
conditioned coefficient matrices. In this section we review the truncated and the regular-
ized TLS methods for solving linear ill-posed problems, and reveal the similarity with the
Tikhonov regularization. We then present a first attempt to extend the regularized TLS to
nonlinear ill-posed problems.

8.1 Formulation

The linear model which encapsulates the uncertainties in the data vector and the coefficient
matrix is of the form KΛx ≈ yδ . To sketch the TLS method, we introduce the augmented
matrix

[
KΛ yδ

]
and consider the homogeneous system of equations

[
KΛ yδ

] [ x
−1

]
= 0. (8.2)

We then assume a singular value decomposition of the m × (n + 1) matrix,[
KΛ yδ

]
= ŪΣ̄V̄T , (8.3)

and partition the matrices V̄ and Σ̄ as follows:

V̄ = [v̄1, . . . , v̄n+1] =
[

V̄11 v̄12

v̄T
21 v̄22

]
, V̄11 ∈ R

n×n, v̄12, v̄21 ∈ R
n, (8.4)

and

Σ̄ =

⎡⎣ Σ̄1 0
0 σ̄n+1

0 0

⎤⎦ , Σ̄1 =
[
diag (σ̄i)n×n

]
,

respectively. If σ̄n+1 �= 0, then rank
([

KΛ yδ
])

= n + 1, and the solution of the
homogeneous system of equations (8.2) is the trivial solution. Thus, the last component of
the solution vector is not −1, and to solve (8.2) it is necessary to reduce the rank of the
augmented matrix from n+1 to n. This can be achieved by approximating the rank-(n + 1)
matrix

[
KΛ yδ

]
by a rank-n matrix

[
Kn yn

]
. As rank

([
Kn yn

])
= n , we

may assume that the last column vector of the matrix
[

Kn yn

]
is a linear combination

of the first n column vectors, i.e.,

yn =
n∑

i=1

xiki,

with Kn = [k1, . . . ,kn], or equivalently that,

Knx = yn,
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with x = [x1, . . . , xn]T . The (matrix) approximation problem can be expressed as the
constrained minimization problem

min
[K̃ ỹ]∈Rm×(n+1)

∥∥[ KΛ yδ
]
−
[

K̃ ỹ
]∥∥2

F
(8.5)

subject to K̃x = ỹ,

where the Frobenius norm of the m × n matrix A is defined by

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

[A]2ij .

It should be pointed out that the ordinary least squares method minimizes the norm of the
residual vector yδ − ỹ under the assumption that KΛ = K̃.

The solution to the minimization problem (8.5) is given by the Eckart–Young–Mirsky
theorem (Golub and Van Loan, 1996): the matrix[

Kn yn

]
=

n∑
i=1

σ̄iūiv̄T
i (8.6)

is the closest rank-n matrix to
[

KΛ yδ
]
, and we have[

KΛ yδ
]
−
[

Kn yn

]
= σ̄n+1ūn+1v̄T

n+1,

yielding ∥∥[ KΛ yδ
]
−
[

Kn yn

]∥∥
F

= σ̄n+1.

The homogeneous system of equations (8.2) is then replaced by a homogeneous system of
equations involving the rank-n matrix

[
Kn yn

]
, that is,[

Kn yn

] [ x
−1

]
= 0. (8.7)

Since (cf. (8.6)) [
Kn yn

]
v̄n+1 =

n∑
i=1

σ̄i

(
v̄T

i v̄n+1

)
ūi = 0, (8.8)

we see that the vector av̄n+1 is the general solution of the homogeneous system of equa-
tions (8.7) and that the scalar a is (uniquely) determined by imposing that the last compo-
nent of the solution vector is −1. We obtain[

xδ
Λ

−1

]
= − 1

[v̄n+1]n+1

v̄n+1, (8.9)

provided that [v̄n+1]n+1 �= 0. From (8.4), we find that the TLS solution can be expressed
as

xδ
Λ = − 1

v̄22
v̄12. (8.10)

Note that if σ̄n+1 is a simple singular value, we have (cf. (8.8)) N
([

Kn yn

])
=

span {v̄n+1}, and the TLS solution is unique.
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8.2 Truncated total least squares

The truncated TLS method, which in general is devoted to numerically rank deficient prob-
lems, is also a suitable regularization method for discrete ill-posed problems. This tech-
nique is similar to the truncated SVD that treats small singular values of K as zeros. In
both methods, the redundant information in

[
KΛ yδ

]
and K, respectively, associated

to the small singular values, is discarded and the original ill-posed problem with a full rank
matrix is replaced by a well-posed problem with a rank-deficient matrix. This approxi-
mation is achieved by means of the Eckart–Young–Mirsky theorem. For example, in the
truncated SVD, the matrix K with rank (K) = n and singular value decomposition

K =
n∑

i=1

σiuivT
i

is replaced by the matrix

Kp =
p∑

i=1

σiuivT
i ,

with rank (Kp) = p , and the regularized solution takes the form

xδ
p = arg min

x

∥∥yδ − Kpx
∥∥2 =

p∑
i=1

1
σi

(
uT

i yδ
)
vi.

