
Chapter 5
Work on the Mesoscopic Systems

The balance of energy in Chap. 4 has been heuristically introduced by an analogy to
mechanics. We have interpreted work to thermal environments as heat, and energy
balance took the form of the first law of thermodynamics. However, it was not clear
if the structure of energetics on the scale of fluctuations adapts truly to that of ther-
modynamics. In this chapter we will scrutinize the work done through the change
of the external parameter a. The thermodynamic relationship between work and
thermodynamic functions will be found. In other words, this chapter deals with the
“second law” of thermodynamics. The quotation mark “” is used because we always
assume the equilibrium thermodynamic character of the thermal environment.

Before the introduction of stochastic energetics, even the balance of energy on
the level of Langevin equation has not been truly realized and used in the studies
of fluctuation phenomena. But what is more surprising would be that the Langevin
equation can realize the reversible, or quasistatic, processes. From the microscopic
viewpoint, the Markov approximation breaks the time-reversal symmetry of (pure)
mechanical systems. From the standpoint of the system, however, the thermal envi-
ronment does not cause by itself irreversibility. The work done is equal to the change
of the Helmholtz free energy of the system in the limit of slow variation of the
control parameter. This convergence occurs for each realization of the stochastic
process.

The difference with macroscopic thermodynamics is the absence of the fourth
law. We do not use the extensive property with respect to the system size. For the
fluctuating system we should think over what is the external system and what is the
external parameters.

Once quasistatic process is understood, we should study the processes with finite
but slow change of control parameters. Such processes have their own importance
because (i) the irreversible work (dissipation) and the slowness of the control obeys
a complementarity relation and (ii) the relation between the external system and the
system exhibits a parallelism with the relation between the system and the thermal
environment.

When the external parameter is changed at a finite rate, the irreversible work is
a random variable, and its average is shown to be nonnegative. The demonstration
uses the Jarzynski nonequilibrium work relation (for continuous case) or the fluctu-
ation theorem (for discrete case).
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5.1 * Work Done by External System

What does the parameter “a” stands for?

In case that the potential energy function, U (x, a), represents a “rigid container”
(that is, U = 0 for |x | < a and U = ∞, otherwise), the parameter a is the one
that controls the position of the hard wall. If, however, U (x, a) takes the form of
U0(x)−ax , then a is the parameter to control the uniform external force field applied
to the state point, x . Thus a can represent either the position or the force, depending
on the case.1 In both cases, a is regarded to be a slow variable to characterize the
state of an external system: In case of the rigid container, a is related to the position
of the wall as a whole. In the case of the uniform field, a is related to the position of
the source of the field.

U (x, a) includes all the interaction energy between the system and the exter-
nal system. Therefore, −∂U (x, a)/∂a is the force which the system exerts on the
external system. By the same token as in Sect. 4.1.1.2, the external system exerts
the reaction force, ∂U (x, a)/∂a, onto the system. The expression (4.6), that is,
d ′W ≡ ∂U

∂a ◦ da is the product of this force with the “displacement,” da. It is natu-
rally understood to be the work to the system.

Where is the boundary between the system and the external system?

We do not describe the dynamics of the external system. It implies the hypothesis
that the external system is not influenced by the system’s state and its dynamics.

In reality, however, it is very difficult to impose a fixed position of a rigid wall:
first of all, there does not exist microscopically rigid container, and the container is
also subject to thermal fluctuations. In order to take into account the fluctuation of
the wall surface, one may regard the materials composing the wall surface as a part
of a new enlarged system. Then the question is where we separate the system and
the external system and how we define a (see Sects. 5.2.3.3 below). To the author’s
knowledge, no systematic argument is developed about the condition of the external
control parameter.

We deal with the cases where x represents a very few, typically a single degree of
freedom. We assume that stable control parameter(s) a can be found. Such simplifi-
cations allow us to concentrate on the principal things. We must, however, remember
all the above mentioned ambiguities when we consider a modeling of experimental
setups.

What enables the comparison between different equilibrium states?

If the parameter a is fixed, the system visits its different states so that the cumulated
residence time distribution approaches asymptotically the canonical equilibrium dis-

1 Microscopically, the interaction with the rigid wall is also due to the force field by the wall onto
the system’s variable.
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tribution at a given temperature T and at the fixed value of a. For this system, those
equilibrium states specified by other values of a have not particular meaning.2 It is
the external system and its controllability against the system that define the process
from one equilibrium to the other one. It is the force ∂U/∂a that tells which equi-
librium state is preferred by the system among the candidates parameterized by a.

Remarks

(1) We have excluded direct interactions between the external system and the ther-
mal environment.

Therefore, in ∂U/∂a the potential energy U can always be replaced by the
total energy U tot of the system plus environments. When we apply the frame-
work to an experimental setup, the above point should be verified. For example,
if we apply an electric field to a protein motor, the influence of the field on the
surrounding water as thermal environment is not a priori counted in the original
formalism of stochastic energetics.

(2) Keeping the value of a constant is in general not equivalent to keeping constant
the force on the system, −∂U (x, a)/∂x .

The only exception is if U (x, a) can be written in the form of U0(x)−φ(a) x .
Otherwise, keeping ∂U (x, a)/∂x constant needs the adaptation of a(t). Such a
feedback control from x̂(t) to a(t) introduces a correlation between the protocol
of a(t) and the particular realization.3

(3) Force, ∂U (x, a)/∂a, depends on the resolution of a.
For example, if we added small “details” u(a) = ε sin( a

ε
) to U (x, a), the

resulting force would be changed by cos( a
ε
).4

5.2 Work Under Infinitely Slow Variation of Parameters

5.2.1 The Quasistatic Work of a Single Trajectory Leads
to a Pertinent Free Energy and Is, Therefore, Reversible

5.2.1.1 * Simple Example

Let us consider a Brownian particle trapped by a harmonic potential, U (x, a) =
a x2/2, see Fig. 5.1 (left). The external system controls the “spring” constant, a. For
example, a laser tweezer can trap a Brownian particle, and its light intensity can be
controlled, see Fig. 5.1 (right). Neglecting the inertia effect, the Langevin equation
for the Brownian particle is written as follows:

2 The system does not know what boundary conditions are variable and what others are not.
3 cf. the nanomachine to absorb the heat (Sects. 4.2.1.2).
4 cf. the coarse graining about x , Sects. 1.3.2.2.



178 5 Work on the Mesoscopic Systems

ai af

γ

T T

Fig. 5.1 (Left) Brownian particle (thick dot) in thermal environment (temperature T ) is trapped in a
harmonic potential (thick curves). The external system changes the profile of this potential. (Right)
Trapping of Brownian particle under laser tweezer. The focusing controls the profile of trapping
potential

− ∂U (x, a)

∂x
+
[
−γ dx

dt
+ ξ (t)

]
= 0, (5.1)

where ξ (t) is the Gaussian white random noise with zero mean and 〈ξ (t)ξ (t ′)〉 =
2γ kBT δ(t − t ′).

