
5

Iterative regularization methods
for linear problems

The iterative solution of linear systems of equations arising from the discretization of ill-
posed problems is the method of choice when the dimension of the problem is so large that
factorization of the matrix is either too time-consuming or too memory-demanding.

The ill-conditioning of the coefficient matrix for these linear systems is so extremely
large that some sort of regularization is needed to guarantee that the computed solution is
not dominated by errors in the data. In the framework of iterative methods, the regulariz-
ing effect is obtained by stopping the iteration prior to convergence to the solution of the
linear system. This form of regularization is referred to as regularization by truncated iter-
ation. The idea behind regularization by truncated iteration is that in the first few iteration
steps, the iterated solution includes the components [(uT

i yδ)/σi]vi corresponding to the
largest singular values and approaches a regularized solution. As the iteration continues,
the iterated solution is dominated by amplified noise components and converges to some
undesirable solution (often the least squares solution). This phenomenon is referred to as
semi-convergence. In this context, it is apparent that the iteration index plays the role of the
regularization parameter, and a stopping rule plays the role of a parameter choice method.

In this chapter we first review some classical iterative methods and then focus on the
conjugate gradient method and a related algorithm based on Lanczos bidiagonalization.
The classical iterative methods to be discussed include the Landweber iteration and semi-
iterative methods.

5.1 Landweber iteration

The Landweber iteration is based on the transformation of the normal equation

KT Kx = KT yδ

into an equivalent fixed point equation

x = x + KT
(
yδ − Kx

)
,
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that is
xδ

k = xδ
k−1 + KT

(
yδ − Kxδ

k−1

)
, k = 1, 2, . . . . (5.1)

The slight inconvenience with the Landweber iteration is that it requires the norm of
K to be less than or equal to one, otherwise the method either diverges or converges too
slowly. If this is not the case, we introduce a relaxation parameter χ, chosen as 0 < χ ≤
‖K‖−1, to obtain

xδ
k = xδ

k−1 + χ2KT
(
yδ − Kxδ

k−1

)
, k = 1, 2, . . . .

This construction has the same effect as multiplying the equation Kx = yδ by χ and
iterating with (5.1). In the present analysis we assume that the problem has been scaled
appropriately, so that ‖K‖ ≤ 1, and drop the relaxation parameter χ.

The initial guess xδ
0 = xa plays the same role as in Tikhonov regularization: it selects

the particular solution which will be obtained in the case of ambiguity. The iterate xδ
k can

be expressed non-recursively through

xδ
k = Mkxδ

0 +
k−1∑
l=0

MlKT yδ, (5.2)

where
M = In − KT K.

This result can be proven by induction. For k = 1, there holds

xδ
1 = xδ

0 + KT
(
yδ − Kxδ

0

)
= Mxδ

0 + KT yδ,

while under assumption (5.2), we obtain

xδ
k+1 = xδ

k + KT
(
yδ − Kxδ

k

)
= Mxδ

k + KT yδ = Mk+1xδ
0 +

k∑
l=0

MlKT yδ.

To obtain more transparent results concerning the regularizing property of the Landwe-
ber iteration, we assume that xδ

0 = 0. Using the result

MlKT yδ =
n∑

i=1

(
1 − σ2

i

)l
σi

(
uT

i yδ
)
vi, l ≥ 0,

where (σi;vi,ui) is a singular system of K, we deduce that the iterate xδ
k can be expressed

as

xδ
k =

n∑
i=1

[
1 −
(
1 − σ2

i

)k] 1
σi

(
uT

i yδ
)
vi, (5.3)

and the regularized solution for the exact data vector y as

xk =
n∑

i=1

[
1 −
(
1 − σ2

i

)k] 1
σi

(
uT

i y
)
vi.
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Accounting for the expression of the exact solution x†,

x† =
n∑

i=1

1
σi

(
uT

i y
)
vi,

we find that the smoothing error norm is given by

‖esk‖2 =
∥∥x† − xk

∥∥2 =
n∑

i=1

(
1 − σ2

i

)2k 1
σ2

i

(
uT

i y
)2

. (5.4)

Since by assumption ‖K‖ ≤ 1, it follows that σi ≤ 1 for all i = 1, . . . , n, and therefore,
‖esk‖ → 0 as k → ∞. On the other hand, the noise error norm

‖enk‖2 =
∥∥xk − xδ

k

∥∥2 =
n∑

i=1

[
1 −
(
1 − σ2

i

)k]2 1
σ2

i

(
uT

i δ
)2

(5.5)

converges to ∥∥K†δ
∥∥2 =

n∑
i=1

1
σ2

i

(
uT

i δ
)2

as k → ∞. Since K possesses small singular values, the noise error is extremely large in
this limit. The noise error can be estimated by using the inequality

sup
0≤x≤1

1 −
(
1 − x2

)k
x

≤
√

k, k ≥ 1,

and the result is
‖enk‖2 ≤ kΔ2. (5.6)

From (5.4) and (5.6), we see that the smoothing error converges slowly to 0, while the
noise error is of the same order of at most

√
kΔ. For small values of k, the noise error

is negligible and the iterate xδ
k seems to converge to the exact solution x†. When

√
kΔ

reaches the order of magnitude of the smoothing error, the noise error is no longer covered
in xδ

k and the approximation changes to worse. This semi-convergent behavior requires a
reliable stopping rule for detecting the transition from convergence to divergence.

The regularizing effect of the Landweber iteration is reflected by the filter factors of
the computed solution. From (5.3), we infer that the kth iterate can be expressed as

xδ
k =

n∑
i=1

fk

(
σ2

i

) 1
σi

(
uT

i yδ
)
vi,

with the filter factors being given by

fk

(
σ2

i

)
= 1 −

(
1 − σ2

i

)k
.

For σi � 1, we have fk

(
σ2

i

)
≈ kσ2

i , while for σi ≈ 1, there holds fk

(
σ2

i

)
≈ 1. Thus,

for small values of k, the contributions of the small singular values to the solution are
effectively filtered out, and when k increases, more components corresponding to small
singular values are included in the solution. Therefore, an optimal value of k should reflect
a trade-off between accuracy and stability.
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5.2 Semi-iterative regularization methods

The major drawback of the Landweber iteration is its slow rate of convergence, this means,
too many iterations are required to reduce the residual norm to the order of the noise
level. More sophisticated methods have been developed on the basis of the so-called semi-
iterative methods.

