
Chapter 3
Fluctuations in Chemical Reactions

We will survey several concepts and notions related to chemical reactions at various
scales and from various viewpoints. In the later chapters we will use them in the
energetics of the fluctuating world.

The notion of a molecule belongs to the far from equilibrium states. Chemical
reactions are then the transitions among different steady states of molecules, which
often accompany the conversion of degrees of freedom between the translational
degrees of freedom and the intramolecular ones.

In the survey of macroscopic reaction theory we limit ourselves to the case where
the reactions are described in terms of the concentrations of the chemical com-
ponents and the rate constants. Chemical equilibrium is related to the equilibrium
thermodynamics. Inversely, macroscopic open systems can be described as reaction
systems. Even within a macroscopic description of chemical reactions, the charac-
teristic scale is a useful notion. We mention as examples the buffer solutions and the
Michaelis–Menten kinetics.

At more microscopic scales chemical reactions are described in terms of the
number of molecules (i.e., integers) of each chemical species. Stochastic processes
of discrete systems are the general framework of chemical reactions on this scale.
The master equation is the most often used description of discrete stochastic pro-
cesses. The detailed balance condition is the equilibrium condition expressed by
the probabilities of discrete states and the transition rates among these states. The
discrete version of Langevin equation is an alternative and equivalent method to the
master equation. The continuous Langevin equation (Chap. 1) can be represented as
a limit of discrete processes. We take the same examples as those we have taken in
the macroscopic description: A + B � AB, the open system, and the Michaelis–
Menten kinetics. It will be useful to find the similarities and differences between the
two different scales of description.

3.1 * Background of Chemical Reactions

There are different mechanisms for chemical reactions: the transition through quan-
tum tunneling, the quantal energy injection like photo activations, the molecular
collisions induced by thermal motion or by forced molecular injection, the effect of
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intermediating substances like catalysts, thermal fluctuations causing large confor-
mational changes in a protein, to mention a few. Each of these mechanisms could be
best described on certain appropriate scales of space, time, or energy. Such appro-
priate scales may range over many orders of magnitude from one case to another.
For example, quantum chemistry deals with the order of femtoseconds (10−12s),
while the isomerization (conformational change) of protein occurs on the order
of milliseconds (10−3s). In this book we limit ourselves to either macroscopic or
mesoscopic descriptions where quantum mechanisms do not appear on the surface.
We will begin by examining the notion of a molecule.

3.1.1 “Molecule” in Chemical Reaction Is a Nonequilibrium State
with Internal Degrees of Freedom

3.1.1.1 “Molecule” as Nonequilibrium State

When one says there is a water molecule, it means there is a stable spatial aggrega-
tion of two hydrogen atoms and one oxygen atom. The notion of the macromolecule
such as a polymer chain or a protein molecule implies that the aggregation of con-
stituent atoms is maintained stably. Actually, however, no molecular state is stable
forever. What we call molecule is usually a nonequilibrium state which is at best
metastable or transiently stable. In other words, the (nonequilibrium) notion of the
molecule is meaningful only when we are interested in timescale where the molecule
maintains its identity.

The importance of the timescale is not particular to the notion of molecules:
We can discuss the equilibrium thermodynamics of the glassy material if it has an
extremely long though finite relaxation time. Even when we discuss the equilibrium
state of a monoatomic ideal gas in a container, we assume implicitly that the con-
tainer stays stable after infinitely long time when the equilibrium state of the gas
is established. In other words, we limit our discussion to the timescale when the
container remains in its nonequilibrium state. (This argument can be generalized:
The notion of atom also requires the transient stability of the atom.)

In Boltzmann statistical mechanics, the statistical entropy of a thermodynamic
state is the logarithm of the whole phase space volume which the system can visit.
When the thermodynamic state is defined, the extent of the word “whole” (phase
space) should be properly limited.1 For example, we should specify which kinds of
chemical reaction are admitted and which are not within a given timescale.

While such limitations of timescale do not cause problems usually, the excep-
tion is when the observation timescale and the relaxation timescale of the system
reverse their relative magnitudes. For example, upon raising/lowering the temper-
ature across the glass transition point of a material, or upon addition/depletion
of the catalyst of a reaction, the ratio r of these two timescales can switch from

1 See, Sect. 1.3.3.1.
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r�1 to r1 and vice versa. Such case will be discussed in detail later
(Chap. 7). In this section we assume that the containers of the chemical reaction and
the molecules are stable except through the chemical reactions which we describe
explicitly.

3.1.1.2 State of Molecules

There is a characteristic timescale of environment at which a reactant molecule
interacts critically with other reactant molecules or with the environment, through
molecular collisions. Another timescale of the molecule is related to its internal
dynamics such as vibrational and rotational motions. If the latter dynamics takes
place sufficiently rapidly as compared to the former timescale, then we can justify
the statistical description of each molecule, and it can be unambiguously represented
by its chemical formula or molecular formula (like H2O).

By contrast, if the time evolution of the internal state of a molecule is slower
than the timescale of reactive molecular interactions, we need more parameters to
characterize the internal states of the molecule. For example, the flexible polymeric
chains or proteins, the deformable tethered membrane, or the soft network of gel,
etc., require the conformational parameters other than their chemical formula to
correctly describe the chemical reactions.

3.1.1.3 Molecular Reaction Viewed from the Degrees of Freedom

“Molecular reaction” replaces a group of transiently stable aggregated states of
atoms by a new group of aggregated states. By taking the reaction, A + B → AB
as an example, we can characterize the change of molecular states in two different
ways.

Transfer of degrees of freedom: The translational degrees of freedom decrease
from six to three. The three translational degrees of freedom are compactified. The
molecule AB then possesses three internal degrees of freedom, one for vibration and
two for rotation.

Correlation among translational degrees of freedom: Among the six independent
translational degrees of freedom of monoatomic molecules, A and B, three of them
become spatially correlated in the molecule AB due to the binding potential between
the atoms. If the reaction takes place in a gas chamber or in water, this forced cor-
relation reduces the gas pressure or the osmotic pressure, respectively.

The consequences of the forced correlation or the compaction of translational
degrees of freedom are not limited to the entropic effect but there is also an ener-
getic effect: monovalent cations could make dimers if the electrostatic intradimer
repulsion is stabilized by a molecular binding force. Since the divalent cations feel
less repulsion among each other than do the monovalent cations of the same charge
density, the divalent cation dimers form a more dense counterionic cloud around an
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anion than monovalent cations do. This is a qualitative way to understand why the
overcharging around a charged colloid is more effective by multivalent counterions
than the monovalent ones [1].

The stability of molecular states is due to the high free-energy barrier (relative
to kBT ) associated with the destabilizing reactions. Since the reaction rate is mainly
governed by the exponential Boltzmann factor, the reactivity is efficiently changed
if the free-energy barrier is modified. This exponential dependence enables the near
discrete switching on/off of reactions in inorganic and organic matter. The energetic
aspect of controlling the barrier height will be discussed later (Chap. 7).

On the molecular level, the description of chemical reactions as well as open
system has to incorporate the transfer of degrees of freedom. Concomitantly the
energetics of chemical reaction and open system on the fluctuation level must take
into account the change in degrees of freedom (see Sect. 4.2.3).

3.2 Macroscopic Description

We survey below briefly the framework of the macroscopic reaction theory of dilute
solutions, using again the example of the reaction, A + B → AB. The solution is
assumed to be spatially homogeneous.

3.2.1 * Law of Mass Action Relates the Rate Constants of Reaction
to the Canonical Equilibrium Parameters

3.2.1.1 Rate Equation and Rate Constant

For dilute solutions of molecules having low molecular weight, the speed of reaction
depends only on the concentrations of the chemical components and the kinetic
parameters called the (reaction) rate constants. We will represent by [A], [B], and
[AB] the concentration of the A, B, and AB molecules, respectively. The rate of
production of the AB molecules by the (irreversible) reaction, A + B → AB, is

d[AB]

dt
= k[A][B], (3.1)

where the parameter k is the rate constant of this reaction. The macroscopic equation
for the rate of production, like (3.1), is called a rate equation. k[A][B] indicates
the frequency of the “collisions,” or encounter, between an A molecule and a B
molecule. The dimension and magnitude of k depend on the choice of the unit of
concentration, [A], etc. In physical chemistry one usually uses the molar concen-
tration, or molarity, [no. of mols of solute]/[no. of liters of solution].2 In this book,
however, we will adopt the following unit, unless stated otherwise explicitly:

2 The use of mol in the definition is reasonable in the sense that macroscopic observers cannot
count the number of solute molecules.
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[X] ≡ (no. of X molecules)

(volume in cm3 of solution)
. (3.2)

We choose this unit with a view to maintain continuity with the more microscopic
level discussions in later sections.

If we also take into account the reverse reaction, i.e., A+B � AB, we introduce
another rate constant, k ′, which has different dimensionality from that of k:

d[AB]

dt
= k[A][B] − k ′[AB]. (3.3)

The second term on the right-hand side, −k ′[AB], implies that an isolated AB
molecule has an average inverse lifetime, k ′. The law (3.3) is valid in the limit of
(i) dilute solution and (ii) near equilibrium. We will discuss a more general case of
nondilute solution in Sect. 3.3.3.

3.2.1.2 Chemical Equilibrium

A reaction system is said to be closed (with respect to the chemical reactions) if
(i) there is no exchange of molecules A, B, or AB between the system and the
outside and also (ii) there is no mechanism to change the rate constants.3 If the
above system, A + B � AB, is closed, the change of [A] and of [B] are given by4

d[A] = d[B] = −d[AB]. (3.4)

Application of the zeroth law of thermodynamics to the whole system, the closed
reaction system plus the thermal environment, implies that this isolated system
will reach the thermal equilibrium after infinitely long time. The steady state
of (3.3), i.e.,

d[AB]

dt
= d[A]

dt
= d[B]

dt
= 0 (3.5)

then gives the chemical equilibrium and satisfies

[AB]

[A][B]
= k

k ′
(equilibrium). (3.6)

This type of equilibrium condition, where the powers of concentration appear in the
denominator and numerator, is called the law of mass action. The ratio of the kinetic
parameters on the right-hand side is called the equilibrium constant, which depends
only on the thermodynamic parameters, as we will see below.

3 For example, the sedimentation of [AB] would decrease k ′.
4 We omit the dt in the denominator.
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If the reaction is not closed, for example, under the steady injection of A and B
and the removal of AB, the stationary condition, (3.5), does not give equilibrium.