We will calculate the work done to change a from ai to af taking very long oper-
ation time, τop. A similar model has been considered in Sects. 4.2.1.2. But here
we do without the ensemble averages over realizations. The work W to change the
parameter a(t) from ai to af is

W =
∫ a(τop)=af

a(0)=ai

∂U (x(t), a)

∂a
da(t) = 1

2

∫ a(τop)=af

a(0)=ai

x(t)2 da(t). (5.2)

In the above, the value of W is evaluated with a particular realization of x(t) obeying
the Langevin equation (5.1). Therefore, W is a random variable. We will see that,
in the limit of τop → ∞, the random variable W converges to a single value which
depends only on ai and af, not the protocol of a(t).

We formulate the limit of slow process as in Sects. 1.3.3.2. That is, first we define
a protocol ã(s) that takes unit time, i.e., ã(0) = ai and ã(1) = af. And then we
“expand” this protocol to the time τop by a(t) ≡ ã( t

τop
).5 Using this representation

of the protocol, the last integral of (5.2) is then written as

W = 1

2

∫ 1

0
x(τop s)2 dã(s)

ds
ds

=
∫ s=1

s=0

1

ã(s)

dã(s)

ds
ds × 1

τop ds

ã(s) x(τop s)2

2
d(τops). (5.3)

We interpret the second line on the right-hand side as follows: if τop is large
enough, we can imbed a very long history of x(t) in the small element ds for
which ã(s) scarcely changes. More precisely, we compare τop with the characteristic

5 ã(s) must be a continuous function of s.
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timescale of (5.1), i.e., γ /min(a). If τopds is much larger than this timescale, i.e.,
N ≡ τopds/(γ /min(a))  1, then x(τop s) in the integrand experiences large num-
ber (∼ N ) of uncorrelated, or i.i.d., fluctuations. Then the underlined part of the
integral in (5.3) is the longtime average of ax(t)2/2 with a being virtually fixed.6

By the footnote below (1.105), this temporal average converges to its canonical
average, kBT /2. Therefore, we have

W → kBT

2

∫ s=1

s=0

dã(s)

ã(s)
= kBT ln

√
af

ai
(τop →∞). (5.4)

For finite N , the typical error is estimated to be ∼ N−1/2 by the central limit theo-
rem (see Sects. 1.1.2.3).7 The result (5.4) is instructive for two reasons:

1. The result is definite. Although x(t) varies temporally and differs from one real-
ization to another, the work W takes asymptotically the same value.

2. The result corresponds to the statistical mechanical result. In the Gibbs’ statisti-
cal mechanics, the Helmholtz free energy F(a, β) (β ≡ 1/kBT ) of the present
system is

F(a, β) = −kBT ln
1√
a
+ (terms independent of a). (5.5)

The work W obtained above is equal to the difference of this free energy,
F(af, β) − F(ai, β). This correspondence is what we expect for any quasistatic
thermodynamic process.

Gibbs statistical mechanics considers the ensemble of realizations. Any results
from that framework is, therefore, the statistical average over the ensemble. The
approach of the Fokker–Planck equation also yields results about the ensemble of
realizations. The above analysis, however, dealt with only a single realization. For
N → ∞ the convergence is of probability 1 due to the property of self-averaging
for slow process. In this sense, the thermodynamic structure appeared due to the
(strong) law of large numbers (of realizations).8

5.2.1.2 * General Theory

When a system is in contact with a single thermal environment of temperature T ,
the work W done by the external system on the system is given by

6 (τopds)−1 A(s, τops) d(τops) is approximated by (τopds)−1
∫ τops+τopds
τops A(s, T ) dT, and the last

expression is then approximated by the “long” time average about T . This approach is called the
method of multiple scale. See, for example, Chap. 6 of [1].
7 This argument owes to C. Jarzynski in the context of his analysis of ergodic adiabatic invariant
[2, 3].
8 Y. Oono, private communication.
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W =
∫ a(τop)=af

a(0)=ai

∂U (x, a)

∂a

∣∣∣∣
(x,a)=(x(t),a(t))

da(t). (5.6)

We will show that, in the limit of slow variation of the operation (τop → ∞), the
work W converges to the difference of the Helmholtz free energy, ΔF , defined by

ΔF ≡ F(af, β) − F(ai, β), e−βF(a,β) ≡
∫

e−βU (X,a)d X. (5.7)

Derivation : In Sects. 1.3.3.2 we have demonstrated that for the integral

Î ≡
∫ a(τop)=af

a(0)=ai

Φ(x̂(t), a(t))da(t) (5.8)

converges to the following integral over the parameter a in the limit of slow variation
of a(t):

Î →
∫ af

ai

〈Φ(·, a)〉eq da (τop →∞), (5.9)

where 〈Φ(·, a)〉eq is defined in (1.109), that is, 〈Φ(·, a)〉eq ≡ ∫
Φ(X, a)Peq

(X, a; T )d X, and Peq(X, a; T ) is the canonical probability distribution at kBT =
β−1 with a given value of a

Peq(X, a; T ) ≡ e−βU (X,a)
∫

e−βU (X ′,a)d X ′ . (5.10)

We show next that the limit in (5.9) is unique, independent of the protocol ã(s)
between ai and af. Applying the above general formula to Φ(X, a) = ∂U (x, a)/∂a,
we have 〈∂U (x, a)/∂a〉eq in the integrand. This can be rewritten by using the so-
called Ehrenfest formula:9

〈
∂U (x, a)

∂a

〉

eq

≡
∫

∂U (x, a)

∂a
Peq(X, a; T ) d X = ∂F(a, β)

∂a
. (5.11)

By integrating the rightmost of (5.11) with respect to a, we have ΔF .(End.)
In summary, we have shown that the following relation is valid for any individual
realization:

W → ΔF (τop →∞). (5.12)

9 We can verify (5.11) by differentiating the normalization condition of the canonical distribution,∫
eβ(F(a,β)−U (X,a))d X = 1 ⇒ ∫

∂
∂a eβ(F(a,β)−U (X,a))d X = 0.
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5.2.1.3 Discrete Case

The work W due to the change of parameter a(t) on this level of description has
been given:10

W =
∫ τop

0

〈 ∣∣∣∣
dE(a(t))

dt

∣∣∣∣ψt

〉
dt =

∫ a(τop)=af

a(0)=ai

〈 ∣∣∣∣
dE(a(t))

da

∣∣∣∣ψt

〉
da(t). (5.13)

In the limit of slow variation of a(t), we can replace the integrand in the rightmost
of (5.13) by the canonical average, 〈dE(a)/da〉eq, thus

W →
∫ af

ai

〈
dE(a)

da

〉

eq

da (τop →∞). (5.14)

For 〈dE(a)/da〉eq we use the Ehrenfest formula, 〈dE(a)/da〉eq = ∂F(a, β)/∂a.11

In summary, we have the formula for any individual realization:

W −ΔF =
∫ a(τop)=af

a(0)=ai

[〈 ∣∣∣∣
dE(a(t))

da

∣∣∣∣ψt

〉
−
〈

dE(a)

da

〉

eq

∣∣∣∣∣
a=a(t)

]
da(t)

→ 0 (τop →∞). (5.15)

5.2.1.4 Quasistatic Process of Open System

We can immediately apply the result (5.12) to the entire system including the system
and the “environment,” Ω ∪Ωc. Using the expression of the work d ′W , (4.69), we
have

W → ΔFtot (τop →∞), (5.16)

where Ftot is the Helmholtz free energy of the entire system, defined by 12

e−Ftot/kBT = 1

Ntot!