The major difference between the two methods lies in the way in which the approximation
is performed: in the truncated SVD, the modification depends only on K, while in the
truncated TLS, the modification depends on both KΛ and yδ . Thus, in the framework of
the truncated TLS method we approximate the matrix

[
KΛ yδ

]
by the rank-p matrix

[
Kp yp

]
=

p∑
i=1

σ̄iūiv̄T
i .

To determine the number p of large singular values or the truncation index, we may require
a user-specified threshold or determine p adaptively. The null space of the approximation
matrix is

N
([

Kp yp

])
= span {v̄p+1, . . . , v̄n+1} ,

whence accounting for the partition

V̄ = [v̄1, . . . , v̄n+1] =
[

V̄11 V̄12

v̄T
21 v̄T

22

]
, (8.11)

with V̄11∈ R
n×p, V̄12∈ R

n×(n−p+1), and

v̄21 =
[
[v̄1]n+1 , . . . , [v̄p]n+1

]T
∈ R

p,

v̄22 =
[
[v̄p+1]n+1 , . . . , [v̄n+1]n+1

]T
∈ R

n−p+1,
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we seek the solution as [
xδ

Λp

−1

]
=

n+1∑
i=p+1

aiv̄i =
[

V̄12

v̄T
22

]
a, (8.12)

with a = [ap+1, . . . , an+1]T ∈ R
n−p+1. From the last equation we find that

v̄T
22a = −1,

or equivalently that
n+1∑

i=p+1

ai [v̄i]n+1 = −1.

Since (cf. (8.12)) ∥∥∥∥[ xδ
Λp

−1

]∥∥∥∥2 = 1 +
∥∥xδ

Λp

∥∥2 =
n+1∑

i=p+1

a2
i , (8.13)

we see that the minimum norm solution xδ
Λp requires a minimum value of

∑n+1
i=p+1 a2

i .
This can be obtained by solving the constrained minimization problem

min
ai

n+1∑
i=p+1

a2
i

subject to
n+1∑

i=p+1

ai [v̄i]n+1 = −1.

In the framework of the Lagrange multiplier formalism, the first-order optimality condi-
tions for the Lagrangian function

L (a, λ) =
1
2

n+1∑
i=p+1

a2
i + λ

⎛⎝ n+1∑
i=p+1

ai [v̄i]n+1 + 1

⎞⎠ ,

yield

ai + λ [v̄i]n+1 = 0, i = p + 1, . . . , n + 1,

n+1∑
i=p+1

ai [v̄i]n+1 = −1,

and we obtain
a = − 1

‖v̄22‖2 v̄22. (8.14)

Hence, from (8.12) and (8.14), the minimum norm solution is given by

xδ
Λp = − 1

‖v̄22‖2 V̄12v̄22. (8.15)
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By (8.13), (8.14) and the Eckart–Young–Mirsky theorem, we have∥∥xδ
Λp

∥∥2 =
1

‖v̄22‖2 − 1,

and ∥∥Rδ
Λp

∥∥2
F

=
∥∥[ KΛ yδ

]
−
[

Kp yp

]∥∥2
F

= σ̄2
p+1 + . . . + σ̄2

n+1,

showing that the solution norm
∥∥xδ

Λp

∥∥ increases monotonically with p, while the residual
norm

∥∥Rδ
Λp

∥∥
F

decreases monotonically with p. These results recommend the discrepancy
principle and the L-curve method for computing the truncation index.

In order to demonstrate the regularizing property of the truncated TLS method, we
express xδ

Λp as the filtered sum

xδ
Λp =

n∑
i=1

fi
1
σi

(
uT

i yδ
)
vi, (8.16)

where (σi;vi,ui) is a singular system of KΛ. In Appendix I it is shown that if rank (KΛ) =
n and rank

([
KΛ yδ

])
= n + 1, and furthermore, if uT

i yδ �= 0 for all i = 1, . . . , n,
then the filter factors are given by

fi =
1

‖v̄22‖2

p∑
j=1

σ2
i

σ̄2
j − σ2

i

[v̄j ]
2
n+1 , (8.17)

and the estimates

1 < fi ≤ 1 +
(

σ̄p+1

σi

)2

+ O

(
σ̄4

p+1

σ4
i

)
, i = 1, . . . , p, (8.18)

and

0 < fi ≤
1 − ‖v̄22‖2

‖v̄22‖2

(
σi

σ̄p

)2 [
1 + O

(
σ2

i

σ̄2
p

)]
, i = p + 1, . . . , n (8.19)

hold. From (8.18), (8.19) and the interlacing property of the singular values of
[

KΛ yδ
]

and KΛ,

σ̄1 > σ1 > . . . > σ̄p > σp > σ̄p+1 > σp+1 > . . . > σn > σ̄n+1,

we see that for i � p, (σ̄p+1/σi)
2 � 1 and the filter factors are close to 1, while for i � p,

(σi/σ̄p)
2 � 1 and the filter factors are very small. Thus, the filter factors of the truncated

TLS method resemble the Tikhonov filter factors, and xδ
Λp is a filtered solution, with the

truncation index p playing the role of the regularization parameter.
When the dimension of KΛ is not too large, the singular value decomposition of the

augmented matrix
[

KΛ yδ
]

can be computed directly. For large-scale problems, this
approach is computationally expensive and an iterative algorithm based on Lanczos bidiag-
onalization can be used instead (Fierro et al., 1997). The so-called Lanczos truncated TLS
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algorithm uses the Lanczos bidiagonalization of the matrix KΛ to obtain, after p iteration
steps, the factorization

