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Statistical inversion theory

The majority of retrieval approaches currently used in atmospheric remote sensing belong
to the category of statistical inversion methods (Rodgers, 2000). The goal of this chapter
is to reveal the similarity between classical regularization and statistical inversion regard-
ing

(1) the regularized solution representation,
(2) the error analysis,
(3) the design of one- and multi-parameter regularization methods.

In statistical inversion theory all variables included in the model are absolutely continuous
random variables and the degree of information concerning their realizations is coded in
probability densities. The solution of the inverse problem is the a posteriori density, which
makes possible to compute estimates of the unknown atmospheric profile.

In the framework of Tikhonov regularization we have considered the linear data model

yδ = Kx + δ, (4.1)

where yδ is the noisy data vector and δ is the noise vector. In statistical inversion theory
all parameters are viewed as random variables, and since in statistics random variables are
denoted by capital letters and their realizations by lowercase letters, the stochastic version
of the data model (4.1) is

Yδ = KX + Δ. (4.2)

The random vectors Yδ , X and Δ represent the data, the state and the noise, respectively;
their realizations are denoted by Yδ = yδ , X = x and Δ = δ, respectively.

4.1 Bayes theorem and estimators

The data model (4.2) gives a relation between the three random vectors Yδ , X and Δ,
and therefore, their probability densities depend on each other. The following probability
densities are relevant for our analysis:
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(1) the a priori density pa (x), which encapsulates our presumable information about X
before performing the measurement of Yδ;

(2) the likelihood density p
(
yδ | x

)
, which represents the conditional probability density

of Yδ given the state X = x;
(3) the a posteriori density p

(
x | yδ

)
, which represents the conditional probability density

of X given the data Yδ = yδ .

The choice of the a priori density pa (x) is perhaps the most important part of the inversion
process. Different a priori models yield different objective functions, and in particular, the
classical regularization terms correspond to Gaussian a priori models. Gaussian densities
are widely used in statistical inversion theory because they are easy to compute and often
lead to explicit estimators. Besides Gaussian densities other types of a priori models, as for
instance the Cauchy density and the entropy density can be found in the literature (Kaipio
and Somersalo, 2005).

The construction of the likelihood density p
(
yδ | x

)
depends on the noise assumption.

The data model (4.2) operates with additive noise, but other explicit noise models including
multiplicative noise models and models with an incompletely known forward model matrix
can be considered. If the noise is additive and is independent of the atmospheric state, the
probability density pn (δ) of Δ remains unchanged when conditioned on X = x. Thus,
Yδ conditioned on X = x is distributed like Δ, and the likelihood density becomes

p
(
yδ | x

)
= pn

(
yδ − Kx

)
. (4.3)

Assuming that after analyzing the measurement setting and accounting of the addi-
tional information available about all variables we have found the joint probability density
p
(
x,yδ

)
of X and Yδ , then the a priori density is given by

pa (x) =
∫

Rm

p
(
x,yδ

)
dyδ,

while the likelihood density and the a posteriori density can be expressed as

p
(
yδ | x

)
=

p
(
x,yδ

)
pa (x)

, (4.4)

and

p
(
x | yδ

)
=

p
(
x,yδ

)
p (yδ)

, (4.5)

respectively.
The following result known as the Bayes theorem of inverse problems relates the a

posteriori density to the likelihood density (cf. (4.4) and (4.5)):

p
(
x | yδ

)
=

p
(
yδ | x

)
pa (x)

p (yδ)
. (4.6)

In (4.6), the marginal density p
(
yδ
)

computed as

p
(
yδ
)

=
∫

Rn

p
(
x,yδ

)
dx =

∫
Rn

p
(
yδ | x

)
pa (x) dx,
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plays the role of a normalization constant and is usually ignored. However, as we will see,
this probability density is of particular importance in the design of regularization parameter
choice methods.

The knowledge of the a posteriori density allows the calculation of different estima-
tors and spreads of solution. A popular statistical estimator is the maximum a posteriori
estimator

x̂map = arg max
x

p
(
x | yδ

)
,

and the problem of finding the maximum a posteriori estimator requires the solution of an
optimization problem. Another estimator is the conditional mean of X conditioned on the
data Yδ = yδ ,

x̂cm =
∫

Rn

xp
(
x | yδ

)
dx, (4.7)

and the problem of finding the conditional mean estimator requires to solve an integration
problem. The maximum likelihood estimator

x̂ml = arg max
x

p
(
yδ | x

)
is not a Bayesian estimator but it is perhaps the most popular estimator in statistics. For
ill-posed problems, the maximum likelihood estimator corresponds to solving the inverse
problem without regularization, and is therefore of little importance for our analysis.

4.2 Gaussian densities

An n-dimensional random vector X has a (non-degenerate) Gaussian, or normal, distribu-
tion, if its probability density has the form

p (x) =
1√

(2π)n det (Cx)
exp
(
−1

2
(x − x̄)T C−1

x (x − x̄)
)

.

In the above relation,

x̄ = E {X} =
∫

Rn

xp (x) dx (4.8)

is the mean vector or the expected value of X and

Cx = E
{

(X − E {X}) (X − E {X})T
}

=
∫

Rn

(x − x̄) (x − x̄)T
p (x) dx

is the covariance matrix of X. These parameters characterize the Gaussian density and we
indicate this situation by writing X ∼ N (x̄,Cx). In this section, we derive Bayesian es-
timators for Gaussian densities and characterize the solution error following the treatment
of Rodgers (2000). We then discuss two measures of the retrieval quality, the degree of
freedom for signal and the information content.
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4.2.1 Estimators

Under the assumption that X and Δ are independent Gaussian random vectors, character-
ized by X ∼ N (0,Cx) and Δ ∼ N (0,Cδ), the a priori density can be expressed as

pa (x) =
1√

(2π)n det (Cx)
exp
(
−1

2
xT C−1

x x
)

, (4.9)

while by virtue of (4.3), the likelihood density takes the form

p
(
yδ | x

)
=

1√
(2π)m det (Cδ)

exp
(
−1

2
(
yδ − Kx

)T
C−1

δ

(
yδ − Kx

))
. (4.10)

With this information, the Bayes formula yields the following expression for the a posteri-
ori density:

p
(
x | yδ

)
∝ exp

(
−1

2
(
yδ − Kx

)T
C−1

δ

(
yδ − Kx

)
− 1

2
xT C−1

x x
)

. (4.11)

Setting

p
(
x | yδ

)
∝ exp

(
−1

2
V
(
x | yδ

))
,

where the a posteriori potential V
(
x | yδ

)
is defined by

V
(
x | yδ

)
=
(
yδ − Kx

)T
C−1

δ

(
yδ − Kx

)
+ xT C−1

x x,

we see that the maximum a posteriori estimator x̂map maximizing the conditional probabil-
ity density p

(
x | yδ

)
also minimizes the potential V

(
x | yδ

)
, that is,

x̂map = arg min
x

V
(
x | yδ

)
.

The solution to this minimization problem is given by

x̂map = Ĝyδ, (4.12)

where
Ĝ =

(
KT C−1

δ K + C−1
x

)−1
KT C−1

δ (4.13)

is known as the gain matrix or the contribution function matrix (Rodgers, 2000). Equation
(4.12) reveals that the gain matrix corresponds to the regularized generalized inverse ap-
pearing in the framework of Tikhonov regularization. An alternative representation for the
gain matrix can be derived from the relation(

KT C−1
δ K + C−1

x

)−1
KT C−1

δ = CxKT
(
Cδ + KCxKT

)−1
, (4.14)

and the result is
Ĝ = CxKT

(
Cδ + KCxKT

)−1
. (4.15)
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To prove (4.14), we multiply this equation from the left and from the right with the matrices
KT C−1

δ K + C−1
x and Cδ + KCxKT , respectively, and use the identity

KT + KT C−1
δ KCxKT =

(
KT C−1

δ K + C−1
x

)
CxKT (4.16)

to conclude.
The a posteriori density p

(
x | yδ

)
can be expressed as a Gaussian density

p
(
x | yδ

)
∝ exp

(
−1

2
(x − x̄)T Ĉ−1

x (x − x̄)
)

, (4.17)

where the mean vector x̄ and the covariance matrix Ĉx can be obtained directly from (4.11)
and (4.17) by equating like terms (see, e.g., Rodgers, 2000). Equating the terms quadratic
in x leads to the following expression for the a posteriori covariance matrix:

Ĉx =
(
KT C−1

δ K + C−1
x

)−1
.

To obtain the expression of the a posteriori mean vector, we equate the terms linear in x
and obtain x̄ = x̂map. On the other hand, by (4.7), (4.8) and (4.17), we see that the a
posteriori mean coincides with the conditional mean, and we conclude that in the purely
Gaussian case there holds

x̄ = x̂map = x̂cm.

Due to this equivalence and in order to simplify the writing, the maximum a posteriori
estimator will be simply denoted by x̂.