3.2.1.3 Chemical Equilibrium and Macroscopic Thermodynamics

If the law of mass action characterizes a thermal equilibrium, the relation (3.6)
should be equivalent to the equilibrium condition of macroscopic thermodynam-
ics. In the latter framework, we require the minimum of the Gibbs free energy
G(T, p, NA, NB, NAB) with respect to NAB.5 This minimization yields

μA + μB = μAB. (3.7)

On the other hand, the chemical potential of the solute molecules in a dilute
solution is

μA = μ0
A + kBT ln[A], etc. (3.8)

with μ0
A being a constant. Therefore, the equilibrium condition (3.7) is

[AB]/([A][B]) = exp[−(μ0
AB − μ0

A − μ0
B)/kBT ]. Identifying this expression with

(3.6), we reach the following relation between the rate constants and the thermody-
namic parameters:

k

k ′
= exp

[
μ0

A + μ0
B − μ0

AB

kBT

]
. (3.9)

3.2.1.4 Equilibrium with a Particle Reservoir – Open System

When the reaction system, A + B � AB, allows for the exchange of the AB
molecules with its particle reservoir, the rate equations are

d[AB]

dt
= k[A][B] − k ′[AB] − kout[AB] + kin,

d[A]

dt
= −k[A][B] + k ′[AB] = d[B]

dt
. (3.10)

Here the exchange with the particle reservoir of [AB] is characterized by the two
rate constants, −kout and kin. The stationary condition, (3.5), yields the following
two independent relations as the law of mass action:6

5 Note that NA= [A]V etc., where V is the volume of the system. Under the isothermal and isobaric
condition, the second law requiresΔ(E−T S+PV ) = ΔG ≤ W = 0 for any spontaneous changes.
d NA and d NB are dependent on d NAB according to (3.4).
6 If the particle reservoir exchanges (only or also) A molecules, the equation for d[B]/dt still
assures the law of mass action. If the system exchanges all the species of molecules, the law of
mass action will no more hold.
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[A][B]

[AB]
= k ′

k
, [AB] = kin

kout
(equilibrium). (3.11)

At the equilibrium, the total Gibbs free-energy, G(T, p, NA, NB, NAB)+ Gres(T, p,
NAB,res), should be minimized under the constraints of particle conservation, d NA+
d NAB + d NAB,res = 0 and d NB + d NAB + d NAB,res = 0. This yields7

μA + μB = μAB = μAB,res, (3.12)

where μAB,res is the chemical potential of the particle environment of AB molecules.
With (3.11) we have the following relations:

k

k ′
= exp

[
μ0

A + μ0
B − μ0

AB

kBT

]
,

kin

kout
= exp

[
μAB,res − μ0

AB

kBT

]
. (3.13)

Remarks

The chemical reaction theory emphasizes the transformation of the mass, but
the energetic aspects (change of free energy, endothermic, or exothermic, etc.) are
treated separately using thermodynamics. If we use stochastic energetics, both mass
transformation and energetics are discussed on the basis of a single event of the
reaction.

The chemical potential is a quantity on the level of the description where the
particles are anonymous. The chemical potential (e.g., (3.8)) does not represent the
free energy carried by an individual molecule. μA is the energetic interpretation
of the relative probability of the arrival of anonymous molecule A, ∝ [A]eμ

0
A/kBT ,

using the form of the Boltzmann factor, eμA/kBT .

3.2.2 * Large Separation of the Rate Constants Causes Different
Regimes of Reaction and Rate-Limiting Processes

It often occurs that two or more reactions related to the same molecular species
have widely different equilibrium constants. That the equilibrium constants depend
exponentially on the chemical parameters, like μ0

A in (3.9) and (3.13), explain this.
Because of this aspect, we expect that a chemical reaction system can exhibit

qualitatively different behaviors in different regimes. The following two simple
examples demonstrate how the phenomena of different scales are treated.

7 We may use the method of Lagrange multiplier: The requirement of d[G(x, y, z) + Gres(z̃)] = 0
under the constraints, d(x + z + z̃) = 0 and d(y + z + z̃) = 0, is equivalent to the constraint-
free requirement, d[G(x, y, z) + Gres(z̃) − λx (x + z + z̃) − λy(y + z + z̃)] = 0, with λx and
λy being unknown, called the Lagrange multipliers. The parameter set, (x, y, z, z̃), stands for
(NA, NB, NAB, NAB,res). Then μA = λx, μB = λy, μAB = λx + λy, and μres = λx + λy.
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3.2.2.1 Titration and Buffer Solution

The object is to study the titration and the buffer solution of acid–base system
starting from a unified framework. The solution (1� in total) is prepared from a0

mol of acid, HA, b0 mol of a base, BOH, and pure water. The base is assumed to
be strong base, so that it 100% dissociates (BOH→B+ +OH−) into B+ (b0 mol)
and OH− (b0 mol). We study how the amount of the hydronium ion h = [H3O+]
or equivalently pH ≡ − log10 h is related to the initial amount of the base b0.
This relation results from the two mechanisms: the water dissociation equilibrium,
[H3O+][OH−] = Kw,

8 or

h (b0 + h − y) = Kw, (3.14)

and the acid dissociation equilibrium, [H3O+][A−]/[HA] = Ka, or

hy

a0 − y
= Ka, (3.15)

where y = [A−]= a0 − [HA], and Kw and Ka are the equilibrium constants of the
water and the acid, respectively, at a given temperature. Elimination of y from (3.14)
and (3.15) yields

b0 − a0 = Kw

h
− C(h, a0, Ka) h, (3.16)

where C(h, a0, Ka) = 1+ a0
Ka+h . Equation (3.16) is called the Charlot equation. If the

acid HA is also a strong acid (Ka  a0) which dissociates 100% into ions through
HA + H2 O→ H3O++ A−, then C∞ ≡ limKa→∞ C(h, a0, Ka) = 1. In this case the
solution behaves, a0 − b0 � h for h √

Kw and b0 − a0 � Kw/h for h �√
Kw,

with very narrow range of crossover, Δ|b0 − a0| ∼
√

Kw, around the equivalence
point, b0 = a0 with h = √

Kw.
If the acid HA is a weak acid (not very large Ka), but if its dissociation,

HA + H2O→ H3O+− A−, is much stronger than the dissociation of water (2H2O→
H3O++ OH−), there can arise the situation where the nondimensional parameters,
X ≡ Kw/a2

0 and Y ≡ Ka/a0 satisfy X�Y �1. Figure. 3.1 shows an example of
pH vs. b0 − a0 for a0 = 1, Kw = 10−14 and Ka = 10−5. In this case, one regime
h/Ka�1 is again the crossover between a0 − b0 � h/Y for h√

Kw Ka/a0 and
b0−a0 � Kw

h for (0<)h�√
Kw Ka/a0, across the equivalence point h=√Kw Ka/a0

(i.e., h/a0 = √
XY ). At the equivalence point, the pH is shifted toward basic

by − 1
2 log10 Y . The consistency of the assumption h/Ka � 1 is verified since

h
Ka
= { X

Y

}1/2�1 at the equivalence point.

8 In molar unit, what would be the denominator, [H2O] = 55.5, is roughly of order 1 and conven-
tionally suppressed.
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Fig. 3.1 pH vs. b0 − a0 for a0 = 1, Kw = 10−14 and pKa = 5, i.e., Ka = 10−5

The new regime, called the buffer regime, is h/Ka ≡ 10−pH+pKa ∼ 1 in (3.16).
If we assume h � a0 and Kw

h � a0 in (3.16), h/Ka is written as h
Ka

� b0−a0
b0

. It

implies that, as far as b0−a0
b0

∼ 1, the pH of the solution is kept at around pH �
pKa≡− log10 Ka. The above assumptions are consistent since h

a0
∼ Ka

a0
=Y�1 and

Kw
ha0

∼ Kw
Ka a0

= X
Y �1. The buffering regime is, therefore, realized due to the double

inequalities, X �Y �1.

3.2.2.2 Michaelis–Menten Kinetics

Michaelis–Menten kinetics is one of the fundamental reaction schemes in biochem-
istry, because it describes a catalytic (enzyme) reaction and it also applies to many
practical situations. We describe this kinetic scheme below and discuss the gener-
ality of this kinetics from the viewpoint of characteristic scales or the rate-limiting
processes.

Reaction with a Catalyst

A catalyst is a chemical substance which is not consumed in the reaction but
increases the rate constant of the reaction in both the forward and the backward
directions by the same factor. The catalyst, therefore, does not change its equilib-
rium constant defined in Sect. 3.2.1.4. In biology, catalytic proteins are called the
enzymes.



102 3 Fluctuations in Chemical Reactions

Fig. 3.2 (A) Schema of
Michaelis–Menten reaction.
(B) Rate of production v as
function of substrate
concentration, [S]. See (3.21)

Vmax

S+E
SE

S+P

(A) (B) v

[S]KM

A simple 1:1 reaction between a Substrate (S) molecule and a Product (P)
molecule catalyzed by an Enzyme (E) is E + S � E + P. When we are inter-
ested in the dependence on the enzyme concentration, [E], we do not simplify this
scheme as S � P. One of the representative schemas of enzymic reaction is the
Michaelis–Menten kinetics which has been introduced around 1913. The schema of
Michaelis–Menten kinetics is

E + S � ES → E + P. (3.17)

In this schema we assume the following circumstance, see Fig. 3.2 (A):

1. The direct reaction, S � P, is slow enough to be ignored.
2. There is a transition state called Enzyme–Substrate complex (ES).
3. The total concentration of the enzyme, [E]tot = [E] + [ES], is finite.
4. At most one substrate particle, S, can interact at any time with an enzyme particle

(protein).
5. [P] is much smaller than the equilibrium value, so that the backward reaction,

ES ← E + P, can be neglected.

These hypotheses might look very particular among many other possibilities.
Nevertheless we will argue later that the above schema (3.17) is rather general from
the viewpoint of the timescales of reaction.