KΛV̄p = Ūp+1Bp, (8.20)

and projects the TLS problem onto the subspace spanned by Ūp+1 ∈ R
m×(p+1) and V̄p ∈

R
n×p . The projection is a consequence of the assumption that for a sufficiently large p,

all the large singular values of KΛ, which contribute to the regularized solution, have been
captured. The projected TLS problem reads as

min
[K̃p ỹp]∈Rm×(n+1)

∥∥∥∥ŪT
p+1

([
KΛ yδ

]
−
[

K̃p ỹp

]) [ V̄p 0
0 1

]∥∥∥∥2
F

subject to ŪT
p+1K̃pV̄pzp = ŪT

p+1ỹp,

where we have set x = V̄pzp for some zp ∈ R
p. Using the result (cf. (8.20) and (5.36))

ŪT
p+1

[
KΛ yδ

] [ V̄p 0
0 1

]
=
[

ŪT
p+1KΛV̄p ŪT

p+1y
δ
]

=
[

Bp β1e
(p+1)
1

]
,

the constrained minimization problem can be rewritten as

min
[B̃p ẽp]∈R(p+1)×(p+1)

∥∥∥[ Bp β1e
(p+1)
1

]
−
[

B̃p ẽp

]∥∥∥2
F

(8.21)

subject to B̃pzp = ẽp,

where we have put B̃p = ŪT
p+1K̃pV̄p and ẽp = ŪT

p+1ỹp. Thus, in each Lanczos step,
we use the TLS algorithm for the small-scale problem (8.21) to compute a truncated TLS
solution xδ

Λp. More precisely, assuming the singular value decomposition[
Bp β1e

(p+1)
1

]
= ¯̄U ¯̄Σ ¯̄V,

with
¯̄V =

[
¯̄V11 ¯̄v12

¯̄vT
21

¯̄v22

]
, ¯̄V11 ∈ R

p×p, ¯̄v12, ¯̄v21 ∈ R
p,

the TLS solution to (8.21) is (cf. (8.10))

zδ
Λp = − 1

¯̄v22

¯̄v12,

and the truncated TLS solution takes the form

xδ
Λp = V̄pzδ

Λp = − 1
¯̄v22

V̄p¯̄v12.

In the Lanczos truncated TLS algorithm, the solution norm and the residual norm also
possess monotonic behavior, i.e.,

∥∥xδ
Λp

∥∥ is a increasing function of p, while
∥∥Rδ

Λp

∥∥
F

is a
decreasing function of p (Fierro et al., 1997).
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Regularization parameter choice methods for truncated TLS are discrete methods. If
explicit knowledge about the errors in KΛ and yδ is available, the discrepancy principle can
be used to compute the truncation index. When the errors in KΛ and yδ are not available,
error-free parameter choice methods can be employed. In this context, we mention that
Sima and Van Huffel (2006) formulated the generalized cross-validation in the framework
of the Lanczos truncated TLS, while the L-curve method has been applied by Fierro et al.
(1997).

The truncated solution xδ
Λp is a filtered solution whose main contributions come from

the first p singular vectors of KΛ (Appendix I). Because these vectors are not always the
best basis vectors for a regularized solution, we may implicitly include regularization in
general form with L �= In. This is done by transforming the problem involving KΛ

and L into a standard-form problem with the matrix K̄Λ = KΛL−1. Then, we apply
the truncated TLS method to the standard-form problem to obtain a regularized solution
x̄δ

Λp, and finally, we transform x̄δ
Λp back to the general-form setting by computing xδ

Λp =
L−1x̄δ

Λp. The conventional and the Lanczos versions of the truncated TLS method are
outlined in Algorithms 13 and 14. It should be remarked that Algorithm 13 computes
simultaneously the truncated SVD solution and the truncated TLS solution for a fixed
value of the truncation index p.

8.3 Regularized total least squares for linear problems

Tikhonov regularization has been recast in the framework of the regularized TLS by Golub
et al. (1999). To stress the differences and the similarities between the conventional
Tikhonov regularization and the regularized TLS, we first note that Tikhonov regulariza-

Algorithm 13. Algorithm for computing the truncated SVD solution xδ
p and the truncated

TLS solution xδ
Λp for a fixed value of the truncation index p.

K̄Λ ← KΛL−1;
{truncated SVD solution}
compute the SVD K̄Λ = UΣVT ;
x̄δ

p ←
∑p

i=1 (1/σi)
(
uT

i yδ
)
vi;

xδ
p ← L−1x̄δ

p;
{truncated TLS solution}
compute the SVD

[
K̄Λ yδ

]
= ŪΣ̄V̄T ;

partition V̄ =
[

V̄11 V̄12

v̄T
21 v̄T

22

]
with V̄11∈ R

n×p;

x̄δ
Λp ← −

(
1/ ‖v̄22‖2

)
V̄12v̄22;

xδ
Λp ← L−1x̄δ

Λp;
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Algorithm 14. Lanczos truncated TLS algorithm with pmax > 1 iterations.