∫
e−Etot/kBT d Ntotx, (5.17)

where Ntot is the number of particles in the entire system, and the integral runs over
the entire system for each particle.

10 See Sects. 3.3.1.3 and 4.1.2.6. We wrote W instead of Δ′W for the consistency of notations
between (5.12) above and (5.15) below.
11 We use

∑
j eβ(F(a,β)−E j (a)) = 1 ⇒ ∑

j
∂
∂a eβ(F(a,β)−E j (a)) = 0.

12 For the facility of calculation we put the factor (Ntot!)−1 and render Ftot extensive. See below.
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T

Ωc Ωc’

Ω

Ωc’’

Fig. 5.2 An open system Ω and several “environments,” Ωc, Ωc′, and Ωc′′

We need to relate ΔFtot to the thermodynamical quantity of open system. For this
purpose we take the volume of the “environment,” ‖Ωc‖, to infinity in Ftot, while
keeping only the part which is relevant to the open system. See in Fig. 5.2. The
result is

lim
‖Ωc‖→∞

ΔFtot = ΔJ. (5.18)

Derivation: First we identify the volume specific free energy f c(T, μ) by

f c(T, μ) = lim
‖Ωc‖→∞

Ftot

‖Ωc‖ .

Then we define J by subtracting from Ftot the (asymptotic) free energy of the envi-
ronment, ‖Ωc‖ f c(T, μ):

J (a, t, μ) ≡ lim
‖Ω∪Ωc‖→∞

[
Ftot − ‖Ωc‖ f c(T, μ)

]
. (5.19)

This J (a, T, μ) is the thermodynamic potential for the open system Ω

(see Sect. 2.1.4). J (a, T, μ) represents the particle environment only through the
temperature T and the chemical potential of the particle in the environment, μ
(or the density of the particles in Ωc). Since f c(T, μ) characterizing the particle
environment should not depend on the external parameter a, we arrive at the result
(5.18). (End.)

In conclusion, the quasistatic work done on the open system for a particular real-
ization of stochastic process is given by the change of the thermodynamic potential
for the open system [4]:

W → ΔJ (τop →∞). (5.20)

In Appendix A.5.1 we recall a statistical mechanical derivation of J in (5.19)
with simplifying assumptions. The result writes

e−J/kBT =
∞∑

n=0

e−(F (n)−μn)/kBT , (5.21)
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where F (n) is the Helmholtz free energy of the open system Ω when it contains n
particles;

e−F (n)/kBT ≡ 1

n!

∫

(Ω)
e−En/kBT dn x . (5.22)

The relations (5.16) and (5.18) are the key steps through which the chemical
potential (in J ) enters the energetics based on the Langevin equation.

5.2.1.5 Remark: Gibbs’ Paradox and Extensivity

At the end of Sects. 3.3.2.4, we noticed that the combinatorial factor NA!, etc., in
the formula (3.53) appeared independently from the particle–wave duality of the
quantum physics. This factor came simply from the fact that we do not distinguish
any A molecule from other A molecules. In fact these combinatorial factors are
independent of whether or not the molecules consist of isotope forms or have inter-
nal parameters of long memory as far as the molecular reaction A + B � AB is
not influenced by this variability. Also in (5.22) above, the factor n! came out from
purely combinatorial reason, not of quantum mechanics.

The so-called Gibbs’ paradox is related to this combinatorial factor. This paradox
says that

(i) In order for the thermodynamic functions to be extensive, we need to divide
the phase integrals like (5.22) by the combinatorial factor corresponding to the
permutation of identical particles.

(ii) Since this operation is not explained by classical mechanics, the factor is
ascribed to the particle–wave duality of quantum mechanics.13

The resolution of the paradox is that

(i) In the study of the thermodynamic processes in the classical regime, increas-
ing all the materials by, for example, twice is not a thermodynamic process. It
contradicts the conservation of mass–energy. Therefore, the absolute value of
the thermodynamic functions are not observable, and its extensivity is merely
a convenient choice. However, the extensivity is imposed on the differences of
the thermodynamic observables.

(ii) In quantum mechanics, the individuality of identical particles is lost upon col-
lision due to the particle–wave duality. But also in classical mechanics, the
individuality is lost when we describe the chemical reactions or the processes
of open systems in terms of the number of each molecular species.

Thus the factor of n! in (5.22) appeared without evoking quantum mechanics.

13 The duality asserts that the permutations among identical particles do not make new quantum
states.
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5.2.2 The Criterion of the Quasistatic Process Refers to the Force
on the External System

We define quasistatic process by the limiting process that realizes the convergence
of (5.12) or (5.15). In such processes, the work W does not depend on the protocol
defined by ã(s) (0 < s < 1), whatever is the number of components of a.14

A quasistatic process is reversible or retractable in the sense that the process
that retraces the same pathway in the parameter space costs no work. The work ΔF
to go is exactly compensated by the work (−ΔF) to return.

If the control process makes a closed loop and returns to the initial point, i.e.,
those ã(s) satisfying ã(0) = ã(1), the quasistatic work is 0.15 Whether or not such
a process leaves any change after closure of the trajectory is a subtle question.
We will discuss it later (5.2.3.4). That the Langevin equation derived by using the
Markov approximation can realize the reversible process emphasizes the importance
of being conscious about the scale of description.

In macroscopic thermodynamics, the quasistatic process is characterized such
that “at each instant of time the system realizes the equilibrium state under a given
constraints.” However, the equilibrium state is defined as “the state which is realized
in the system after infinitely long time under a given constraints.” These two state-
ments are incompatible unless we define the limiting procedures unambiguously.
But macroscopic thermodynamics does not describe the temporal changes.

