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The Lecture Notes in Physics
The series Lecture Notes in Physics (LNP), founded in 1969, reports new developments
in physics research and teaching – quickly and informally, but with a high quality and
the explicit aim to summarize and communicate current knowledge in an accessible way.
Books published in this series are conceived as bridging material between advanced grad-
uate textbooks and the forefront of research and to serve three purposes:

• to be a compact and modern up-to-date source of reference on a well-defined topic

• to serve as an accessible introduction to the field to postgraduate students and
nonspecialist researchers from related areas

• to be a source of advanced teaching material for specialized seminars, courses and
schools

Both monographs and multi-author volumes will be considered for publication. Edited
volumes should, however, consist of a very limited number of contributions only. Pro-
ceedings will not be considered for LNP.

Volumes published in LNP are disseminated both in print and in electronic formats, the
electronic archive being available at springerlink.com. The series content is indexed, ab-
stracted and referenced by many abstracting and information services, bibliographic net-
works, subscription agencies, library networks, and consortia.

Proposals should be sent to a member of the Editorial Board, or directly to the managing
editor at Springer:

Christian Caron
Springer Heidelberg
Physics Editorial Department I
Tiergartenstrasse 17
69121 Heidelberg / Germany
christian.caron@springer.com



K. Sekimoto

Stochastic Energetics

ABC



Ken Sekimoto
Matières et Systèmes Complexes
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To my dear readers.





Preface

What is the Stochastic energetics? In brief, this is the framework that connects
the “missing link” between the stochastic dynamics and the thermodynamics. See
Fig. 1. Since the nineteenth century, the thermodynamics has been established
through the efforts of Carnot, Mayer, Clausius, and many others. Later on the statis-
tical mechanics is developed by Maxwell, Boltzmann, Gibbs, Onsager, Einstein, and
others. The latter discipline relates the thermodynamics to the microscopic mechan-
ics. The study of the stochastic dynamics, or the phenomena of thermal fluctuations,
has also a long history since Robert Brown reported the so-called Brownian motion
of a fine particle of pollen (Brownian motion, 1827). The modern framework of
stochastic process is established by Einstein [1], Smoluchowski [2], Perrin [3],
Langevin [4], Fokker and Planck [5, 6], Kramers [7], Itô [8], and others. More
recently this framework has been justified from micro mechanics with the aid of
the so-called projection methods by Zwanzig [9], Mori [10], Kawasaki [11], and
others. It is, therefore, natural that there is a link between the stochastic dynamics
and the thermodynamics, as Fig. 1 suggests. This book is the first lecture notes in
English on this linkage.1

The Stochastic energetics adapts to the modern development of nanotechnolo-
gies. The vast improvement of the spatiotemporal resolution in these technologies
has enabled the access to the individual thermal random processes at sub-micron
(1μm = 10−4cm) and sub-millisecond scales. While the entropy, which charac-
terizes ensemble of fluctuating states and processes, is a core concept of the ther-
modynamics and statistical mechanics, a complementary approach to deal with the
individual realizations is now needed also. Those what were mere thought experi-
ments (Gedankenexperiment) in the mid-twentieth century are now testable models
such as so-called Feynman ratchet and pawl [13] and many models related to the
Maxwell’s demon [14].

This book is, therefore, for those people who study and work on the scale of
thermal fluctuations, such as microfluidics, nano machines, nano sensing devices,

1 This is a highly enlarged and revised version of the Japanese book published before by the author
[12]. The present version has about 1.5 times of pages with many new figures and a new chapter
(Chap. 6) with respect to the Japanese version.
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Fig. 1 The Stochastic energetics as completion of the “missing link”

nanobiology, nanoscopic chemical engineering, etc. In other words, those who are
interested in the following questions will find the answer, or at least some clues, in
this book:

• What is the heat associated to the thermal random (Brownian) motion of a meso-
scopic particle?

• What work do we need for the operation and observation of small system?
• How much is the work to operate an ideal Carnot engine? Is it reversible?
• Can we cool a drop of water by agitating a nanoparticle immersed therein?
• How does the heat flow if a particle undergoing Brownian motion pulls a polymer

chain?
• Is the energy conserved during an individual realization of Brownian motion?
• Is the projection methods, which eliminates rapid microscopic motions, compat-

ible with reversible or quasiequilibrium process?
• Can we measure the free energy of the system by a single realization of stochastic

process?
• Are there quantum mechanics-like uncertainty or irreversibility upon the mea-

surement of thermal random process?
• Is the definition of the heat unique? Is the thermodynamics unique for any partic-

ular system ?
• Does a particle carry the chemical potential when it enters into an open system

from the environment?
• Why does the chemical potential of a molecule depend on its density even if the

molecule does not interact with other molecules?
• Do we need an irreversible work to make a copy of the information in a bit

memory?
• Can we detect reversibly the arrival of a Brownian particle with 100% of sureness

at finite temperature?
• Do molecular motors need to stock a large energy in order to do a large work?



Preface ix

The readers of this book are assumed to have the very basics of thermodynamics
and Newtonian mechanics, as well as elementary analysis and the ordinary differ-
ential equation. No advanced knowledge at the level of physics graduate courses is
required. Examples in the main text are all simple.

Limitation of the scope of this book: First, we do not deal with the quantum
fluctuations. We assume that the temperature of the environment is high enough
that the quantum interferences are negligible. The mesoscopic quantum systems
are already an established field (see, for example, an inspiring book [15]). Sec-
ond, we discuss very little about the subjects of nonequilibrium statistical mechan-
ics around the fluctuation theorem (FT) and the (Jarzynski) nonequilibrium work
relation. These subjects have been rapidly developed between the late 1990s and
early 2000s, when Stochastic energetics has also been formulated. These sub-
jects deal with the ensemble of stochastic processes, where the former frame-
work has been used. I hope that some comprehensive books will be written by
the people who initiated these vast subjects. Last, as the schema of Fig. 1 shows,
the Stochastic energetics works where the mesoscopic scale is more or less well
defined as distinguished both from micro level and from macro level. It, therefore,
does not apply to the phenomena where the interference among these scales is
strong [16].

Organization of the book: This book consists of three parts. See Fig. 2. Glance
at the table of Contents will give you more detailed composition of each chap-
ters. In the three chapters of Part I we will prepare the basics of the stochas-
tic dynamics (mainly the Langevin equation), the thermodynamics, and the reac-
tion dynamics (including the master equation). The following three chapters in
Part II will introduce the basic concept of the heat on the mesoscopic scale and
describe its consequences. In the last two chapters belonging to Part III we will
see, through simple examples, various strategies and constraints in the fluctuating
world. The asterisk ∗ at the head of sections or subsections indicates the core part
of the book. The technically advanced descriptions are given in the Appendix at
the end of the book. There are already good textbooks of stochastic dynamics such
as [17–19, 8], where the thermodynamic equilibrium and the fluctuation–response
relations are well described in the context of stochastic dynamics. Complementarily
to these textbooks, we consider in this book the stochastic dynamics whose param-
eter(s) are changed in time from outside or by other subsystems. This generaliza-
tion opens a fertile field of physics and enables to fill up the “missing link” men-
tioned above. I hope that the readers enjoy the richness of physics in the Stochastic
energetics.

About the references: The papers cited in the main text are those to which I
owe directly their ideas, methods, and perspectives. Therefore, the references in this

Part III
Application

Part I
Background

Part II
Main framework

Fig. 2 Organization of the book
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book do not cover the whole activities of the communities related to the stochastic
dynamics. I apologize those people of whom I overlooked important papers either
because of my limited capacity of understanding or bibliographical search.

Paris, December 2009 Ken Sekimoto
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Part I
Background of the Energetics

of Stochastic Processes



Chapter 1
Physics of Langevin Equation

As a broad introduction, we describe what we will discuss in this chapter.
Many different ways to describe fluctuations have been developed in different

fields: physics, chemistry, mathematics, economics, or genetics, to mention a few.
For physicists there are good textbooks that discuss fluctuations, for example, [1, 2].
Among those different ways of the description, we will describe in this book mainly
the method of Langevin equation, because it describes individual processes of fluc-
tuation. Throughout this book we regard the Langevin equation as an “equation of
motion.”

We first introduce the notion of fluctuations. The notion of fluctuation is related
to statistics and uncertainty. We argue that the appearance and the consequence of
fluctuations differ according to the space-time scales of observation or operation.
A typical example of temporal fluctuation is the Brownian motion, the fluctuations
of mechanical origin. The Brownian motion is related to diffusion. The Brownian
motion is caused by the thermal random force. The thermal random force is often
modeled as a special stochastic process called Gaussian white noise. This reflects
the fact that the Brownian motion is caused by many microscopic impacts on the
degree of freedom (variable) that undergoes Brownian motion. We assume that the
environment is in thermal equilibrium.

The Langevin equation is a way to describe the Brownian motion under the influ-
ence of additional forces as well as the thermal random force. Even if the Brownian
particle behaves in a nonequilibrium manner under an external forcing, we assume
that the environment remains in equilibrium. We show a heuristic argument to intro-
duce the Langevin equation. We describe also a simple and solvable example pre-
sented by Zwanzig [3].

We emphasis, however, that the Langevin equation is not an axiom or a mere
hypothesis introduced empirically from the observation. Under several well-defined
assumptions such as the Markov approximation, the Langevin equation is derived
from the microscopic mechanics governing the whole system consisting of the entity
undergoing the Brownian motion and the other fast varying microscopic degrees of
freedom. The thermal environment for the resulting Langevin equation is constituted
by the latter degrees of freedom. We leave the mathematical details of the derivation
to the Appendix and the original literatures.

Sekimoto, K.: Physics of Langevin Equation. Lect. Notes Phys. 799, 3–66 (2010)
DOI 10.1007/978-3-642-05411-2 1 c© Springer-Verlag Berlin Heidelberg 2010



4 1 Physics of Langevin Equation

In mathematics the temporal fluctuation is treated as the stochastic process. The
powerful mathematical framework for the stochastic process is called stochastic
calculus. The Wiener process is the mathematical counterpart of the free Brownian
motion, and the stochastic differential equation (SDE) corresponds to the Langevin
equation. But the stochastic calculus is not merely a formulation for mathematicians.
Without it the Langevin equation is sometimes not unambiguously defined. The
stochastic calculus deals with the product of variables or integral of functions, just
as the usual analysis. But the rules of the stochastic calculus are different from the
latter, the difference which often causes nonnegligible consequences. An example
is the Itô’s lemma. Because of this difference, the numerical schemes for solving the
Langevin equation also require special care.

Roughly speaking the Langevin equation takes the thermal random force as input
and generates the stochastic process of the variable, such as the position of Brownian
particle, as an output. Although the thermal random force is supposed to contain
no memory, i.e., no finite temporal correlations, the Langevin equation transforms
this stochastic process into the output which has memory of the past. For example,
the trajectory of a Brownian particle tells where it found itself sometime ago. The
Langevin equation can take different forms depending on the time resolution of the
description or of the observation, even if they describe the same physical process.
This difference comes from the above mentioned memory time. Elimination of the
inertia effect of the Brownian particle or elimination of fine spatial modulations
of the potential energy causing the force on the Brownian particle can, therefore,
change the form of the Langevin equation.

Suppose that a Brownian particle is subject under (only) a potential force, the
force due to a fixed potential energy as function of the Brownian particle, on top
of the thermal random force. The longtime observation of a particular stochastic
process, i.e., a particular solution of Langevin equation for this particle, will then
give rise to a stationary probability distribution as function of the position, and the
momentum if the inertia is not ignored. This probability distribution is the resi-
dence time distribution of the position (and momentum). This stationary state is
the equilibrium state by definition, while the equilibrium statistical mechanics gives
the probability distribution as the canonical distribution [4]. This fact imposes an
essential constraint on the form of the Langevin equation. This constraint is a form
of the relation called fluctuation–dissipation relation.

The statistical mechanics discusses the ensemble of copies of the systems and
the probability distribution on this ensemble. In the stochastic process, the related
notion is the ensemble of the solutions of Langevin equation. The partial differential
equation called the Fokker–Planck equation describes the evolution of the instanta-
neous probability distribution function. Using the Fokker–Planck equation, we can
discuss the “first passage problem.”

In most of the chapters we discuss the stochastic process of continuous variable,
such as the position and momentum of a Brownian particle. For the stochastic pro-
cess of discrete variable, or for the system undergoing the transitions among discrete
states, we can construct the counterpart of the Langevin equation. The environment
is still assumed to be in equilibrium.
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1.1 Random Events or Fluctuations

1.1.1 * Introduction: What Is Fluctuation?

We are surrounded daily by the phenomena and the properties which we call fluctu-
ations, such as the density of traffic on a highway, the variations within a biological
species, the up-and-down of stock markets, the twinkling of stars, and so on. Let
us characterize qualitatively the fluctuation. The fluctuation is related to the irregu-
larity or stochasticity among the realizations, i.e., among the individual specimens
of the data. The two main characteristics of the irregularity or stochasticity are the
statistical nature and the uncertainty. By the statistical nature we mean that its char-
acterization requires an ensemble of data. By the uncertainty we mean that, given a
part of the data or the data up to a given moment of time, we cannot predict precisely
the remaining data or the data in the future.

Because of this uncertainty, time series including fluctuations look as if their data
were generated spontaneously. Time series containing fluctuations have often, but
not as a rule, the property that the effect of an external stimulus on them disappears
gradually in time.

How much fluctuations there are in a set of data depends on the resolution with
which the data are analyzed and also on the information that we have on the data.
A classical mechanical model for the motion of water molecule determines their
velocities and positions at all time. The only source of fluctuation comes from the
initial condition of which the chaotic dynamics is extremely sensitive. In the oppo-
site limit, when we look at the water on the scale of hydrodynamics, the statistical
properties of the microscopic motion of water molecules appear only through the
viscosity coefficient, which is related to the temporal correlation of the stress field.
In order for the underlying microscopic motions to manifest as “fluctuations” in
the sense of the word, the characteristic scales of the fluctuations should be neither
too small nor too large, as compared with the resolution of the observer who ana-
lyzes the fluctuations. In molecular dynamic description, everything is deterministic,
while in hydrodynamic description, the macroscopic observable obeys deterministic
equations of hydrodynamics. Neither of these describes directly the fluctuations.
Therefore, we should be conscious about the space-time scales when we discuss the
fluctuation.

As another example, let us take the winds, which include the atmospheric fluc-
tuations of the air. The winds are neither completely predictable nor completely
unpredictable. As long as we know that the wind direction does not change too
quickly, and if we can detect it with a good enough time resolution, we can reorient
wind turbines (windmill) along the temporary wind direction so that the turbines
convert the energy of the winds into electric power. By analogy, we might ask if
protein molecular motors have evolved under the selective pressure so that they can
make profit of certain characteristics of the thermal fluctuations in the cytosol.

We should also note that whether a fluctuating quantity is regarded as a noise or
a signal depends on the timescale with which we can respond to this fluctuation.
Related to the last examples, suppose that there is a receptor on a lipid membrane of
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a cellular organelle waiting for the arrival of a molecular signal from the surrounding
cytoplasm. Or, suppose that a protein motor, say, myosin is waiting for the arrival of
an ATP molecule. The arrival of a signal molecule or an ATP molecule is at random
in the sense that there is no regularity except for its average frequency, which serves
for nothing as a signal. However, this random event can become a useful signal or
a source of mechanical work because the receptor or the protein motor are designed
so that they can respond to such event of arrival by changing their internal state,
called the conformational change [5]. The unbinding of those molecules can be
made difficult by this conformational change, and the receptor or the protein motor
will start a cascade of functional process.1

1.1.2 Random Events Are Represented Through Random Variables

1.1.2.1 * Random Variables and Stochastic Processes

A particular realization vs. random variable: Now we will introduce several con-
cepts and methods to deal with fluctuations at a more quantitative level. First we
will define the variables that undergo fluctuations, called the random variables, and
will introduce the related notations.

In order to refer generically to the number on a die which is cast properly, it is
convenient to introduce a variable n̂ that can take integer values from 1 to 6. We
then use this variable to denote, for example, the square of the number on the die
just by writing n̂2. If the number was eventually 3 in a realization, that is, upon
a particular cast, we say that we had n̂ = 3. However, the value of n̂ will not be
fixed at 3 henceforth, but n̂ remains a variable. We will call a variable such as n̂ the
random variable. When we need to distinguish a random variable among the other
variables, we shall attach the hat (ˆ) to the former, like n̂. If f (x) is a function of x ,
the substitution of a random variable n̂ defines a new random variable, m̂ = f (n̂).
For example, m̂ = n̂2 for f (x) = x2.

Probability associated to each value of the random variable: We assume that an a
priori probability is associated to each value that a random variable can take. In the
case of a proper die, the probability 1/6 should be associated to each realizable value,
i.e., the integers from n̂ = 1 to n̂ = 6. Once such association is done for a random
variable, the probabilities associated for any function of this random variable are
also known. For example, the probabilities for m̂ ≡ n̂2 are 1/6 to realize m̂ = 9 and
0 to realize m̂ = 10.

Average and variance: It is then possible to evaluate the average, or the mean value,
of a given function of the random variable. Let us denote by Prob[m̂ = i] the
probability of the realization of m̂ = i . We denote by 〈m̂〉 the average of a random
variable, m̂. Therefore,

1 For the receptors or the motor proteins to function, we also need the global nonequilibrium of
the environment, which promotes the process in one direction against the reversed one.
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〈m̂〉 =
∑

i

i Prob[m̂ = i].

Also we define the variance of n̂ by

〈(m̂ − 〈m̂〉)2〉 =
∑

i

(i − 〈m̂〉)2 Prob[m̂ = i].

In the case of the proper die, we have the average of n̂ or m̂ ≡ n̂2, i.e., 〈n̂〉 = 7/2
and 〈n̂2〉 = 91/6, or the variance, 〈[n̂ − 〈n̂〉]2〉 = 35/12. The random variable bears
both the statistical nature and the uncertainty, and therefore fits with our notion of
the variable which undergoes fluctuations.

What if we want to know the average f (n̂) in knowing Prob[n̂ = i]? The
answer is

〈 f (n̂)〉 =
∑

i

f (i) Prob[n̂ = i].

Two advanced examples of the discrete random variables (binomial distribution and
Poisson distribution) are given in Appendix A.1.1.

Continuous random variable: We may consider a random variable ŷ that can take
any real value, for example, on the interval [0, 1]. If we chose completely at ran-
dom a point y on this interval, every value of y is, by definition, equally likely.
But the probability to realize a particular real value y is 0. Still we can discuss the
probability of finding y within a segment [a, b] with 0 ≤ a < b ≤ 1. In this case
Prob[ŷ ∈ [a, b]] = b − a. In general, if a random variable ŷ takes a value on
the real axis R, we define the probability associated to ŷ in terms of the probability
density, p(y), a nonnegative-valued real function such that

Prob

[
ŷ ∈

[
y − dy

2
, y + dy

2

]]
= p(y)dy.

If the probability is singularly concentrated on some points, yα , we suppose that
p(y) contains the delta “functions” ∝ δ(y − yα). Physicists symbolically use, or
abuse, this useful function to write p(y) = 〈δ(y − ŷ)〉, because this expression
reproduces correctly the average of any function of the random variable ŷ, such as,
f (ŷ) in that 〈 f (ŷ)〉 ≡ ∫ f (y)p(y)dy.2

Characteristic function for continuous random variable:3 The random variable
f (ŷ) = eiφ ŷ (φ: real) has a special utility because its average Φy(φ) ≡ 〈eiφ ŷ〉 is
related to the Fourier transformation of the probability density:

2 Note that
∫

f (y)〈δ(y − ŷ)〉dy = 〈[∫ f (y)δ(y − ŷ)dy
]〉 = 〈 f (ŷ)〉.

3 Those who are not interested or familiar to the analysis may skip the details of the characteristic
functions and also its applications to the Gaussian random variables which appear later on.
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Φy(φ) =
∫ +∞

−∞
eiφy p(y)dy. (1.1)

Therefore, the characteristic function Φy(φ) contains (almost) the same amount of
information as p(y), as long as this integral is convergent. The advantage of Φy(φ)
with respect to p(y) is that the average of any other function g(ŷ) can be obtained
simply by the differentiations of the former function:

〈g (ŷ)〉 = g

(
1

i

d

dφ

)
Φy(φ)

∣∣∣∣
φ=0

. (1.2)

For example, for g(y) = y2, we have ( 1
i

d
dφ )2〈eiφ ŷ〉

∣∣∣
φ=0

= 〈ŷ2 eiφ ŷ〉|φ=0 = 〈ŷ2〉.

Gaussian random variables: Among the continuous random variables, the those
called the Gaussian random variables are of particular importance for the reasons
which we will see below in different occasions. The probability density for this type
of random variables (Gaussian distribution, for short) is of the following form:

p(G)(y) = 1√
2πσ 2

e−
(y−y0)2

2σ2 . (1.3)

Here y0 is the average, y0 = 〈ŷ〉, and σ 2 is the variance, σ 2 = 〈[ŷ−〈ŷ〉]2〉. The char-
acteristic function Φy(φ) for the Gaussian random variable takes especially simple
form,

Φ(G)
y (φ) = eiφy0 e−

σ2φ2

2 .

In case of y0 = 0, the average 〈ŷ2n+1〉 (n ≥ 0: integer) are 0 by symmetry, while

〈ŷ2n〉
(2n)!

= 〈ŷ2〉n
2n n!

. (1.4)

The reader might verify the identity 〈y f (y)〉 = 〈y2〉〈 f ′(y)〉, which is a simple
case of so-called Novikov’s theorem.

A particular aspect of Gaussian distribution is explored in the context of the
relation between fluctuation and response [6]. In Appendix A.1.2 we describe its
outline.

Mathematician’s view of random variables: The mathematician’s view of probabil-
ity is apparently somehow different from the physicists’ view, though the essential
notions are the same. The former view assumes a “fundamental” random variable,
ω̂, with the probabilities (or “measure”) P associated to each value of ω̂ in the
domain Ω . With some technical precision for the admissible ensemble (set) of those
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values,4 called family of sets, F , they define the “probability space” (Ω, P,F). If
Ω is a continuous set, one may imagine a monochrome canvas as Ω where the local
brightness corresponds to the density of probability.

In this setup, any other random variable, say X̂ , should be the function of the
fundamental one, i.e., X̂ = fX (ω̂). Each random variable X̂ has its own domain
ΩX and is associated by its own probabilities PX as well as the family of sets
FX . That is, a new probability space (ΩX , PX ,FX ) is produced. For the physi-
cists’ view, this change from ω̂ to X̂ could be interpreted as a change of resolution
of observation or measurement of a particular aspect of fluctuations. The ultimate
fundamental random variable should describe everything, leaving no room for the
fluctuation.

1.1.2.2 Stochastic Process

Random variable with more than one components: The random variable can have
more than one component. Coming back to the example of die, we can define a
random variable n̂ ≡ {n̂1, n̂2, n̂3} such that its three components n̂i (i = 1, 2, 3)
represent the numbers on a die upon three consecutive acts of casting. As another
example, we can define m̂ ≡ {n̂1+n̂2, n̂2+n̂3}with using the same n̂i (i = 1, 2, 3) as
above. In the latter case, the two components of m̂ are not independent. We can still
associate a probability to each realization of m̂. For example, we associate to m̂ =
{4, 8} the probability 1/108 since this is realizable by the two cases, {n̂1, n̂2, n̂3} =
{1, 3, 5} and {2, 2, 6}, each of which is realized with a probability 6−3. If the contin-
uous random variable has two components, say (ŷ1, ŷ2), the probability density has
also two variables, i.e., p(y1, y2), and the average of a random variable f (ŷ1, ŷ2) is
the double integral, 〈 f (ŷ1, ŷ2)〉 = ∫∫ f (y1, y2)p(y1, y2)dy1 dy2.

A multicomponent Gaussian random variable y = (y1, . . . , yd ) is defined through
its probability density

p(G)( y) = 1

(2π )d/2
√

det(M)
e−

1
2 ( y− y0)t M( y− y0), (1.5)

where y0 is the average, y0 = 〈 ŷ〉, M is positive definite symmetric d × d matrix.

The characteristic function Φy(φ) ≡ 〈eiφ· ŷ〉 is calculated as

Φ(G)
y (φ) = eiφ· ŷ0 exp

[
−1

2
φtM−1 φ

]
. (1.6)

4 Though we do not go into the detail of the technical precision, this is an essential point concern-
ing the continuous random variables. The situation is somewhat analogous and related to the fact
that the rational numbers are dense in the real number, but is very rare compared with irrational
numbers. See, p. 23 of [1].
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The meaning of the matrix M is made clear from Φ(G)
y (φ), which tells immediately

that 〈(yk − yk,0)(yl − yl,0)〉 = (M−1)kl, or M is the inverse of the covariance matrix,
〈( y − y0) ( y − y0)t 〉.
Stochastic process as a random variable: Especially important case of multicompo-
nent random variable is the case where the number of components is infinite and the
index to distinguish those components of the variable represents the “time.”5 We call
this random variable the stochastic process. Each realization of a stochastic process
is, therefore, a function of time. The time index, say t , of a stochastic process, say
ξ̂ , is represented either as the suffix like ξ̂t or as the argument of a function like ξ̂ (t).
In order to remind that a realization of stochastic process is a random variable, we
will sometimes call it the “path” and denote as ξ () where the generic index, t , is
suppressed.

When we talk about a function of a stochastic process, say f [ξ̂ ], in fact f [y]
is the functional which takes a function ξ () as variable. So is the probability den-
sity, p[y]. Then its average, 〈 f [ξ̂ ]〉, is obtained by performing infinitely multiple
integrals called the functional integral of the product f [y] p[y]. Each integral is
for each variable of integration, ξ (t), with the index, t . In this book we will not go
into details of the functional integral approach to the stochastic process. However,
we should always keep in mind that any average 〈 f [ξ ]〉 is not the average over the
value of ξ (t) with particular index t , but over the whole paths ξ (). It is only when
each component of ξ̂ obeys the mutually uncorrelated fluctuations that the average
〈ξ̂ (t)〉 reduces to the average over a single random variable, ξ (t).

Characteristic functional for the stochastic process: As an extension of the charac-
teristic function Φy(φ) for the single random variable, ŷ, we introduce the charac-
teristic functional for the stochastic process, ξ̂ [7]:

Φξ [φ] ≡
〈
exp

[
i
∫ ∞

−∞
φ(t)ξ̂ (t)dt

]〉
, (1.7)

where φ(t) is any real function of time with proper smoothness. The brackets have
the same meaning as before, that is, we should take the sum over all the possible
realizations of ξ̂ .

The Gaussian stochastic process is a straightforward generalization of Gaussian
random variable of multiple components. Later we will assert that the thermal ran-
dom force is a special type of stochastic process. We define this process by its char-
acteristic functional, Φξ [φ]. For simplicity, we consider the case where 〈ξ̂ (t)〉 = 0.6

Instead of the double sum in the bilinear form φtM−1 φ in (1.6), we need the double
integral with respect to the index of φ:

5 The range of t is supposed to be fixed unless mentioned otherwise explicitly.
6 We can simply redefine ξ̂ (t) − 〈ξ̂ (t)〉 as new ξ̂ (t).
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Φξ [φ] = exp

[
−1

2

∫ ∞

−∞

∫ ∞

−∞
φ(t1)K (t1, t2)φ(t2)dt1dt2

]
. (1.8)

As any order correlation 〈ŷn〉was given in terms of the variance and the average of ŷ
for a single-component Gaussian random variable, any N -point correlation function
for ξ̂ (t1), · · · , ξ̂ (tN ) of a Gaussian stochastic process is represented in terms of the
covariances, 〈ξ̂ (t j )ξ̂ (tk)〉. Taking twice the functional derivative of (1.8) with respect
to φ(t) and φ(t ′), and then letting φ(t) = 0 for all t , we see that the kernel K (t, t ′)
yields the correlation function of ξ̂ , that is,

K (t, t ′) = 〈ξ̂ (t)ξ̂ (t ′)〉. (1.9)

As another example of the usage of the characteristic function, let us calculate the
probability density 〈δ(ξ − ξ̂ (t)) for ξ̂ (t) at a time t . By choosing φ(t) = zδ(t), (1.8)
and (1.9) yield Φξ [zδ(t)] = 〈eizξ̂ (t)〉 = e−〈ξ̂ (t)2〉z2/2. We then have7

〈δ(ξ − ξ̂ (t))〉 =
∫ +∞

−∞
e−i zξ

〈
eizξ̂ (t)

〉 dz

2π
= e

− ξ2

2〈ξ̂ (t)2〉
√

2π〈ξ̂ (t)2〉 1
2

.

1.1.2.3 * Statistical Properties of Fluctuations as a Sum of a Large Number
of Random Variables

Independence of random variables: As a preparation to the description of the ther-
mal random force, we discuss here the statistical properties of the sum of a large
number of random variables, âi (i = 1, . . . , N with N  1).8 We suppose that
these variables are mutually independent (uncorrelated). That is, the probability to
realize âi = ai (where i = 1, . . . , ν are mutually distinct index) writes

Prob[{âi = ai }] =
∏

i

Prob[âi = ai ], {âi }: independent.

We assume further that these random variables share the same statistical properties.
For example, let us suppose that there is a huge container filled with a gas and

that we observe, in this container, N nonoverlapping domains of volume Δv. We
define the random variable âi as the total kinetic energy of the gas particles found at
a time within the i th domain. We assume that the sum of the volumes we observe,
NΔv, is much smaller than the total volume of the container and that each domain
is well separated from the other domains. Then, unless the gas is extremely dilute,
we expect that the random variables {âi } are mutually almost independent and that

7 We use
∫ +∞
−∞ e−i zξdz = 2πδ(ξ ) as well as

∫∞
∞ e−ax2

dx = √
π/a.

8 We use the notation âi instead of ŷi simply to emphasize the aspect that {âi } are different random
variables, rather than the components of a multicomponent random variable y.
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their probability densities are almost identical. In terms of the probability density,
we can express the independence as

p(a1, . . . aν) =
∏

i

pi (ai ), {âi }: independent.

As another example, let us suppose that we observe a temporary fluctuating
quantity ξ̂ (t) every Δt seconds and denote the result as ai (i = 1, . . . , N ), that
is, âi = ξ̂ ((i − 1)Δt). One could imagine that ξ̂ (t) represent the local temperature
at time t within a 1-hour period in a room with the interval Δt = 10 min, or the
intensity of sound produced by the flow of a river, and that we are interested in the
fluctuation between the result {ai } for a 1-hour period and that for another 1-hour
period. We suppose that the interval Δt is sufficiently long so that we can assume
that the random variables {âi } (i = 1, . . . , 6) are statistically almost independent.

Independently and identically distributed (i.i.d.) random variables: In the above
example, we can further assume that the probabilities Prob[âi = ai ] or the proba-
bility densities pi (y) (i = 1, . . . , ν) are identical. In this case we call these random
variables as independently and identically distributed (i.i.d.) random variables. If the
random variables âi (i = 1, . . . , N ) are i.i.d., the probability of the realization of
{ai ≤ âi ≤ ai + dai } (i = 1, . . . , N ) is

∏N
i=1(p(ai )dai ) with a common probability

density p(a) for a single random variable â.

Empirical average of i.i.d. random variables: We now define the empirical average
(or sample average) of these i.i.d. random variables:

ÂN ≡ N−1
N∑

i=1

âi .

Unlike the average of a random variable, the empirical average is still a random vari-
able. It is easy to verify that 〈 ÂN 〉 = 〈âi 〉(≡ a∗). Our interest is how the statistical
properties of ÂN change with N .9

We may intuitively expect that the probability for ÂN to take the value away
from a∗ decreases with N . In fact this is true but there are three different levels of
expression for this result, which we summarize briefly and intuitively here and leave
the detailed explanations in Appendix A.1.3.

Law of large numbers:

Prob[| ÂN − a∗| > ε] → 0 for N →∞. (1.10)

9 In composing the part below the author has referred to the lecture note by Y. Oono at the Univer-
sity of Illinois at Urbana Champaign together with his private communications.
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Roughly speaking, the error regarding the empirical average ÂN as the true
average a∗ becomes 0.

Central limit theorem:

Prob

[
| ÂN − a∗|

σ√
N

< c

]
→
∫ c

−c

e−
w2

2√
2π

dw for N →∞, (1.11)

where σ 2 is the variance of the individual random variable âi and c(> 0)
is a number independent of N . Roughly speaking, the error in ÂN with
respect to a∗ is typically confined within the range of σ√

N
Large deviation property: Given a x independent of N ,

Prob[ ÂN − a∗ = x] ∼ e−N I (x) for N →∞, (1.12)

where I (x) is independent of N and satisfies I (0) = 0. Roughly speaking,
the probability that ÂN deviates from a∗ by x , which is eventually large as
compared with σ√

N
, becomes exponentially small with N .

The result (1.11) first indicates that, usually, the fluctuations of the “macro-
variable” ÂN (∼ N ) do not fluctuate visibly because its typical deviations, ÂN −a∗,
are of order of N− 1

2 . Second, the typical deviations, ÂN − a∗, for large N can be
simulated by a Gaussian distribution to a good approximation.

The reason that the probability of large deviations x in (1.12) decreases exponen-
tially could be understood qualitatively as follows: For the random variable ÂN −a∗

to realize a large value beyond ∼ N−1/2, it is necessary that a certain fraction of the
components {âi }, say φ (0 < φ < 1), must take those values which are not close to
its average value, 〈âi 〉. If we denote by p∗ the probability for an individual random
variable âi to realize such exceptional values, then we have a rough estimation:
PN (A) ∼ p∗φN = e−Nφ| ln p∗|.

1.1.2.4 * Thermal Random Force – Idealized Fluctuating Force Due
to Micro-Mechanics

The law of large numbers, central limit theorem, and the large deviation property
introduced in Sect. 1.1.2.3 are the properties of the random variables which are not
limited to the Brownian movement. In this book, however, we will mainly consider
the case where the fluctuations have their origin in the mechanical motions of a large
number of microscopic molecules. Moreover, we will limit our scope to the fluctua-
tions in the environment near thermal equilibrium. For the simplicity of description,
most of the descriptions hereafter refer to the system in one spatial dimension.10

10 Sections 1.1.3.4 and 1.2.1.5 deal with the more than one dimensions.
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As an example, let us consider the simple Brownian motion, i.e., the random
motion of a fine particle (Brownian particle) freely suspended in the fluid at rest
with a homogeneous temperature. The fluid molecules undergo the collisions with
the Brownian particle. We are interested in the character of the force from the fluid
molecules onto the Brownian particle. It would, however, be too difficult to describe
those forces with the temporal resolution of the microscopic characteristic time τm,
which is related to the collisions of individual fluid molecules upon the Brownian
particle. Only the full molecular dynamic simulations can do it. But we are not
interested in the detailed information of the movement of the fluid molecules. We,
therefore, focus on the following aspects:

Single process: We look for a model of stochastic process of the Brownian particle,
i.e., the generator of individual realizations of the motion of the Brown-
ian particle. It means that we do not model the ensemble average of the
force at a given instant of time. If we do the average of some quantity, it
should be related to the temporal accumulation or empirical average (see
Sect. 1.1.2.3) in a single realization.

Mesoscipic object: We are not interested in the detailed motion of the water
molecules either causing the motion of the Brownian particle or respond-
ing to the Brownian particle. We only look at the Brownian particle and
need a good description on the mesoscopic level.

Mesoscopic timescale: We want to know the coarse-grained force along the time
axis, i.e., the rate of momentum transfer, on the Brownian particle, being
averaged over a timescale which is much larger than the microscopic
time, τm.

Statistical reproducibility: It is sufficient to have a good dynamical model which
reproduces the statistical characteristics of the actual force or actual motion,
and we do not need to predict the random motion of the Brownian particle
from a particular initial condition.11 In other words, we look for a model
of the stochastic process which generates the ensemble of paths approxi-
mately identical to the ensemble of observed processes.

We should immediately say that it is not evident to be able to find the closed descrip-
tion for the force that satisfies the above conditions. If the environment of the Brow-
nian particle has a significant longtime memory, we may not separate the motion of
the Brownian particle from the dynamics of the environment. In this book we will
not study what microscopic conditions are necessary to realize such an environment.
When the environment allows the descriptions under the above constraints, we call
such environment the thermal environment.

11 In fact, any high-resolution setup of the initial condition cannot control the chaotic molecular
motion for the time  τm.
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Next we shall consider the collision force due to the fluid molecules on the Brow-
nian particle over the duration of observation Δt .12

(1) First we consider a hypothetical situation where the Brownian particle is fixed
in space. For Δt much smaller compared with τm, the force of collision by the
fluid molecules from the left or from the right will be at most a single spike
(Fig. 1.1a, top).

(2) For Δt  τm, the number of collisions by water molecules, n̂, will be numerous
with various amplitudes of force (Fig. 1.1a, bottom). The cumulated momentum
transfer during Δt , or

∫
Δt ξ̂tot(t)dt , may obey approximately the Gaussian dis-

tribution (Fig. 1.1b).13

From the symmetry of the setup, the average of this distribution must be
0. Moreover, since the Brownian particle undergoes many random collisions
with water molecules during Δt , the cumulated momentum transfer over this
timescale should be sharply peaked around this average, according to the law of
large number. In the same context, the fluctuation around the average, which is∫
Δt ξ̂tot(t)dt itself, should behave as a Gaussian random variable, except for the

very rare large deviations.

(a) (b)

time

time

t + Δ tt

(Δt: large)

(Δt: small)

force

force

Fig. 1.1 (a) Schematic time series of the force on a Brownian particle during Δt , which is small
(top) or large (bottom) as compared with microscopic time. (b) The distribution of the cumulated
momentum transfer during a large Δt

12 The argument below is suggested by R. Kawai, Arabama University.
13 The force on the timescale Δt is (Δt)−1 times the total momentum transfer cumulated over Δt .
(When the Brownian particle is fixed by an apparatus, this momentum is further transmitted to the
apparatus.)
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If the water does not have a long-term memory as we suppose, the random
variable

∫
Δt ξ̂tot(t)dt for a time interval Δt and that for another time interval

Δt just next to the former should be independent. If Δt is small enough as
compared with the characteristic timescale of the Brownian movement itself,
we may find such an N  1 that NΔt is still small compared with the latter
timescale. We then have a model of random force as i.i.d. random variables.

(3) Next we suppose that the Brownian particle moves forward with a constant
velocity V relative to the fluid environment, which we define to be at rest.
The dominant collisions then come from the front of the moving particle.
For the velocity V not being very large, we may assume a linear relationship
between

∫
Δt ξ̂tot(t)dt and V . We will characterize this relationship by a coeffi-

cient γ (> 0) as follows:

〈∫

Δt
ξ̂tot(t)dt

〉
= −γ VΔt, (1.13)

where the minus sign on the right-hand side indicates that the average force
should act so as to resist the movement of the Brownian particle. By this physi-
cal interpretation, we call γ the viscous friction coefficient.

(4) What about the remaining fluctuations of
∫
Δt ξ̂rem(t)dt ≡ ∫

Δt ξ̂tot(t)dt − (−γ
VΔt)? By definition the average of

∫
Δt ξ̂rem(t)dt is zero. Whether V = 0 or not,

there underlie many independent degrees of freedom. By the same reason as in
(2) above, the fluctuation must, therefore, be well approximated by a Gaussian
random variable.14 We further approximate that as Gaussian random variable∫
Δt ξ̂rem(t)dt for V �= 0 is of the same character as

∫
Δt ξ̂tot(t)dt at rest (V = 0).

We then follow the approach by Langevin [8]. We introduce a stochastic process
ξ̂ (t) (t being the time) as an idealized force acting on the Brownian particle at rest.
This idealized force ξ̂ (t) is aimed to be used on the time resolution Δt much larger
than the microscopic time τm. Under this constraint, the time correlation function
(i.e., the covariance) of ξ̂ (t) can be made simple:

〈ξ̂ (t)ξ̂ (t ′)〉 = 2b δ(t − t ′) (thermal random force).

Moreover, by the above argument (2) we assume that ξ̂ () is a Gaussian random
variable or Gaussian (stochastic) process. That is, in (1.8) we choose K (t, t ′) as

K (t, t ′) = 〈ξ̂ (t)ξ̂ (t ′)〉 = 2b δ(t − t ′) (thermal random force), (1.14)

where b(> 0) is a constant to be determined later in relation to the coefficient γ and
also to the temperature of the environment. We will call ξ̂ () thus defined the thermal
random force.

14 The above argument is adopted from the lecture note by Y. Oono, UIUC.



1.1 Random Events or Fluctuations 17

Remark 1 Generally the Gaussian stochastic process with the property of (1.14) is
called white Gaussian (stochastic) process, since its frequency spectrum does not
depend on the frequency like white light.15 As mathematical object, ξ̂ is singular
and cannot be formulated as it is. The Wiener process and the stochastic calculus
which we will describe later have been developed to circumvent the difficulty.
Remark 2 As model of physical random force on the Brownian particle, however, we
should remember that in the context of (1.14) t �= t ′ always implies |t − t ′|  τm

and that the equality t = t ′ has to be understood as |t − t ′| ≤ Δt , where Δt  τm.
In this context, we may replace δ(t) by any sharply peaked but smooth function
δ̃t that mimics δ(t), keeping the identity

∫ +∞
−∞ δ̃tdt = 1. The formula about the δ-

function such as −tδ′(t) = δ(t) may no more hold for δ̃(t) since −t δ̃′(t) has double
peak. However, as long as the peak is narrower than Δt the replacement, δ(t) →
δ̃(t), makes no difference on the calculation of quantities of the time resolution
(smoothness) coarser than τm.
Remark 3 With (1.8) and (1.14), the thermal random force as white Gaussian
stochastic process is characterized by the characteristic functional:

〈
ei
∫∞
−∞ φ(t)ξ̂ (t)dt

〉
= e−b

∫∞
−∞ φ2(t)dt . (1.15)

1.1.3 Free Brownian Motion Is the Force-Free Motion
of Mesoscopic Objects in a Thermal Environment

1.1.3.1 * Free Brownian Motion

We now relate the motion of a Brownian particle to the thermal random force.
We continue to assume that the thermal environment of the Brownian particle is
macroscopically homogeneous at a temperature T and that the environment is at
rest as a whole. We will ignore the gravitational force and the buoyant force on the
Brownian particle. Then, we define free Brownian motion as the random motion of
the Brownian particle as stochastic process which is caused by the thermal random
force characterized by the parameters γ and kBT (kB is the Boltzmann constant).

The free Brownian motion is fundamental for the dynamics of a particle in the
fluctuating world just as that the force-free motion at a constant speed in vacuum
was fundamental for the classical mechanics governed by the Galilean principle of
relativity and the Newton’s laws. In both cases the motions are realized under no dis-
tant external forces on the moving object, one in vacuum and the other in a thermal
environment. We will see later that the general motions of a mesoscopic object in a
thermal environment are described as modifications of the free Brownian motion in
the presence of external forces, just like that the motions in classical mechanics are
described as modifications of the force-free motion due to the extrenal forces.

15 The remarks on the mathematical treatment of δ(t) will be given later in Sect. 1.2.3.1.
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However, the microscopic origin of the free Brownian motion is the deterministic
mechanics. Therefore, we seek to formulate the free Brownian motion from the
viewpoint of Newtonian mechanics while we keep the timescale of interest much
larger than τm. To this end, we take into account all the mechanical forces that the
Brownian particle receives from the thermal environment. From the argument in
the Sect.1.1.2.4, first of all there is a random thermal force, ξ̂ (t), that is, a white
Gaussian process (1.14) with the average 0, 〈ξ̂ (t)〉 = 0. Another force is the viscous
friction force, −γ v(t), where v(t) is the velocity of the Brownian particle at time
t with respect to the thermal environment. (See (1.13) in the previous subsection.)
The viscous friction force can be written either as −γ p/m or as −γ dx/dt , where
m, p, and x are, respectively, the mass, momentum, and position of the Brownian
particle:16 We, therefore, have the following Newtonian-like equations of motion of
free Brownian motion:17

dp

dt
= −γ p

m
+ ξ (t),

dx

dt
= p

m
. (1.16)

See Fig. 1.2a for the trajectory of x(t) obtained by solving (1.16).18

Einstein introduced the basic concepts of the Brownian motion [9]. We refer
the readers to Sect. 1.2.1 of [1] for his original reasoning. Einstein’s paper finally
convinced people that the heat is molecular motions [4]. The Brownian particle was
the testimony of the thermal motion. In this book we will see how the heat in the
thermal environment turns into the energy of the Brownian particle and vice versa.

(a) (b)

Fig. 1.2 Two-dimensional trajectories of a free Brownian particle. (a) A solution x(t) of (1.16),
(b) A solution x(t) of (1.19). In (a), the velocity of the Brownian particle (∼ vth) is approximately
maintained along the segment for ∼ vth(m/γ ). In (b) the trajectory shows fictive fine structures
even below the length vth(m/γ )

16 We ignore the renormalization of the mass m due to the entrainment of the fluid molecules. See
the remark after (1.16).
17 Hereafter, we will often omit the hat, “ˆ”, which signifies the stochastic process. In fact ξ (), p,
and x in (1.16) are stochastic processes.
18 The figures are drawn by simple program: (pn+1 − pn)/Δt = −Γ (pn+1 + pn)/(2m) + Ξn ,
(xn+1 − xn)/Δt = (pn+1 + pn)/(2m), where m = Δt = 1 and Ξn are i.i.d. Gaussian random
variables with zero average. In (a) Γ = 0.1 and in (b) Γ = 2.



1.1 Random Events or Fluctuations 19

Remark About the Effect of Inertia

The above equations are not invariant under the Galilee transformation, p → p −
mV and x → x − V t , with a constant velocity, V . It is understandable because
Galilean invariance applies to the whole system consisting of the Brownian particle
plus the thermal environment. If we also displace the latter, the term ξ (t) should also
undergo the Galilean transformation so that the whole equation is invariant.

On the microscopic scale, those microscopic molecules which once collided
with the Brownian particle can be reflected by other molecules. Then the former
molecules can eventually return the momentum to the Brownian particle, either
directly or indirectly. This type of correlated collisions makes a network, and the
whole effect may have a memory.

The universal point of view to see the effect of inertia, either macroscopic or
microscopic scale, is the conservation of momentum. Equations (1.16) do not con-
serve the momentum by itself. In fact, the momentum conservation of the particle
plus environment adds a memory effect to ξ (t), called (hydrodynamic) longtime tail
[10, 11]. In constructing (1.16) we assumed that the effect of inertia of the Brownian
particle is more important than that of the surrounding fluid. When the mass density
of the bead is comparable to that of the surrounding fluid, the neglect of the total
momentum conservation is very crude approximation and the memory in ξ (t) is
not negligible at short time. Equation (1.16), therefore, requires attentions when we
compare with experiments. The same remark also applies to the Langevin equation
with inertia ((1.31) below). On the other hand, the equation that neglects the inertia
((1.19) below) or its generalization to Langevin equation ((1.32) below) is more
generally valid for actual situations. The trade-off is that the latter equations have
poorer time resolutions, as we shall see below. The memory effect will be discussed
in Chap. 6.

Einstein Relation

The compatibility requirement between (1.16) and the canonical equilibrium dis-
tribution (Maxwell distribution) of the particle velocity leads to the relation named
after Einstein:

b = γ kBT, (1.17)

where b appeared in (1.14). Therefore, the thermal random force ξ (t) as the Gaus-
sian white noise is finally characterized by the following relations:

〈ξ (t)〉 = 0, 〈ξ (t)ξ (t ′)〉 = 2γ kBT δ(t − t ′). (1.18)

The derivation is as follows: From (1.16) we calculate the longtime average of
the kinetic energy of the Brownian particle,

p2

2m
= lim

t→∞
1

t

∫ t

0

p(t ′)2

2m
dt ′.
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By substituting into this integral a particular solution of the first equation of (1.16),
say, p(t ′) = ∫∞0 e−(γ /m)u ξ (t ′ − u)du, we have

p2

2m
= lim

t→∞

∫ ∞

0

∫ ∞

0

e−
γ

m (u1+u2)

2m

[
1

t

∫ t

0
ξ (t ′ − u1)ξ (t ′ − u2)dt ′

]
du1du2.