β1 ←
∥∥yδ
∥∥; ū ← (1/β1)yδ;

q ← L−T KT ū; α1 ← ‖q‖; v̄1 ← (1/α1)q;
for p = 1, pmax do

p ← KL−1v̄p − αpū; βp+1 ← ‖p‖; ū ← (1/βp+1)p;
if p > 1 then

set A =
[

Bp β1e
(p+1)
1

]
=

⎡⎢⎢⎢⎢⎢⎣
α1 0 . . . 0 β1

β2 α2 . . . 0 0
...

...
. . .

...
...

0 0 . . . αp 0
0 0 . . . βp+1 0

⎤⎥⎥⎥⎥⎥⎦;

compute the SVD A = ¯̄U ¯̄Σ ¯̄V;

partition ¯̄V =

[
¯̄V11 ¯̄v12

¯̄vT
21

¯̄v22

]
with ¯̄V11∈ R

p×p;

x̄δ
Λp ← − (1/¯̄v22)

∑p
j=1 [¯̄v12]j v̄j ;

xδ
Λp ← L−1x̄δ

Λp;
end if

if p < pmax then

q ← L−T KT ū − βp+1v̄p; αp+1 ← ‖q‖; v̄p+1 ← (1/αp+1)q;
end if

end for

tion has an important equivalent formulation as

min
x

∥∥yδ − Kx
∥∥2 (8.22)

subject to ‖Lx‖ ≤ ε,

where ε is a positive constant. The constrained least squares problem (8.22) can be solved
by using the Lagrange multiplier formalism. Considering the Lagrangian function

L (x, α) =
∥∥yδ − Kx

∥∥2 + α
(
‖Lx‖2 − ε2

)
,

it can be shown that if ε ≤
∥∥Lxδ

∥∥, where xδ is the least squares solution of the equation
Kx = yδ , then the solution xδ

ε to (8.22) is identical to the Tikhonov solution xδ
α, with α

solving the equation ∥∥Lxδ
α

∥∥2 = ε2. (8.23)

To carry this idea over to the TLS setting, we add the bound ‖Lx‖ ≤ ε to the ordinary
problem (8.5), in which case, the new problem statement becomes

min
[K̃ ỹ]∈Rm×(n+1)

∥∥[ KΛ yδ
]
−
[

K̃ ỹ
]∥∥2

F
(8.24)

subject to K̃x = ỹ and ‖Lx‖ ≤ ε.
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The corresponding Lagrangian function is

L
(
K̃,x, α

)
=
∥∥[ KΛ yδ

]
−
[

K̃ K̃x
]∥∥2

F
+ α

(
‖Lx‖2 − ε2

)
,

and the Lagrange multiplier α is non-zero if the inequality constraint is active. In fact,
the solution xδ

Λε to (8.24) is different from the TLS solution xδ
Λ, whenever ε is less than∥∥Lxδ

Λ

∥∥.
To characterize xδ

Λε, we set the partial derivatives of the Lagrangian function to zero.
Differentiation with respect to the entries in K̃ yields

K̃ − KΛ − rxT = 0, (8.25)

with r = yδ − K̃x, while differentiation with respect to the entries in x gives

−K̃T r + αLT Lx = 0. (8.26)

Setting the partial derivative with respect to α to zero also yields

‖Lx‖2 = ε2. (8.27)

Making use of the expression of r, we rearrange (8.26) as(
K̃T K̃ + αLT L

)
x = K̃T yδ. (8.28)

Now, by (8.25) and (8.26), we have KΛ = K̃ − rxT and K̃T r = αLT Lx, respectively,
and so, we obtain

KT
ΛKΛ = K̃T K̃ − αxxT LT L + ‖r‖2 xxT − αLT LxxT (8.29)

and
KT

Λyδ = K̃T yδ −
(
rT yδ

)
x. (8.30)

Inserting (8.29) and (8.30) into (8.28), and using the identities (cf. (8.27))

xxT LT Lx = ε2x, ‖r‖2 xxT x = ‖r‖2 ‖x‖2 x,

and
LT LxxT x = ‖x‖2 LT Lx,

we arrive at (
KT

ΛKΛ + αIIn + αLLT L
)
x = KT

Λyδ, (8.31)

with
αI = αε2 − ‖r‖2 ‖x‖2 − rT yδ (8.32)

and
αL = α

(
1 + ‖x‖2

)
. (8.33)

The next step of our derivation is the elimination of the Lagrange multiplier α in the ex-
pressions of αI and αL. First, we use the relation (cf. (8.25))

r = yδ − K̃x = yδ − KΛx − ‖x‖2 r,



Sect. 8.3 Regularized total least squares for linear problems 261

to obtain (
1 + ‖x‖2

)
r = yδ − KΛx, (8.34)

and further, (
1 + ‖x‖2

)
‖r‖2 =

∥∥yδ − KΛx
∥∥2

1 + ‖x‖2 . (8.35)

On the other hand, scalar multiplying (8.26) by x gives

α =
xT K̃T r

‖Lx‖2 =
1
ε2

(
rT yδ − ‖r‖2

)
. (8.36)

Considering the parameter αI, we insert (8.35) and (8.36) into (8.32), and find that

αI = −
∥∥yδ − KΛx

∥∥2
1 + ‖x‖2 . (8.37)