An alternative expression for the a posteriori covariance matrix follows from the iden-
tity (cf. (4.14))

Cx − CxKT
(
Cδ + KCxKT

)−1
KCx

= Cx −
(
KT C−1

δ K + C−1
x

)−1
KT C−1

δ KCx

=
(
KT C−1

δ K + C−1
x

)−1
, (4.18)

which yields (cf. (4.15))

Ĉx = Cx − ĜKCx = (In − A)Cx (4.19)

with A = ĜK being the averaging kernel matrix.
For Gaussian densities with covariance matrices of the form

Cδ = σ2Im, Cx = σ2
xCnx = σ2

x

(
LT L

)−1
, (4.20)

we find that
x̂ =

(
KT K + αLT L

)−1
KT yδ,

where we have set

α =
σ2

σ2
x

.
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As in section 3.2, σ is the white noise standard deviation, σx is the profile standard devia-
tion, Cnx is the normalized a priori covariance matrix, and α and L are the regularization
parameter and the regularization matrix, respectively. Thus, under assumptions (4.20), the
maximum a posteriori estimator coincides with the Tikhonov solution. The regularization
parameter is the ratio of the noise variance to the profile variance in our a priori knowledge,
and in an engineering language, α can be interpreted as the noise-to-signal ratio. We can
think of our a priori knowledge in terms of ellipsoids of constant probability of the a priori,
whose shape and orientation are determined by Cnx and whose size is determined by σ2

x .
The number σx then, represents the a priori confidence we have in our initial guess of the
state vector, confidence being measured through the Mahalanobis norm with covariance
Cnx. The correspondence between the Bayesian approach and Tikhonov regularization,
which has been recognized by several authors, e.g., Golub et al. (1979), O’Sullivan and
Wahba (1985), Fitzpatrick (1991), Vogel (2002), Kaipio and Somersalo (2005), allows the
construction of natural schemes for estimating σ2

x .

4.2.2 Error characterization

In a semi-stochastic setting the total error in the state space has a deterministic component,
the smoothing error, and a stochastic component, the noise error. In a stochastic setting,
both error components are random vectors. To introduce the random errors, we express the
maximum a posteriori estimator as (see (3.65))

x̂ = Ĝyδ = Ĝ
(
Kx† + δ

)
= Ax† + Ĝδ.

and find that
x† − x̂ = (In − A)x† − Ĝδ. (4.21)

In view of (4.21), we define the random total error by

E = X − X̂ = (In − A)X − ĜΔ, (4.22)

where
X̂ = ĜY

δ

is an estimator of X. In (4.22), X should be understood as the true state, and a realization
of X is the exact solution of the linear equation in the noise-free case.

The random smoothing error is defined by

Es = (In − A)X,

and it is apparent that the statistics of Es is determined by the statistics of X. If E{X} = 0
and Cxt = E{XXT } is the covariance matrix of the true state, then the mean vector and
the covariance matrix of Es become

E {Es} = 0, Ces = (In − A)Cxt (In − A)T
.

In practice, the statistics of the true state is unknown and, as in a semi-stochastic setting,
the statistics of the smoothing error is unknown.
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The random noise error is defined as

En = −ĜΔ

and the mean vector and the covariance matrix of En are given by

E {En} = 0, Cen = ĜCδĜT .

As X and Δ are independent random vectors, the random total error has zero mean
and covariance

Ce = Ces + Cen.

When computing the maximum a posteriori estimator we use an ad hoc a priori co-
variance matrix Cx because the covariance matrix of the true state Cxt is not available. It
should be pointed out, that only for Cx = Cxt, the total error covariance matrix coincides
with the a posteriori covariance matrix. To prove this claim, we construct the total error
covariance matrix as

Ce =
(
In − ĜK

)
Cx

(
In − ĜK

)T

+ ĜCδĜT

= Cx − CxKT ĜT − ĜKCx + ĜKCxKT ĜT + ĜCδĜT ,

and use the result (cf. (4.13) and (4.16))

ĜCδ + ĜKCxKT =
(
KT C−1

δ K + C−1
x

)−1
KT C−1

δ

(
Cδ + KCxKT

)
=
(
KT C−1

δ K + C−1
x

)−1 (
KT C−1

δ K + C−1
x

)
CxKT

= CxKT

to obtain (cf. (4.19))
Ce = Cx − ĜKCx = Ĉx.

The main conclusion which can be drawn is that an error analysis based on the a posteriori
covariance matrix is correct only if the a priori covariance matrix approximates sufficiently
well the covariance matrix of the true state.

4.2.3 Degrees of freedom

In classical regularization theory, the expected residual E{
∥∥yδ − Kxδ

α

∥∥2} and the ex-
pected constraint E{

∥∥Lxδ
α

∥∥2} are important tools for analyzing discrete ill-posed prob-
lems. In statistical inversion theory, the corresponding quantities are the degree of freedom
for noise and the degree of freedom for signal.

To introduce these quantities, we consider the expression of the a posteriori potential
V
(
x | yδ

)
and define the random variable

V̂ =
(
Yδ − KX̂

)T

C−1
δ

(
Yδ − KX̂

)
+ X̂T C−1

x X̂, (4.23)
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where, as before, X̂ = ĜY
δ
. The random variable V̂ is Chi-square distributed with

m degrees of freedom, and therefore, the expected value of V̂ is equal to the number of
measurements m (Appendix D). This can be divided into the degrees of freedom for signal
and noise, defined by

ds = E
{
X̂T C−1

x X̂
}

and

dn = E
{(

Yδ − KX̂
)T

C−1
δ

(
Yδ − KX̂

)}
,

respectively, and evidently we have

ds + dn = m.

The degree of freedom for signal measures that part of E{V̂ } corresponding to the state
vector, while the degree of freedom for noise that part corresponding to the measurement.

Using the identity
xT Ax = trace

(
xxT A

)
,

which holds true for a symmetric matrix A, we express the degree of freedom for signal as

ds = E
{
X̂T C−1

x X̂
}

= E
{

trace
(
X̂X̂T C−1

x

)}
= trace

(
E
{
X̂X̂T

}
C−1

x

)
,

where the covariance of the estimator X̂ is related to the covariance of the data Yδ by the
relation

E
{
X̂X̂T

}
= ĜE

{
YδYδT

}
ĜT .

To compute the covariance of the data, we assume that the covariance matrix of the true
state is adequately described by the a priori covariance matrix, and obtain

E
{
YδYδT

}
= KE

{
XXT

}
KT + E

{
ΔΔT

}
= KCxKT + Cδ. (4.24)

By (4.13) and (4.15), we then have

E
{
X̂X̂T

}
= CxKT C−1

δ K
(
KT C−1

δ K + C−1
x

)−1
, (4.25)

whence using the identities trace
(
B−1AB

)
= trace (A) and trace (A) = trace

(
AT
)
,

which hold true for a square matrix A and a nonsingular matrix B, we find that

ds = trace
(
KT C−1

δ K
(
KT C−1

δ K + C−1
x

)−1
)

= trace
((

KT C−1
δ K + C−1

x

)−1
KT C−1

δ K
)

= trace
(
ĜK

)
= trace (A) . (4.26)

Hence, the degree of freedom for signal is the trace of the averaging kernel matrix. Conse-
quently, the diagonal of the averaging kernel matrix A may be thought of as a measure of
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the number of degrees of freedom per layer (level), and thus as a measure of information,
while its reciprocal may be thought of as the number of layers per degree of freedom, and
thus as a measure of resolution. The degree of freedom for signal can also be interpreted
as a measure of the minimum number of parameters that could be used to define a state
vector without loss of information (Mateer, 1965); Rodgers, 2000).

The degree of freedom for noise can be expressed in terms of the influence matrix
Â = KĜ as (cf. (4.24))

dn = E
{(

Yδ − KX̂
)T

C−1
δ

(
Yδ − KX̂

)}
= E

{
trace

((
Yδ − KX̂

)(
Yδ − KX̂

)T

C−1
δ

)}
= trace

((
Im − Â

)
E
{
YδYδT

}(
Im − Â

)T

C−1
δ

)
= trace

((
Im − Â

) (
KCxKT + Cδ

) (
Im − Â

)T

C−1
δ

)
, (4.27)

whence using the identity (
Im − Â

) (
KCxKT + Cδ

)
= Cδ, (4.28)

we obtain
dn = trace

(
Im − Â

)
. (4.29)

Note that the term ‘degree of freedom for noise’ has been used by Craven and Wahba
(1979) and later on by Wahba (1985) to designate the denominator of the generalized
cross-validation function.

Under assumptions (4.20), we have

trace (A) = trace
(
Â
)

=
n∑

i=1

γ2
i

γ2
i + α

, (4.30)

where γi are the generalized singular values of the matrix pair (K,L). By (4.26), (4.29)
and (4.30), it is apparent that the degree of freedom for signal is a decreasing function of the
regularization parameter, while the degree of freedom for noise is an increasing function of
the regularization parameter. Thus, when very little regularization is introduced, the degree
of freedom for signal is very large and approaches n, and when a large amount of regular-
ization is introduced, the degree of freedom for noise is very large and approaches m. As
in classical regularization theory, an optimal regularization parameter should balance the
degrees of freedom for signal and noise.