Since the thermal random force ξ is the stochastic process having effectively no
time correlation (see (1.14)), the longtime average (i.e., the empirical average) in
the angular brackets with large t is the average over many independent random vari-
ables. By the law of large numbers (see Sect. 1.1.2.3), such average should converge
in the limit of t →∞ to the (ensemble) average, 〈ξ (t ′−u1)ξ (t ′−u2)〉 = 2bδ(u1−u2)
(see (1.14)).19 By performing the remaining integrals with respect to u1 and u2, we
find

p2

2m
= b

2γ
.

Now that we apply the same logic of the law of large numbers directly to the left-
hand side, i.e., the kinetic energy of the Brownian particle. If the temporal fluctua-
tion of the kinetic energy has only a finite correlation time, which we expect to be
of order of m/γ , its longtime average (i.e., the empirical average) must converge to
the (probabilistic) average. The latter can be calculated using the canonical partition

function at temperature T . The result is p2

2m = kBT
2 , being known as the law of

equipartition [4].20 Equating the last two estimates of the kinetic energy, we obtain
b = γ kBT .

The Time Coarse Graining of the Equation of Free Brownian Motion

In case that the time resolution, Δt , is much larger than the characteristic time,
m/γ ( τm), the two Equations (1.16) can be replaced by the following equation
having no inertia term:

0 = −γ dx

dt
+ ξ (t). (1.19)

See Fig. 1.2b for the trajectory of x(t) obtained by solving (1.19).
The derivation is as follows: We substitute the solution of the first equation of

(1.16), i.e., p(t ′) = ∫∞0 e−(γ /m)u ξ (t ′ −u)du, into the second equation of (1.16). The
result writes

19Note that we have not used the ensemble average, but used the convergence of the empirical
average, ξ (t ′ − u1)ξ (t ′ − u2), to the ensemble average, 〈ξ (t ′ − u1)ξ (t ′ − u2)〉.
20 We did all the calculations in one dimension. The generalization to three dimensions does not
change the result.
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0 = −γ dx(t)/dt + ξ̄ (t), ξ̄ (t) ≡
∫ ∞

0

γ

m
e−

γ

m uξ (t − u)du. (1.20)

The newly defined thermal random force, ξ̄ , is also the Gaussian process with zero
average, 〈ξ̄ (t)〉 = 0. The temporal correlation of ξ̄ is21

〈ξ̄ (t)ξ̄ (t ′)〉 = 2γ kBT
[ γ

2m
e−

γ

m |t−t ′|
]
� 2γ kBT δ(t − t ′).

The last equation is justified as long as the temporal resolution Δt satisfies Δt 
m/γ . By redefining ξ̄ as ξ we arrive at (1.19).

Remark 1 We have derived (1.19) without taking the statistical average of (1.16).
That is, a particular realization of free Brownian motion looks differently under
different time resolutions.22 When an evolution equation bears a time resolution Δt ,
the solutions of the equation contain reliable information only in their frequency
components with the frequencies smaller than (Δt)−1. In other words, if we calcu-
late the time integral of the solution with another function of time, the latter must
vary on the timescale larger than Δt . Otherwise the result may lead to unphysical
conclusion. For example, if we solve (1.19) ξ (t) using a path of Gaussian white
noise, the solution x(t) behaves like that of (1.16) only on the timescales coarser than
m/γ . This explains the difference in the trajectories in Fig. 1.2. If we were to calcu-
late the velocity dx/dt using the (1.19), it is unboundedly large! 23 In short, (1.19)
is useless for the study of the momentum, p = m dx/dt , while (1.16) describes a
finite p.
Remark 2 The Eq. (1.19) contains no characteristic timescales. It implies that this
result is universal for all the time resolutions well beyond m/γ . In other words, the
further coarse graining of this equation leaves the form of equation invariant.

1.1.3.2 * Diffusion by the Free Brownian Motion and the Einstein Relation

The Eq. (1.16) implies that, due to the inertia effect, a Brownian particle keeps its
velocity and orientation of movement during the time ∼ m/γ , while the velocities
at the times separated more than ∼ m/γ are no more correlated among each other.
From (1.16) we can calculate the mean square displacement (MSD), which yields24

〈[x(t) − x(0)]2〉 = 2D|t |, for |t |  m/γ , (1.21)

21 We already use the Einstein relation (1.17).
22 It is like that the real function

√
x2 + 1 behaves like |x | for x2  1 but not for x2 ∼ 1.

23 In fact, if there were a bound M for the white Gaussian process such that |ξ (t)| < M , we would
have |〈ξ̄ (t)ξ̄ (t ′)〉| < M2, which contradicts with the correlation condition (1.18).
24 More generally, for the diffusion taking place in d-dimensional space (d = 1, 2, or 3), we should
replace 2D in (1.21) by 2d D.
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where

D = kBT

γ
. (1.22)

One can obtain the same formulas from (1.19), formally for any |t |, but |t |  m/γ

is always assumed (see the Remark 1 of Sect. 1.1.3.1).
The result (1.21) implies that the net displacement of a Brownian particle during

the time t is typically ∼ √
2Dt . This type of behavior is called diffusion with the

diffusion coefficient, D. The formula (1.22) which relates D with the viscous fric-
tion coefficient γ is also called the Einstein relation. In Sect. 3.3.1.6 we will see that
the Einstein relation is required for the detailed balance condition.

The relation (1.22) can be understood qualitatively by recalling the central limit
theorem.25 We approximate the trajectories of the Brownian particle as the piece-
wise linear steps, x(t) − x(0) = ∑N

i=1 âi . Each linear segment âi corresponds to
the time (m/γ ) during which the Brownian particle moves at a constant velocity.
This velocity is typically of thermal velocity, vth = √

kBT/m, derived from the
law of equipartition mentioned above. Then the distance of each segment |âi | is
vth(m/γ ) and the number of segments N is therefore N = t/(m/γ ). Every steps
are independent, and the MSD after the N steps is

√
N vth(m/γ ). 26 Identifying the

MSD with 2Dt we recover (1.22) up to a constant factor.

Let us consider the composition of the Einstein relation (1.22).

Effect of Temperature: We understand that the diffusion coefficient depends both
on a kinetic factor γ and a thermodynamic factor kBT . The former indicates how
tightly a Brownian particle is coupled to its environment, while the latter represents
how strong fluctuations are there in the environment. For liquid environments, γ is
usually a decreasing function of temperature.27 Therefore, D usually increases with
temperature.

Effect of the size of Brownian particle: As to the dependence on the size of Brow-
nian particle, γ is larger for a larger Brownian particle.28 Thus, a larger Brownian
particle receives stronger thermal random forces, since ξ (t) scales with

√
γ kBT/τm

25 Originally Einstein has derived this relation by considering a stationary density distribution of
suspending particles in fluid under the gravitation [14]. He required the compatibility between the
thermodynamic argument, “The stationary state is the balance between the gravitational force and
the osmotic pressure,” and the kinetic argument, “The stationary state is the balance between the
sedimentation and the diffusion.”

26
〈(∑N

i=1 âi

)2
〉
= ∑N

i=1〈(âi )2〉 = N 〈(âi )2〉, where we used 〈âi â j 〉 = 0 for i �= j because of the

independence.
27 The fluid viscosity η is usually a decreasing function of temperature, and η and γ are propor-
tional in many cases.
28 For a spherical particle in an incompressible simple viscous fluid (Newtonian fluid), γ is linearly
proportional to the radius of the particle [15].
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(see (1.18)).29 However, a larger particle receives also stronger frictional forces∝ γ .
Since the latter effect is more important for large γ , the thermal random force has
little influence on the motion of the macroscopic objects.

Which to measure, D or γ ?: For some experiments the spontaneous movements
are easier to measure than the response under external driving. For some theories
the situation could be reversed. One can study either D or γ , thanks to the Einstein
relation. For example, experimentalists [12] measured the 1D diffusion coefficient
D of a rod-like filament (microtubule) on a substrate coated with inactivated molec-
ular motors (dyneins). A theory [13] explained their result through the estimation of
γ when the filament is driven at a constant velocity.30

Probability Density of the Displacement and the Diffusion Equation

With the time resolution of t  m/γ , we will evaluate the probability density for
the displacement x̂(t) − x̂(0).31 It is written as P(X, t) = 〈δ(X − [x̂(t) − x̂(0)])〉.
Using (1.19), we can show that

P(X, t) = 1√
4πDt

e−
X2

4Dt . (1.23)

That it takes the form of Gaussian distribution is the general consequence of the lin-
ear combination of Gaussian random variables. The derivation is given in Appendix
A.1.4.

From (1.23) we can verify that the distribution function P(X, t) obeys the fol-
lowing partial differential equation called the diffusion equation:

∂P

∂t
= D

∂2 P

∂X2
. (1.24)

1.1.3.3 Diffusion Transport or Active Transport?

If we estimate the mean velocity of displacement
√

2Dt/t from (1.21), it attains
as large as the thermal velocity of the Brownian particle, vth = √

kBT/m. Small
biological organisms use this rapid mechanism of transport more efficient than, for
example, the protein molecular motor. However, for a large distance or for a long
time, the mean velocity

√
2Dt/t becomes eventually very small, and the diffusion

is no more an efficient way of transport.
What then is the characteristic length scale �D below which the transport by

diffusion is efficient? In order to answer this question, let us compare the distance of
diffusion

√
2Dt with the distance by motor transport, vmt , where vm is the velocity

29 The last factor τ−1
m comes from δ(t − t ′) in (1.18).

30 The cycles of stochastic binding and unbinding between the motors and the filament cause the
dissipation called the “protein friction” [13].
31 The hat ˆ indicates again the random variables.
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of a protein motor along a cytoskeletal filament. Assuming the typical values as
2D ∼ 10−9cm2/s and vm ∼ 10−4cm/s, the equality about the time (�D )2

2D = �D
vm

yields �D � 10−5cm or 100 nm.
For example, the neurotransmitter diffuses the gap (∼ 50 nm) between the presy-

naptic cell membrane and the postsynaptic cell membrane. On the other hand, the
cellular organelle are transported by protein motors in the cells (∼ μm). These
two facts are consistent with the separation criterion by �D estimated above. By
contrast, the diffusive signal transport of small “morphogen” molecules in embryos
(∼ 500 μm) looks surprising. In fact it was found recently that the morphogen trans-
port is carried by an active intercellular transport (trans-cytocis) [16].

1.1.3.4 An Extension: Free Brownian Motion of an Anisotropic Object

A free Brownian motion in D-dimensional space can be generalized to the case
where the diffusing object is anisotropic [17, 18]. One can imagine a rod-like object,
for example. Such an object then undergoes the rotational random motion as well as
spatial diffusion. Below we illustrate the 2D case [19, 21].32

For an object of any shape, there is a point what we call the “center of diffusion”
[20], whose position we denote by x(t) = (x1(t), x2(t)) in space-fixed coordinate,
and two mutually orthogonal axes, which we distinguish by the symbol ‖ and⊥. The
orientation of the object at time t is defined by the instantaneous angle θ (t) made
by the ‖-axis of the object and the x-axis of an experimental frame. (Therefore,
only θ modulo π has physical meaning.) The Brownian motion of the object can be
described by the following equations [19]:

dθ

dt
=
√

2Dθ ζθ (t), (1.25)

dx
dt

=
[√

2D‖ û‖ ût
‖ +

√
2D⊥ û⊥ ût

⊥
]
· ζ (t), (1.26)

where Dθ = kBT /γθ , D‖ = kBT /γ‖, and D⊥ = kBT /γ⊥ are the diffusion coeffi-
cients determined from the shape of the object, and ût

‖(t) ≡ (cos θ (t), sin θ (t)) and
ût
⊥(t) ≡ (− sin θ (t), cos θ (t)) are the transpose of û‖(t) and û⊥(t), respectively. We

have also introduced the (normalized) independent thermal random forces, ζθ (t) and
ζ t (t) = (ζ1(t), ζ2(t)), such that

〈ζθ (t)〉 = 〈ζ1(t)〉 = 〈ζ2(t)〉 = 0,

〈ζθ (t)ζ1(t ′)〉 = 〈ζ1(t)ζ2(t ′)〉 = 〈ζ2(t)ζθ (t ′)〉 = 0,

〈ζθ (t)ζθ (t ′)〉 = 〈ζ1(t)ζ1(t ′)〉 = 〈ζ2(t)ζ2(t ′)〉 = δ(t − t ′). (1.27)

32 Experimental realization of 2D Brownian motion requires attentions both by technical [21] and
fundamental [22] reasons.
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It takes a finite time to reorient the anisotropic object by the rotational diffusion.
During this time, the object diffuses spatially in the direction for which the diffusion
constant is large. By this reason, the spatial trajectories of the anisotropic object
show some memory, even if we ignore the inertia. See Fig. 1.3 for the comparison
between the diffusion of an isotropic molecule and that of an anisotropic one. If D‖
is much larger than D⊥, the trajectory looks to have the characteristic length scale
∼ π

(
D‖/Dθ

)1/2
over which the preferential local axis of the diffusing object is kept

approximately constant.
While Eq. (1.26) takes a simple form, the form is not similar to the previous

Eq. (1.19), which resembles more to the Newtonian equation. In fact (1.26) can be
rendered to the form more analogous to (1.19) [23]:

0 = −Γ · dxdt +Ξ(t) (1.28)

with

Γ = γ‖ û‖ ût
‖ + γ⊥ û⊥ ût

⊥, Ξ(t) = û‖ ξ‖(t) + û⊥ ξ⊥(t), (1.29)

where the thermal random forces satisfy 〈ξ‖(t)〉 = 〈ξ⊥(t)〉 = 0, 〈ξ‖(t)ξ⊥(t ′)〉 = 0
and

〈ξ‖(t)ξ‖(t)〉 = 2γ‖kBT δ(t − t ′), 〈ξ⊥(t)ξ⊥(t)〉 = 2γ⊥kBT δ(t − t ′). (1.30)

The latter form makes explicit that the actual motion of x is the superposition of
(instantaneous) 1D Brownian motion along û‖ and û⊥. The transformation between
the two representations is given by the formula:

ξ‖ =
√

2γ‖kBT û‖ · ζ (t), ξ⊥ =
√

2γ⊥kBT û⊥ · ζ (t).

Even if the orientation of the particle is not observable, the spatial trajectory
presents some informations on the rotational Brownian motion. If D‖ �= D⊥, the
data of x(t) are in principle enough to find the values of these parameters and that
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Fig. 1.3 Numerically generated trajectories of isotropic Brownian particle (thick dot: left) and of
anisotropic Brownian particle (thick bar: right) (Adapted from Fig. 2 in [19])
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of Dθ [21, 19].33 The most important point is that the diffusion phenomena does
not reflect the “head” and “tail” of the diffusing object. That is, even if the shape of
the object does not have any mirror symmetry, the linear relation (1.26) between dx

dt
and ζ (t) preserves the invariance under û‖ ↔ −û‖ and û⊥ ↔ −û⊥. A consequence
of this fact [24, 25] will be discussed in Sect. 1.3.4.2.

1.2 Construction of Langevin Equations

1.2.1 Langevin Equation Can Be Intuitively Constructed, But Is
Derivable from Micro-Mechanics Through the Markov
Approximation

The Langevin equation can be introduced as a natural generalization of the equa-
tion for the free Brownian motion. However, the Langevin equation can also be
derived from microscopic equations of motion. A good and simple example has been
presented by Zwanzig [3] (also by Ford, Kac, and Mazur [26]), where a Langevin
equation is derived through direct integration of the variables of small “molecules.”
Then, by mid-1970s, Zwanzig, Mori, Kawasaki, and others have developed more
general and systematic methods to derive the Langevin equation. They used the
technique of projection operators.

1.2.1.1 * From Free Brownian Motion to Langevin Equation

The equation of motion of a particle in classical mechanics is based on the equation
of force-free motion, dp/dt = 0, supplemented with the terms representing applied
forces (Newton’s second law). Similarly, the equation of motion of a particle in a
thermal environment is generally described by supplementing the equation of free
Brownian motion with terms representing applied forces.34 Especially, if the applied
force is caused by a potential energy, U (x, a), the modified equation should take the
following form, which we call the Langevin equation [8]:35

dp

dt
= −∂U (x, a)

∂x
− γ

p

m
+ ξ (t),

dx

dt
= p

m
, (1.31)

33 In two dimension, the equations are explicitly solvable by integration, since the angular part
can first be solved separately. In three dimension, it is not the case because of the non-Abelian
character of rotation [27], as well as the possible couplings between rotation and translation for
chiral particles.
34 What then corresponds to the Newton’s third law? This is the subject the chapters from Chap. 4.
35 English translation of the original paper of Langevin is found in [8].
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where m, p, x , γ , and ξ (t) are defined as before, and a is the parameter by which the
potential energy U can be changed through an external operation.36 For a moment
we assume that the parameter a does not depend on the time, t .

If the time resolution of our interest, Δt , is such that Δt  m/γ , and if γ and T
are constant in time, we can replace (1.31) approximately by the following equation
without inertia term (cf. (b) in Sect. 1.1.3.1).

0 = −∂U (x, a)

∂x
− γ

dx

dt
+ ξ (t). (1.32)

The derivation from (1.31) to (1.32) will be given later (Sect. 1.3.2). The Eqs. (1.31)
or (1.32) are called the Langevin equations. In both cases we recall that ξ (t) is the
white and Gaussian stochastic process satisfying (1.18). The equations of motion
for the free Brownian particle is the special cases of Langevin equation.

1.2.1.2 Macroscopically Mimicked Thermal Environment
and Langevin Equation

It is possible to simulate mechanically the thermal random force. There, both kBT
and γ are the adjustable parameters and can be chosen so that the relation b =
γ kBT be satisfied. In the experimental setup of [28], macroscopic charged metallic
balls are confined in a circular channel and subject under mechanical agitations
with the (quasi) white noise spectrum. In the presence a harmonic binding force,
the motion of a ball obeys the Langevin equation m d2x

dt2 = −γ dx
dt − K x + ξ (t),

where m and x are the mass and displacement of the ball, respectively, and K is
the force constant of the binding force. In the steady state x and the momentum
p = m(dx/dt) should, therefore, reproduce a Gaussian canonical distribution. In
the overdamped limit (m/γ � γ /K ) where the inertia term can be neglected, the
probability density for x(t) at time t( m/γ ) is known and called the Uhlenbeck–
Ornstein formula [29] (see also [30]):

PUO(x, t |x0) = K 1/2

(2πkBT (1 − e−2t/τ ))1/2
exp

[
−K (x − x0e−2t/τ )2

2kBT (1 − e−2t/τ )

]
, (1.33)

where τ = γ /K and x0 is the initial position of the mass at t = 0. The com-
parison of (1.33) with the experimental observation gives the values of τ, K , and
kBT . The kBT and γ are the fictive temperature and the fictive friction coeffi-
cient of this mechanically mimicked thermal environment and the coupling between
the mass and this environment. The parameters should be consistent with the
formulas of equipartition 〈p2〉/(2m) = kBT /2 (measurable only for the time

36 In the literatures, the control parameters are often denoted by the greek characters, α, λ, λt , etc.,
and are distinguished from the roman characters for the fluctuating variables, x , etc. In this book,
however, we will often use the roman characters also for the control parameters, like a. Although
such choice makes no essential differences, our standpoint is that the roles of x and a are relative
in certain cases, especially when we are interested in different scales of descriptions.
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resolution, Δt � m/γ ) and K 〈x2〉/2 = kBT /2, and also with the Einstein’s rela-
tion, γ = kBT /D.37 Finally the artificial thermal random force is characterized by
〈ξ (t)〉 = 0 and 〈ξ (t)ξ (t ′)〉 = 2γ kBT δ(t − t ′).

1.2.1.3 * Derivation of a Langevin Equation from Micro-Mechanics:
An Example

In Sect. 1.1.3.1 we supposed that the thermal environment around a Brownian parti-
cle represents a large number of microscopic molecules that interact with the Brow-
nian particle. In order to obtain the Langevin equation for the Brownian particle,
we need to eliminate from pure mechanics equations all the rapidly varying degrees
of freedom, that is the position and the momentum of the fluid molecules, {x j , p j }
( j = 1, . . . , N with N  1). Through this operation, an isolated mechanical sys-
tem containing a Brownian particle and a large number of microscopic molecules
is turned into a Brownian particle and the thermal environment, with or without
external forces.

Zwanzig [3] presented an example in which the above mentioned operation can
be explicitly performed. What we will present here is a simplified version of his
model.38 Let us denote by {X, P} the position and the momentum of the Brownian
particle and suppose that there is no other slowly varying degrees of freedom. We
introduce the following Hamiltonian:

H = P2

2
+

N∑

j=1

p j
2

2m
+U (X, {xk})

U (X, {xk}) = U0(X ) +
N∑

j=1

mω j
2

2

{
x j − γ j

mω j
2

X

}2

.

We have assumed that the mass of the Brownian particle is unity while the micro-
scopic molecules have the mass m. The equations of motion (Hamilton equations)
for the Brownian particle and for the microscopic molecules then write

d X

dt
= P,

d P

dt
= −∂U0(X )

∂X
+ γ j

N∑

j=1

{
x j − γ j

mω j
2

X

}
(1.34)

dx j

dt
= p j

m
,

dp j

dt
= −mω j

2x j + γ j X. (1.35)

Schematically, the Brownian particle is under the influence of its proper poten-
tial energy, U0(X ), together with the harmonic potential energies through which

37 D can be measured from the MSD 〈[x(t) − x(0)]2〉 = 2Dt of the free diffusion (K = 0).
38 Historically, this solvable model has been proposed in the course of the development of the
general framework described in Sect. 1.2.1.5.
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Fig. 1.4 Schematic
representation of the solvable
model by Zwanzig [3]. The
huge disc and small ones
represent, respectively, the
Brownian particle and
microscopic molecules. The
lines represent the harmonic
binding potential energies. In
the text we discuss the 1D
model

the surrounding microscopic molecules exert forces to the Brownian particle (see
Fig. 1.4). The last equation for dp j/dt indicates that the spring constant of the
harmonic potential is mω j

2 for the j th microscopic molecule and that γ j represents
the strength of the coupling between this molecule and the Brownian particle.39 The
object is to eliminate all of {x j , p j } to find the equation of motion for X and P .
Below we sketch the derivation. The points are the appearance of temperature and
the change of the property of time-reversal symmetry.

Since the Equations (1.35) are linear in {x j , p j }, we can integrate these equations
with respect to {x j , p j } assuming that X is known as a function of time:

x j (t) = γ j

mω j
2

X (t) −
∫ t

0

γ j

mω j
2

cos
[
ω j (t − t ′)

] d X (t ′)
dt ′

dt ′

+
{

x j (0) − γ j

mω j
2

X (0)

}
cos(ω j t) + ẋ j (0)

sin(ω j t)

ω j
, (1.36)

where ẋ j (0) = p j (0)/m is the initial velocity of the j th microscopic molecule.
Substitution of this solution into (1.34) yields the following concise form:

d X

dt
= P

d P

dt
= −∂U0(X )

∂X
−
∫ t

0
ζ (t − t ′)

d X (t ′)
dt ′

dt ′ + ξ (t). (1.37)

Here the “friction coefficient” (with memory), ζ (t), and the “thermal random force”
ξ (t) are defined as follows:

39 γ j and the viscous friction coefficient, γ , have different dimensions.
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ζ (t) ≡
N∑

j=1

γ j
2

mω j
2

cos(ω j t), (1.38)

ξ (t) ≡
N∑

j=1

γ j

[{
x j (0) − γ j

mω j
2

X (0)

}
cosω j t + ẋ(0)

sinω j t

ω j

]
. (1.39)

The memory term including ζ in (1.37) represents the dynamical response of the
microscopic molecules at time t to the motion of the Brownian particle at the past
time t ′(< t). Although Equations (1.37) take a form similar to (1.31), the former are
purely mechanical in the following two aspects:

(i) There is no information on the temperature of the environment, that is, of the
ensemble of the microscopic molecules.

(ii) The time-reversal symmetry is strictly observed.40

We now introduce nonmechanical aspects by modifying both (i) and (ii):

(i’) We assume that the positions and velocities of the microscopic molecules at
the initial time are distributed so that its probability density corresponds to the
canonical equilibrium at temperature T of the statistical mechanics:

Prob
[{x j (0), ẋ j (0)}] ∝ exp

⎧
⎨

⎩−β
N∑

j=1

[
mẋ j (0)2

2
+ mω j

2

2

{
x j (0) − γ j

mω j
2

X (0)

}2
]⎫⎬

⎭,

where β ≡ (kBT )−1 is the inverse temperature. With this probability density,
ξ (t) becomes the Gaussian stochastic process41 and moreover satisfies the fol-
lowing relations:

〈ξ (t)〉 = 0, 〈ξ (t)ξ (t ′)〉 = kBT ζ (t − t ′), (1.40)

where the average is taken with respect to the probability density,
Prob

[{x j (0), ẋ j (0)}].

(ii’) We introduce an approximation of replacing ζ (t) by 2γ δ(t). It is justified if
ζ (t) decays in time and the characteristic time of the decay is short compared
with the time resolution of our interest to describe the motion of Brownian
particle. In order for ζ (t) to decay in time, there are constraints on ω j and
γ j , which we do not enter into detail. The assumption of a short decay time

40 The time-reversal symmetry requires that the equations of motion are unchanged upon this oper-
ation. This operation is the replacement of P �→ −P , p j �→ −p j , t �→ −t , and d/dt �→ −d/dt ,
therefore, ẋ j �→ −ẋ j . Intuitively, this operation is like the playing back of movies. Concomitantly,
the initial conditions are regarded as the terminal conditions.
41 Any linear combination of random variables obeying Gaussian probability distributions also
obeys Gaussian probability distribution.
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comes from our assumption that only X and P are the slowly varying degrees
of freedom. Once these assumptions and approximations are introduced, we do
not use (1.39) anymore. Therefore, the characters of the microscopic molecules
are not directly reflected anywhere in ξ (t). Instead, we generate ξ (t) as a white
and Gaussian stochastic process satisfying (1.40) with ζ (t) �→ 2γ δ(t).

With these two operations which are not the consequence of the mechanics, the
equation of motion (1.37) for X and P is converted to the form of the Langevin
equation:42

d X

dt
= P,

d P

dt
= −∂U0(X )

∂X
− γ

d X (t)

dt
+ ξ (t). (1.41)

This is the outline of the derivation of the Langevin equation from a simple and
purely mechanical model.

What do the two steps (i’) and (ii’) change the physical properties of the equation
of motion for X and P?

(a) Once the canonical distribution is adapted, the translational invariance and,
therefore, the conservation relation of the total momentum are lost.

(b) Once the microscopic construction of ξ (t) (see (1.39)) is abandoned, the oper-
ation of the time reversal, i.e., P �→ −P , t �→ −t and d/dt �→ −d/dt , does
not leave invariant the equation of motion. In order to bring the time-reversal
symmetry into (1.41) we need to define the new time-reversal operation for the
sum, −γ d X (t)/dt + ξ (t).

1.2.1.4 * Markov Approximation, Markov Process, and the Notion
of Irreversibility

The approximation to omit the memory effect of the environment, like ζ (t) �→
2γ δ(t) in the previous subsection, is called the Markov approximation.43 By this
approximation, the evolution of the variables of our interest, X and P , is now deter-
mined in the way that if we know their values X (t) and P(t) at the present time t,
their values in the past X (t ′) and P(t ′) (t ′ < t) add no further information on their
future values, X (t ′′) and P(t ′′) (t ′′ > t). Or, simply, the values of X (t + dt) and
P(t + dt) (dt > 0) depend only on X (t) and P(t) but not their past history. This
property is called the Markovian property, and the process having this property is
called the Markovian process. The time evolution through the Langevin equation

42 We should evaluate the integral including the delta function with applying the rule,
∫ t

0 δ(t −
t ′)dt ′ = 1

2 , since its original form, ζ (t − t ′), is even function of its argument.
43 In Sect. 1.1.3.1 we have already used the Markov approximation to derive (1.19) without men-
tioning it.
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is not the only example of the Markovian processes. The master equation, which
we will discuss in Chap. 3, also describes a Markovian process. The Hamiltonian
equations of motion also describe Markovian processes without stochastic nature.44

Remark The loss of the mechanical time-reversal symmetry ((a) above) related
to the Markovian approximation does not imply the incompatibility between the
Langevin equation and the equilibrium thermodynamics. We should recall that the
equation of free Brownian motion, (1.16), supplemented with the relation (1.18) can
reproduce the property of equipartition in equilibrium. This implies that we need to
distinguish the mechanical reversibility from the thermodynamic reversibility. In
Chap. 5 we will see that not only the equilibrium states but the reversible thermody-
namic processes can also be described on the basis of the Langevin equation.

1.2.1.5 Derivation of Langevin Equation from Mechanics
by the Projection Method

In mechanics it is generally difficult to eliminate explicitly many degrees of freedom
corresponding to the environment. A formal method to derive Langevin equations
by eliminating these degrees of freedom has been established based on the concept
of projection operator. In linear algebra or in functional analysis projection operators
are linear operators in the space on which the scalar (inner) product is defined.

As the equations of motion in mechanics are generally nonlinear,45 it is useless
to apply projection operators to the phase space, i.e., the full set of position coor-
dinates and momentum coordinates, {x, p}. The idea of the projection operator in
mechanics is to study the evolution of the observable quantities which we expect to
be slowly varying (“mesoscopic/gross variables”), instead of studying the motions
of the state point in the phase space.46 The projection operators then act in the (func-
tional) space of these observable quantities.

However, this projection operator applied to a few gross variables gives rise only
to a set of linear Langevin equation for these quantities (Mori formula [31]).

In order to go beyond the linear Langevin equation, we need to include the equa-
tion for all powers of the gross variables. This difficulty has been overcome by
Kawasaki [32]. He considered the evolution equation for δ(a − A), where A is the
gross variable(s) and a is the parameter. Once the evolution for δ(a − A) is known
by the method of projection operator, the evolution of the observable f (A) is known
by the superposition, f (A) = ∫ f (a)δ(A− a)da.

Leaving the outline of the derivation in Appendix A.1.5, the result writes in the
following form of Langevin equation:

44 The Schrödinger equation also describes deterministic Markovian process, where the wave func-
tions represent the states. The classical or quantum Liouville equation describes also Marcovian
process.
45 That is, the interactions are not quadratic in their variables.
46 The original idea of this type of projection operator is due to [33], where it was applied to the
probability density, complementarily to the observable quantities.
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d

dt
Ai = vi (A) −

∑

j

L0
i j

T

∂Ueq(A)

∂A∗
j

+ fi (t). (1.42)

Here vi = vi (A) is called the convective term, which can be determined indepen-
dent of the projection, such as vi (A) = P/m for A = {X, P}. The coefficient L0

i j
is related (under the Markovian approximation) to the term corresponding to the
thermal random force, fi (t), by

〈 fi (t) f ∗j (0)〉 = 2L0
i jδ(t). (1.43)

The last relation assures that the distribution of A in equilibrium obeys the canonical
one:

Peq(A(t)) ∝ e
−Ueq(A(t))

kBT . (1.44)

The “potential energy function” Ueq(a) for the slow variable A is the Helmholtz free
energy at the temperature T with the value of A being constrained at a:

e−Ueq(a)/kBT = Tr{e−H (x, p)/kBT δ(A(x, p) − a)}. (1.45)

Remark 1 The fact that the “potential energy” Ueq(a) is a (constrained) free energy
is understandable since the projection treats many microscopic degrees of freedom
as environment. This fact implies also the following thing: If one can find a ther-
modynamic relation, like the first law and so on, from the Langevin equation, then
the thermodynamic variables thus derived should not necessarily be the same as
those of the conventional thermodynamics. The conventional thermodynamic vari-
ables can be related, through the classical statistical mechanics, to the microscopic
Hamiltonian with bare potential energy functions. In other words, the thermody-
namic framework derived from the Langevin equation can describe or even find the
thermodynamic relations at the levels of description different from the macroscopic
one. From experimental point of view it is crucial to know the relation between
the thermodynamics of different levels, the issue which will be addressed later in
Chap. 6.
Remark 2 We can consider a system which interacts with two heat baths of different
temperatures. Experimentally, it will be possible to realize such a system by using a
fine charged particle which is immersed in fluid at a temperature T on the one hand
and at the same time subject under an equilibrated electromagnetic field (i.e., a black
body radiation) at another temperature T ′. (We assume that the radiation field does
not practically interact with the fluid.) In such setup the two thermal environments
will interact via the motion of a Brownian particle. This is a mechanical model
of heat conduction since the interaction transports the energy from the fluid to the
radiation field and vice versa. We can model such a system as coupled Langevin
equations. In a later chapter (Sect. 4.2.1.2) we will discuss this phenomenon on the
basis of the energetics of the Langevin equation. Such equations, however, will not
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be derivable, at least straightforwardly, from the Hamiltonian mechanics since the
projection method would then require two different definitions of the scalar product,
each corresponding to one of the temperatures T and T ′.

1.2.2 Stochastic Calculus is the Mathematical Framework that
Removes Ambiguities in the Langevin Equation

The projection technique applied above eliminates the slowly varying component
from the fluctuating force ξ (t) in the Langevin equations of the form (1.31) or
(1.32). If the correlation time in ξ (t) is negligibly small as compared with the time
resolution of our interest, the Markov approximation is justified and we replaced
finally the time correlation of ξ (t) by (1.14), i.e., 〈ξ (t)ξ (t ′)〉 = 2γ kBT δ(t− t ′). Such
idealization involving the delta function has a merit of simplifying description and
calculation of represented quantities. However, as ξ (t) or δ(t) are not mathematically
ordinary functions, a care must be taken when we do the calculations involving
these objects. Otherwise, the results could be widely, even qualitatively, different
from what one should have by the calculation without this idealization. (The same
remark may apply also to the description of a “point charge” as a delta function,
which can actually represent, for example, an ionized molecule of finite size.) For
example, an integral

∫
x(t)ξ (t)dt for the variable x(t) obeying γ dx/dt = ξ (t) does

not have a finite average for the idealized white Gaussian process ξ (t).
A naive solution to avoid the ambiguity related to the δ-function and other singu-

lar objects would be to come back to the description with a finite correlation time in
ξ (t) and to do all the integrals using such “smoothened” variables. But such option
would require a case-by-case treatment of problem where complicated estimation of
errors and justification of the (re-)limiting procedure are needed. It will, therefore,
be more efficient if there are systematic rules to deal with these singular mathemati-
cal objects as they are. For this purpose, we need therefore (i) to know the situations
where the rules of ordinary calculus of the analysis are not applicable to ξ (t) or
δ(t), (ii) to learn the rules of calculus specific to these singular objects, and (iii) to
recognize the results of new calculus as a limit of ordinary calculus.

It is Itô [34] who formulated as mathematical framework the Langevin equation
and any other dynamical processes involving ξ (t) obeying (1.14). The formulation
is principally summarized by what is called Itô’s lemma (Sect. 1.2.2.3 below). Just
as the axiomatization of Dirac delta function by Schwartz has opened the field of
“distribution” in mathematics, the mathematical foundation of the (equivalent of)
Langevin equation through Itô’s lemma has opened the new field of analysis called
the “stochastic differential equation” or the “stochastic calculus.”

Below we describe briefly the main concepts and tools of the stochastic calcu-
lus which we will use later in this book.47 We will give mathematical meaning to

47 The author referred to the lecture note by Y. Oono at the University of Illinois at Urbana Cham-
paign in composing the present section.
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ξ (t) (Sect. 1.2.2.1), then to the integral with ξ (t) (Sect. 1.2.2.2), and to the func-
tions containing ξ (t) (Sect. 1.2.2.3), before reformulating the Langevin equation
(Sect. 1.2.2.4). Those who are not interested in the mathematical details of the cal-
culus may skip to Sect. 1.2.2.5.

1.2.2.1 Wiener Process

Wiener has introduced a stochastic process called Wiener process, Bt , as a basic
object to interpret the white Gaussian stochastic processes such as ξ (t). In the con-
text of the thermal random force, Bt is defined as follows:48

∫ t

0
ξ (s)ds =

√
2γ kBT [Bt − B0] (1.46)

or

∫ t+dt

t
ξ (s)ds =

√
2γ kBT d Bt . (1.47)

where ξ (t) is as introduced in Sect. 1.1.2.4 and in Sect. 1.1.3.1, and we have defined

d Bt ≡ Bt+dt − Bt , (1.48)

with dt > 0 infinitesimal positive increment of time. Intuitively, Bt is introduced
as a normalized form of ξ so that d Bt/dt satisfies 〈(d Bt/dt)(d Bt/dt ′)〉 = δ(t − t ′).
With (1.19), we see that the position x(t) of a free Brownian motion under negligible
inertia effect is represented by x(t)− x(0) = √

2Dt(Bt − B0). Mathematically, ξ (t)
or d Bt/dt cannot be treated as functions of time, but Bt does. One might ask why
we did not write ξ (t)dt = √

2γ kBT d Bt in (1.47). There are two reasons, which
we will become clear later. In short, it is because d Bt is not of order O(dt) but
“O(

√
dt),” and because d Bt should be distinguished from Bt+θdt − Bt−(1−θ)dt with

any θ �= 1.
The Wiener process is one of the most elementary stochastic processes. This

process has the following properties:

1. Equation (1.18), that is 〈ξ (t)〉 = 0 for any t , implies 〈Bt ′ − Bt 〉 = 0 for any t and
t ′.49 As the last equation holds also for infinitesimal time interval between t and
t + dt , we can write

〈d Bt 〉 = 0. (1.49)

48 We adopt the convention in the field of stochastic calculus which often represents the time
argument t as a suffix of the stochastic process, e.g., Bt for B(t).
49 We recall that, 〈 〉 means the average over the paths (realizations of stochastic process).
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The “white” property of ξ (t) is interpreted by Bt as

〈d Bt d Bt ′ 〉 = 0, if t �= t ′,

where t �= t ′ implies that the two intervals, [t, t + dt] and [t ′, t ′ + dt ′], have no
overlap.

2. Since ξ (s) with s between t and t ′ obeys the Gaussian distribution, its linear
functional, Bt ′ − Bt , does also.

3. The total variation of Bs between s = 0 and s = t is defined by the n →∞ limit
of
∑n

k=1 |B k
n t − B k−1

n t |. This limit is divergent with probability 1 for the Wiener

process. It is then said that the Wiener process is not of bounded variation.50

4. The following limit holds with probability 1 (t > 0):

n∑

k=1

∣∣∣B k
n t − B k−1

n t

∣∣∣
2
→ t (n →∞). (1.50)

Since each segment of time,
[

k
n t − k−1

n t
]
, brings an independent contribution,

the above result allows the following replacement:

(d Bt )
2 = dt, (1.51)

almost everywhere (a.e.), that is, with probability 1. Notice that in (1.51) there is
no average 〈 〉 over the paths.

As for the last two properties, 3 and 4, we might have the following intuitive expla-
nations:51 Equations (1.47) and (1.18) yield 〈|B k

n t − B k−1
n t |2〉 = t/n, which then

implies |B k
n t − B k−1

n t | ∼
√

t/n. If we add up such contribution for n intervals, we

would have the sum ∼ √
nt . The last quantity diverges in the limit of infinitely fine

division of the interval. Since B k
n t − B k−1

n t with different values of k are mutually

independent,
∑n

k=1 |B k
n t − B k−1

n t |2 has the average,
∑n

k=1〈|B k
n t − B k−1

n t |2〉 = t, and

the variance,52

〈[∑n
k=1 |B k

n t − B k−1
n t |2 − t

]2
〉
= 2t2/n. Therefore, the difference

between
∑n

k=1 |B k
n t − B k−1

n t |2 and t becomes effectively 0 in the limit of fine seg-
mentation, n →∞. When several such calculus are combined, we should keep only

50 A real-valued function f (x) is said to be of bounded variation on the interval [a, b] if, with
any partitioning, a = x0 < x1 < . . . < xN = b, and with any natural number N , the sum∑N−1

k=0 | f (xk+1) − f (xk )| is less than a positive number, M .
51 For more rigorous proofs the reader should consult a book on stochastic process, for example,
Sect. 4.2.5 of [1].
52 We recall the formula (1.4), i.e., 〈y2p〉/(2p)! = 〈y2〉p/(2p p!) with integer p ≥ 0 for y obeying
a Gaussian distribution with the average 0. This formula can be derived by expanding the special
case of (1.15), i.e., 〈eiφ ŷ〉 = e−

1
2 〈ŷ2〉φ2

.
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the terms up to the order of dt and neglect higher order ones, where d Bt is regarded
as a quantity of the order of

√
dt . In summary, the following prescriptions for the

infinitesimal quantities should be applied:

dt2 ≡ 0, d Bt dt ≡ 0, (d Bt )
2 ≡ dt. (1.52)

As mentioned at the end of Sect. 1.1.3.1, the solution of dx/dt = ξ (t) or the Wiener
process has no intrinsic length or timescale (scale invariance or similarity law).
Other aspects of Wiener process are described in [35].

1.2.2.2 Itô Integral and Stratonovich Integral

Now we define the time integral of the form
∫

f (t) d Bt . Intuitively, this is related to
the type of calculations like

∫
f (t)ξ (t)dt . The latter, however, is not unambiguously

defined since ξ (t)dt does not precisely represent d Bt .
The integral of the type

∫
f (s)dg(s) is called the Stieltjes integral. If g(s) is not of

bounded variation, we cannot define the Stieltjes integral unambiguously within the
standard analysis. For example, if we were to evaluate the integral

∫ t
0 [Bs − B0]d Bs

as a Riemannian integral, we might have different results depending on the different
ways of taking limit:

α1 ≡
n∑

�=1

[
�∑

k=1

(B k
n t − B k−1

n t )

]
(B �

n t − B �−1
n t )

α2 ≡
n∑

�=1

[
�∑

k=1

(B k
n t − B k−1

n t )

]
(B �+1

n t − B �
n t ).

Other interpretations are also possible. If Bt were of bounded variation, these two
would have the same limit when n → ∞. However, with Bt being the Wiener
process, the difference between the above two, α2 − α1, is

∑n
k=1 |B k

n t − B k−1
n t |2+

O(t/n). As we have seen above, the sum on the right-hand side tends to t in the
limit of n →∞.

To avoid such ambiguity of the integral, we introduce detailed definitions of the
integral of the type,

∫
f (s)d Bs , together with new notations. Below, Δs denotes a

positive finite interval of time. Calculus of Itô type:

f (s)[Bs+Δs − Bs] → f (s) · d Bs, (1.53)

Calculus of Stratonovich type:

f (s +Δs) + f (s)

2
[Bs+Δs − Bs] → f (s) ◦ d Bs . (1.54)

Notice the different symbols between f (s) and d Bs . As the essential difference is
only of the lowest order in Δs, the latter definition can also be regarded as the
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limit of f (s + (Δs/2))[Bs+Δs − Bs]. By these definitions we have, for example, the
formulas as follows:

∫ s=t

s=0
(Bs − B0) · d Bs = (Bt − B0)2

2
− t

2
,

∫ s=t

s=0
(Bs − B0) ◦ d Bs = (Bt − B0)2

2
. (1.55)

Nonanticipating property of the Itô-type calculus: As a tool of calculus, a merit of
the calculus of Itô type is that 〈 f (t) · d Bt 〉 = 0 holds always if f (t) depends on
nothing that occurs after the time t . This property of f (t) is called nonanticipating.
It is so because d Bt by definition (see (1.48)) concerns only what is after the time t ,
and therefore

〈 f (t) · d Bt 〉 = 〈 f (t)〉〈d Bt 〉 = 0 ( f (t) : nonanticipating).

Sometimes it is not apparent which type of calculus is used. In Appendix A.1.6,
we give two examples and show the way to render the problems in the above
described form.

1.2.2.3 Stochastic Differential Equation (SDE) and Itô’s Lemma

In order to evaluate integrals including d Bt , it is not practical to go back each time
to the definitions (1.53) or (1.54) and to use (1.50). We describe the prescription that
Itô has introduced for such calculation.

Suppose that a stochastic process xt is generated by the Wiener process Bt

through the following general equation for the increment, dxt ≡ xt+dt − xt , called
the stochastic differential equation (SDE):

dxt = a(xt , t)dt + b(xt , t) · d Bt . (1.56)

To make clear the implication of this equation, let us temporarily introduce the
notation 〈 〉xt to denote the average over the processes for [t, t+dt] with a given “ini-
tial condition” xt . Such average can be defined because xt is a Markovian process.
Using 〈d Bt 〉 = 0 and the nonanticipating property of the Itô-type product, we have

〈dxt 〉xt
= a(xt , t)dt,

〈
(dxt )

2
〉
xt
= [b(xt , t)]2dt . (1.57)

In (1.56) the term a(xt , t)dt , which is of order dt , cannot be neglected despite the
dominance of b(xt , t) · d Bt , since the average of the latter disappears due to the
nonanticipating property of b(xt , t): 53 〈b(xt , t) · d Bt 〉 = 0.

Next we will consider any function f (xt ) including the xt as its argument and
define its increment through infinitesimal time dt(> 0):

53 cf. The footnote after (1.61).
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d f (xt ) ≡ f (xt+dt ) − f (xt ).

Then d f (xt ) can be rewritten by the following formula, called Itô’s lemma:

d f (xt ) =
[

a(xt , t) f ′(xt ) + b(xt , t)2

2
f ′′(xt )

]
dt + b(xt , t) f ′(xt ) · d Bt , (1.58)

where f ′(z) ≡ d f (z)/dz and f ′′(z) ≡ d2 f (z)/dz2.

With the recipe (1.52) in mind we can understand, though not prove, the formula
(1.58) by substituting (1.56) into the (ordinary) Taylor expansion of d f (xt ) = f (xt+
dxt ) − f (xt ),

f (xt+dt ) = f (xt ) + f ′(xt )dxt + f ′′(xt )

2!
(dxt )

2 + . . . . (1.59)

All the differences from the real analysis come out from the∼ √
dt property of d Bt ,

which is herited by dxt through (1.56) and then by d f (xt ). We have kept the second
order in dxt because

〈
(dxt )2

〉
xt
= [b(xt , t)]2dt (see above) indicates that (dxt )2 is

also of order dt , instead of (dt)2. Explicitly, the only term of O(dt) in (dxt )2 is
b(xt , t)2dt , and we arrive at (1.58). Itô’s lemma gives how the time evolution of
f (xt ) is generated by that of the Wiener process, d Bt . If we can invert the relation
ft = f (xt ), then (1.58) gives the time evolution of ft directly without solving (1.56).

The SDE (1.56) can be rewritten in terms of the Stratonovich-type calculus. The
result writes as follows:

dxt =
[

a(xt , t) − b(xt , t)

2

∂b(xt , t)

∂xt

]
dt + b(xt , t) ◦ d Bt . (1.60)

The derivation is given in Appendix.A.1.7. There we also show a convenient formula
(A.13), that is,

d f (xt ) = f ′(xt ) ◦ dxt .

1.2.2.4 Langevin Equation as a Stochastic Differential Equation
of the Stratonovich Type

Interpretations of f (xt )ξ (t) other than Itô or Stratonovich types are also possible,
although they are not usually used. Even if we have only (1.56) and (1.60) we realize
the ambiguity of writing down the differential equation for xt in an ordinary form:
dxt/dt = ã(xt , t) + b(xt , t)(d Bt/dt). If b(xt , t) is constant, then ∂b/∂xt = 0 in
(1.60) and the two SDEs take the same form. Still, there remains ambiguity as soon
as we are to integrate in time some quantity in the form of f (xt )ξ (t). It is, therefore,
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indispensable to declare the type of calculus (Itô, Stratonovich, etc.) by which we
write down a Langevin equation.54

Although the choice of calculus is a matter of convenience, the Stratonovich-type
definition of Langevin equation is often better adapted to the bottom-up modeling
of the equation, either by coarse graining, such as by the projection method, by an
heuristic modeling based on mechanics, or by taking the continuum limit of discrete-
time stochastic evolution equation.55 For example, the SDEs which correspond to
(1.31) are interpreted by Stratonovich type as 56

dp = −∂U (x, a)

∂x
dt − γ

p

m
dt +

√
2γ kBT ◦ d Bt . dx = p

m
dt, (1.61)

whether or not γ depends on x .57

This choice of calculus, i.e., of Stratonovich type, is widely accepted by several
reasons, which are not mutually independent:

Modeling: In a physical modeling, we expect that an integral element like
f (t)ξ (t)dt corresponds to an element with finite time resolution. In this
spirit, the interpretation of the Itô type, which treats the above quantity as
strictly nonanticipating, f (t) [Bt+dt − Bt ], is not appropriate. For a detailed
account of this issue, see [37, 38, 1].