Turning now to the parameter αL, we use (8.33) and (8.36) to get

αL = α
(
1 + ‖x‖2

)
=

1
ε2

(
rT yδ − ‖r‖2

)(
1 + ‖x‖2

)
. (8.38)

Finally, a relationship connecting αL and αI can be derived as follows: by (8.35) and
(8.37), we have αI = −‖r‖2

(
1 + ‖x‖2

)
, whence using (8.34), (8.38) becomes

αL =
1
ε2

[
yδT

(
yδ − KΛx

)
+ αI

]
. (8.39)

To evaluate the approximation error
∥∥[ KΛ yδ

]
−
[

K̃ ỹ
]∥∥

F
, we use the rela-

tion (cf. (8.25))

[
KΛ yδ

]
−
[

K̃ K̃x
]

=
[

KΛ − K̃ r
]

=
[
−rxT r

]
= −r

[
x
−1

]T

,

together with (8.35) and (8.37), to obtain∥∥[ KΛ yδ
]
−
[

K̃ ỹ
]∥∥2

F
=
(
1 + ‖x‖2

)
‖r‖2 = −αI. (8.40)

Collecting all results we conclude that xδ
Λε is the solution of equation (8.31) with αI

and αL given by (8.37) and (8.39), respectively. The main features of the regularized TLS
are presented below (Golub et al., 1999).

(1) If the matrix αIIn + αLLT L is positive definite, then the regularized TLS solution
corresponds to the Tikhonov solution with the penalty term αI ‖x‖2 + αL ‖Lx‖2. If
the matrix αIIn + αLLT L is indefinite or negative definite, there is no equivalent
interpretation.
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(2) For a given ε, there are several pairs of parameters αI and αL and thus several solutions
xδ

Λε that satisfy (8.31), (8.37) and (8.39). However, from (8.40), we see that only the
solution with the smallest value of |αI| solves the constrained minimization problem
(8.24).

(3) If ε <
∥∥Lxδ

Λ

∥∥, where xδ
Λ is the TLS solution (8.10), the inequality constraint is bind-

ing, the Lagrange multiplier α is positive and by (8.33), it follows that αL > 0. From
(8.37) it is apparent that αI is always negative and thus adds some deregularization to
the solution. The residual (8.40) is a monotonically decreasing function of ε, and so,
αI is a monotonically increasing function of ε. If ε =

∥∥Lxδ
Λ

∥∥, the Lagrange multi-
plier α is zero and the regularized TLS solution xδ

Λε coincides with the TLS solution
xδ

Λ; for larger ε, the constraint is never again binding and so, the solution remains
unchanged.

To compute the regularized TLS solution xδ
Λε we have to solve a nonlinear problem, and

several techniques have been proposed in the literature. In Golub et al. (1999), αL is
considered as free parameter, a corresponding value is computed for αI, and the system
of equations (8.31) is solved in an efficient way. The idea is to transform (8.31) into the
augmented system of equations⎡⎣ Im 0 KΛ

0 In
√

αLL
KT

Λ

√
αLLT −αIIn

⎤⎦⎡⎣ r
s
x

⎤⎦ =

⎡⎣ yδ

0
0

⎤⎦ ,

to reduce KΛ to an n×n bidiagonal form by means of orthogonal transformations, to apply
Elden’s algorithm to annihilate the matrix term containing the factor

√
αL, and finally, to

use a symmetric perfect shuffle reordering to obtain a symmetric, tridiagonal, indefinite
matrix of size 2n × 2n containing the parameter αI on the main diagonal.

In Guo and Renault (2002), a shifted inverse power method is used to obtain the eigen-
pair (

λ,

[
x

−1

])
for the problem

B (x)
[

x
−1

]
= λ

[
x

−1

]
, (8.41)

where

B (x) =
[

KT
ΛKΛ + αL (x)LT L KT

Λyδ

yδT KΛ −αL (x) ε2 + yδT yδ

]
is an (n + 1) × (n + 1) matrix, λ = −αI, and αL is given by (cf. (8.37) and (8.39))

αL (x) =
1
ε2

[
yδT

(
yδ − KΛx

)
−
∥∥yδ − KΛx

∥∥2
1 + ‖x‖2

]
. (8.42)

In Renault and Guo (2005), the solution of the eigenproblem (8.41) is considered
together with the solution of a nonlinear equation which guarantees the bound ‖Lx‖ = ε.
To describe the main features of this algorithm, we consider the decomposition

B (αL) = M + αLN,
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where

M =
[

KT
ΛKΛ KT

Λyδ

yδT KΛ yδT yδ

]
, N =

[
LT L 0
0 −ε2

]
,

and denote by (
λαL

,

[
xαL

−1

])
the eigenpair corresponding to the smallest eigenvalue of B (αL). For a fixed ε, we intro-
duce the function

g (x) =
‖Lx‖2 − ε2

1 + ‖x‖2 ,

and compute α̂L such that xα̂L
solves the equation

g (xαL
) = 0; (8.43)

xα̂L
is then the regularized TLS solution of (8.24). To justify this algorithm, we assume

that xα̂L
satisfies the eigensystem equation

B (α̂L)
[

xα̂L

−1

]
= λα̂L

[
xα̂L

−1

]
, (8.44)

and is also a solution of equation (8.43). The first block equation of the eigenvalue prob-
lem (8.44) gives (8.31) with α̂I = −λα̂L