To introduce semi-iterative methods, we consider again the Landweber iteration and
define the function gk (λ) in terms of the filter function

fk (λ) = 1 − (1 − λ)k

by the relation

gk (λ) =
1
λ

fk (λ) =
1
λ

[
1 − (1 − λ)k

]
. (5.7)

In terms of gk, the Landweber iterate reads as

xδ
k = gk

(
KT K

)
KT yδ, (5.8)

where
gk

(
KT K

)
= V

[
diag

(
gk

(
σ2

i

))
n×n

]
VT .

Evidently, gk (λ) is a polynomial of degree k − 1, which converges pointwise to 1/λ on
(0, 1] as k → ∞. This property guarantees that in the noise-free case, the regularized
solution converges to the exact solution, that is, limk→∞

∥∥xk − x†∥∥ = 0, where xk =
gk

(
KT K

)
KT y.

Any sequence of polynomials {gk}, with gk having the degree k − 1, defines a semi-
iterative method. The idea is that polynomials gk different from the one given by (5.7) may
converge faster to 1/λ, and may thus lead to accelerated Landweber methods. In the case
of semi-iterative methods, the polynomials gk are called iteration polynomials, while the
polynomials

rk (λ) = 1 − λgk (λ)

are called residual polynomials. The residual polynomials are uniformly bounded on [0, 1]
and converge pointwise to 0 on (0, 1] as k → ∞. In addition, they are normalized in the
sense that rk (0) = 1.

If the residual polynomials form an orthogonal sequence with respect to some measure
over R+, then they satisfy the three-term recurrence relation

rk (λ) = rk−1 (λ) + μk [rk−1 (λ) − rk−2 (λ)] − ωkλrk−1 (λ) , k ≥ 2. (5.9)

By virtue of (5.9) and taking into account that

xδ
k =

n∑
i=1

[
1 − rk

(
σ2

i

)] 1
σi

(
uT

i yδ
)
vi

and that

KT
(
yδ − Kxδ

k−1

)
=

n∑
i=1

[
σ2

i rk−1

(
σ2

i

)] 1
σi

(
uT

i yδ
)
vi,
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we deduce that the iterates of the associated semi-iterative method satisfy the recurrence
relation

xδ
k = xδ

k−1 + μk

(
xδ

k−1 − xδ
k−2

)
+ ωkKT

(
yδ − Kxδ

k−1

)
, k ≥ 2. (5.10)

Note that because the kth iterate does not depend only on the (k−1)th iterate, the iterative
approach (5.10) is termed semi-iterative. As in the case of the Landweber iteration, K
must be scaled so that ‖K‖ ≤ 1, and for this reason, systems of polynomials defined on
the interval [0, 1] have to be considered.

The Chebyshev method of Stiefel uses the residual polynomials (Rieder, 2003)

rk (λ) =
Uk (1 − 2λ)

k + 1
,

where Uk are the Chebyshev polynomials of the second kind

Uk (λ) =
sin ((k + 1) arccos λ)

sin (arccos λ)
.

Due to the orthogonality of Uk in the interval [−1, 1] with respect to the weight function√
1 − λ2, it follows that the rk are orthogonal in the interval [0, 1] with respect to the

weight function
√

λ/ (1 − λ). The three-term recurrence relation reads as

xδ
k =

2k

k + 1
xδ

k−1 −
k − 1
k + 1

xδ
k−2 +

4k

k + 1
KT
(
yδ − Kxδ

k−1

)
, k ≥ 2,

with
xδ

1 = xδ
0 + 2KT

(
yδ − Kxδ

0

)
.

In the Chebyshev method of Nemirovskii and Polyak (1984), the residual polynomials
are given by

rk (λ) =
(−1)k

T2k+1

(√
λ
)

(2k + 1)
√

λ
,

where Tk are the Chebyshev polynomials of the first kind

Tk (λ) = cos (k arccos λ) .

As before, the orthogonality of Tk in the interval [−1, 1] with respect to the weight function
1/
√

1 − λ2 implies the orthogonality of the rk in the interval [0, 1] with respect to the
weight function

√
λ/ (1 − λ) . The recursion of the Chebyshev method of Nemirovskii

and Polyak takes the form

xδ
k = 2

2k − 1
2k + 1

xδ
k−1 −

2k − 3
2k + 1

xδ
k−2 + 4

2k − 1
2k + 1

KT
(
yδ − Kxδ

k−1

)
, k ≥ 2,

with
xδ

1 =
2
3
xδ

0 +
4
3
KT
(
yδ − Kxδ

0

)
.
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The ν-method of Brakhage (1987) uses the residual polynomials

rνk (λ) =
P

(2ν− 1
2 ,− 1

2 )
k (1 − 2λ)

P
(2ν− 1

2 ,− 1
2 )

k (1)
,

where P
(α,β)
k are the Jacobi polynomials. The parameter ν is fixed and is chosen as 0 <

ν < 1. The orthogonality of the Jacobi polynomials in the interval [−1, 1] with respect to
the weight function (1 − λ)α (1 + λ)β , where α > −1 and β > −1, yields the orthogo-
nality of the residual polynomials in the interval [0, 1] with respect to the weight function
λ2ν+1/2 (1 − λ)−1/2 . The three-term recurrence relation of the Jacobi polynomials leads
to the following recursion of the ν-method

xδ
k = xδ

k−1 + μk

(
xδ

k−1 − xδ
k−2

)
+ ωkKT

(
yδ − Kxδ

k−1

)
, k ≥ 2,

with
xδ

1 = xδ
0 + ω1KT

(
yδ − Kxδ

0

)
and

μk =
(k − 1) (2k − 3) (2k + 2ν − 1)

(k + 2ν − 1) (2k + 4ν − 1) (2k + 2ν − 3)
, k ≥ 2,

ωk = 4
(2k + 2ν − 1) (k + ν − 1)
(k + 2ν − 1) (2k + 4ν − 1)

, k ≥ 1.