Calculus: The fact that the formula of the real analysis is inherited by the cal-
culus of the Stratonovich type fits well with our physical intuition.

Energetics: As we will see (Chap. 4 and later), the energetics of stochastic
processes can have similar formal expressions to those in mechanics or in
thermodynamics when the formalism is represented by the calculus of the
Stratonovich type.

Example A rotator with a temporarily fluctuating frequency 58

We describe a rotator whose angular velocity is modulated around ω0 by a white
Gaussian process, θ (t), satisfying 〈θ (t)〉 = 0 and 〈θ (t)θ (t ′)〉 = 2αkBT δ(t − t ′).
We adopt the complex number representation in which the state of the rotator is z.59

Physically appealing form of the evolution equation for zt will be dz
dt = i(ω0+θ (t))z,

54 Or, the usage of SDE is often more convenient.
55 See [36].
56 Hereafter often omit the suffix “t” of x and p in SDEs.
57 In fact, in the presence of the inertia term, the distinction among the types of calculus causes
no differences: The momentum p remains finite and, from dx = (p/m)dt , the position variable
x remains of bounded variation. It is no more the case if we neglect the inertia, as we will see in
Sect. 1.3.2, or if T or γ depend on the momentum p, the cases which we excluded totally in our
consideration.
58 This example has been taken from the Lecture note by Y. Oono at UIUC.
59 That is, |z| = 1 and the orientation angle of the rotator is arg(z).



1.2 Construction of Langevin Equations 41

where ω0 is a constant. We like to choose the type of calculus so that the solution of
this equation is zt = z0 exp(iω0t + i

√
2αkBT (Bt − B0)). Then the unique choice is

the Stratonovich type, i.e., the interpretation of the above equation as the following
SDE:

dzt = i zt ◦ (ω0dt +
√

2αkBT d Bt ). (1.62)

Even without solving (1.62), one can verify the relation, d(zt z∗t ) = zt ◦ dz∗t + z∗t ◦
dzt = 0. We can rewrite (1.62) in the Itô type, and the result is

dzt = i zt · (ω0dt + d Bt ) − αkBT zt dt

= zt · (iω0 − αkBT )dt + i zt · d Bt . (1.63)

Although (1.62) and (1.63) are mathematically equivalent, the former is more
appealing than the latter from the viewpoint of a single realization of stochastic
process. The Itô-type representation is, on the other hand, more adapted for the
estimation of averaged properties: In order to understand the spurious “damping”
term, −αkBT zt dt in (1.63), let us take the path average of (1.63). The result writes
d〈zt 〉 = 〈zt 〉(iω0−αkBT )dt . The solution 〈zt 〉 = 〈z0〉 eiω0t e−αkBT t shows the damp-
ing of the amplitude of 〈zt 〉 due to the desynchronization, i.e., the phase diffusion
among the rotators of different realizations.

We note that, if we interpreted dz
dt = i(ω0 + θ (t))z as of the Itô type, i.e., as the

SDE: dzt = i(ω0dt + √
2αkBT d Bt ) · zt , then zt z∗t would increased exponentially,

obeying d(zt z∗t ) = 2αkBT (zt z∗t )dt .
A modified model is the amplitude modulation of the growth rate of a real

quantity zt : The model writes dzt = (ν0dt + √
αd Bt ) · zt . It has a solution,

zt = z0 exp(ν0t +√
α(Bt − B0)), that is, log(zt ) at a given t is the Gaussian random

variable with the average of log(z0) + νt and the variance of αt . The probability
density of zt is then said to obey the log-normal distribution.

Example Correlation between the potential force and random force.

This example will show the utility of Itô-type calculus. As seen in (1.63)
above, a practical advantage of Itô-type representation is that the average over the
path ensemble is easily taken due to its nonanticipating property. Here is another
example.

Let us consider the overdamped Langevin equation (1.32), that is,

0 = −∂U (x, a)

∂x
− γ

dx

dt
+ ξ (t).

Adopting the Stratonovich-type interpretation, we calculate
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∫
∂U (x, a)

∂x
ξ (t)dt =

∫
∂U (x, a)

∂x
◦
√

2γ kBT d Bt

=
∫

∂U (x, a)

∂x
·
√

2γ kBT d Bt + kBT
∫

∂2U (x, a)

∂x2
dt, (1.64)

where we have used (A.14). Since ∂U (x, a)/∂x on the second line is nonanticipating
with respect to d Bt , the path average over the Wiener stochastic processes of this
product vanishes. The path average of the above equation then yields60

〈
∂U (x, a)

∂x
ξ (t)

〉
= γ kBT

〈
∂2U (x, a)

∂x2

〉
(overdamped). (1.65)

The simplicity of the calculation owes to the Itô-type product.
When the inertia is explicitly taken into account, the second term in the second

line of (1.64) is absent. Then the right-hand side of (1.65) should be replaced by 0:

〈
∂U (x, a)

∂x
ξ (t)

〉
= 0 (underdamped). (1.66)

Physical reason for the different result is that, in the case with inertia, the fluctuation
of ∂U/∂x , or essentially that of dxt is smooth and, therefore, O(dt), not O((dt)

1
2 ).

1.2.2.5 Primer of the Numerical Schemes for Solving Stochastic
Differential Equations

As we have seen in the description of SDE, the short-time behavior of the white
Gaussian process ξ (t) requires a special attention. The numerical scheme to solve
SDE requires also a particular attention about the numerical error if the scheme uses
a time discretization.

Let us consider the overdamped Langevin-type equation of the form

ẋ = F(x) + σξ (t), (1.67)

where σ is a constant and ξ (t) the normalized white Gaussian process satisfying
〈ξ (t)〉 = 0 and 〈ξ (t)ξ (t ′)〉 = δ(t − t ′). We will show below that first-order schemes
of SDE can leave the errors of the 1.5th order.

The simplest first-order (explicit) Euler scheme generates x(h) at time t = h
shortly after t = 0 as follows:

x(h) = x(0) + F(x(0))h + r (h), (1.68)

60 See the question below (1.4).
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where r (h) = ∫ h
0 ξ (s)ds is zero mean Gaussian random variable with 〈r (h)2〉 =

σ 2h. This discretization is correct up to O(h) but contains the error of O(h1.5)
because the substitution of x = x(0) in F(x) on the right-hand side can give rise to
the error of ∼ (x(h) − x(0)) = O(h0.5). We will see later (Sect. 4.1.2.5 in Chap. 4)
that the first-order scheme is not sufficient to reproduce the law of energy balance.

We thus motivated to go beyond the first-order Euler scheme. We can use the
so-called Heun’s method, a type of predictor–orrector method [39]. For the above
equation, Heun algorithm is defined by first “predicting”

x̃(h) = x(0) + F(x(0))h + r (h), (1.69)

and then “correcting”

x(h) = 1

2

{
x̃(h) + [x(0) + F(x̃(h))h + r (h)

]}
. (1.70)

This algorithm assures the second-order convergence in h for simple additive noises
as above. In the case of multiplicative noise, however, this method assures only
first-order convergence. We then should use improved methods (see, for example,
[40–42]). The Langevin equation on manifolds (Sect. A.4.7.3) needs the multiplica-
tive noise.

1.2.3 Fokker–Planck Equation is the Mathematical Equivalent
of the Langevin Equation when We Discuss the Ensemble
Behavior

1.2.3.1 * Fokker–Planck Equation

We have seen in Sect. 1.1.3.1 the relation between the evolution equation for x̂t ,
the position of the free Brownian particle, (1.19), and the diffusion equation (1.24)
for P(X, t) ≡ 〈δ(X − [x̂t − x̂0])〉, the probability density of x̂t − x̂0 at time t .
As the Langevin equation is the generalization of the former equation, the partial
differential equation called the Fokker–Planck equation and the Kramers equation
are the generalization of the diffusion equation in the case where the Brownian
particle is subject under external forces.

Now that we have the method of Itô-type product which is adapted for the
ensemble description (i.e., average over path ensemble), it is better to rewrite the
overdamped Langevin equation (1.32) in the standard form of SDE:

dxt = a(xt , t)dt + b(xt , t) · d Bt , (1.71)

where
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a(x) = − 1

γ

∂U

∂x
+ kBT

∂

∂x

(
1

γ

)
, b(x) =

(
2kBT

γ

)1/2

. (1.72)

Using the Itô’s lemma, (1.58), applied to δ(X−xt ), we obtain the following equation
called the Fokker–Planck equation:61

∂P(X, t)

∂t
= ∂

∂X

1

γ (X )

[
∂U

∂X
+ ∂

∂X
kBT (X )

]
P(X, t). (1.73)

We refer to Appendix A.1.8 for the derivation.
When the inertia is not neglected, we start from the SDE (1.61), rather than

(1.31). By similar calculations to the overdamped case, we can derive the evolu-
tion equation for the probability density, P(X, P, t) ≡ 〈δ(X − xt )δ(P − pt )〉, see
Appendix A.1.8 for the derivation:

∂P
∂t

=
[
− P

m

∂

∂X
+ ∂

∂P

(
∂U

∂X
+ γ

P

m

)
+ ∂2

∂P2
γ kBT

]
P (1.74)

This equation is called the Kramers equation [43], derived around 1940. The gener-
alization to the higher dimensionality of the (X, P)-space is straightforward.

Throughout this book, we use the term Fokker–Planck equation to mention
generically both the Fokker–Planck equation (1.73) and the Kramers equation
(1.74).

1.2.3.2 General Properties of Fokker–Planck Equation

We summarize the several general properties of (1.73) [1]:

Principle of superposition: The linearity of the Fokker–Planck equation allows to
construct the solution P(X, t) from an arbitrary initial distribution, P(X, t0),
as a superposition of the following form:

P(X, t) =
∫

G(X, t |X0, t0)P(X0, t0)d X0, (1.75)

where G(X, t |X0, t0) is the solution (called Green function) of the linear
equation (1.73) satisfying the initial condition, P(X, t0) = δ(X − X0). The
same principle applies to the case where the effect of inertia is taken into
account.

Equation of continuity for the probability: The Fokker–Planck equation (1.73),
takes the form of equation of continuity,

61 It was first written down by Einstein [9]. See, for example, the descriptions in [1].
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∂P
∂t

= −∂ Jx

∂X
, (1.76)

Jx ≡ − 1

γ

[
∂U

∂X
+ ∂

∂X
kBT

]
P(X, t), (1.77)

where the probability flux, Jx , is the probability that flows per unit of time
through the position X toward the +X direction.62 This continuity (1.76)
reflects the conservation of the probability and the fact that in each path x̂t

is continuous in time. For the Kramers equation, (1.74), the equation of conti-
nuity and the definition of the probability flux are constructed on the 2D phase
space, (X, P):

∂P
∂t

= −∂ Jx

∂X
− ∂ Jp

∂P
, (1.78)

Jx ≡ P

m
P(X, P, t),

Jp ≡
(
−∂U

∂X
− γ

P

m

)
P(X, P, t) − ∂

∂P
[γ kBTP(X, P, t)]. (1.79)

Equilibrium state under homogeneous temperature: If the parameter a of the
potential function U (X, a) is fixed and if the temperature T of the thermal
environment is uniform, then the distribution P(X, t) approaches to the canon-
ical equilibrium distribution, Peq(X, a; T ) defined by (1.105). We can verify
easily that with P(X, t) = Peq(X, a; T ) the probability flux Jx of (1.77) van-
ishes for all X . The entire vanishing of the flux is referred to as the detailed
balance, which will be discussed in detail later (Sect. 3.3.1.4).63

In the numerical analysis of the steady state, it is sometimes important to dis-
cretize the flux Jx of the Fokker–Planck equation so that the flux-free state
Jx = 0 is strictly compatible with the equilibrium density, Peq(X, a; T ). A
way to satisfy this condition is to introduce ψ(X, t) by P(X, t) = eψ(X,t). The

flux Jx then writes Jx = 1
γ

eψ(X,t)
[
∂U
∂X + T ∂ψ

∂X

]
, where the discretization of φ

matches with that of U .
Also for the Kramers equation, the probability distribution converges to the
canonical equilibrium distribution completed with the Maxwell distribution
of the momentum:

62 Here the X also represents the state where the particle is at the space position, X .
63 With the detailed balance, (i) the forward driving of x̂ by the potential gradient is counterbal-
anced by the more frequent backward displacements by diffusion and (ii) the diffusive displace-
ments of x̂ into high-friction regions (i.e., large γ regions) are as often discouraged as do the
diffusive displacements out of such regions.
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Peq(X, P, a; T ) = e−( P2

2m +U (X,a))/kBT

√
2πmkBT

∫
e−U (X ′,a)/kBT d X ′ . (1.80)

We can verify that Peq(X, P, a; T ) satisfies Jx = Jp = 0 uniformly.
In Sect. 1.3.2.1 we will discuss the Fokker–Planck equation for inhomoge-
neous temperature T (x). Its steady-state probability density, Pst(X ), is not
generally proportional to e−U (X,a)/kBT (x). In the general steady state the prob-
ability flux Jx defined by (1.77) is constant, may be nonzero. This condition,
Jx =const., can be integrated along X -axis, and the result depends on T as
well as on U , generally in a nonlocal manner.

H-theorem: The approach of the probability distribution function toward the canon-
ical equilibrium distribution under uniform temperature can be shown using
the Kullback–Leibler distance (of continuum version), D(P(t) ‖ Peq), defined
by the following64:

D(P(t) ‖ Peq) ≡
∫

P(X, t) ln

[ P(X, t)

Peq(X, a; T )

]
d X. (1.81)

This entropy is nonnegative and vanishes if and only if P(t) coincides with
Peq.65 By the uses of (1.73) one can verify that D(P(t) ‖ Peq) decreases
strictly:

d D(P(t) ‖ Peq)

dt
< 0, (P �≡ Peq). (1.82)

It thus implies the convergence of P(t) to Peq in the t → ∞ limit. The func-
tional of P(t) having the property of (1.82) is referred to as Lyapnov functional
for P(t). In general, a theorem proving the approach to the equilibrium density
by way of strictly nondecreasing quantity (“entropy”) is called the H-theorem.

The Fokker–Planck equation and the Kramers equation are mathematically equiv-
alent to the Langevin equations, respectively, without or with the effect of inertia
in the sense that the Langevin equations can be reconstructed if we know the for-
mer ones for the probability densities. However, the Langevin equations are more
fundamental than the former equations since the particular realization of stochastic
process is the basis of its statistical distribution.

64 This “distance” D(P(t) ‖ Peq) does not fulfill standard axioms of the distance, in particular,
the reflection law. D(P(t) ‖ Peq) is also called the relative entropy or P with respect to Peq. The
Kullback–Leibler distance is closely related to the LDP. See [44].
65 To verify this, we can use the inequality, p log(p/q) ≥ −q + p, where p and q are arbitrary
nonnegative quantities. The above inequality can, in turn, be obtained by multiplying by p the
simple inequality, log(p/q) = − log(q/p) ≥ −q/p + 1.
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1.3 Physical Implications of Langevin Equations

1.3.1 Langevin Equation Transforms the Memory-Free Gaussian
Noise into Variety of Fluctuations

1.3.1.1 Transformation of Stochastic Processes

The statistics of thermal fluctuations of an object in a thermal environment depends
on the characteristics of the object, such as its size, shape and, more generally, on the
(free-)energy landscape of its conformation and also on the way how it interacts with
the environment. A kinesin molecule in a solvent fluctuates differently from a long
microtubule filament because of their shapes and flexibilities. Any object, therefore,
transforms the thermal fluctuations of its environment into its own fluctuation.

From this point of view, a Langevin equation realizes a transducer or converter
of fluctuations. Let us take, for example, a Brownian particle under a potential:
γ dx

dt = − dU (x)
dx + ξ (t). The equation converts the white Gaussian process ξ ( ) into a

stochastic process of the position of the particle x( ). In terms of the path probability,
a process ξ ( ) between t = 0 and t = t is realized by the probability

P[ξ ] ∝ exp

(
− 1

4γ kBT

∫ t

0
ξ (s)2ds

)
, (1.83)

except for the normalization factor. Substituting ξ (t) by γ dx
dt + dU (x)

dx and taking care
of the change of variable, the same probability is rewritten in terms of x( ) (apart
from the initial probability distribution of x):

P[x] ∝ exp

(
− 1

4γ kBT

∫ t

0

{[
γ

dx

dt
+ dU

dx

]2

− 2kBT
∂2U

∂x2

}
ds

)
, (1.84)

where the term including ∂2U/∂x2 takes account of the transformation of variables,
i.e. the Jacobian, J = |Dξ/Dx |. A heuristic explanation of the Jacobian is given in
Appendix A.1.9.

Equation (1.83) shows that the process ξ (t) and its time-reversed process ξ (−t)
occurs at the equal probability. If a Langevin equation realizes an equilibrium state,
then this symmetry with respect to the time reversal is preserved, whatever is the
form of the potential function U (x). This symmetry is called the detailed balance
(DB) symmetry. Such Langevin excludes the directional motion of x on the average,
since any process can be traced back with the same likeliness. The consequence of
this symmetry is that we cannot extract steadily from the fluctuations of x, any
systematic work. This is in accordance with the second law of thermodynamics.

If the thermal random force ξ ( ) is replaced by a process with zero average but
not having the detailed balance symmetry, then the induced process x( ) can move in
one direction on the average. Hondou et al. have shown a good example where the
potential energy U (x) is symmetric with respect to the space inversion, x ↔ (−x)
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[45, 46]. In these papers ξ ( ) is replaced by a chaotic noise η(t) of zero average,
〈η(t)〉 = 0, but there is nonzero third moment,

〈
η(t)3

〉 �= 0.

1.3.1.2 * Fluctuation–Dissipation Relation in Free Brownian Motion

Let us consider the free Brownian motion under a small external force ε f (t). The
overdamped Langevin equation writes

γ ẋ = ξ (t) + ε f (t) (1.85)

with 〈ξ (t)ξ (s)〉 = 2γ kBT δ(t − s). For the process x( ) a sporadic increment in ξ (t0)
and a small force ε at the time t0 are not distinguishable. The effect of former on
x( ) is characterized by the velocity correlation in the absence of external force,

C(t − s) ≡ 〈ẋ(t)ẋ(s)〉ε=0, (1.86)

while the effect of weak external force is characterized by the linear response func-
tion R(u) for the velocity (ẋ)

〈ẋ(t)〉ε = ε

∫ +∞

−∞
R(t − s) f (s)ds. (1.87)

By the causality requirement, R(u) satisfies R(u) = θ (u)R̃(u), where θ (u) is the
step function; θ (u) = 1 for u > 0, θ (u) = 0 for u < 0, and θ (0) = 1/2.

In the case (1.85), we have

R(t − s) = θ (t − s) · 2

γ
δ(t − s), C(t − s) = 2kBT

γ
δ(t − s), (1.88)

therefore

C(u) = kBT [R(u) + R(−u)]. (1.89)

The last form of the relation between the correlation function and the response
function is called the fluctuation–dissipation (FD) relation (of the first kind). This
relation (1.89) is closely related to the Einstein relation because the double time
integral of C(t) gives D = limt→∞[

〈
x(t)2

〉
/(2t)] = kBT /γ.

By contrast, the correlation of the random force is related to the friction constant
γ through

〈ξ (t)ξ (t + u)〉 = 2γ kBT δ(u).

The latter type of relation is called the FD relation of the second kind.
The relation (1.89) holds very generally for equilibrium fluctuations, even if we

add the potential force −dU (x)/dx and also the inertial term mẍ to the equation of
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free Brownian motion. In other words, the FD relation for the free Brownian motion,
which is essentially that of ξ ( ), is reserved upon the transformation of stochastic
process from ξ ( ) to x( ) through the Langevin equation (see Sects. 1.3.1.1). This is
one of the main result of the linear response theory, including the quantum case.
See, for example, [4, 2] for the general argument. In Appendix A.1.10 we describe
the essence of the FD relation. We will come back to the FD relation in more general
case in Part II, in the context of energetics.

1.3.1.3 * Application : Detector of Displacement

While the white Gaussian process like ξ ( ) keeps no memory, the Langevin equation
transforms it into a process x( ) with memory. For example, the trajectory of a free
Brownian particle depends on its initial position. This property can be used for a
single molecule to detect its own displacement.

Suppose that the molecule consists of two Brownian particles, a “motor head”
(position x1) and a “cargo” (position x2) and that these particles are joined together
by a harmonic spring or an ideal polymer chain. See Fig. 1.5. The overdamped
Langevin equation for x1 and x2 are as follows:

− γ1 ẋ1 + ξ1(t) − K (x1 − x2) = 0, −γ2 ẋ2 + ξ2(t) − K (x2 − x1) = 0. (1.90)

Here the Gaussian white noises ξ (t) and ξ2(t) obey

〈ξ1(t)ξ1(t ′)〉 = 2γ1kBT δ(t − t ′), 〈ξ2(t)ξ2(t ′)〉 = 2γ2kBT δ(t − t ′),

and 〈ξ1(t)ξ2(t ′)〉 = 0. We will solve these equations under the initial conditions
x1(0) = x2(0) = 0 at time t = 0, which has no bias toward +x or −x directions.
The direct calculation shows that x(t) is correlated with the relative displacement
w(t) ≡ x1(t) − x2(t), i.e., 〈w(t)x1(t)〉 > 0 with 〈w(t)〉 = 〈x1(t)〉 = 0. This implies
that, statistically, the motor head can detect the direction of its own displacement by
monitoring the conformation of the molecule, w(t) = x1(t)− x2(t), without directly
referring to the coordinate system (Fig. 1.5). The Eq. (1.90) can be separated by
introducing the coordinate of the “diffusion center,” X = (γ1x1 + γ2x2)/(γ1 + γ2)
and w = x1 − x2:

Fig. 1.5 Brownian particles
“motor head” x1(t) (small
filled disc) and “cargo” x2(t)
(big open disc) are tied by a
harmonic force and start to
diffuse from
x1(0) = x2(0) = 0. For t > 0
the relative displacement,
w(t) ≡ x1(t) − x2, (t) is
statistically correlated with
the absolute displacements
such as x1(t) StartBackward Forward

x1

x2

0
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−(γ1 + γ2)Ẋ + (ξ1(t) + ξ2(t)) = 0, −ζ ẇ + f (t) − Kw = 0,

where ζ = (γ1
−1 + γ2

−1)−1 and f (t) = (ξ1(t)/γ1 − ξ2(t)/γ2)/(1/γ1 + 1/γ2). The
latter satisfies 〈 f (t) f (t ′)〉 = 2ζkBT δ(t − t ′) and is independent of the random force
ξ1( ) + ξ2( ). Solving these equations with the initial conditions on x1 and x2, we
obtain

〈x1(t)w(t)〉 = −γ2

γ1
〈x2(t)w(t)〉 = γ2

γ1 + γ2

kBT

K

(
1 − e

− 2K
ζ

t
)
> 0, (1.91)

where we have used 〈X (t)w(t ′)〉 = 0 and (γ1 + γ2)x1 = (γ1 + γ2)X + γ2w. The
cargo may be another motor head if the molecule is a two-headed motor.66 In any
case, a motor head can use the information of w(t) by reacting differently according
to the direction of the force (∝ −w), e.g., by modifying its binding affinity to the
filament (actin filament, microtubule, DNA, etc.).

1.3.2 Each Langevin Equation Has Its Own Smallest
Space-Timescale of Applicability

We have seen that the Langevin equation is obtained as a result of elimination of the
rapidly varying degrees of freedom in a more microscopic model. It is, therefore,
necessary to fix a finite time resolution, Δt , of the description by the Langevin
equation. Concomitantly there is a finite resolution in the variables (e.g., x or p).
However, once a Langevin equation is written down, the Δt appears nowhere in the
equation, and its solutions (i.e., the paths or the realizations) contain arbitrarily fine
details as function of time. In general, the fine details of its solutions at timescales
below Δt have nothing to do with the original microscopic model.67

A logical consequence of the above fact is that there can be more than one
Langevin equations to describe the same phenomenon, one at a time resolution of
Δt1 and the other at Δt2(> Δt1), etc. The solutions of the former Langevin equation
contain supplemental informations about the timescales between Δt1 and Δt2. It
should, therefore, be possible to derive the Langevin equation with the time resolu-
tion Δt2 from the one with better time resolution Δt1(< Δt2). Below we will see
two examples of the different levels of Langevin equations.

66 More precisely, we should study the probability density for ŵ(t) with a given value of x1(t),
where the nonzero constrained average, 〈ŵ〉x1(t), is an indication of the memory. Using the
probability density of ŵ(t) (see (1.33) with x ≡ w and x0 = 0), we can show 〈ŵ〉x1(t) =
x1(1+ γ2/γ1)/(ψ(2K t/ζ )+ γ2/γ1) > 0, where ψ(s) ≡ s/(1− e−s ). For large γ2/γ1, the memory
is maintained up to t ∼ γ2/K .
67 One might compare this situation with the fact that the touches of a painting of a landscape on
canvas do not reproduce the details of the original landscape.
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1.3.2.1 Coarse Graining by Direct Short-Time Integral

We start with the Langevin equation with the inertia effect, (1.31), allowing the
position dependence of the temperature, T = T (x).68 The SDE corresponding to
such Langevin equation is (1.61), i.e.,69

dp = −∂U (x, a)

∂x
dt − γ

p

m
dt +

√
2γ kBT (x) ◦ d Bt , dx = p

m
dt. (1.92)

The time resolution, Δt1, is finer than the damping time of the inertia effect, that is,
Δt1 � m/γ .

Our aim is to convert this equation to a new Langevin equation which is (only)
valid for the time resolution Δt  m/γ .70 In other words, we will eliminate the
momentum, p, in (1.61) as a “fast variable.” This problem has long been discussed
since the landmark paper by Kramers [43], and there is generally a consensus about
the result [47–49]. It is expressed as SDEs, either of Itô type or of Stratonovich type,
as follows:

γ dx =
√

2γ kBT (x) · d Bt − ∂U (x, a)

∂x
dt, (1.93)

γ dx =
√

2γ kBT (x) ◦ d Bt − ∂

∂x

[
U (x, a) + kBT (x)

2

]
dt. (1.94)

The derivation has often been done by way of the Fokker–Planck equation (see
Sect. 1.2.3.1). In Appendix A.1.11 we present a derivation that uses only the coarse
graining in time along a single realization [49].

Below are the comments on the physical aspects of the above result:

1. The term T (x) in (1.94) represents the effect of thermophoresis, that is, the
[direct] thermal random force drives a Brownian particle toward the cooler region
from the hotter region. To understand precisely what it means, suppose that there
is no potential force (U (x, a) =const.). From (1.93) we find

〈dxt 〉xt
= 0,

〈
(dxt )

2〉 = 2(kBT (x)/γ )dt,

where 〈 〉xt
is the conditional path average under a given value of x̂t . The for-

mer equation tells that there is equal probabilistic weights on dxt > 0 and on
dxt < 0 up to time t + dt , starting from a given position, xt , at time t . But if

68 Up to (1.94) we assume that γ is independent of x although, naturally, γ depends on the
temperature.
69 In the Langevin form, the first equation is written as γ dx

dt = − ∂U
∂x − γ

p
m + √

2γ kBT (x) · θ(t)
with θ (t) = d Bt/dt .
70 Δt should, however, be small compared with the characteristic timescale of the change of
∂U (x(s), a(s))/∂x . The opposite case is discussed in Sect. 1.3.2.2.
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we compare different positions, the amplitude of random movement depends on
T (x) according to the latter equation.

2. If the system is bounded (i.e., on a circle), the probability density at steady-state
Pst(x) satisfies T (x)Pst(x) = const. The easiest way to see this is to reconstruct
the Fokker–Planck equation from (1.93). The result writes ∂P

∂t = − ∂ Jx
∂x , with

Jx = − 1
γ

[ ∂U
∂x P + ∂(kBT (x)P)

∂x ], and the steady state of a bound system satisfies
Jx = 0. In the presence of potential force, the value of Pst(x) at x depends on
the whole profile of T (x) and of U (x). Such a nonlocal aspect of nonequilibrium
distribution is called Landauer’s blow torch [50].

3. The Stratonovich-type SDE (1.94) shows that the apparent potential energy is
the sum of U (x, a) and the (equipartitioned) kinetic energy, kBT (x)/2. This view
will be justified later from the energetic point of view, see (4.9).

4. The trajectory xt of (1.31) is smooth, while that of (1.93) and (1.94), i.e., the
coarse-grained version of the former, has unbounded total variation. Such para-
doxical roughness of the trajectory has no relevance on the solution viewed with
the resolution, Δt , as discussed before (see Remark 1 of Sect. 1.1.3).

The case where γ instead of T depends on x has been discussed in [47] (see also
[48]). The incorporation of these two cases, i.e., with the inhomogeneous tempera-
ture and friction coefficient, yields the generalized SDE of the Itô and Stratonovich
type:

γ (x) · dx =
√

2γ (x)kBT (x) · d Bt −
[
∂U (x, a)

∂x
+ kBT (x)

γ (x)

dγ (x)

dx

]
dt. (1.95)

γ (x) ◦ dx =
√

2γ (x)kBT (x) ◦ d Bt −
[
∂U (x, a)

∂x
+ 1

2γ (x)

d(γ (x)kBT (x))

dx

]
dt. (1.96)

These two equations are equivalent. Using (1.95) we can obtain the Fokker–Planck
equation corresponding to these SDEs. It writes

∂P

∂t
= ∂

∂x

1

γ (x)

[
∂U

∂x
P + ∂

∂x
(T (x)P)

]
. (1.97)

If the temperature is uniform, T (x) = T0, the stationary probability density
under a fixed parameter a gives the equilibrium canonical distribution, Pst(x) ∝
e−U (x,a)/kBT 0 . The last result is consistent with the equilibrium statistical mechanics,
which asserts that the equilibrium state is not influenced by the purely kinetic param-
eters like γ (x). An illustrating example of this fact is discussed in Sect. 3.3.1.5.71

1.3.2.2 Spatial Coarse Graining of Langevin Equation

We start with the overdamped Langevin equation describing a Brownian particle
under a periodic potential Um(x) of the period � and under an almost uniform force

71 [53] discuss its implications in the biophysical context.
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potential −a0x + V (x).

γ ẋ = −∂Um(x)

∂x
+ a0 − ∂V (x)

∂x
+ [2γ kBT ]

1
2 ξm(t), (1.98)

where ξm(t) is a Gaussian white noise with zero average and the variance,
〈ξm(t)ξm(t ′)〉 = δ(t − t ′). The spatial variation of V (x) is supposed to be much
smoother than that of Um(x), while a0 need not be smaller than the magnitude of
|∂Um/∂x |, see Fig. 1.6. The spatial resolution of (1.98), which we denote by Δx1,
is finer than the period of Um , that is, Δx1 � �.

Our aim is to convert this equation to a new Langevin equation which is (only)
valid for the spatial resolution Δx  �. (Δx should, however, be small compared
with the characteristic length scale of the change of ∂V (x)/∂x .)

The first step is to analyze the case with V (x) ≡ 0. The spatiotemporal coarse
graining of this case has been studied analytically [51, 52], and the result is written
in the form of free Brownian motion under drift:

˙̃x = vs(a0) + [2Deff(a0)]
1
2 ξ (t), (1.99)

where x̃(t) is the position of the particle on this coarse-grained description, and
vs(a0) ≡ 〈 ˙̃x〉a0 is the coarse-grained steady mean velocity,72 and Deff(a0) is the
coarse-grained diffusion coefficient such that

lim
t→∞

|x̃(t) − vs(a0)|2
2t

= Deff(a0).

The new Langevin equation (1.99) is valid for the spatial resolution Δx satis-
fying Δx  �. The quantity in the limt→∞ approaches to Deff(a0) only for
t  �2/Deff(a0). A very rough estimate of Deff(a0) is kBT

γ
e−ΔUm/kBT , where ΔUm is

the amplitude of the variation of Um(x), i.e., its barrier height (see Sect. 7.1.1.4).
The second step is to take into account of the spatially slowly varying potential,

V (x). Since |∂V/∂x | is small, it can be treated as a local variation of the force
parameter a as a0 → a0 + Δa with identifying Δa with − ∂V

∂x . In the context of
Appendix A.1.2, the effect of small change of the parameter on the mean velocity is

Fig. 1.6 The three potential
energies in (1.98)

Um(x)

V(x)

−a0x

x

72 vs (0) = 0 for equilibrium.
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characterized by the differential “friction constant,” Γ (a0):

1

Γ (a0)
≡ lim

Δa→0

〈 ˙̃x〉a0+Δa − 〈 ˙̃x〉a
Δa

= dvs(a)

da

∣∣∣∣
a=a0

. (1.100)

If we introduce a quantity Θ(a) [54] such that

1

Γ (a0)
= kBΘ(a0)Deff(a0), (1.101)

kBΘ(a0) plays the role of u(1)
a in (A.2).73 The linear perturbation, vs(a) � vs(a0) +

1
Γ (a0)Δa, results in [54]

˙̃x − vs(a0) � − 1

Γ (a0)

∂V

∂x
+ [2Deff(a0)]

1
2 ξm(t).

By (1.101), this equation takes the form of a standard overdamped Langevin
equation

0 = −Γ (a0)[ ˙̃x − vs(a0)] + [2Γ (a0)kBΘ(a0)]
1
2 ξm(t) − ∂V

∂x
. (1.102)

Especially for a0 = 0, (1.102) describes a Brownian particle in the potential V (x)
with the spatial resolution Δx , where vs(0) = 0 and kBΘ(0) = kBT should hold.

1.3.3 A Trajectory of Langevin Equation Over a Long Time
Allows Us to Draw Some Information About the Space
and the Potential

1.3.3.1 * The Residence Time Distribution with a Fixed Potential
Energy Function

Suppose we follow a Brownian particle using the standard overdamped Langevin
(1.32) equation, i.e., 0 = − ∂U (x,a)

∂x − γ dx
dt + ξ (t), and assume that the parameter a,

the friction coefficient γ , and the temperature T are constant.
We introduce finite time [empirical] average of the stochastic process, x̂( ), over

a time interval [0, t]74:

73 Generally, vs (a) is a nonlinear and complicated function of a and is not antisymmetric with
respect to a.
74 We use X for the spatial coordinate.
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P res
[0,t](x̂ ; X ) ≡ 1

t

∫ t

0
δ(X − x̂(t ′)) dt ′. (1.103)

For each realization of x̂( ), the functional P res
[0,t](x ; X ) is an empirical residence time

distribution function on the X -space.
If the Brownian particle can access to every point on X for which U (X, a) takes

a finite value, P res
[0,t](x ; X ) will converge in the limit t → ∞ to a unique density for

almost all the realizations. This limit should be

P res
[0,t](x̂ ; X ) −→ Peq(X, a; T ), as t →∞, (1.104)

where Peq(X, a; T ) is the canonical equilibrium distribution at the temperature T
which appeared in 〈ξ (t)ξ (t ′)〉 = 2γ kBT δ(t − t ′):

Peq(X, a; T ) ≡ 1

Zx
e−U (X,a)/kBT . (1.105)

Here Zx ≡
∫∞
−∞ e−U (X ′,a)/kBT d X ′ is the configurational canonical partition function

of the statistical mechanics.75

The convergence problem of (1.104) is an example of LDP discussed in
Sect. 1.1.2.3 along the time axis. But it is understandable intuitively that the rate
of convergence depends on the form of U (X, a)/kBT : For example, let us compare
the case of a single-well potential U (X, a) = U2(X ) ≡ 4kBT X2 and the double-well
potential U (X, a) = U4(X ) ≡ 100kBT (X2 − 1)2. The latter potential has a barrier
of 100kBT around X = 0 and the valleys of 10 times narrower than the quadratic
potential U2(X ). If we take as unit of time the convergence time of P res

[0,t](x̂ ; X ) for
the U2 potential, then the convergence time for the U4 potential should be much
larger than unity because of the rare chance to cross the energy barrier, i.e., about
e100/10 � 1042.76 If the convergence time for the U2 potential is a nano second
(10−9s), the convergence time for U4 would be ∼ 1024 years, which is practically
unattainable.

This result implies that, in between nano second and 1024 years, there is a well-
defined time range where almost all paths of x̂( ) remain in one of the valleys of
the U4 potential. Within this time range, the empirical distribution P res

[0,t](x ; X ) must
converge to Pc−eq(X, a; T, x̂(0)):

Pc−eq(X, a; T, x̂(0)) ≡
{ 1

Z+
x

e−U4(X )/kBT X/x̂(0) > 0
0 X/x̂(0) < 0

(1.106)

75 An important corollary: The longtime average of a function of x̂ , e.g., f (x̂(t)) = ∫ f (X )δ(X −
x̂(t))d X , converges to its canonical average,

∫
f (X )Peq(X, a; T )d X .

76 The factor 10−1 is from the narrowness of the valley bottom, but is not essential here.
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if x(0) > 0. Here Z+
x ≡ ∫∞0 e−U4(X ′)/kBT d X ′ is the constrained equilibrium partition

function in the right valley. See Fig. 1.7.

Remarks

1. The time for a Brownian particle to escape (for the first time) from a valley does
not depend on the profile of the potential energy beyond the potential barrier.
Therefore, that profile can be replaced by a sharp and infinitely deep valley.
Kramers [43] used this fact to derive the efficient formula of the escape time,
called the first passage time.

2. There could be a “theoretical” standpoint where one is interested only in the
infinitely large time, t , to find the unique probability density, Peq(X, a; T ). In
such a case, however, we implicitly assume that the potential function is realized
by some material whose characteristic relaxation time is larger than this time, t.
Therefore, the word “infinitely large” has only a limited meaning.

3. In Sect. 7.1.2 we will discuss the case where a system with double minimum
potential represents a single bit of memory device. In that case the constrained
density Pc−eq corresponds to a well-defined “bit,” and the full equilibrium den-
sity Peq represents the state where the initial memory is lost.

1.3.3.2 * Integral by the Parameter that Varies Slowly in Time

Let us continue to consider the above Langevin equation, 0 = − ∂U (x,a)
∂x −γ dx

dt +ξ (t),
but we now change the parameter a in time from ai up to a f . The parameter a can
have more than one component. First we define a protocol ã(s) that takes a unit
time, i.e., ã(0) = ai and ã(1) = a f . We denote by τrel

77 the convergence time for
the above theorem (1.104) and assume that τrel is not extremely large.

Our aim is to evaluate the following form of Stieltjes integral:

P P
(potential energy)

eq c−eq

Fig. 1.7 Brownian particle in an symmetric double-well potential (left: curve) and the initial con-
dition x(0) (left: dot). At high temperature, the residence time distribution reproduces the canonical
equilibrium distribution Peq (center), while at low temperature it reproduces the constrained equi-
librium distribution Pc−eq, which depends on the initial condition (right)

77 “rel” for relaxation.
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Î ≡
∫ a=a f

a=ai

Φ(x̂(t), a(t))da(t) =
∫ a=a f

a=ai

Φ(x̂(t), a(t))
da(t)

dt
dt, (1.107)

following the protocol a(t) = ã( t
τop

), by taking the time τop.78 Especially, we are
interested in arbitrarily slow protocol, that is, the limit of τop →∞.

Leaving the details of demonstration in Appendix A.1.12, the conclusion is that,
for almost all realization of x̂ ,

Î →
∫ a f

ai

〈Φ(·, a)〉eqda as τop →∞, (1.108)

where 〈Φ(·, a)〉eq is the equilibrium average of Φ(·, a) with a fixed value of a.

〈Φ(·, a)〉eq ≡
∫

Φ(X, a)Peq(X, a; T )d X. (1.109)

The result can be understood intuitively: For each realization x( ), there is enough
time for the particle to explore the instantaneous profile of the potential U ( , a) for
each value of a along the protocol. By the convergence theorem of the empirical res-
idence time distribution (1.104), the temporal integral around each a can, therefore,
be replaced by the statistical average, 〈Φ(·, a)〉eq. This is the notion of quasistatic
process, and the above formula will be fully used in Sect. 5.2.1.2.

It is noteworthy that the rate of the convergence of Î depends on the function
Φ(X, a). If Φ(X, a) takes appreciable values for those X which are rarely realized
in Peq(X, a; T ), we will need extremely slow operation (i.e., extremely large top) for
the convergence.

1.3.3.3 First Passage Problem

Suppose we follow a Brownian particle that started at the position x0 somewhere
inside a domain Ω. The space x can be more than one dimension. We assume
again the overdamped Langevin equation, 0 = − ∂U (x,a)

∂x − γ dx
dt + ξ (t), and that

the parameter a is fixed.
The first passage time (FPT) τΩ is the time when the Brownian particle arrives

at the border of Ω for the first time after the start. The problem to study the FTP
is called the first passage problem. See Fig. 1.8.79 The FPT is a random variable,
and x0 is its parameter. Our aim is to find the path average of the FPT (mean first
passage time; MFPT) as function of the initial position x0 ∈ Ω . (All the paths
starting from x0 are counted by equal weight.) Leaving the details of derivation in
Appendix A.1.13, below is a recipe to calculate the MFPT:

78 “op” for operation.
79 There is a related problem called the exit problem, where we study the location on the border of
Ω at FPT.
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Fig. 1.8 First passage time
problem. The Brownian
particle started from
x(0) = x0 (thick dot) arrives
for the first time on the
boundary x(τΩ ) ∈ ∂Ω at the
first passage time (FPT),
t = τΩ Ω

x(0)

x(τFP)

(i) Solve the static differential elliptic equation L∗φ(x) = −1 for x ∈ Ω under the
[Dirichlet] boundary condition, φ(x) = 0 for x ∈ ∂Ω .

(ii) 〈τ̂Ω〉 is given as the value of φ(x0).

Here L ≡ ∂
∂x

1
γ (x)

[
∂U
∂x + ∂

∂x kBT (x)
]

is the operator of Fokker–lanck equation, and

L∗ is its adjoint operator, i.e., L∗ = [− ∂U
∂x + kBT (x) ∂

∂x

]
1

γ (x)
∂
∂x .

80

For example, when we study the Brownian particle in the double-well potential
energy U4(x) (see Sect. 1.3.3.1) we can use the MFPT to estimate the waiting time
until the Brownian particle crosses over the potential barrier. This waiting time is
the MFPT with the domain Ω = [0,∞], for example. In such case the FPT depends
little on the initial position x0 as long as it is near the bottom of the valley.

The first passage problem is applied also to the free Brownian motion but with
various shape of domain Ω . For example, the Brownian particle is a macro-ion and
Ω is an absorbing surface.

1.3.4 Thermal Ratchet Models are the Examples of Nontrivial
Fluctuations

1.3.4.1 Background

Models of autonomous heat engine on the mesoscopic scale have long been pro-
posed: The Feynman ratchet (Feynman’s pawl and ratchet wheel) [55] and the
Büttiker–Landauer ratchet [56, 57] are among the most studied. In the former model,
the system has simultaneous access to the two thermal environments of temperatures
T and T ′, while in the latter model, the system has alternative access to one of these
environments.

The aim of this subsection is to describe their models and show how it is mod-
eled using the Langevin equations. These models have played important roles in the
physics of stochastic phenomena. Parrondo [58] was the first who added a caveat
on the analysis by Feynman on his ratchet model.81 Derény, Bier, and Astumian

80 L∗ is also called the backward Fokker–lanck operator. In general when the operators L and L∗

satisfy
∫
Ω

g(L f )dx = ∫
Ω

(L∗g) f dx for any f and g satisfying a common homogeneous boundary
condition, L and L∗ are called adjoint.
81 Soon later [60] also pointed out it independently.
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[59] were among the first who argued that the overdamped limit of the Büttiker–
Landauer ratchet is a singular limit. Stochastic energetics has first been applied to
the Feynman’s model [60]. We will come back to these models in Sect. 4.2.2.2 for
the analysis from the energetics viewpoint.

1.3.4.2 Feynman Ratchet

Figure 1.9 shows the idea of Feynman pawl and ratchet wheel [55]. A ratchet wheel
(center) is coaxially connected to the part that can lift a charge imposing the down-
ward load, f . It is also coaxially connected to a vane immersed in the left thermal
environment of the temperature T . We denote by x the rotation angle of the ratchet
wheel.

A pawl (a thick arrow) can move back and forth along a coordinate denoted by
y and under the influence of the right thermal environment of the temperature T ′.
The pawl is supported by a static restoring potential (symbolized by a spring in the
figure), U2(y), which tends to keep the pawl in contact with the ratchet wheel.

The ratchet wheel interacts with the pawl through the potential, U1(x − φ(y)),
where φ(x) represents the periodic and asymmetric profile of the ratchet tooth. The
potential U1(z) represents the volume-excluding constraints between the pawl and
the ratchet wheel. That is, for x < φ(x) it is strongly repulsive, while for x ≥ φ(x)
it exerts no forces.

The overdamped Langevin equations for the above model write [60]

0 = −γ dx

dt
− ∂U

∂x
+
√

2γ kBT θ (t),

0 = −γ ′ dy

dt
− ∂U

∂y
+
√

2γ ′kBT ′ θ ′(t), (1.110)

T ’

γ γ’

T

Fig. 1.9 Feynman pawl and ratchet wheel [55]. The left heat bath (temperature T ) moves the
ratchet wheel, while the right heat bath (temperature T ′) agitates the pawl. In between the elements
of the potential energy U (x, y) are presented, from the left to the right, as − f x for the load,
U1(x − φ(y)) for the pawl-ratchet wheel coupling, and U2(y) for the pawl
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where U (x, y) = U1(x − φ(y)) + U2(y) − f x , and θ (t) and θ ′(t) are mutu-
ally independent white Gaussian random noises with zero mean and 〈θ (t)θ (t ′)〉 =
〈θ ′(t)θ ′(t ′)〉 = δ(t − t ′). Modified models have also been studied recently [61–63].
From Fig. 1.9 we expect that a light load can be lifted up if T > T ′, because
the rotation of the wheel axis in the forward (lifting-up) direction is most likely
“registered” by the cool pawl, while the rotation in the opposite direction is more
likely hindered by the cool pawl. For 0 < T < T ′, the wheel has a tendency to
rotate in the opposite direction to the case of T > T ′.

The “hot” pawl moves rather by thermal random force than by the potential force
of U2(y). A weak back-and-forth Brownian motion of the ratchet wheel can cause
the repositioning of the pawl to the neighboring spaces between the ratchet tooth.
Such events occur in an asymmetric manner with respect to±x reflection, due to the
asymmetry of the profile φ(x). These results are verified numerically. It is possible
to take into account of the inertia of the pawl and the ratchet wheel, and the essential
behavior of the system is the same as long as T > 0 [62].

1.3.4.3 Büttiker and Landauer Ratchet: Inertia as a Singular Perturbation

The model proposed by Büttiker [56] and Landauer [57] contains only a single
movable particle. Instead, this particle can switch the thermal environments with
which it makes contact. Along a periodic potential U (x), the zone of temperature T
and that of T ′ alternates with the same period as U (x). See Fig. 1.10. The Langevin
equation for the position and momentum of the particle, (x, p), is

dp

dt
= −∂U (x)

∂x
− f − γ

p

m
+ ξ (t),

dx

dt
= p

m
, (1.111)

where the thermal random force ξ (t) is the white Gaussian noise with 〈ξ (t)ξ (t ′)〉 =
2γ kBT (x)δ(t−t ′).82 f is a load on the particle toward the (−x) direction. If we could
justify to take the overdamping limit (see Section 1.3.2.1), the resulting Langevin
equation is (1.112), that is,

γ dx =
√

2γ kBT (x) ◦ d Bt − ∂

∂x

[
U (x, a) + f x + kBT (x)

2

]
dt . (1.112)

x

U(x)

Fig. 1.10 Potential energy U (x) of Büttiker and Landauer ratchet (adapted from [59]). The tem-
perature T (x) takes the value T on the thick solid line and T ′ on the dashed line

82 Recall that, in the presence of the inertia, the variation of x(t) during dt is O(dt), not O(dt1/2).
The multiplicative character of the ξ (t) here does not cause ambiguities [74].
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In fact, however, the neglect of the inertia completely changes the energetic aspect
of the model. See Sect. 4.2.2.2.