The degree of freedom for signal can be expressed in terms of the so-called informa-
tion matrix R defined by

R = C
1
2
x KT C−1

δ KC
1
2
x . (4.31)

Using the identity
A = C

1
2
x (In + R)−1 RC− 1

2
x , (4.32)
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we find that
ds = trace (A) = trace

(
(In + R)−1 R

)
, (4.33)

whence assuming the singular value decomposition of the positive definite matrix R,

R = VrΣrVT
r , Σr =

[
diag (ωi)n×n

]
, (4.34)

we obtain the representation

ds =
n∑

i=1

ωi

ωi + 1
.

The degree of freedom for signal ds remains unchanged under linear transformations of the
state vector or of the data vector, and as a result, ds is an invariant of the retrieval. Purser
and Huang (1993) showed that the degree of freedom for signal, regarded as a real-valued
function over sets of independent data, obeys a positive monotonic subadditive algebra.
In order to understand these properties from a practical point of view, we consider a set
of m1 data Yδ

1 = yδ
1, and an independent set of m2 data Yδ

2 = yδ
2 . For the ith set of

measurements, the data model is

Yδ
i = KiX + Δi, i = 1, 2,

and the maximum a posteriori estimator is computed as

x̂i = arg min
x

((
yδ

i − Kix
)T

C−1
δi

(
yδ

i − Kix
)

+ xT C−1
x x
)

.

The corresponding information matrix and the degree of freedom for signal are given by

Ri = C
1
2
x KT

i C−1
δi KiC

1
2
x

and
dsi = trace

(
(In + Ri)

−1 Ri

)
,

respectively. For the full set of m12 = m1 + m2 measurements, we consider the data
model [

Yδ
1

Yδ
2

]
=
[

K1

K2

]
X +

[
Δ1

Δ2

]
,

and compute the maximum a posteriori estimator as

x̂12 = arg min
x

((
yδ

1 − K1x
)T

C−1
δ1

(
yδ

1 − K1x
)

+
(
yδ

2 − K2x
)T

C−1
δ2

(
yδ

2 − K2x
)

+ xT C−1
x x
)

.

When the data are treated jointly, the information matrix and the degree of freedom for
signal are given by

R12 = C
1
2
x

(
KT

1 C−1
δ1 K1 + KT

2 C−1
δ2 K2

)
C

1
2
x = R1 + R2

and
ds12 = trace

(
(In + R1 + R2)

−1 (R1 + R2)
)

,
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respectively. In this context, the monotonicity of the degree of freedom for signal means
that ds12 of the full m12 measurements is never less than either ds1 or ds2, i.e.,

ds12 ≥ max (ds1, ds2) , (4.35)

while the subadditivity means that ds12 can never exceed ds1 + ds2, i.e.,

ds12 ≤ ds1 + ds2. (4.36)

These assertions are the result of the following theorem: considering a monotonic, strictly
increasing, and strictly concave function f (x) with f (0) = 0, and defining the associated
scalar function F of R ∈ Sn by

F (R) =
n∑

i=1

f (ωi) ,

where Sn is the set of all semi-positive definite matrices of order n, and ωi are the singular
values of R, we have

R2 ≥ R1 ⇒ F (R2) ≥ F (R1) (monotonicity), (4.37)

and
F (R1) + F (R2) ≥ F (R1 + R2) (subadditivity), (4.38)

for all R1,R2 ∈ Sn. Here, we write R2 ≥ R1 if R2 − R1 ∈ Sn. Since the degree of
freedom for signal ds can be expressed in terms of the information matrix R as a scalar
function F (R) with f (x) = x/ (1 + x), (4.37) and (4.38) yield (4.35) and (4.36), respec-
tively. A rigorous proof of this theorem has been given by Purser and Huang (1993) by
taking into account that F (R) is invariant to orthogonal transformations. However, (4.35)
and (4.36) can simply be justified when

m1 = m2 = m, K1 = K2, Cδ1 = Cδ2. (4.39)

In this case, we obtain
R1 = R2 = R, R12 = 2R,

and further,

ds1 = ds2 =
n∑

i=1

ωi

ωi + 1
, ds12 =

n∑
i=1

2ωi

2ωi + 1
.

Then, from
2ωi

2ωi + 1
≥ ωi

ωi + 1
,

2ωi

2ωi + 1
≤ 2ωi

ωi + 1
, i = 1, . . . , n,

the conclusions are apparent. The deficit m12 − ds12 may be interpreted as the internal
redundancy of the set of data, while the deficit ds1 + ds2 − ds12 may be thought as the
mutual redundancy between two pooled sets.

Another statistics of a linear retrieval is the effective data density. Whereas the degree
of freedom for signal is a measure that indicates the number of independent pieces of
information, the effective data density is a measure that indicates the density of effectively
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independent pieces of information. The data density at the ith layer of thickness �zi is
defined by

ρi =
[A]ii
�zi

, (4.40)

and it is apparent that the ‘integral’ of the effective data density is the degree of freedom
for signal,

ds =
n∑

i=1

ρi�zi.

This estimate together with the degree of freedom for signal can be used to interprete the
quality of the retrieval and the effectiveness of the measurements.

4.2.4 Information content

An alternative criterion for the quality of a measurement is the information content or the
incremental gain in information. The information content is defined in terms of the change
in entropy that expresses a priori and a posteriori knowledge of the atmospheric state. This
measure of performance has been proposed in the context of retrieval by Peckham (1974)
and has also been discussed by Rodgers (1976) and Eyre (1990).

In information theory, the Shannon entropy or the absolute entropy is a measure of
uncertainty associated with a random variable. The Shannon entropy of a discrete random
vector X, which can take the values x1, . . . ,xn, is defined by

H (p) = −
n∑

i=1

pi log pi, (4.41)

where the probability mass function of X is given by

p (x) =
{

pi, X = xi,
0, otherwise,

n∑
i=1

pi = 1.

H is positive and attains its global maximum Hmax = log n for a uniform distribution,
i.e., when all pi are the same. On the other hand, the lowest entropy level, Hmin = 0,
is attained when all probabilities pi but one are zero. Shannon (1949) showed that H (p)
defined by (4.41) satisfies the following desiderata:

(1) H is continuous in (p1, . . . , pn) (continuity);
(2) H remains unchanged if the outcomes xi are re-ordered (symmetry);
(3) if all the outcomes are equally likely, then H is maximal (maximum);
(4) the amount of entropy is the same independently of how the process is regarded as

being divided into parts (additivity).

These properties guarantee that the Shannon entropy is well-behaved with regard to relative
information comparisons. For a continuous density p (x), the following entropy formula
also satisfies the properties enumerated above:

H (p) = −
∫

Rn

p (x) log p (x) dx. (4.42)
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For a Gaussian random vector with covariance matrix C, the integral in (4.42) can be
analytically computed and the result is

H (p) =
n

2
log (2πe) +

1
2

log (det (C)) .

As the a priori density pa (x) describes knowledge before a measurement and the a posteri-
ori density p

(
x | yδ

)
describes it afterwards, the information content of the measurement

�H is the reduction in entropy (e.g., Rodgers, 2000)

�H = H (pa (x)) − H
(
p
(
x | yδ

))
.

For Gaussian densities with the a priori and the a posteriori covariance matrices Cx and
Ĉx, respectively, the information content then becomes

�H = −1
2

log
(

det
(
ĈxC−1

x

))
= −1

2
log (det (In − A)) .

By virtue of (4.32), which relates the information matrix R and the averaging kernel
matrix A, we obtain the representation

�H =
1
2

log (det (In + R)) ,

and further

�H =
1
2

n∑
i=1

log (1 + ωi) .

Similar to the degree of freedom for signal, the information content obeys a positive mono-
tonic subadditive algebra (Huang and Purser, 1996). By ‘monotonic’ we mean that the
addition of independent data does not decrease (on average) the information content, while
by ‘subadditive’ we mean that any two sets of data treated jointly never yield more of the
information content than the sum of the amounts yielded by the sets treated singly. These
results follow from (4.37) and (4.38) by taking into account that the information content
�H can be expressed in terms of the information matrix R as a scalar function F (R)
with f (x) = (1/2) log (1 + x), or, in the simple case (4.39), they follow from the obvious
inequalities

log (1 + 2ωi) ≥ log (1 + ωi) , log (1 + 2ωi) ≤ 2 log (1 + ωi) , i = 1, . . . , n.

A density of information can be defined by employing the technique which has been
used to define the effective data density. For this purpose, we seek an equivalent matrix Ah,
whose trace is the information content �H , so that the diagonal elements of this matrix
can be used as in (4.40) to define the density of information at each layer,

ρhi =
[Ah]ii
�zi

.

The matrix Ah is chosen as
Ah = VrΣahVT

r ,
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where Vr is the orthogonal matrix in (4.34) and

Σah =

[
diag

(
1
2

log (1 + ωi)
)

n×n

]
.