5.3 Conjugate gradient method

Semi-iterative regularization methods are much more efficient than the classical Landwe-
ber iteration but require the scaling of K . The conjugate gradient method due to Hestenes
and Stiefel (1952) is scaling-free and is faster than any other semi-iterative method.

The conjugate gradient method is applied to the normal equation

KT Kx = KT yδ

of an ill-posed problem, in which case, the resulting algorithm is known as the conjugate
gradient for normal equations (CGNR). In contrast to other iterative regularization meth-
ods, CGNR is not based on a fixed sequence of polynomials {gk} and {rk}; these polyno-
mials depend on the given right-hand side. This has the advantage of a greater flexibility
of the method, but at the price of the iterates depending nonlinearly on the data,

xδ
k = gk

(
KT K,yδ

)
KT yδ.

To formulate the CGNR method we first consider a preliminary definition. If A is a
real n × n matrix and x is an element of R

n, then the kth Krylov subspace Kk (x,A) is
defined as the linear space

Kk (x,A) = span
{
x,Ax, . . . ,Ak−1x

}
.
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Using (5.8) and taking into account that gk is a polynomial of degree k−1, we deduce that
the kth iterate of any semi-iterative method belongs to the kth Krylov subspace

Kk

(
KT yδ,KT K

)
= span

{
KT yδ,

(
KT K

)
KT yδ, . . . ,

(
KT K

)k−1
KT yδ

}
.

If rank (K) = r, there holds

(
KT K

)k−1
KT yδ =

r∑
i=1

σ
2(k−1)+1
i

(
uT

i yδ
)
vi, k ≥ 1,

and we infer that
Kk ⊆ N (K)⊥ = span {vi}i=1,r , k ≥ 1, (5.11)

where, for notation simplification, Kk stands for Kk

(
KT yδ,KT K

)
.

The kth iterate of the CGNR method is defined as the minimizer of the residual norm
in the corresponding Krylov subspace; assuming a zero initial guess, i.e., xδ

0 = 0, we have

xδ
k = arg min

xk∈Kk

∥∥yδ − Kxk

∥∥2 . (5.12)

By virtue of (5.12) and the fact that the kth iterate of any semi-iterative belongs to Kk,
we may expect that CGNR requires the fewest iteration steps among all semi-iterative
methods. Going further, we define the kth subspace

Lk = KKk = {yk/yk = Kxk,xk ∈ Kk} , (5.13)

and in view of (5.12), we consider the minimizer

yδ
k = arg min

yk∈Lk

∥∥yδ − yk

∥∥ . (5.14)

The element yδ
k gives the best approximation of yδ among all elements of Lk, that is,

yδ
k = Pkyδ, (5.15)

where Pk is the orthogonal projection operator onto the (linear) subspace Lk. The unique-
ness of the orthogonal projection implies that yδ

k is uniquely determined and that

yδ
k = Kxδ

k. (5.16)

If {ui}i=1,k is an orthogonal basis of the (finite-dimensional) subspace Lk, then yδ
k can be

expressed as

yδ
k =

k∑
i=1

uT
i yδ

‖ui‖2 ui. (5.17)

Let us now define the vectors
sk = KT rδ

k, k ≥ 0,

with rδ
0 = yδ . As the residual vector at the kth iteration step,

rδ
k = yδ − yδ

k = (Im − Pk)yδ, k ≥ 1, (5.18)
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is orthogonal to Lk, the identity

sT
k xk =

(
KT rδ

k

)T
xk = rδT

k yk = 0, (5.19)

which holds true for all xk ∈ Kk and yk = Kxk ∈ Lk, yields

sk ⊥ Kk, k ≥ 1. (5.20)

The finite-dimensional subspaces Kk and Lk can be characterized by appropriate or-
thogonal bases. For the kth Krylov subspace we note the following result: the system
{si}i=0,k−1 is an orthogonal basis of Kk, that is,

Kk = span {si}i=0,k−1 , sT
i sj = δij ‖si‖2

, i, j = 0, . . . , k − 1. (5.21)

This assertion can be proven by induction on k (Rieder, 2003). For k = 1, the result
K1 = span {s0}, with s0 = KT yδ , is evidently true. Now, let us assume that (5.21)
holds for k, i.e., Kk = span {si}i=0,k−1, and let {ui}i=1,k be an orthogonal basis of
Lk. As Lk = KKk, {ui}i=1,k can be generated by orthogonalizing the set of vectors
{Ksi}i=0,k−1. From (5.17), we have

yδ
k =

k∑
i=1

uT
i yδ

‖ui‖2 ui = yδ
k−1 + αkuk, k ≥ 1, (5.22)

with yδ
0 = 0,

yδ
k−1 = Pk−1yδ =

k−1∑
i=1

uT
i yδ

‖ui‖2 ui,

and

αk =
uT

k yδ

‖uk‖2 . (5.23)

Then, by (5.18) and (5.22), we obtain

rδ
k = yδ − yδ

k =
(
yδ − yδ

k−1

)
− αkuk = rδ

k−1 − αkuk, k ≥ 1, (5.24)

and further,
sk = sk−1 − αkKT uk, k ≥ 1. (5.25)

For uk ∈ Lk = KKk, there exists vk ∈ Kk such that uk = Kvk, and we deduce that

KT uk = KT Kvk ∈ Kk+1. (5.26)

Since by induction hypothesis sk−1 ∈ Kk ⊂ Kk+1, (5.25) gives sk ∈ Kk+1. This result
together with the orthogonality relation (5.20) yields the (orthogonal) sum representation
Kk+1 = Kk⊕span {sk}, and the proof is finished. As dim (Kk) = k, dim (N (K)⊥) = r,
and Kk ⊆ N (K)⊥, we find that for k = r, Kr = N (K)⊥ and, in particular, that the
CGNR iterate xδ

r = arg minx∈N (K)⊥
∥∥yδ − Kx

∥∥2 is the least squares minimal norm
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solution of the equation Kx = yδ . Since xδ
r solves the normal equation KT Kx = KT yδ ,

we obtain
sr = KT rδ

r = KT
(
yδ − Kxδ

r

)
= 0.