On the level of Langevin equation, one could consider the closeness to the
quasistatic process by comparing the probability density P(X, a(t), t) obtained
through the Fokker–Planck equation with the canonical equilibrium distribution,
Peq(X, a; T ), by using a suitable measure such as the Kullback–Leibler distance,
D(P||Peq) (see (1.81)). However, the general theory in the previous section gives
natural and operational criterion of the quasistatic process: We note that the differ-
ence W −ΔF in the continuous process is

W −ΔF =
∫ a(τop)=af

a(0)=ai

[
∂U (x(t), a)

∂a

∣∣∣∣
a=a(t)

−
〈
∂U (x, a)

∂a

〉

eq

]
da(t). (5.23)

Thus we measure the approach to the quasistatic process by the effect of the replace-
ment of force by its instantaneous equilibrium expectation value in the integral
(5.23). That is

∂U (x(t), a)

∂a

∣∣∣∣
a=a(t)

�
〈
∂U (x, a)

∂a

〉

eq

∣∣∣∣∣
a=a(t)

(5.24)

14 By “protocol” we distinguish, for example, ã(s) from ã(s2).
15 Precisely speaking, F and the parameter space should be such that the closed loop can be con-
tinuously shrunken to a point passing only the quasistatic processes.
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or

〈 ∣∣∣∣
dE(a)

da

∣∣∣∣ψt

〉∣∣∣∣
a=a(t)

�
〈

dE(a)

da

〉

eq

∣∣∣∣∣
a=a(t)

, (5.25)

in the integral by a(t). This is a much more specific criterion than the comparison

of the probability densities. The quantity ∂U (x(t),a)
∂a

∣∣∣
a=a(t)

−
〈
∂U (x,a)

∂a

〉

eq

∣∣∣∣
a=a(t)

will

appear again in the context of asymptotic estimation of the “error,” W − ΔF for
the nonquasistatic process (Sects. 5.3.1).

5.2.3 Quasistatic Work Reflects Some Aspects of the System’s State,
but Not All

5.2.3.1 Simple Case 1: Deformation of an Ideal Chain

In the aforementioned example (Sects. 4.1.2.3 esp. Fig. 4.3), we can calculate the
quasistatic work to stretch the chain. The Helmholtz free energy of the ideal chain is
F(a, β) = −kBT log Z (a), where Z (a) is proportional to the number of configura-
tions of the chains having the end-to-end distance a. Therefore, the work to displace
the end point a from ai to af is

W = ΔF = kBT log
Z (ai)

Z (af)
(quasistatic).

As Z (a) is decreasing function of |a| (i.e., the chain is less flexible for large |a|), the
external system does a positive work W to stretch the chain. According to the law of
energy balance, d E = d ′W + d ′Q, this work is immediately released to the thermal
environment (−d ′Q = d ′W ), because the energy of the ideal chain is constant.

5.2.3.2 Simple Case 2: Van der Waals Forces

When two molecules are placed at the distance r , the induced and/or permanent
dipoles of these molecules undergo thermal and quantum fluctuations. Because of
long-range electrostatic interactions the fluctuations of the two molecules are corre-
lated and, therefore, depend on the distance r . Interaction is attractive and its free
energy FV dW (r, β) (β = 1/kBT ) writes F(r, β) ∼ −c(T )r−6 at (moderately) large
distance, where c(T ) is a function of temperature and other molecular parameters.

On the level of description of fluctuations, the interaction force between the
molecules fluctuates in time. The free energy F(r, β) is measured by the time-
averaged force on the external system. If we change the distance r from ri to rf

quasistatically in a particular realization, the work needed W is
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W = c(T )

[
1

ri
6
− 1

rf
6

]
(quasistatic).

5.2.3.3 Single Molecule Ideal Gas

We will consider a single (Newtonian) particle confined in a 1D cylinder and piston
at temperature T . A naive question is whether the equation of state of the ideal gas,
PV = kBT , with N = 1 molecule between the pressure P and the 1D volume V
holds. But the primary question is how we can set the problem up and how we can
define the pressure and volume.
System: Let us consider a model schematized in Fig. 5.3. The molecule (filled disc)
moves ballistically and collides elastically with the walls of the cylinder and pis-
ton (the T-shaped tip) and otherwise moves ballistically. The position x and the
momentum p of the molecule obeys the following Newton equation:

dx

dt
= p

m
,

dp

dt
= −∂Upis

∂x
− ∂UT

∂x
, (5.26)

where m is the mass of the molecule, and Upis(x, xpis) stands for the interaction
energy between the molecule and the piston tip. xpis is the position of the piston tip.
We will define UT(x, xT) below.
System–thermal environment interface: We introduce a thermal wall (left vertical
wall of the chamber). This is mechanically coupled to the thermal environment. We
assume the overdamped Langevin equation for the position xT of the thermal wall:

0 = −γ dxT

dt
+ ξT(t) − ∂UT

∂xT
, (5.27)

where ξT(t) is the white Gaussian random noise with zero mean and 〈ξT(t)ξT(t ′)〉 =
2γ kBT δ(t − t ′). UT = UT(x, xT) represents the interaction energy between the

XT XpisX

a

Bath

Fig. 5.3 Schematic setup of piston and cylinder system for a single particle. The particle (thick dot:
position x) is confined within a volume (central rectangle) enclosed by (1) a thermal wall (left ver-
tical wall: position xT) which is linked to the thermal environment (shaded rectangle “bath”) and
is supported by a fixed point (spring to the left of the thermal wall), (2) cylinder walls (upper and
lower horizontal walls), and (3) “piston tip” (right vertical wall: position xpis), which is connected
to the controlled point (open circle: position a) through a coupling potential (spring between xpis

and a)
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molecule and the thermal wall as well as the supporting potential energy of the
thermal wall.
System–external system interface: We assume that the piston is just a microscopic
tip. This tip is connected through a spring to the macroscopic apparatus (the right-
most open circle at a). The position xpis and momentum ppis of the piston tip obey
the Newton equation:

dxpis

dt
= ppis

mpis
,

dppis

dt
= −∂Upis

∂xpis
− ∂Uel

∂xpis
, (5.28)

where mpis is the mass of the piston tip. Uel = Uel(xpis, a) is the internal energy of
the piston and depends only on xpis − a.The energies, UT(x, xT) and Upis(x, xpis),
are expected to behave like sharp repulsive walls, blowing up as x − xT or xpis − x
decrease to 0, respectively.
Balance of energy and quasistatic work: The balance of energy is found to be

d

(
p2

2m
+ p2

pis

2mpis
+UT +Upis +Uel

)
= d ′Q + d ′W, (5.29)

where

d ′Q ≡
(
−γ dxT

dt
+ ξT(t)

)
◦ dxT , d ′W ≡ ∂Uel

∂a
da. (5.30)

According to the general theory of Sects. 5.2.1.2, the quasistatic work for the dis-
placement of the macroscopic apparatus a is the change of the Helmholtz free
energy, F(a, β), where

e−βF(a,β) = C(β)
∫

e−β[UT(x,xT)+Upis(x,xpis)+Uel(xpis,a)]dx dxTdxpis. (5.31)

Here C(β) is a factor independent of the external parameter, a.
Thermodynamic pressure: On the other hand, we can define pressure by an analogy
to macroscopic thermodynamics:

dW ≡ −P(a, β) da (quasistatic process). (5.32)

The pressure P thus defined is the time-averaged force that the macroscopic appara-
tus receives at a. Using the law W = ΔF for the quasistatic process, we can identify
this pressure P with the thermodynamic pressure:

P = −∂F(a, β)

∂a
. (5.33)
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Fig. 5.4 Force apparatus
(position a) binds the protein
motor head through a needle
(position xndl). The motor
interacts with filament
(position xint)

xint

xndl

a

Volume: It is not evident how a can be related to the “volume” of the chamber.
Unless the repulsive walls in UT(x, xT) and Upis(x, xpis) are infinitely steep (i.e.,
the rigid wall), the volume cannot be unambiguously defined. The ambiguity due
to the finite gradient of the potential energies, ∂UT/∂x and ∂Upis/∂x , is important
when the system’s spatial extent, xpis − xT, is small. a − 〈xpis〉 depends on a as well
as temperature. Therefore, we cannot identify da with d〈xpis〉. That is, we cannot
replace dW = Pda by “dW = Pd〈xpis〉.”