, while the second block equation yields (8.39).
Multiplying the eigensystem equation by [xT

α̂L
,−1] , we find that

λα̂L
=

1
1 + ‖xα̂L

‖2

[∥∥yδ − KΛxα̂L

∥∥2 + α̂L

(
‖Lxα̂L

‖2 − ε2
)]

. (8.45)

Since g (xα̂L
) = 0, it follows that ‖Lxα̂L

‖2 = ε2, and (8.45) becomes

λα̂L
=

∥∥yδ − KΛxα̂L

∥∥2
1 + ‖xα̂L

‖2 ; (8.46)

thus α̂I = −λα̂L
satisfies indeed (8.37). In summary, xα̂L

solves equation (8.31) with α̂I

as in (8.37) and α̂L as in (8.39). Since λα̂L
is the smallest eigenvalue of B, the present

approach explicitly computes a solution with the smallest value of |αI|.
For a practical implementation of the method of Renault and Guo we note the follow-

ing results:

(1) if λn+1 > 0 is the smallest eigenvalue of the matrix B and vn+1 is the corresponding
eigenvector, then λαL

= λn+1 and[
xαL

−1

]
= − 1

[vn+1]n+1

vn+1;

(2) g (xαL
) is a monotonically decreasing function of αL, and there exists only one solu-

tion α̂L of the equation g (xαL
) = 0.
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Algorithm 15 computes the Tikhonov solution and the regularized TLS solution for
a fixed value of the parameter α corresponding to the method of Tikhonov regularization
Both solutions are related to each other through the constraint norms. The input parameter
α is used to determine the bound ε and to estimate a bisection interval for αL. The algorithm
also computes the ‘equivalent’ regularization matrix defined as

αLT
eqLeq = α̂IIn + α̂LLT L. (8.47)

This factorization is performed by using the Cholesky method with added multiple of iden-
tity, which takes into account that for large negative values of α̂I, the matrix α̂IIn+α̂LLT L
may not be positive definite. Note that strategies based on modifying a Cholesky factoriza-
tion or a symmetric indefinite factorization of a non-positive definite Hessian are standard
approaches in the framework of Newton’s method (Nocedal and Wright, 2006).

Algorithm 15. Algorithm for computing the regularized TLS solution by solving the
eigenvalue problem (8.41). The regularization parameter α corresponds to the method
of Tikhonov regularization. The algorithm computes the solution xα̂L

, the regularization
parameters α̂L and α̂I, and the equivalent regularization matrix Leq.

compute the Tikhonov solution xδ
α for α, i.e., xδ

α =
(
KT

ΛKΛ + αLT L
)−1

KT
Λyδ;

ε ←
∥∥Lxδ

α

∥∥;
compute the matrices M and N;
estimate a bisection interval [αLmin, αLmax] for αL around α;
solve g (αL) = 0 in [αLmin, αLmax] using FuncEval (αL, ε,M,N; g,xαL

, αI);
store the solution α̂L and the corresponding xα̂L

and α̂I;
{regularization matrix using Cholesky factorization with added multiple of identity}
choose the tolerance εα, e.g., εα = 0.001;
�α ← εα |α̂I|; stop ← false;
while stop = false do

attempt to apply the Cholesky factorization to obtain LT
eqLeq = α̂IIn + α̂LLT L;

if factorization is successful then

stop ← true;
else

α̂I ← α̂I + �α;
end if

end while

Leq ← (1/
√

α)Leq.

{for given αL, the routine computes g (αL), xαL
and αI}

routine FuncEval (αL, ε,M,N; g,xαL
, αI)

B ← M + αLN;
compute the smallest eigenvalue λn+1 of B and the eigenvector vn+1;

compute xαL
as
[

xαL

−1

]
= −

(
1/ [vn+1]n+1

)
vn+1;

αI ← −λn+1;
g ←

(
‖LxαL

‖2 − ε2
)

/
(
1 + ‖xαL

‖2
)

.
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In Sima et al. (2003), the objective function is the so-called orthogonal distance, and
the constrained minimization problem takes the form (cf. (8.37) and (8.40))

min
x

∥∥yδ − KΛx
∥∥2

1 + ‖x‖2

subject to ‖Lx‖ ≤ ε.

The first-order optimality conditions for the Lagrangian function

L (x, λ) =

∥∥yδ − KΛx
∥∥2

1 + ‖x‖2 + λ
(
‖Lx‖2 − ε2

)
,

yield
D (x)x + λLT Lx = d (x) , ‖Lx‖2 = ε2, (8.48)

with

D (x) =
KT

ΛKΛ

1 + ‖x‖2 −
∥∥yδ − KΛx

∥∥2(
1 + ‖x‖2

)2 In, d (x) =
KT

Λyδ

1 + ‖x‖2 .