The intuitive explanation for the mechanism of this heat engine is as follows: Let
us assume that T > T ′ and that the temperature profile is as described in Fig. 1.10
and its caption. In the cool region of T ′ (the dashed line in the rightward downhill),
the thermal activation to climb up the potential is less probable than the other side
of the potential peak. The probability of barrier crossing is then less frequent from
right to left than the inverse. In [59] an alternative explanation is given in terms
of the effective potential, Ueff(x) = kBT (x)

kBT 0
U (x), immersed in a fictive homogeneous

thermal environment of the temperature T0. In any case, the particle migrates toward
the right on the average if T > T ′.

1.3.4.4 “Modern” Thermal Ratchet Models and Curie Principle

A Subjective History of Thermal Ratchet Models in the Early 1990’s

The latest vague of ratchet model in the early 1990s was initiated by [64] as a
new principle of particle separation and transport. This arose the interest among the
physicists and biophysicists, in majority from theoretical point of view. Soon after
[64] this idea was reformulated as a simple physical model [65]. Different aspects
of ratchet model have been developed in different field, including the nanoscale
transport [66], protein motor, and biochemical reactions [67–71]. These models
urged to establish the framework of stochastic energetics [60]. The machineries
working under thermal fluctuations are often subtle, and the general and analytical
framework helps to avoid any ambiguities in their studies. The paradox of Maxwell’s
demon is a symbolic example of this subtlety. See Sect. 4.2.1.2. An extensive review
of ratchet models up to 2002 is in [72]. Another review from the energetics point
of view is [73]. The controversy about the efficiency of ratchet models (Sect. 6.3.2)
is one of the motivation to study the heat of different spatiotemporal scales, which
will be described in Chap. 6.

The architecture of the initial ratchet model [64] is called the flushing ratchet,
see Fig. 1.11. In this model a sawtooth-shaped potential U (x) is turned on and off
periodically in time. While the potential is off, a particle under no force diffuses
symmetrically. When the potential is turned on, the particle is driven asymmetri-
cally toward the potential downhill. In this way the particle is driven on the average
toward the right. Even if the baseline of the potential is slightly inclined toward
the right, or with U (x) + ax (a > 0), the particle will still be driven toward the
right. The active transport will be suppressed if the thermal random force is too
small, because of insufficient diffusion of particle. The thermal fluctuation plays,
therefore, a constructive role in this model.83 The overdamped Langevin equation
for the particle position x writes

83 There are ratchet models that can work without the thermal random force [80].
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U(x): on

x
U(x): off

Fig. 1.11 Flushing ratchet model [64]: Two alternative potential profiles of the flushing ratchet. In
the period when the sawtooth potential U (x) is on, the state x is driven toward one of its valleys.
While U (x) is off (horizontal dashed line), x diffuses symmetrically. The average displacement is
positive, 〈dx/dt〉 > 0

0 = −σ (t)
∂U (x)

∂x
− γ

dx

dt
+ ξ (t), (1.113)

where γ and ξ (t) are as usual (see (1.32)), and σ (t) temporarily switches between 0
and 1.84

Symmetry Question of Ratchet Models: Curie Principle

The realization of horizontal transport by only vertical up and down of the potential
U (x) arose technical as well as theoretical interest. In the setup of particle sepa-
ration and transport [66, 75, 76], simple on and off of electric or optic field can
cause the directed transport of colloidal particles.85 Phenomenologically, the ratchet
models realize different kinds of cross-coupling between the thermodynamic forces
and fluxes. In the linear nonequilibrium thermodynamics, Onsager elucidated the
symmetry of cross-coupling coefficients, e.g., in the Peltier/Seebeck effect, Soret
effect, magneto-optic effect [77], ion-co-transportation.

Theoretical interest is in the general conditions for the ratchet transport, not going
into details of the model architectures. At the end of nineteenth century Pierre Curie
[78] established the principle which can exclude some type of cross-coupling by
a purely symmetry reason. The Curie principle says: “When certain causes lead to
certain effects, the symmetry elements of the causes must be found in their out-
comes.”86 Therefore, except for the case of spontaneous symmetry breaking, the
asymmetry of the phenomena is caused by the asymmetry of the setup. This princi-
ple, which is not limited to the linear regime, was applied to the ratchet models [79]:
If the dynamics of the system lacks both the spatial symmetry (±x) and the temporal
symmetry (±t), then the principle predicts generically a nonequilibrium process
accompanying directional transport. The flushing ratchet described above fulfills
these two conditions. Spatially broken symmetry is not necessarily be borne by
the potential energy: A directional transport is possible with a symmetric potential,
U (x) = U (−x), if the random force ξ (t) with zero mean and 〈ξ (t)ξ (t ′)〉 = δ(t − t ′)

84 σ (t) can be a smooth function of time.
85 The directed force is in fact applied externally through the field gradient.
86 “Lorsque certaines causes produisent certains effets, les éléments de symétrie des causes
doivent se retrouver dans les effets produits.” [78]
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T

T’ 

Fig. 1.12 Model of the heat engine. Wedge-shaped object and rectangle-shaped object are con-
strained to move together horizontally. These objects are immersed in the gas reservoirs at different
temperatures. If the environment for the wedge-shaped object is hotter than that for the rectangle-
shaped object, the combined objects move to the left and vice versa (Figure adapted from Fig. 1
of [25])

is a non-Gaussian process [45, 46]. A type of “super-symmetry” [81] can impose
constraints on the directional transport [82, 72].

Remarks

The directed transport by spontaneous symmetry breaking is not covered by the
Curie principle. Such case is demonstrated in the collective ratchet model [70].
On the fluctuating level, temporal directional transport in a particular realization
is possible under the detailed balance condition, as long as the spatial ±x symmetry
is broken [61–63].87

Another limitation of the Curie principle is that it does not tell anything about the
sign and amplitude of the cross-coupling effect. Whether or not an active transport
against external load occurs depends on concrete structure of the model.

Langevin equation is not the only way to model heat engines. A heat engine is
modeled using the nonlinear kinetic couplings between the system and its environ-
ments [24, 25]. Figure 1.12 illustrates their model. Since the spatial symmetry is
broken by this kinetic coupling, the model is not directly reducible to the Langevin
equations. The latter have only linear kinetic coupling through the friction coeffi-
cients (γ etc.).

1.3.4.5 Formula for the Transport, 〈 dx
dt 〉

For the later use, we give the formula that expresses the average velocity 〈 dx
dt 〉 of

x̂(t) at a given time in terms of the probability flux. It reads,

〈
dx
dt

〉
=
∫

JdΓ, (1.114)

87 Spontaneous symmetry breaking along the time axis is not seen.
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where the integral is done over all phase space (i.e., (x, y)-plane for Feynman
ratchet, and x-axis for Büttiker and Landauer ratchet) and J is the probability flux
that appears in the Fokker–Planck equations, ∂P

∂t = −∇ · J .
A simple derivation is to compare this equation and the identity

∂〈δ(x − x̂(t))〉
∂t

= −∇ ·
〈

d x̂
dt

δ(x − x̂(t))

〉
,

knowing that P(x, t) = 〈δ(x − x̂(t))〉. We then have the equation,

J =
〈

d x̂
dt

δ(x − x̂(t))

〉
.

Integration of the both sides over x yields the above formula.

1.4 Discussion

The Langevin equation is a useful method to describe the individual realization
of stochastic process occurring in the thermal environment. The ensemble average
viewpoint often overlooks essential features of the fluctuation phenomena, or more
generally, the random phenomena. For example, the transition between the extended
coil conformations and the collapsed globule conformations of a single long poly-
mer chain has been observed by macroscopic methods and was thought to be con-
tinuous as function of temperature. But later on the transition was confirmed to be
discontinuous through the observation of the single chain [83]. Another example is
the phenomenon of overcharging of counterions on the surface of charged colloid.
By studying the configurations of discrete charges and their Coulomb interactions,
one can clearly understand how the counterion can be bound on the colloidal sur-
face even beyond the neutralizing the colloid’s charge [84]. Such phenomenon is
overlooked or difficult to describe by the continuum description like the Poisson–
Boltzmann equation.88
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47. J.M. Sancho, M.S. Miguel, D. Dürr, J. Stat. Phys. 28, 291 (1982) 51, 52



66 1 Physics of Langevin Equation

48. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics, 1st edn. (Oxford Science Pub,
Oxford, 1986), Sect. 3.3 51, 52

49. K. Sekimoto, J. Phys. Soc. Jpn. 68, 1448 (1999) 51
50. R. Landauer, Phys. Rev. A 12, 636 (1975) 52
51. G. Costantini, F. Marchesoni, Europhys. Lett. 48, 491 (1999) 53
52. P. Reimann et al., Phys. Rev. Lett. 87, 010602 (2001) 53
53. K. Sekimoto, A. Triller, Phys. Rev. E 79, 031905 (2009) 52
54. K. Hayashi, S. Sasa, Phys. Rev. E 69, 066119 (2004) 54
55. R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics – vol.1 (Addison

Wesley, Reading, Massachusetts, 1963), Sects.46.1–46.9 58, 59
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Chapter 2
Structure of Macroscopic Thermodynamics

Macroscopic thermodynamics deals with “energy” and materials stocked in and
exchanged by the system. The system can be surrounded by environment(s) and
external system(s). When the exchange of energy or materials takes place, several
important constraints, i.e., the laws of thermodynamics are imposed. Thermody-
namics allows for different point of views: view from the system, from the external
system, or from the environment. Thermodynamics is also relevant for the study
of (free) energy conversion, the thermal analysis of chemical reactions and phase
transitions.

Stochastic energetics combines the description of stochastic processes and ther-
modynamic processes. In order to prepare for the main chapters (from Chap. 4) this
chapter reminds the readers of the basic concepts and relations of thermodynam-
ics and introduces the terminology and notations of thermodynamics. This chapter
does not cover all the aspects of thermodynamics, but it focuses on those aspects of
thermodynamics which will be relevant in later chapters. Those who know macro-
scopic equilibrium thermodynamics well may skip this chapter and come back when
necessary.

2.1 Basic Concepts of Thermodynamics

2.1.1 * Terminology of Thermodynamics Includes System,
Environments, and External System

The basis of thermodynamics is empirical. The definitions of elementary concepts
rely on empirical or undefined notions. One can axiomatize it [1, 2] but cannot
derive it. The framework of thermodynamics is supposed to be asymptotically exact
for the large homogeneous system based on experiments.

System: Of the whole world, a part which is properly cut out is called the sys-
tem. In this chapter we suppose that a system contains a macroscopic number
(say, ∼ 1023) of constituting elements of the same kind like particles, spins,
etc. If a system is divided into more than one part by some criterion, each

Sekimoto, K.: Structure of Macroscopic Thermodynamics. Lect. Notes Phys. 799, 67–92 (2010)
DOI 10.1007/978-3-642-05411-2 2 c© Springer-Verlag Berlin Heidelberg 2010
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part is called a subsystem. A system having no contact with any other system
is called isolated system.

Internal energy of a system: If one can access the microscopic Hamiltonian of
the system, or if one can observe or calculate the mechanical energy, either
classical or quantum, then we naturally identify this energy as the internal
energy of the macroscopic thermodynamics.

Extensive variables: When a system and its identical copy are combined to
make a new system, certain variables take the values twice as large as the
original ones before combining with its copy. Such variables are called exten-
sive variables. For a system consisting of single-component particles, the
internal energy, E , the volume, V , the number of particles, N (as well as the
entropy, S, in the equilibrium states, see below), are extensive variables.

The other types of variables which do not change their values are called
intensive variables of the system, but the latter refers to the equilibrium states
(see below).

Environment: Those background systems to which the system of our interest
is connected are called the environments, reservoirs, or baths. According
to the entity that is exchanged with the system, the environment is called
thermal environment or heat reservoir/bath (for energy exchange), particle
environment or particle/chemical reservoir (for mass exchange) or pressure
environment (for volume exchange).1

As an environment forms the background of a system and not the main
object of study, they are considered to satisfy several simplifying assump-
tions.

(1) We ignore the interaction energy between the system and its environ-
ments. (In case that it is not realistic assumption, we try to define the
interface layer of interaction as a new system.)

(2) Environments are big in the sense that the conservation laws for the
total energy, mass, volume, or momentum have no effect on the state of
the environment.

(3) Environments return instantaneously to their equilibrium states (see
below), and keep no memories of the system’s action in the past. In
other words, any action on the environments is supposed to be qua-
sistatic from macroscopic point of view.2

Because of these simplifications, environments are characterized only by
their intensive parameters, that is, temperature, chemical potential (or the
density of particles), and pressure.

Heat exchange: It is the form of exchange of energy not through work, or
involving mass exchange. This process occurs either between a system and
its environment, or among different subsystems.

1 In this book we will use the words “heat bath” and “thermal environment” interchangeably.
2 In other words, we do not discuss the irreversible entropy production proper to the environments.
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Mass exchange: Mass is exchanged through the transport of particles between a
system and its environment, or among different subsystems. Mass exchange
can also take place through chemical reactions.3

External system: An agent which is capable of macroscopically controlling the
system. The system can exchange energy and/or volume (and sometimes
mass) with the external system. The role of external system and environment
is somehow interchangeable in the sense that the definition of a system can
include the environment through the Legendre transformation (see below).
For example, the external system that controls the system’s volume can be
replaced by a pressure environment. In the latter case, the system’s internal
energy counts also as the potential energy of the pressing agent (a weight).
The energy is then called enthalpy.

Work: The form of exchange of energy which is done by the control of external
systems through the change of system’s volume, external force, electric field,
etc.

Macroscopic character of external system: The external system is allowed nei-
ther to make use of the microscopic information of a system nor to react adap-
tively to the microscopic change of the state of the system. This condition,
on the one hand, excludes the intervention of the Maxwell’s demon, a hypo-
thetical agent which cools down the system by letting only rapidly moving
particles to escape through a hole.4 On the other hand, the above condition
does not exclude certain devices having molecular selectivity of chemical
species such as semipermeable membranes. The reason is that selectivity in
the latter case is static with no adaptive functions to the particles which arrive
at the membrane and also that the work is done only through the macroscopic
displacement of the membrane as a whole.5

Sign conventions: Throughout this book, unless explicitly defined otherwise,
we assign a positive sign to whatever quantities which the system receives.6

For example, if an external system brings energy to a system through work,
we say that a positive work, W > 0, is done. Also, if an environment
brings energy to a system through heat, we say that positive heat (Q > 0)
is transferred.

Some aspects of macroscopic thermodynamics are peculiar to the fact that the sys-
tem is macroscopic.

1. When the system consists of several macroscopic subsystems, a subsystem can
do work on the other subsystems as an external system.

2. The presence of extensive variables and the negligence of interaction energy
between the system and environments suppose that the surface contributions

3 More about the macroscopic chemical thermodynamics will be described in the next chapter.
4 For a review, see [3]. cf. Sect. 4.2.1.2
5 The author acknowledges Izumi Ojima for his comment on this point.
6 Note that certain textbooks of thermodynamics adopt the opposite sign convention.
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to those variables are negligible compared with the bulk contributions. If the
surface-to-volume ratio is larger than some inverse characteristic length (e.g., the
interaction range of particles), this hypothesis is no more valid.

3. The extensive character implies the absence of fluctuations. It is related to
the law of large numbers. It is often called the self-averaging property of
macroscopic system. Entropy and temperature which are ensemble-based con-
cept can be assigned to a single macroscopic system. Systems at critical point
of phase transition, or with long-range interactions, cannot be described by
usual thermodynamics.

2.1.2 * Some Laws of Macroscopic Thermodynamics Distinguish
Thermodynamics from Mechanics

About the process of macroscopic thermodynamic systems, several universal laws
apply independent of the details of interactions among the constituent materials. The
laws deal with the relationship among the change of energy, the heat transferred,
and the work done during a process of a system. We mention the four principal
laws below. They do not constitute a complete set of axioms of the macroscopic
thermodynamics, see [1, 2].

Zeroth law: If a system is left isolated for sufficiently long time from any
environment and from any external system, it will reach a state with no
further macroscopic changes.7 Such a state is said to be in an equilibrium
state. For a single-component gas isolated in a single compartment, for
example, the set of energy, volume, number of gas particles, (E, V, N ), is
sufficient to characterize its equilibrium state, and the entropy S is then
a function of these variables. These variables are called thermodynamic
variables, and the functions which relate the thermodynamic variables in
an equilibrium system are called thermodynamic functions. If any process
occurs slowly enough so that the system remains almost in equilibrium
at each instant, the process is said to be quasistatic (or quasiequilibrium)
process.

First law: We cannot realize a perpetual machine of the first kind, that is, there
is no autonomous system, isolated from the environment, that produces work
(i.e., W < 0) through a cyclic process. The inverse process is also not pos-
sible. More concretely, a balance of energy should always be established
among the changes in the internal energy of the system, ΔE, the work, W,

and a heat, Q, during any process:

ΔE = W + Q. (2.1)

7 Strictly speaking, there may remain global motions due to conserved total momentum or total
angular momentum of the whole system.
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Second law: One cannot realize a perpetual machine of the second kind, that
is, being in contact with a single thermal environment at constant tempera-
ture, there is no autonomous cyclic engine which converts heat into work.
The inverse process from work to heat is possible. More precisely, there is
a thermodynamic function of equilibrium systems called entropy (S) which
never decreases during processes of an isolated system. Entropy is an exten-
sive variable.

Third law: This law, also called the Nernst–Planck’s theorem, concerns the limit
to absolute zero temperature. At absolute zero, the quantum interference is
believed to impose a unique ground state at least in most cases, and the exten-
sivity of the macroscopic thermodynamics should be carefully tested [4]. As
quantum fluctuations are beyond the scope of this book, we will not go into
the detail of this law.

“Fourth law” 8: Any thermodynamic variable characterizing an equilibrium
state is either extensive one or intensive one. For the system whose exten-
sive variables are (E, V, N ) and S, the intensive variables are temperature T ,
pressure p, and chemical potential μ. The intensive variables are the homo-
geneous function of the extensive variables of zeroth order. The intensive
variables characterize the equivalence relationship “∼” of equilibrium. If an
equilibrium system A and another one B satisfy A ∼ B, it means that the
contact of these two systems cause no changes in their extensive variables.
The system B can be an environment with which the system A is in contact.

The transitive property of this equivalence relationship, (A ∼ C) ∧
(B ∼ C) ⇒ A ∼ B, allows to compare, for example, the temperature T
of two systems A and B using the “thermometer” C . The reflective property,
A∼A, implies that the intensive variables remain unchanged upon combin-
ing the two identical systems A. The symmetric property, A∼B⇔ B∼A,
implies that the assignment of the measuring system and the measured sys-
tem is relative in the context of macroscopic equilibrium. Further properties
of the extensive and intensive variables will be described below.

If the system is not macroscopic, the intensive variables can still be used to char-
acterize the environment. But they are not the state variables of the small system.

2.1.3 Thermodynamic Relations Come from Several Different
Aspects of Thermodynamic Systems

In this section we will describe several basic consequences of the laws of thermo-
dynamics.

One important aspect of the thermodynamics, especially from the zeroth and
fourth laws, is the presence of thermodynamic function by which various

8 There is no general consensus on which law should be put as the fourth law. Here we take up a
version.
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thermodynamics variables are derived. Its consequence is the fundamental relation
and Maxwell relation.

Another important aspect, especially from the first and second laws, is the homo-
geneity of those thermodynamics function related to its extensive character. Its
consequence is the Euler relations and Gibbs–Duhem relation.

2.1.3.1 Fundamental Relation

For a simple gas system, the equilibrium states are completely describable either
by {S, V, N } or by E(S, V, N ). In respective case, E or S are the functions of
the first three extensive variables, i.e., E=E(S, V, N ) or S=S(E, V, N ). These are
represented as a curved surface in 4D space coordinated by (S, E, V, N ). Each
point on this surface represents an equilibrium state. On a point on this surface,
say (S, E, V, N ), the equation of the tangent plane is written as

d E = T d S − p dV + μ d N , or d S = 1

T
d E + p

T
dV − μ

T
d N , (2.2)

where “differentials,” (d S, d E, dV, d N ), are the local variables along (S, E, V, N ),
with the origin relocated to the tangent point, and the coefficients (1/T, p/T,−μ/T )
are independent of these differentials. Thus we can have essentially all relations
between the extensive variables and the intensive ones, such as 1

T = ∂S
∂E V,N

for these
equations. We call the relations (2.2) the fundamental relations. Those thermody-
namic functions that generate the fundamental relations, such as S(E, V, N ) or
E(S, V, N ), are called the complete thermodynamic functions. The pairs of ther-
modynamic derivatives associated with the partial derivative like T (E, V, N )−1 =
∂S
∂E V,N

are called conjugate variables. (T, S), (−p, V ), and (μ, N ) are pairs of con-

jugate variables.9

Complete thermodynamic functions are not unique, and therefore, the funda-
mental relations are not either. However, all the fundamental relations of a system
represent the same interdependencies. To obtain a new complete thermodynamic
function, we must apply the Legendre transformation to the original complete
thermodynamic function. For example, we can obtain the complete thermody-
namic function, “Helmholtz free energy,” F(T, V, N ) of a simple gas system by
the Legendre transformation of E(S, V, N ): We solve T = ∂E(S, V, N )/∂S to find
(formally) S(T, V, N ). (This function, S(T, V, N ), is not a complete thermody-
namic function.) Then we substitute this into E(S, V, N ) − T (S, V, N )S to obtain
F(T, V, N ) = E(S(T, V, N ), V, N ) − T (S(T, V, N ), V, N ) S(T, V, N ). The vari-
able S is now found through (∂F/∂T )V,N = −S, instead of (∂E/∂S)V,N = T .
The exchange of the conjugate pair, (S, T ), as independent–dependent variables

9 Incomplete thermodynamic functions can also be made. For example, we can solve
T (E, V, N )−1 = ∂S

∂E V,N
for V and substitute the result in S(E, V, N ). Then we have a func-

tion S = S(E, V (E, T, N ), N ). Such function, although correct, cannot generate all the other
thermodynamic variables; there remains an undetermined additive constant.
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requires the subtraction of the term T S from the original complete thermodynamic
function.10

Physically, the subtraction of a product of conjugate thermodynamic variables
(e.g., T S) in the transform (e.g., E �→ F = E − T S) implies the attachment or
detachment of an environment. For example, suppose that an isolated simple gas
system has the complete thermodynamic function, S(E, V, N ). We now attach a
thermal environment to this system. Since the combined system is a new isolated
system, we may use the entropy of the whole system S(E, V, N )+Sres(E tot−E) as a
new thermodynamic function. Since the system can exchange energy with this envi-
ronment satisfying the law of energy conservation, we control no more the energy
E, but control the energy of the whole system, E tot. Since the reservoir retains a
constant temperature Tres by definition, we choose as a new independent thermody-
namic variable Tres rather than E tot, where Tres is given by ∂Sres/∂E tot = 1/Tres.11

Then we have

S(E, V, N ) + Sres(E tot − E) � S(E, V, N ) + Sres(E tot) − E

Tres

= − 1

Tres
(E − TresS) + const. (2.3)

The repartitioning of the energy into E and E tot − E is self-adjusted so that the
temperatures are equilibrated, T = Tres. The new complete thermodynamic func-
tion F=E − T S then describes the combined system (the system and the thermal
environment) with {T, V, N } as independent variables.

As a consequence of the second law of thermodynamics, the work W done to the
system through arbitrary isothermal system is bounded below by the change in the
Helmholtz free energy, ΔF = ΔE − TΔS12:

W ≥ ΔF.

An ensemble of a very large number of identical copies of a small system obeys
macroscopic thermodynamics. As there are no interactions among those copies, the

10 Mathematically the Legendre formulation is defined as follows: Take a fundamental rela-
tion, d f = ∑n

j=1 R j dx j , where f (x1, . . . , xn) is the complete thermodynamic function and
R j ≡∂ f/∂x j . In order to derive the new fundamental relation with {R1, . . . , Rk} and {xk+1, . . . , xn}
as the independent variables, where 0 < k < n, we solve R j = ∂ f/∂x j for j =
1, · · · , k to represent {x1, . . . , xk} as functions of {R1, . . . , Rk , xk+1, . . . , xn}. Then the identity

d
[

f −∑k
j=1 R j x j

]
= ∑k

j=1(−x j )d R j +
∑n

j=k+1 R j dx j is the new fundamental relation which

is generated by a new complete thermodynamic function f̃ ≡ f −∑k
j=1 R j x j as function of new

independent variables, {R1, . . . , Rk , xk+1, . . . , xn}.
11 Since we simplify the characterization of the environments, we do not explicitly take into
account the volume and the particle number of the heat bath.
12 The result is obtained from ΔSres +ΔS ≥ 0, ΔSres = −Q, and ΔE = W + Q.
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extensive character of the variables like E , V , and N is evident. By the law of
large numbers (Sect. 1.1.2.3) we can define the energy, etc. per system. However,
the results which we obtain from this macroscopic framework concern only the
statistical average over the individual systems or the property characterizing the
ensemble.

2.1.3.2 Maxwell Relation

If the equation of one plane (2.2) is the fundamental relation associated with a
monovalent function, S = S(E, V, N ), the coefficients of the differentials, i.e.,
(1/T, p/T,−μ/T ), should satisfy certain conditions.13 For example,
(∂μ/∂V )S,N = −(∂p/∂N )S,V is derived from (2.2) since

(
∂μ

∂V

)

S,N

= ∂2 E

∂V ∂N
=
(
∂(−p)

∂N

)

S,V

.

These types of equations are called the Maxwell relation. Inversely, if the coeffi-
cients of the Eq. (2.2) satisfy the Maxwell relation, these local equations can be
integrated to define a surface. See Appendix A.2.1 for a brief proof.

2.1.3.3 Euler Relations of Thermodynamic Variables

The complete thermodynamic potentials, E=E(S, V, N ) or S= S(E, V, N ), are the
relations among the extensive thermodynamic variables. If a system in equilibrium
and its copy is combined to make a new system, all of these variables should become
twice as large as the original. In general, we expect

E(λS, λV, λN ) = λ E(S, V, N ), S(λE, λV, λN ) = λ S(E, V, N ), (2.4)

for λ>0. This is a mathematical representation of the extensivity of the macroscopic
thermodynamics. If we draw a graph, for example, of E as function of (S, V, N ),
the extensive character of the function E(S, V, N ) imposes a particular geometrical
property on this graph: the graph consists only of the straight lines passing through
the origin (0, 0, 0, 0). Figure 2.1 illustrates such geometry for the case with three
extensive variables. (One can imagine an umbrella cloth when it is folded loosely.)

An important consequence of this constraint is the following relationship among
the thermodynamic variables:

T S − pV + μN = E . (2.5)

13 In other words, if the continuous functions (T (E, V, N ), p(E, V, N ), μ(E, V, N )) satisfy no
mutual relations, a monovalent graph S vs. (E, V, N ) cannot be constructed through the connection
of the tangent planes (2.2).
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Fig. 2.1 The graph of
extensive thermodynamic
function z= f (x, y) as
function of the two extensive
thermodynamic variables, x
and y

z

x

y

A A

It is easily derived from either one of the relations in (2.4) by differentiating with
respect to λ and then putting λ = 1. This type of identity is called the Euler’s
theorem.14,15

Euler’s theorem applies also to the expressions of the intensive variables, e.g.,
μ= ∂E/∂N =μ(S, V, N ). Since the value of μ should remain the same when the
system and its copy is combined, we have

μ(λS, λV, λN ) = μ(S, V, N ).

By the same token to the derivation of (2.5), we have

S
∂μ

∂S
+ V

∂μ

∂V
+ N

∂μ

∂N
= 0 (2.6)

and similar identities.

2.1.3.4 Gibbs–Duhem Relation

Extensivity of the complete thermodynamic function imposes further relationship
among the intensive thermodynamic variables. Let us take the differential of (2.5),
that is, d(T S − pV + μN ) = d E . This expression imposes a linear relation
among the first-order differentials of each variables when an equilibrium state,
(E(S, V, N ), S, V, N ), is displaced infinitesimally to another equilibrium state:

SdT + T d S − (pdV + V dp) + μd N + Ndμ = d E .

14 Mathematically, when the function f (x1, . . . , xn) has a homogeneity of kth order,
i.e., f (λx1, . . . , λxn) = λk f (x1, . . . , xn), the derivation of this equation by λ at λ = 1 yields
an identity

∑n
i=1 xi Ri = k f valid for any (x1, . . . , xn), where Ri = ∂ f/∂xi .

15 Each new Legendre transformation on the complete thermodynamic function reduces by one of
the independent extensive variables. We cannot have a complete thermodynamic function in which
all the extensive variables are eliminated, since then the complete thermodynamic function would
be E − T S + pV − μN ≡ 0 because of (2.5), or because the intensive variables along cannot fix
the size of the system.
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By subtracting the fundamental relation, (2.2), we obtain

SdT − V dp + Ndμ = 0. (2.7)

This relation is called the Gibbs–Duhem relation.
When the macroscopic thermodynamic system consists of many copies of a small

system, the Euler relations and Gibbs–Duhem relation may bring little constraint or
information about the individual system.

2.1.4 * Heat of Macroscopic Open System Consists of Two Terms
Both Including Entropic Parts

An open system exchanges not only heat but also particles with its environment.
See Fig. 2.2.16 Thermodynamics of open system is an important issue in biology
since protein molecular motors are usually open systems which consume source
molecules like ATP in the environment. The problem of organic or inorganic adsorp-
tion and diffusional transport across membranes are also the subject of open system.
In this section and in Sects. 2.3.2 and 2.3.3, we deal explicitly with an open system.

For a closed system, we can identify the system with the particles, etc., that are
therein. An open system, however, is rather a container of particles, and a particle
belongs to the system while it is in the container.17

R

RT

μ

S

Fig. 2.2 An open system containing gas particles, S, in contact with a thermal environment, RT ,
and a particle environment, Rμ. The thick lines and filled rectangle are isolating walls and piston,
respectively, and the thin walls are thermally conducting walls. A thick dashed line is the wall
permeable for the gas particle

2.1.4.1 Energetics of the Open System

The energy E of an open system can change not only due to heat and work but also
due to the exchange of particles between the system and the particle environment.

16 In quantum physics, often the same word means the systems in contact with (only) a thermal
environment.
17 In the problem of adsorption, the container is the ensemble of adsorption sites. Those particles
on the adsorption sites belong to the open system.
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Let us consider a gas system in which work is done through the change of volume,
d ′W = −pdV . The first law of thermodynamics reads

d E = −pdV + d ′Qtot, (2.8)

where d ′Qtot denotes all the energy entering into the system except for the
work −pdV .18 We suppose that the system is in contact with a thermal environ-
ment of temperature T and also with a particle environment of chemical potential
μ. Therefore, if a small number of particles, d N , have entered into the open system
in keeping the equilibrium, and the volume is increased by dV , then the change in
the internal energy is given by the fundamental relation, d E=T d S − pdV + μd N .
The substitution of this expression for d E in (2.8) yields

d ′Qtot = T d S + μd N . (2.9)

In general, both d N and d S are nonzero when a particle enters or leaves an open
system. In other words, the chemical potential μ is not the (only) energy carried by
a particle upon its migration across the system’s border:19 When the only change
is the immigration of a single particle, (d N )1 = 1, we will denote by (d S)1 the
associated change of entropy. The “heat” associated with this immigration is then
the sum, (d ′Qtot)1 = T (d S)1 + μ. When the particle is an ideal gas particle, such
energy changes should not involve the concentration of the particle in the parti-
cle environment simply by the definition of ideal particle. On the other hand, the
particle concentration of the particle environment c enters in μ in entropic form,
kBT log c. In order that the (d ′Qtot)1 is independent of the particle concentration
of the environment, the last entropic term should be cancelled by a similar term in
T (d S)1.

2.1.4.2 Complete Thermodynamic Function for an Open System

When a system contains Nα particles of the species α, the pertinent complete ther-
modynamic function J is defined as follows:

J (T, a, {μα}) ≡ E − T S −
∑

α

μαNα, (2.10)

18 Hereafter we will use d ′ to denote the infinitesimal transfer of work, d ′W , and of (generalized)
heat, d ′Q to distinguish from d which is related to the thermodynamic variables.
19 Statistical mechanics shows that the chemical potential is related to the fugacity, i.e., the proba-
bility to escape, of anonymous particles. This is whyμ depends on the concentration of the particles
even if the particles do not interact among each other.
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where μα is the chemical potential of the particle environment of the species α,
and a denotes the extensive parameter that is controlled by an external system
(e.g., a = V if the volume is controlled). J gives rise to the following fundamental
relation:

d J = −SdT + ∂ J

∂a
da −

∑

α

Nαdμα. (2.11)

The work done to the open system through the change of the parameter a is calcu-
lated from

∫
(∂ J/∂a)da. When it is done quasistatically, the work, which we denote

by W |T,{μα}, is equal to the increment of J :

W |T,{μα} = ΔJ |T,{μα} (quasistatic). (2.12)

The chemical reaction is similar to the open system in the context that discrete
atomic masses are transferred between one state to the other. For an open system
the transfer is between a system and its particle environment, while for a chemical
reaction it is between a molecular species and the another. These two processes can
coexist. Typical examples are surface catalytic reactions and motor proteins20 or the
transport of molecules across a membrane channel. In the latter case, we can regard
the transport as unimolecular reaction from one “species” to another “species,” such
as “cytoplasm”� “nucleus.” If both sides of a membrane are macroscopic, the
channels on the membrane can be also described as an open system that exchanges
particles with two particle environments.21

2.2 Free Energy as an Effective Potential Energy
for the External System

In Sect. 2.1.3.1 we have shown that the complete thermodynamic function
F = E − T S, i.e., the Helmholtz free energy, describes the combined system, the
system and the thermal environment, with {T, V, N } as independent variables. Here
we describe another aspect of this thermodynamic function from the operational
point of view. The Helmholtz free energy acts as an effective potential energy under
the quasistatic operations by the external system. Figure 2.3 (top) shows a system
of the gas confined in a cylinder with a piston, which an external system can move.
When the external system pushes the piston, the first law of thermodynamics (2.1)

20 Different species of molecules can share the same space as distinct particle environments if the
spontaneous reaction between these species is negligible.
21 In the master equation formalism and related discrete Langevin equation discussed in the next
chapter, the change in closed systems and the migration of particles in open systems are both
described as a state transition of the whole system.
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system

bath

Fig. 2.3 Thermodynamic system viewed from the external system. Under quasistatic operations of
the piston (top figure), the “black box” (dashed rectangle) which consists of a gas in the cylinder
and the heat environment behaves like a spring (bottom). The temperature, instead of the force of
spring, is equilibrated between the system and the thermal environment (heat bath)

tells us that the associated work W done onto the system is partitioned into the
increment of the energy of the system, ΔE , and the heat released to the thermal
environment, (−Q).22 For the external system, the system and the thermal environ-
ment, therefore, look like a single black box. The external system measures only the
relation between the work W and the displacement of a piston.

To characterize this black box, let us denote by a the position of the piston and by
W (a1; a2) the work done through the displacement of the piston from a1 to a2. If this
work can be described by a potential, φ(a), such that W (a1; a2) = φ(a2) − φ(a1),
then one might regard this black box as an elastic spring whose potential energy
is φ(a) up to an additive constant (see Fig. 2.3 (bottom)). Macroscopic thermody-
namics tells that (1) such φ(a) exists if the parameter a is changed quasistatically
and (2) this potential energy, φ(a), is the Helmholtz free energy, F=E − T S,
up to an arbitrary additive constant.23 Thus the word “free energy” for F is
justifiable because it behaves like a potential energy (for “energy”), and it is avail-
able as work (for “free”). A similar interpretation can be done for the free energies
G = E − T S + pV (= μN ) or J = E − T S − μN (= −pV ) when the system
undergoes a process keeping in contact with a pressure environment (for G) or with
a particle environment (for J ), respectively.

Let us summarize how the quasistatic operation of the piston in the Fig. 2.3 can
be described differently according to the standpoint of the observer: the Ext who
sees the system only through the parameter a, the Sys who has access to both E and

22 Note the sign convention about the work and heat, see Sect. 2.1.1.
23 d E = T d S − pdV + μd N under the constraints, dT = d N = 0, yields d(E − T S) =
d F = − pdV = d ′W .
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S, and the Tot who regards the totality of the system and the thermal environment
as an isolated system.

Ext: The work W is apparently stored in the system as the increment of the
potential energy, ΔF (= ΔE − TΔS).24 If the data of ΔF are accumulated
at different temperatures, the change of the (internal) energy ΔE can be
obtained by the following formula called the van’t Hoff equation (see,
e.g., [5]):

ΔE = ΔF − T Δ

(
∂F

∂T

)

a

, (2.13)

where the suffix “a” indicates that the initial and final values of a should be
fixed upon taking the derivative.25 Equation (2.13) comes from the relation:
E = F + T S = F − T ∂F/∂T .

Sys: The work W is partly stored in the system as ΔE , while the rest is trans-
ferred to the thermal environment as heat, −TΔS.26 The actual partitioning
of the work into ΔE and (−TΔS) depends on the details of the system.
For example, ΔF should be ΔE for a system made of metallic spring but it
should be (−TΔS) for a system of ideal gas or ideal polymer network.

Tot: The work W is stored in the isolated system as the increment of (true)
energy, ΔE + TΔSenv, where the entropy of the thermal environment, Senv,
changes so that ΔS +ΔSenv = 0.

For nonquasistatic processes the second law of thermodynamics tells us
that the entropy of the isolated system is nondecreasing: ΔS + ΔSenv ≥ 0.
This inequality relates the work done to the system, W = ΔE − (−TΔSenv),
27 and the change of the Helmholtz free energy, ΔF = ΔE − TΔS, by the
inequality,

W ≥ ΔF. (2.14)

In other words, the work obtainable from the system (−W ) is limited by the
decrease of the free energy of the system (−ΔF):

(−W ) ≤ (−ΔF). (2.15)

24 The quantities denoted like “ΔM” implies the increment of M through the change of the
parameter a.
25 Remember that the partial derivative can give different results depending on what variables
are fixed: For example, p = −(∂U/∂V )S is rewritten as p = −(∂U/∂V )T + T (∂p/∂T )V .

Generally, given the fundamental relation, f (x1, . . . , xn) and R j ≡ ∂ f/∂x j , we have a formula,
(∂ f/∂xi )R j = (∂ f/∂xi )x j −R j (∂Ri/∂R j )xi .
26 Remember the sign convention: the heat, Q = TΔS, is positive if the energy is transferred from
the thermal environment to the system.
27 Note that the thermal environment is supposed to be in equilibrium and, therefore,
Q = −TΔSenv holds always.
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Fig. 2.4 A gas in cylinder
(central rectangle) in contact
with two heat baths of the
same temperature, T

TT

In the description of the energetics of fluctuating systems, the consciousness of the
standpoint is as important as the macroscopic thermodynamics.

We should note that macroscopic thermodynamics cannot analyze the kinetic
aspects of the quasistatic processes. First, thermodynamics gives no criterion for the
quasistatic operation by an external system. Thermodynamics is not the framework
to determine the characteristic timescale beyond which the excess work, i.e., the
difference between the actual work and the quasistatic work, is sufficiently small. To
answer such a question, we do not need a knowledge of the microscopic mechanics,
but need an energetics of fluctuations in Chap. 4. Second, thermodynamics cannot
access a slow kinetic process. Let us suppose a gas is confined in a cylinder and a
piston, which is in contact with two thermal environments at the same temperature,
T (Fig. 2.4). If we press down the piston quasistatically, the partition of the heat
released to these environments could be experimentally observable.28 The linear
nonequilibrium thermodynamics [6, 7] incorporates the irreversible flux between
the two equilibrium29 systems when their intensive variables have a small gradient.

2.3 * Free-Energy Conversion

Free-energy conversion is one of the principal subjects of thermodynamics, since
its advent by Carnot, until the recent interest in the context of molecular motor
[7]. We, therefore, introduce several important notions and concepts related to the
free-energy conversion.

2.3.1 Unused Work Is Not Released Heat

We here discuss reaction heat and the work produced by a heat engine.
A thermal environment is supposed to be an inexhaustible buffer of energy.

Because of this character, the isothermal processes exhibit sometimes

28 If the (almost) quasistatic process takes an extremely large time t , diffusive exchange of heat
between the two thermal environments via the system will be of order ∼ t

1
2 . We neglect this as

compared to the systematic part of ∼ t .
29 It is called “local equilibrium”.
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counterintuitive behaviors about their energetics. The rubber band mentioned above
is an example: little heat is released from an ideal rubber band when it freely shrinks
from a stretched state, while a quasistatic shrinkage can absorb heat. Free expansion
of an ideal gas behaves similarly: although a quasistatic expansion from the volume
Vini to Vfin can do the reversible work of kBT log(Vfin/Vini), the work-free expansion
(Joule–Thomson process) absorbs no heat.

In the biochemical context, the hydrolysis reaction of an ATP (adenosine triphos-
phate) with a water molecule into an ADP (adenosine diphosphate) and an inorganic
phosphate (Pi), ATP + H2O → ADP + Pi, can do about 20kBT of work under
usual physiological conditions. It does not mean that we will observe this amount
of dissipative heat when no work is extracted through this reaction. (See below.)
We might also recall the existence of endothermic chemical reaction – while the
reaction proceeds with consuming the relevant free energy (see below), the system
absorbs heat, instead of absorbing heat. The point is that, for open systems, the heat
released to the thermal environment, (−Q), is not the total increase of entropy of
the environment ΔSenv, that is Q �= −TΔSenv: The total change ΔSenv generally
includes a purely combinatorial part (mixing entropy change).

The chemomechanical coupling is a mechanism which converts a chemical free
energy into work under constant temperature and pressure. We will see the inter-
play of heat and work in this mechanism. Figure 2.5 shows a schematic setup of
chemomechanical coupling. In this setup, the material before the reaction (called
the substrate) and the one after the reaction (called the product) are separated as sub-
systems in order to avoid a work-free reaction. As we are interested in the process
under constant pressure p, the energy of the pressure environment is included in the
energy of the system. That is, we use enthalpy, H≡E + pV , instead of E , where
V is the volume. By adopting enthalpy as the energy of the system, the work due to
volume change is not counted in W . Finally there is an engine that works between
the substrate and the product subsystems. The two subsystems and the engine are
immersed in a thermal environment (Fig. 2.5). The combined system, therefore,
consists of four subsystems, i.e., the two particle subsystems, the pressure reservoir,
and the chemical engine.

Fig. 2.5 Schematic setup of
chemomechanical coupling.
The system consists of the
substrate subsystem, the
product subsystem, the
ambient pressure (piston),
and the chemical engine
(circle), all immersed in a
thermal environment

pV

(−Q)

(−W)
substrate product
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In the case of the quasistatic process, the analysis is done by the aid of a thought
experiment called a van’t Hoff reaction box (see e.g., [5]). Here we include the
general case of a nonquasistatic process and consider what occurs upon one cycle
of operation of the engine. Let us denote by (−Q) the heat released from the
combined system to the thermal environment and by (−W ) the work done by
the combined system to the external system. Let us also denote by ΔS, ΔV , and
ΔH (= ΔE + pΔV ), the changes in the entropy, volume, and the enthalpy of the
combined system.30

Application of the first law of thermodynamics: In the present context this law gives
ΔE = W + (−pΔV ) + Q, or by noting that p is constant,

(−ΔH ) = (−W ) + (−Q). (2.16)

The minus signs are incorporated in the above equation so that we can use the
extracted work, (−W ), and the released heat, (−Q). There are two extreme cases:

Case where no work is extracted: We substitute W = 0 in (2.16) to have (−Q) =
(−ΔH ), which we shall call the heat of Joule–Thomson, (−Q)JT. That is,

(−ΔH ) = (−Q)JT, W = 0. (2.17)

Therefore, this reaction is either exothermic or endothermic, depending on whether
(−ΔH ) > 0 or (−ΔH ) < 0.

Case where the maximal work is extracted: The released heat, (−Q) = TΔSenv, is
related to ΔS through ΔS + ΔSenv = 0. We shall call this the reversible extracted
heat, (−Q)rev = −TΔS. In this case, the extracted work (−W ) is the reversible
work, (−W )rev = −ΔH + TΔS. Using the relation, ΔH = ΔG + TΔS, we
have included the substrate and product subsystems as a part of the combined sys-
tem. This justifies the Gibbs free energy as the fundamental function of the present
problem:

(−ΔH ) − (−ΔG) = (−Q)rev : reversible extracted heat

(−ΔG) = (−W )rev : reversible extracted work. (2.18)

In case where the particle environments are treated as environment, the chemical
potentials should be the independent variables. See Sect. 2.1.4.2.

General case: In the general case, the total entropy is nondecreasing, ΔS+ΔSenv ≥
0, by the second law of thermodynamics. Therefore,

(−W ) ≤ (−W )rev

(−Q) ≥ (−Q)rev. (2.19)

30 The changes associated to the engine are 0 by definition of the cycle.
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Fig. 2.6 The partition of the extracted work, (−W ), (filled arrows) and the released heat, (−Q),
(open arrows) under constant temperature and pressure. They obey the first law; (−ΔH ) =
(−W ) + (−Q). The reaction is either exothermic ((−ΔH ) > 0, top), athermal ((−ΔH ) = 0,
middle), or endothermic ((−ΔH ) < 0, bottom). The figures show only the case of “engine”,
i.e., (−ΔG) > 0

Figure 2.6 summarizes the above relations for the cases with (−ΔH ) > 0, (−ΔH ) =
0, and (−ΔH ) < 0, respectively.31

Remark: We should avoid confusions like the following: “If the extracted work
(−W ) is less than its maximum available value, (−ΔG), then the difference (−ΔG)−
(−W ) should be measured as the released heat.” The correct statement is “. . . , then
we have the irreversible heat, (−ΔG)− (−W ) ≥ 0, in addition to the reversible one,
(−ΔH ) − (ΔG).”

Chemical pump: In the reverse case, that is, when the work is done to the system in
order to drive the reaction or transport against the natural tendency, the Gibbs free
energy increases, ΔG > 0.

The equations and inequalities above are always valid with appropriate reinter-
pretation. For example, (−W ) ≤ (−W )rev of (2.19) should be read as W ≥ Wrev,
that is, the work done to achieve a cycle of engine is no less than the reversible one,
Wrev, which in turn is ΔG according to (2.18).

Finally we note that the model of autonomous chemomechanical coupling is
beyond the scope of macroscopic thermodynamics because it concerns the dynamics
of the system.

2.3.2 Chemical Coupling Is a Transversal Downhill of a Gibbs
Free-Energy Surface

We formulate the notion of chemical coupling (or conjugation) in the context of
macroscopic thermodynamics. We will take up a very simple example: we suppose

31 If the volume, instead of the pressure, of the system is fixed, all the enthalpy H in the above
formulas should simply be replaced by the energy E .



2.3 * Free-Energy Conversion 85

FUEL

LOAD

Fl

Ll

Fh

Lh

Fig. 2.7 Two reservoirs of the fuel (F) particles and two others of the load (L) particles with
the high (h) and low (�) chemical potentials. The passive diffusion of the fuel particles along
their chemical potential gradient (two arrows in the top layer) is coupled by the chemical engine
(hexagon at the center) to the active transport of the load particles against their chemical potential
gradient (two arrows in the bottom layer)

two species of particles, the fuel (F) and the load (L) particles. For each species
of particles, we prepare two particle reservoirs with high and low densities, which
we distinguish by the suffixes, h and �, respectively (see Fig. 2.7). For example, Fh

denotes the high-density reservoir of fuel particles. We will denote the chemical
potential of each reservoir by μFh , etc. By definition, μFh > μF� and μLh > μL�. A
chemical engine (denoted by a hexagon at the center of Fig. 2.7) enables the active
transport of the load particles from L� to Lh at the expense of the passive transport
of the fuel particles from Fh to F�.