In summary, controlling displacement and controlling force for small systems are
not equivalent. In statistical mechanics, the saddle-point method or Darwin–Fowler
method assured that these two are equivalent. (See a related discussion in [5].)

Figure 5.3 was a toy model. But a somehow similar setup is used to measure the
interaction between a single head of myosin (protein motor) and an actin filament,
see Fig. 5.4. The motor–filament interaction occurs at xint while the AFM apparatus
controls the position a. The motor head is bound to the latter by a needle at xndl. If
the position of xndl is optically measured, the result reflects both the motor–filament
interaction and the thermal fluctuations of the motor and of the needle. An optical
technique has been developed to suppress the thermal fluctuation of measuring
devices (down to 5K!) [6]. The energetics of the feed-back-controlled system is
discussed in [7].

5.2.3.4 Work-Free Transport of Heat and Particles

Suppose that the control parameter a has more than one component and that it is
changed along a closed loop, â(0) = â(1).16 If the process is quasistatic, the work
is 0. But the system’s state can undergo a nontrivial change [8].

We consider the cyclic change of potential energy profile, U (x, â), as shown in
Fig. 5.5. We will regard the state point x(t) as the position of a Brownian particle
under the potential energy U . We impose a periodic boundary condition, i.e., the
rightmost end (R) is continued to the leftmost end (L). Or, we assume that the system
is open toward the reservoirs of particles in (L) and (R). In any case this quasistatic
cycle transports particles from the left (L) to the right one (R) on the average. The
calculus is given in Appendix A.5.2.

This transport without costing work indicates subtlety of the quasistatic process:

16 We use the scaled protocol ã(s) introduced in Sects. 5.2.2.
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(L) (R)

(L) (R)

(L) (R)

(R)(L)

Fig. 5.5 Profile of potential U (x, a) vs. x between the left-particle environment (L) to the right
one (R). Thick arrow indicates the progress of the potential profile. (Figure adapted from Fig. 2 of
[8])

(i) Even in the quasistatic process, we cannot always approximate P(x, t) of the
Fokker–Planck equation by the equilibrium density, Peq(x, a; T ). If we did it,
the probability flux J [P] ≡ − 1

γ

[
∂U
∂x P + kBT ∂P

∂x

]
is always 0, and we would

not have transport. 17

(ii) In the quasistatic limit, work has a potential function, i.e., the free energy
F(a, β). However, the probability flux J is not necessary the gradient of a
potential function.

Remarks:

1. It is essential that the potential profile undergoes a cyclic change. If the profile
change is a simple go-and-back along the same pathway, there is no net transport.
The left–right asymmetry of the potential profile is a necessary but not sufficient
condition.

2. Experimental demonstrations of such work-free transport must face the fluctu-
ating part of the transport: in taking the quasistatic limit, the fluctuation in the
number of transported particles per cycle will diverge as

√
tcyc with the time

spent for a cycle, tcyc. The prefactor of
√

tcyc can be decreased by raising the
energy scales of the potential U . However, it then makes the condition for the
quasistatic process more and more stringent, or it requires larger cycle time, tcyc.

More discussion will be given in Chap. 7.
3. The work-free quasistatic transport can be realized also in conventional thermo-

dynamics by, for example, using the (macroscopic) Carnot cycle. In the formula
of the reversible efficiency, ηrev = (Th−Tl)/Th (see Sect. 2.3.3), the case Th = Tl

17 This is general remark when we use linear nonequilibrium thermodynamics. The flux of energy
or mass is caused by their small spatial gradients across the local regions in which the equilibrium
is assumed.
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assures the transport of heat between the two thermal environments of identical
temperature without work ηrev = 0.

4. The work-free transport discussed above does not contradict the second law of
thermodynamics: the heat or particles transported between the environments of
the same temperature or chemical potential cannot be the source of later work.

5.3 Work Under Very Slow Variation of Parameters

We will analyze the processes taking a finite time τop from a(0) = ai to a(τop) = af.
The quantity of interest is the difference between the work W and the increment of
the Helmholtz free energy, ΔF . We call this difference the irreversible work,

Wirr ≡ W −ΔF. (5.34)

See Fig. 5.6. For continuous process described by Langevin equation, it is written
as (see (5.12))

Wirr =
∫ af

ai

[
∂U (x(t), a(t))

∂a
−
〈
∂U (x, a(t))

∂a

〉

eq

]
da(t). (5.35)

For finite τop, the irreversible work Wirr is a random variable, whose value varies
from one realization to the other. In this section and next section we deal with the
average of Wirr over the ensemble of paths, 〈Wirr〉.

5.3.1 The Average Irreversible Work and the Time Spent
for the Work are Complementary

When the interval τop to change the parameter a(t) is large, a general law of 〈Wirr〉
is [9]

(1) The product, 〈Wirr〉 τop, is bounded below for τop →∞.

(2) This lower bound, which we denote by S(ai, af), is positive for ai �= af.

That is,

0 ai af
a

cumulated
work

Fig. 5.6 Cumulated work (solid curves) along the change of parameter, ai → af → ai. The
difference from the quasistatic work (dashed curves) gives the irreversible work, Wirr
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〈Wirr〉 τop ≥ S(ai, af) (τop →∞). (5.36)

5.3.1.1 Origin of the Complementarity Relation

The above result comes out from the following expression of 〈Wirr〉. The details of
calculation is given in Appendix. A.5.3.