The information content is used as a selection criterion in the framework of the so-
called information operator method. Assuming (4.20) and considering a generalized sin-
gular value decomposition of the matrix pair (K,L), the maximum a posteriori estimator
and the information content of the measurement can be expressed as

x̂map =
n∑

i=1

fα

(
γ2

i

) 1
σi

(
uT

i yδ
)
wi,

and

�H =
1
2

n∑
i=1

log
(

1 +
γ2

i

α

)
,

respectively, where

fα

(
γ2

i

)
=

γ2
i

γ2
i + α

, i = 1, . . . , n,

are the filter factors for Tikhonov regularization and α = σ2/σ2
x . In the information oper-

ator method, only the generalized singular values γi larger than
√

α are considered to give
a relevant contribution to the information content. Note that α should not be regarded as
a regularization parameter whose value should be optimized; rather α is completely deter-
mined by the profile variance σ2

x which we take to be fixed. The state space spanned by the
singular vectors associated with the relevant singular values gives the effective state space
accessible with the measurement (Kozlov, 1983; Rozanov, 2001). If p is the largest index
i so that

γ2
i ≥ α =

σ2

σ2
x

, i = 1, . . . , p,

then the information operator solution can be expressed as

x̂io =
p∑

i=1

fα

(
γ2

i

) 1
σi

(
uT

i yδ
)
wi.

Essentially, the filter factors of the information operator method are given by

fα

(
γ2

i

)
=
{

γ2
i , γ2

i ≥ α,
0, γ2

i < α,

and we see that the information operator method has sharper filter factors than Tikhonov
regularization.
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4.3 Regularization parameter choice methods

Under assumptions (4.20), the Bayesian approach is equivalent to Tikhonov regulariza-
tion in the sense that the maximum a posteriori estimator simultaneously minimizes the
potential

V
(
x | yδ

)
=

1
σ2

∥∥yδ − Kx
∥∥2 +

1
σ2
x

‖Lx‖2
,

and the Tikhonov function

Fα (x) = σ2V
(
x | yδ

)
=
∥∥yδ − Kx

∥∥2 + α ‖Lx‖2
, α =

σ2

σ2
x

.

When the profile variance σ2
x is unknown, it seems to be justified to ask for a reliable

estimator σ̂2
x of σ2

x , or equivalently, for a plausible estimator α̂ of α. For this reason, in
statistical inversion theory, a regularization parameter choice method can be regarded as
an approach for estimating σ2

x .

4.3.1 Expected error estimation method

In a semi-stochastic setting, the expected error estimation method has been formulated
in the following way: given the exact profile x†, compute the optimal regularization pa-
rameter αopt as the minimizer of the expected error E{

∥∥x† − xδ
α

∥∥2}, with xδ
α being the

Tikhonov solution of regularization parameter α. In statistical inversion theory, an equiv-
alent formulation may read as follows: given the covariance matrix of the true state Cxt,
compute the profile variance σ2

x as the minimizer of the expected error

E
{
‖E‖2

}
= trace

(
(In − A)Cxt (In − A)T

)
+ σ2 trace

(
ĜĜT

)
, (4.43)

where the a priori covariance matrix in the expressions of Ĝ and A is given by Cx =
σ2
xCnx. If the covariance matrix of the true state is expressed as Cxt = σ2

xtCnx, then the
minimization of the expected error (4.43), yields σx = σxt. To prove this result under
assumptions (4.20), we take L = In, and obtain

E (α) = E
{
‖E‖2

}
= σ2

xt

n∑
i=1

[(
α

σ2
i + α

)2

+ αt

(
σi

σ2
i + α

)2
]

, αt =
σ2

σ2
xt

.

Setting E′ (α) = 0 gives

n∑
i=1

[
ασ2

i

(σ2
i + α)3

− αtσ
2
i

(σ2
i + α)3

]
= 0,

which further implies that α = αt, or equivalently that σx = σxt. Thus, the maximum a
posteriori estimator is given by x̂map = Ĝyδ with

Ĝ =
(
KT C−1

δ K + C−1
xt

)−1
KT C−1

δ . (4.44)
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The selection rule based on the minimization of (4.43) simply states that if the covariance
matrix of the true state is known, then this information should be used to construct the a
priori density.

In statistical inversion theory, the minimization of the expected error is not formulated
in terms of the profile variance (or the regularization parameter), but rather in terms of
the inverse matrix G. The resulting method, which is known as the minimum variance
method, possesses the following formulation: if the statistics of the true state is known,

E {X} = 0, E
{
XXT

}
= Cxt, (4.45)

then for the affine estimation rule x̂ = Gyδ , the matrix Ĝ minimizing the expected error

Ĝ = arg min
G

E
{∥∥∥X − GYδ

∥∥∥2} (4.46)

is given by (4.44), and the minimum variance estimator x̂mv = Ĝyδ coincides with the
maximum a posteriori estimator x̂map. To justify this claim, we look at the behavior of the
expected error when G is replaced by a candidate solution G + H. Using the result∥∥∥X − (G + H)Yδ

∥∥∥2
=
∥∥∥X − GYδ

∥∥∥2 − 2
(
X − GYδ

)T

HYδ +
∥∥∥HYδ

∥∥∥2
=
∥∥∥X − GYδ

∥∥∥2 − 2 trace
(
HYδ

(
X − GYδ

)T
)

+
∥∥∥HYδ

∥∥∥2 ,

we obtain

E
{∥∥∥X − (G + H)Yδ

∥∥∥2}
= E

{∥∥∥X − GYδ
∥∥∥2}− 2 trace

(
H E

{
Yδ
(
X − GYδ

)T
})

+ E
{∥∥∥HYδ

∥∥∥2} .

The trace term vanishes for the choice

G = Ĝ = E
{
XYδT

} (
E
{
YδYδT

})−1
, (4.47)

since

E
{
Yδ
(
X − ĜYδ

)T
}

= E
{
YδXT

}
− E

{
YδYδT

}
ĜT = 0.

Under assumptions (4.45), we find that

E
{
XYδT

}
= E

{
XXT

}
KT = CxtKT ,

whence using (4.24), (4.47) becomes

Ĝ = CxtKT
(
KCxtKT + Cδ

)−1
=
(
KT C−1

δ K + C−1
xt

)−1
KT C−1

δ .
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Hence, we have

E
{∥∥∥∥X −

(
Ĝ + H

)
Y

δ
∥∥∥∥2
}

= E
{∥∥∥X − ĜY

δ
∥∥∥2}+ E

{∥∥∥HYδ
∥∥∥2}

≥ E
{∥∥∥X − ĜY

δ
∥∥∥2}

for any H ∈ R
n×m, and therefore, E{

∥∥X − GYδ
∥∥2} is minimal for G = Ĝ.

The minimum variance estimator minimizes the expected error, which represents the
trace of the a posteriori covariance matrix. Instead of minimizing the trace of the a pos-
teriori covariance matrix we may formulate a minimization problem involving the entire a
posteriori covariance matrix. For this purpose, we define the random total error

E = X − GYδ = (In − GK)X − GΔ,

for some G ∈ R
n×m. The covariance matrices of the smoothing and noise errors Es =

(In − GK)X and En = −GΔ, can be expressed in terms of the matrix G, as

Ces = (In − GK)Cxt (In − GK)T

and
Cen = GCδGT ,

respectively. Then, it is readily seen that the minimizer of the error covariance matrix

Ĝ = arg min
G

(Ces + Cen) , (4.48)

solves the equation

∂

∂G

(
Cxt − CxtKT GT − GKCxt + GKCxtKT GT + GCδGT

)
= 0 (4.49)

and is given by (4.44).
Because in statistical inversion theory, the conventional expected error estimation

method is not beneficial, we design a regularization parameter choice method by look-
ing only at the expected value of the noise error. Under assumptions (4.20), the noise error
covariance matrix is given by (cf. (3.38))

Cen = σ2ĜT Ĝ = σ2WΣnαWT ,

with

Σnα =

[
diag

((
γ2

i

γ2
i + α

1
σi

)2
)

n×n

]
,

and the expected value of the noise error (cf. (3.41)),

E
{
‖En‖2

}
= trace (Cen) = σ2

n∑
i=1

(
γ2

i

γ2
i + α

1
σi

)2

‖wi‖2
,
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is a decreasing function of α. To improve the degree of freedom for signal we need to
chose a small value of the regularization parameter. But when the regularization parameter
is too small, the noise error may explode. Therefore, we select the smallest regularization
parameter so that the expected value of the noise error is below a specific level. Recalling
that x is the deviation of the retrieved profile from the a priori profile xa, we define the
regularization parameter for noise error estimation α̂ne as the solution of the equation

E
{
‖En‖2

}
= εn ‖xa‖2

,

for some relative error level εn. In atmospheric remote sensing, the expected noise error
estimation method has been successfully applied for ozone retrieval from nadir sounding
spectra measured by the Tropospheric Emission Spectrometer (TES) on the NASA Aura
platform (Steck, 2002).

4.3.2 Discrepancy principle

In a semi-stochastic setting, the discrepancy principle selects the regularization parameter
as the solution of the equation ∥∥rδ

α

∥∥2 = τmσ2. (4.50)

Under assumptions (4.20), equation (4.50) reads as

m∑
i=1

(
α

γ2
i + α

)2 (
uT

i yδ
)2

= τmσ2, (4.51)

with the convention γi = 0 for i = n + 1, . . . , m.
The regularization parameter choice method (4.50) with τ = 1 is known as the con-

strained least squares method (Hunt, 1973; Trussel, 1983; Trussel and Civanlar, 1984).
It has been observed and reported by a number of researchers, e.g., Demoment (1989),
that the constrained least squares method yields an oversmooth solution. To ameliorate
this problem, Wahba (1983), and Hall and Titterington (1987) proposed, in analogy to re-
gression, the equivalent degree of freedom method. In a stochastic setting, this method
takes into account that the expected value of the residual is equal to the trace of the matrix
Im − Â, that is, (cf. (4.27) and (4.29))

E
{(

Yδ − KX̂
)T

C−1
δ

(
Yδ − KX̂

)}
= trace

(
Im − Â

)
.