Thus, by the CGNR method we construct a sequence of iterates which approaches the least
squares minimal norm solution, and we have to stop at some iteration step k < r in order to
obtain a reliable solution. The set of orthogonal vectors {uk}k≥1 is generated by applying
the Gram–Schmidt orthogonalization procedure to the set of vectors {Ksk}k≥0, that is,

u1 = Ks0,

uk = Ksk−1 −
k−1∑
i=1

uT
i Ksk−1

‖ui‖2 ui, sk−1 �= 0, k ≥ 2. (5.27)

The special form of the finite-dimensional subspaces Kk and Lk allows us to derive a
recurrence relation for the orthogonal vectors uk. Since, for k > 2 and i = 1, . . . , k − 2,
we have sk−1 ⊥ Ki+1 ⊆ Kk−1 and KT ui ∈ Ki+1 (cf. (5.26)), we infer that

uT
i Ksk−1 =

(
KT ui

)T
sk−1 = 0.

The basis vector uk defined by (5.27) can then be expressed as

uk = Ksk−1 + βk−1uk−1, k ≥ 1, (5.28)

with

βk−1 = −
uT

k−1Ksk−1

‖uk−1‖2 (5.29)

and the convention β0 = 0. The first orthogonal vectors sk and uk are illustrated in
Figure 5.1.

Fig. 5.1. The first orthogonal vectors sk and uk. The construction is as follows: (1) rδ
0 = yδ →

s0 = KT rδ
0, K1 = span {s0} → L1 = KK1; (2) rδ

1 = yδ − PL1y
δ → s1 = KT rδ

1, K2 =
span {s0, s1} → L2 = KK2; (3) rδ

2 = yδ − PL2y
δ → s2 = KT rδ

2, and so on.



150 Iterative regularization methods for linear problems Chap. 5

The preimages vk ∈ Kk of the orthogonal vectors uk ∈ Lk, already defined by

uk = Kvk, (5.30)

satisfy the recurrence relation (cf. (5.11), (5.28) and (5.30))

vk = sk−1 + βk−1vk−1, k ≥ 1. (5.31)

Besides that, the residual vector rδ
k can be computed recursively by using (5.24), while

a recurrence relation for the iterates xδ
k can be obtained from (5.22) in conjunction with

(5.11), (5.16) and (5.30); the result is

xδ
k = xδ

k−1 + αkvk, k ≥ 1. (5.32)

The coefficients αk and βk, defined by (5.23) and (5.29), respectively, can be com-
puted efficiently as follows:

(1) For k ≥ 2, we have uk ⊥ Lk−1 and Kxδ
k−1 ∈ Lk−1, and we find that uT

k Kxδ
k−1 = 0

for k ≥ 1. Then, by (5.16), (5.18), (5.30), (5.31), and the orthogonality relation
sk−1 ⊥ vk−1 ∈ Kk−1, (5.23) yields

αk ‖uk‖2 = uT
k

(
yδ − Kxδ

k−1

)
= (Kvk)T rδ

k−1

= vT
k sk−1

= ‖sk−1‖2 + βk−1vT
k−1sk−1

= ‖sk−1‖2
,

and so,

αk =
‖sk−1‖2

‖uk‖2 , k ≥ 1.

(2) By (5.24) and the orthogonality relation sk ⊥ sk−1, we have

−αkuT
k Ksk =

(
rδ

k − rδ
k−1

)T
Ksk = (sk − sk−1)

T sk = ‖sk‖2
,

and (5.29) gives

βk =
‖sk‖2

αk ‖uk‖2 =
‖sk‖2

‖sk−1‖2 , k ≥ 1.

Collecting all results, we summarize the kth iteration step of the CGNR method as follows:
given xδ

k−1, rδ
k−1, sk−1 �= 0 and vk, compute

uk = Kvk,

αk = ‖sk−1‖2
/ ‖uk‖2

,

xδ
k = xδ

k−1 + αkvk,

rδ
k = rδ

k−1 − αkuk,

sk = KT rδ
k,

βk = ‖sk‖2
/ ‖sk−1‖2

,

vk+1 = sk + βkvk.



Sect. 5.3 Conjugate gradient method 151

Even the best implementation of the CGNR method suffers from some loss of accuracy
due to the implicit use of the cross-product matrix KT K. An alternative iterative method
which avoids KT K completely is the LSQR algorithm of Paige and Saunders (1982). This
method is based on the Lanczos bidiagonalization procedure of Golub and Kahan (1965)
and is analytically equivalent to the CGNR method.

The Lanczos bidiagonalization algorithm is initialized with

β1ū1 = yδ, α1v̄1 = KT ū1, (5.33)

and the iteration step k ≥ 1 has the form

βk+1ūk+1 = Kv̄k − αkūk, (5.34)

αk+1v̄k+1 = KT ūk+1 − βk+1v̄k. (5.35)

The scalars αk > 0 and βk > 0 are chosen such that

‖ūk‖ = ‖v̄k‖ = 1;

for example, the representation α1v̄1 = KT ū1 assumes the calculations

v1 = KT ū1, α1 = ‖v1‖ , v̄1 = (1/α1)v1.

Defining the dense matrices

Ūk+1 = [ū1, . . . , ūk+1] ∈ R
m×(k+1), V̄k = [v̄1, . . . , v̄k] ∈ R

n×k,

and the bidiagonal matrix

Bk =

⎡⎢⎢⎢⎢⎢⎣
α1 0 . . . 0
β2 α2 . . . 0
...

...
. . .

...
0 0 . . . αk

0 0 . . . βk+1

⎤⎥⎥⎥⎥⎥⎦ ∈ R
(k+1)×k,

we rewrite the recurrence relations (5.33)–(5.35) as

β1Ūk+1e
(k+1)
1 = yδ, (5.36)
KV̄k = Ūk+1Bk, (5.37)

KT Ūk+1 = V̄kBT
k + αk+1v̄k+1e

(k+1)T
k+1 , (5.38)

where e(k+1)
j is the jth canonical vector in R

k+1,[
e(k+1)

j

]
i
=
{

1, i = j,
0, i �= j.