〈Wirr〉 =
∫ τop

0

da

dt
Λ(a)

da

dt
dt +O((τop)−2). (5.37)

Here the symmetric matrix18 Λ(a) is defined by

Λ(a) ≡ β

〈〈[
∂U

∂a
−
〈
∂U

∂a

〉

eq

]
• (−g) •

[
∂U

∂a
−
〈
∂U

∂a

〉

eq

]〉〉

eq

, (5.38)

with 〈〈A • (−g) • A〉〉eq, defined by 19

〈〈A • (−g) • A〉〉eq ≡
∫∫

P (eq)(x)A(x)(−g(x, x ′, a))P (eq)(x ′)A(x ′) dx dx ′. (5.39)

The Green function g(x, x ′; a) is defined by

1

γ

∂

∂x
P (eq)(x)

∂

∂x
g(x, x ′; a) = δ(x − x ′). (5.40)

The integral on the right-hand side of (5.37) is always nonnegative.20

To derive the complementarity relation (5.36) we will extract τop from (5.37): we
represent a(t) in (5.37) by the rescaled protocol, ã(s) ≡ a(sτop) with 0 ≤ s ≤ 1
(see, Sects. 5.2.1.1). We then have the following asymptotic relation:

〈Wirr〉 τop =
∫ 1

0

dã

ds
Λ(a)

dã

ds
ds +O((τop)−1). (5.41)

The first term on the right-hand side is positive and a functional of the rescaled
protocol, ã(s). We can, therefore, define the lower bound of this integral as S(ai, af):

18 when a has more than one component.
19 P (eq)(x) ≡ P (eq)(x, a; T ) is the canonical equilibrium density for a given parameter a.
20 The operator on the left-hand side of (5.40) is self-adjoint and, therefore, has real spectra. This
operator is of the form of diffusion operator with an inhomogeneous diffusion constant, D(x) =
1
γ

P (eq)(x, a). Since diffusion is a purely relaxing phenomena, the spectra of the above operator
are all negative except of a single 0, corresponding to the constant eigenfunction. As the inverse
operator of this diffusion operator, the Green function g, is a symmetric function with respect to x
and x ′. Moreover, the spectra of g are the inverse of the diffusion operator and, hence, all real and
negative. From the last fact, Λ(a) is positive definite.
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S(ai, af) ≡ min
ã

[∫ 1

0

dã

ds
Λ(a)

dã

ds
ds

]
, (5.42)

where the minimum is sought for with all the continuous rescaled protocols ã(s)
under the conditions, ã(0) = ai and ã(1) = af. Since S(ai, af) does not depend on
the protocol between these end points, this is what we should have in (5.36).

5.3.1.2 Implication of the Complementarity Relation

1. An interpretation of the complementarity relation (5.36) is that the loss in the
work becomes large if the operation is done in haste (i.e., with small τop). The
total loss is proportional to the average rate of the change of the parameter.

2. Another interpretation is to regard 〈Wirr〉 ≡ 〈W 〉 − ΔF as an error of the mea-
surement of the thermodynamic information, ΔF .21 Then (5.36) is reminiscent
of the complementarity relations of quantum mechanics between the energy and
the time, ΔEΔt ≥ �/2. Unlike the quantum mechanical principle of uncertainty,
the “Planck constant” S(ai, af) depends on the system and the temperature. In
particular, S(ai, af) depends linearly on γ through the Green function, g.

3. The formula (5.38) expresses Λ(a) in terms of the correlation function of the
“deviative force,” ∂U

∂a −
〈
∂U
∂a

〉
eq
. In the next section we will see that Λ(a) plays the

role of (linear) friction coefficient relating the rate of change of the parameter,
da/dt , to its conjugate frictional force.

4. What type of the protocol a(t) realizes the lower bound of the complementarity
relation (5.36)? Given a total time τop, the expression (5.41) implies that we
should avoid the route of a along which the friction coefficient Λ(a) is large.22

If we cannot avoid such region, e.g., when a has only one component, we should
spend more time in that region than elsewhere.

5.3.2 * For the External System the Weak Irreversible Work
is Ascribed to a (Macro) Frictional Force

From the standpoint of the external system (“Ext”), the quasistatic work W is appar-
ently stored in the system as the increment of the potential energy, ΔF (Sect. 2.2).
There is a parallelism: the external system “Ext” does not see the degrees of freedom
of the system on the one hand, and the system (“Sys”) does not see those degrees of
freedom in the thermal environment on the other hand.23

21 cf. The standard deviation of Wirr decreases with τop as O((τop)−1/2). See Sects. 5.2.1.1.
22 If Λ(a) has anisotropy, the orientation of the route as well as its location should be optimized.
23 Below is an example of how the world looks differently from different viewpoints: study of
the fluctuations of cell motility is an “activity measurement” for biologists but “passive measure-
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The study of the irreversible work Wirr now provides a further parallelism: Λ(a)
for the “Ext” corresponds to γ (friction coefficient) for “Sys.” In fact, if we combine
the results of Sects. 5.2 and 5.3, the average work 〈W 〉 done through a slow change
of the parameter a is

〈W 〉 = ΔF +
∫ τop

0

da

dt
Λ(a)

da

dt
dt

=
∫ af

ai

da(t)

[
∂F

∂a
+Λ(a)

da

dt

]
, (5.43)

with an error of O((τop)−1). The second line of (5.43) allows the interpretation
that “Ext” applies the force, ∂F

∂a + Λ(a) da
dt , onto “Sys.” See Fig. 5.7. By the law

of action–reaction, the external system receives the potential force, − ∂F
∂a , and the

friction force, −Λ(a) da
dt . Therefore, Λ(a) is the friction constant for the parameter

a(t).
To take into account the deviation of W from 〈W 〉, we introduce a noise term

Ξ (t) such that

W =
∫ af

ai

da(t)

[
∂F

∂a
+Λ(a)

da

dt
−Ξ (t)

]
, (5.44)

where the noise term behaves as24
∫ af

ai
Ξ (t)da(t) ∼ O((τop)−1/2). We can rewrite

(5.44) as

ΔF =
∫ af

ai

[
−Λ(a)

da

dt
+Ξ (t)

]
da(t) + W, (5.45)

The last expression is similar to the law of energy balance for the Langevin equation,
d E = d ′Q + d ′W . Schematically, the parallelism is

x

U(x,a)

bath

system

a

Fig. 5.7 (Left) A system and its control by an external parameter a. (Right) The system viewed
from the external system as a black box

ment” for rheologists. Study of the response of cell against external perturbations is a “passive
measurement” for biologists and “active measurement” for rheologists.
24 cf. Footnote 21.
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“Sys” ←→ “Ext”
x ←→ a

U (x) ←→ F(a, β)+“?”
γ ←→ Λ(a)

random thermal force: ξ ←→ system noise: Ξ
time resolution ←→ τop

In the above schema, we have not considered the dynamical evolution of the param-
eter a(t). Therefore, “?” in the above is not specified. On the last row, the time
resolution of the Langevin equation should be larger than the bath’s relaxation time
on the one hand, and τop should be larger than the system’s relaxation time on the
other hand. If the “time resolution” τop is too large, there is no noise Ξ . A question
is whether there is a smooth limit from stochastic energetics to macroscopic ther-
modynamics when the size of the system goes to infinity. The parallelism across
different scales can also be found between the system and its subsystem. This issue
is addressed in the next chapter.
Note: Throughout this section we have assumed that the temperature is constant. The
process including the time-dependent temperature, T (t), has been studied in Matsuo
(1999, unpublished paper). The author showed the Clausius’ inequality,

∮
d ′Q/T ≤

0, using stochastic energetics and statistical entropy.