Michaelis–Menten Equation

Let us denote by kcat the rate constant of the forward reaction, ES → E + P. See
Fig. 3.3 (left). We seek the rate of production,

d[P]

dt
= kcat[ES], (3.18)

when the preceding step of complex formation has reached the steady state: 9

Fig. 3.3 Michaelis–Menten
reaction (left) and its
generalized form (right). The
change X → X ′ requires the
transition I → II

−kkcat
kcatE+S ES

k+

−k X

X’

I IIE+P

k+

9 This condition is often attributed to Briggs and Haldene.
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d[ES]

dt
= k+[E][S] − (k− + kcat)[ES] = 0. (3.19)

This equation leads to the relation10

[E][S]

[ES]
= k− + kcat

k+
. (3.20)

From this equation, we eliminate [E] using [E] = [E]tot−[ES] and then we substitute
the resulting [ES] as function of [S] into (3.18). We then obtain the desired result,
which is called the Michaelis–Menten equation (See Fig. 3.2 (B)),

v ≡ kcat[ES] = Vmax[S]

KM + [S]
, (3.21)

where we have introduced the maximal production rate, Vmax, for [S] = +∞, and
the so-called Michaelis–Menten constant, KM:

Vmax ≡ kcat[E]tot, KM ≡ k− + kcat

k+
. (3.22)

When [S] = KM, we have v = 1
2 Vmax. To estimate these parameters from experi-

mental data of v and [S], the sigmoidal curve, (3.21), is often replotted as the linear
plot between v−1 and [S]−1 or between v−1[S] and [S].11

As a model of chemical reaction, the Michaelis–Menten scheme is related to
the transient state [Eyring’s] theory (see, for example, [2] Chap. 28) and also to
Kramer’s theory [3]. The latter refined the notion of the transition state as a group
of states between which the molecule diffuses. The identification of the transient
state(s) in complex reactions is among contemporary topics [4].

Generality of the Michaelis–Menten Kinetics

When many enzymatic reactions are mutually linked and form a network (e.g.,
the metabolic network), there can be several key reactions – the rate-limiting
reactions – which determines the global rate of the reactions. In order for a reaction
to be the key reaction, there must not be other important bypassing or substituting
reactions. Moreover, it is necessary that (i) the activation energy barrier of the reac-
tion is high (even in the presence of enzyme) and/or (ii) the number of enzymes
is limited and many substrate molecules are waiting for the unbound enzyme. The
substrate S for this key reaction is a product of the preceding (upstream) reaction(s),

10 Although (3.20) takes of the form of the law of mass action, the system is not in equilibrium.
The exception is when kcat � k− holds. The approximation of neglecting kcat in (3.19) is called
the rapid-equilibrium assumption.
11 The latter representation is called the Hanes–Woolf plot.
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and the product P for this key reaction is a substrate of the following (downstream)
reaction(s). Thus, if the product of the upstream reaction is supplied faster than it
is converted into P, then the substrate S stays among E + S and ES states, and the
quasi-equilibrium (rapid equilibrium), E+S � ES, is realized. Also, if the substrate
of the downstream reaction is consumed faster than it is converted from S, then the
product P has little probability to be bound to E to form ES, and the unidirectionally
reaction, ES → E+P, is realized. These two features are what constitute the schema
of Michaelis–Menten kinetics. Therefore, the Michaelis–Menten schema describes
a general feature of the key reactions. The formula (3.21) shows that the key reaction
is controlled by the total number of the enzyme, [E]tot.12

If a reaction has the substrate concentration, [S], much smaller than the KM, then
this reaction cannot be controlled by [E]tot, and the reaction is not the key reaction. If
a lot of enzyme [E]tot is injected in a key reaction, then there would be a shortage of
the substrate and the process is no more controlled by this reaction, i.e., the reaction
ceases to be the key reaction. In brief, the Michaelis–Menten kinetics works when
and where the reaction in question is among the key reactions in the network. In
biochemical reaction network the change of the activity of enzymes13 may change
dynamically the locations of the key reactions.

The notion of the key reaction described above is not limited to the bulk enzy-
matic reaction in solution. The production rate of the form of (3.21) is found in
other conditions: for the reaction with a surface catalyst the rate of production obeys
the form of (3.21). If the concentration [S] is higher than KM, then most catalyst
molecules are occupied, and it limits the production rate. For crystal growth from
vapor or from solution competition between bulk diffusion and surface kinetics leads
to the growth velocity in the form of (3.21).

There is another interpretation of the Michaelis–Menten equation, which also
explains why Michaelis–Menten-type behavior is found in a variety of situations.
See Fig. 3.3 (right). If we look back to the derivation of (3.21), we find that
the mathematical origin of its saturating feature is found simply in the bistable
transition between the “states,” E+S and ES. See Fig. 3.2. Wherever this (quasi)
equilibrium to-and-fro exists, any observable linearly related to the occupied frac-
tion of the ES state should show Michaelis–Menten type saturation.14 For exam-
ple, if S and E are, respectively, the ATP-hydrolyzing motor protein and its fil-
ament, then the ATP consumption rate should obey the curve of (3.21) since
ATP hydrolysis is catalyzed by the motor–filament interaction. In this case
the products, ADP and inorganic phosphate (Pi), are not fragments of a motor
protein.

12 Describing the dynamics of a reaction network by focusing on the rate-limiting reactions is
similar in idea to what is done in the statistical dynamics, that is, reducing dynamical variables by
focusing on the slowly varying ones.
13 i.e., The ability to function as enzyme.
14 The fraction of the occupied enzyme, [ES]/[E]tot, is [S]/(KM + [S]), which saturates for [S] 
KM.
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3.3 Stochastic Description

3.3.1 Stochastic Transitions Among Discrete States Are Described
by Master Equation or Discrete Langevin Equation

Rate equations are not the fundamental equations but can be derived from more
microscopic levels. In order to address the chemical reaction on more micro-
scopic scales, we survey the framework of stochastic processes over discrete states.
The master equation describes the evolution of instantaneous probabilities, as the
Fokker–Planck equation does for continuous states. As the latter was derived from
the Langevin equation, the master equation can be derived from the discrete Langevin
equation. Gillespie algorithm is an efficient method to generate discrete stochastic
processes.

We specify the class of master equations which allow detailed balance (DB)
among the discrete states. For this class of systems the global steady state is the
canonical equilibrium. The transition rates and the equilibrium probability can then
be represented in terms of a potential (free-energy) landscape.

Stochastic description of chemical reactions usually uses the master equation,
where the discrete states are distinguished by the number of molecules of each
chemical species. The (continuous) Langevin equation can be regarded as a limit
of discrete stochastic process. The condition of the detailed balance is related to the
Einstein’s relation.

3.3.1.1 * Basic Concepts

Discrete States

Unlike the quantum level description, where the microscopic states of a finite sys-
tem are essentially discretized, we refer in this book the approximately discretized
groups of continuous states as the discrete states: Suppose that the state of a sys-
tem undergoes, for most of the time, small fluctuations around one of the discrete
representative states and undergoes, only occasionally, rapid jumps from around a
representative state to the domain of other representative state. In such cases, we
can simplify the description of the evolution of the system by the use of coarse
graining both in state and time. For example, if a conformational change of a protein
is described as S � P, it implies that many substates of the protein are represented
by either S or P and that the substates joining these two groups of substates are
ignored.15

Hereafter we represent by Sj , etc., the discrete states of a system (obtained by the
above mentioned coarse graining), where the suffix j takes, for example, an integer
number or a set of integer numbers.

15 One can imagine S=coiled state and P=globular state.
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State Transition and Markov Approximation

Temporal change among discrete states is called state transition. We will regard tran-
sitions as instantaneous events. That is, we ignore the time lapse of each transition.
Such description presupposes that (1) in most cases the system stays in the same
state for much longer time than the time of transition and (2) the time resolution of
the description is coarser than the time of transition.

We further suppose that the consecutive state transitions are Markovian, that is,
the statistical characteristic of the transition from the present state Sj is independent
of the previous transition to this state, see Sect. 1.2.1.4. Such description presup-
poses that in most cases the system stays in the same state for the time long enough
so that the intrastate fluctuations erase the memory of the system’s previous state.

Transition Rate

We denote by Ii = { j}i the set of indices of the states {Sj } that the state Si of the
system can make direct transitions.16 The so-called transition rate, wi→ j , from the
discrete state Si to the discrete state Sj ( j ∈ Ii ) is defined as follows:

• Suppose that a system is in the state Si at a time t.
• The (conditional) probability that the system makes the transition to a different

state S j during an infinitesimal time lapse, dt(> 0), is wi→ j dt .

As a result, the probability that the system remains in the same state Si at t + dt is
(1 −∑ j∈Ii

wi→ j dt).
We recall the first passage time, introduced in Sect. 1.3.3.3: The transition from

the state i to the other state can correspond to the exit from a basin Ω of a potential
energy U (x). This was the idea of Kramers to calculate the transition rate [3].17

The average first passage time (FPT) is related to (
∑

j∈Ii
wi→ j )−1. To assess the

individual transition rate, wi→ j , we will need to solve the first passage problem
under constraints. In the context of FPT, the Markov approximation amounts to the
neglect of the initial position dependence of the first passage time.

3.3.1.2 * Statistical Approach – Master Equation

Probability Flux

The transition rate wi→ j characterizes the redistribution of the (conditional) proba-
bility from the state Si to Sj per unit of time. We can generalize this notion to the
case where we find a system in the state Si with the probability of Pi at present time.
Then the redistribution of the probability through all the possible transitions during
infinitesimal time, dt(> 0), constitutes a network of fluxes of probabilities. Between

16 By definition, i �∈ Ii .
17 A review [5] surveys many papers after [3] up to 1990.
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an arbitrary pair of states, Si and Sj , there is the flow of probability Pjwi→ j from
Si to Sj and Piw j→i from Sj to Si . We call the net flow of the probability per unit
of time the (net) probability flux and denote it by Ji→ j (= −Jj→i ):

Ji→ j = Piwi→ j − Pjw j→i = −Jj→i . (3.23)

For later convenience, we complement the definitions; Ji→ j ≡ 0 (∀ j �∈ Ii ), espe-
cially, Ji→i ≡ 0.

For a finite time interval, Δt , the redistribution of the probabilities from Si to Sj

corresponds to many different types of state transitions, such as Si → Sk → Sj

or Si → Sj → Si → Sj , in addition to the direct one. In the limit of Δt → 0,
however, all the indirect transitions have probabilities of higher order of Δt , and the
redistribution of the probability is described only by the direct transitions, Ji→ j .