The problem (8.48) is first transformed into the standard form and then solved iteratively
by using a fixed point iteration method. Assuming that L is square and nonsingular, the
transformation to the standard form gives

(W + λIn) x̄ = h, ‖x̄‖2 = ε2, (8.49)

with x̄ = Lx, W = L−T DL−1 and h = L−T d. Note that since D is a symmetric matrix,
W is also a symmetric matrix. Let us now consider the problem

(W + λIn)2 u = h, hT u = ε2 (8.50)

for u ∈ R
n. Setting

x̄ = (W + λIn)u,

and taking into account that, due to the symmetry of W + λIn, there holds

ε2 = hT u = uT (W + λIn)2 u = ‖x̄‖2
,

we see that the problems (8.49) and (8.50) are equivalent. Further, using the identity

h =
1
ε2

(
hT u

)
h =

1
ε2

hhT u,

we deduce that (8.50) can be transformed into the quadratic eigenvalue problem(
λ2In + 2λW + W2 − 1

ε2
hhT

)
u = 0. (8.51)

This quadratic eigenvalue problem is solved in order to find the largest eigenvalue λ and
the corresponding eigenvector u scaled so that hT u = ε2. As all matrices in (8.51) are
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real and symmetric, the quadratic eigenvalues are real and come in complex conjugate
pairs. Moreover, the special form of the quadratic eigenvalue problem (8.51) implies that
the rightmost (largest real) eigenvalue is real and positive. The solution of the original
problem is then recovered by first computing x̄ = (W + λIn)u and then x = L−1x̄.

Algorithm 16. Algorithm for computing the regularized TLS solution by solving the
quadratic eigenvalue problem (8.51). The regularization parameter α corresponds to the
method of Tikhonov regularization. The algorithm computes the solution x, the regular-
ization parameters αL and αI, and the equivalent regularization matrix Leq.
choose the tolerances εl and εx for the convergence test;
compute the Tikhonov solution xδ

α for α, i.e., xδ
α =

(
KT

ΛKΛ + αLT L
)−1

KT
Λyδ;

ε ←
∥∥Lxδ

α

∥∥;
K̄Λ ← KΛL−1;
stop ← false; k ← 0; x ← xδ

α; {starting vector}
while stop = false do

r ←
∥∥yδ − KΛx

∥∥2 /
(
1 + ‖x‖2

)
; c ← 1/

(
1 + ‖x‖2

)
;

W ← cK̄T
ΛK̄Λ − rcL−T L−1; h ← cK̄T

Λyδ;

set A =
[

−2W −W2 + ε−2hhT

In 0

]
;

compute the largest eigenvalue λ and the corresponding eigenvector
[

v
u

]
of A;

u ←
(
ε2/hT u

)
u; {scale u}

W ← W + λIn;
x ← L−1Wu;
{convergence test}
if k > 0 and

∣∣λ − λprv

∣∣ ≤ εlλ and
∥∥x − xprv

∥∥ ≤ εx ‖x‖ then

stop ← true;
else

λprv ← λ; xprv ← x;
k ← k + 1;

end if

end while

αL ← λ
(
1 + ‖x‖2

)
; αI ← −

∥∥yδ − KΛx
∥∥2 /

(
1 + ‖x‖2

)
;

compute Leq as in Algorithm 15

The quadratic eigenvalue problem (8.51) is equivalent to the linear eigenvalue problem[
−2W −W2 + 1

ε2 hhT

In 0

] [
v
u

]
= λ

[
v
u

]
,

and this can be solved by using for example, the routine DGEEV from the LAPACK library
(Anderson et al., 1995), or the routine DNAUPD from the ARPACK library (Maschhoff
and Sorensen, 1996). The DNAUPD routine is more efficient because it calculates only the
largest eigenvalue and the corresponding eigenvector by using Arnoldi’s method (Arnoldi,



Sect. 8.4 Regularized total least squares for nonlinear problems 267

1951). The Algorithm 16 generates a sequence {(λk,xk)} by solving the quadratic eigen-
value problem (8.51) at each iteration step k. From the analysis of Sima et al. (2003) we
infer the following results:

(1) xk should correspond to the largest eigenvalue λk > 0 since only then the algorithm
converges;

(2) the orthogonal distance decreases at each iteration step;
(3) any limit point of the sequence {(λk,xk)} solves equation (8.48) .

The last result suggests that instead of requiring the convergence of the sequence {(λk,xk)}
we may check if equation (8.48) is satisfied within a prescribed tolerance at each iteration
step.

8.4 Regularized total least squares for nonlinear problems

As stated in Chapter 6, the solution of a nonlinear ill-posed problem by means of Tikhonov
regularization is equivalent to the solution of a sequence of ill-posed linearizations of the
forward model about the current iterate. Essentially, at the iteration step k, we solve the
linearized equation

Kαk�x = yδ
k, (8.52)

with �x = x − xa, Kαk = K
(
xδ

αk

)
, and

yδ
k = yδ − F

(
xδ

αk

)
+ Kαk

(
xδ

αk − xa

)
,

via Tikhonov regularization with the penalty term ‖L�x‖2 and the regularization param-
eter α. If �xδ

αk is the minimizer of the Tikhonov function

Flαk (�x) =
∥∥yδ

k − Kαk�x
∥∥2 + α ‖L�x‖2

, (8.53)

the new iterate is given by xδ
αk+1 = xa + �xδ

αk, and the constraint norm can be readily
computed as

ε =
∥∥L�xδ

αk

∥∥ . (8.54)