The columns ū1, . . . , ūk+1 of Ūk+1 and v̄1, . . . , v̄k of V̄k are called the left and the right
Lanczos vectors, respectively. In exact arithmetics, Ūk+1 and V̄k are orthogonal matrices,
and we have

ŪT
k+1Ūk+1 = Ik+1, V̄T

k V̄k = Ik.
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As a result, BT
k Bk can be expressed as

BT
k Bk = V̄T

k

(
KT K

)
V̄k,

and we infer that (
BT

k Bk

)j
= V̄T

k

(
KT K

)j
V̄k, j ≥ 1.

Using the relations

KT yδ = αv̄1 = αV̄ke
(k)
1 , α =

∥∥KT yδ
∥∥ ,

and (
KT K

)j
KT yδ = α

(
KT K

)j
v̄1 = α

(
KT K

)j
V̄ke

(k)
1 = αV̄k

(
BT

k Bk

)j
e(k)
1 ,

and setting

Kk =
[
KT yδ,

(
KT K

)
KT yδ, . . . ,

(
KT K

)k−1
KT yδ

]
∈ R

n×k

and
Ek = α

[
e(k)
1 ,
(
BT

k Bk

)
e(k)
1 , . . . ,

(
BT

k Bk

)k−1
e(k)
1

]
∈ R

k×k

we find that
Kk = V̄kEk. (5.39)

Thus, (5.39) resembles the QR factorization of the matrix Kk, and as R (Kk) = Kk, we
deduce that {v̄i}i=1,k is an orthonormal basis of Kk. Therefore, the LSQR method can be
regarded as a method for constructing an orthonormal basis for the kth Krylov subspace
Kk. To solve the least squares problem

min
xk∈span{v̄i}i=1,k

∥∥yδ − Kxk

∥∥2 ,

we proceed as follows. First, we set

xk = V̄kzk,

for some zk ∈ R
k. Then, we express the ‘residual’

rk = yδ − Kxk,

as (cf. (5.36) and (5.37))
rk = Ūk+1tk+1,

with
tk+1 = β1e

(k+1)
1 − Bkzk.

As we want ‖rk‖2 to be small, and since Ūk+1 is theoretically orthogonal, we minimize
‖tk+1‖2. Hence, in the kth iteration step of the LSQR method we solve the least squares
problem

min
zk∈Rk

∥∥∥β1e
(k+1)
1 − Bkzk

∥∥∥2 . (5.40)
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If zδ
k is the least squares solution of (5.40), then the vector

xδ
k = V̄kzδ

k = β1V̄kB
†
ke

(k+1)
1 ,

which belongs to the kth Krylov subspace Kk = span {v̄i}i=1,k, is the iterate of the LSQR
method. Computationally, the least squares problem (5.40) is solved by means of a QR
factorization of Bk, which is updated efficiently at each iteration step. The QR factoriza-
tion then yields a simple recurrence relation for xδ

k in terms of xδ
k−1, and neither Ūk+1 nor

V̄k need to be stored.
For discrete problems that do not require regularization, LSQR is likely to obtain

more accurate results in fewer iteration steps as compared to CGNR (Paige and Saunders,
1982). However, for discrete ill-posed problems, where the iteration is stopped before
convergence, both iterative methods yield results with comparable accuracies (Hansen,
1998).

In practice, the convergence of CGNR and LSQR is delayed due to the influence of
finite precision arithmetic. Specifically, xδ

k stays almost unchanged for a few steps, then
changes to a new vector and stays unchanged again for some steps, and so on. To prevent
this delay and to simulate exact arithmetic, it is possible to incorporate some reorthogo-
nalization techniques as for instance, the modified Gram–Schmidt algorithm or the House-
holder transformation. In LSQR we can orthogonalize the Lanczos vectors ūi and v̄i,
while in CGNR we can orthogonalize the residual vectors si = KT rδ

i (Hansen, 1998).
The orthogonalization methods are illustrated in Algorithm 1.

For a deeper insight into the regularizing properties of the LSQR method, we consider
the representation of the residual polynomial as given in Appendix F,

rk (λ) =
k∏

j=1

λk,j − λ

λk,j
,

where
0 < λk,k < λk,k−1 < . . . < λk,1,

are the eigenvalues of the matrix BT
k Bk. The eigenvalues λk,j are called Ritz values and

for this reason, rk is also known as the Ritz polynomial. The spectral filtering of the LSQR
method is controlled by the convergence of the Ritz values to the eigenvalues of the matrix
KT K (Hansen, 1998). This, in turn, is related to the number k of iteration steps. If, after
k steps, a large eigenvalue σ2

i has been captured by the corresponding Ritz value λk,i, i.e.,
σ2

i ≈ λk,i, then the corresponding filter factor is fk

(
σ2

i

)
= 1 − rk

(
σ2

i

)
≈ 1 (Appendix

F). On the other hand, for an eigenvalue σ2
i much smaller than the smallest Ritz value, i.e.,

σ2
i � λk,k, the estimate

rk

(
σ2

i

)
=

k∏
j=1

(
1 − σ2

i

λk,j

)
≈ 1 − σ2

i

k∑
j=1

1
λk,j

,

yields

fk

(
σ2

i

)
≈ σ2

i

k∑
j=1

1
λk,j

,
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Algorithm 1. Orthogonalization algorithms. (1) Modified Gram–Schmidt orthogonaliza-
tion routine (MGSOrth): at the iteration step k, the new vector p is added to the set of
orthonormal vectors stored in the columns of P. (2) Householder orthogonalization rou-
tine (HOrth): at the iteration step k, the candidate vector p is transformed into a normalized
vector p̄ orthogonal to the previous vectors; the vectors vk and the scalars βk, defining the
reflection matrix Pk = In −βkvkvT

k , are stored in the columns of the matrix P and in the
array π, respectively.
subroutine MGSOrth (k, n,P; p)
for i = 1, k − 1 do

a ←
∑n

j=1 [p]j [P]ji; {compute pT [P]·i}
for j = 1, n do [p]j ← [p]j − a [P]ji; end for

end for

subroutine HOrth (k, n,π,P,p; p̄, p
sgn
nrm)