Master Equation

Let us denote by Pi (t) the probability to find the system at time t in the state
Si . Given the concept of the probability flux (3.23), the redistributed probabilities
{Pi (t + dt)} should satisfy

Pi (t + dt) = Pi (t) −
∑

j

Ji→ j dt.

Then we have the following evolution equation for {Pi (t)} called the master equation:

d Pi (t)

dt
= −

∑

j

Ji→ j , (3.24)

where the sum runs for all states, Sj .18 Because of the identity, Jj→i = −Ji→ j , the
total probability,

∑
i Pi (t), is conserved: d

dt

∑
i Pi (t) = 0. Different approximation

methods to deal with the master equation are found in, for example, the textbooks
[6, 7] or monographs [8, 9].

Steady State

The steady state (or the stationary state) of the master equation is defined such that
d Pj (t)/dt = 0 for every state, Sj . The steady state does not imply the flux-free state:
Ji→ j = 0. A simplest model may be the three-state system with the transition rates
being w1→2 = w2→3 = w3→1 ≡ w > 0 and w2→1 = w3→2 = w1→3 ≡ w′ > 0

18 The expression (3.24) has the same structure as the equation of continuity or the mass conserva-
tion, where the sum on the right-hand side is the divergence of the flux.



108 3 Fluctuations in Chemical Reactions

(w �= w′). The steady state of this model is P1 = P2 = P3 = 1/3 but the probability
flux is nonzero; J1→2 = J2→3 = J3→1 = (w − w′)/3.

Convergence to a Steady State

It is often observed the situation where the evolution of the probabilities {Pj (t)}
is convergent to a nonequilibrium steady state, like the above simple example.
The convergence to an equilibrium state has long been understood using varia-
tional inequality about the entropy, −∑ j Pj ln Pj , under appropriate constraints
(on energy, volume, etc.) [10]. Recently, variational inequality has been developed
also for the nonequilibrium steady states. It is the minimization of the so-called
the Kullback–Leibler distance or the relative entropy (see, for example, [11]). For
two sets of normalized probabilities, P ≡ {Pj } and Q ≡ {Q j } ( j = 1, . . . , n), we
denote by D(P ‖ Q) the Kullback–Leibler distance of P relative to Q and define as
follows:

D(P ‖ Q) ≡
n∑

i=1

Pi ln
Pi

Qi
(≥ 0). (3.25)

The continuous version of this quantity has been introduced in Sect. 1.2.3.2, where
the nonnegativity of this quantity has been shown.19 When the time-discretized
probability P converges to the steady-state probability Q, the D(P ‖ Q) mono-
tonically decreases to 0. Below is a brief derivation. The technical details are given
in Appendix A.3.1.

1. If the time and the states are discretized, the evolution of the probability P by the
master equation can be formally written as a Markov chain, i.e., the discrete-time
discrete state Markov process,20

P ≡ {Pi } �→ KP ≡ {
n∑

j=1

Ki j Pj } (i = 1, . . . , n), (3.26)

where the n×n matrix K ≡ {Ki j } (i, j = 1, . . . , n) has nonnegative components,
Ki j ≥ 0, and satisfies the sum rule,

∑n
i=1 Ki j = 1 for j = 1, . . . , n. In order

to recover the continuous time version, we identify P(t + dt) = KP(t), where
P(t + dt) = {Pi (t + dt)} (i = 1, . . . , n) and K = 1+O(dt).

2. With this Markov chain, the following inequality holds:

D(P ‖ Q) ≥ D(KP ‖ K Q). (3.27)

19 Despite the word “distance,” this quantity is not symmetric; D(P ‖ Q) �≡ D( Q ‖ P).
20 For the Markov process, see Sect. 1.2.1.4.
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The proof is given in Appendix A.3.1.21

3. Suppose that Q is a steady state of this Markov chain, K Q = Q. Then (3.27)
implies

D(P ‖ Q) ≥ D(KP ‖ Q) (K Q = Q). (3.28)

4. If the Markov chain, {P,KP,K2 P, . . .}, converges to this steady state Q, then
D(Km P ‖ Q) must decrease monotonically to 0.

The inequality (3.27) can be interpreted in the context of Stein’s lemma [11], which
states the following: Given n events obeying the i.i.d. probability P , the chance of
mistaking P for another probability Q is given by the following formula of LDP
(see Sect. 1.1.2.3): ∼ exp[−nD(P‖Q)]. According to this lemma, the inequality
(3.27) implies that the pair KP and K Q is less distinct as compared to the pair P
and Q, and, therefore, there is more chance of mistaking.

Notice that, if a system does not tend to a steady state, the above result does not
apply directly. For example, the time evolution of (x, p) by a Hamiltonian H (x, p)
is a Markov process. But its evolution starting from a definite initial condition,
P(x, p, 0) = δ(X − x(0))δ(P − p(0)), does not attain any steady state.

In conclusion, the variational principle of the steady state is not a unique property
of the equilibrium distribution. Which aspects of the equilibrium thermodynamics
are conserved in the nonequilibrium steady states is the question under active field
research. See, for example, [12–15].

3.3.1.3 * Single-Process Approach I – Discrete Langevin Equation

In order to motivate the introduction of discrete Langevin equation, we recall that
the Fokker–Planck equation gives the evolution of ensemble probability at time t
while the Langevin equation generates a single realization of stochastic process.
The former can be derived by the latter, and the latter can be deduced from the
former. Similar duality of description is widely found in physics

Heisenberg picture ←→ Schrödinger picture of quantum mechanics
Lagrange picture ←→ Euler picture of hydrodynamics

Langevin equation ←→ Fokker–Planck equation
Discrete Langevin equation ←→ Master equation

In the above the left-hand side follows some observables, while the right-hand
side observes at a fixed point. As the white Gaussian noise was the elementary
source of Langevin equation, the stochastic process called the Poisson process/noise
plays an elementary role in the discrete Langevin equation. Poisson noise is also the
base of the Gillespie algorithm (see below). We, therefore, start by the definition of
Poisson noise.

21 That KP approaches K Q does not imply the uniformization of P and Q by the Markov evolu-
tion, K.
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Poisson Noise

A particular realization of Poisson noise ζ̂ ( ) is as follows:

ζ (t) =
∑

α

δ(t − tα), (3.29)

where δ(z) is the Dirac delta function and {tα} with tα < tα+1 represents the time of
spike events, which take place randomly. The spike events are a Markov processes
and, therefore, characterized only by the mean rate of spiking per unit of time, w.
Within a very small time interval, (t, t +Δt], the normalized probability for having
n spikes is given by the Poisson distribution:

P

[∫ t+Δt

t
ζ (s)ds = n

]
= e−wΔt

n!
(wΔt)n. (3.30)

For n̂ ≡ ∫ t+Δt
t ζ̂ (s)ds we can verify 〈n̂〉 = wΔt. We generalize this definition to all

the time slices, and we allow for the dependence of the mean spiking rate w(a) on
the external parameter, a. When a is varied as a function of time, 〈ζ̂ (t)〉 = w(a(t)).22

If ζ̂1(t) and ζ̂2(t) are two independent Poisson noises, we can identify ζ̂1(t)ζ̂2(t)=0
within any integration over time t . The reason is that, for a given time interval,
(t, t + Δt], the probability that both processes give rise to at least one spike is
O(Δt2). In the limit of Δt → 0 such events are negligible (i.e., measure 0). Here-
after we often omit “ˆ” for stochastic processes for simplicity of notation.

To apply the Poisson process for transition between discrete states, we assign
i.i.d. Poisson process to each distinct transition:

n̂i, j (t, t +Δt) =
∫ t+Δt

t
ζi, j (s)ds, (3.31)

and ζi, j (s) are independent Poisson noises with 〈ζi, j (t)〉 = wi→ j (a(t)).23

We denote, following [16], the states that the system can take by the base vectors
|i〉, etc., i is a discrete index. These states can depend on the system’s parameter a.
We introduce also the dual base vectors, 〈i |, etc., so that 〈i | j〉 = δi j for the same
parameter a.

By |i(t)〉 we denote the state of the system at time t . i(t) is among the index
mentioned above. We define that, unless the system’s state undergoes transition,
∂
∂t |i(t)〉 = 0 even if the system’s parameter a depends on time.

22 We can verify the following formula for the characteristic function:〈
eiφn̂

〉 = e(eiφ−1)wΔt . The characteristic functional of the Poisson noise ζ̂ ( ) is〈
ei
∫ t

0 φ(t ′)ζ (t ′)dt ′
〉
= exp

[∫ t
0 (eiφ(t ′) − 1)w(a(t ′))dt ′

]
, where φ(t) is an arbitrary smooth real function.

23 The characteristic function
〈
ei
∫ t

0 φi, j (t ′)ζi, j (t ′)dt ′
〉

is equal to

exp
[∫ t

0 (eiφi, j (t ′) − 1)wi→ j (a(t ′))dt ′
]
.
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Using the above notation, the discrete Langevin equation is as follows:

d

dt
|i(t)〉 =

∑

j

(| j〉 − |i(t)〉) · ζi(t), j (t), (3.32)

where d
dt |i(t)〉 ≡ (|i(t + dt)〉 − |i(t)〉)/dt, and the multiplicative Poisson noise,

ζi(t), j (t), obeys (3.31). The symbol “·”means the Itô-type multiplication: The vec-
tor |i(t)〉 on the right-hand side is nonanticipating with respect to the variation of
ζi(t), j (t).

In order to see how (3.32) works, let us assume that the first future spike in the
Poisson noise among {ζi(t), j (t)} is at t = t∗ with j = j∗. Then the integration of
(3.32) from the present time t up to t∗ + 0 yields

|i(t∗)〉 − |i(t)〉 = (| j∗〉 − |i(t)〉) × 1,

where the last factor 1 comes from the time integration of δ(t − t∗). We then update
the system’s state to |i(t∗)〉 = | j∗〉.

Another confirmation is that (3.32) reproduces the master equations (3.24) and
(3.23). We denote the probability for the state |i〉 at the time t by Pj (t) ≡ 〈δ j,i(t)〉
with δ j,i(t) = 〈 j |i(t)〉. Then we have

d Pj

dt
=
∑

�

〈(δ j,� − δ j,i(t)) · ζi(t),�(t)〉

=
∑

�

∑

k

〈(δ j,� − δ j,i(t))δk,i(t) · ζk,�(t)〉

=
∑

k

[Pkwk→ j (a(t)) − Pjw j→k(a(t))]. (3.33)

Equation (3.32) is analogous to the Langevin equation and the characteristic func-
tional of its noise ξ (t). Gillespie has proposed an approximate approach with finite
Δt and then coarse grained it to have a Langevin equation [17].