The resulting equation for computing the regularization parameter is then given by(
yδ − Kx̂

)T
C−1

δ

(
yδ − Kx̂

)
= trace

(
Im − Â

)
,

or equivalently, by

m∑
i=1

(
α

γ2
i + α

)2 (
uT

i yδ
)2

= σ2
m∑

i=1

α

γ2
i + α

.
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On the other hand, the random variable V̂ , defined by (4.23), is Chi-square distributed
with m degrees of freedom. In this regard, we may choose the regularization parameter as
the solution of the equation(

yδ − Kx̂
)T

C−1
δ

(
yδ − Kx̂

)
+ x̂T C−1

x x̂ = m,

that is,
m∑

i=1

(
α

γ2
i + α

)(
uT

i yδ
)2

= mσ2.

As compared to (4.51), the factors multiplying the Fourier coefficients uT
i yδ converge

more slowly to zero as α tends to zero, and therefore, this selection rule yields a larger
regularization parameter than the discrepancy principle with τ = 1.

4.3.3 Hierarchical models

In the Bayesian framework, all unknown parameters of the model are included in the re-
trieval and this applies also for parameters describing the a priori density. The resulting
model is then known as hierarchical or hyperpriori model (Kaipio and Somersalo, 2005).

For the a priori covariance matrix Cx = σ2
xCnx, we suppose that the a priori density

is conditioned on the knowledge of σx, i.e.,

pa (x | σx) =
1√

(2πσ2
x)

n det (Cnx)
exp
(
− 1

2σ2
x

xT C−1
nx x
)

. (4.52)

For the parameter σx, we assume the Gaussian density

pa (σx) =
1√

2π�σx

exp
(
− 1

2�σ2
x

(σx − σ̄x)
2

)
,

where the mean σ̄x and the variance �σ2
x are considered to be known. The joint probability

density of X and σx is then given by

pa (x, σx) = pa (x | σx) pa (σx)

∝ 1

(σ2
x)

n
2

exp
(
− 1

2σ2
x

xT C−1
nx x − 1

2�σ2
x

(σx − σ̄x)
2

)
,

the Bayes formula conditioned on the data Yδ = yδ takes the form

p
(
x, σx | yδ

)
∝ 1

(σ2
x)

n
2

exp
(
−1

2
(
yδ − Kx

)T
C−1

δ

(
yδ − Kx

)
− 1

2σ2
x

xT C−1
nx x − 1

2�σ2
x

(σx − σ̄x)
2

)
,

and the maximum a posteriori estimators x̂ and σ̂x are found by minimizing the a posteriori
potential

V
(
x, σx | yδ

)
=
(
yδ − Kx

)T
C−1

δ

(
yδ − Kx

)
+

1
σ2
x

xT C−1
nx x +

1
�σ2

x

(σx − σ̄x)
2 + n log σ2

x .
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4.3.4 Maximum likelihood estimation

In the Bayes theorem

p
(
x | yδ

)
=

p
(
yδ | x

)
pa (x)

p (yδ)
, (4.53)

the denominator p
(
yδ
)

gives the probability that the data Yδ = yδ is observed. The
marginal density p

(
yδ
)

is obtained by integrating the joint probability density p
(
x,yδ

)
with respect to x, that is,

p
(
yδ
)

=
∫

Rn

p
(
x,yδ

)
dx =

∫
Rn

p
(
yδ | x

)
pa (x) dx. (4.54)

By (4.53) and (4.54), we see that p
(
x | yδ

)
integrates to 1 as all legitimate probability

densities should and that the marginal density p
(
yδ
)

is nothing more than a normalization
constant. Despite of this fact, p

(
yδ
)

plays an important role in the design of regularization
parameter choice methods and in particular, of the maximum likelihood estimation.

Assuming that the likelihood density p
(
yδ | x

)
and the a priori density pa (x) depend

on additional parameters, which can be cast in the form of a parameter vector θ, we express
the marginal density p

(
yδ; θ

)
as

p
(
yδ; θ

)
=
∫

Rn

p
(
yδ | x; θ

)
pa (x; θ) dx. (4.55)

The marginal density p
(
yδ; θ

)
is also known as the marginal likelihood function and the

maximum likelihood estimator θ̂ is defined by

θ̂ = arg max
θ

log p
(
yδ; θ

)
.

Let us derive the maximum likelihood estimator for Gaussian densities with the co-
variance matrices (4.20) when σ2 and α = σ2/σ2

x are unknown, that is, when θ is of the
form θ = [θ1, θ2]

T with θ1 = σ2 and θ2 = α. The a priori density pa
(
x; σ2, α

)
and the

conditional probability density p
(
yδ | x;σ2

)
are given by (cf. (4.9) and (4.10))

pa
(
x; σ2, α

)
=

1√
(2πσ2)n det

(
(αLT L)−1

) exp
(
− α

2σ2
‖Lx‖2

)

and

p
(
yδ | x; σ2

)
=

1√
(2πσ2)m exp

(
− 1

2σ2

∥∥yδ − Kx
∥∥2) , (4.56)

respectively. Taking into account that∥∥yδ − Kx
∥∥2 + α ‖Lx‖2 = (x − x̂)T (KT K + αLT L

)
(x − x̂) + yδT

(
Im − Â

)
yδ,



Sect. 4.3 Regularization parameter choice methods 127

where x̂ = Ĝyδ and Â = KĜ, we express the integrand in (4.55) as

p
(
yδ | x;σ2

)
pa
(
x;σ2, α

)
=

1√
(2πσ2)n+m det

(
(αLT L)−1

) exp
(
− 1

2σ2
(x − x̂)T (KT K + αLT L

)
(x − x̂)

)

× exp
(
− 1

2σ2
yδT

(
Im − Â

)
yδ

)
.

Using the normalization condition∫
Rn

exp
(
−1

2
(x − x̂)T

[
σ2
(
KT K + αLT L

)−1
]−1

(x − x̂)
)

dx

=
√

(2πσ2)n det
(
(KT K + αLT L)−1

)
we obtain

p
(
yδ; σ2, α

)
=
∫

Rn

p
(
yδ | x;σ2

)
pa
(
x;σ2, α

)
dx

=

√√√√√ det
(
(KT K + αLT L)−1

)
(2πσ2)m det

(
(αLT L)−1

) exp
(
− 1

2σ2
yδT

(
Im − Â

)
yδ

)
.

Taking the logarithm and using the identity

det
((

KT K + αLT L
)−1
)

det
(
(αLT L)−1

) = det
((

KT K + αLT L
)−1

αLT L
)

= det (In − A) ,

yields

log p
(
yδ; σ2, α

)
= −m

2
log
(
2πσ2

)
+

1
2

log (det (In − A)) − 1
2σ2

yδT
(
Im − Â

)
yδ. (4.57)

Computing the derivative of (4.57) with respect to σ2 and setting it equal to zero gives

σ̂2 =
1
m

yδT
(
Im − Â

)
yδ. (4.58)

Substituting (4.58) back into (4.57), and using the result

det (In − A) = det
(
Im − Â

)
=

n∏
i=1

α

γ2
i + α

,

we find that

log p
(
yδ | σ̂2, α

)
= −m

2

[
log
(
yδT

(
Im − Â

)
yδ
)
− 1

m
log
(

det
(
Im − Â

))]
+ c,
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where c does not depend on α. Thus, the regularization parameter α̂mle which maximizes
the log of the marginal likelihood function also minimizes the maximum likelihood func-
tion

λδ
α =

yδT
(
Im − Â

)
yδ

m

√
det
(
Im − Â

) ,

and we indicate this situation by writing

α̂mle = arg min
α

λδ
α.

The numerical simulations performed in the preceding chapter have shown that the
maximum likelihood estimation is superior to the generalized cross-validation method in
the sense that the minimum of the objective function is not very flat and the estimated
regularization parameter is closer to the optimum.

4.3.5 Expectation minimization

The Expectation Minimization (EM) algorithm is an alternative to the maximum likelihood
estimation in which the negative of the log of the marginal likelihood function is minimized
by an iterative approach. The formulation of the expected minimization as a regularization
parameter choice method has been provided by Fitzpatrick (1991), while a very general
development can be found in Dempster et al. (1977), and McLachlan and Krishnan (1997).
In this section we present a version of the EM algorithm by following the analysis of Vogel
(2002).