In the framework of the regularized TLS, we assume that Kαk is contaminated by
errors, and instead of minimizing (8.53) we solve the problem

min
[K̃ ỹ]∈Rm×(n+1)

∥∥[ Kαk yδ
k

]
−
[

K̃ ỹ
]∥∥2

F
(8.55)

subject to K̃�x = ỹ and ‖L�x‖ ≤ ε,

with ε being given by (8.54). The free parameter of the method is the Tikhonov regulariza-
tion parameter α, and the Algorithms 15 and 16 can be used to compute both the Tikhonov
solution and the regularized TLS solution. Although the numerical implementation of the
regularized TLS is very similar to that of Tikhonov regularization, the use of a step-length
procedure is problematic. In principle it can be applied for the objective function

Fα (x) =
1
2
‖fα (x)‖2

, fα (x) =
[

F (x) − yδ
√

αLeq (x − xa)

]
, (8.56)
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but solving (8.55) is not equivalent to minimizing (8.56) at the iteration step k because Leq

may not be the exact Cholesky factor of α̂IIn + α̂LLT L (cf. (8.47)).
In our numerical analysis, we consider the O3 retrieval test problem and compute

the Jacobian matrix Kss by assuming only the single scattering contribution (cf. (8.1)).
Furthermore, at each iteration step, we perturb this matrix as

[Kkα]ij = [Ksskα]ij + σΛεij [Ksskα]ij ,

where the elements εij are from a normal distribution with zero mean and unit variance.
Figure 8.1 shows the relative errors in the Tikhonov and the regularized TLS solutions
for four values of the standard deviation σΛ, namely 0, 0.01, 0.02 and 0.03. In all situa-
tions, the minimum solution error for the regularized TLS is clearly smaller than that for
Tikhonov regularization. Even in the case σΛ = 0 there is a solution improvement due
to the approximate Jacobian calculation. The plots also show that the minima of the TLS
errors are flat and this situation is beneficial for the inversion process.

In Figure 8.2 we plot the Tikhonov and the regularized TLS solutions, corresponding
to the minimizers of the error curves in Figure 8.1. In fact, the improvement of the TLS
error as compared to the Tikhonov error is due to the additional term αIIn in Eq. (8.31).

From the point of view of their accuracy, the regularized TLS algorithms solving the
eigenvalue problem (8.41) and the quadratic eigenvalue problem (8.51) are completely
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Fig. 8.1. Relative errors in the Tikhonov and the regularized TLS solutions as a function of the
exponent p, where α = σp and σ is the noise standard deviation. The results correspond to the O3

retrieval test problem and are computed with the regularized TLS algorithm solving the quadratic
eigenvalue problem (8.51). The numbers in parentheses indicate the minimum values of the relative
solution error.
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Fig. 8.2. Tikhonov (TR) and regularized TLS solutions corresponding to the minimizers of the error
curves in Figure 8.1.

equivalent. However, the computation time of the algorithm based on a quadratic eigen-
value problem is on average 6 times smaller (Table 8.1). The main drawback of the regular-
ized TLS is the extraordinarily large number of iteration steps (and so, computation time)
as compared to Tikhonov regularization. The decrease of the solution error by a factor of
4–5 is accompanied by an increase of the computation time by a factor of 7–8.

The large number of iteration steps is also a consequence of the fact that we do not
use a step-length procedure to guarantee a monotonic decrease of the residual norm (Fig-
ure 8.3). A step-length algorithm stops the iterative process too early (because the search
direction is not a descent direction for the Tikhonov function), and as a result, the solu-

Table 8.1. Computation time in min:ss format. The numbers in parentheses indicate the number
of iteration steps for Tikhonov regularization (TR) and the regularized TLS algorithms solving the
eigenvalue problem (8.41) (TLS-EP) and the quadratic eigenvalue problem (8.51) (TLS-QEP).

Standard deviation σΛ

Method 0 0.01 0.02 0.03

TR 0:14 (4) 0:15 (6) 0:18 (8) 0:24 (16)
TLS-QEP 1:24 (108) 1:37 (124) 2:23 (202) 2:58 (243)
TLS-EP 8:01 (108) 9:57 (124) 13:13 (202) 19:17 (243)
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Fig. 8.3. History of the residual norm in the case σΛ = 0.03. In the left panel the curves are plotted
for all iteration steps, while in the right panel, the y-axis is zoomed out.

tion errors are not sufficiently small. For example, in the case σΛ = 0.03, the regularized
TLS with a step-length algorithm terminates after 19 iteration steps with a solution error of
1.56 · 10−2, and if the step-length algorithm is turned off, it terminates after 243 iteration
steps with a solution error of 9.77 · 10−4.

The design of an efficient regularized TLS algorithm for nonlinear problems is far
from being complete. The selection of an optimal value of the regularization parameter
by an a posteriori method will dramatically increase the computational effort, while the
use of a variable regularization parameter computed for example, by using the L-curve
method, is also problematic. In our numerical simulations, the L-curve either does not
have a distinctive L-shape, or it predicts values of the regularization parameter that are too
small.

The regularized TLS has been applied to atmospheric trace gas profile retrievals by
Koner and Drummond (2008). In this work, the regularized TLS algorithm solving the
quadratic eigenvalue problem (8.51) is used for the automatic determination of the regu-
larization strength.
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