3.3.1.4 * Single-Process Approach II – Gillespie Algorithm

The discrete Langevin equation (3.32) is not common in the literature. But we
actually solve this when we simulate the master equation (3.24). From practical
viewpoint, the temporal discretization of (3.32) is not a very efficient method, espe-
cially when the transitions occur rarely. A better idea is to focus on the waiting
time, Δt∗ (0 ≤ Δt < ∞), with which a system ceases to stay the present state Si

to make the first transition to the new state Sj∗ (“event driven method”). With this
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idea Gillespie [18–20] formulated an efficient simulation algorithm to generate the
particular realizations of (3.32). It consists of the following two steps:

(1) We take a sample of the set of independent random variables, {ŷ j } j∈Ii , which are
uniformly distributed on the domain, [0, 1]. From a sample {y j } j∈Ii , we define
{τ j } j∈Ii such that e−wi→ j τ j ≡ y j .

(2) We define Δt∗ as the minimum among {τ j } j∈Ii and identify j∗ so that τ j∗ gives
this minimum of {τ j } j∈Ii .

24

The derivation is a little technical but at the same time pedagogical. We, therefore,
summarize its outline below. The key quantities are

pii (Δt): the probability that the system stays continuously in the state between
the time t and t +Δt .

pi j (Δt) ( j ∈ Ii ): the probability that the system has ceased to stay in the state
Si to make the first transition to the state Sj between the time t and t +Δt .

By definition, the initial conditions for pii and pi j are

pii (0) = 1, pi j (0) = 0 ( j ∈ Ii ), (3.34)

and they should obey the following evolution equations:

dpii (Δt)

dΔt
= −pii (Δt)

∑

j∈Ii

wi→ j ,
dpi j (Δt)

dΔt
= pii (Δt)wi→ j , j ∈ Ii . (3.35)

The solution for pii (t) and pi j (Δt) ( j �= i) with any Δt(≥ 0) are

pii (Δt) = exp{−
∑

j ′′∈Ii

wi→ j ′′Δt},

pi j (Δt) = wi→ j∑
j ′∈Ii

wi→ j ′
[1 − exp{−

∑

j ′′∈Ii

wi→ j ′′Δt}]. (3.36)

These probabilities satisfy the sum rule, pii (Δt) +∑ j∈Ii
pi j (Δt) = 1.

We can verify that those (Δt∗, j∗) defined by (1)–(2) reproduces (3.36). Using
the rules (1)–(2), the probability corresponding to pi j (Δt) writes

Prob
[
Tj (ŷ j ) ≤ Δt, and Tj ′(ŷ j ′ ) ≥ Tj (ŷ j ) (∀ j ′ ∈ Ii )

] ≡ p̃i j (Δt), (3.37)

where we defined the functions Tj (y) by e−wi→ j Tj (y) = y. Using the uniform distri-
bution of {ŷ j } j∈Ii , we have

24 That is, Δt∗ = min j∈Ii τ j = τ j∗ .
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p̃i j (Δt) =
∫ 1

0
θ (Δt − τ (y j ))

⎧
⎨

⎩
∏

j ′∈Ii ( j ′ �= j)

[∫ 1

0
θ (τ (y j ′) − τ (y j ))dy j ′

]⎫⎬

⎭dy j ,

where θ (z) = 0 for z < 0 and θ (z) = 1 for z ≥ 0. The integrations are simple to
do,25 and we find for p̃i j (Δt) the identical expression pi j (Δt) of (3.36).

3.3.1.5 * Detailed Balance and Equilibrium

Detailed balance adds stringent conditions on the steady state of master equation.
The unique steady state with detailed balance can be regarded as a thermal equilib-
rium state. The equilibrium probability is reconstructed using the detailed balance
conditions, and the set of rate constants that enable the equilibrium state have simple
interpretations in terms of the free-energy landscape.

State of Detailed Balance

We consider the steady state of a master equation that satisfies more stringent con-
ditions:

Ji→ j = 0, for ∀i,∀ j (detailed balance) (3.38)

or, equivalently,

Piwi→ j = Pjw j→i , for ∀i,∀ j (detailed balance). (3.39)

We call such steady state the state of detailed balance. Whether a system has the state
of detailed balance depends on the transition rates because there are more equations
{Ji→ j = 0} than the number of components of {Pj }.

* Equilibrium State of Master Equation

We call the steady state of master equation the equilibrium state if this state satis-
fies the detailed balance. As mentioned in Sect. 3.3.1.4, not all steady states satisfy
detailed balance. Even if the probabilities {Pi (t)} evolving according to a master
equation converge to a unique state irrespective of the initial condition {Pi (tinit)} we
cannot call it the equilibrium state of the master equation by analogy with (the first
law of) macroscopic thermodynamics.

This restriction is required by the compatibility with thermodynamic laws. Below
is its demonstration: if a system has a steady state which does not satisfy (3.38), the
probability fluxes {Ji→ j } can be written as a nontrivial superposition of circula-
tions of probability flux. Each of the circulations consists of at least three discrete

25 We use the formula
∑

j ′∈Ii ( j ′ �= j)
wi→ j ′
wi→ j

+ 1 = 1
wi→ j

∑
j ′∈Ii

wi→ j ′ .
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states, say S2 → S3 → S7 → S2, and we can assign on it a constant flux, e.g.,
J2→3 = J3→7 = J7→2 �= 0. From such steady-state circulation, we can conceive
a hypothetical machine that interacts selectively with the states, {S2, S3, S7}. This
machine could “rotate” in one direction because of the broken symmetry of the flux
on these three states. Thus we can extract some systematic work, for example, to
wind a string under a load using the rotation of this machine. Now if this steady state
were the thermodynamic equilibrium, the machine would be a perpetual machine
of the second kind (see Sect. 2.1.2), and this is contradiction to the second law
of thermodynamics. Therefore, a steady state violating the detailed balance cannot
correspond to a thermal equilibrium state.

* Reconstruction of Equilibrium Probabilities

If a unique steady state of the master equation satisfies detailed balance, we can find
easily the equilibrium probabilities, {Peq

j }. Below is the protocol:

1. We choose arbitrarily a state, Si , as a reference.
2. We derive all the Peq

j using (3.39), i.e., Peq
j = wi→ j

w j→i
Peq

i . In case that w j→i = 0

for some j, we can determine Peq
j indirectly by applying the chain of equalities

of (3.39). The presence of a unique steady state assures that it is feasible.
3. Once all the values of Peq

j are determined relative to Peq
i , the normalization con-

dition,
∑

j Peq
j = 1, determines the value of Peq

i .

* Representation of Transition Rates

Suppose that a system with n states, {S1, . . . , Sn}, has a unique state of detailed
balance. Let us establish the balance sheet for the number of unknown parameters
and the number of conditions. There are n(n − 1) parameters of the transition rates
and n parameters of the equilibrium probabilities. The constraints of the type (3.39)
impose n(n − 1)/2 conditions. An additional constraint is the normalization of the
probabilities. There remains, therefore, [n(n + 1)/2 − 1] degrees of freedom.26 We
can write these degrees of freedom in a physically appealing manner [21–24]:

Fj/kBT : “free-energy levels (per kBT ).” They amount to (n − 1) degrees of
freedom, where (−1) is due to the arbitrariness of an additive constant.27

Δi, j/kBT : “activation free energies (per kBT )” having the symmetry, Δi, j =
Δ j,i . They amount to [n(n − 1)/2 − 1] degrees of freedom, where (−1) is
due to the arbitrariness of an additive constant.28

ν: the unique “attempting frequency.” One degree of freedom.

26 The calculation is [n(n − 1) + n] − [n(n − 1)/2 + 1] = n(n + 1)/2 − 1.
27 In chemistry, one can regard Fj as the Gibbs free energy under isobaric condition, rather than
Helmholtz free energy.
28 The last additive constant can be chosen independently of the one for {Fj/kBT }, see the remark
after (3.40).
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The above parameterization allows us to represent both {Peq
j } and {wi→ j } in the

context of the thermal activation-assisted transition in a free-energy landscape.

Peq
j = e−Fj /kBT

∑
i e−Fi /kBT

, wi→ j = ν exp

[
−Δi, j − Fi

kBT

]
. (3.40)

The arbitrariness in both Δi, j and Fi can be absorbed by the pre-exponential
factor, ν.29

The above expression of the transition rates, {wi→ j }, provides the following intu-
itive picture [21–24] (see Fig. 3.4): A system in the state Si has (free) energy Fi .
This system attempts to make a state transition to any other state with a common
frequency, ν. Because of the (free) energy barrier of activation (Δi, j − Fi ), the
probability of a successful attempt for the transition Si → Sj is the Boltzmann
factor, e−(Δi, j−Fi )/kBT . Note that the purely kinetic parameters Δi, j do not appear in
the equilibrium probabilities.

Fig. 3.4 Interpretation of
(3.40). The squares on the
corners represent the
free-energy levels, Fi , while
the plateaus between the
nearest states represent the
barriers, Δi, j

F

F

F

F
Δ

ΔΔ

Δ

29 Once we fix the ν’s value, the difference Δi, j − Fi has a physical meaning of the activation
barrier and contains no arbitrary additive constants.
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Nonequilibrium Processes

Once the transition rates are fixed using the detailed balance condition of equilib-
rium, we can proceed to study the master equation under nonequilibrium conditions.
This implies several different things:

Transient nonequilibrium states: Keeping the transition rates of the form (3.40)
unchanged, we study the relaxation of the probabilities Pj (t) starting from
nonequilibrium initial ones. Also we solve the discrete Langevin equation
with these transition rates and look for stochastic processes on the state space.

Nonequilibrium settings I: We may vary Fj ’s, Δi, j ’s, or kBT as function of time
in the transition rates of (3.40). In this case, the instantaneous equilibrium
distribution and the landscape picture are still valid according to (3.40). The
Pj (t) evolves toward a temporary equilibrium state, although there can be a
lag of relaxation.