5.4 Work Under the Change of Parameter at Arbitrary Rates

5.4.1 Jarzynski’s Nonequilibrium Work Relation Leads
to the Nonnegativity of the Average Irreversible Work

The Jarzynski’s nonequilibrium work relation [10] is an important equation to assure
the nonnegativity of the average irreversible work, 〈Wirr〉. If a Markov process with
parameter(s) a has an equilibrium state for each value of a, and if the initial state
obeys a canonical distribution, the irreversible work, Wirr, for the process between
t0 and t satisfies

1 = 〈e−βWirr〉eq. (5.46)

First it has been demonstrated for a thermally isolated system to which work is
added mechanically. Later the relation turned out to be valid more generally. We
show a brief demonstration using a form of the Feynman–Kac formula.25 Those
who are not interested in the mathematical details may skip to Sects. 5.4.1.2.

25 The description of this section is based on [11] and the series of lectures by C. Jarzynski at
Institut Henri Poincaré (Oct. 2007).
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5.4.1.1 Jarzynski’s Nonequilibrium Work Relation

Path Probability of Markov Process and Generating Operator

Suppose there is a Markov process, whose transition rate depends on a parameter
at ≡ a(t). We denote by K (x, t |x0, t0) the conditional probability to find x̂t at x
at the time t , given that it started from x0 at the initial time, t0: K (x, t0|x0, t0) =
δ(x − x0). Formally K (x, t |x0, t0) can be written as

K (x, t |x0, t0) =
∫

(x0,t0)
P[X |x0, t0]DX, (5.47)

where P[X |x0, t0] is the probability for the path X over the time interval [t0, t], and∫
(x0,t0) . . .DX denotes the path integral with the initial condition, (x0, t0). We define

the generating operator L(at ) of K (x, t |x0, t0) through

∂K (x, t |x0, t0)

∂t
= L(at )K (x, t |x0, t0). (5.48)

Weighed Path Probability

Now we consider another Markov process whose transition probability,
G(x, t |x0, t0), is

G(x, t |x0, t0) =
∫

(x0,t0)
e
∫ t

0 wt ′dt ′ P[X |x0, t0]DX, (5.49)

where P[X |x0, t0] is always the path probability for the path X governed by L(at ).
wt can depend on x and on a. G(x, t |x0, t0) satisfies G(x, t0|x0, t0) = δ(x − x0).

From (5.49) G(x, t + dt |x ′, t) can be written as

G(x, t + dt |x ′, t) � (1 + wt dt)K (x, t + dt |x ′, t)
� (1 + wt dt)[1 + dtL(at )]δ(x − x ′). (5.50)

To go to the second line (5.48) has been used. This formula will be used later.

Feynman–Kac Formula

A simple version of Feynman and Kac tells26 that G(x, t |x0, t0) obeys

∂G

∂t
= (L(at ) + wt )G. (5.51)

That is, G(x, t |x0, t0) is generated by L(at ) + ωt .

26 In physicists’ language, the general Feynman–Kac formula gives the (Feynman’s) path integral
representation of the solution of an SDE of Itô type. In the path integral, the “action” in the expo-
nential is the sum of the kinetic part ∝ γ ẋ2 and the potential part ∝ U (x, a). To apply to the SDE
of Stratonovich type, the action should be “corrected” by ∝ ∂2U/∂x2.
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The outline of the proof is as follows. As a Markov process G(x, t + dt |x0, 0)
obeys the Chapman–Kolmogorov equation,27 i.e.,

G(x, t + dt |x0, 0) =
∫

G(x, t + dt |x ′, t)G(x ′, t |x0, 0)dx ′. (5.52)

Substituting (5.50) into (5.52) and keeping up to the order of O(dt), we have
G(x, t + dt |x0, t0) � (1 + wt dt + dtL(at ))G(x, t |x0, t0). This means (5.51).28 The
G(x, t |x0, t0) defined above is, therefore, the Green’s function of (5.51).

Evolution of e−βHt

We apply the Feynman–Kac formula to the case where a “Hamiltonian” Ht ≡
H(x, at ) satisfies L(at )e−βHt = 0 for each t . We then define wt by

wt ≡ −β ∂H(x, at )

∂at

dat

dt
. (5.53)

From wt , the work done to the system by an external system during the interval
[t0, t] is given by

βWt,t0 = −
∫ t

t0

wt ′ dt ′. (5.54)

Then e−βHt satisfies ∂
∂t e−βHt = (L(at )+wt )e−βHt . In fact ∂

∂t e−βHt = wt e−βHt is an
identity, and we can add 0 = L(at )e−βHt to each side of this equation.

e−βHt as a solution of ∂
∂t e−βHt = (L(at ) + wt )e−βHt can be expressed using the

Green’s function G(x, t |x0, t0):

e−βHt =
∫

G(x, t |x0, t0)e−βHt0 dx0. (5.55)

Jarzynski Nonequilibrium Work Relation

We divide both sides of (5.55) by e−βFt0 ≡ ∫ e−βHt0 dx0, and there substitute (5.49)
and (5.54) for G(x, t |x0, t0). The result is

27 The Chapman–Kolmogorov equation means the following. The totality of the paths from (x0, t0)
to (x, t) is given as the sum of those paths that pass through a “gate” at xg at a fixed time tg , then
summed over all xg . For the Markov process the probability weight for the paths from (x0, t0) to
(x, t) via (xg, tg) can be factorized into those weights of each segments.
28 If (5.51) is a Fokker–Planck equation, then (5.49) gives its formal explicit solution using
P[X |x0, t0]. If (5.51) is a Schrödinger equation, (5.49) again gives its formal explicit solution
in the same manner [12].
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eβFt0 e−βHt =
∫ [∫

(x0,t0)
P[X |x0, t0]e−βWt,t0DX

]
eβ(Ft0−Ht0 )dx0. (5.56)

Integration of (5.56) over x gives

e−β(Ft−Ft0 ) = 〈e−βWt,t0
〉
eq, (5.57)

where e−βFt ≡ ∫ e−βHt dx , and 〈·〉eq denotes the path average starting from the ini-
tial canonical probability density eβ(Ft0−Ht0 ) at t0. Equation (5.57) is called Jarzynski
nonequilibrium work relation. Note that L(at ) can be either the Liouville operator29

of conserved dynamical process or the Fokker–Planck operator of stochastic pro-
cess.

The result (5.59) due to Jarzynski [10] is very general since it holds for any
protocol of a(t) with any finite time τop of the process. The Jarzynski nonequilibrium
work relation can be used to measure ΔF from the protocol of a(t) at finite rate of
change:

ΔF = −kBT ln〈e−βW 〉eq. (5.58)

Here the average is taken over the paths starting from canonical equilibrium. This
relation works very well for small systems [13, 14]. With increasing number of
degrees of freedom, this method requires a lot of data for a good statistics. The
reason is that very rare events for W is dominantly important in the average because
of its exponential dependence, 〈e−βW 〉 [15].

The precision of “canonical” initial condition in the above is important: a
counterexample has been demonstrated for the “microcanonical” initial condition
[16]. We come back to the implication of this example later (see, the end of
Sect. 7.1.3).