{transformation p ← Pk−1Pk−2...P1p}
for i = 1, k − 1 do

a ←
∑n

j=i [p]j [P]ji; {compute [p]Ti:n [P]i:n,i}
for j = i, n do [p]j ← [p]j − a [π]i [P]ji; end for

end for

{Householder reflection matrix Pk}
p ←

√∑n
j=k [p]2j ; [π]k ← 1/

(
p2 + |[p]k| p

)
;

[P]kk ← [p]k + sgn ([p]k) p; for j = k + 1, n do [P]jk ← [p]j ; end for

psgnnrm ← −sgn ([p]k) p;
{transformation p̄ ← P1P2...Pkek, where p̄ is normalized}
p̄ ← 0, [p̄]k ← 1;
for i = k, 1,−1 do

a ←
∑n

j=i [p̄]j [P]ji; { [p̄]Ti:n [P]i:n,i }
for j = i, n do [p̄]j ← [p̄]j − a [π]i [P]ji; end for

end for

and we see that these filter factors decay like σ2
i . Thus, if the Ritz values approximate the

eigenvalues in natural order, starting from the largest, then the iteration index plays the
role of the regularization parameter, and the filter factors behave like the Tikhonov filter
factors.

5.4 Stopping rules and preconditioning

Stopping the iteration prior to the inclusion of amplified noise components in the solution
is an important aspect of iterative regularization methods. Also relevant is the precondi-
tioning of the system of equations in order to improve the convergence rate. These topics
are discussed below.
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5.4.1 Stopping rules

The most widespread stopping rule for iterative regularization methods is the discrepancy
principle. According to the discrepancy principle, the algorithm is terminated with k	

when ∥∥yδ − Kxδ
k�

∥∥2 ≤ τΔ2 <
∥∥yδ − Kxδ

k

∥∥2 , 0 ≤ k < k	. (5.41)

In a semi-stochastic setting and for white noise with variance σ2, the expected value of the
noise E{‖δ‖2} = mσ2 is used instead of the noise level Δ2.

Error-free parameter choice methods can also be formulated as stopping rules. In this
case we have to store each iterate together with the corresponding objective function, e.g.,
the generalized cross-validation function, and to perform a sufficient number of iteration
steps in order to detect the minimum of the objective function. For iterative regularization
methods, the use of the generalized cross-validation and the maximum likelihood estima-
tion requires the knowledge of the influence matrix, which, in turn, requires the knowledge
of the generalized inverse. This is a difficult task because neither a canonical decomposi-
tion of K nor the filter factors fk are available (recall that iterative methods are preferred
when a factorization of the matrix is infeasible).

More promising for iterative regularization methods is the use of the L-curve criterion.
For the CGNR method, the monotonic behavior of both the solution norm

∥∥xδ
k

∥∥ and the
residual norm

∥∥rδ
k

∥∥ recommends this approach. In the framework of Tikhonov regular-
ization, the components of the L-curve are defined by some analytical formulas and the
calculation of the curvature is straightforward. In the case of iterative methods, we are lim-
ited to knowing only a finite number of points on the L-curve (corresponding to different
values of the iteration index). Unfortunately, these points are clustered giving fine-grained
details that are not relevant for the determination of the corner. To eliminate this inconve-
nience, Hansen (1998) defined a differentiable smooth curve associated with the discrete
points in such a way that fine-grained details are eliminated while the overall shape of the
L-curve is maintained. The approximating curve is determined by fitting a cubic spline
curve to the discrete points of the L-curve. Since a cubic spline curve does not have the
desired local smoothing property, the following algorithm is employed:

(1) perform a local smoothing of the L-curve, that is, for each interior point k = q +
1, . . . , P − q, where P is the number of discrete points of the L-curve and q is the
half-width of the local smoothing interval, fit a polynomial of degree p to the points
k − q, . . . , k + q, and store the corresponding kth ‘smoothed’ point situated on the
fitting polynomial;

(2) construct a cubic spline curve by using the smoothed points as control points;
(3) compute the corner of the spline curve by maximizing its curvature;
(4) select the point on the orginal discrete curve that is closest to the spline curve’s

corner.

Another method which couples a geometrical approach to identify the corner of the L-
curve with some heuristics rules has been proposed by Rodriguez and Theis (2005). The
main steps of this approach can be summarized as follows:
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(1) compute the vectors ak = [xk+1 − xk, yk+1 − yk]T , k = 1, . . . , P − 1, where xk =
log(
∥∥rδ

k

∥∥2) and yk = log(
∥∥xδ

k

∥∥2);
(2) eliminate the clusters by deleting all the ‘short’ vectors;
(3) normalize the remaining V vectors;
(4) select the corner of the L-curve as that point which minimizes the scalar triple prod-

uct between two successive vectors, i.e., k	 = arg mink=1,V −1 wk, where wk =
(ak × ak+1) · e3, and e3 is the Cartesian unit vector codirectional with the
z-axis.

5.4.2 Preconditioning

In general, the aim of preconditioning is to improve the convergence rate of iterative meth-
ods for solving large systems of equations. When preconditioning from the right, the linear
system of equations

Kx = yδ, (5.42)

is replaced by
KMx̄ = yδ, Mx̄ = x,

with M being a nonsingular matrix. If (5.42) is solved by using an iterative method for
normal equations, M should be chosen such that the condition number of MT KT KM is
smaller than that of KT K. This spectral property then yields faster convergence for the
iterative method.

For discrete ill-posed problems, the preconditioner should not be regarded as a conver-
gence accelerator, but rather as an enhancer of solution quality, since convergence is never
achieved. In fact, there is no point in improving the condition of K because only a part of
the singular values contributes to the regularized solution (Hansen, 1998).