Nonequilibrium settings II: We modify each activation barrier, Δact
i→ j ≡ Δi, j −

Fi , disregarding the DB conditions, based on physical arguments.
In fact each activation barrier often has a physical justification of its own,
independent of the compatibility with the global equilibrium states. It is like
that the macroscopic rate constant k for the reaction A+B→AB can be used
either in (3.3) or in (3.1), which is far from equilibrium. Therefore, we can
combine these transition rates to build up a reaction network having nonequi-
librium steady states. A simple example is given in Sect. 3.3.3.3
Since the number of combinations of [i → j], i.e., n(n − 1), is more than
the degrees of freedom left by the DB condition, n(n + 1)/2 − 1, the modi-
fied transition rates can no more be represented by a single-valued landscape
like Fig. 3.3. The system now allows steady-state circulations of probability
flux.30

Relation between the transient nonequilibrium states and the nonequilibrium
settings II: When we model the chemical coupling schematized by Fig. 2.7,
we can model either the whole closed system, i.e., the chemical engine plus
the four particle reservoirs, or the chemical engine as an open system.
The former viewpoint is not very practical but formally simple: we assume
the transition rates satisfying detailed balance. The global landscape is fixed
like in Fig. 2.8. The nonequilibrium process is regarded as a transient process
toward the equilibrium of the whole closed system.
The latter viewpoint is more practical but we must use the nonequilibrium
settings of type II. The reservoirs’ states are no more taken into account, and
only the chemical potentials enter as a parameter for the chemical engine.
In the former formal point of view, the system’s evolution is relaxing and
downhill on the average. In the latter point of view, the chemical engine
makes a stochastic cyclic transitions in its (reduced) state space.

30 One may imagine the Escher staircase.
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Fig. 3.5 Landscape with
inhomogeneous barrier
heights. See the text
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Simple Example – Will Particles Be Stagnant in the Region of Small Diffusion
Coefficient?

Suppose that a system can take the states Sj ( j = 0,±1, . . . ,±N ) and that the
nonzero transition rates only between j and j+1 (−N ≤ j < N ). Figure 3.5 shows
the case that Fj = 0 for all j , Δ j, j+1 = W for −N ≤ j < 0, and Δ j, j+1 = w for
0 ≤ j < N with w < W. The general argument above tells that this system has an
equilibrium state with detailed balance, and the equilibrium probability is uniform,
Peq

j = (2N + 1)−1. Nevertheless, might we not expect that the system spends more
time in the left region ( j < 0), where the diffusion takes more time? The key to
avoid this trap is to be aware of the opposing effects to this argument. The state Sj=0

situated between the high barrier W to the left and the low barrier w to the right. If
the system is in this state, the (conditional) probability of the transition S0 → S−1 is
smaller than that of the transition S0 → S+1. Therefore, the chance that the system
enters into the j < 0 states is relatively small, though the residence time in j < 0
states are relatively large. In equilibrium, these two effects exactly cancel.

3.3.1.6 Langevin Equation as a Limit of Discrete Process

Transition Rate of Langevin Equation

The Langevin equation can be regarded as the limit of a discrete process, where the
states are infinitely finely distinguished and the transitions are allowed to occur only
among the “nearby” states. (The Fokker–Planck equation is, therefore, a limit of the
master equation.31) Below we demonstrate how the transition rate is obtained for
the overdamped Langevin equation.

Let us write the Langevin equation in the form of SDE, see Sect. 1.2.1.1:

dxt = − 1

γ

dU (xt )

dxt
dt +

√
2Dd Bt , (3.41)

where we denote by xt the value of x at time t and D is the diffusion coefficient. The
probability density for xt is 〈δ(x − xt )〉. Then the conditional probability density for
xt+dt = xt + dxt , given that x = xt at t , is 〈δ(x − xt )δ(x ′ − xt+dt )〉/〈δ(x − xt )〉. For
x �= x ′, this conditional density gives the flow of probability to x ′ within the time
dt . Therefore, the transition rate wx→x ′ should be related to this density through

31 The derivation uses the technique called the Kramers–Moyal expansion. See, for example,
[3, 25, 26, 7, 8].
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〈δ(x − xt )δ(x ′ − xt+dt )〉
〈δ(x − xt )〉 = δ(x − x ′) + wx→x ′dt . (3.42)

To evaluate the left-hand side, we develop δ(x ′−xt+dt ) around δ(x ′−xt ) (Sect. 1.2.2.4)
using (3.41) and the Itô formula (1.58).32 The result is

wx→x ′ = 1

γ

dU (x)

dx
δ′(x ′ − x) + Dδ′′(x ′ − x). (3.43)

Detailed Balance Condition and Einstein Relation

We can verify that the equilibrium state, Peq(x) ∝ e−U (x)/kBT , is the state of detailed
balance if the diffusion coefficient satisfies the Einstein relation, D = kBT /γ . As
(3.43) includes the derivatives of the δ-function, what corresponds to (3.39) should
be expressed by the integral form:

∫
dx
∫

dx ′ f (x)
[
Peq(x)wx→x ′ − Peq(x ′)wx ′→x

]
g(x ′) = 0, (3.44)

where f (x) and g(x ′) are arbitrary functions of good properties.33 A straightforward
integrations by parts of (3.44) with (3.43) leads to D = kBT /γ .

Detailed Balance and Fluctuation–Dissipation (FD) Relation

In Sect. 1.3.1.2 we have seen that the Einstein relation is related also to the
fluctuation–dissipation relation. In general, stochastic processes satisfying the
detailed balance condition have equilibrium state distribution, and their fluctuations
and linear responses obey the fluctuation–dissipation (FD) relation.

For the processes breaking the detailed balance condition, several generalization
of the fluctuation–dissipation relation have been formulated [27, 28], and also the
discrepancy from the (true) fluctuation–dissipation relation has been related to the
heat generation described [29–31]. The latter points will be discussed in the part II.

3.3.2 Stochasticity of Molecule Numbers in the Chemical Reaction
Can Be Described by Discrete Master Equation

The method described in the previous section is used to describe the stochas-
tic aspect of chemical reaction. We shall take up the same examples as before,
A + B � AB. The object here is to know the relation between macroscopic and

32 Note that δ(x ′ − xt ) has nonanticipating property with respect to d Bt .
33 For example, we assume that they are derivable arbitrary many times and are decaying faster
than any power of x for |x | → ∞ (Schwartz space).
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stochastic parameters, and see how the number of molecular species are distributed
at equilibrium.

3.3.2.1 Number State Representation

Fluctuations are unavoidable if we describe a chemical reaction with the reso-
lution of the (integer) number of molecular species. Suppose that the reaction,
A+B � AB, occurs in a closed container at the temperature T , where the total num-
ber of atoms A and atoms B is fixed at N tot

A and N tot
B , respectively. The number of

AB molecule, NAB, is then sufficient to characterize the state of the system, because
the numbers of the other molecules, A or B, are given as NA = N tot

A − NAB or
NB = N tot

B − NAB, respectively. The system has, therefore, min{N tot
A , N tot

B } + 1
discrete states. Below we shall use NAB to represent the state, SNAB , unless confu-
sions arise. On this level of description, we do not distinguish the individuality of
the atoms to define the states, nor their orientations and other internal degrees of
freedom. But still the description is more detailed than the macroscopic description
of Sect. 3.2. The (number) concentrations, [A], etc., in macroscopic description are
readily given as 〈NA〉/V , etc., where V (in liter) is the volume of the system.

3.3.2.2 Transition Rates and the Rate Constant

Transition Rates

We consider for a moment only the forward reaction, A+B → AB, or in stochastic
term, the state transition of NAB → (NAB + 1). In the stochastic description, we
assume the following simple model for the transition rate, wNAB→NAB+1:

wNAB→NAB+1 = k
NA NB

V
, (3.45)

where k is a constant independent of the number of molecules or volume. The
approximation leading to (3.45) is that every A molecule and B molecule is dis-
tributed randomly in the volume V and that the chance to find a pair of A and
B molecule within an atomic distance is ∝ NA NB

V up to the relative error of
O(NA/V, NB/V ). The factor k should include the activation factor, or the prob-
ability that a collision between an A and a B molecules leads to the formation of an
AB molecule.

Rate Constant

We will relate the transition rate wNAB→NAB+1 to the rate constant of the macroscopic
description of the reaction, described in Sect. 3.2.1.1. If the state transition, NAB →
(NAB + 1), occurs the probability wNAB→NAB+1dt for an infinitesimal time dt , NAB

should increase approximately by wNAB→NAB+1 dt , that is d NAB/dt � wNAB→NAB+1

= k NA NB/V , where we have used (3.45). Dividing each part of this equation by
V , we have
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d[AB]

dt
� wNAB→NAB+1

V
= k[A][B]. (3.46)

The rightmost the equation is of the same form as the formula for the macroscopic
reaction. Therefore, we identify the coefficient k in (3.45) with the rate constant of
the reaction, A + B → AB.

Next we take into account the backward state transition, (NAB+1) → NAB, also.
This corresponds to the reaction AB → A + B. We assume that the transition rate,
wNAB+1→NAB , is proportional to the number of AB molecules before the transition,
therefore,

wNAB+1→NAB = k ′(NAB + 1), (3.47)

where a positive constant, k ′, is independent of the number of molecules or vol-
ume. It is justified if the dissociation occurs in individual AB molecules. By
approximately identifying this transition rate with a contribution to −d NAB/dt , we
obtain the

d[AB]

dt
� k[A][B] − k ′[AB]. (3.48)

We, therefore, identify the coefficient k ′ in (3.47) with the rate constant of the reac-
tion, AB → A + B.

Remark: Extensivity of the Transition Rate

The frequency of the transition NAB → NAB + 1 has an extensive character that
is proportional to the size of the system. Therefore, the time defined, for example,
by (wNAB→NAB+1)−1 has nothing to do with the reaction mechanism of individual
molecules.

In order that the modeling as a Markov process be a good approximation, the
subsequent transitions, for example, NAB → NAB + 1 and NAB + 1 → NAB + 2
should be uncorrelated. If the reacting solution is dilute, successive transitions occur
at distant spatial locations in the volume, and the Markov approximation is justified,
however, large is the transition rate, wNAB→NAB+1. That the inverse transition rates
scale with V−1 is the basis of the van Kampen’s expansion method of the master
equation [32, 8].