Gibbs free-energy surface: As in the previous section, we regard the four particle
reservoirs and the chemical engine as a combined system working at a constant
temperature and pressure. The relevant thermodynamic potential is then the Gibbs
free energy,

G tot = (μFh − μF�)NFh + (μLh − μL�)NLh + const., (2.20)

where NFh [NLh] are the number of the fuel [load] particles in their respective high-
density reservoirs, and we have used the fact that the total number of the fuel [load]
particles are constant.32 Equation (2.20) defines an inclined plane in the 3D space
of (NLh, NFh,G tot). See Fig. 2.8. We shall call this plane the Gibbs free-energy
surface. The thermodynamically allowed processes are those which decrease this
free energy, G tot. Suppose that the reactions L� → Lh and Fh → F� are coupled
at the ratio of nL:nF particle transport on the average. This imposes a condition on
(NLh, NFh) that

32 After each cycle of the chemical engine, the number of the particles in the machinery returns to
the same value. We then ignore the cyclically varying part of G tot.
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Fig. 2.8 Chemical coupling
and Gibbs free energy. The
shaded plane shows the total
Gibbs free-energy surface
(2.20) in the (NLh, NFh,G tot).
Chemical coupling is realized
along the thick arrowed line,
which satisfies (2.21) as well
as (2.20). The process
A → B consists of the
downhill diffusion of the fuel,
A → C , and the uphill
diffusion of the load,
C → B. The total Gibbs free
energy G tot decreases as a
result. The G tot = const. line
(thick dashed line on the
Gibbs free-energy surface) is
a visual guide

Gtot

NF, h

NL,h

B

A

C

NLh − N 0
Lh

NFh − N 0
Fh

= nL

nF
, (2.21)

where (N 0
Lh, N 0

Fh) are constants. While the chemical engine consumes the nF fuel
particles, decreasing the free energy by ΔGF = (μFh − μF�)(−nF) < 0, it pumps
up the nL load particles, increasing the free energy by ΔGL = (μLh − μL�)nL > 0.
Figure 2.8 shows how the active transport, ΔGL > 0, is realized while satisfying
the second law of thermodynamics, ΔG tot ≡ ΔGF +ΔGL < 0.

2.3.3 The Efficiencies of Heat Engine and Chemical Engine
are Limited by the Second Law of Thermodynamics

In most cases, the phrase “efficiency of a heat engine” would refer to the Carnot
cycle. When Carnot discussed his famous cycle, people had not yet recognized that
heat can be transferred without transporting any material, nor had they discovered
the second law of thermodynamics. It was, therefore, natural that the efficiency was
defined so that it is unity when all the heat from the high-temperature environment
is turned into a useful work. After thermodynamics was established, the efficiency
of a heat engine was redefined in reference to the Carnot’s theoretical maximum,
allowed by the second law of thermodynamics.

For a single thermodynamic process, it is easy to introduce the efficiency of
energy conversion in reference to the second law of thermodynamics. For example,
for an isothermal process of changing the parameter a from a1 to a2, we can define
the efficiency Θ as
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Θ = (−W )

(−ΔF)
(Isothermal process), (2.22)

where (−W ) is the actually extracted work and (−ΔF) = F(a1) − F(a2) is the
decrement in the Helmholtz free energy, that is, the maximally available work of
this process (Sect. 2.1.2). By definition, Θ satisfies (0 ≤)Θ ≤ 1.

When a heat engine converts energy indefinitely, it must undergo a cycle of
thermodynamic processes. The ideal cycle requires generally four quasistatic pro-
cesses, as is the case with the ideal Carnot cycle: two processes in contact with
the two thermal environments, respectively, one to absorb heat and the other to
discard heat, and the other two processes for adjusting the system between these
environments. The Carnot cycle is in this sense a minimal cyclic process to avoid
irreversible losses. Below we derive the maximal work available from one cycle of
Carnot heat engine. Later we will discuss the Carnot cycle on the fluctuating scale
(Sect. 8.1.1).

When the cycle is ideal, each of the above mentioned thermodynamic pro-
cesses must be reversible. Moreover, the attachment and detachment between the
consecutive processes should cause no irreversibility. This requires that, at the
end of each adiabatic process, the temperature of the system should be equal
to the temperature of the thermal environment with which the system will be
attached.33 Let us denote the temperatures of the hot [cool] thermal environment
by Th [T�], respectively. For the isothermal process in contact with the hot envi-
ronment the extracted work, (−Wh), is the change of Helmholtz free energy of the
system, ΔFh = ΔEh − ThΔSh , and similarly for the isothermal process with cool
environment, i.e.,

(−Wh) = (−ΔFh) = (−ΔEh) + ThΔSh,

(−W�) = (−ΔF�) = (−ΔE�) + T�ΔS�.

During adiabatic processes the extracted work is equal to the change of the energy
of the system:

(−Wad:h�) = (−ΔEad:h�), (−Wad:�h) = (−ΔEad:�h),

where the suffixes ad:h� and ad:�h indicate, respectively, the adiabatic cooling and
heating processes. Because of the cyclicity of the processes, we impose

(−ΔEh) + (−ΔEad:h�) + (−ΔE�) + (−ΔEad:�h) = 0.

33 We can assume the continuity of the temperature of the system from an isothermal process to
the following adiabatic process.
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Reversibility implies

(−ΔSh) + (−ΔS�) = 0.

The maximal available work per a cycle of the ideal heat engine, (−W tot)max, is
then

(−W tot)max ≡ (−Wh) + (−W�) + (−Wad:h�) + (−Wad:�h),

= (Th − T�)ΔSh . (2.23)

The efficiency of an actual heat engine, which we denote by Θ , should be the
ratio of the actual extracted work, (−W tot), to the above maximum reversible value,
(−W tot)max:

Θ ≡ (−W tot)

(−W tot)max
= (−W tot)

(Th − T�)ΔSh
≤ 1. (2.24)

The traditional definition of Carnot efficiency, η, as distinguished from our effi-
ciency Θ , is η = (−W tot)/(ThΔSh). For the reversible process, when Θ = 1, the
Carnot efficiency takes the well-known maximum, ηrev = (Th − T�)/Th .

A similar argument can be applied to chemical engine consisting of an open
system and two particle reservoirs, see Fig. 2.5.34 In this case the system is in con-
tact with a single thermal environment at temperature T throughout the cycle. Let us
denote the chemical potentials of dense [dilute] particle reservoir byμh [μ�], respec-
tively. An ideal cycle consists of two quasistatic processes under constant chemi-
cal potential and the intervening two quasistatic (closed) isothermal processes. The
extracted work in the former processes reads (−Wh) = (−ΔEh)+TΔSh+μhΔNh,

etc.35, where ΔNh , etc., denote the changes in the number of particles in the system
in contact with a particle reservoir. The extracted work during the isothermal pro-
cesses is (−Wit:h) = (−ΔEit:h) + TΔSit:h, etc., where the suffix it stands for closed
isothermal processes. The condition of the cyclicity is imposed on the energy of the
system as above and the number of particles in the system; ΔNh + ΔN� = 0. The
condition of reversible process imposes ΔSh + ΔSit:h + ΔS� + ΔSit:� = 0. The
maximal extracted work, (−W tot)max then is

(−W tot)max = (μh − μ�)ΔNh . (2.25)

This result can be rewritten in terms of the total Gibbs free energy G tot defined by
G tot = μh N res

h + μ�N res
� + Gengine, where N res

h , etc., denote the number of particles

34 In the present context the substrate and product, Fig. 2.5, should be reread as high-density reser-
voir and low-density reservoir, respectively.
35 “etc.” implies the change of suffix, h �→ �.
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in a particle reservoir and Gengine is that of the chemical engine. Since a balance
of the number of particles transferred between a reservoir and the chemical engine
imposes ΔN res

h +ΔNh = 0 and ΔN res
� +ΔN� = 0, and since the system undergoes a

cycle, ΔGengine = 0, we arrive at (μh −μ�)ΔNh = −ΔG tot. Therefore, the relevant
definition of the efficiency of the chemical engine is

Θ = (−W tot)

(−ΔG tot)
. (2.26)

Remark: Any arbitrary positive quantity whose upper bound is unity does not
necessarily deserve to be called efficiency: if we have an inequality in the form of
A − B − C ≤ 0 about the cycle of an energy converter, we might ask ourselves
which of A/(B + C), (A − B)/C , or (A − C)/B is the most appropriate definition
of the efficiency of energy conversion.

General remark: It is only the difference that the thermodynamic functions
appeared in the thermodynamic efficiency Θ or in the Carnot efficiency η. It was
so also in the heat and work of reversible reactions (2.18). It is because the ther-
modynamic functions have the arbitrariness of an additive constant and the experi-
mentally observable results do not depend on that constant. So as to be compatible
with the extensive character of these functions, this arbitrariness is reduced to the
arbitrary additive constants in the molar [specific] energy and entropy. All the ther-
modynamic laws and relations are invariant under the change of these constants. See
Appendix A.2.2.

The analysis of a Carnot cycle by conventional macroscopic thermodynamics
is tautological, since macroscopic thermodynamics is constructed to explain the
Carnot cycle. The above review will be still useful as a reference frame when a
similar cycle is studied on the scale of thermal fluctuations.

The cost of the operations, i.e., of connecting or disconnecting with the environ-
ments, macroscopic thermodynamics is supposed to be negligible. For mesoscopic
systems, irreversibilities associated to the operation on the system require attention.
This issue will be discussed later (Chap. 7).

2.3.4 Discontinuous Phase Transition Accompanies
the Compensation Between Enthalpy and Entropy

Phase transition can occur if a system takes two thermodynamically distinguishable
equilibrium states (phases) at a temperature T and a pressure p of the environment.
For a single-component system the transition occurs along a coexistence curve in the
(T, p)-plane.36 Typical examples are the boiling of water or precipitation of vapor.

36 The generalization to many component systems is known as the Gibbs phase rule.
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Fig. 2.9 (Left) Schematic representation of Gibbs free energy of two phases vs. T . From the gra-
dient ∂G/∂T the entropy S = −T ∂G/∂T is estimated, while from the intersection at T = 0
of the tangent lines, the enthalpy, H = G − T ∂G/∂T is obtained. The smaller of GI and GII is
realized; i.e., GI for T < Tc and GII for T > Tc. (Right) The jump of H and of T S across the
phase transition CI ↔ CII on the (H, T S)-plane. The gradient of the jump CI–CII (a diagonal of
the dashed square) is 45◦ because of the H–S compensation (2.28)

In thermodynamics this discontinuous transition, called the first-order phase tran-
sition, is characterized by the equality of the Gibbs free energy per mass of the two
states, GI and GII:

GI = GII (at transition), (2.27)

where we distinguish the two phases by I and II, see Fig. 2.9 (left), where the pres-
sure p is fixed. Exactly at the transition point, either one of the states is realized or
the two phases coexist macroscopically in the system.

Gibbs free energy consists of enthalpy (i.e., the internal energy of the system plus
the pressure environment) H and the entropic term,−TS, that is G = H−TS. In the
case of the liquid–vapor transition of water, the liquid phase (I) gains the enthalpic
part of GI by its cohesive energy, while the vapor phase (II) gains the entropic term
(−TS) by having a large specific volume per molecule. As a result, the enthalpy of
these two phases satisfies HII−HI > 0,while their entropy obeys T (SII−SI) > 0.At
the phase transition (2.27) tells that the differences of these two terms must balance
(“ Enthalpy–entropy (H–S) compensation”):

HII − HI = T (SII − SI) (at transition). (2.28)

Figure 2.9 (right) shows schematically the condition (2.28).
When the system is infinitely large, the zeroth law of thermodynamics is com-

patible with the switching of two phases at the transition, because the “sufficiently
longtime” at the transition point cannot be realized. By contrast, for a finite system,
the equilibrium state is unique and there are no singularities in phase transition.
Some proteins can take clearly distinguishable shapes (“conformations”) over the
timescale of msec. Upon the conformation transition, a phenomenon similar to the
above mentioned H–S compensation has been observed [8]. The differences of
enthalpy and, therefore, of the entropy between the two conformations are large
when the conformation change accompanies the binding/release of the surround-
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ing water molecules.37 Biological molecules are thought to use such transition-like
phenomena. Some soft materials often undergo the transition under physiological
conditions.

The H–S compensation has sometimes been an object of controversy because
it can also arise as an experimental artifact [10]. In fact, if the term −T ∂G/∂T is
predominant in the formula H = G − T ∂G/∂T over the magnitude of G, we have
TS = −T ∂G/∂T � H. Therefore, we would have ΔH � TΔS for any change
of parameters, including T , within a relatively narrow range. The estimation of this
artifact may be a good exercise for error analysis problems.38

2.4 Notes on the Extension of the Thermodynamics

It is being recognized that thermodynamics is an asymptotic mathematical structure
where certain variables obey a set of universal relations. This structure appears in
the phenomena consisting of a large number of similar objects. The conventional
macroscopic thermodynamics, either classical or quantum mechanical, is not the
only example. Thermodynamic relations that we will explore in this book from
Chap. 4 are the another example. We mention below several extensions of the
thermodynamics.

The geometrical aspect of thermodynamics has been studied under the name of
metric geometry of equilibrium thermodynamics [11–13]. A framework to describe
a large number of “thermodynamic elements” has been sought for by analogy to the
theory of electric circuit, called network thermodynamics [14]. In linear nonequi-
librium thermodynamics (see Sect. 2.2), subsystems are supposed to maintain local
equilibrium within themselves and the transport and dissipation among the sub-
systems obey the Onsager (force–flux) relation [15, 16, 6, 7]. The Navier–Stokes
equation [17] incorporates this framework.

More fundamental project has recently been proposed toward the axiomatization
of thermodynamics [1, 2]. The latter [2] constructs a set of axioms for the conven-
tional thermodynamics. The former [1] studies the axioms which are valid for any
steady states including conventional thermodynamics. The subject is currently a hot
topic [18–23].

In quantum information theory, people look for the thermodynamics of quantum
entanglement [24]. The thermodynamic structure of chaotic systems has also been
formulated [25, 26].

There are also attempts to remove some of the fundamental requirements of ther-
modynamic phenomena: in the thermodynamics of small systems [27], one does

37 Upon a principal conformation change of a myosin molecule (called the isomerization), about
120 water molecules leave from the surface, according to the analysis based on dielectric measure-
ments [9]. There, the enthalpy changes of about H = +51(kJ/mol) is mostly compensated, leaving
little Gibbs energy difference between the conformations. (cf. kBT = 2.4(kJ/mol).)
38 [29] is a good introduction of error analysis.
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without the extensivity of the system behavior. In the theory of glass [transition],
the lack of quasistatic processes gives rise to many interesting phenomena, such
as memory effect, aging, and plasticity. The related issue will be addressed in
Sects. 7.1.2 and A.7.2. The so-called effective temperature [28] of glassy states
indicates the (decaying) memory of the initial preparation.
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Chapter 3
Fluctuations in Chemical Reactions

We will survey several concepts and notions related to chemical reactions at various
scales and from various viewpoints. In the later chapters we will use them in the
energetics of the fluctuating world.

The notion of a molecule belongs to the far from equilibrium states. Chemical
reactions are then the transitions among different steady states of molecules, which
often accompany the conversion of degrees of freedom between the translational
degrees of freedom and the intramolecular ones.

In the survey of macroscopic reaction theory we limit ourselves to the case where
the reactions are described in terms of the concentrations of the chemical com-
ponents and the rate constants. Chemical equilibrium is related to the equilibrium
thermodynamics. Inversely, macroscopic open systems can be described as reaction
systems. Even within a macroscopic description of chemical reactions, the charac-
teristic scale is a useful notion. We mention as examples the buffer solutions and the
Michaelis–Menten kinetics.

At more microscopic scales chemical reactions are described in terms of the
number of molecules (i.e., integers) of each chemical species. Stochastic processes
of discrete systems are the general framework of chemical reactions on this scale.
The master equation is the most often used description of discrete stochastic pro-
cesses. The detailed balance condition is the equilibrium condition expressed by
the probabilities of discrete states and the transition rates among these states. The
discrete version of Langevin equation is an alternative and equivalent method to the
master equation. The continuous Langevin equation (Chap. 1) can be represented as
a limit of discrete processes. We take the same examples as those we have taken in
the macroscopic description: A + B � AB, the open system, and the Michaelis–
Menten kinetics. It will be useful to find the similarities and differences between the
two different scales of description.

3.1 * Background of Chemical Reactions

There are different mechanisms for chemical reactions: the transition through quan-
tum tunneling, the quantal energy injection like photo activations, the molecular
collisions induced by thermal motion or by forced molecular injection, the effect of

Sekimoto, K.: Fluctuations in Chemical Reactions. Lect. Notes Phys. 799, 93–131 (2010)
DOI 10.1007/978-3-642-05411-2 3 c© Springer-Verlag Berlin Heidelberg 2010
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intermediating substances like catalysts, thermal fluctuations causing large confor-
mational changes in a protein, to mention a few. Each of these mechanisms could be
best described on certain appropriate scales of space, time, or energy. Such appro-
priate scales may range over many orders of magnitude from one case to another.
For example, quantum chemistry deals with the order of femtoseconds (10−12s),
while the isomerization (conformational change) of protein occurs on the order
of milliseconds (10−3s). In this book we limit ourselves to either macroscopic or
mesoscopic descriptions where quantum mechanisms do not appear on the surface.
We will begin by examining the notion of a molecule.

3.1.1 “Molecule” in Chemical Reaction Is a Nonequilibrium State
with Internal Degrees of Freedom

3.1.1.1 “Molecule” as Nonequilibrium State

When one says there is a water molecule, it means there is a stable spatial aggrega-
tion of two hydrogen atoms and one oxygen atom. The notion of the macromolecule
such as a polymer chain or a protein molecule implies that the aggregation of con-
stituent atoms is maintained stably. Actually, however, no molecular state is stable
forever. What we call molecule is usually a nonequilibrium state which is at best
metastable or transiently stable. In other words, the (nonequilibrium) notion of the
molecule is meaningful only when we are interested in timescale where the molecule
maintains its identity.

The importance of the timescale is not particular to the notion of molecules:
We can discuss the equilibrium thermodynamics of the glassy material if it has an
extremely long though finite relaxation time. Even when we discuss the equilibrium
state of a monoatomic ideal gas in a container, we assume implicitly that the con-
tainer stays stable after infinitely long time when the equilibrium state of the gas
is established. In other words, we limit our discussion to the timescale when the
container remains in its nonequilibrium state. (This argument can be generalized:
The notion of atom also requires the transient stability of the atom.)

In Boltzmann statistical mechanics, the statistical entropy of a thermodynamic
state is the logarithm of the whole phase space volume which the system can visit.
When the thermodynamic state is defined, the extent of the word “whole” (phase
space) should be properly limited.1 For example, we should specify which kinds of
chemical reaction are admitted and which are not within a given timescale.

While such limitations of timescale do not cause problems usually, the excep-
tion is when the observation timescale and the relaxation timescale of the system
reverse their relative magnitudes. For example, upon raising/lowering the temper-
ature across the glass transition point of a material, or upon addition/depletion
of the catalyst of a reaction, the ratio r of these two timescales can switch from

1 See, Sect. 1.3.3.1.
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r�1 to r1 and vice versa. Such case will be discussed in detail later
(Chap. 7). In this section we assume that the containers of the chemical reaction and
the molecules are stable except through the chemical reactions which we describe
explicitly.

3.1.1.2 State of Molecules

There is a characteristic timescale of environment at which a reactant molecule
interacts critically with other reactant molecules or with the environment, through
molecular collisions. Another timescale of the molecule is related to its internal
dynamics such as vibrational and rotational motions. If the latter dynamics takes
place sufficiently rapidly as compared to the former timescale, then we can justify
the statistical description of each molecule, and it can be unambiguously represented
by its chemical formula or molecular formula (like H2O).

By contrast, if the time evolution of the internal state of a molecule is slower
than the timescale of reactive molecular interactions, we need more parameters to
characterize the internal states of the molecule. For example, the flexible polymeric
chains or proteins, the deformable tethered membrane, or the soft network of gel,
etc., require the conformational parameters other than their chemical formula to
correctly describe the chemical reactions.

3.1.1.3 Molecular Reaction Viewed from the Degrees of Freedom

“Molecular reaction” replaces a group of transiently stable aggregated states of
atoms by a new group of aggregated states. By taking the reaction, A + B → AB
as an example, we can characterize the change of molecular states in two different
ways.

Transfer of degrees of freedom: The translational degrees of freedom decrease
from six to three. The three translational degrees of freedom are compactified. The
molecule AB then possesses three internal degrees of freedom, one for vibration and
two for rotation.

Correlation among translational degrees of freedom: Among the six independent
translational degrees of freedom of monoatomic molecules, A and B, three of them
become spatially correlated in the molecule AB due to the binding potential between
the atoms. If the reaction takes place in a gas chamber or in water, this forced cor-
relation reduces the gas pressure or the osmotic pressure, respectively.

The consequences of the forced correlation or the compaction of translational
degrees of freedom are not limited to the entropic effect but there is also an ener-
getic effect: monovalent cations could make dimers if the electrostatic intradimer
repulsion is stabilized by a molecular binding force. Since the divalent cations feel
less repulsion among each other than do the monovalent cations of the same charge
density, the divalent cation dimers form a more dense counterionic cloud around an
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anion than monovalent cations do. This is a qualitative way to understand why the
overcharging around a charged colloid is more effective by multivalent counterions
than the monovalent ones [1].

The stability of molecular states is due to the high free-energy barrier (relative
to kBT ) associated with the destabilizing reactions. Since the reaction rate is mainly
governed by the exponential Boltzmann factor, the reactivity is efficiently changed
if the free-energy barrier is modified. This exponential dependence enables the near
discrete switching on/off of reactions in inorganic and organic matter. The energetic
aspect of controlling the barrier height will be discussed later (Chap. 7).

On the molecular level, the description of chemical reactions as well as open
system has to incorporate the transfer of degrees of freedom. Concomitantly the
energetics of chemical reaction and open system on the fluctuation level must take
into account the change in degrees of freedom (see Sect. 4.2.3).

3.2 Macroscopic Description

We survey below briefly the framework of the macroscopic reaction theory of dilute
solutions, using again the example of the reaction, A + B → AB. The solution is
assumed to be spatially homogeneous.

3.2.1 * Law of Mass Action Relates the Rate Constants of Reaction
to the Canonical Equilibrium Parameters

3.2.1.1 Rate Equation and Rate Constant

For dilute solutions of molecules having low molecular weight, the speed of reaction
depends only on the concentrations of the chemical components and the kinetic
parameters called the (reaction) rate constants. We will represent by [A], [B], and
[AB] the concentration of the A, B, and AB molecules, respectively. The rate of
production of the AB molecules by the (irreversible) reaction, A + B → AB, is

d[AB]

dt
= k[A][B], (3.1)

where the parameter k is the rate constant of this reaction. The macroscopic equation
for the rate of production, like (3.1), is called a rate equation. k[A][B] indicates
the frequency of the “collisions,” or encounter, between an A molecule and a B
molecule. The dimension and magnitude of k depend on the choice of the unit of
concentration, [A], etc. In physical chemistry one usually uses the molar concen-
tration, or molarity, [no. of mols of solute]/[no. of liters of solution].2 In this book,
however, we will adopt the following unit, unless stated otherwise explicitly:

2 The use of mol in the definition is reasonable in the sense that macroscopic observers cannot
count the number of solute molecules.
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[X] ≡ (no. of X molecules)

(volume in cm3 of solution)
. (3.2)

We choose this unit with a view to maintain continuity with the more microscopic
level discussions in later sections.

If we also take into account the reverse reaction, i.e., A+B � AB, we introduce
another rate constant, k ′, which has different dimensionality from that of k:

d[AB]

dt
= k[A][B] − k ′[AB]. (3.3)

The second term on the right-hand side, −k ′[AB], implies that an isolated AB
molecule has an average inverse lifetime, k ′. The law (3.3) is valid in the limit of
(i) dilute solution and (ii) near equilibrium. We will discuss a more general case of
nondilute solution in Sect. 3.3.3.

3.2.1.2 Chemical Equilibrium

A reaction system is said to be closed (with respect to the chemical reactions) if
(i) there is no exchange of molecules A, B, or AB between the system and the
outside and also (ii) there is no mechanism to change the rate constants.3 If the
above system, A + B � AB, is closed, the change of [A] and of [B] are given by4

d[A] = d[B] = −d[AB]. (3.4)

Application of the zeroth law of thermodynamics to the whole system, the closed
reaction system plus the thermal environment, implies that this isolated system
will reach the thermal equilibrium after infinitely long time. The steady state
of (3.3), i.e.,

d[AB]

dt
= d[A]

dt
= d[B]

dt
= 0 (3.5)

then gives the chemical equilibrium and satisfies

[AB]

[A][B]
= k

k ′
(equilibrium). (3.6)

This type of equilibrium condition, where the powers of concentration appear in the
denominator and numerator, is called the law of mass action. The ratio of the kinetic
parameters on the right-hand side is called the equilibrium constant, which depends
only on the thermodynamic parameters, as we will see below.

3 For example, the sedimentation of [AB] would decrease k ′.
4 We omit the dt in the denominator.
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If the reaction is not closed, for example, under the steady injection of A and B
and the removal of AB, the stationary condition, (3.5), does not give equilibrium.

3.2.1.3 Chemical Equilibrium and Macroscopic Thermodynamics

If the law of mass action characterizes a thermal equilibrium, the relation (3.6)
should be equivalent to the equilibrium condition of macroscopic thermodynam-
ics. In the latter framework, we require the minimum of the Gibbs free energy
G(T, p, NA, NB, NAB) with respect to NAB.5 This minimization yields

μA + μB = μAB. (3.7)

On the other hand, the chemical potential of the solute molecules in a dilute
solution is

μA = μ0
A + kBT ln[A], etc. (3.8)

with μ0
A being a constant. Therefore, the equilibrium condition (3.7) is

[AB]/([A][B]) = exp[−(μ0
AB − μ0

A − μ0
B)/kBT ]. Identifying this expression with

(3.6), we reach the following relation between the rate constants and the thermody-
namic parameters:

k

k ′
= exp

[
μ0

A + μ0
B − μ0

AB

kBT

]
. (3.9)

3.2.1.4 Equilibrium with a Particle Reservoir – Open System

When the reaction system, A + B � AB, allows for the exchange of the AB
molecules with its particle reservoir, the rate equations are

d[AB]

dt
= k[A][B] − k ′[AB] − kout[AB] + kin,

d[A]

dt
= −k[A][B] + k ′[AB] = d[B]

dt
. (3.10)

Here the exchange with the particle reservoir of [AB] is characterized by the two
rate constants, −kout and kin. The stationary condition, (3.5), yields the following
two independent relations as the law of mass action:6

5 Note that NA= [A]V etc., where V is the volume of the system. Under the isothermal and isobaric
condition, the second law requiresΔ(E−T S+PV ) = ΔG ≤ W = 0 for any spontaneous changes.
d NA and d NB are dependent on d NAB according to (3.4).
6 If the particle reservoir exchanges (only or also) A molecules, the equation for d[B]/dt still
assures the law of mass action. If the system exchanges all the species of molecules, the law of
mass action will no more hold.
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[A][B]

[AB]
= k ′

k
, [AB] = kin

kout
(equilibrium). (3.11)

At the equilibrium, the total Gibbs free-energy, G(T, p, NA, NB, NAB)+ Gres(T, p,
NAB,res), should be minimized under the constraints of particle conservation, d NA+
d NAB + d NAB,res = 0 and d NB + d NAB + d NAB,res = 0. This yields7

μA + μB = μAB = μAB,res, (3.12)

where μAB,res is the chemical potential of the particle environment of AB molecules.
With (3.11) we have the following relations:

k

k ′
= exp

[
μ0

A + μ0
B − μ0

AB

kBT

]
,

kin

kout
= exp

[
μAB,res − μ0

AB

kBT

]
. (3.13)

Remarks

The chemical reaction theory emphasizes the transformation of the mass, but
the energetic aspects (change of free energy, endothermic, or exothermic, etc.) are
treated separately using thermodynamics. If we use stochastic energetics, both mass
transformation and energetics are discussed on the basis of a single event of the
reaction.

The chemical potential is a quantity on the level of the description where the
particles are anonymous. The chemical potential (e.g., (3.8)) does not represent the
free energy carried by an individual molecule. μA is the energetic interpretation
of the relative probability of the arrival of anonymous molecule A, ∝ [A]eμ

0
A/kBT ,

using the form of the Boltzmann factor, eμA/kBT .

3.2.2 * Large Separation of the Rate Constants Causes Different
Regimes of Reaction and Rate-Limiting Processes

It often occurs that two or more reactions related to the same molecular species
have widely different equilibrium constants. That the equilibrium constants depend
exponentially on the chemical parameters, like μ0

A in (3.9) and (3.13), explain this.
Because of this aspect, we expect that a chemical reaction system can exhibit

qualitatively different behaviors in different regimes. The following two simple
examples demonstrate how the phenomena of different scales are treated.

7 We may use the method of Lagrange multiplier: The requirement of d[G(x, y, z) + Gres(z̃)] = 0
under the constraints, d(x + z + z̃) = 0 and d(y + z + z̃) = 0, is equivalent to the constraint-
free requirement, d[G(x, y, z) + Gres(z̃) − λx (x + z + z̃) − λy(y + z + z̃)] = 0, with λx and
λy being unknown, called the Lagrange multipliers. The parameter set, (x, y, z, z̃), stands for
(NA, NB, NAB, NAB,res). Then μA = λx, μB = λy, μAB = λx + λy, and μres = λx + λy.
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3.2.2.1 Titration and Buffer Solution

The object is to study the titration and the buffer solution of acid–base system
starting from a unified framework. The solution (1� in total) is prepared from a0

mol of acid, HA, b0 mol of a base, BOH, and pure water. The base is assumed to
be strong base, so that it 100% dissociates (BOH→B+ +OH−) into B+ (b0 mol)
and OH− (b0 mol). We study how the amount of the hydronium ion h = [H3O+]
or equivalently pH ≡ − log10 h is related to the initial amount of the base b0.
This relation results from the two mechanisms: the water dissociation equilibrium,
[H3O+][OH−] = Kw,

8 or

h (b0 + h − y) = Kw, (3.14)

and the acid dissociation equilibrium, [H3O+][A−]/[HA] = Ka, or

hy

a0 − y
= Ka, (3.15)

where y = [A−]= a0 − [HA], and Kw and Ka are the equilibrium constants of the
water and the acid, respectively, at a given temperature. Elimination of y from (3.14)
and (3.15) yields

b0 − a0 = Kw

h
− C(h, a0, Ka) h, (3.16)

where C(h, a0, Ka) = 1+ a0
Ka+h . Equation (3.16) is called the Charlot equation. If the

acid HA is also a strong acid (Ka  a0) which dissociates 100% into ions through
HA + H2 O→ H3O++ A−, then C∞ ≡ limKa→∞ C(h, a0, Ka) = 1. In this case the
solution behaves, a0 − b0 � h for h √

Kw and b0 − a0 � Kw/h for h �√
Kw,

with very narrow range of crossover, Δ|b0 − a0| ∼
√

Kw, around the equivalence
point, b0 = a0 with h = √

Kw.
If the acid HA is a weak acid (not very large Ka), but if its dissociation,

HA + H2O→ H3O+− A−, is much stronger than the dissociation of water (2H2O→
H3O++ OH−), there can arise the situation where the nondimensional parameters,
X ≡ Kw/a2

0 and Y ≡ Ka/a0 satisfy X�Y �1. Figure. 3.1 shows an example of
pH vs. b0 − a0 for a0 = 1, Kw = 10−14 and Ka = 10−5. In this case, one regime
h/Ka�1 is again the crossover between a0 − b0 � h/Y for h√

Kw Ka/a0 and
b0−a0 � Kw

h for (0<)h�√
Kw Ka/a0, across the equivalence point h=√Kw Ka/a0

(i.e., h/a0 = √
XY ). At the equivalence point, the pH is shifted toward basic

by − 1
2 log10 Y . The consistency of the assumption h/Ka � 1 is verified since

h
Ka
= { X

Y

}1/2�1 at the equivalence point.

8 In molar unit, what would be the denominator, [H2O] = 55.5, is roughly of order 1 and conven-
tionally suppressed.
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Fig. 3.1 pH vs. b0 − a0 for a0 = 1, Kw = 10−14 and pKa = 5, i.e., Ka = 10−5

The new regime, called the buffer regime, is h/Ka ≡ 10−pH+pKa ∼ 1 in (3.16).
If we assume h � a0 and Kw

h � a0 in (3.16), h/Ka is written as h
Ka

� b0−a0
b0

. It

implies that, as far as b0−a0
b0

∼ 1, the pH of the solution is kept at around pH �
pKa≡− log10 Ka. The above assumptions are consistent since h

a0
∼ Ka

a0
=Y�1 and

Kw
ha0

∼ Kw
Ka a0

= X
Y �1. The buffering regime is, therefore, realized due to the double

inequalities, X �Y �1.

3.2.2.2 Michaelis–Menten Kinetics

Michaelis–Menten kinetics is one of the fundamental reaction schemes in biochem-
istry, because it describes a catalytic (enzyme) reaction and it also applies to many
practical situations. We describe this kinetic scheme below and discuss the gener-
ality of this kinetics from the viewpoint of characteristic scales or the rate-limiting
processes.

Reaction with a Catalyst

A catalyst is a chemical substance which is not consumed in the reaction but
increases the rate constant of the reaction in both the forward and the backward
directions by the same factor. The catalyst, therefore, does not change its equilib-
rium constant defined in Sect. 3.2.1.4. In biology, catalytic proteins are called the
enzymes.
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Fig. 3.2 (A) Schema of
Michaelis–Menten reaction.
(B) Rate of production v as
function of substrate
concentration, [S]. See (3.21)

Vmax

S+E
SE

S+P

(A) (B) v

[S]KM

A simple 1:1 reaction between a Substrate (S) molecule and a Product (P)
molecule catalyzed by an Enzyme (E) is E + S � E + P. When we are inter-
ested in the dependence on the enzyme concentration, [E], we do not simplify this
scheme as S � P. One of the representative schemas of enzymic reaction is the
Michaelis–Menten kinetics which has been introduced around 1913. The schema of
Michaelis–Menten kinetics is

E + S � ES → E + P. (3.17)

In this schema we assume the following circumstance, see Fig. 3.2 (A):

1. The direct reaction, S � P, is slow enough to be ignored.
2. There is a transition state called Enzyme–Substrate complex (ES).
3. The total concentration of the enzyme, [E]tot = [E] + [ES], is finite.
4. At most one substrate particle, S, can interact at any time with an enzyme particle

(protein).
5. [P] is much smaller than the equilibrium value, so that the backward reaction,

ES ← E + P, can be neglected.

These hypotheses might look very particular among many other possibilities.
Nevertheless we will argue later that the above schema (3.17) is rather general from
the viewpoint of the timescales of reaction.

Michaelis–Menten Equation

Let us denote by kcat the rate constant of the forward reaction, ES → E + P. See
Fig. 3.3 (left). We seek the rate of production,

d[P]

dt
= kcat[ES], (3.18)

when the preceding step of complex formation has reached the steady state: 9

Fig. 3.3 Michaelis–Menten
reaction (left) and its
generalized form (right). The
change X → X ′ requires the
transition I → II

−kkcat
kcatE+S ES

k+

−k X

X’

I IIE+P

k+

9 This condition is often attributed to Briggs and Haldene.
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d[ES]

dt
= k+[E][S] − (k− + kcat)[ES] = 0. (3.19)

This equation leads to the relation10

[E][S]

[ES]
= k− + kcat

k+
. (3.20)

From this equation, we eliminate [E] using [E] = [E]tot−[ES] and then we substitute
the resulting [ES] as function of [S] into (3.18). We then obtain the desired result,
which is called the Michaelis–Menten equation (See Fig. 3.2 (B)),

v ≡ kcat[ES] = Vmax[S]

KM + [S]
, (3.21)

where we have introduced the maximal production rate, Vmax, for [S] = +∞, and
the so-called Michaelis–Menten constant, KM:

Vmax ≡ kcat[E]tot, KM ≡ k− + kcat

k+
. (3.22)

When [S] = KM, we have v = 1
2 Vmax. To estimate these parameters from experi-

mental data of v and [S], the sigmoidal curve, (3.21), is often replotted as the linear
plot between v−1 and [S]−1 or between v−1[S] and [S].11

As a model of chemical reaction, the Michaelis–Menten scheme is related to
the transient state [Eyring’s] theory (see, for example, [2] Chap. 28) and also to
Kramer’s theory [3]. The latter refined the notion of the transition state as a group
of states between which the molecule diffuses. The identification of the transient
state(s) in complex reactions is among contemporary topics [4].

Generality of the Michaelis–Menten Kinetics

When many enzymatic reactions are mutually linked and form a network (e.g.,
the metabolic network), there can be several key reactions – the rate-limiting
reactions – which determines the global rate of the reactions. In order for a reaction
to be the key reaction, there must not be other important bypassing or substituting
reactions. Moreover, it is necessary that (i) the activation energy barrier of the reac-
tion is high (even in the presence of enzyme) and/or (ii) the number of enzymes
is limited and many substrate molecules are waiting for the unbound enzyme. The
substrate S for this key reaction is a product of the preceding (upstream) reaction(s),

10 Although (3.20) takes of the form of the law of mass action, the system is not in equilibrium.
The exception is when kcat � k− holds. The approximation of neglecting kcat in (3.19) is called
the rapid-equilibrium assumption.
11 The latter representation is called the Hanes–Woolf plot.
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and the product P for this key reaction is a substrate of the following (downstream)
reaction(s). Thus, if the product of the upstream reaction is supplied faster than it
is converted into P, then the substrate S stays among E + S and ES states, and the
quasi-equilibrium (rapid equilibrium), E+S � ES, is realized. Also, if the substrate
of the downstream reaction is consumed faster than it is converted from S, then the
product P has little probability to be bound to E to form ES, and the unidirectionally
reaction, ES → E+P, is realized. These two features are what constitute the schema
of Michaelis–Menten kinetics. Therefore, the Michaelis–Menten schema describes
a general feature of the key reactions. The formula (3.21) shows that the key reaction
is controlled by the total number of the enzyme, [E]tot.12

If a reaction has the substrate concentration, [S], much smaller than the KM, then
this reaction cannot be controlled by [E]tot, and the reaction is not the key reaction. If
a lot of enzyme [E]tot is injected in a key reaction, then there would be a shortage of
the substrate and the process is no more controlled by this reaction, i.e., the reaction
ceases to be the key reaction. In brief, the Michaelis–Menten kinetics works when
and where the reaction in question is among the key reactions in the network. In
biochemical reaction network the change of the activity of enzymes13 may change
dynamically the locations of the key reactions.

The notion of the key reaction described above is not limited to the bulk enzy-
matic reaction in solution. The production rate of the form of (3.21) is found in
other conditions: for the reaction with a surface catalyst the rate of production obeys
the form of (3.21). If the concentration [S] is higher than KM, then most catalyst
molecules are occupied, and it limits the production rate. For crystal growth from
vapor or from solution competition between bulk diffusion and surface kinetics leads
to the growth velocity in the form of (3.21).

There is another interpretation of the Michaelis–Menten equation, which also
explains why Michaelis–Menten-type behavior is found in a variety of situations.
See Fig. 3.3 (right). If we look back to the derivation of (3.21), we find that
the mathematical origin of its saturating feature is found simply in the bistable
transition between the “states,” E+S and ES. See Fig. 3.2. Wherever this (quasi)
equilibrium to-and-fro exists, any observable linearly related to the occupied frac-
tion of the ES state should show Michaelis–Menten type saturation.14 For exam-
ple, if S and E are, respectively, the ATP-hydrolyzing motor protein and its fil-
ament, then the ATP consumption rate should obey the curve of (3.21) since
ATP hydrolysis is catalyzed by the motor–filament interaction. In this case
the products, ADP and inorganic phosphate (Pi), are not fragments of a motor
protein.

12 Describing the dynamics of a reaction network by focusing on the rate-limiting reactions is
similar in idea to what is done in the statistical dynamics, that is, reducing dynamical variables by
focusing on the slowly varying ones.
13 i.e., The ability to function as enzyme.
14 The fraction of the occupied enzyme, [ES]/[E]tot, is [S]/(KM + [S]), which saturates for [S] 
KM.
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3.3 Stochastic Description

3.3.1 Stochastic Transitions Among Discrete States Are Described
by Master Equation or Discrete Langevin Equation

Rate equations are not the fundamental equations but can be derived from more
microscopic levels. In order to address the chemical reaction on more micro-
scopic scales, we survey the framework of stochastic processes over discrete states.
The master equation describes the evolution of instantaneous probabilities, as the
Fokker–Planck equation does for continuous states. As the latter was derived from
the Langevin equation, the master equation can be derived from the discrete Langevin
equation. Gillespie algorithm is an efficient method to generate discrete stochastic
processes.

We specify the class of master equations which allow detailed balance (DB)
among the discrete states. For this class of systems the global steady state is the
canonical equilibrium. The transition rates and the equilibrium probability can then
be represented in terms of a potential (free-energy) landscape.

Stochastic description of chemical reactions usually uses the master equation,
where the discrete states are distinguished by the number of molecules of each
chemical species. The (continuous) Langevin equation can be regarded as a limit
of discrete stochastic process. The condition of the detailed balance is related to the
Einstein’s relation.

3.3.1.1 * Basic Concepts

Discrete States

Unlike the quantum level description, where the microscopic states of a finite sys-
tem are essentially discretized, we refer in this book the approximately discretized
groups of continuous states as the discrete states: Suppose that the state of a sys-
tem undergoes, for most of the time, small fluctuations around one of the discrete
representative states and undergoes, only occasionally, rapid jumps from around a
representative state to the domain of other representative state. In such cases, we
can simplify the description of the evolution of the system by the use of coarse
graining both in state and time. For example, if a conformational change of a protein
is described as S � P, it implies that many substates of the protein are represented
by either S or P and that the substates joining these two groups of substates are
ignored.15

Hereafter we represent by Sj , etc., the discrete states of a system (obtained by the
above mentioned coarse graining), where the suffix j takes, for example, an integer
number or a set of integer numbers.

15 One can imagine S=coiled state and P=globular state.
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State Transition and Markov Approximation

Temporal change among discrete states is called state transition. We will regard tran-
sitions as instantaneous events. That is, we ignore the time lapse of each transition.
Such description presupposes that (1) in most cases the system stays in the same
state for much longer time than the time of transition and (2) the time resolution of
the description is coarser than the time of transition.

We further suppose that the consecutive state transitions are Markovian, that is,
the statistical characteristic of the transition from the present state Sj is independent
of the previous transition to this state, see Sect. 1.2.1.4. Such description presup-
poses that in most cases the system stays in the same state for the time long enough
so that the intrastate fluctuations erase the memory of the system’s previous state.

Transition Rate

We denote by Ii = { j}i the set of indices of the states {Sj } that the state Si of the
system can make direct transitions.16 The so-called transition rate, wi→ j , from the
discrete state Si to the discrete state Sj ( j ∈ Ii ) is defined as follows:

• Suppose that a system is in the state Si at a time t.
• The (conditional) probability that the system makes the transition to a different

state S j during an infinitesimal time lapse, dt(> 0), is wi→ j dt .

As a result, the probability that the system remains in the same state Si at t + dt is
(1 −∑ j∈Ii

wi→ j dt).
We recall the first passage time, introduced in Sect. 1.3.3.3: The transition from

the state i to the other state can correspond to the exit from a basin Ω of a potential
energy U (x). This was the idea of Kramers to calculate the transition rate [3].17

The average first passage time (FPT) is related to (
∑

j∈Ii
wi→ j )−1. To assess the

individual transition rate, wi→ j , we will need to solve the first passage problem
under constraints. In the context of FPT, the Markov approximation amounts to the
neglect of the initial position dependence of the first passage time.

3.3.1.2 * Statistical Approach – Master Equation

Probability Flux

The transition rate wi→ j characterizes the redistribution of the (conditional) proba-
bility from the state Si to Sj per unit of time. We can generalize this notion to the
case where we find a system in the state Si with the probability of Pi at present time.
Then the redistribution of the probability through all the possible transitions during
infinitesimal time, dt(> 0), constitutes a network of fluxes of probabilities. Between

16 By definition, i �∈ Ii .
17 A review [5] surveys many papers after [3] up to 1990.
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an arbitrary pair of states, Si and Sj , there is the flow of probability Pjwi→ j from
Si to Sj and Piw j→i from Sj to Si . We call the net flow of the probability per unit
of time the (net) probability flux and denote it by Ji→ j (= −Jj→i ):

Ji→ j = Piwi→ j − Pjw j→i = −Jj→i . (3.23)

For later convenience, we complement the definitions; Ji→ j ≡ 0 (∀ j �∈ Ii ), espe-
cially, Ji→i ≡ 0.

For a finite time interval, Δt , the redistribution of the probabilities from Si to Sj

corresponds to many different types of state transitions, such as Si → Sk → Sj

or Si → Sj → Si → Sj , in addition to the direct one. In the limit of Δt → 0,
however, all the indirect transitions have probabilities of higher order of Δt , and the
redistribution of the probability is described only by the direct transitions, Ji→ j .

Master Equation

Let us denote by Pi (t) the probability to find the system at time t in the state
Si . Given the concept of the probability flux (3.23), the redistributed probabilities
{Pi (t + dt)} should satisfy

Pi (t + dt) = Pi (t) −
∑

j

Ji→ j dt.

Then we have the following evolution equation for {Pi (t)} called the master equation:

d Pi (t)

dt
= −

∑

j

Ji→ j , (3.24)

where the sum runs for all states, Sj .18 Because of the identity, Jj→i = −Ji→ j , the
total probability,

∑
i Pi (t), is conserved: d

dt

∑
i Pi (t) = 0. Different approximation

methods to deal with the master equation are found in, for example, the textbooks
[6, 7] or monographs [8, 9].

Steady State

The steady state (or the stationary state) of the master equation is defined such that
d Pj (t)/dt = 0 for every state, Sj . The steady state does not imply the flux-free state:
Ji→ j = 0. A simplest model may be the three-state system with the transition rates
being w1→2 = w2→3 = w3→1 ≡ w > 0 and w2→1 = w3→2 = w1→3 ≡ w′ > 0

18 The expression (3.24) has the same structure as the equation of continuity or the mass conserva-
tion, where the sum on the right-hand side is the divergence of the flux.
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(w �= w′). The steady state of this model is P1 = P2 = P3 = 1/3 but the probability
flux is nonzero; J1→2 = J2→3 = J3→1 = (w − w′)/3.

Convergence to a Steady State

It is often observed the situation where the evolution of the probabilities {Pj (t)}
is convergent to a nonequilibrium steady state, like the above simple example.
The convergence to an equilibrium state has long been understood using varia-
tional inequality about the entropy, −∑ j Pj ln Pj , under appropriate constraints
(on energy, volume, etc.) [10]. Recently, variational inequality has been developed
also for the nonequilibrium steady states. It is the minimization of the so-called
the Kullback–Leibler distance or the relative entropy (see, for example, [11]). For
two sets of normalized probabilities, P ≡ {Pj } and Q ≡ {Q j } ( j = 1, . . . , n), we
denote by D(P ‖ Q) the Kullback–Leibler distance of P relative to Q and define as
follows:

D(P ‖ Q) ≡
n∑

i=1

Pi ln
Pi

Qi
(≥ 0). (3.25)

The continuous version of this quantity has been introduced in Sect. 1.2.3.2, where
the nonnegativity of this quantity has been shown.19 When the time-discretized
probability P converges to the steady-state probability Q, the D(P ‖ Q) mono-
tonically decreases to 0. Below is a brief derivation. The technical details are given
in Appendix A.3.1.

1. If the time and the states are discretized, the evolution of the probability P by the
master equation can be formally written as a Markov chain, i.e., the discrete-time
discrete state Markov process,20

P ≡ {Pi } �→ KP ≡ {
n∑

j=1

Ki j Pj } (i = 1, . . . , n), (3.26)

where the n×n matrix K ≡ {Ki j } (i, j = 1, . . . , n) has nonnegative components,
Ki j ≥ 0, and satisfies the sum rule,

∑n
i=1 Ki j = 1 for j = 1, . . . , n. In order

to recover the continuous time version, we identify P(t + dt) = KP(t), where
P(t + dt) = {Pi (t + dt)} (i = 1, . . . , n) and K = 1+O(dt).