By right preconditioning we control the solution with a different norm as in the case
of Tikhonov regularization with a regularization matrix L. Therefore, there is no practical
restriction to use a regularization matrix L in connection with iterative methods (Hanke
and Hansen, 1993; Hansen, 1998). Regularization matrices, when used as right precondi-
tioners, affect the solution of an iterative method in a similar way as they affect the solution
of Tikhonov regularization. The system of equations preconditioned from the right by the
nonsingular regularization matrix L then takes the form

KL−1x̄ = yδ, L−1x̄ = x. (5.43)

To obtain more insight into right preconditioning by regularization matrices, we recall
that in the framework of Tikhonov regularization, we transformed a general-form problem
(with L �= In) into a standard-form problem (with L = In) by using the transformation
K̄ = KL−1 and the back-transformation x = L−1x̄. In terms of the standard-form
variables, equation (5.43) expressed as

K̄x̄ = yδ, L−1x̄ = x,
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Algorithm 2. ν-algorithm with preconditioning. The control parameters of the algorithm
are the maximum number of iterations Niter, the noise level Δ, and the tolerance τ . The
notation ‖A‖F stands for the Frobenius norm of the matrix A.

χ ← 1/
∥∥KL−1

∥∥
F
; {relaxation parameter}

xδ ← 0; rδ ← χ
(
yδ − Kxδ

)
;

{step k = 1}
ω ← 4ν+2

4ν+1 ;

q ← ωrδ; xδ ← xδ + χ
(
LT L

)−1
KT q; rδ ← χ

(
yδ − Kxδ

)
;

if
∥∥rδ
∥∥2 ≤ τχ2Δ2 stop; {residual smaller than the prescribed tolerance}

{steps k ≥ 2}
for k = 2, Niter do

ω ← 4 (2k+2ν−1)(k+ν−1)
(k+2ν−1)(2k+4ν−1) ;

μ ← 0.25 (k−1)(2k−3)
(k+ν−1)(2k+2ν−3)ω;

q ← μq + ωrδ; xδ ← xδ + χ
(
LT L

)−1
KT q; rδ ← χ

(
yδ − Kxδ

)
;

if
∥∥rδ
∥∥2 ≤ τχ2Δ2 exit; {residual smaller than the prescribed tolerance}

end for

reveals that solving the right preconditioned system of equations is equivalent to solving
the standard-form problem without preconditioning. In practice, the multiplication with
L−1 is built into the iterative schemes, and the back-transformation is avoided. The ν-
method, as well as the CGNR and the LSQR methods with preconditioning and using the
discrepancy principle as stopping rule are outlined in Algorithms 2–4.
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Algorithm 3. CGNR algorithm with preconditioning and reorthogonalization. The control
parameters of the algorithm are the maximum number of iterations Niter, the noise level
Δ, the tolerance τ , and the logical variables TypeOrth. The values of TypeOrth are as
follows: 0 if no reorthogonalization is applied, 1 for Householder orthogonalization, and 2
for the modified Gram–Schmidt orthogonalization.
xδ ← 0;
rδ ← yδ − Kxδ;
if TypeOrth �= 0 S ← 0;
q ← KT rδ;
s ← L−T q;
{initialization of arrays S and σ}
if TypeOrth = 1 then

σ ← 0; s ← ‖s‖; [σ]1 ← 1/
(
s2 + |[s]1| s

)
;

[S]11 ← [s]1 + sgn ([s]1) s;
for i = 2, n do [S]i1 ← [s]i; end for

snrm ← −sgn ([s]1) s;
{initialization of array S}
else if TypeOrth = 2 then

snrm ← ‖s‖ ;
for i = 1, n do [S]i1 ← [s]i /snrm; end for

else

snrm ← ‖s‖;
end if

v ← L−1s;
for k = 2, Niter do

u ← Kv;
α ← s2

nrm/ ‖u‖
2;

xδ ← xδ + αv;
rδ ← rδ − αu;
if
∥∥rδ
∥∥2 ≤ τΔ2 exit; {residual smaller than the prescribed tolerance}

q ← KT rδ;
s ← L−T q;
if TypeOrth = 1 then

call HOrth (k, n,σ,S, s; s̄, snrm1); s ← snrm1s̄;
else if TypeOrth = 2 then

call MGSOrth (k, n,S; s); snrm1 ← ‖s‖ ;
for i = 1, n do [S]ik ← [s]i /snrm1; end for

else

snrm1 ← ‖s‖;
end if

β ← s2
nrm1/s2

nrm;
snrm ← snrm1;
v ← L−1s + βv;

end for
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Algorithm 4. LSQR algorithm with preconditioning and reorthogonalization.
xδ ← 0; if TypeOrth �= 0 then P ← 0; Q ← 0; end if

if TypeOrth = 1 then {initialization of arrays P and π}
π ← 0; p ←

∥∥yδ
∥∥; [π]1 ← 1/

(
p2 +

∣∣[yδ
]
1

∣∣ p);
[P]11 ←

[
yδ
]
1

+ sgn
([

yδ
]
1

)
p; for i = 2, m do [P]i1 ←

[
yδ
]
i
; end for

β ← −sgn
([

yδ
]
1

)
p; ū ← (1/β)yδ;

else if TypeOrth = 2 then {initialization of array P}
β ←

∥∥yδ
∥∥; ū ← (1/β)yδ; for i = 1, m do [P]i1 ← [ū]i ; end for

else

β ←
∥∥yδ
∥∥; ū ← (1/β)yδ;

end if

q ← L−T KT ū;
if TypeOrth = 1 then {initialization of arrays Q and ν}

ν ← 0; q ← ‖q‖; [ν]1 ← 1/
(
q2 + |[q]1| q

)
;

[Q]11 ← [q]1 + sgn ([q]1) q; for i = 2, n do [Q]i1 ← [q]i; end for

α ← −sgn ([q]1) q; v̄ ← (1/α)q;
else if TypeOrth = 2 then {initialization of array Q}