Taking into account that the a posteriori density p
(
x | yδ; θ

)
is normalized,∫

Rn

p
(
x | yδ; θ

)
dx = 1, (4.59)

and representing the joint probability density p
(
x,yδ; θ

)
as

p
(
x,yδ; θ

)
= p
(
x | yδ; θ

)
p
(
yδ; θ

)
,

we see that for any fixed θ0, the negative of the log of the marginal likelihood function can
be expressed as

− log p
(
yδ; θ

)
= − log p

(
yδ; θ

) ∫
Rn

p
(
x | yδ; θ0

)
dx

= −
∫

Rn

p
(
x | yδ; θ0

)
log p

(
yδ; θ

)
dx

= −
∫

Rn

p
(
x | yδ; θ0

)
log

(
p
(
x,yδ;θ

)
p (x | yδ; θ)

)
dx

= Q
(
yδ, θ,θ0

)
− H

(
yδ, θ, θ0

)



Sect. 4.3 Regularization parameter choice methods 129

with
Q
(
yδ,θ, θ0

)
= −

∫
Rn

p
(
x | yδ;θ0

)
log p

(
x,yδ;θ

)
dx

and
H
(
yδ, θ, θ0

)
= −

∫
Rn

p
(
x | yδ; θ0

)
log p

(
x | yδ; θ

)
dx.

To evaluate the difference

H
(
yδ, θ, θ0

)
− H

(
yδ, θ0,θ0

)
= −

∫
Rn

p
(
x | yδ; θ0

)
log

(
p
(
x | yδ; θ

)
p (x | yδ; θ0)

)
dx,

we use the Jensen inequality∫
ϕ (g (x)) f (x) dx ≥ ϕ

(∫
g (x) f (x) dx

)
for the convex function ϕ (u) = − log u, that is,

−
∫

Rn

p
(
x | yδ; θ0

)
log

(
p
(
x | yδ; θ

)
p (x | yδ; θ0)

)
dx ≥ − log

(∫
Rn

p
(
x | yδ; θ

)
dx
)

= 0,

and obtain
−H

(
yδ, θ, θ0

)
≤ −H

(
yδ, θ0, θ0

)
.

Assuming that θ is such that

Q
(
yδ, θ, θ0

)
≤ Q

(
yδ, θ0, θ0

)
,

it follows that
− log p

(
yδ; θ

)
≤ − log p

(
yδ; θ0

)
.

The EM algorithm seeks to minimize − log p
(
yδ; θ

)
by iteratively applying the fol-

lowing two steps:

(1) Expectation step. Calculate the function Q
(
yδ, θ, θ̂k

)
for the a posteriori density

under the current estimator θ̂k,

Q
(
yδ, θ, θ̂k

)
= −

∫
Rn

p
(
x | yδ; θ̂k

)
log
(
p
(
yδ | x; θ

)
pa (x; θ)

)
dx.

(2) Minimization step. Find the parameter vector θ̂k+1 which minimizes this function,
that is,

θ̂k+1 = arg min
θ

Q
(
yδ, θ, θ̂k

)
.

Two main peculiarities of the EM algorithm can be evidenced:

(1) Even if the algorithm has a stable point, there is no guarantee that this stable point
is a global minimum of − log p

(
yδ;θ

)
, or even a local minimum. If the function

Q
(
yδ, θ,θ′) is continuous, convergence to a stationary point of − log p

(
yδ;θ

)
is

guaranteed.
(2) The solution generally depends on the initialization.
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To illustrate how the EM algorithm works, we consider Gaussian densities with the covari-
ance matrices (4.20), and choose the parameter vector θ as θ = [θ1, θ2]

T with θ1 = σ2
x

and θ2 = σ2. The a priori density pa
(
x; σ2

x

)
and the conditional probability density

p
(
yδ | x; σ2

)
are given by (4.52) and (4.56), respectively. Using the results

∂

∂σ2
x

log
(
p
(
yδ | x; σ2

)
pa
(
x; σ2

x

))
= − n

2σ2
x

+
1

2σ4
x

xT C−1
nx x,

∂

∂σ2
log
(
p
(
yδ | x; σ2

)
pa
(
x; σ2

x

))
= − m

2σ2
+

1
2σ4

∥∥yδ − Kx
∥∥2 ,

we deduce that the EM iteration step yields the recurrence relations

σ̂2
xk+1 =

1
n

∫
Rn

xT C−1
nx x p

(
x | yδ; σ̂2

xk, σ̂2
k

)
dx, (4.60)

σ̂2
k+1 =

1
m

∫
Rn

∥∥yδ − Kx
∥∥2 p

(
x | yδ; σ̂2

xk, σ̂2
k

)
dx. (4.61)

To compute the n-dimensional integrals in (4.60) and (4.61) we may use the Monte Carlo
method (Tarantola, 2005). As the a posteriori density under the current estimator is Gaus-
sian, the integration process involves the following steps:

(1) for σ̂2
xk and σ̂2

k, compute the maximum a posteriori estimator x̂k and the a posteriori
covariance matrix Ĉxk;

(2) generate a random sample {xki}i=1,N of a Gaussian distribution with mean vector x̂k

and covariance matrix Ĉxk;
(3) estimate the integrals as∫

Rn

xT C−1
nx x p

(
x | yδ; σ̂2

xk, σ̂2
k

)
dx ≈ 1

N

N∑
i=1

xT
kiC

−1
nx xki,

∫
Rn

∥∥yδ − Kx
∥∥2 p

(
x | yδ; σ̂2

xk, σ̂2
k

)
dx ≈ 1

N

N∑
i=1

∥∥yδ − Kxki

∥∥2 .

This integration process is quite demanding, and as a result, the method may become very
time-consuming.

4.3.6 A general regularization parameter choice method

In this section we present a general technique for constructing regularization parameter
choice methods in statistical inversion theory. Our analysis follows the treatment of Neu-
maier (1998) and enables us to introduce the generalized cross-validation method and the
maximum likelihood estimation in a natural way.

Assuming Gaussian densities with the covariance matrices (4.20) and considering a
generalized singular value decomposition of the matrix pair (K,L), i.e., K = UΣ1W−1

and L = VΣ2W−1, we express the covariance matrix of the data Yδ as (cf. (4.24))

E
{
YδYδT

}
= KCxKT + Cδ = σ2

xK
(
LT L

)−1
KT + σ2Im = UΣyUT ,
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where

Σy = σ2
xΣ1

(
ΣT

2 Σ2

)−1
ΣT

1 + σ2Im

=

[
diag

(
σ2
xγ

2
i + σ2

)
n×n

0
0 diag

(
σ2
)
(m−n)×(m−n)

]
.

Next, we define the scaled data
Ȳδ = UT Yδ,

and observe that Ȳδ has a diagonal covariance matrix, which is given by

E
{
ȲδȲδT

}
= E

{
UT YδYδT U

}
= Σy.

If σx and σ correctly describe the covariance matrix of the true state and the instrumental
noise covariance matrix, respectively, we must have

E
{
Ȳ δ2

i

}
= σ2

xγ
2
i + σ2, i = 1, . . . , m, (4.62)

where Ȳ δ
i = uT

i Yδ for i = 1, . . . , m, and γi = 0 for i = n + 1, . . . , m. If σx and σ are
unknown, we can find the estimators σ̂x and σ̂ from the equations

E
{
Ȳ δ2

i

}
= σ̂2

xγ
2
i + σ̂2, i = 1, . . . , m. (4.63)

However, since only one realization of the random vector Ȳδ is known, the calculation
of these estimators may lead to erroneous results and we must replace (4.63) by another
selection criterion. For this purpose, we set (cf. (4.62))

ai (θ) = θ1γ
2
i + θ2, (4.64)

with θ = [θ1, θ2]
T , θ1 = σ2

x and θ2 = σ2, and define the function

f
(
Ȳδ, θ

)
=

m∑
i=1

ψ (ai (θ)) + ψ′ (ai (θ))
[
Ȳ δ2

i − ai (θ)
]
,

with ψ being a strictly concave function. The expected value of f is given by

E
{
f
(
Ȳδ,θ

)}
=

m∑
i=1

ψ (ai (θ)) + ψ′ (ai (θ))
[
E
{
Ȳ δ2

i

}
− ai (θ)

]
,

whence, defining the estimator θ̂ through the relation

E
{
Ȳ δ2

i

}
= ai

(
θ̂
)

, i = 1, . . . , m, (4.65)

E {f} can be expressed as

E
{
f
(
Ȳδ, θ

)}
=

m∑
i=1

ψ (ai (θ)) + ψ′ (ai (θ))
[
ai

(
θ̂
)
− ai (θ)

]
.
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Then, we obtain

E
{
f
(
Ȳδ, θ

)}
− E

{
f
(
Ȳδ, θ̂

)}
=

m∑
i=1

ψ (ai (θ)) − ψ
(
ai

(
θ̂
))

+ ψ′ (ai (θ))
[
ai

(
θ̂
)
− ai (θ)

]
.