2. With this Markov chain, the following inequality holds:

D(P ‖ Q) ≥ D(KP ‖ K Q). (3.27)

19 Despite the word “distance,” this quantity is not symmetric; D(P ‖ Q) �≡ D( Q ‖ P).
20 For the Markov process, see Sect. 1.2.1.4.
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The proof is given in Appendix A.3.1.21

3. Suppose that Q is a steady state of this Markov chain, K Q = Q. Then (3.27)
implies

D(P ‖ Q) ≥ D(KP ‖ Q) (K Q = Q). (3.28)

4. If the Markov chain, {P,KP,K2 P, . . .}, converges to this steady state Q, then
D(Km P ‖ Q) must decrease monotonically to 0.

The inequality (3.27) can be interpreted in the context of Stein’s lemma [11], which
states the following: Given n events obeying the i.i.d. probability P , the chance of
mistaking P for another probability Q is given by the following formula of LDP
(see Sect. 1.1.2.3): ∼ exp[−nD(P‖Q)]. According to this lemma, the inequality
(3.27) implies that the pair KP and K Q is less distinct as compared to the pair P
and Q, and, therefore, there is more chance of mistaking.

Notice that, if a system does not tend to a steady state, the above result does not
apply directly. For example, the time evolution of (x, p) by a Hamiltonian H (x, p)
is a Markov process. But its evolution starting from a definite initial condition,
P(x, p, 0) = δ(X − x(0))δ(P − p(0)), does not attain any steady state.

In conclusion, the variational principle of the steady state is not a unique property
of the equilibrium distribution. Which aspects of the equilibrium thermodynamics
are conserved in the nonequilibrium steady states is the question under active field
research. See, for example, [12–15].

3.3.1.3 * Single-Process Approach I – Discrete Langevin Equation

In order to motivate the introduction of discrete Langevin equation, we recall that
the Fokker–Planck equation gives the evolution of ensemble probability at time t
while the Langevin equation generates a single realization of stochastic process.
The former can be derived by the latter, and the latter can be deduced from the
former. Similar duality of description is widely found in physics

Heisenberg picture ←→ Schrödinger picture of quantum mechanics
Lagrange picture ←→ Euler picture of hydrodynamics

Langevin equation ←→ Fokker–Planck equation
Discrete Langevin equation ←→ Master equation

In the above the left-hand side follows some observables, while the right-hand
side observes at a fixed point. As the white Gaussian noise was the elementary
source of Langevin equation, the stochastic process called the Poisson process/noise
plays an elementary role in the discrete Langevin equation. Poisson noise is also the
base of the Gillespie algorithm (see below). We, therefore, start by the definition of
Poisson noise.

21 That KP approaches K Q does not imply the uniformization of P and Q by the Markov evolu-
tion, K.
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Poisson Noise

A particular realization of Poisson noise ζ̂ ( ) is as follows:

ζ (t) =
∑

α

δ(t − tα), (3.29)

where δ(z) is the Dirac delta function and {tα} with tα < tα+1 represents the time of
spike events, which take place randomly. The spike events are a Markov processes
and, therefore, characterized only by the mean rate of spiking per unit of time, w.
Within a very small time interval, (t, t +Δt], the normalized probability for having
n spikes is given by the Poisson distribution:

P

[∫ t+Δt

t
ζ (s)ds = n

]
= e−wΔt

n!
(wΔt)n. (3.30)

For n̂ ≡ ∫ t+Δt
t ζ̂ (s)ds we can verify 〈n̂〉 = wΔt. We generalize this definition to all

the time slices, and we allow for the dependence of the mean spiking rate w(a) on
the external parameter, a. When a is varied as a function of time, 〈ζ̂ (t)〉 = w(a(t)).22

If ζ̂1(t) and ζ̂2(t) are two independent Poisson noises, we can identify ζ̂1(t)ζ̂2(t)=0
within any integration over time t . The reason is that, for a given time interval,
(t, t + Δt], the probability that both processes give rise to at least one spike is
O(Δt2). In the limit of Δt → 0 such events are negligible (i.e., measure 0). Here-
after we often omit “ˆ” for stochastic processes for simplicity of notation.

To apply the Poisson process for transition between discrete states, we assign
i.i.d. Poisson process to each distinct transition:

n̂i, j (t, t +Δt) =
∫ t+Δt

t
ζi, j (s)ds, (3.31)

and ζi, j (s) are independent Poisson noises with 〈ζi, j (t)〉 = wi→ j (a(t)).23

We denote, following [16], the states that the system can take by the base vectors
|i〉, etc., i is a discrete index. These states can depend on the system’s parameter a.
We introduce also the dual base vectors, 〈i |, etc., so that 〈i | j〉 = δi j for the same
parameter a.

By |i(t)〉 we denote the state of the system at time t . i(t) is among the index
mentioned above. We define that, unless the system’s state undergoes transition,
∂
∂t |i(t)〉 = 0 even if the system’s parameter a depends on time.

22 We can verify the following formula for the characteristic function:〈
eiφn̂

〉 = e(eiφ−1)wΔt . The characteristic functional of the Poisson noise ζ̂ ( ) is〈
ei
∫ t

0 φ(t ′)ζ (t ′)dt ′
〉
= exp

[∫ t
0 (eiφ(t ′) − 1)w(a(t ′))dt ′

]
, where φ(t) is an arbitrary smooth real function.

23 The characteristic function
〈
ei
∫ t

0 φi, j (t ′)ζi, j (t ′)dt ′
〉

is equal to

exp
[∫ t

0 (eiφi, j (t ′) − 1)wi→ j (a(t ′))dt ′
]
.
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Using the above notation, the discrete Langevin equation is as follows:

d

dt
|i(t)〉 =

∑

j

(| j〉 − |i(t)〉) · ζi(t), j (t), (3.32)

where d
dt |i(t)〉 ≡ (|i(t + dt)〉 − |i(t)〉)/dt, and the multiplicative Poisson noise,

ζi(t), j (t), obeys (3.31). The symbol “·”means the Itô-type multiplication: The vec-
tor |i(t)〉 on the right-hand side is nonanticipating with respect to the variation of
ζi(t), j (t).

In order to see how (3.32) works, let us assume that the first future spike in the
Poisson noise among {ζi(t), j (t)} is at t = t∗ with j = j∗. Then the integration of
(3.32) from the present time t up to t∗ + 0 yields

|i(t∗)〉 − |i(t)〉 = (| j∗〉 − |i(t)〉) × 1,

where the last factor 1 comes from the time integration of δ(t − t∗). We then update
the system’s state to |i(t∗)〉 = | j∗〉.

Another confirmation is that (3.32) reproduces the master equations (3.24) and
(3.23). We denote the probability for the state |i〉 at the time t by Pj (t) ≡ 〈δ j,i(t)〉
with δ j,i(t) = 〈 j |i(t)〉. Then we have

d Pj

dt
=
∑

�

〈(δ j,� − δ j,i(t)) · ζi(t),�(t)〉

=
∑

�

∑

k

〈(δ j,� − δ j,i(t))δk,i(t) · ζk,�(t)〉

=
∑

k

[Pkwk→ j (a(t)) − Pjw j→k(a(t))]. (3.33)

Equation (3.32) is analogous to the Langevin equation and the characteristic func-
tional of its noise ξ (t). Gillespie has proposed an approximate approach with finite
Δt and then coarse grained it to have a Langevin equation [17].

3.3.1.4 * Single-Process Approach II – Gillespie Algorithm

The discrete Langevin equation (3.32) is not common in the literature. But we
actually solve this when we simulate the master equation (3.24). From practical
viewpoint, the temporal discretization of (3.32) is not a very efficient method, espe-
cially when the transitions occur rarely. A better idea is to focus on the waiting
time, Δt∗ (0 ≤ Δt < ∞), with which a system ceases to stay the present state Si

to make the first transition to the new state Sj∗ (“event driven method”). With this
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idea Gillespie [18–20] formulated an efficient simulation algorithm to generate the
particular realizations of (3.32). It consists of the following two steps:

(1) We take a sample of the set of independent random variables, {ŷ j } j∈Ii , which are
uniformly distributed on the domain, [0, 1]. From a sample {y j } j∈Ii , we define
{τ j } j∈Ii such that e−wi→ j τ j ≡ y j .

(2) We define Δt∗ as the minimum among {τ j } j∈Ii and identify j∗ so that τ j∗ gives
this minimum of {τ j } j∈Ii .

24

The derivation is a little technical but at the same time pedagogical. We, therefore,
summarize its outline below. The key quantities are

pii (Δt): the probability that the system stays continuously in the state between
the time t and t +Δt .

pi j (Δt) ( j ∈ Ii ): the probability that the system has ceased to stay in the state
Si to make the first transition to the state Sj between the time t and t +Δt .

By definition, the initial conditions for pii and pi j are

pii (0) = 1, pi j (0) = 0 ( j ∈ Ii ), (3.34)

and they should obey the following evolution equations:

dpii (Δt)

dΔt
= −pii (Δt)

∑

j∈Ii

wi→ j ,
dpi j (Δt)

dΔt
= pii (Δt)wi→ j , j ∈ Ii . (3.35)

The solution for pii (t) and pi j (Δt) ( j �= i) with any Δt(≥ 0) are

pii (Δt) = exp{−
∑

j ′′∈Ii

wi→ j ′′Δt},

pi j (Δt) = wi→ j∑
j ′∈Ii

wi→ j ′
[1 − exp{−

∑

j ′′∈Ii

wi→ j ′′Δt}]. (3.36)

These probabilities satisfy the sum rule, pii (Δt) +∑ j∈Ii
pi j (Δt) = 1.

We can verify that those (Δt∗, j∗) defined by (1)–(2) reproduces (3.36). Using
the rules (1)–(2), the probability corresponding to pi j (Δt) writes

Prob
[
Tj (ŷ j ) ≤ Δt, and Tj ′(ŷ j ′ ) ≥ Tj (ŷ j ) (∀ j ′ ∈ Ii )

] ≡ p̃i j (Δt), (3.37)

where we defined the functions Tj (y) by e−wi→ j Tj (y) = y. Using the uniform distri-
bution of {ŷ j } j∈Ii , we have

24 That is, Δt∗ = min j∈Ii τ j = τ j∗ .
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p̃i j (Δt) =
∫ 1

0
θ (Δt − τ (y j ))

⎧
⎨

⎩
∏

j ′∈Ii ( j ′ �= j)

[∫ 1

0
θ (τ (y j ′) − τ (y j ))dy j ′

]⎫⎬

⎭dy j ,

where θ (z) = 0 for z < 0 and θ (z) = 1 for z ≥ 0. The integrations are simple to
do,25 and we find for p̃i j (Δt) the identical expression pi j (Δt) of (3.36).

3.3.1.5 * Detailed Balance and Equilibrium

Detailed balance adds stringent conditions on the steady state of master equation.
The unique steady state with detailed balance can be regarded as a thermal equilib-
rium state. The equilibrium probability is reconstructed using the detailed balance
conditions, and the set of rate constants that enable the equilibrium state have simple
interpretations in terms of the free-energy landscape.

State of Detailed Balance

We consider the steady state of a master equation that satisfies more stringent con-
ditions:

Ji→ j = 0, for ∀i,∀ j (detailed balance) (3.38)

or, equivalently,

Piwi→ j = Pjw j→i , for ∀i,∀ j (detailed balance). (3.39)

We call such steady state the state of detailed balance. Whether a system has the state
of detailed balance depends on the transition rates because there are more equations
{Ji→ j = 0} than the number of components of {Pj }.

* Equilibrium State of Master Equation

We call the steady state of master equation the equilibrium state if this state satis-
fies the detailed balance. As mentioned in Sect. 3.3.1.4, not all steady states satisfy
detailed balance. Even if the probabilities {Pi (t)} evolving according to a master
equation converge to a unique state irrespective of the initial condition {Pi (tinit)} we
cannot call it the equilibrium state of the master equation by analogy with (the first
law of) macroscopic thermodynamics.

This restriction is required by the compatibility with thermodynamic laws. Below
is its demonstration: if a system has a steady state which does not satisfy (3.38), the
probability fluxes {Ji→ j } can be written as a nontrivial superposition of circula-
tions of probability flux. Each of the circulations consists of at least three discrete

25 We use the formula
∑

j ′∈Ii ( j ′ �= j)
wi→ j ′
wi→ j

+ 1 = 1
wi→ j

∑
j ′∈Ii

wi→ j ′ .
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states, say S2 → S3 → S7 → S2, and we can assign on it a constant flux, e.g.,
J2→3 = J3→7 = J7→2 �= 0. From such steady-state circulation, we can conceive
a hypothetical machine that interacts selectively with the states, {S2, S3, S7}. This
machine could “rotate” in one direction because of the broken symmetry of the flux
on these three states. Thus we can extract some systematic work, for example, to
wind a string under a load using the rotation of this machine. Now if this steady state
were the thermodynamic equilibrium, the machine would be a perpetual machine
of the second kind (see Sect. 2.1.2), and this is contradiction to the second law
of thermodynamics. Therefore, a steady state violating the detailed balance cannot
correspond to a thermal equilibrium state.

* Reconstruction of Equilibrium Probabilities

If a unique steady state of the master equation satisfies detailed balance, we can find
easily the equilibrium probabilities, {Peq

j }. Below is the protocol:

1. We choose arbitrarily a state, Si , as a reference.
2. We derive all the Peq

j using (3.39), i.e., Peq
j = wi→ j

w j→i
Peq

i . In case that w j→i = 0

for some j, we can determine Peq
j indirectly by applying the chain of equalities

of (3.39). The presence of a unique steady state assures that it is feasible.
3. Once all the values of Peq

j are determined relative to Peq
i , the normalization con-

dition,
∑

j Peq
j = 1, determines the value of Peq

i .

* Representation of Transition Rates

Suppose that a system with n states, {S1, . . . , Sn}, has a unique state of detailed
balance. Let us establish the balance sheet for the number of unknown parameters
and the number of conditions. There are n(n − 1) parameters of the transition rates
and n parameters of the equilibrium probabilities. The constraints of the type (3.39)
impose n(n − 1)/2 conditions. An additional constraint is the normalization of the
probabilities. There remains, therefore, [n(n + 1)/2 − 1] degrees of freedom.26 We
can write these degrees of freedom in a physically appealing manner [21–24]:

Fj/kBT : “free-energy levels (per kBT ).” They amount to (n − 1) degrees of
freedom, where (−1) is due to the arbitrariness of an additive constant.27

Δi, j/kBT : “activation free energies (per kBT )” having the symmetry, Δi, j =
Δ j,i . They amount to [n(n − 1)/2 − 1] degrees of freedom, where (−1) is
due to the arbitrariness of an additive constant.28

ν: the unique “attempting frequency.” One degree of freedom.

26 The calculation is [n(n − 1) + n] − [n(n − 1)/2 + 1] = n(n + 1)/2 − 1.
27 In chemistry, one can regard Fj as the Gibbs free energy under isobaric condition, rather than
Helmholtz free energy.
28 The last additive constant can be chosen independently of the one for {Fj/kBT }, see the remark
after (3.40).
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The above parameterization allows us to represent both {Peq
j } and {wi→ j } in the

context of the thermal activation-assisted transition in a free-energy landscape.

Peq
j = e−Fj /kBT

∑
i e−Fi /kBT

, wi→ j = ν exp

[
−Δi, j − Fi

kBT

]
. (3.40)

The arbitrariness in both Δi, j and Fi can be absorbed by the pre-exponential
factor, ν.29

The above expression of the transition rates, {wi→ j }, provides the following intu-
itive picture [21–24] (see Fig. 3.4): A system in the state Si has (free) energy Fi .
This system attempts to make a state transition to any other state with a common
frequency, ν. Because of the (free) energy barrier of activation (Δi, j − Fi ), the
probability of a successful attempt for the transition Si → Sj is the Boltzmann
factor, e−(Δi, j−Fi )/kBT . Note that the purely kinetic parameters Δi, j do not appear in
the equilibrium probabilities.

Fig. 3.4 Interpretation of
(3.40). The squares on the
corners represent the
free-energy levels, Fi , while
the plateaus between the
nearest states represent the
barriers, Δi, j

F

F

F

F
Δ

ΔΔ

Δ

29 Once we fix the ν’s value, the difference Δi, j − Fi has a physical meaning of the activation
barrier and contains no arbitrary additive constants.
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Nonequilibrium Processes

Once the transition rates are fixed using the detailed balance condition of equilib-
rium, we can proceed to study the master equation under nonequilibrium conditions.
This implies several different things:

Transient nonequilibrium states: Keeping the transition rates of the form (3.40)
unchanged, we study the relaxation of the probabilities Pj (t) starting from
nonequilibrium initial ones. Also we solve the discrete Langevin equation
with these transition rates and look for stochastic processes on the state space.

Nonequilibrium settings I: We may vary Fj ’s, Δi, j ’s, or kBT as function of time
in the transition rates of (3.40). In this case, the instantaneous equilibrium
distribution and the landscape picture are still valid according to (3.40). The
Pj (t) evolves toward a temporary equilibrium state, although there can be a
lag of relaxation.

Nonequilibrium settings II: We modify each activation barrier, Δact
i→ j ≡ Δi, j −

Fi , disregarding the DB conditions, based on physical arguments.
In fact each activation barrier often has a physical justification of its own,
independent of the compatibility with the global equilibrium states. It is like
that the macroscopic rate constant k for the reaction A+B→AB can be used
either in (3.3) or in (3.1), which is far from equilibrium. Therefore, we can
combine these transition rates to build up a reaction network having nonequi-
librium steady states. A simple example is given in Sect. 3.3.3.3
Since the number of combinations of [i → j], i.e., n(n − 1), is more than
the degrees of freedom left by the DB condition, n(n + 1)/2 − 1, the modi-
fied transition rates can no more be represented by a single-valued landscape
like Fig. 3.3. The system now allows steady-state circulations of probability
flux.30

Relation between the transient nonequilibrium states and the nonequilibrium
settings II: When we model the chemical coupling schematized by Fig. 2.7,
we can model either the whole closed system, i.e., the chemical engine plus
the four particle reservoirs, or the chemical engine as an open system.
The former viewpoint is not very practical but formally simple: we assume
the transition rates satisfying detailed balance. The global landscape is fixed
like in Fig. 2.8. The nonequilibrium process is regarded as a transient process
toward the equilibrium of the whole closed system.
The latter viewpoint is more practical but we must use the nonequilibrium
settings of type II. The reservoirs’ states are no more taken into account, and
only the chemical potentials enter as a parameter for the chemical engine.
In the former formal point of view, the system’s evolution is relaxing and
downhill on the average. In the latter point of view, the chemical engine
makes a stochastic cyclic transitions in its (reduced) state space.

30 One may imagine the Escher staircase.
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Fig. 3.5 Landscape with
inhomogeneous barrier
heights. See the text

−5 −4 −3 −2 j=0−1 +1 +2 +3 +4 +5

Simple Example – Will Particles Be Stagnant in the Region of Small Diffusion
Coefficient?

Suppose that a system can take the states Sj ( j = 0,±1, . . . ,±N ) and that the
nonzero transition rates only between j and j+1 (−N ≤ j < N ). Figure 3.5 shows
the case that Fj = 0 for all j , Δ j, j+1 = W for −N ≤ j < 0, and Δ j, j+1 = w for
0 ≤ j < N with w < W. The general argument above tells that this system has an
equilibrium state with detailed balance, and the equilibrium probability is uniform,
Peq

j = (2N + 1)−1. Nevertheless, might we not expect that the system spends more
time in the left region ( j < 0), where the diffusion takes more time? The key to
avoid this trap is to be aware of the opposing effects to this argument. The state Sj=0

situated between the high barrier W to the left and the low barrier w to the right. If
the system is in this state, the (conditional) probability of the transition S0 → S−1 is
smaller than that of the transition S0 → S+1. Therefore, the chance that the system
enters into the j < 0 states is relatively small, though the residence time in j < 0
states are relatively large. In equilibrium, these two effects exactly cancel.

3.3.1.6 Langevin Equation as a Limit of Discrete Process

Transition Rate of Langevin Equation

The Langevin equation can be regarded as the limit of a discrete process, where the
states are infinitely finely distinguished and the transitions are allowed to occur only
among the “nearby” states. (The Fokker–Planck equation is, therefore, a limit of the
master equation.31) Below we demonstrate how the transition rate is obtained for
the overdamped Langevin equation.

Let us write the Langevin equation in the form of SDE, see Sect. 1.2.1.1:

dxt = − 1

γ

dU (xt )

dxt
dt +

√
2Dd Bt , (3.41)

where we denote by xt the value of x at time t and D is the diffusion coefficient. The
probability density for xt is 〈δ(x − xt )〉. Then the conditional probability density for
xt+dt = xt + dxt , given that x = xt at t , is 〈δ(x − xt )δ(x ′ − xt+dt )〉/〈δ(x − xt )〉. For
x �= x ′, this conditional density gives the flow of probability to x ′ within the time
dt . Therefore, the transition rate wx→x ′ should be related to this density through

31 The derivation uses the technique called the Kramers–Moyal expansion. See, for example,
[3, 25, 26, 7, 8].
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〈δ(x − xt )δ(x ′ − xt+dt )〉
〈δ(x − xt )〉 = δ(x − x ′) + wx→x ′dt . (3.42)

To evaluate the left-hand side, we develop δ(x ′−xt+dt ) around δ(x ′−xt ) (Sect. 1.2.2.4)
using (3.41) and the Itô formula (1.58).32 The result is

wx→x ′ = 1

γ

dU (x)

dx
δ′(x ′ − x) + Dδ′′(x ′ − x). (3.43)

Detailed Balance Condition and Einstein Relation

We can verify that the equilibrium state, Peq(x) ∝ e−U (x)/kBT , is the state of detailed
balance if the diffusion coefficient satisfies the Einstein relation, D = kBT /γ . As
(3.43) includes the derivatives of the δ-function, what corresponds to (3.39) should
be expressed by the integral form:

∫
dx
∫

dx ′ f (x)
[
Peq(x)wx→x ′ − Peq(x ′)wx ′→x

]
g(x ′) = 0, (3.44)

where f (x) and g(x ′) are arbitrary functions of good properties.33 A straightforward
integrations by parts of (3.44) with (3.43) leads to D = kBT /γ .

Detailed Balance and Fluctuation–Dissipation (FD) Relation

In Sect. 1.3.1.2 we have seen that the Einstein relation is related also to the
fluctuation–dissipation relation. In general, stochastic processes satisfying the
detailed balance condition have equilibrium state distribution, and their fluctuations
and linear responses obey the fluctuation–dissipation (FD) relation.

For the processes breaking the detailed balance condition, several generalization
of the fluctuation–dissipation relation have been formulated [27, 28], and also the
discrepancy from the (true) fluctuation–dissipation relation has been related to the
heat generation described [29–31]. The latter points will be discussed in the part II.

3.3.2 Stochasticity of Molecule Numbers in the Chemical Reaction
Can Be Described by Discrete Master Equation

The method described in the previous section is used to describe the stochas-
tic aspect of chemical reaction. We shall take up the same examples as before,
A + B � AB. The object here is to know the relation between macroscopic and

32 Note that δ(x ′ − xt ) has nonanticipating property with respect to d Bt .
33 For example, we assume that they are derivable arbitrary many times and are decaying faster
than any power of x for |x | → ∞ (Schwartz space).
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stochastic parameters, and see how the number of molecular species are distributed
at equilibrium.

3.3.2.1 Number State Representation

Fluctuations are unavoidable if we describe a chemical reaction with the reso-
lution of the (integer) number of molecular species. Suppose that the reaction,
A+B � AB, occurs in a closed container at the temperature T , where the total num-
ber of atoms A and atoms B is fixed at N tot

A and N tot
B , respectively. The number of

AB molecule, NAB, is then sufficient to characterize the state of the system, because
the numbers of the other molecules, A or B, are given as NA = N tot

A − NAB or
NB = N tot

B − NAB, respectively. The system has, therefore, min{N tot
A , N tot

B } + 1
discrete states. Below we shall use NAB to represent the state, SNAB , unless confu-
sions arise. On this level of description, we do not distinguish the individuality of
the atoms to define the states, nor their orientations and other internal degrees of
freedom. But still the description is more detailed than the macroscopic description
of Sect. 3.2. The (number) concentrations, [A], etc., in macroscopic description are
readily given as 〈NA〉/V , etc., where V (in liter) is the volume of the system.

3.3.2.2 Transition Rates and the Rate Constant

Transition Rates

We consider for a moment only the forward reaction, A+B → AB, or in stochastic
term, the state transition of NAB → (NAB + 1). In the stochastic description, we
assume the following simple model for the transition rate, wNAB→NAB+1:

wNAB→NAB+1 = k
NA NB

V
, (3.45)

where k is a constant independent of the number of molecules or volume. The
approximation leading to (3.45) is that every A molecule and B molecule is dis-
tributed randomly in the volume V and that the chance to find a pair of A and
B molecule within an atomic distance is ∝ NA NB

V up to the relative error of
O(NA/V, NB/V ). The factor k should include the activation factor, or the prob-
ability that a collision between an A and a B molecules leads to the formation of an
AB molecule.

Rate Constant

We will relate the transition rate wNAB→NAB+1 to the rate constant of the macroscopic
description of the reaction, described in Sect. 3.2.1.1. If the state transition, NAB →
(NAB + 1), occurs the probability wNAB→NAB+1dt for an infinitesimal time dt , NAB

should increase approximately by wNAB→NAB+1 dt , that is d NAB/dt � wNAB→NAB+1

= k NA NB/V , where we have used (3.45). Dividing each part of this equation by
V , we have
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d[AB]

dt
� wNAB→NAB+1

V
= k[A][B]. (3.46)

The rightmost the equation is of the same form as the formula for the macroscopic
reaction. Therefore, we identify the coefficient k in (3.45) with the rate constant of
the reaction, A + B → AB.

Next we take into account the backward state transition, (NAB+1) → NAB, also.
This corresponds to the reaction AB → A + B. We assume that the transition rate,
wNAB+1→NAB , is proportional to the number of AB molecules before the transition,
therefore,

wNAB+1→NAB = k ′(NAB + 1), (3.47)

where a positive constant, k ′, is independent of the number of molecules or vol-
ume. It is justified if the dissociation occurs in individual AB molecules. By
approximately identifying this transition rate with a contribution to −d NAB/dt , we
obtain the

d[AB]

dt
� k[A][B] − k ′[AB]. (3.48)

We, therefore, identify the coefficient k ′ in (3.47) with the rate constant of the reac-
tion, AB → A + B.

Remark: Extensivity of the Transition Rate

The frequency of the transition NAB → NAB + 1 has an extensive character that
is proportional to the size of the system. Therefore, the time defined, for example,
by (wNAB→NAB+1)−1 has nothing to do with the reaction mechanism of individual
molecules.

In order that the modeling as a Markov process be a good approximation, the
subsequent transitions, for example, NAB → NAB + 1 and NAB + 1 → NAB + 2
should be uncorrelated. If the reacting solution is dilute, successive transitions occur
at distant spatial locations in the volume, and the Markov approximation is justified,
however, large is the transition rate, wNAB→NAB+1. That the inverse transition rates
scale with V−1 is the basis of the van Kampen’s expansion method of the master
equation [32, 8].

If the nature of chemical reaction is such that two consecutive transitions, e.g.,
NAB → NAB+1 and NAB+1 → NAB+2, are strongly correlated on the molecular
level, then we can better define the reaction as 2A+ 2B � 2AB and define the state
transition as NAB → NAB + 2.
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3.3.2.3 Probability Fluxes and the Master Equation

Probability Flux of Stochastic Chemical Reaction

We denote by P(NAB, t) (0 ≤ NAB ≤ min{N tot
A , N tot

B }) the probability that the
systems in the state NAB at time t . Applying the definition of probability flux, (3.23),
the probability flux of the reaction is given as follows:

JNAB→NAB+1 ≡ P(NAB, t)wNAB→NAB+1 − P(NAB + 1, t)wNAB+1→NAB

= −JNAB+1→NAB . (3.49)

Master Equation of Stochastic Chemical Reaction

With the above probability flux, the master equation for P(NAB, t) is written as

d P(NAB, t)

dt
= JNAB−1→NAB − JNAB→NAB+1. (3.50)

The normalization of the probabilities:

min{N tot
A ,N tot

B }∑

n=0

P(n, t) = const. (3.51)

can be verified by (3.50) at all time t .
Substitution of the expressions of the transition rates, (3.45) and (3.47), we have

∂P(NAB)

∂t
= k

(NA + 1)(NB + 1)

V
P(NAB − 1, t)

−
{

k ′NAB + k
NA NB

V

}
P(NAB, t) + k ′(NAB + 1)P(NAB + 1, t). (3.52)

Equation (3.52) includes macroscopic reaction equation for [AB], i.e., for 〈NAB〉 =∑min{N tot
A ,N tot

B }
n=0 n P(n, t). See, for example, [7–9] for the methods to derive the macro-

scopic equation from (3.52).

3.3.2.4 Equilibrium Properties

State of Detailed Balance

The steady state of (3.52) satisfying the detailed balance (DB) imposes the condition

JNAB→NAB+1 = 0, 0 ≤ NAB < min{N tot
A , N tot

B }

under fixed values of N tot
A and N tot

B . This condition gives the probabilities of the
equilibrium state:
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P(NAB, t = ∞) = N Ñ NA
A

NA!

Ñ NB
B

NB!

Ñ NAB
AB

NAB!
≡ Peq (NAB), (3.53)

where N is the normalization constant, and the three parameters, (ÑA, ÑB, ÑAB) are
solutions to the following three equations:

(ÑAv0/V )(ÑBv0/V )

(ÑABv0/V )
= k ′

k
, ÑA + ÑAB = N tot

A , ÑB + ÑAB = N tot
B , (3.54)

where v0 is a constant with the dimension of volume. The formula (3.53) looks
apparently the product of three independent Poisson distributions. In fact, these
distributions are not independent for the closed system, because of the constraints
NA = N tot

A − NAB and NB = N tot
B − NAB. Equation (3.54) gives a function of the

single variable, NAB.

Nevertheless the form of the product of Poisson distributions is the consequence
of only the DB condition, whether or not the system is closed. When the number
of NA and NB is adjustable by their particle environments, (3.53) describes the true
product of Poisson distributions.

Law of Mass Action

The constraint (3.54) suggests already a law of mass action at equilibrium. In fact,
when the system is macroscopic, the equilibrium state of master equation (3.53)
includes the law of mass action (3.6), that is, [A][B]/[AB] = k ′/k.

Since (3.54) has a form of law of mass action, we need only to show that the
parameters ÑA, ÑB, and ÑAB are the values of NA, NB, and NAB, respectively, when
Peq(NAB) is the maximum respect to NAB. It can be done using the technique of log-
arithmic derivative.34 Thus, through the relation (3.54) the equilibrium state (3.53)
includes the law of mass action (3.6).

Chemical Potential

In order to see how the chemical potential is interpreted in this simple reaction
scheme, A+ B ↔ AB, we will compare the result of Peq (NAB) with the prediction
from statistical mechanics.

We define μ0
A, μ0

B, and μ0
AB as the free energies of individual molecules, A, B,

and AB, respectively, which reflect the effect of the kinetic energies and the internal
degrees of freedom of each molecule in the form of the free energy:

μ0
M = −kBT ln zM (M = A,B,AB), (3.55)

34 We require ∂[ln Peq (NAB)]/∂NAB = 0.Denoting by {N ∗
A, N ∗

B, N ∗
AB} the numbers {NA, NB, NAB}

at the maximum of the probability, and using the Stirling formula, n! ∼ nne−n , we have the equality
(N ∗

A/ÑA)(N ∗
B/ÑB) (N ∗

AB/ÑAB)−1 = 1. The last equation implies N ∗
A = ÑA, etc.



3.3 Stochastic Description 123

where zM are the partition functions of a molecular species M.35 These free energies
can depend on the temperature. We then assign to each state of the system, NAB

(≤ min{N tot
A , N tot

B }), the following “potential energy”:

U (NAB) = NAμ
0
A + NBμ

0
B + NABμ

0
AB,

where NA ≡ N tot
A −NAB and NB ≡ N tot

B −NAB.36 We then write down the canonical
(configurational) partition function of the form of

∑
e−U (NAB)/kBT . We have

Z (T, V, N tot
A , N tot

B )

N tot
A ! N tot

B !
=

min{N tot
A ,N tot

B }∑

NAB=0

α
NA
A α

NB
B α

NAB
AB

NA! NB! NAB!
, (3.56)

where αM ≡ (V/v1)e−
μ0

M
kBT , and v1 is a constant. The factorials come from the combi-

natorial number, N tot
A

CNA× N tot
B

CNB× NAB!, for forming NAB of AB molecules out of
N tot

A of A molecules and N tot
B of B molecules. According to the statistical mechanics

of Gibbs, we can identify each term in the sum on the right-hand side of (3.56) with
the relative probability. This probability has exactly the form of (3.53), except for a
factor of normalization. Therefore, we find

αM = ÑM.

Combining this result with (3.54) we have37

exp

{
μ0

AB − μ0
A − μ0

B

kBT

}
= k ′

k
. (3.57)

We have thus recovered the result of macroscopic thermodynamics, (3.9), and (3.55)
gives the microscopic meaning for μ0

A, μ0
B, and μ0

AB.

Remark : Origin of the Combinatorial Factor

Looking back to the origin of the formula (3.53), we see that the combinatorial factor
NA!, etc., has nothing to do with the particle-wave duality of quantum physics. A
statistical mechanical description of the open system also gives a similar combina-
torial factor. We will come back to this point in Sect. 5.2.1.5.

35 Strictly speaking, zM is made nondimensional by a factor related to the atomic specific volumes.
36 The relation between the “potential energy” and the landscape representation (Sect. 3.3.1.5) will
be discussed in the next Sections.
37 We put v0 = v1.
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3.3.3 Stochastic Open System Is a Class of Stochastic Chemical
Reaction System

3.3.3.1 Chemical Potential of the Reservoir

The formula (3.40) gives a landscape representation of the transition rates that sat-
isfy detailed balance. We apply this schema to the system which consists of an
open subsystem (open system, for short) and a particle reservoir between which
molecules of species A are exchanged. See Fig. 3.6 (A). For simplicity, no chemical
reactions are assumed to occur within the open system, although the generalization
is easy. The only “reaction” is, therefore, the migration between the system (Sys)
and the reservoir (Res):

A(Sys) � A(Res). (3.58)

This is a simple model of physical adsorption of molecule A, where the system (S)
is a 2D substrate with a “volume” V .

Following the protocol of Sect.3.3.2, we build up the master equation of this
model.

1. The state of the system is distinguished by the number of particles in the open
system, NA ≡ N .

2. The transition rate wN→N+1 represents the average rate at which a particle enters
the open system, while wN+1→N reflects the rate at which any one particle in the
open system leaves for the environment. We will not assume the properties of
dilute solutions, but leave the transition rates very general [33].

3. The probability flux is JN→N+1 = PNwN→N+1 − PN−1wN−1→N .

4. The master equation for PN is then

d PN

dt
= −JN→N+1 − JN→N−1. (3.59)

5. We assume that the system is in equilibrium. We then impose the detailed balance
condition (3.40). It relates wN→N+1 with wN+1→N :

wN+1→N = wN→N+1 exp

[
FN+1 − FN

kBT

]
. (3.60)

6. In order to relate the stochastic description with the macroscopic description,
we introduce 〈N 〉 ≡ ∑

N N PN and 〈wN→N+1〉 ≡ ∑
N wN→N+1 PN , etc.

S
RIIR

(A) (B)

S
RI

Fig. 3.6 (A) A system consisting of an open subsystem, S, and a reservoir, R. (B) A system con-
sisting of an open subsystem, S, and two reservoirs, RI and RII
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Then by the direct calculation, (3.59) gives38

d〈N 〉
dt

= 〈wN→N+1〉 − 〈wN+1→N 〉. (3.61)

The relation (3.60) is not very convenient because FN concerns the whole system.
By a physical argument we will rewrite (FN+1− FN ) in terms of chemical potential.
We assume that the coupling between the open system and the reservoir is short-
ranged so that the free energy is additive: FN = F sys

N + F res
N tot−N + (indep. of N ),

where N tot is the total number of particles in the whole system (S∪R), and the last
term represents the interface between the open system and the environment. The
chemical potentials of the open system and the reservoir are defined, respectively,
by μ ≡ ∂F sys

N /∂N and μres ≡ ∂F res
N res/∂N res. Then we have

FN+1 − FN = μ− μres. (3.62)

Then we find the following relation between the transition rates:

wN+1→N = wN→N+1 exp

[
μ− μres

kBT

]
. (3.63)

In combining with (3.61) we have the following formula:

d〈N 〉
dt

= 〈wN→N+1〉
(

1 − exp

[
μ− μres

kBT

])
.

Or using [A] = 〈N 〉/V ,

d[A]

dt
= kin([A])

(
1 − exp

[
μ([A]) − μres

kBT

])
, (3.64)

where

kin([A]) = 〈wN→N+1〉/V . (3.65)

Unlike the law of mass action, (3.64) allows the rate (d[A]/dt) to depend on [A]
in nonlinear manner. In the van der Waals model of fluids, μ depends on [A] in
a sigmoidal way. As a result, there can be several equilibrium concentrations [A]
satisfying μ([A]) = μres for certain value(s) of μres. This leads to the phase changes
between the cooperative adsorption phase and the dilute adsorption phase.39 In

38 We supposed that the distribution of PN vs. N is sharply peaked around N = 〈N 〉( 1) and
ignored the errors of order o(〈N 〉).
39 The stable equilibria should satisfy ∂(μ([A]) − μres)/∂[A] > 0.
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addition to the multi-equilibria, formula (3.64) describes the relaxation and hys-
teresis of the concentration [A].

3.3.3.2 Butler–Volmer Equation

The above result includes the so-called Butler–Volmer equation in electrochemistry
[34] as a special case. Knowing that the transition rates are extensive (see Remark
of Sect. 3.3.2.2) and that ν in (3.40) can absorb the global additive constants in
ΔN ,N+1’s and in FN ’s, we choose ν = ν̃ V . Then we can assume that ΔN ,N+1 − FN

and ΔN ,N+1 − FN+1 as well as ν̃ are nonextensive, i.e., of O(V 0). Therefore, the
weighed average of these two barrier height

ψ ≡ ΔN ,N+1 − (α+FN + α−FN+1), α+ + α− = 1, (3.66)

is also of O(V 0) for arbitrary choice of α+(= 1 − α−). Then (3.61) with (3.40) can
be rewritten using this ψ and the chemical potentials of (3.62):

d

dt

( 〈N 〉
V

)
= ν̃ exp

[
−ψ + α−(μ− μres)

kBT

]
− ν̃ exp

[
−ψ − α+(μ− μres)

kBT

]
. (3.67)

This form (3.67) is called Butler–Volmer equation.
The Butler–Volmer equation has been proposed by geometrical considerations

(see textbook, e.g., [34] (p.1048), or recent articles [35, 36]), which is summarized
in Fig. 3.7. Recently [37] proposed to use μ derived from a Cahn-Hilliard-type
chemical free energy functional [38] so as to include the effect of inhomogeneous
concentration. However, the above derivation implies that the experimental fitting
with Butler-Volmer equation per se justifies no particular geometrical models of the
adsorption because (3.67) is general: α+ can be arbitrary, even negative, and this ψ
can depend on the concentrations 〈N 〉/V or on the temperature. α± can even depend
on the kinetic parameters of the system. Therefore, it is only when α± have separate
justification that the geometrical representation Fig. 3.7 is meaningful.

3.3.3.3 Nonequilibrium Open System

When we constructed the Langevin equation, we have used the equilibrium state
of the system to determine the relation (Einstein relation) between the viscous fric-
tion coefficient, γ , and the strength of random thermal force, b. Once the relation,

Fig. 3.7 Graphical
representation of the
“activation free energies,”
ψ ± α∓ (μ− μres) The levels
of the “valleys” A and B are
different by μ− μres

α–
α+

α+(μ− μ res)
0

A

B

ψ

α−(μ− μ res)
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b = γ kBT , is obtained, we use the Langevin equation for the various situations
including nonequilibrium conditions.

In the case of discrete stochastic processes, what we first determined using
the equilibrium state, or the conditions of detailed balance (DB), was the relation
between the transition rates, wi→ j , and the physical parameters. In Sect. 3.3.1.5 we
saw that if the transition rates are consistent with an equilibrium state, they can be
formally represented in terms of ν, Δi, j , Fj , and kBT (see (3.40)). After that, we
related this formal result to the physical parameters, such as μ, μRes, or kin, in a
concrete case (see (3.63) and (3.65) ).

As we discussed in Sect. 3.3.1.5,40 we can then develop physical arguments and
modify each transition rate so that those rates are applicable also in nonequilibrium
conditions. Below we show how it is practically done in a modeling of nonequilib-
rium steady states: We consider an open system, S, and the two particle reservoirs,
RI and RII, with which the system can exchange molecules, A. See Fig. 3.6 (B). We
generalize the schema (3.58) to

A(Res-I) � A(Sys) � A(Res-II) (3.68)

and denote the state of the whole system by the number of particles in the system,
N ≡ NA, and that in the reservoir RI, N ′ ≡ N Res−I

A . (Note that the number of
particles in reservoir RII, N Res−II

A depends on N and N ′).
The transitions we consider are

(N , N ′) → (N ± 1, N ′ ∓ 1): migration of an A molecule between S and RI.
(N , N ′) → (N ± 1, N ′): migration of an A molecule between S and RII.

One of the easiest ways of modeling the transition rates for these transitions is
to consider the special case where one of the two reservoirs is practically inacces-
sible due to an extremely high energy barrier between the system and the reservoir.
We can then use the previous results (3.63) and (3.65) for the transition rates for
the migration with the reservoir which is not blocked. A physical hypothesis that
we take here is that the transition rates between the system and a reservoir are
unchanged whether or not the migration with the other reservoir is blocked.41 If
this is a good approximation, we can repeat the same argument by exchanging the
blocked reservoir and unblocked one, we obtain the following model:

w(N ,N ′)→(N+1,N ′−1) � kRes−I
in V,

w(N ,N ′)→(N−1,N ′+1) = w(N ,N ′)→(N+1,N ′−1) exp

[
μ− μRes−I

kBT

]
,

40 See Nonequilibrium settings II.
41 Such a hypothesis is not always plausible. For example, some proteins might function so that
the accessibility to the system is exclusive, called alternative access model [39]. (cf. Exchange of
binding in Sect. 7.2.1.4.)



128 3 Fluctuations in Chemical Reactions

w(N ,N ′)→(N+1,N ′) � kRes−II
in V,

w(N ,N ′)→(N−1,N ′) = w(N ,N ′)→(N+1,N ′) exp

[
μ− μRes−II

kBT

]
. (3.69)

We recall the note on the Relation between the transient nonequilibrium states
and the nonequilibrium settings II (Sect. 3.3.1.5). If we describe the process in the
whole (N , N ′) space, we may construct a landscape that matches the above tran-
sition rates. (In fact the state space is separated into slices according to the total
number of particles.) But it is not a practical description. We rather use a (reduced)
representation where we look at only the open system and regard the particle envi-
ronments as stationary reservoirs. Then each line of (3.69) represents the rate of
entrance from RI, of departure to RI, entrance from RII, and of departure to RII,
respectively. Here the chemical potential μ depends on N .

On the macroscopic level, the equation for [A] corresponding to (3.64) is

d[A]

dt
= kRes−I

in

[
1 − e

μ−μRes−I

kBT

]
+ kRes−II

in

[
1 − e

μ−μRes−II

kBT

]
, (3.70)

where μ, kRes−I
in , and kRes−II

in are functions of the concentration [A] in the system.
Under nonequilibrium condition, μRes−I > μRes−II, the value of [A] in the steady-
state solution is determined by solving (3.70) with d[A]/dt = 0.

3.3.3.4 Stochastic Michaelis–Menten Kinetics

The merit and at the same time demerit of the Poisson distribution is that it is
governed by only one parameter. Its variance, therefore, adds no new information
to the knowledge of the average value. It is not the case when the discrete states
are, for example, binary {0, 1}. In that case the stochastic level observation and
description of chemical reactions bring more information than the rate constants.
As an example, we will again take up the Michaelis–Menten kinetics (3.17), i.e.,
E + S � ES → E + P (see Sect. 3.2.2.2). We will show that, from the stochastic
data of the slow process, ES → E + P, we can extract the parameter of the fast
process, E + S � ES.

Parameters of the Single-Enzyme Michaelis–Menten Kinetics [40, 41]

We introduce several stochastic parameters characterizing a particular event of the
release of the product P from a single enzyme, E (see Fig. 3.8).

t (k)
v : The kth (1 ≤ k ≤ n) time interval of the free enzyme E.

t (k)
r : The kth (1 ≤ k ≤ n) time interval of the complex ES.

n: The times of the reaction, E+ S → ES, at which the product release, ES →
E + P, occurs.

tP: The period between the last product release and the present product release:



3.3 Stochastic Description 129

(1) tr
(1) tv

(n)

tP

tr
(2)tv

(2) tr
(n)tv

Fig. 3.8 Temporal “data” of single-enzyme reaction of Michaelis–Menten type. Each black [gray]
bar denotes the complex ES which dissociates into E+P [E+S], respectively. The gaps between the
bars denote the free enzyme E

tP =
n∑

k=1

(t (k)
r + t (k)

v ). (3.71)

Setup of Problem

We suppose that one can only observe the events of the product release, that is the
sequence of tP. Also we assume that one can do the observation with different values
of the substrate concentration, [S]. We introduce a Markov model which contains
the following statistical parameters:

Tv
−1: The transition rate of the formation of the complex ES.

κ: The coefficient such that Tv−1 = κ[S].
Tr

−1: The transition rate of the termination of the complex ES.
q: The probability of the production, ES → E + P, from the state ES.

Our goal is to determine as many parameters as possible from the observation.

Result: Informations Obtained from Stochastic Data

By the analysis using the probability of individual events, we have the following
relations:

1

〈tP〉 =
1−q
Tr

[S]
1
κTr

+ [S]
(3.72)

and

〈tP〉
〈tP〉2 − 2〈tP2〉 = κ[S] + 1

Tr
. (3.73)

For the derivation, see Appendix A.3.2. The first result (3.72) is the rate of pro-
duction per enzyme. This could have also been obtained from the macroscopic pro-
duction rate, v, of (3.21) if we knew the total molar concentration of the enzyme,



130 3 Fluctuations in Chemical Reactions

[E]tot. By contrast, the second result, (3.73), contains intrinsically the information of
the stochastic data. From the data of 〈tP〉 and 〈tP2〉 for various concentrations of the
substrate, [S], the formulas (3.72) and (3.73) allow us to obtain the three constants,
κ , and Tr

−1, and q. Especially, 〈n〉 = (1 − q)−1 is obtained.

3.4 Discussion

We have analyzed chemical reactions using two levels of descriptions, macroscopic
deterministic and continuous description and mesoscopic stochastic and discrete
description. The latter description includes the former as a result of coarse grain-
ing. But if the total number of a molecular species is not large, the coarse-grained
description is not valid.

Even the discrete stochastic description may not be valid if the transition rate
depends strongly on the parameters which are not represented by the chemical for-
mula, such as the orientations or configurations of participating molecules and the
internal states of solvent molecules. For example, a rapid water exchange between
the hydration shell of a molecule and the surrounding fluid water is beyond the
description of the previous sections.

Depending on what spatiotemporal scale is decisively important for the reaction
rate, we should choose different methods, such as the Langevin equation, molecular
dynamics simulation, or density functional description. Except for the full quantum
descriptions of whole atoms and electrons, we always ignore some details as rapidly
(often said “adiabatically”) following degrees of freedom, but the justification of
such hypothesis – separation of fast and slow degrees of freedom – is often done a
posteriori by the comparison of model results with experimental observations.
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Part II
Basics of Stochastic Energetics



Chapter 4
Concept of Heat on Mesoscopic Scales

In this chapter we introduce the concept of heat in the physics of the Langevin
equation, as well as its discrete version.