If the nature of chemical reaction is such that two consecutive transitions, e.g.,
NAB → NAB+1 and NAB+1 → NAB+2, are strongly correlated on the molecular
level, then we can better define the reaction as 2A+ 2B � 2AB and define the state
transition as NAB → NAB + 2.
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3.3.2.3 Probability Fluxes and the Master Equation

Probability Flux of Stochastic Chemical Reaction

We denote by P(NAB, t) (0 ≤ NAB ≤ min{N tot
A , N tot

B }) the probability that the
systems in the state NAB at time t . Applying the definition of probability flux, (3.23),
the probability flux of the reaction is given as follows:

JNAB→NAB+1 ≡ P(NAB, t)wNAB→NAB+1 − P(NAB + 1, t)wNAB+1→NAB

= −JNAB+1→NAB . (3.49)

Master Equation of Stochastic Chemical Reaction

With the above probability flux, the master equation for P(NAB, t) is written as

d P(NAB, t)

dt
= JNAB−1→NAB − JNAB→NAB+1. (3.50)

The normalization of the probabilities:

min{N tot
A ,N tot

B }∑

n=0

P(n, t) = const. (3.51)

can be verified by (3.50) at all time t .
Substitution of the expressions of the transition rates, (3.45) and (3.47), we have

∂P(NAB)

∂t
= k

(NA + 1)(NB + 1)

V
P(NAB − 1, t)

−
{

k ′NAB + k
NA NB

V

}
P(NAB, t) + k ′(NAB + 1)P(NAB + 1, t). (3.52)

Equation (3.52) includes macroscopic reaction equation for [AB], i.e., for 〈NAB〉 =∑min{N tot
A ,N tot

B }
n=0 n P(n, t). See, for example, [7–9] for the methods to derive the macro-

scopic equation from (3.52).

3.3.2.4 Equilibrium Properties

State of Detailed Balance

The steady state of (3.52) satisfying the detailed balance (DB) imposes the condition

JNAB→NAB+1 = 0, 0 ≤ NAB < min{N tot
A , N tot

B }

under fixed values of N tot
A and N tot

B . This condition gives the probabilities of the
equilibrium state:
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P(NAB, t = ∞) = N Ñ NA
A

NA!

Ñ NB
B

NB!

Ñ NAB
AB

NAB!
≡ Peq (NAB), (3.53)

where N is the normalization constant, and the three parameters, (ÑA, ÑB, ÑAB) are
solutions to the following three equations:

(ÑAv0/V )(ÑBv0/V )

(ÑABv0/V )
= k ′

k
, ÑA + ÑAB = N tot

A , ÑB + ÑAB = N tot
B , (3.54)

where v0 is a constant with the dimension of volume. The formula (3.53) looks
apparently the product of three independent Poisson distributions. In fact, these
distributions are not independent for the closed system, because of the constraints
NA = N tot

A − NAB and NB = N tot
B − NAB. Equation (3.54) gives a function of the

single variable, NAB.

Nevertheless the form of the product of Poisson distributions is the consequence
of only the DB condition, whether or not the system is closed. When the number
of NA and NB is adjustable by their particle environments, (3.53) describes the true
product of Poisson distributions.

Law of Mass Action

The constraint (3.54) suggests already a law of mass action at equilibrium. In fact,
when the system is macroscopic, the equilibrium state of master equation (3.53)
includes the law of mass action (3.6), that is, [A][B]/[AB] = k ′/k.

Since (3.54) has a form of law of mass action, we need only to show that the
parameters ÑA, ÑB, and ÑAB are the values of NA, NB, and NAB, respectively, when
Peq(NAB) is the maximum respect to NAB. It can be done using the technique of log-
arithmic derivative.34 Thus, through the relation (3.54) the equilibrium state (3.53)
includes the law of mass action (3.6).

Chemical Potential

In order to see how the chemical potential is interpreted in this simple reaction
scheme, A+ B ↔ AB, we will compare the result of Peq (NAB) with the prediction
from statistical mechanics.

We define μ0
A, μ0

B, and μ0
AB as the free energies of individual molecules, A, B,

and AB, respectively, which reflect the effect of the kinetic energies and the internal
degrees of freedom of each molecule in the form of the free energy:

μ0
M = −kBT ln zM (M = A,B,AB), (3.55)

34 We require ∂[ln Peq (NAB)]/∂NAB = 0.Denoting by {N ∗
A, N ∗

B, N ∗
AB} the numbers {NA, NB, NAB}

at the maximum of the probability, and using the Stirling formula, n! ∼ nne−n , we have the equality
(N ∗

A/ÑA)(N ∗
B/ÑB) (N ∗

AB/ÑAB)−1 = 1. The last equation implies N ∗
A = ÑA, etc.
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where zM are the partition functions of a molecular species M.35 These free energies
can depend on the temperature. We then assign to each state of the system, NAB

(≤ min{N tot
A , N tot

B }), the following “potential energy”:

U (NAB) = NAμ
0
A + NBμ

0
B + NABμ

0
AB,

where NA ≡ N tot
A −NAB and NB ≡ N tot

B −NAB.36 We then write down the canonical
(configurational) partition function of the form of

∑
e−U (NAB)/kBT . We have

Z (T, V, N tot
A , N tot

B )

N tot
A ! N tot

B !
=

min{N tot
A ,N tot

B }∑

NAB=0

α
NA
A α

NB
B α

NAB
AB

NA! NB! NAB!
, (3.56)

where αM ≡ (V/v1)e−
μ0

M
kBT , and v1 is a constant. The factorials come from the combi-

natorial number, N tot
A

CNA× N tot
B

CNB× NAB!, for forming NAB of AB molecules out of
N tot

A of A molecules and N tot
B of B molecules. According to the statistical mechanics

of Gibbs, we can identify each term in the sum on the right-hand side of (3.56) with
the relative probability. This probability has exactly the form of (3.53), except for a
factor of normalization. Therefore, we find

αM = ÑM.

Combining this result with (3.54) we have37

exp

{
μ0

AB − μ0
A − μ0

B

kBT

}
= k ′

k
. (3.57)

We have thus recovered the result of macroscopic thermodynamics, (3.9), and (3.55)
gives the microscopic meaning for μ0

A, μ0
B, and μ0

AB.

Remark : Origin of the Combinatorial Factor

Looking back to the origin of the formula (3.53), we see that the combinatorial factor
NA!, etc., has nothing to do with the particle-wave duality of quantum physics. A
statistical mechanical description of the open system also gives a similar combina-
torial factor. We will come back to this point in Sect. 5.2.1.5.

35 Strictly speaking, zM is made nondimensional by a factor related to the atomic specific volumes.
36 The relation between the “potential energy” and the landscape representation (Sect. 3.3.1.5) will
be discussed in the next Sections.
37 We put v0 = v1.



124 3 Fluctuations in Chemical Reactions

3.3.3 Stochastic Open System Is a Class of Stochastic Chemical
Reaction System

3.3.3.1 Chemical Potential of the Reservoir

The formula (3.40) gives a landscape representation of the transition rates that sat-
isfy detailed balance. We apply this schema to the system which consists of an
open subsystem (open system, for short) and a particle reservoir between which
molecules of species A are exchanged. See Fig. 3.6 (A). For simplicity, no chemical
reactions are assumed to occur within the open system, although the generalization
is easy. The only “reaction” is, therefore, the migration between the system (Sys)
and the reservoir (Res):

A(Sys) � A(Res). (3.58)

This is a simple model of physical adsorption of molecule A, where the system (S)
is a 2D substrate with a “volume” V .

Following the protocol of Sect.3.3.2, we build up the master equation of this
model.

1. The state of the system is distinguished by the number of particles in the open
system, NA ≡ N .

2. The transition rate wN→N+1 represents the average rate at which a particle enters
the open system, while wN+1→N reflects the rate at which any one particle in the
open system leaves for the environment. We will not assume the properties of
dilute solutions, but leave the transition rates very general [33].

3. The probability flux is JN→N+1 = PNwN→N+1 − PN−1wN−1→N .

4. The master equation for PN is then

d PN

dt
= −JN→N+1 − JN→N−1. (3.59)

5. We assume that the system is in equilibrium. We then impose the detailed balance
condition (3.40). It relates wN→N+1 with wN+1→N :

wN+1→N = wN→N+1 exp

[
FN+1 − FN

kBT

]
. (3.60)

6. In order to relate the stochastic description with the macroscopic description,
we introduce 〈N 〉 ≡ ∑

N N PN and 〈wN→N+1〉 ≡ ∑
N wN→N+1 PN , etc.

S
RIIR

(A) (B)

S
RI

Fig. 3.6 (A) A system consisting of an open subsystem, S, and a reservoir, R. (B) A system con-
sisting of an open subsystem, S, and two reservoirs, RI and RII
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Then by the direct calculation, (3.59) gives38

d〈N 〉
dt

= 〈wN→N+1〉 − 〈wN+1→N 〉. (3.61)

The relation (3.60) is not very convenient because FN concerns the whole system.
By a physical argument we will rewrite (FN+1− FN ) in terms of chemical potential.
We assume that the coupling between the open system and the reservoir is short-
ranged so that the free energy is additive: FN = F sys

N + F res
N tot−N + (indep. of N ),

where N tot is the total number of particles in the whole system (S∪R), and the last
term represents the interface between the open system and the environment. The
chemical potentials of the open system and the reservoir are defined, respectively,
by μ ≡ ∂F sys

N /∂N and μres ≡ ∂F res
N res/∂N res. Then we have

FN+1 − FN = μ− μres. (3.62)

Then we find the following relation between the transition rates:

wN+1→N = wN→N+1 exp

[
μ− μres

kBT

]
. (3.63)

In combining with (3.61) we have the following formula:

d〈N 〉
dt

= 〈wN→N+1〉
(

1 − exp

[
μ− μres

kBT

])
.

Or using [A] = 〈N 〉/V ,

d[A]

dt
= kin([A])

(
1 − exp

[
μ([A]) − μres

kBT

])
, (3.64)

where

kin([A]) = 〈wN→N+1〉/V . (3.65)

Unlike the law of mass action, (3.64) allows the rate (d[A]/dt) to depend on [A]
in nonlinear manner. In the van der Waals model of fluids, μ depends on [A] in
a sigmoidal way. As a result, there can be several equilibrium concentrations [A]
satisfying μ([A]) = μres for certain value(s) of μres. This leads to the phase changes
between the cooperative adsorption phase and the dilute adsorption phase.39 In

38 We supposed that the distribution of PN vs. N is sharply peaked around N = 〈N 〉( 1) and
ignored the errors of order o(〈N 〉).
39 The stable equilibria should satisfy ∂(μ([A]) − μres)/∂[A] > 0.
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addition to the multi-equilibria, formula (3.64) describes the relaxation and hys-
teresis of the concentration [A].