Considering the second-order Taylor expansion

ψ (ai (θ))−ψ
(
ai

(
θ̂
))

+ψ′ (ai (θ))
[
ai

(
θ̂
)
− ai (θ)

]
= −1

2
ψ′′ (ξi)

[
ai

(
θ̂
)
− ai (θ)

]2
with some ξi between ai (θ) and ai

(
θ̂
)

, and taking into account that ψ is strictly concave,

we deduce that each term in the sum is non-negative and vanishes only for ai (θ) = ai

(
θ̂
)

.
Thus, we have

E
{
f
(
Ȳδ, θ

)}
≥ E

{
f
(
Ȳδ, θ̂

)}
,

for all θ. If, in addition, θ̂ is determined uniquely by (4.65), then θ̂ is the unique global
minimizer of E{f

(
Ȳδ, θ

)
}, and we propose a regularization parameter choice method in

which the estimator θ̂ is computed as

θ̂ = arg min
θ

E
{
f
(
Ȳδ,θ

)}
. (4.66)

Different regularization parameter choice methods can be obtained by choosing the
concave function ψ in an appropriate way.

Generalized cross-validation

For the choice
ψ (a) = 1 − 1

a
,

we obtain

E
{
f
(
Ȳδ, θ

)}
= m +

m∑
i=1

[
E
{
Ȳ δ2

i

}
ai (θ)2

− 2
ai (θ)

]
. (4.67)

As θ̂ is the unique global minimizer of E{f
(
Ȳδ, θ

)
}, the gradient

∇E
{
f
(
Ȳδ, θ

)}
= −2

m∑
i=1

[
E
{
Ȳ δ2

i

}
ai (θ)3

− 1
ai (θ)2

]
∇ai (θ)

vanishes at θ̂. Thus,
θ̂

T
∇E
{

f
(
Ȳδ, θ̂

)}
= 0, (4.68)

and since (cf. (4.64))
θT∇ai (θ) = ai (θ) ,
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we deduce that
m∑

i=1

⎡⎢⎣E {Ȳ δ2
i

}
ai

(
θ̂
)2 − 1

ai

(
θ̂
)
⎤⎥⎦ = 0. (4.69)

Equation (4.69) together with the relation

ai

(
θ̂
)

= σ̂2
xγ

2
i + σ̂2,

gives

σ̂2
x =

p (α̂)
q (α̂)

, σ̂2 = α̂ σ̂2
x , (4.70)

where

p (α) =
m∑

i=1

E
{
Ȳ δ2

i

}
(γ2

i + α)2

and

q (α) =
m∑

i=1

1
γ2

i + α
.

From (4.70), it is apparent that σ̂2
x and σ̂2 are expressed in terms of the single parameter α̂,

and by (4.67) and (4.69), we find that

−E
{

f
(
Ȳδ, θ̂

)}
+ m =

m∑
i=1

1

ai

(
θ̂
) =

1
σ̂2
x

q (α̂) =
q (α̂)2

p (α̂)
. (4.71)

Now, if α̂ minimizes the function

υα =
p (α)
q (α)2

=

m∑
i=1

(
α

γ2
i + α

)2

E
{
Ȳ δ2

i

}
(

m∑
i=1

α

γ2
i + α

)2 ,

then by (4.71), α̂ maximizes −E {f}, or equivalently, α̂ minimizes E {f}. In practice, the
expectation E{Ȳ δ2

i } cannot be computed since only a single realization ȳδ
i = uT

i yδ of Ȳ δ
i

is known. To obtain a practical regularization parameter choice method, instead of υα we
consider the function

υδ
α =

m∑
i=1

(
α

γ2
i + α

)2 (
uT

i yδ
)2

(
m∑

i=1

α

γ2
i + α

)2 =

∥∥yδ − Kx̂
∥∥2[

trace
(
Im − Â

)]2 ,

which represents the generalized cross-validation function discussed in Chapter 3.
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Note that for ψ (a) = (1 − 1/aq)/q with q > −1 and q �= 0, we obtain

E
{
f
(
Ȳδ, θ

)}
=

m

q
+

m∑
i=1

⎡⎢⎢⎣ E
{
Ȳ δ2

i

}
ai (θ)q+1 −

1 +
1
q

ak (θ)q

⎤⎥⎥⎦ ,

and we are led to a generalization of the cross-validation function of the form

υδ
αq =

m∑
i=1

(
α

γ2
i + α

)q+1 (
uT

i yδ
)2q

[
m∑

i=1

(
α

γ2
i + α

)q
]q+1 .

Maximum likelihood estimation

For the choice
ψ (a) = log a,

we obtain

E
{
f
(
Ȳδ, θ

)}
= −m +

m∑
i=1

[
E
{
Ȳ δ2

i

}
ai (θ)

+ log ai (θ)

]
, (4.72)

and the minimization condition (4.68) yields

m∑
i=1

E
{
Ȳ δ2

i

}
ai

(
θ̂
) = m. (4.73)

As before, equation (4.73) implies that σ̂2
x and σ̂2 can be expressed in terms of the single

parameter α̂ through the relations

σ̂2
x =

1
m

m∑
i=1

E
{
Ȳ δ2

i

}
γ2

i + α̂
, σ̂2 = α̂ σ̂2

x , (4.74)

and we find that

E
{

f
(
Ȳδ, θ̂

)}
+ m log m = m log m +

m∑
i=1

log ai

(
θ̂
)

= m log m + m log σ̂2
x +

m∑
i=1

log
(
γ2

i + α̂
)

= m log

(
m∑

i=1

E
{
Ȳ δ2

i

}
γ2

i + α̂

)
+

m∑
i=1

log
(
γ2

i + α̂
)

= m

[
log

(
m∑

i=1

E
{
Ȳ δ2

i

}
γ2

i + α̂

)
− 1

m
log

(
m∏

i=1

1
γ2

i + α̂

)]
.
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Hence, if α̂ minimizes the function

λα =

m∑
i=1

E
{
Ȳ δ2

i

}
γ2

i + α

m

√√√√ m∏
i=1

1
γ2

i + α

,

then α̂ minimizes E {f}. In practice, we replace E{Ȳ δ2
i } by (uT

i yδ)2 and minimize the
maximum likelihood function

λδ
α =

m∑
i=1

(
uT

i yδ
)2

γ2
i + α

m

√√√√ m∏
i=1

1
γ2

i + α

=
yδT

(
Im − Â

)
yδ

m

√
det
(
Im − Â

) . (4.75)

An equivalent interpretation of the maximum likelihood estimation can be given as
follows. Let us consider the scaled data Ȳδ = UT Yδ and let us compute the maximum
likelihood estimator θ̂ as

θ̂ = arg max
θ

log p
(
ȳδ; θ

)
,

with

p
(
ȳδ; θ

)
=

1√
(2π)m det

(
Σy (θ)

) exp
(
−1

2
ȳδT Σ−1

y (θ) ȳδ

)
,

and

Σy (θ) =
[

diag
(
θ1γ

2
i + θ2

)
n×n

0
0 diag (θ2)(m−n)×(m−n)

]
.

Then, taking into account that

log p
(
ȳδ; θ

)
= −1

2
ȳδT Σ−1

y (θ) ȳδ − 1
2

log
(
det Σy (θ)

)
+ c

= −1
2

[
m∑

i=1

ȳδ2
i

θ1γ2
i + θ2

+ log

(
m∏

i=1

(
θ1γ

2
i + θ2

))]
+ c,

where c does not depend on θ, we see that the maximization of log p
(
ȳδ; θ

)
is equivalent

to the minimization of f
(
Ȳδ, θ

)
as in (4.72).

4.3.7 Noise variance estimators

In a semi-stochastic setting, we have estimated the noise variance by looking at the behav-
ior of the residual norm in the limit of small α. This technique considers the solution of
the inverse problem without regularization and requires an additional computational step.
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In this section we present methods for estimating the noise variance, which do not suffer
from this inconvenience.

In the analysis of the generalized cross-validation method and the maximum likeli-
hood estimation we considered the parameter vector θ, whose components depend on the
regularization parameter α and the noise variance σ2. In fact, these methods are ideal
candidates for estimating both the regularization parameter and the noise variance.

In the the generalized cross-validation method, the second relation in (4.70) gives the
noise variance estimator

σ̂2
gcv = α̂gcv

p
(
α̂gcv

)
q
(
α̂gcv

) ≈

m∑
i=1

(
α̂gcv

γ2
i + α̂gcv

)2 (
uT

i yδ
)2

m∑
i=1

α̂gcv

γ2
i + α̂gcv

=

∥∥yδ − Kx̂
∥∥2

trace
(
Im − Â

) , (4.76)

where x̂ and Â are computed for the regularization parameter α̂gcv. The noise variance
estimator (4.76) has been proposed by Wahba (1983) and numerical experiments presented
by a number of researchers support the choice of this estimator (Fessler, 1991; Nychka,
1988; Thompson et al., 1991).

In the maximum likelihood estimation, a noise variance estimator can be constructed
by using (4.58); the result is

σ̂2
mle =

1
m

yδT
(
Im − Â

)
yδ,

where Â is computed for the regularization parameter α̂mle. Numerical experiments where
this estimator is tested has been reported by Galatsanos and Katsaggelos (1992).

An estimator which is similar to (4.76) can be derived in the framework of the unbi-
ased predictive risk estimator method. This selection criterion chooses the regularization
parameter α̂pr as the minimizer of the function

πδ
α =

m∑
i=1

(
α

γ2
i + α

)2 (
uT

i yδ
)2

+ 2σ2
n∑

i=1

γ2
i

γ2
i + α

− mσ2.