In the fluctuating world, some important aspects of the system cannot be described
in terms of the ensemble average of physical observables. Einstein was among the
first to study the connection between fluctuations and energy in the fluctuating world
[1]. Then Kramers described this connection in the context of stochastic processes.
In his seminal paper [2], he represented a chemical reaction as a process in which the
state of molecule(s) undergoes fluctuations and eventually changes its state qualita-
tively. That is, the molecules’ state (reaction coordinate) which was originally found
near the bottom of a potential (U (x)) can overcome a potential barrier, see Fig. 4.1.
Kramers analyzed this situation by constructing a Fokker–Planck equation, called
the Kramers equation, and derived the reaction rate (or transition rate).

Now, our interest is how much energy is exchanged between the system and
the thermal environment along an individual realization of such process. Does the
energy exchanged vary from one realization to other, or not? Knowing the con-
servation law of energy, we may argue that the energy absorbed from the ther-
mal environment equals to the height of the potential energy barrier. In order
to show explicitly the transferred energy and answer to the above question, the
Fokker–Planck (Kramers) equation is not appropriate, because this equation deals
with an ensemble of stochastic processes, but not an individual one. Therefore, our
study of energetics should be based on the Langevin equations1:

dp

dt
= −∂U (x, a)

∂x
− γ

p

m
+ ξ (t),

dx

dt
= p

m
(underdamped) (4.1)

or

0 = −∂U (x, a)

∂x
− γ

dx

dt
+ ξ (t) (overdamped), (4.2)

if the inertial term is negligible.

1 In the following, we shall omit the symbolˆof X̂ , etc., denoting a random variable or a stochastic
process, unless some confusion is possible.

Sekimoto, K.: Concept of Heat on Mesoscopic Scales. Lect. Notes Phys. 799, 135–174 (2010)
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Fig. 4.1 Kramers’ picture of chemical reaction: A new state is reached once a potential barrier is
overcome (dashed arrow) with the help of the thermal fluctuations

The fluctuating world described by a Langevin equation supposes a minimal triad
consisting of a system, a thermal environment, and an external system. Along a
single realization of the stochastic process, energy is exchanged among these three
components. Heat is defined as the energy exchanged between the system and the
thermal environment. The law of energy balance is derived for each realization.
Many theoretical models have been studied by this framework, and several experi-
mental demonstrations of this law have been done. For numerical simulations, the
framework of energetics turned out to require more precision than a simple con-
vergence of the solution of the Langevin equation. The framework of energetics is
also formulated for the discrete Langevin equation. In both continuous and discrete
cases, the ensemble properties of energetics can be reduced once the energetics for
an individual realization is formulated.

When a fluctuating system is in contact with two thermal environments, the ener-
getics shows some aspects which are not found in the macroscopic case. Of special
interest is the energetics of autonomous heat engines: (i) Feynman pawl and ratchet
wheel and (ii) Büttiker–Landauer ratchet.

In this chapter we focus mainly on heat. The aspects related to work will be
discussed in the next chapter.

4.1 Framework

4.1.1 * The Similarity of Setup Between the Fluctuating World
and the Thermodynamics Leads to a Natural Definition
of Mesoscopic Heat

4.1.1.1 Triad: System, Thermal Environment, and External System

The Langevin equations (4.1) or (4.2) involve three parts, i.e., system, thermal
environment, and external system as mentioned in Chap. 1. The summary below
emphasizes the parallelism with thermodynamics described in Chap. 2.
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System: Of the whole world, a part which is properly cut out is called the system.
Its state is represented by x (and p) in (4.1) or (4.2). These equations describe the
evolution of the state of the system. We consider that the potential energy and the
kinetic energy belong to the system.2

Thermal environment: The background system to which the system is connected is
called the thermal environment. This environment is characterized in itself by a
single parameter, the temperature T . The conservation laws for the total energy,
mass or volume, and momentum have no effect on the state of the thermal envi-
ronment. The environment returns instantaneously to its equilibrium state and
keeps no memories of the system’s action in the past. The interaction between the
system and the thermal environment is characterized by the friction coefficient γ
as well as temperature. The strength of the thermal random force, ξ (t), is specified
by these two parameters.3

External system: It is an agent which is capable of controlling macroscopically
the system through the parameter a of the potential energy U (x, a). The term
“external” indicates that the evolution of the parameter a is not determined by
Eqs. (4.1) or (4.2). In the case of coupled Langevin equations, e.g., of the system
described by the state variables (x1, x2), the x2 could take the position of a, that is,
the external system with respect to the subsystem, x1. For the moment, however,
we reserve the concept of the external system for the variables whose dynamics
are not determined by stochastic equations.4

The above triad is our starting point. In terms of characteristic timescale, we
normally suppose that they represent the intermediate (system), micro (thermal
environment), and macro (external system) scales, respectively. Not all composite
fluctuating systems may be decomposed into this type of triad. But we start from an
elementary prototype.

4.1.1.2 Definition of Heat in the Fluctuating World

In the macroscopic world, we do not observe the vigorous molecular motions of a
hot object. We can detect it by touch, by the melting of ice in contact, etc., through
some amplifying mechanisms of microscopic thermal motions. In the microscopic
world, on the contrary, we have no notion of “hotness,” but everything is represented

2 This point will be discussed later in more detail in Sect. 4.1.2.
3 Unlike the macroscopic thermodynamics, the definition of thermal environment does not exclude
the interaction energy between the system and the thermal environment. This point has not been
well discussed.
4 More discussion is given in Chap. 6.

We do not allow the external system to control the interaction between the system and the
thermal environment. In other words, γ should not depend on a. The reason will be described later
(Sect. 4.1.2.2).
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as motion. The fluctuating world is between these two limits. Let us try to imagine
the mechanical processes undergone by a Brownian particle.

The law of action and reaction: Depending on the velocity of a Brownian parti-
cle dx/dt , this particle should receive the unbalanced number of collisions with
environment, e.g., solvent molecules, more from forward than from backward. The
total transfer of momentum per unit time is the restoring force −γ dx/dt and the
random thermal force ξ (t) with zero mean. We suppose that the law of action and
reaction holds always between the Brownian particle and its environment: when the
environment exerts a force −γ dx/dt + ξ (t) on the particle, the particle exerts the
reaction force, −(−γ dx/dt + ξ (t)), on the environment.

Concept of heat: Let us denote by dx(t) the evolution of x over a time interval
dt , according to the Langevin equation. It is determined for each realization. The
work done by the particle on the environment upon this change dx(t) is equal
to the product of this variation and the above mentioned reaction force, that is,
−(−γ dx/dt+ξ (t))◦dx(t). We adopt the Stratonovich-type product ◦ in the above.
(Justification is given below.) This work can be either positive or negative. When
positive, it represents energy lost by the system. From the standpoint of the environ-
ment, energy (−γ dx/dt + ξ (t)) ◦ dx(t) is lost as work to the Brownian particle. In
any case, (−γ dx/dt+ξ (t))◦dx(t) is the energy transferred from the environment to
the system. We then define this energy transfer as heat [3]. Although the microscopic
motions in the thermal environment are not explicitly represented in the Langevin
equation, the law of action and reaction allows us to identify how much energy has
been transferred.

Sign convention and the formula of heat: As in macroscopic thermodynamics
(Chap. 2), we assign the positive sign for the energy received by the system. For
instance, when a positive amount of work is done on the system by the thermal
environment, we say that the system receives a positive amount of heat d ′Q > 0.
The equation defining d ′Q then reads

d ′Q ≡
(
−γ dx

dt
+ ξ (t)

)
◦ dx(t). (4.3)

When inertia is taken into account, we replace dx/dt above by p/m. We shall use
the same sign convention for the work done by the external system on the system
(see below). In (4.3) and hereafter, we add “d dash (d ′)” to the heat Q or the work
W when it concerns the process during an infinitesimal time, dt . We distinguish
this from “d” and reserve the latter for the differential.5 In general d ′Q is not
differentials.

5 That is, the differentials of a monovalent function, like dx(t), or the total differentials of multi-
valued function, like dU (x, a).
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4.1.2 * Energy Balance Along a Single Realization Follows
from the Definition of Heat

4.1.2.1 The Law of Energy Balance

The definition of heat (4.3) and the Langevin equations (4.1) or (4.2) are sufficient
to establish the relation of energy balance. See Fig. 4.2.

Energy balance with inertia: The reaction force by the thermal environment in (4.3)
is rewritten using (4.1). Then d ′Q becomes d ′Q = (dp/dt+ ∂U/∂x) ◦ dx(t). We
then use the identities for the kinetic energy and the potential energy:

dp

dt
◦ dx(t) = dp

dt
◦ p

m
dt = d

(
p2

2m

)
,

∂U

∂x
◦ dx(t) = dU (x(t), a(t)) − ∂U

∂a
◦ da.

We recall that Stratonovich calculus allows us to use the usual rules of calculus about
the differentials. After substituting these two expressions in the last expression of
d ′Q, we obtain

d

(
p2

2m
+U (x, a)

)
= d ′Q + ∂U

∂a
◦ da. (4.4)

Now we identify the total energy E of the system

E ≡ p2

2m
+U (x, a) (4.5)

Fig. 4.2 Energy balance among d E , d ′Q, and d ′W
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and the work done by the external system on the system

d ′W ≡ ∂U

∂a
◦ da. (4.6)

Then (4.4) is expressed in the form shown in Fig. 4.2:

d E = d ′Q + d ′W. (4.7)

Equation (4.7) expresses the balance of energy concerning the system. It is anal-
ogous to the first law of thermodynamics; both are based on the principle of
energy conservation in nonrelativistic system.6 We would stress that (4.7) holds
for each realization of the stochastic process. A purely mechanical energy balance,
d E = d ′W, will hold in case that a can be changed “suddenly,” that is, very fast
with respect to the characteristic relaxation time of x , but slow enough so as not to
violate the time resolution of the Langevin model.

Energy balance without inertia: The definition of heat (4.3) and the Langevin equa-
tion (4.2) leads to the following result:

dU (x, a) = d ′Q + ∂U

∂a
◦ da. (4.8)

The calculation is very similar to and even simpler than the previous case. The
energy balance relation is

dU = d ′Q + d ′W (when the inertia can be neglected). (4.9)

Compared to (4.7), the kinetic energy term is missing from the complete differen-
tial form. However, if the temperature T depends on the variable x , the evolution
equation (1.94) in Sect. 1.3.2.1 leads to the general form of energy balance (4.7).

The above is the basis of stochastic energetics, i.e., the energetics of a single
realization of stochastic process associated with the Langevin equation. The assign-
ments of E , d ′Q, and d ′W are all consistent with the law of mechanics and the usual
definition of work. And the law of energy balance is not postulated but is derived
from the Langevin equation.

The choice of Stratonivich-type calculus for d ′Q (4.3) was crucially important
for the derivation of the law of energy balance. In the overdamped case, the temporal
integration of (4.3) requires some care. The separate integral of −γ dx/dt ◦dx(t) or
of ξ (t) ◦ dx(t) does not assure finite results.

6 Can we conceive the similar problem about a relativistic system? We should remember that the
thermal environment imposes a particular reference frame to define dx/dt = 0, i.e., the Langevin
equation does not support the Galilean invariance.
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4.1.2.2 Remarks

General

1. Energetics about a single realization is more detailed than energetics based on
the Fokker–Planck equation. The latter describes an ensemble statistics at each
instant of time. For the purpose of studying the energy exchange associated with
a particular fluctuation event the latter method is not adequate. For example,
an exceptionally large heat absorption should be associated to a rare event of
climbing over an energy barrier. This characteristics will be masked if we used
the ensemble statistics because such rare fluctuations in the ensemble are not
synchronized in time (See also Sect. 4.2.2 below).
We know, however, that the Fokker–Planck equation contains the same informa-
tion as the Langevin equation. There is no contradiction between this statement
and the previous one. The above mentioned difference concerns their solutions,
i.e., the difference between the instantaneous probability distributions and the
single realization of stochastic process.7

2. In some literatures after [3] the heat for the overdamped system was defined
using the following identity:

dU (x, a) = ∂U

∂x
dx + ∂U

∂a
da. (4.10)

They argued that the term, ∂U
∂x dx, must be the heat since it is the total change of

energy dU less the work, ∂U
∂a da. For the underdamped case, the corresponding

identity for E = p2/(2m) +U reads

d E(p, x, a) = p

m
dp + ∂U

∂x
dx + ∂U

∂a
da

=
[

dp

dt
+ ∂U

∂x

]
dx + ∂U

∂a
da. (4.11)

The last expression gives the definition of heat such as d ′Q =
[

dp
dt + ∂U

∂x

]
dx,

with the quantities in [ ] being the negative of inertial and potential forces. These
are mathematically correct as an identity. Einstein treated heat in the above men-
tioned way when he formulated statistical mechanics.8 Also this way will be
adopted for the energetics of the discrete Langevin equation (Sect. 4.1.2.6).
The definition of heat (4.3) is, however, more general for the system with inho-
mogeneous temperature T (x) [4]: The overdamped Langevin equation, inter-
preted in the Stratonovich sense, is (see (1.94))

7 Roughly speaking, the correspondence between (∂P(x, t)/∂t)dt and {〈d E〉, 〈d ′W 〉, 〈d ′Q〉} is far
from 1 to 1, while the mapping {dx(t), da(t)} �→ {d E, d ′W, d ′Q} in the overdamped case is almost
bijection.
8 Y. Oono pointed this out to the author.
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γ
dx

dt
= − ∂

∂x

[
U (x, a) + kBT (x)

2

]
+ ξ (t), (4.12)

where the random thermal force, ξ (t), is multiplicative. In this case, the definition
of heat, (4.3), leads to energy balance (4.7), where the energy E is redefined
as E ≡ kBT (x)/2 + U (x, a), not as (4.5). Also the definition based on the
law of action reaction, (4.3), provides a clearer view of heat when stochastic
energetics is generalized for the fluctuating hydrodynamics (Sect. A.4.7.1) and
for the suspension of hard spheres (Sect. A.4.7.2).

About Heat

1. Long before the introduction of the concept of heat [3], an attempt to relate the
Langevin equation to the thermal physics had been made [5]. They derived the
following expression about the energy, d E = d [p2/2m +U (x, a)]:

d E = −2γ

m

(
p2

2m
− kBT

2

)
dt + d ′W +

√
2γ kBT

p

m
· d Bt . (4.13)

Here “·” before d Bt denotes the product of Itô type. See Appendix A.4.1 for
the derivation. Equation (4.13) is mathematically equivalent to (4.7), but the
nonanticipating term (∼ ·d Bt ) was explicitly sorted out. As mentioned above,
Itô-type calculus is preadapted to the ensemble average, and the first term on
the right-hand side has an allusion that the Langevin dynamics generates only
the relaxation processes to equilibrium, like the equipartition. By contrast, (4.7)
emphasizes balance of energy for individual processes.

2. Can heat defined in the above be derived by the projection method, the method
which transformed the microscopic Hamiltonian dynamics to the Langevin equa-
tion (see Sect. 1.2.1.5)? There are simple cases where we can identify energies or
heat on two levels: In the model from which Zwanzig demonstrated the nonlinear
Langevin equation (Sect. 1.2.1.3), the potential energy U0(X ) in the resulting
Langevin equation (1.41) was nothing but the proper energy of X in the starting
Hamiltonian dynamics, apart from an additive constant that reflects the elimi-
nated microscopic degrees of freedom. A similar situation will be realized when
a Brownian particle in a fluid moves under an optical trapping potential [6].
However, it is not the case in general. While the law of energy conservation
holds in both levels of description, what are meant by energy and by heat differ
generally from one level to the other.9 The full analysis of energy and heat at
different levels of description will be done in Chap. 6 [7]. Here we note only two
points:

(1) The potential energy Ueq(A) in the Langevin equation (1.42) obtained by
projection method is in fact a (constrained) free energy (see (1.45)).

9 “Each level has its own thermodynamics.”
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(2) The heat [energy] of different levels of description can be related
quantitatively.

We will, therefore, continue to use the definitions of the heat and energy in this
section. Whenever necessary, we can translate those quantities to their counter-
part on the microscale.10

About Work

1. In Sect. 4.1.1.1 we prohibited the external system to control the interaction
between the system and the thermal environment. One reason is now clear from
the above formalism: our definition of work is based on the potential force.
Related but more fundamental reason is that the stochastic energetics is con-
scious about the scales of description: For example, let us consider the rota-
tional Brownian motion of a vane in a fluid medium (cf. Fig. 4.6). The friction
coefficient γ can be modified by changing the shape of the vanes.11 In order
to assess the work to change the friction coefficient γ for this motion, we need
structural and mechanical information about the interface between the system
and the thermal environment. Such a requirement conflicts with our assumption
about the thermal environment: the latter should be memory-free, nonstructured,
and uncorrelated. A solution for the above example would be to include some
region of the thermal environment near the interface as a part of the extended
system. See Sect. 7.1.1.5 for a concrete procedure of redefining the system.

2. The work d ′W has been defined such that it is 0 if the control parameter a is
constant. For example, suppose that a represents a constant external force g0 > 0
applied to a Brownian particle (position x(t)) in the direction of x > 0. Accord-
ing to our definition, the external system applying this force does not do work
while the particle drifts toward x(t) → ∞. We count (−g0 dx) as a part of the
change of the internal energy of the system. Therefore, we regard that the particle
dissipates its potential energy −g0 x . In contrast, if an external system increases
the force strength from g = 0 to g0, then

∫ g0

0 (−x(t)) ◦ dg(t) should be counted
as the work on the system, d ′W .12

4.1.2.3 Examples

Deformation of an Ideal Chain

Let us consider an ideal chain consisting of many microscale rigid rods joined
together by completely flexible joints (Fig. 4.3). The only interactions are steric
repulsion among rods. Therefore, the system’s potential energy, U ({xi }), is constant

10 The impatient reader could give a quick glance at Sect. 6.2 (especially the Eq. (6.23)) of Chap. 6,
where F̃ stands for U (x, a) here.
11 This example has been brought by T. S. Komatsu.
12 Jarzynski discussed this issue [8] in the context of Jarzynski nonequilibrium work relation
(Sect. 5.4.1).
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x
N+1= a

x 0=
0

Fig. 4.3 Ideal chain consisting of rigid rods (gray rectangles) and free joints (filled discs) immersed
in a thermal environment. One end, xN+1 ≡ a, can be externally controlled, while the other end,
x0, is fixed at x = 0

as function of the positions of joints, {xi } (0 ≤ i ≤ N + 1). Equilibrium statistical
mechanics tells that this system shows (entropic) elasticity with respect to the end-
to-end distance |xN+1 − x0|, and the average elastic force for a given end-to-end
distance is proportional to kBT . Now we are interested in the energetics during the
free shrinkage of this chain after the end point xN+1 ≡ a is released while the
other end point x0 is fixed at x = 0. Above all, no work is done by the external
system; d ′W = 0. If the overdamped Langevin equation describes well the con-
formational changes of this system, the balance of energy (4.7) tells immediately
that d ′Q = dU = 0. If the inertia of the rods and joints are not negligible, (4.9)
tells that the heat should balance with the kinetic energy, through d ′Q = d E . Using
this framework of energetics, energy exchange can be studied for different initial
conditions. One situation of special interest might be the relaxation of a stretched
long chain, either with or without Brownian particle at the movable end, xN+1. This
issue provokes many problems about the heat on mesoscopic scales. We will discuss
this in depth in Chaps. 5 and 6.

“Jump-and-catch” mechanism of binding

In proteins, often a large conformational change is caused by the interaction between
very localized and specific binding sites, see Fig. 4.4 (top). We might ask

(i) How does a short-ranged bonding interaction (of some Å range) cause a large-
scale conformational change of proteins (of 10-nm range)?

(ii) What supplies the energy for the proteins to deform prior to the release of the
bonding energy?

There is no work in (4.7), d ′W = 0. The balance of energy is then dU = d ′Q.
As for the potential energy U , Fig. 4.4 (bottom) gives the decomposition of the
energy into the short-range binding interaction, Ubond, and the energy of protein’s
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Ubond

Udeform

Fig. 4.4 Schematic presentation of the “jump-and-catch” transition (top) and its energetics (bot-
tom). A protein (shaded object) has an intramolecular binding pair (filled disc and filled crescent).
The height of rectangles shows the energies Ubond (upper law) and Udeform (lower law), respectively.
The process of jump (from left to right) requires to borrow energy from the thermal environment

conformation change, Udeform. In order to achieve the transition from the “open”
state (left) to the “closed” state (right), the thermal environment can transfer heat
d ′Q to the protein.13 The supplied energy is stocked as the potential energy for
deformation, dUdeform = d ′Q > 0. If bond formation is unsuccessful, the protein
conformation will return to the relaxed state, and the stocked energy is returned
to the thermal environment as heat. If bond formation occurs, the binding energy
of the bond −dUbond > 0 is released to the thermal environment, while the
deformation energy dUbond is retained in the proteins. If the gain of the bond
energy |dUbond| overcomes the energy cost of deformation, dUdeform, we have
(dUdeform + dUbond) < 0, and the transition is stabilized.

In the above, the thermal environment worked as a bank of (free) energy. It
allowed the protein to explore large deformations and find a short-ranged binding
pair which were originally far apart. While the average energy of fluctuations is
∼ kBT � 4pN nm per a degree of freedom, rare fluctuations may attain the heat
transfer of more than 10kBT . If the protein waits long enough time, e.g., ∼ ms, it
can attain large conformational fluctuations.14

Borrowing energy from the thermal environment is a characteristic feature of
the fluctuating world. This principle is fully used to extract work from the thermal
or chemical energy. Energetics of mesoscopic thermal and chemical engines are
discussed in Sects. 8.1.1 and 8.1.2. Stochastic energetics brings much more infor-
mations with respect to the ensemble theory of statistical mechanics.

13 Here we abuse the notations d ′Q, etc., to represent finite variations.
14 A rough order estimation: if a binding pair diffuses with diffusion coefficient D = 10−7cm2/s
from the initial separation � = 5 nm, the pair can meet in� �2/(2D) � 10−6 s times the Boltzmann
factor eε/kBT , where ε is the barrier energy of protein deformation. Then the waiting for 1 ms may
allow to cross a barrier ε of τeε/kBT = 1 ms, or ε � 7kBT .
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4.1.2.4 Experimental Demonstration of Energy Balance

What does the measurement of heat mean if heat is directly associated with the
fluctuating motions? Is d ′Q neither readily observable in experiments nor calculated
from observable quantities? The first question concerns the very question of the
heat, and it is discussed in Chap. 6. For the second question, the brief answer is yes.
Recent experimental technique [6, 9] enabled to measure both the energy change
dU and the work d ′W at high accuracy.15 The heat d ′Q is, therefore, assessed
using the balance of energy (4.7) i.e., dU = d ′Q + d ′W. They used either optically
trapped bead [6] or brass wire-held pendulum [9]. See Fig. 4.5. They observed, on
the one hand, the time series of the fluctuating variable x(t), i.e., the position of the
trapped bead or the tiny rotation angle of the pendulum, respectively, at a high tem-
poral resolution (faster than ms). On the other hand, the potential function U (x, a),
and therefore the (reaction) force ∂U/∂x, are identified through separate calibrat-
ing experiment. With these data of x(t) together with the protocol of the external
parameter, a(t), the energy change dU (x, a) and the work d ′W = ∂U/∂x da(t)
were deduced.

The heat d ′Q was not measured independently by these experiments, nor was
the law of energy balance proven. However, these experiments also demonstrated
the Jarzynski’s nonequilibrium work theorem and the fluctuation theorem (see
Sects. 5.4.1 and 5.4.2). The latter verification implies that the process x(t) is a
Markovian process. Therefore, the overdamped Langevin equation is a good model
for these experiments.16

We should note that, in the experiments cited above, the potential energy is a
true energy, i.e., without entropic part. Therefore, the molecular heating up of the
local environment should be observed if a very sensitive thermometer is developed
and if experiments are conducted at very low temperature. For the moment ultralow
temperature experiments involving the energy balance have not been done. But there
are already the measurements of thermal conduction by phonons [10] and that by
photons [11].

+++++++++++++

+
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+
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x t( )x t( )

Fig. 4.5 Schematic setups for measuring dU and d ′W . (a) Optically trapped bead [6] and (b) brass
wire-held pendulum [9]. The dashed lines are light for detecting x(t). The parallel arrows (a) and
rectangle (b) denote the optical+electrostatic and mechanical mechanisms, respectively, for the
restoring forces

15 For example, [6] had an error of only ∼ kBT /4 vs. about 10kBT of total energy variations.
16 The effect of inertia is too short lived (∼ 10 ns) to be captured.
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4.1.2.5 Numerical Precision Required for the Energetics

Energetics of stochastic process brings a new notion in the numerical calculation of
the Langevin equation or of the SDE. We have to distinguish between the conver-
gence of solution and the convergence of the associated energetics. In fact the latter
requires a higher precision of the solution than its mere convergence.

It concerns the “overdamped” case, where we neglect the inertia. Let us take a
simple Langevin equation:

0 = −dU (x)

dx
− γ

dx

dt
+ ξ (t), (4.14)

where 〈ξ (t)〉 = 0 and 〈ξ (t)ξ (t ′)〉 = √
2γ kBT δ(t − t ′). Our object is to solve this

equation by using discretization in time with a finite time step, h. We fix the total
time interval of integration. The total number of steps N is, therefore, N ∝ 1

h .
The discretized solution with an arbitrary ξ ( ) is said to converge to the true solu-

tion of (4.14) with the same ξ ( ) if the difference between the discretized (rectilinear)
x(t) approaches indefinitely to the true x(t) in the limit of h → 0. Let us take the
simplest convergent scheme of discretization:

0 = −dU (x̃t )

dx
h − γ (xt+h − xt ) + wt,t+h, (4.15)

where17 wt,t+h ≡ √
2γ kBT (Bt+h − Bt ) with Bt being the Wiener process, and

x̃t ≡ θxt + (1 − θ )xt+h with θ being arbitrary for the moment except that it is nor-
mal to choose such that 0 ≤ θ ≤ 1. In fact (4.15) is an integral of (4.14) from t to
t+h. There is, therefore, a value θ ∈ [0, 1] for which (4.15) is exact.18 We can show
that, with any choice of θ , the error in x(t) by this scheme is O(h

1
2 ). (See Appendix

A.4.2.) In other words, the difference between the approximate x(t) of (4.14) and
the true x(t) of (4.15) decreases as O(N− 1

2 ) for N → ∞. The explicit and lowest
order Euler scheme uses θ = 0. Therefore, this scheme is convergent with the error
in x(t) being O(N− 1

2 ).
In order to numerically assess heat, we need to integrate the heat d ′Q of (4.3).

The unambiguous choice to discretize d ′Q in the lowest order is

ΔQ ≡ 1

h

[−γ (xt+h − xt ) + wt,t+h
]
(xt+h − xt ). (4.16)

Similarly, the change in the potential energy should be expressed as

ΔU ≡ U (xt+h) −U (xt ). (4.17)

17 If we abuse the integral and derivative, wt,t+h =
∫ t+h

t ξ (s)ds and ξ (t) = d Bt/dt .
18 But such θ depends on x, ξ ( ), and t .
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The convergence of energetics, therefore, requires the error of each step,
Δr ≡ ΔU − ΔQ, to be less than ∼ h so that the cumulated error ∼ NΔr van-
ishes for N → ∞. In Appendix A.4.2 we show that this condition requires taking
θ = 1

2 in (4.15). With this choice, the error in the solution of x(t) itself is better than

otherwise, and the convergence in x(t) is of O(N− 3
2 ) instead of O(N− 1

2 ).
What occurs if we took θ �= 1

2 in (4.15)? Suppose, for example, the case of
U (x, a) = U (x) with a single minimum. Apparently the time-discretized x(t)
behaves normally, since this is a good approximate of the true solution. The res-
idence time distribution of x(t) will approach the canonical distribution. There-
fore, the time average of U (xt ) approaches its canonical average. At the same
time, the energy balance of (4.9) should be dU = d ′Q, because d ′W = 0 here.
Numerically, however, the simple scheme predicts ΔQ = O(h) at each step, that
is, heat is generated or absorbed steadily, in contradiction to the conservation of
energy.

4.1.2.6 Energy Balance for Discrete States

For a particular realization of a discrete Markov process, the system undergoes
a transition from the state iα−1 to the state iα at time tα with 1 ≤ α ≤ n and
0 < t1 < · · · < tn < t . The energy level of the system changes accordingly. We
denote by Ei (a) the energy of state i , which may depend on time through the exter-
nal parameter a. In the context of master equation, the energy balance of this process
has long been discussed: along the process between t = 0(≡ t0) and t = t(≡ tn+1)
it is written as follows:

ΔE = Δ′W +Δ′Q, (4.18)

where the change of energy ΔE ,

ΔE = Ein (a(t)) − Ei0 (a(0)), (4.19)

is decomposed into work which is assigned as

Δ′W ≡
n∑

α=0

[
Eiα (a(tα+1)) − Eiα (a(tα))

]
(4.20)

and heat defined by

Δ′Q ≡
n∑

α=1

[
Eiα (a(tα)) − Eiα−1 (a(tα))

]
. (4.21)

In order to deal with individual processes, we have introduced the discrete
“Langevin equation” (3.32), i.e.,

d

dt
|ψt 〉 =

∑

j

(| j〉 − |ψt 〉) · ζψt , j (t).
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Through a process, the energy of the system changes as Eψt (a(t)). Using the discrete
Langevin equation, the energetics defined above can be described simply.

We first express the energy Eψt (a(t)) using an energy operator, E(a), defined by

E(a) ≡
∑

i

Ei (a)|i〉〈i |. (4.22)

Then the energy for the state |ψt 〉 is

Eψt (a(t)) = 〈 |E(a(t))|ψt 〉, (4.23)

where 〈 | ≡ ∑
j 〈 j | [12]. With these notations, the energy balance, which corre-

sponds to d E = d ′W + d ′Q for the Langevin equation, is as follows:19

d[〈 |E(a(t))|ψt 〉] = 〈 | d[E(a(t))] |ψt 〉 + 〈 |E(a(t)) d[|ψt 〉]. (4.24)

4.1.3 The Ensemble Average Heat Flux has Several
Different Expressions

In this section we will derive the formula for the average heat transferred per unit
time to the system from thermal environments.

4.1.3.1 Case with Inertia

We consider the Langevin equation (4.1). We will derive a formula for the average
of heat d ′Q over the stochastic processes between t and t +dt . For this purpose, the
Itô-type representation of the energy balance (4.13), that is,

d ′Q = d E − d ′W

= −2γ

m

(
p2

2m
− kBT

2

)
dt +

√
2γ kBT

p

m
· d Bt (4.25)

is the most convenient. The result is

〈d ′Q〉 = −2γ

m

[〈
p2

2m

〉
− kBT

2

]
dt . (4.26)

The result indicates that, independent of the form of the potential function U (x, a),
the exchange of heat with the thermal environment proceeds through the kinetic
energy of the system.20

19 We remind that the vectors | j〉 or 〈 j | are nominative, and their time derivatives are always 0,
even if the physical state “j” changes through the parameter a(t).
20 For the Langevin equation without inertia, the kinetic energies exchanged between the system
and the thermal environment are hidden, but should exist. That 〈d ′Q〉 is linear in the imbalance
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This simple formula gives an illusion of stability, but may mask what occurs in
the system. For example, suppose that the system starts from a metastable state of a
potential U (x) as in Fig. 4.1. Until the system escapes from the metastable valley, p2

2m

remains � kBT
2 , but the net release of the heat will occur from the escaping particle

beyond the potential barrier.

4.1.3.2 Case Without Inertia

If the temporal resolution is not enough to observe, we assume that the kinetic
energy p2

2m is mostly equal to kBT
2 . However, the substitution of this hypothesis into

(4.26) leads to 〈d ′Q〉 = 0 for any process. This is apparently wrong. We must, there-
fore, reformulate the average heat for the case without inertia from the Langevin
equation (4.2), and the definition of heat, d ′Q = (−γ dx/dt + ξ (t)) ◦ dx . The
results is

〈d ′Q〉 = − 1

γ

[〈(
∂U

∂x

)2
〉
− kBT

〈
∂2U

∂x2

〉]
dt . (4.27)

The derivation is given in Appendix A.4.3. 21

As example of (4.27), suppose that the potential energy is harmonic, U (x) = K
2 x2.

The above formula then gives

〈d ′Q〉 = −2K

γ

[
K

2

〈
x2
〉− kBT

2

]
dt. (4.28)

4.1.3.3 Expression of Average Heat Flow in Terms of the Probability Current

The above results can be cast into a common form, using the probability current
of the Fokker–Planck equation. We calculate the average heat 〈d ′Q〉 as 〈d ′Q〉 =
〈d E〉 − 〈d ′W 〉, where the energy function E(X, P, a) is P2/(2m)+U (X, a) in the
case with inertia (Sect. 4.1.3.1) and E(X, a) = kBT /2+U (X, a) in the case without
inertia (Sect. 4.1.3.2). Using the probability density P obeying the Fokker–Planck
equation, the above relation is

〈d ′Q〉
dt

= d

dt

∫
EPdΓ − da

dt

∫
∂E

∂a
PdΓ

=
∫

E
∂P
∂t

dΓ, (4.29)

of the kinetic energy comes from the linearity of the Langevin equation in γ . The Navier–Stokes
equation of hydrodynamics is also the linear theory from this point of view.
21 A byproduct of (4.27) is the equilibrium relationship, when the parameter a is fixed:

〈(
∂U
∂x

)2〉

eq
=

kBT
〈
∂2U
∂x2

〉

eq
. This equality can also be obtained using the canonical equilibrium distribution ∝

e−U/kBT .
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where dΓ ≡ d Xd P (with inertia) and dΓ ≡ d X (without inertia), respectively.
We then substitute for ∂P

∂t the Fokker–Planck equation, ∂P
∂t = −∇ · J, see (1.76)

and (1.78) in Sect. 1.2.3.2. with ∇ · J = ∂ Jx/∂X + ∂ Jp/∂P (with inertia) and
∇ · J = ∂ Jx/∂X (without inertia), respectively. The probability fluxes (Jx , Jp) in
case with inertia and Jx in case without inertia are defined, respectively, by (1.79)
and by (1.77). Performing the integral by parts, and assuming that the boundary
terms vanish, we obtain the following formulas22:

〈d ′Q〉
dt

=
∫ [

∂E

∂X
Jx + ∂E

∂P
Jp

]
d Xd P (with inertia effect),

〈d ′Q〉
dt

=
∫

∂U

∂X
Jx d X (without inertia effect).

(4.30)

The expressions of the average heat (4.30) have long been found in the context of
Fokker–Planck equation [13].

The first equation of (4.30) includes, as special case, the result for the purely
mechanical system. In that case, E = H , (Jx , Jp) = (

d X
dt P,

d P
dt P

)
, and (X, P)

obey the Hamiltonian equation,
(

d X
dt ,

d P
dt

) = (−∂H/∂P, ∂H/∂X ). We then have
∂E
∂X Jx + ∂E

∂P Jp ≡ 0, that is, the heat transfer in the first equation of (4.30) vanishes
identically.

4.2 Generalization

4.2.1 Heat on the Mesoscopic Scale Can Be Generalized
to the System in Contact with More Than One
Thermal Environments

4.2.1.1 Formal Results

When more than one thermal environment interacts with a system, the analysis of
average heat flux in the previous section can be generalized. In order to avoid direct
interactions among the thermal environments, we assume that the thermal environ-
ments do not couple with the same degree(s) of freedom of the system. We assume
a simple model energy of the system:

E({xi , pi }, a) =
∑

i

pi
2

2mi
+U ({xi }, a), (i = 1, . . . , n), (4.31)

22 An alternative proof of (4.30) will be given in the next section.
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where mi is the mass of the i th degrees of freedom, and a is external control param-
eter(s). The Langevin equation for the i th degree of freedom is

dxi

dt
= pi

mi

dpi

dt
= −γi

pi

mi
− ∂U

∂xi
+
√

2γi kBT i θi (t), (4.32)

where γi are the friction constants associated with the coupling between the system
and the i th thermal environment of the temperature Ti .23 θi (t) are white Gaussian
random noises with zero mean and 〈θi (t)θ j (t ′)〉 = δi, jδ(t − t ′).

The heat from the i th thermal environment to the system, d ′Qi is defined as

d ′Qi =
(
−γ pi

mi
+ ξi (t)

)
◦ dxi , (4.33)

while the work d ′W is defined as before,

d ′W = ∂U

∂a
◦ da. (4.34)

It is easy then to verify that the balance of energy:

d E = d ′W +
∑

i

d ′Qi , (4.35)

Following exactly the same procedure as we did in Sect. 4.1.3.1 for a single
thermal environment, we can derive the following formula of the average heat flux
from i th thermal environment to the system: (cf. (4.30))24:

〈d ′Qi 〉
dt

=
∫ [

∂E

∂Xi
Ji,x + ∂E

∂Pi
Ji,p

]
d Xd P (with inertia effect),

〈d ′Qi 〉
dt

=
∫

∂U

∂Xi
Ji,x d X (without inertia effect), (4.36)

where Ji,x ≡ Pi
mi
P and Ji,p ≡ −

(
∂U
∂Xi

+ γi
Pi
mi

)
P−γi kBT i

∂
∂Pi

P are the i th flux com-

ponents of the Fokker–Planck equation associated with Xi and Pi , in the case with

inertia, and also Ji,x ≡ − 1
γi

[
∂U
∂Xi

P + kBT i
∂
∂Xi

P
]

is the i th probability flux associ-

ated with Xi in the case without inertia. The derivation is given in Appendix A.4.4.
The interpretation of terms like ∂E

∂Xi
Ji,x + ∂E

∂Pi
Ji,p as an analog of d ′Q = (dp/dt+

∂U/∂x) ◦ dx(t) (see the paragraph above (4.4)) would be far fetched, because the
derivation of (4.36) uses integral by parts. The former, therefore, is not adapted to a
local interpretation.

23 If some “internal” degrees of freedom do not directly interact with the thermal environments,
we assign γi = 0 for those degrees of freedom.
24 Here d X ≡∏i d Xi and d P ≡∏i d Pi .
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About the average heat fluxes, a type of “H-theorem” has been derived [13]. It
concerns the Shannon entropy S of the system:

S ≡ −
∫

P logPdΓ. (4.37)

Direct reorganization of terms shows the following equalities:25

d S

dt
−
∑

i

1

kBT i

〈d ′Qi 〉
dt

=
∫

1

P
∑

i

γi

kBT i

[
Pi

mi
P + kBT i

∂P
∂Pi

]2

d Xd P

(underdamped),

d S

dt
−
∑

i

1

kBT i

〈d ′Qi 〉
dt

=
∫

1

P
∑

i

γi (Ji,x )2

kBT i
d X (overdamped).

The right-hand sides of these identities are nonnegative. Therefore,

d S

dt
−
∑

i

1

kBT i

〈d ′Qi 〉
dt

≥ 0 (4.38)

in both cases. This inequality is interpreted [13] as that the Shannon entropy of the
whole system is nondecreasing, − 1

kBT i

〈d ′Qi 〉
dt is regarded as the increment rate of the

Shannon entropy of i th thermal environment. In the steady state, where d S/dt = 0,
(4.38) implies the inequality:

∑

i

1

kBT i

〈d ′Qi 〉
dt

≤ 0 (stationary state). (4.39)

This relation imposes a constraint among the steady-state heat currents.

4.2.1.2 Conduction, Partition, and Diffusion of Heat Between Two
Thermal Environments

Apart from the formal results, we will take below a simple model system that inter-
acts with two thermal environments (Fig. 4.6). We will see several different aspects:
heat conduction through mechanical motion of system, the partition of heat into
two environments upon the external work on the system, and the diffusion of heat
between two environments through the system.

25 We use
∫

(∂P/∂t) logPdΓ = ∫ ∑i Ji · ∇i logP, where ∇i denotes the derivatives with respect

to i th degree of freedom. We use also −∑i

∫ ( Pi
mi

∂
∂Xi

− ∂U
∂Xi

∂
∂Pi

)
PdΓ = 0, assuming that the

surface integral vanishes.
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Fig. 4.6 Two vanes immersed
in their respective thermal
environments. These vanes
are mechanically connected
by a spring. See the text

K

’

’

TT

γ γ

Model

In Fig. 4.6 two thermal environments are at the temperatures T and T ′, respectively.
In each of these a vane is immersed. The coupling of these vanes to their thermal
environments is characterized by the friction coefficients γ and γ ′, respectively. The
two vanes are joined through a harmonic torsional spring with the elastic constant,
K . We will neglect the inertia effect for a moment. Let us denote by x and x ′ the
rotation angles of the vanes in the environment of temperature T and T ′, respec-
tively. The Langevin equations for the vanes are

0 = −γ ẋ + ξ (t) − K (x − x ′), 0 = −γ ′ ẋ ′ + ξ ′(t) − K (x ′ − x), (4.40)

where ξ (t) and ξ ′(t) are two independent Gaussian white noisees with zero mean

and 〈ξ (t1)ξ (t2)〉 = 2γ kBT δ(t1 − t2) and 〈ξ ′(t1)ξ ′(t2)〉 = 2γ ′kBT ′ δ(t1 − t2). We will
use the “dot” (ẋ etc.) to mean the time derivative.

We define heat by d ′Q = (−γ ẋ + ξ ) ◦ d ′x and d ′Q′ = (−γ ′ ẋ ′ + ξ ′) ◦ d ′x ′. The
balance of energy is in a time differential form,

d ′Q
dt

+ d ′Q′

dt
= d

dt

[
K

2
(x − x ′)2

]
− (x − x ′)2

2

d K

dt
. (4.41)

The first and second terms on the right-hand side of (4.41) shows d E/dt and
d ′W/dt , respectively.

We can also show the following relation:

γ
d ′Q
dt

− γ ′
d ′Q′

dt
= K (x − x ′) ◦ (ξ (t) + ξ ′(t)). (4.42)

Moreover, we can derive the Langevin equation for the relative rotation angle,
μ ≡ x − x ′, from the original coupled Langevin equation:

dμ

dt
= −

(
1

γ
+ 1

γ ′

)
K μ+

(
ξ (t)

γ
− ξ ′(t)

γ ′

)
. (4.43)

These three equations give the heat currents d ′Q
dt and d ′Q′

dt for each realization of
(ξ ( ), ξ ′( )). Since Q(t) ≡ ∫ t

0 (d ′Q/dt)dt and Q′(t) ≡ ∫ t
0 (d ′Q′/dt)dt are quadratic

functionals in the Gaussian stochastic processes, ξ and ξ ′, detailed statistics of Q(t)
and Q′(t) are available through the generating function 〈e−λQ(t)〉, etc. Using this fact,
for example, the theorem of heat fluctuation [14] has been tested [15]. This theorem
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is a development of the so-called fluctuation theorem (FT) [16, 17]. See also [18]
and a recent review to date [19]. We will not go into details of these statistics. Below
we will discuss the average and variance of heat currents.

Note: The original coupled Langevin equation is decoupled by using the relative
angle, μ, and the “center of diffusion” X ≡ (γ x + γ ′x ′)/(γ + γ ′). The latter obeys
a free rotative Brownian motion, (γ+γ ′)Ẋ = ξ (t)+ξ ′(t).26 Therefore, the diffusion
of X does not contribute to the heat currents.

Heat Conduction Between Two Thermal Environments

Using the solution of (4.43) for μ(t), the averages of (4.42) and (4.41)27:

〈d ′Q〉
dt

+ 〈d ′Q′〉
dt

= K (t)

2

d

dt

〈
(x − x ′)2〉, (4.44)

γ
〈d ′Q〉

dt
− γ ′

〈d ′Q′〉
dt

= K (t)(kBT − kBT ′). (4.45)

In the steady state with K constant, the right-hand side of (4.44) vanishes. Then we
have the average heat currents:

〈d ′Q〉
dt

= −〈d
′Q′〉
dt

= K

γ + γ ′
(kBT − kBT ′). (4.46)

The above result describes the heat conduction mediated by a mechanical spring.
When T = T ′ the average heat current vanishes. Also if γ or γ ′ goes to infinity,
there is no conduction. The average heat current increases with K . It means that the
stiffer spring can transmit energy more efficiently from one thermal environment to
the other. According to (4.46) the heat current diverges in the limit K → ∞. This
apparently unphysical result is a sign of the abuse of the Langevin equation without
inertia: In the limit of high stiffness of the spring, the timescale ∼ (γ + γ ′)/K
characterizing the variation of μ = (x − x ′) is beyond the time resolution of the
modeling by such Langevin equation. In order to avoid the spurious divergence, the
model has to take into account the effects of inertia, for example, due to the moment
of inertia of the vanes. In the limit of K = ∞, appropriate Langevin equations are
as follows:

I ẍ = −γ ẋ + ξ (t) + f (t), I ′ ẍ ′ = −γ ′ ẋ ′ + ξ ′(t) − f (t), (4.47)

where I and I ′ are the moments of inertia of the vanes, ± f (t) is the force of
action/reaction through the rigid spring, determined so that x(t) − x ′(t) = 0 at

26 The “apparent temperature” for this diffusion is (γ T + γ ′T ′)/(γ + γ ′).
27 Technical detail: We use a rule

∫ t
0 δ(s)ds = 1

2 to be consistent with the Stratonovich type
calculus
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any t .28 A new energy balance relation is written as

d ′Q
dt

+ d ′Q′

dt
= d

dt

(
I

ẋ2

2
+ I ′

ẋ ′2

2

)
(4.48)

and the average heat current in the steady state is

〈d ′Q〉
dt

= −〈d
′Q′〉
dt

= γ γ ′

(γ + γ ′)(I + I ′)
(kBT − kBT ′). (4.49)

Nanomachine to Absorb the Heat vs. Maxwell’s Demon

It will be instructive to look the above model from the standpoint of the hot reservoir.
Let us suppose that T > T ′. How do things look like if we observe the microscopic
events around the vane in the high-temperature environment of temperature T ?

The rotational motion of the vane x(t) is apparently random, and the ther-
mal environment (T ) is isolated except for the mechanical link through the vane
immersed therein. However, this random motion of the vane results in extract-
ing energy from this environment. Moreover, the “Feynman pawl and ratchet”
(Sect. 1.3.4) replaces the spring by more intelligent attachments and enables work
to be done using the energy extracted through this random motion.

If we compare the above situations with the experiment of agitating a “spoon” in
water, often mentioned after J. P. Joule (around 1850), the spoon could only warm it
up. Therefore, the random motion of the vane in the high-temperature environment
T is essentially different from the agitation of the spoon. What is the difference?
We note that the extraction of energy by the vane does not contradict the second
law of thermodynamics. What the second law excludes is the extraction of energy
from a system with a single thermal environment. Our system of vanes would indeed
cease to extract the energy as soon as we remove the second thermal environment
(temperature T ′(< T )).

The key to the answer is related to the well-known “paradox of Maxwell’s
demon”: The demon D sits by a gate between two containers of gas, which are
initially at the same temperature. D and the two containers are isolated from the rest
of the world. D can recognize the velocity of the gas particles coming toward the
gate. Now D operates the gate so that only the hot particles go from the left container
to the right one, and that only the cool particles go from the right container to the
left one. Then D can create the temperature difference between the two containers.
This contradicts with the zeroth and second laws of thermodynamics. The fault of
logic in this paradox is that, in fact, D must keep contact with a low-temperature
environment so that D can recognize the velocities of gas particles.

Coming back to our vane that absorbs heat, it recognizes the fluctuations in the
hot environment T and moves so that it absorbs energy. For this action, contact with

28 K can be neglected for (γ−1 + γ ′−1)−1/(I + I ′)  (γ + γ ′)/K . See (4.49) below.
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the cool environment T ′ is indispensable. It is the hot environment that exerts the
random force on the vane, but the motion of the vane is not incoherent like Joule’s
spoon. To see this point clearer, let us analyze the behavior of x(t) of the system
(4.40) putting T ′ = 0. Under this assumption we can solve the second equation of
(4.40) for x ′(t):

x ′(t) = K

γ ′

∫ +∞

0
e−

K
γ ′ s x(t − s)ds. (4.50)

Substituting this result into the first equation of (4.40), we have the following
equation for x(t):

γ ẋ(t) = −K

[
x(t) − K

γ ′

∫ +∞

0
e−

K
γ ′ s x(t − s)ds

]
+ ξ (t). (4.51)

The integral on the right-hand side of (4.51), i.e., x ′(t) of (4.50), shows a feedback
control in the restoring force. As x ′ follows adaptively to the motion of x in the
past, the restoring force, −K (x(t) − x ′(t)), is weakened as compared with a spring
with fixed end (x ′(t) =const.). As the result, the vane x(t) returns less energy to the
environment T than what was injected from this environment. A related model is
found in [20].