α ← ‖q‖; v̄ ← (1/α)q; for i = 1, n do [Q]i1 ← [v̄]i; end for

else

α =← ‖q‖; v̄ ← (1/α)q;
end if

w ← v; φ̄ ← β; ρ̄ ← α;
for k = 2, Niter do

p ← KL−1v̄ − αū;
if TypeOrth = 1 then

call HOrth (k, m,π,P,p; ū, β);
else if TypeOrth = 2 then

call MGSOrth (k, m,P; p); β ← ‖p‖; ū ← (1/β)p;
else

β ← ‖p‖; ū ← (1/β)p;
end if

q ← L−T KT ū − βv̄;
if TypeOrth = 1 then

call HOrth (k, n,ν,Q,q; v̄, α);
else if TypeOrth = 2 then

call MGSOrth (k, n,Q; q); α ← ‖q‖; v̄ ← (1/α)q;
else

α ← ‖q‖; v̄ ← (1/α)q;
end if

if TypeOrth = 2 store ū in column k of P and v̄ in column k of Q;
ρ ←

√
ρ̄2 + β2; c ← ρ̄/ρ; s ← β/ρ; θ ← sα; ρ̄ ← −c/α;

φ ← cφ̄; φ̄ ← sφ̄;
∥∥rδ
∥∥← φ̄; xδ ← xδ + (φ/ρ)w; w ← v̄ − (θ/ρ)w;

if
∥∥rδ
∥∥2 ≤ τΔ2 exit; {residual smaller than the prescribed tolerance}

end for

xδ ← L−1xδ;
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5.5 Numerical analysis

To analyze the performance of iterative regularization methods we consider the same re-
trieval scenario as in Chapter 3, but retrieve the O3 profile together with the NO2 profile in
a spectral interval ranging from 520 to 580 nm. The atmosphere is discretized with a step
of 1 km between 0 and 60 km, and a step of 5 km between 60 and 100 km. The number
of unknowns of the inverse problem is n = 100. In our first simulation, we choose the
discrepancy principle as stopping rule. As CGNR and LSQR yield identical results, only
the CGNR results are reported here.

The solution errors for different values of the control parameter τ (cf. (5.41)) are
illustrated in the left panel of Figure 5.2. The error curves possess a minimum for an op-
timal value of the control parameter: the smallest errors are 5.56 · 10−2 for the ν-method,
5.20 ·10−2 for CGNR without reorthogonalization and 5.02 ·10−2 for CGNR with House-
holder orthogonalization. Note that the stepwise behavior of the error curves for the CGNR
method is a consequence of the discrete nature of the stopping rule. The retrieved profiles
are shown in the right panel of Figure 5.2, and a sensible superiority of CGNR with House-
holder orthogonalization can be observed in the lower part of the atmosphere.

Although the methods are of comparable accuracies, the convergence rates are com-
pletely different (Figure 5.3). To reduce the residual norm to the order of the noise level,
100 iteration steps are required by the ν-method, 50 by CGNR without reorthogonalization
and 30 by CGNR with Householder orthogonalization.

The non-monotonic behavior of the residual curve in the case of the ν-method is ap-
parent in the left panel of Figure 5.4, while the delay of CGNR without reorthogonalization
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Fig. 5.2. Left: relative solution errors for different values of the control parameter τ . Right: retrieved
profiles corresponding to the optimal values of τ . The results are computed with the ν-method
(ν = 0.5), CGNR without reorthogonalization, and CGNR with Householder orthogonalization.
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Fig. 5.3. Histories of the residual norm corresponding to the ν-method (left), CGNR without re-
orthogonalization (middle), and CGNR with Householder orthogonalization (right).

15 30 45 60
Iterations

0.118

0.12

0.122

0.124

R
es

id
ua

l

15 20 25 30
Iterations

0.1199

0.11995

0.12

R
es

id
ua

l

Fig. 5.4. Left: non-monotonic behavior of the residual curve corresponding to the ν-method. Right:
delay of CGNR without reorthogonalization reflected in the residual curve.

(the iterate stays almost unchanged for a few steps) is evidenced in the right panel of Fig-
ure 5.4.

The discrete L-curve for the CGNR method illustrated in Figure 5.5 has a pronounced
L-shape with a distinct corner. The inversion performance of CGNR with the L-curve
method are slightly better than those of CGNR with the discrepancy principle; the retrieved
profile in Figure 5.5 is characterized by a solution error of 4.52 · 10−2.
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Fig. 5.5. Discrete L-curve for CGNR with Householder orthogonalization (left) and the correspond-
ing retrieved profile (right).

5.6 Mathematical results and further reading

A deterministic analysis of the Landweber iteration and of semi-iterative methods equipped
with the discrepancy principle as stopping rule is presented in the first part of Appendix
E. For the source condition x† =

(
KT K

)μ
z, with μ > 0 and z ∈ R

n, the Landweber
iteration is order-optimal for all μ > 0, while the ν-method is order-optimal for 0 < μ ≤
ν − 1/2. Despite its optimal convergence rate, the Landweber iteration is rarely used in
practice, since it usually requires far too many iteration steps until the stopping criterion
(5.41) is met; the stopping index for the Landweber iteration is k	 = O(Δ−2/(2μ+1)), and
the exponent 2/ (2μ + 1) cannot be improved in general (Engl et al., 2000).

The convergence rate of the CGNR method using the discrepancy principle as stopping
rule is derived in the second part of Appendix E. This method is order-optimal for μ > 0,
and so, no saturation effect occurs. In general, the number of iteration steps of the CGNR
method is k	 = O(Δ−1/(2μ+1)), and in particular, we have

k	 = O
(
Δ− 1

(2μ+1)(β+1)

)
for the polynomial ill-posedness σi = O(i−β) with β > 0, and

k	 = O
(∣∣∣log Δ

1
2μ+1

∣∣∣)
for the exponential ill-posedness σi = O(qi) with q ∈ (0, 1). In any case, the CGNR
method requires significantly less iteration steps for the same order of accuracy than the
Landweber iteration or the ν-method. A detailed analysis of conjugate gradient type meth-
ods for ill-posed problems can be found in Hanke (1995), while for a pertinent treatment
of preconditioned iterative regularization methods we refer to Hanke et al. (1993).
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