Taking the derivative of πδ
α with respect to α, and setting it equal to zero gives

σ2
n∑

i=1

γ2
i

(γ2
i + α)2

=
n∑

i=1

αγ2
i

(γ2
i + α)3

(
uT

i yδ
)2

. (4.77)

By straigthforward calculation we find that

trace
(
Â
(
Im − Â

))
=

n∑
i=1

αγ2
i

(γ2
i + α)2

and that

yδT
(
Im − Â

)T

Â
(
Im − Â

)
yδ =

n∑
i=1

α2γ2
i

(γ2
i + α)3

(
uT

i yδ
)2

.
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Now, taking into account that α̂pr and α̂gcv are asymptotically equivalent, equation (4.77)
can be used to estimate the noise variance; we obtain

σ̂2
pr =

yδT
(
Im − Â

)T

Â
(
Im − Â

)
yδ

trace
(
Â
(
Im − Â

)) ,

where Â is computed for the generalized cross-validation parameter α̂gcv. Since

yδ − Kx̂ =
(
Im − Â

)
yδ,

we see that this estimator is similar to (4.76); the only difference is the multiplication with
the influence matrix in both the numerator and denominator.

4.4 Marginalizing method

In a stochastic setting, a two-component data model reads as

Yδ = K1X1 + K2X2 + Δ, (4.78)

where X1 and X2 are assumed to be independent Gaussian random vectors characterized
by X1 ∼ N (0,Cx1) and X2 ∼ N (0,Cx2). The dimensions of the random vectors X1 and
X2 are n1 and n2, respectively, and we have n1 + n2 = n. The maximum a posteriori
estimator x̂ of the state

X =
[

X1

X2

]
is obtained from the Bayes theorem

p
(
x1,x2 | yδ

)
=

p
(
yδ | x1,x2

)
pa (x1,x2)

p (yδ)
=

p
(
yδ | x1,x2

)
pa (x1) pa (x2)

p (yδ)
, (4.79)

where the a priori densities and the likelihood density are given by

pa (xi) ∝ exp
(
−1

2
xT

i C−1
xi xi

)
, i = 1, 2, (4.80)

and

p
(
yδ | x1,x2

)
∝ exp

(
−1

2
(
yδ − K1x1 − K2x2

)T
C−1

δ

(
yδ − K1x1 − K2x2

))
,

(4.81)
respectively.

To show the equivalence between classical regularization and statistical inversion, we
assume Gaussian densities with covariance matrices of the form

Cδ = σ2Im, Cxi = σ2
xiCnxi = σ2

xi

(
LT

i Li

)−1
, i = 1, 2, (4.82)
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and write the penalty term in the expression of σ2V
(
x1,x2 | yδ

)
as

σ2

(
1

σ2
x1

‖L1x1‖2 +
1

σ2
x2

‖L2x2‖2

)
= α

[
ω ‖L1x1‖2 + (1 − ω) ‖L2x2‖2

]
.

Then, it is readily seen that the regularization parameter α and the weighting factor ω are
given by

α =
σ2

σ2
x

, ω =
σ2
x

σ2
x1

, (4.83)

where
1
σ2
x

=
1

σ2
x1

+
1

σ2
x2

.

In the framework of classical regularization theory we discussed multi-parameter reg-
ularization methods for computing α and ω, or equivalently, for estimating σx1 and σx2. An
interesting situation occurs when the statistics of X2 is known, and only σx1 is the param-
eter of the retrieval. In this case we can reduce the dimension of the minimization problem
by using the so-called marginalizing technique. The idea is to formulate a minimization
problem for the first component of the state vector by taking into account the statistics of
the second component. The maximum a posteriori estimator for the first component of the
state vector is defined as

x̂1 = arg max
x1

p
(
x1 | yδ

)
.

To compute the marginal a posteriori density p
(
x1 | yδ

)
, we must integrate the density

p
(
x1,x2 | yδ

)
over x2,

p
(
x1 | yδ

)
=
∫

Rn2

p
(
x1,x2 | yδ

)
dx2 =

pa (x1)
p (yδ)

∫
Rn2

p
(
yδ | x1,x2

)
pa (x2) dx2,

(4.84)
where the a priori densities and the likelihood density are given by (4.80) and (4.81), re-
spectively. To evaluate the integral, we have to arrange the argument of the exponential
function as a quadratic function in x2. For this purpose, we employ the technique which
we used to derive the mean vector and the covariance matrix of the a posteriori density
p
(
x | yδ

)
in the one-parameter case, that is,[(

yδ − K1x1

)
− K2x2

]T
C−1

δ

[(
yδ − K1x1

)
− K2x2

]
+ xT

2 C−1
x2 x2

= (x2 − x̄2)
T Ĉ−1

x2 (x2 − x̄2) +
(
yδ − K1x1

)T (
K2Cx2KT

2 + Cδ

)−1 (
yδ − K1x1

)
,

with
x̄2 = G2

(
yδ − K1x1

)
, G2 =

(
KT

2 C−1
δ K2 + C−1

x2

)−1
KT

2 C−1
δ ,

and
Ĉx2 =

(
KT

2 C−1
δ K2 + C−1

x2

)−1
.

Using the normalization condition for the Gaussian density

exp
(
−1

2
(x2 − x̄2)

T Ĉ−1
x2 (x2 − x̄2)

)
,
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we obtain

p
(
x1 | yδ

)
∝ exp

(
−1

2
(
yδ − K1x1

)T (
K2Cx2KT

2 + Cδ

)−1 (
yδ − K1x1

)
− 1

2
xT

1 C−1
x1 x1

)
,

and it is apparent that x̂1 is given by (4.12) and (4.13), with K replaced by K1 and Cδ

replaced by
Cδy = Cδ + K2Cx2KT

2 . (4.85)

Thus, when retrieving the first component of the state vector we may interpret the data
error covariance matrix as being the sum of the instrumental noise covariance matrix plus
a contribution due to the second component (Rodgers, 2000).

Actually, the marginalizing method can be justified more simply as follows: express
the data model (4.78) as

Yδ = K1X1 + Δy,

where the random data error Δy is given by

Δy = K2X2 + Δ,

and use the result E{Δy} = 0 to conclude that the covariance matrix Cδy = E{ΔyΔT
y }

is given by (4.85). In the state space, the marginalizing method yields the random model
parameter error

Emp = −ĜK2X2,

characterized by
E
{
Emp

}
= 0, Cemp = ĜK2Cx2KT

2 ĜT .

Finally, we present a general derivation of the marginalizing method, which is not
restricted to a stochastic setting. The maximum a posteriori estimator, written explicitly as[

x̂1

x̂2

]
=
([

KT
1

KT
2

]
C−1

δ [K1,K2] +
[

C−1
x1 0
0 C−1

x2

])−1 [
KT

1

KT
2

]
C−1

δ yδ

=
[

KT
1 C−1

δ K1 + C−1
x1 KT

1 C−1
δ K2

KT
2 C−1

δ K1 KT
2 C−1

δ K2 + C−1
x2

]−1 [
KT

1

KT
2

]
C−1

δ yδ, (4.86)

is equivalent to the Tikhonov solution under assumptions (4.82). Setting

A = KT
1 C−1

δ K1 + C−1
x1 , B = KT

1 C−1
δ K2, C = KT

2 C−1
δ K2 + C−1

x2 ,

we compute the inverse matrix in (4.86) by using the following result (Tarantola, 2005): if
A and C are symmetric matrices, then[

A B
BT C

]−1

=
[

Ã B̃
B̃T C̃

]
,

with

Ã =
(
A − BC−1BT

)−1
, C̃ =

(
C − BT A−1B

)−1
, B̃ = −ÃBC−1 = −A−1BC̃.
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The first component of the state vector is then given by

x̂1 = ÃKT
1 C−1

δ yδ − ÃBC−1KT
2 C−1

δ yδ = Ã
(
KT

1 − BC−1KT
2

)
C−1

δ yδ.

By straightforward calculation we obtain

Ã
(
KT

1 − BC−1KT
2

)
C−1

δ

=
(
A − BC−1BT

)−1 (
KT

1 − BC−1KT
2

)
C−1

δ

=
{
KT

1 C− 1
2

δ

[
Im − C− 1

2
δ K2

(
KT

2 C−1
δ K2 + C−1

x2

)−1
KT

2 C− 1
2

δ

]
C− 1

2
δ K1

+C−1
x1

}
KT

1 C− 1
2

δ

[
Im − C− 1

2
δ K2

(
KT

2 C−1
δ K2 + C−1

x2

)−1
KT

2 C− 1
2

δ

]
C− 1

2
δ

and

Im − C− 1
2

δ K2

(
KT

2 C−1
δ K2 + C−1

x2

)−1
KT

2 C− 1
2

δ = C
1
2
δ

(
Cδ + K2Cx2KT

2

)−1
C

1
2
δ ,

which then yields

x̂1 =
(
KT

1 C−1
δy

K1 + C−1
x1

)−1

KT
1 C−1

δy
yδ,

with Cδy as in (4.85). This derivation clearly shows that the solution for the full state vector
will give the same results for each of the partial state vectors as their individual solutions.
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