5.4.1.2 Nonnegativity of 〈Wirr〉
We will show the nonnegativity, 〈Wirr〉 ≥ 0, in condition that the process starts with
the canonical equilibrium state with a given initial parameter, a = a(t0).

In (5.57), Ft − Ft0 is ΔF and Wt,t0 is a work of a particular realization, W . We
can, therefore, identify Wt,t0 − (Ft − Ft0 ) = W −ΔF as the irreversible work, Wirr.
Then (5.57) is

1 = 〈e−βWirr〉eq. (5.59)

We now apply Jensen’s inequality, 〈e−z〉 ≥ e−〈z〉 to (5.59), where 〈 〉 is average
over any normalized probability density of z.30 The result yields the inequality for
〈Wirr〉eq:

29 See the paragraph containing (A.10).
30 Jensen’s inequality is the relation for any concaved function, f (z), the function with f ′′(z) ≥ 0.
On the graph of f (z) vs. z, the center of mass of the points (z1, f (z1)), . . . , (zn, f (zn))
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〈Wirr〉eq ≥ 0. (5.60)

The inequality (5.60) includes the case of quasistatic process, where 〈Wirr〉eq = 0.
Recall that in Sects. 5.2.1.2 we obtained a stronger statement, Wirr = 0, for an
individual quasistatic process.

Remark. There is a different definition of the average irreversible work, which is not
directly related to the work measurement [17]. Using the probability density P(x, t),
we define the statistical entropy, S ≡ − ∫ P ln P dx , and then the quasi-free energy,
F̃ ≡ 〈U 〉 − T S, where 〈U 〉 = ∫ U Pdx . Then the following inequality is proven:

〈d ′W 〉
dt

− d F̃

dt
=
∫

γ
J [P]2

P
dx ≥ 0, (5.61)

where J [P] is the probability current of the Fokker–Planck equation. The formula
(5.61) has essentially the same content as the “H-theorem” (4.38) in Chap. 4.

5.4.2 The Fluctuation Theorem Leads to Jarzynski’s
Nonequilibrium Work Relation for Discrete Process

We consider the stochastic processes characterized by the transition rates such as
wi→ j (a) from a discrete state i to another state j , where a is an external control
parameter (see Sects. 3.3.1.4 and 3.3.1.3). We assume that for each value of a, the
transition probability admits the canonical equilibrium probability Peq

i (a) satisfying
the detailed balance condition:

Peq
i (a)wi→ j (a) = Peq

j (a)w j→i (a). (5.62)

The so-called (a version of) fluctuation theorem (FT) or Crook’s relation for the
irreversible work, Wirr, is [18, 19].

PR(−Wirr)

PR(Wirr)
= e−βWirr , (5.63)

where PR(Wirr) is the probability density for Wirr. Integration of e−Wirr PR(Wirr) gives
the average, 〈e−Wirr〉, while the integration of PR(−Wirr) gives unity. Therefore, the
Jarzynski nonequilibrium work relation for the discrete process is derived:

〈
e−βWirr

〉
eq = 1. (5.64)

Finally the nonnegativity of the average irreversible work, 〈Wirr〉eq ≥ 0, is derived.

(some can be redundant) is always found above this graph. Especially this center of mass,
( 1

n

∑n
i=1 zi ,

1
n

∑n
i=1 f (zi )), is vertically above ( 1

n

∑n
i=1 zi , f ( 1

n

∑n
i=1 zi )).
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In Appendix A.5.4 we sketch the derivation of the fluctuation theorem. Jarzynski
nonequilibrium work relation and the fluctuation theorem have emerged in the same
epoch as the emergence of stochastic energetics. In addition to those papers cited
above, we refer to the other essential papers that initiated the approach described
in this section [20–24, 18, 25]. There are preceding studies such as Bochkov and
Kuzovlev [26–29] (see a commentary by [30]) and Kawasaki and Gunton [31]31

in the 1970’s. Comprehensive textbooks on these subjects are to be written by the
original contributors. In this book we mentioned only briefly the outline of some
demonstrations.

5.5 Discussion

5.5.1 How Fast Can the External Parameter Be Changed?

In Sect. 5.4, no constraints has been put on the maximum rate of the parameter
change, da(t)/dt . There are situations where a very large value of da(t)/dt is con-
sidered.

One case is the optimal control problem. The control protocol with the least cost
can have discontinuities in a(t) at the initial and final times.32 When the inertia is
neglected, the effect of the discontinuity of a(t) on the eliminated momentum should
be carefully analyzed (cf. the Büttiker and Landauer ratchet Sects. 4.2.2.2).

The other case is the numerical discretization. When we simulate a Langevin
equation with time-dependent parameter a(t), we introduce discontinuity in a(t)
through the temporal discretization and the cutoff error of a(t). The actual protocol
a(t) includes very small but very frequent jumps. If the result of stochastic energetics
were to be sensitive to the limit of fine discretization, all the numerical calculations
and the modeling of experiments for fluctuating phenomena would be dubious. For-
tunately, in most cases the energetics is robust against this limit, though we cannot
yet define rigorously the general condition of validity.

Let us take as example a Brownian particle (position: x(t)) moving in a harmonic
potential. The center of the potential is a(t) and the “spring” constant is K . The
Langevin equation is

− γ
dx

dt
+ ξ (t) − K [x − a(t)] = 0. (5.65)

The general solution for 〈x(t)〉 of (5.65) is 〈x(t)〉 = a(t) + e−K t/γ (ai − a(t)) +
(K/γ )

∫ t
0 e−K s/γ (a(t − s) − a(t))ds. We compare the two protocols: (i) a smooth

linear protocol a(t) = ai + Vat with Va constant and (ii) stepwise protocol with the

31 S.I. Sasa brought me this link.
32 The discontinuity is related to the intrinsic nonlocal characteristic of the optimization problem.
See [32, 33]. This discontinuity modifies the minimum of the average irreversibility 〈Wirr〉. But the
effect on the complementarity relation (Sects. 5.3.1) is a higher order correction in (τop)−1.
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t t

ai ai

a(t ) a(t )

Fig. 5.8 (Left) Smooth linear protocol a(t) = ai + Vat and (Right) stepwise protocol a(t) =
ai + δa[Vat/δa]

same average rate, a(t) = ai + δa[Vat/δa], where [z] denotes the integer part of
z(≤ 0). See Fig. 5.8. Using the above solution, the average work per unit time is
(i) γ Va

2 and (ii) W̄ = Va
2(K δt/2) coth(δK t/(2γ )) with δt = δa/Va . The second

W̄ converges smoothly to the first in the limit of the fine steps δt → 0.

5.5.2 Can We Change a Parameter Slowly Enough
for the Quasistatic Process?

The answer is no. We will show in Chap. 7 that (i) there are cases where the qua-
sistatic process is intrinsically impossible and (ii) but such nonquasistatic processes
do not necessarily cause large irreversible work. The more important consequence
of these processes is that the external system loses information and controllability
of the system’s state.
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