3.3.3.2 Butler–Volmer Equation

The above result includes the so-called Butler–Volmer equation in electrochemistry
[34] as a special case. Knowing that the transition rates are extensive (see Remark
of Sect. 3.3.2.2) and that ν in (3.40) can absorb the global additive constants in
ΔN ,N+1’s and in FN ’s, we choose ν = ν̃ V . Then we can assume that ΔN ,N+1 − FN

and ΔN ,N+1 − FN+1 as well as ν̃ are nonextensive, i.e., of O(V 0). Therefore, the
weighed average of these two barrier height

ψ ≡ ΔN ,N+1 − (α+FN + α−FN+1), α+ + α− = 1, (3.66)

is also of O(V 0) for arbitrary choice of α+(= 1 − α−). Then (3.61) with (3.40) can
be rewritten using this ψ and the chemical potentials of (3.62):

d

dt

( 〈N 〉
V

)
= ν̃ exp

[
−ψ + α−(μ− μres)

kBT

]
− ν̃ exp

[
−ψ − α+(μ− μres)

kBT

]
. (3.67)

This form (3.67) is called Butler–Volmer equation.
The Butler–Volmer equation has been proposed by geometrical considerations

(see textbook, e.g., [34] (p.1048), or recent articles [35, 36]), which is summarized
in Fig. 3.7. Recently [37] proposed to use μ derived from a Cahn-Hilliard-type
chemical free energy functional [38] so as to include the effect of inhomogeneous
concentration. However, the above derivation implies that the experimental fitting
with Butler-Volmer equation per se justifies no particular geometrical models of the
adsorption because (3.67) is general: α+ can be arbitrary, even negative, and this ψ
can depend on the concentrations 〈N 〉/V or on the temperature. α± can even depend
on the kinetic parameters of the system. Therefore, it is only when α± have separate
justification that the geometrical representation Fig. 3.7 is meaningful.

3.3.3.3 Nonequilibrium Open System

When we constructed the Langevin equation, we have used the equilibrium state
of the system to determine the relation (Einstein relation) between the viscous fric-
tion coefficient, γ , and the strength of random thermal force, b. Once the relation,

Fig. 3.7 Graphical
representation of the
“activation free energies,”
ψ ± α∓ (μ− μres) The levels
of the “valleys” A and B are
different by μ− μres

α–
α+

α+(μ− μ res)
0

A

B

ψ

α−(μ− μ res)
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b = γ kBT , is obtained, we use the Langevin equation for the various situations
including nonequilibrium conditions.

In the case of discrete stochastic processes, what we first determined using
the equilibrium state, or the conditions of detailed balance (DB), was the relation
between the transition rates, wi→ j , and the physical parameters. In Sect. 3.3.1.5 we
saw that if the transition rates are consistent with an equilibrium state, they can be
formally represented in terms of ν, Δi, j , Fj , and kBT (see (3.40)). After that, we
related this formal result to the physical parameters, such as μ, μRes, or kin, in a
concrete case (see (3.63) and (3.65) ).

As we discussed in Sect. 3.3.1.5,40 we can then develop physical arguments and
modify each transition rate so that those rates are applicable also in nonequilibrium
conditions. Below we show how it is practically done in a modeling of nonequilib-
rium steady states: We consider an open system, S, and the two particle reservoirs,
RI and RII, with which the system can exchange molecules, A. See Fig. 3.6 (B). We
generalize the schema (3.58) to

A(Res-I) � A(Sys) � A(Res-II) (3.68)

and denote the state of the whole system by the number of particles in the system,
N ≡ NA, and that in the reservoir RI, N ′ ≡ N Res−I

A . (Note that the number of
particles in reservoir RII, N Res−II

A depends on N and N ′).
The transitions we consider are

(N , N ′) → (N ± 1, N ′ ∓ 1): migration of an A molecule between S and RI.
(N , N ′) → (N ± 1, N ′): migration of an A molecule between S and RII.

One of the easiest ways of modeling the transition rates for these transitions is
to consider the special case where one of the two reservoirs is practically inacces-
sible due to an extremely high energy barrier between the system and the reservoir.
We can then use the previous results (3.63) and (3.65) for the transition rates for
the migration with the reservoir which is not blocked. A physical hypothesis that
we take here is that the transition rates between the system and a reservoir are
unchanged whether or not the migration with the other reservoir is blocked.41 If
this is a good approximation, we can repeat the same argument by exchanging the
blocked reservoir and unblocked one, we obtain the following model:

w(N ,N ′)→(N+1,N ′−1) � kRes−I
in V,

w(N ,N ′)→(N−1,N ′+1) = w(N ,N ′)→(N+1,N ′−1) exp

[
μ− μRes−I

kBT

]
,

40 See Nonequilibrium settings II.
41 Such a hypothesis is not always plausible. For example, some proteins might function so that
the accessibility to the system is exclusive, called alternative access model [39]. (cf. Exchange of
binding in Sect. 7.2.1.4.)
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w(N ,N ′)→(N+1,N ′) � kRes−II
in V,

w(N ,N ′)→(N−1,N ′) = w(N ,N ′)→(N+1,N ′) exp

[
μ− μRes−II

kBT

]
. (3.69)

We recall the note on the Relation between the transient nonequilibrium states
and the nonequilibrium settings II (Sect. 3.3.1.5). If we describe the process in the
whole (N , N ′) space, we may construct a landscape that matches the above tran-
sition rates. (In fact the state space is separated into slices according to the total
number of particles.) But it is not a practical description. We rather use a (reduced)
representation where we look at only the open system and regard the particle envi-
ronments as stationary reservoirs. Then each line of (3.69) represents the rate of
entrance from RI, of departure to RI, entrance from RII, and of departure to RII,
respectively. Here the chemical potential μ depends on N .

On the macroscopic level, the equation for [A] corresponding to (3.64) is

d[A]

dt
= kRes−I

in

[
1 − e

μ−μRes−I

kBT

]
+ kRes−II

in

[
1 − e

μ−μRes−II

kBT

]
, (3.70)

where μ, kRes−I
in , and kRes−II

in are functions of the concentration [A] in the system.
Under nonequilibrium condition, μRes−I > μRes−II, the value of [A] in the steady-
state solution is determined by solving (3.70) with d[A]/dt = 0.

3.3.3.4 Stochastic Michaelis–Menten Kinetics

The merit and at the same time demerit of the Poisson distribution is that it is
governed by only one parameter. Its variance, therefore, adds no new information
to the knowledge of the average value. It is not the case when the discrete states
are, for example, binary {0, 1}. In that case the stochastic level observation and
description of chemical reactions bring more information than the rate constants.
As an example, we will again take up the Michaelis–Menten kinetics (3.17), i.e.,
E + S � ES → E + P (see Sect. 3.2.2.2). We will show that, from the stochastic
data of the slow process, ES → E + P, we can extract the parameter of the fast
process, E + S � ES.

Parameters of the Single-Enzyme Michaelis–Menten Kinetics [40, 41]

We introduce several stochastic parameters characterizing a particular event of the
release of the product P from a single enzyme, E (see Fig. 3.8).

t (k)
v : The kth (1 ≤ k ≤ n) time interval of the free enzyme E.

t (k)
r : The kth (1 ≤ k ≤ n) time interval of the complex ES.

n: The times of the reaction, E+ S → ES, at which the product release, ES →
E + P, occurs.

tP: The period between the last product release and the present product release:
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(1) tr
(1) tv

(n)

tP

tr
(2)tv

(2) tr
(n)tv

Fig. 3.8 Temporal “data” of single-enzyme reaction of Michaelis–Menten type. Each black [gray]
bar denotes the complex ES which dissociates into E+P [E+S], respectively. The gaps between the
bars denote the free enzyme E

tP =
n∑

k=1

(t (k)
r + t (k)

v ). (3.71)

Setup of Problem

We suppose that one can only observe the events of the product release, that is the
sequence of tP. Also we assume that one can do the observation with different values
of the substrate concentration, [S]. We introduce a Markov model which contains
the following statistical parameters:

Tv
−1: The transition rate of the formation of the complex ES.

κ: The coefficient such that Tv−1 = κ[S].
Tr

−1: The transition rate of the termination of the complex ES.
q: The probability of the production, ES → E + P, from the state ES.

Our goal is to determine as many parameters as possible from the observation.

Result: Informations Obtained from Stochastic Data

By the analysis using the probability of individual events, we have the following
relations:

1

〈tP〉 =
1−q
Tr

[S]
1
κTr

+ [S]
(3.72)

and

〈tP〉
〈tP〉2 − 2〈tP2〉 = κ[S] + 1

Tr
. (3.73)

For the derivation, see Appendix A.3.2. The first result (3.72) is the rate of pro-
duction per enzyme. This could have also been obtained from the macroscopic pro-
duction rate, v, of (3.21) if we knew the total molar concentration of the enzyme,
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[E]tot. By contrast, the second result, (3.73), contains intrinsically the information of
the stochastic data. From the data of 〈tP〉 and 〈tP2〉 for various concentrations of the
substrate, [S], the formulas (3.72) and (3.73) allow us to obtain the three constants,
κ , and Tr

−1, and q. Especially, 〈n〉 = (1 − q)−1 is obtained.

3.4 Discussion

We have analyzed chemical reactions using two levels of descriptions, macroscopic
deterministic and continuous description and mesoscopic stochastic and discrete
description. The latter description includes the former as a result of coarse grain-
ing. But if the total number of a molecular species is not large, the coarse-grained
description is not valid.

Even the discrete stochastic description may not be valid if the transition rate
depends strongly on the parameters which are not represented by the chemical for-
mula, such as the orientations or configurations of participating molecules and the
internal states of solvent molecules. For example, a rapid water exchange between
the hydration shell of a molecule and the surrounding fluid water is beyond the
description of the previous sections.

Depending on what spatiotemporal scale is decisively important for the reaction
rate, we should choose different methods, such as the Langevin equation, molecular
dynamics simulation, or density functional description. Except for the full quantum
descriptions of whole atoms and electrons, we always ignore some details as rapidly
(often said “adiabatically”) following degrees of freedom, but the justification of
such hypothesis – separation of fast and slow degrees of freedom – is often done a
posteriori by the comparison of model results with experimental observations.
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