Based on (4.51) we can design a cooling device in the fluctuating world: we
somehow trap a Brownian particle (position x(t)) around the trapping center (the
position x ′(t)). If x(t) can be observed and if the feedback circuit can change x ′(t)
quickly enough to realize (4.50), then we can extract energy around the Brownian
particle as if the particle is in contact with another environment with T ′ = 0.

Partition of Heat

Now we suppose that T = T ′ for the two thermal environments while they have
no direct contact with each other. The object is to find how much heat the spring
absorbs from respective thermal environments when the spring constant K (t) is
slowly lowered. Analogous situation was mentioned in Sect. 2.2, see, Fig. 4.7.
There, the volume of the cylinder V (t) played a role of the inverse square root of
the spring constant, K (t)−1/2. If we pull up the piston quasistatically, what will be
the partitioning of the heat supplied from these environments?

Conventional thermodynamics did not answer to this question.29

The average heat currents are found from the relation (4.45) with T = T ′ and
(4.44). The result is

γ
〈d ′Q〉

dt
= γ ′

〈d ′Q′〉
dt

= γ γ ′

γ + γ ′
K (t)

2

d

dt

〈
(x − x ′)2

〉
. (4.52)

29 Linear nonequilibrium thermodynamics may devise a model with introducing phenomenologi-
cal thermal resistances. In the present model, γ and γ ′ are sufficient.
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Fig. 4.7 (The same figure as
Fig. 2.4.) Partition of heat
into two thermal
environments of the same
temperature T (left and right
boxes) through the change of
the volume of a gas (center) T T

This shows that whatever the change of K (t) is, the heat currents are partitioned
according to the inverse ratio of γ and γ ′. More heat is exchanged with the envi-
ronment of smaller value of γ . In particular, for the slow change of K (t), we may
have a concrete result: Using the equipartition law, K (t)〈(x − x ′)2〉/2 = kBT /2, we
integrate (4.52) to obtain the average cumulate heat from respective environments,
〈ΔQ〉 and 〈ΔQ′〉:30

γ 〈ΔQ〉 = γ ′〈ΔQ′〉 = γ γ ′

γ + γ ′
kBT ln

√
Kinit

Kfin
(quasistatic), (4.53)

where Kinit and Kfin are the initial and final values of K (t). If the spring is softened
indefinitely (K (t) → +0), the external system extract arbitrarily large amount of
energy from the thermal environments, in the proportion of γ−1 vs. γ ′−1.31

Diffusion of Heat

Even in the case of T = T ′ and K = const., heat flows randomly between the two
thermal environments. The cumulated heat undergoes a Brownian motion around the
average steady change. For the case of K = const., this fluctuation is characterized
by the “thermal diffusion constant” D through the following relation:

〈[∫ t

0

d ′Q
dt

dt −
∫ t

0

〈d ′Q〉
dt

dt

]2
〉
= 2Dt. (4.54)

Some calculation shows32

D = K

γ + γ ′

(
γ kBT + γ ′kBT ′

γ + γ ′

)(
γ ′kBT + γ kBT ′

γ + γ ′

)
. (4.55)

30 We integrate K (t)
2

d
dt

kBT
K (t) = kBT

2
d
dt ln 1

K (t) .
31 The energy in the spring is ∼ kBT /2, independent of the stiffness.
32 The expression of D in the Japanese Version [21] should be corrected as that of (4.55).
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See Appendix A.4.5 for the derivation. This formula is invariant under the exchange
of T and T ′. At high temperature and/or for very slow change of K (t), the diffusion
of heat may mask the prediction about the partition of heat, (4.53).

4.2.2 Energetics of Thermal Ratchet Motors

We revisit the thermal ratchet motors (Sect. 1.3.4) and discuss several aspects of
energetics. Figure 4.8 recapitulates the Feynman pawl and ratchet and Büttiker and
Landauer ratchet.

4.2.2.1 Heat Leak and Onsager Coefficient in the Feynman Pawl
and Ratchet Wheel

Introduction

As mentioned in Sect. 1.3.4 the Feynman ratchet model played an important role in
the construction of the stochastic energetics.

We recall below the Langevin equation of this model:

0 = −γ dx

dt
− ∂U

∂x
+
√

2γ kBT θ(t), 0 = −γ ′ dy

dt
− ∂U

∂y
+
√

2γ ′kBT ′ θ ′(t), (4.56)

where U (x, y) = U1(x − φ(y)) + U2(y) − f x , and θ (t) and θ ′(t) are mutu-
ally independent white Gaussian random noises with zero mean and 〈θ (t)θ (t ′)〉 =
〈θ ′(t)θ ′(t ′)〉 = δ(t − t ′). For T �= T ′ this model can rotate on average the ratchet
wheel x in one direction. Here the load f is regarded as a part of the system, and its

T

γ γ ’

T’

x

U(x)

a

b

Fig. 4.8 (a) Feynman ratchet and pawl and (b) Büttiker and Landauer ratchet. (The same figures
as Figs. 1.9 and 1.10. See those legends.)
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v

P=vff

v v000

Θ

1

Fig. 4.9 Schematic presentation of the load f , power P = v f , and the energy efficiency Θ of
motors as function of its velocity v. The force at v = 0 is the stall force

potential energy (− f x) is counted in the system’s potential energy. This system is,
therefore, autonomous with no external parameters.

After Feynman, there have been many variations of his model, and we will not
go into details of those model. We only summarize in Fig. 4.9 general qualitative
features of this model, in terms of the average working velocity v = 〈ẋ〉, load f ,
average power output P = v f , and the efficiency Θ, i.e., the ratio of P to input
energy from high temperature bath (T) normalized by the Carnot maximum value,
|ΔT |/T (see (2.24)).

We will discuss mainly two aspects of energetics: the stalled state where the
load is just strong enough that the motor moves neither forward nor backward, and
around the equilibrium state where the efficiency by linear nonequilibrium thermo-
dynamics becomes undetermined (of 0/0 type).

Stalled State and Efficiency

One of the main questions was if Feynman’s model can attain Θ = 1, i.e., the
efficiency of the ideal Carnot engine.33 Feynman himself argued affirmatively in the
original textbook [22], since he focused on the critical and rare events when a pawl
finds a new space between the ratchet tooth. Later his argument was represented
more formally in terms of some stochastic boundary condition at the peaks of the
ratchet profile [23].

While these critical events are essential for the function of this motor, the other
“nonsuccessful” fluctuations are also important from the energetics point of view.
Especially, at the stalled state Parrondo [24] and then the author [3] noticed that
the efficiency should be Θ = 0. While the pawl jiggles around a valley between
neighboring ratchet tooth, the fluctuations of the ratchet wheel and those of the pawl
are mechanically coupled. Heat conduction from the high-temperature environment
to the low-temperature one then takes place, as we have analyzed a simple case in
Sect. 4.2.1.2.

The same reasoning can also be described in terms of the probability flux of the
Fokker–Planck equation at the stalled state. The stationary probability flux (Jx , Jy)
exhibits vorticity in the phase space (xy-plane) [25, 26], which can then be related
to the dissipation of heat without contributing to work.

33 That is, the ratio η of the available work to the supplied heat from the high-temperature (T )
thermal environment is ηmax ≡ 1 − T ′/T .
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In conclusion, there is a leakage of heat at the finite rate at the stalled state. The
efficiency of energy conversion then vanishes at the stalled state. Experience shows
that, if the parameters of the model are well tuned, efficiency can attain almost 1
(theoretical maximum) just off this stalled state while the efficiency at the stalled is
0. The efficiency has, therefore, a dip at this state. From practical viewpoint, if the
size of the system is increased, the effect of jiggling may become negligible, and
the dip in the efficiency may be too narrow to be observed. Discrete modeling may
also suppress or lessen this jiggling.

Near Equilibrium State and Onsager Coefficients

Near the equilibrium, T � T ′, and weak load, f ∼ 0, Onsager coefficients charac-
terize the function of Feynman ratchet on macroscopic (ensemble average) level.

In this framework, the average velocity of wheel rotation Jp = 〈 dx
dt 〉 (see (1.114))

and the heat flux Jq from the hot thermal environment are linearly related to the ther-
modynamic force concerning the load, f/T , and the temperature gradient, ΔT/T 2

(ΔT ≡ T ′ − T ) with the symmetric Onsager coefficients [27, 28]:

(
Jp

Jq

)
=
(
μT L pq

L pq λT 2

)
·
(

f/T
ΔT/T 2

)
, (4.57)

where μ = Jp/ f for ΔT = 0 and λ = Jq/ΔT for f = 0 are, respectively,
the mobility coefficient and the heat conductivity coefficient. Onsager theory says
that the off-diagonal coefficients L pq are the same. This symmetry in the context of
ratchet motors has been discussed in [29]. Exactly at equilibrium ( f = ΔT = 0),
the above phenomenology is not valid. For example, the efficiencies of energy con-
version become singular, simply because (4.57) yields 0/0, nondeterminate. In fact,
in the very vicinity of equilibrium, the fluctuations in the fluxes dominate the aver-
age fluxes, and the fluctuations are not singular.

The modeling by the Langevin equation tells the underlying mechanism of the
relation (4.56), especially, of the cross-coupling coefficient L pq .

First, we notice that there is no kinetic cross-coupling in the Langevin equation
(4.56), that is, no forces on x directly drives dy/dt , or vice versa. It is through
the potential coupling U (x, y) that the cross-coupling L pq is realized. Through the
nonlinearity of this potential coupling, the model also predicts the nonlinear force–
flux relation. There are models of heat engine that assume the cross-coupling as a
kinetic mechanism. (See below.)

Second, the modeling by the Langevin equation allows the analysis of ener-
getics along an individual process. Even at equilibrium, a cycle of fluctuations in
(x, y)-space can accompany the transfer of heat coupled with the space transloca-
tion (wheel rotation).34 In fact this analysis gives the physical interpretation of the

34 Because of detailed balance at equilibrium, forward cycles and backward cycles occur
equally likely. Due to this cancellation this phenomena cannot be captured by macroscopic
phenomenology.
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cross-coupling constant L pq almost quantitatively [30]. Below we summarize their
analysis.

Using a slightly modified model of Feynman pawl and ratchet wheel, the “quan-
tum” of the transferred heat, qstep, is measured upon a directed, e.g., forward, step
of ratchet potential (in equilibrium). Assuming that this quantum step is not sin-
gular at f = 0, the relation between the Jq and the (small) load f is written
as Jq = qstep(μ f )/�step, where �step is known step size of the ratchet potential.
Comparing this relation with (4.57), the coefficient L pq is L pq = qstepμT/�step.
This result is valid also at f = 0. On the other hand the Einstein relation tells that
μT is the diffusion coefficient, �2

step/τstep, where τstep is the characteristic time of
spontaneous step in equilibrium. τstep is also measurable from the model analysis.
Combining the above results the cross-coupling coefficient is directly correlated
with the energetics of a single-step event:

L pq = qstep

(
�step

τstep

)
. (4.58)

This argument is confirmed numerically and is also justified from the calculation of
Green–Kubo formula [28].35

4.2.2.2 Inertia as a Singular Perturbation: Case of Büttiker
and Landauer Ratchet

Introduction

Stochastic energetics has been applied to the Büttiker and Landauer ratchet (see
Fig. 4.8 (b) and Sect. 1.3.4.3).

For the model without inertia, (1.112), i.e.,

γ dx =
√

2γ kBT (x) ◦ d Bt − ∂

∂x

[
U (x, a) + f x + kBT (x)

2

]
dt, (4.59)

the analysis showed the efficiency Θ of energy conversion up to 136 [4, 31]. The
maximum is attained in the stall state.

If the inertia is taken into account, the model is (1.111), i.e.,

dp

dt
= −∂U (x)

∂x
− f − γ

p

m
+ ξ (t),

dx

dt
= p

m
, (4.60)

35 Note that the potential energy of the system U (x, y) does not contribute to the “quantum” of the
transferred heat, qstep, except for the load’s potential energy, f �step. The remaining part of U (x, y)
returns to the original value, on the average, after a “quantum” cycle is completed.
36 i.e., the Carnot efficiency η up to ηmax = 1 − T ′/T .
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where ξ (t) is the white Gaussian noise with 〈ξ (t)ξ (t ′)〉 = 2γ kBT (x)δ(t − t ′). The
analysis of the latter model concluded that the efficiency should drop to 0 at the
stalled state [32–34], in contradiction to the model without inertia.

This discrepancy implies that the limit of m → 0 is not equivalent to the model
with m = 0. If we put m = 0 in the Langevin equation, the equation changes the
order of differential. Such a change may drastically affect the behavior of x(t), and
the energetics of Büttiker and Landauer ratchet is sensitive to this change.

Scale of Description

To better understand the cause of discrepancy and to know the true efficiency, we
first remember that we should respect the time resolution of each Langevin equation
(see, Sect. 1.3.2). In fact, both models abuse the Langevin equations beyond their
validity range. When a particle moves across the discontinuity of the temperature,
the environment for the particle changes within a infinitesimal time, shorter than
any finite time resolution that is associated with a Langevin model.

Next we note the role of the velocity relaxation time. This time is finite for the
model with inertia, τp ≡ m/γ, while it is assumed to be infinitesimal for the model
without inertia. We have a physical argument (see below) that, if we keep track of
this timescale τp, the sudden jump of temperature is “buffered” and the model with
inertia gives a meaningful result. We should not take the overdamped limit first.

Physical argument

When a particle switches its thermal environment, a thermalization of the kinetic
energy of the particle occurs. On the average, the particle’s kinetic energy will
relax toward its (new) equipartition value. Through this process, an irreversible heat
exchange takes place with a new thermal environment [35, 32]. This is the cause of
heat leakage.

To discuss more quantitatively, suppose that a particle moves from the temper-
ature T to the temperature T ′. When the particle cross the border, its motion is
almost ballistic during the time ∼ τp ≡ m/γ . During this period, the particle keeps
its original velocity ∼ vth ≡

√
kBT /m. Then thermalization occurs, and the particle

exchanges energy, which is about the difference of the equipartition kinetic energy
|kBT − kBT ′|/2. This energy does not depend on m.

In summary, as far as the particle’s kinetic energy is concerned, the temperature
border is smoothed. The effective “temperature gradient” is ∼ |T − T ′|/(vthτp) ∝
m−1/2.[36, 32]. The heat leakage through the thermalization of the kinetic energy
occurs with this temperature gradient. At the stalled state this heat leakage continues
at a finite rate. The efficiency is, therefore, 0 at the stalled state.

The conclusion is parallel to the Feynman pawl and ratchet wheel. But the mech-
anism of the leakage in the two models is very different. The maximum of the
efficiency is realized near but off the stalled state, and less than the Carnot limit.
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Kinetic Argument

Is there a remedy for the model without inertia to recover the above mentioned
leakage [33, 34]? Below is the argument against this possibility: for a Wiener pro-
cess, or a overdamped free Brownian motion (0 = −γ dx/dt + ξ ), there is no
characteristic timescale. The implication is that, once it visits a point, it revisits the
same point indefinitely many times within a short period. Therefore, the to-and-fro
of the particle at the temperature boundary can occur indefinitely many times, before
the bias field drives the particle off the boundary. It is, therefore, impossible to incor-
porate the thermalization of kinetic energy in the overdamped model. If the space is
discretized [37], this problem disappears apparently. But justification is needed for
the discretization.

Proof by Numerics

The above physical argument supporting the Langevin model with inertia was finally
verified by a careful molecular dynamic simulation [38]. Their analysis of energy
transfer confirmed the divergence ∝ m−1/2 of the heat leakage (Q̇kin) due to the
kinetic energy carried by the particle. See, Fig. 4.10. Their simulation used 2D hard-
core gas as thermal environments of two different temperatures. The gas is dense
enough that the Knudsen number (mean-free path/system size) is < 1. The Q̇kin ∝
m−1/2 behavior holds well even for τp = m/γ as small as the microscopic time,
i.e., the inverse collision frequency of gas particles against the Brownian
particle.37

Fig. 4.10 Kinetic energy
contribution of heat transfer,
Q̇kin. It diverges as
(m/m0)−1/2, where m and m0

are, respectively, the mass of
the Brownian particle and the
mass of the gas particle
constituting the model
thermal environment (Figure
by the courtesy of R. Kawai)
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37 This result also justifies the Langevin equation with inertia down to the microscopic timescale.
The validity of this equation at the intermediate scale, ∼ 10–102τp, will be scrutinized in
Sect. 6.3.1.
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In conclusion, the study of Büttiker and Landau ratchet gives a lesson that an
apparent reasonable result (Carnot’s limit) can be wrong, and apparently singular
result can be true.

4.2.3 Fluctuating Open System Does Not Exchange Chemical
Potential as Energy of Particle

4.2.3.1 * Definition of the System

On the level of description of the Langevin equation, we always identify the posi-
tions of particles. We, therefore, take into account explicitly the space coordinates.
We define as the open system a spatial region Ω within an entire space which the
particles can explore. For example, Ω can be a volume confined by a piston and
a cylinder with a valve (cf. Fig. 7.18), or a focused region of laser light under
optical tweezers. Or Ω can also represent binding potential wells on a membrane
(cf. Fig. 8.3).

We call “particle environment” the complementary region, Ωc. We assume that
the entire system, Ω ∪ Ωc, is closed and immersed in a thermal environment of
temperature T . In this chapter, the particle environment need not be very large.
See Fig. 4.11 (top). The stochastic energetics described up to the previous sections
applies to this entire system. For simplicity we will consider only one species of
particles.

We suppose that each particle (position x j (t) ∈ Ω ∪ Ωc) obeys the Langevin
equation without inertia term:

0 = −γ dx j

dt
+ ξ j (t) − ∂Etot

∂x j
( j = 1, . . . , N ), (4.61)

( x  ,a{  } )

x t
Ω

(  )

E

Ω

Fig. 4.11 Top: Open system Ω and its “particle environment” Ωc, which is outside of Ω . Thick
curve is a trajectory of the particle which passes through the system. Bottom: The energy of the
system, E({x},a) (thick curve and thick line segments). In the absence of particles, the energy of
open system is zero, E({ }, a) = 0
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with {ξ j (t)} being mutually independent white Gaussian random forces with zero
mean and correlations 〈ξ j (t)ξk(t ′)〉 = 2γ kBT δ j,kδ(t − t ′).38

However, we explicitly describe only those particles in the system Ω . Once a
particle exits from the system, we lose track of it, i.e., we lose its degree of freedom.
In summary, the open system is a region, and the particles belong to this system
while they are in this region.

4.2.3.2 * States of Open System

It is useless to distinguish all the particles in the entire system, first because any par-
ticular particle can spend most of the time in the environment, Ωc, second because
we need not to distinguish which particular particles are in the system, whether or
not this particle is the one which has left the system before.

We, therefore, define the state of an open system as follows:

{} : “Null” state, where there is no particle in Ω .

{x1} : the state with one particle at x1.

{x1, x2} : the state with two particles with their positions being x1 and x2.

· · ·
{x1, . . . , xn} : the state with n particles with their positions being x1, . . . , xn .

· · · (4.62)

Therefore, the number of particles in the system, n̂(t), is also a random variable.39

If there are more than one species of particles, we will distinguish them and denote
x (α)

1 , etc.

4.2.3.3 Energy of Open System

As the energy of an open system, we count only the energies of those particles in
the region Ω. Interactions among the particles require a refinement to this definition.
This complication is unavoidable since energy of small system does not have the
extensive character, in general.

One-Particle Energy of the Open System

For a moment we shall ignore all the interactions among the particles. Let us denote
by U1(x, a) the energy of a particle at the position x . We assume that U1(x, a) is
defined on the entire system, x ∈ Ω ∪ Ωc. As for the dependence on the external

38 The generalization to the case with inertia is straightforward, but we will not discuss here.
39 For those who know second quantization, this state space may be reminiscent of the Fock space.
In the Fock space, however, the identity of individual particles is lost because of the symmetriza-
tion or antisymmetrization of the product states of single particle. In the present state space, the
particle’s identity is preserved while particle remains in the system.
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parameter a, we require that U1(x, a) depends on a only for x ∈ Ω.40 The reason
is that we have excluded the direct interactions between the external system and the
system’s environment. The one-particle energy U1 has an arbitrariness of an additive
constant.

If only one particle passes through the system Ω, the system’s energy will change
as shown in Fig. 4.11 (bottom). If there are N particles in the entire system, the
energy of the system, E , is represented as (see (4.62))

E =
N∑

j=1

U1(x j , a) θΩ(x j ), (4.63)

where we have introduced the (single-particle) characteristic function θΩ(x) for the
zone Ω:

θΩ(x) =
{

1 (x ∈ Ω),
0 (x �∈ Ω). (4.64)

Remark on the choice of Ω: Often Ω may be chosen as a region surrounded by poten-
tial barriers. So as to describe the external control of these barriers, it is practical to
include the barrier region as a part of Ω and count the barrier potential in U1.41 If
the system’s periphery is an electric double layer, then the potential energy U1(x, a)
has a physical discontinuity across this layer. In this case it is practical to define
Ω so that the double layer is found in the interior of Ω. The stochastic energetics
of the transmembrane diffusion of ions may explain that, if diffusion is caused by
the difference of ion concentrations, it will release no heat, while if it is due to
the electrostatic double layer, it accompanies a heat release. The electrochemical
potential alone does not distinguish these two cases.

Inclusion of the Interactions Among Particles

Things become suddenly complicated if the particles interact among themselves
[39]. For example, let us consider the situation of Fig. 4.12; the two particles are

c

x x′

Ω
Ω

Fig. 4.12 The situation where a particle in the environment (x ′) is within the interaction distance
(illustrated by the dashed circle) of another particle in the system (x) across the system boundary
∂Ω. We will then count the interaction energy as a part of energy of the system, E (see the text)

40 That is, ∂U1/∂a = 0 if x �∈ Ω.
41 Ω is considered to be a “closed set.”
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close to each other across the boundary of Ω, and that interactions between them
are not negligible. There is no a priori reason to include or ignore this interaction
energy as a part of energy of the system, E . The same is true for the interaction
energy involving more than two particles. For macroscopic thermodynamics, the
premise of the extensive property of thermodynamic quantities justified to exclude
such ambiguity.42 In the study of mesoscopic systems, however, we cannot avoid
this boundary effect.

We will then take up the following definition for the energy of the system. If
a cluster of particles are interacting with each other, and if at least one of those
particles is in Ω, we count this interaction energy in the energy of the system, E .

Leaving the details of analysis in Appendix A.4.6, the result is

E =
N∑

i=1

U1(xi , a)θ (1)
Ω (xi ) +

N∑

j=1

N∑

k= j+1

U2(x j , xk)θ (2)
Ω (x j , xk)

+
N∑

j=1

N∑

k= j+1

N∑

l=k+1

U3(x j , xk, xl )θ
(3)
Ω (x j , xk, xl) + . . . , (4.65)

where U2(x j , xk) and U3(x j , xk, xl ) are properly defined two and three body inter-
actions, etc., and θ (2)

Ω (x j , xk), θ (3)
Ω (x j , xk, xl ), . . . , takes the value 1 if at least one of

their argument takes the value in Ω and 0 otherwise. Because of the sharp boundary
of the system Ω, the energy of the system E can vary discontinuously.

The above definition of the system’s energy is not the unique choice. Nor this
choice is proven to be the best one. Apparently, this definition needs modifica-
tions when there are two open systems Ω1 and Ω2 which share a part of their
boundaries.

For later use, we write down also the total energy Etot of the entire system
Ω ∪ Ωc:

Etot =
N∑

i=1

U1(xi , a) +
N∑

j=1

N∑

k= j+1

U2(x j , xk) +
N∑

j=1

N∑

k= j+1

N∑

l=k+1

U3(x j , xk, xl ) + . . . .

(4.66)

Remark : Necessity of steric repulsion for a single-particle binding site. On the
level of description by the Langevin equations, the hard-core repulsive interaction
between particles should be explicitly accounted for as a part of the term U2, even if
the single-particle binding potential, U1(x, a), affords only room for single particle.
Otherwise, more than one particles, e.g., {x1, x2}, can enter the same binding site
at the same time. As is the case with usual hard-core repulsion, the last interaction
has no direct contribution to the energy of the system: it only restricts the available
phase space of x1, x2, etc.

42 In all cases, we exclude the long-range interactions: we exclude unscreened electrostatic inter-
action and gravitational interaction.
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4.2.3.4 Energy Balance of Open System

During dt all the particles in the entire system undergo small steps. For those parti-
cles which continue to belong to the system Ω, we will apply the previous definition
of the heat. We call this heat internal heat and denote it by d ′Q(in). Using θΩ(x),
internal heat is

d ′Q(in) ≡
∑

j

θΩ(x j )

(
−γ dx j

dt
+ ξ j (t)

)
◦ dx j . (4.67)

The work d ′W is also defined as before:

d ′W ≡
∑

j

θΩ(x j )
∂U1(x j , a)

∂a
da(t). (4.68)

We can rewrite this as follows:

d ′W =
N∑

j=1

∂[θΩ(x j )U1(x j , a)]

∂a
da(t) = ∂Etot

∂a
da(t). (4.69)

Recall that Etot depend on a only through U1(x, a) and the latter depends on a only
when x ∈ Ω.

Because the particles can migrate during the time dt , and because the energy E
should be updated upon the migration of particles, we do not expect the relation
d E = d ′Q(in) + d ′W (wrong). In order to compare d E and d ′Q(in) + d ′W , we use,
in addition to the Langevin equation (4.61), the following identity, valid for any
functions f (x, a) and θ (x):

d[ f (x, a)θ (x)] ≡
[
∂ f (x, a)

∂a
da + ∂ f (x, a)

∂x
dx

]
θ (x) + f (x, a)dθ (x). (4.70)

We then find the law of energy balance for the open system [39]:

d E = d ′W + d ′Q(in) + d ′Q(mig) + d ′Q∂Ω. (4.71)

Below, we will briefly describe the additional terms, d ′Q(mig) + d ′Q∂Ω.43 We used
the notation “Q” for these terms because these energies are not directly controlled
by the external system.

d ′Q(mig): Heat due to the migration of particles. This term accounts for the energy
caused by the migration of particles. In the identity (4.70), this energy comes from
the last term on the right-hand side. This energy is as follows:

d Q(mig) ≡
N∑

j=1

U1(x j , a)dθ (1)
Ω (x j )+

N∑

j=1

N∑

k= j+1

U2(x j , xk)dθ (2)
Ω (x j , xk)+ . . . . (4.72)

43 For the details, see [39].
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x x’x x

x’

Ω Ω Ω

(A1) (A2) (B)

Fig. 4.13 The first (A1) and second (A2) terms on the right-hand side of (4.72) for d Q(mig), and
the term (4.73) for d Q∂Ω (B). These terms appear when a particle changes its position from the
gray disc to its adjacent black disc in each figure

Figure 4.13 (A1) and (A2) illustrates the first and second terms, respectively. In
(4.72), dθ (p)

Ω (x j1 , . . . , x jn ) takes nonzero value when, during the infinitesimal time
dt , a particular p-particle cluster comes to participate in the system (dθ (p)

Ω = 1) or
ceases to belong to the system (dθ (p)

Ω = −1).

d ′Q∂Ω: Heat due to the interaction with the particles just outside the boundary. As
illustrated in Fig. 4.13 (B), the system’s energy changes also by the displacement of
those particles which are outside Ω but interacts with a particle (or particles) inside
Ω.For example, the terms in d Q∂Ω attributed to the two-particle interaction are

N∑

j=1

N∑

k= j+1

θ
(2)
Ω

(
∂U2

∂x j
dx j + ∂U2

∂xk
dxk

)
−

N∑

j=1

θ
(1)
Ω (x j )

N (k �= j)∑

k=1

θ
(2)
Ω

∂U2

∂x j
dx j , (4.73)

where U2 ≡ U2(x j , xk) and θ
(2)
Ω ≡ θ

(2)
Ω (x j , xk). Only those terms with j and k

such that x j ∈ Ω and xk �∈ Ω [or xk �∈ Ω and x j ∈ Ω] contribute and leave
the terms, (∂U2(x j , xk)/∂xk)dxk [or (∂U2(x j , xk)/∂x j )dx j ]. General expression is
more complicated but the principle is the same [39].

It is important to notice that, in the present level of description of open system, the
chemical potentialμ appears nowhere in the energy balance equation.44 See (2.9) for
comparison. The chemical potential, which reflects the density of particles, appears
when we move from the scales where we can in principle follow the individual
particle to the scales where we view the system through the external system. This is
the subject of Sect. 5.2.1.4.

4.3 Discussion

4.3.1 Applicability of Stochastic Energetics to Different Forms
of Langevin Equations

The method of stochastic energetics can be applied to different forms of Langevin
equations. We mention three examples below. These will show how the basic

44 For example, we do not say unconditionally such as “an electron carries the Fermi energy, εF,
(=chemical potential of electrons) when it moves across a junction.”
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framework is applied, i.e., the assignment of system and its environment, definition
of heat, and the relation of energy balance.

Hydrodynamic fluctuations have become more and more accessible through the
Brownian particle in a real fluid [40] or through a molecular dynamic simulation
of fluid jet [41]. The fluid dynamic equation with spontaneous thermal noise is
described by a Langevin equation for field. This subject is called fluctuating hydro-
dynamics and is developed by Landau and Lifshitz [42]. The energetic aspects
associated with these fluctuation phenomena can be formulated along the principle
described in Sect. 4.1. In Appendix A.4.7.1 we derive the formula of energy balance
for the fluctuation hydrodynamics, with several simplifying restrictions.

The stochastic motion of suspended hard spheres has been described by the
Langevin equation. In this Langevin equation, there is cross-coupling between the
force on a sphere and the velocities of the other spheres, due to hydrodynamic
interactions. In Appendix A.4.7.2we derive the formula of energy balance for the
suspension of hard spheres, based on the recent model equation by [43, 44].

Stochastic motion expressed by curvilinear coordinates, or the stochastic motion
on a curved manifolds (surface, curve, etc.) are described by Langevin equations
with multiplicative noises. That is, the amplitudes of thermal random force depend
on the variable of the equation. In Appendix A.4.7.3 we derive the formula of energy
balance for the Langevin equation on the manifold.

4.3.2 Applicability to Nonequilibrium Processes and Limitations
of the Langevin Description

The Langevin equation has the microscopic basis of the projection technique
(Sect. 1.2). But in order that its derivation and the Markov approximation justify the
Langevin equation, the eliminated degrees of freedom, i.e., the thermal environment,
should behave not far from the equilibrium fluctuations.

A question is how far we can extend the use of the Langevin equation beyond
the equilibrium fluctuations. Can we study the transient or steady nonequilibrium
phenomena, especially their energetics?

There are many examples where stochastic energetics are applied to the nonequi-
librium phenomena, and their studies brought, in most cases, physically sound and
interesting insights about the nonequilibrium phenomena. Below is an incomplete
list of those studies:

• Theoretical analysis of the energetics of the ratchet models. (There are many
papers and we refer only two reviews, [45, 46].)

• Theoretical demonstration of the fluctuation theorem about the heat [47, 48]
• Definition of pathwise entropy [48].
• Numerical analysis of the Feynman pawl and ratchet [26, 49].
• Experimental assessment of the energy balance.
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1. Using optically trapped bead [6].
2. Using the brass wire-held pendulum [9]

• A formulation of steady–state thermodynamics. [50, 51].
• The violated fluctuation–dissipation relation in nonequilibrium steady states.

1. The short-time limit of the discrepancy in the fluctuation–dissipation (FD)
relation for the velocity in nonequilibrium steady state can be expressed in
terms of the average heat flow to the thermal environment [52, 53].45

2. [54] extended the relation of [53] to the Langevin equations with memory.
An elementary derivation of [53] is also found therein.

3. [55] checked [53] using an optically driven colloid and also demonstrated
[54] using a Brownian particle in a viscoelastic fluid [56].

• Fluctuation–dissipation-like relation in nonequilibrium steady states [57]. The
authors demonstrated that, if the velocity ẋ is replaced by the relative velocity
with respect to the “mean velocity,” vs(x) ≡ js/ps(x), the ratio of the steady-state
probability flux js to the steady-state probability, ps(x).46

Still, we could mention the case where Langevin modeling is invalid under
nonequilibrium setup. Suppose that we measure the random force on a Brownian
particle while we apply a constant force onto it, e.g., in the positive x direction. In
this steady non–equilibrium state, the spatial symmetry of ±x is apparently broken.
We, therefore, expect a broken symmetry in the statistics of the random force (i.e.,
the “skewness” in the force distribution). However, the thermal random force of the
Langevin equation, ξ (t), is always symmetric, by definition.

Therefore, we should be conscious about what type of nonequilibrium settings
we can study using the Langevin equation and its stochastic energetics. There is
no unique criterion for this point, partly because it depends on our exigence, partly
because our knowledge of nonequilibrium phenomena is incomplete. Still the reflec-
tion on the above successful examples and also on the cases of abuse suggests the
following (evident) thing:

This method works if the non-equilibrium is in the system, but it does not work
if the non-equilibrium is at the interface between the system and the environ-
ment.

In fact, the absence of skewness in the random force mentioned above is apparently
the latter case.

45 For the Langevin equation without inertia, both the velocity response and the velocity correla-
tion diverge in the short-time limit, |t − t ′| ↓ 0. But the difference remains finite.
46 A drawback to this beautiful formula is that vs (x) is not a local observable as function of x
and t .
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4.3.3 Comments

Can we associate entropy with each trajectory?

Entropy and its production along a stochastic trajectory has been proposed to derive
the “integral fluctuation theorem” [48]. This somehow contradictory notion, entropy
vs. individual sample, is in fact well defined in the context of the path ensemble
average. In this book we limit to disuss those observables which are determined or
measured for an isolated realization.

Is it only the degrees of freedom that vary in an open system?

Open systems concern the creation and annihilation of some object. The open sys-
tem that we describe in this book is a special and simple case because we have
fixed the kind of objects that are created. More generally, the state of the object
(and its energy, etc.), as well as its position, may also vary. For example, actin gel
is generated and degraded within a cell. There, the newly created gel can vary its
elastic moduli as well as its state of deformation. In other words, it is the func-
tions which are inserted to or deleted from an open system. We discuss this point in
Appendix A.4.8.
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14. C. Jarzynski, D.K. Wójcik, Phys. Rev. Lett. 92, 230602 (2004) 154
15. F. van Wijland, Phys. Rev. E 74, 063101 (2006) 154
16. D.J. Evans, E.G.D. Cohen, G.P. Morriss, Phys. Rev. Lett. 71, 2401 (1003) 155
17. G. Gallavotti, E.G.D. Cohen, Phys. Rev. Lett. 74, 2694 (1995) 155
18. J. Kurchan, J. Phys. A 31, 3719 (1998) 155
19. J. Kurchan, J. Stat. Mech. P07005 (2007) 155
20. H. Qian, J. Math. Chem. 27, 219 (2000) 157
21. K. Sekimoto, Stochastic Energetics (Iwanami Book Ltd., 2004, in Japanese) 158
22. R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics – vol.1 (Addison

Wesley, Reading, Massachusetts, 1963), §46.1§–§46.9 160



174 4 Concept of Heat on Mesoscopic Scales

23. H. Sakaguchi, J. Phys. Soc. Jpn. 67, 709 (1998) 160
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29. F. Jülicher, A. Ajdari, J. Prost, Rev. Mod. Phys. 69, 1269 (1997) 161
30. T. Komatsu, N. Nakagawa, Phys. Rev. E 73, 065107(R) (2006) 162
31. M. Asfaw, M. Bekele, Eur. Phys. J. B 38, 457 (2004) 162
32. T. Hondou, K. Sekimoto, Phys. Rev. E 62, 6021 (2000) 163
33. B.-Q. Ai, H.-Z. Xie, D.-H. Wen, X.-M. Liu, L.-G. Liu, Eur. Phys. J. B 48, 101 (2005) 163, 164
34. B.-Q. Ai, L. Wang, L.-G. Liu, Phys. Lett. A 352, 286290 (2006) 163, 164
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Chapter 5
Work on the Mesoscopic Systems

The balance of energy in Chap. 4 has been heuristically introduced by an analogy to
mechanics. We have interpreted work to thermal environments as heat, and energy
balance took the form of the first law of thermodynamics. However, it was not clear
if the structure of energetics on the scale of fluctuations adapts truly to that of ther-
modynamics. In this chapter we will scrutinize the work done through the change
of the external parameter a. The thermodynamic relationship between work and
thermodynamic functions will be found. In other words, this chapter deals with the
“second law” of thermodynamics. The quotation mark “” is used because we always
assume the equilibrium thermodynamic character of the thermal environment.

Before the introduction of stochastic energetics, even the balance of energy on
the level of Langevin equation has not been truly realized and used in the studies
of fluctuation phenomena. But what is more surprising would be that the Langevin
equation can realize the reversible, or quasistatic, processes. From the microscopic
viewpoint, the Markov approximation breaks the time-reversal symmetry of (pure)
mechanical systems. From the standpoint of the system, however, the thermal envi-
ronment does not cause by itself irreversibility. The work done is equal to the change
of the Helmholtz free energy of the system in the limit of slow variation of the
control parameter. This convergence occurs for each realization of the stochastic
process.

The difference with macroscopic thermodynamics is the absence of the fourth
law. We do not use the extensive property with respect to the system size. For the
fluctuating system we should think over what is the external system and what is the
external parameters.

Once quasistatic process is understood, we should study the processes with finite
but slow change of control parameters. Such processes have their own importance
because (i) the irreversible work (dissipation) and the slowness of the control obeys
a complementarity relation and (ii) the relation between the external system and the
system exhibits a parallelism with the relation between the system and the thermal
environment.

When the external parameter is changed at a finite rate, the irreversible work is
a random variable, and its average is shown to be nonnegative. The demonstration
uses the Jarzynski nonequilibrium work relation (for continuous case) or the fluctu-
ation theorem (for discrete case).

Sekimoto, K.: Work on the Mesoscopic Systems. Lect. Notes Phys. 799, 175–201 (2010)
DOI 10.1007/978-3-642-05411-2 5 c© Springer-Verlag Berlin Heidelberg 2010
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5.1 * Work Done by External System

What does the parameter “a” stands for?

In case that the potential energy function, U (x, a), represents a “rigid container”
(that is, U = 0 for |x | < a and U = ∞, otherwise), the parameter a is the one
that controls the position of the hard wall. If, however, U (x, a) takes the form of
U0(x)−ax , then a is the parameter to control the uniform external force field applied
to the state point, x . Thus a can represent either the position or the force, depending
on the case.1 In both cases, a is regarded to be a slow variable to characterize the
state of an external system: In case of the rigid container, a is related to the position
of the wall as a whole. In the case of the uniform field, a is related to the position of
the source of the field.

U (x, a) includes all the interaction energy between the system and the exter-
nal system. Therefore, −∂U (x, a)/∂a is the force which the system exerts on the
external system. By the same token as in Sect. 4.1.1.2, the external system exerts
the reaction force, ∂U (x, a)/∂a, onto the system. The expression (4.6), that is,
d ′W ≡ ∂U

∂a ◦ da is the product of this force with the “displacement,” da. It is natu-
rally understood to be the work to the system.

Where is the boundary between the system and the external system?

We do not describe the dynamics of the external system. It implies the hypothesis
that the external system is not influenced by the system’s state and its dynamics.

In reality, however, it is very difficult to impose a fixed position of a rigid wall:
first of all, there does not exist microscopically rigid container, and the container is
also subject to thermal fluctuations. In order to take into account the fluctuation of
the wall surface, one may regard the materials composing the wall surface as a part
of a new enlarged system. Then the question is where we separate the system and
the external system and how we define a (see Sects. 5.2.3.3 below). To the author’s
knowledge, no systematic argument is developed about the condition of the external
control parameter.

We deal with the cases where x represents a very few, typically a single degree of
freedom. We assume that stable control parameter(s) a can be found. Such simplifi-
cations allow us to concentrate on the principal things. We must, however, remember
all the above mentioned ambiguities when we consider a modeling of experimental
setups.

What enables the comparison between different equilibrium states?

If the parameter a is fixed, the system visits its different states so that the cumulated
residence time distribution approaches asymptotically the canonical equilibrium dis-

1 Microscopically, the interaction with the rigid wall is also due to the force field by the wall onto
the system’s variable.
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tribution at a given temperature T and at the fixed value of a. For this system, those
equilibrium states specified by other values of a have not particular meaning.2 It is
the external system and its controllability against the system that define the process
from one equilibrium to the other one. It is the force ∂U/∂a that tells which equi-
librium state is preferred by the system among the candidates parameterized by a.

Remarks

(1) We have excluded direct interactions between the external system and the ther-
mal environment.

Therefore, in ∂U/∂a the potential energy U can always be replaced by the
total energy U tot of the system plus environments. When we apply the frame-
work to an experimental setup, the above point should be verified. For example,
if we apply an electric field to a protein motor, the influence of the field on the
surrounding water as thermal environment is not a priori counted in the original
formalism of stochastic energetics.

(2) Keeping the value of a constant is in general not equivalent to keeping constant
the force on the system, −∂U (x, a)/∂x .

The only exception is if U (x, a) can be written in the form of U0(x)−φ(a) x .
Otherwise, keeping ∂U (x, a)/∂x constant needs the adaptation of a(t). Such a
feedback control from x̂(t) to a(t) introduces a correlation between the protocol
of a(t) and the particular realization.3

(3) Force, ∂U (x, a)/∂a, depends on the resolution of a.
For example, if we added small “details” u(a) = ε sin( a

ε
) to U (x, a), the

resulting force would be changed by cos( a
ε
).4

5.2 Work Under Infinitely Slow Variation of Parameters

5.2.1 The Quasistatic Work of a Single Trajectory Leads
to a Pertinent Free Energy and Is, Therefore, Reversible

5.2.1.1 * Simple Example

Let us consider a Brownian particle trapped by a harmonic potential, U (x, a) =
a x2/2, see Fig. 5.1 (left). The external system controls the “spring” constant, a. For
example, a laser tweezer can trap a Brownian particle, and its light intensity can be
controlled, see Fig. 5.1 (right). Neglecting the inertia effect, the Langevin equation
for the Brownian particle is written as follows:

2 The system does not know what boundary conditions are variable and what others are not.
3 cf. the nanomachine to absorb the heat (Sects. 4.2.1.2).
4 cf. the coarse graining about x , Sects. 1.3.2.2.
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ai af

γ

T T

Fig. 5.1 (Left) Brownian particle (thick dot) in thermal environment (temperature T ) is trapped in a
harmonic potential (thick curves). The external system changes the profile of this potential. (Right)
Trapping of Brownian particle under laser tweezer. The focusing controls the profile of trapping
potential

− ∂U (x, a)

∂x
+
[
−γ dx

dt
+ ξ (t)

]
= 0, (5.1)

where ξ (t) is the Gaussian white random noise with zero mean and 〈ξ (t)ξ (t ′)〉 =
2γ kBT δ(t − t ′).

We will calculate the work done to change a from ai to af taking very long oper-
ation time, τop. A similar model has been considered in Sects. 4.2.1.2. But here
we do without the ensemble averages over realizations. The work W to change the
parameter a(t) from ai to af is

W =
∫ a(τop)=af

a(0)=ai

∂U (x(t), a)

∂a
da(t) = 1

2

∫ a(τop)=af

a(0)=ai

x(t)2 da(t). (5.2)

In the above, the value of W is evaluated with a particular realization of x(t) obeying
the Langevin equation (5.1). Therefore, W is a random variable. We will see that,
in the limit of τop → ∞, the random variable W converges to a single value which
depends only on ai and af, not the protocol of a(t).

We formulate the limit of slow process as in Sects. 1.3.3.2. That is, first we define
a protocol ã(s) that takes unit time, i.e., ã(0) = ai and ã(1) = af. And then we
“expand” this protocol to the time τop by a(t) ≡ ã( t

τop
).5 Using this representation

of the protocol, the last integral of (5.2) is then written as

W = 1

2

∫ 1

0
x(τop s)2 dã(s)

ds
ds

=
∫ s=1

s=0

1

ã(s)

dã(s)

ds
ds × 1

τop ds

ã(s) x(τop s)2

2
d(τops). (5.3)

We interpret the second line on the right-hand side as follows: if τop is large
enough, we can imbed a very long history of x(t) in the small element ds for
which ã(s) scarcely changes. More precisely, we compare τop with the characteristic

5 ã(s) must be a continuous function of s.



5.2 Work Under Infinitely Slow Variation of Parameters 179

timescale of (5.1), i.e., γ /min(a). If τopds is much larger than this timescale, i.e.,
N ≡ τopds/(γ /min(a))  1, then x(τop s) in the integrand experiences large num-
ber (∼ N ) of uncorrelated, or i.i.d., fluctuations. Then the underlined part of the
integral in (5.3) is the longtime average of ax(t)2/2 with a being virtually fixed.6

By the footnote below (1.105), this temporal average converges to its canonical
average, kBT /2. Therefore, we have

W → kBT

2

∫ s=1

s=0

dã(s)

ã(s)
= kBT ln

√
af

ai
(τop →∞). (5.4)

For finite N , the typical error is estimated to be ∼ N−1/2 by the central limit theo-
rem (see Sects. 1.1.2.3).7 The result (5.4) is instructive for two reasons:

1. The result is definite. Although x(t) varies temporally and differs from one real-
ization to another, the work W takes asymptotically the same value.

2. The result corresponds to the statistical mechanical result. In the Gibbs’ statisti-
cal mechanics, the Helmholtz free energy F(a, β) (β ≡ 1/kBT ) of the present
system is

F(a, β) = −kBT ln
1√
a
+ (terms independent of a). (5.5)

The work W obtained above is equal to the difference of this free energy,
F(af, β) − F(ai, β). This correspondence is what we expect for any quasistatic
thermodynamic process.

Gibbs statistical mechanics considers the ensemble of realizations. Any results
from that framework is, therefore, the statistical average over the ensemble. The
approach of the Fokker–Planck equation also yields results about the ensemble of
realizations. The above analysis, however, dealt with only a single realization. For
N → ∞ the convergence is of probability 1 due to the property of self-averaging
for slow process. In this sense, the thermodynamic structure appeared due to the
(strong) law of large numbers (of realizations).8

5.2.1.2 * General Theory

When a system is in contact with a single thermal environment of temperature T ,
the work W done by the external system on the system is given by

6 (τopds)−1 A(s, τops) d(τops) is approximated by (τopds)−1
∫ τops+τopds
τops A(s, T ) dT, and the last

expression is then approximated by the “long” time average about T . This approach is called the
method of multiple scale. See, for example, Chap. 6 of [1].
7 This argument owes to C. Jarzynski in the context of his analysis of ergodic adiabatic invariant
[2, 3].
8 Y. Oono, private communication.
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W =
∫ a(τop)=af

a(0)=ai

∂U (x, a)

∂a

∣∣∣∣
(x,a)=(x(t),a(t))

da(t). (5.6)

We will show that, in the limit of slow variation of the operation (τop → ∞), the
work W converges to the difference of the Helmholtz free energy, ΔF , defined by

ΔF ≡ F(af, β) − F(ai, β), e−βF(a,β) ≡
∫

e−βU (X,a)d X. (5.7)

Derivation : In Sects. 1.3.3.2 we have demonstrated that for the integral

Î ≡
∫ a(τop)=af

a(0)=ai

Φ(x̂(t), a(t))da(t) (5.8)

converges to the following integral over the parameter a in the limit of slow variation
of a(t):

Î →
∫ af

ai

〈Φ(·, a)〉eq da (τop →∞), (5.9)

where 〈Φ(·, a)〉eq is defined in (1.109), that is, 〈Φ(·, a)〉eq ≡ ∫
Φ(X, a)Peq

(X, a; T )d X, and Peq(X, a; T ) is the canonical probability distribution at kBT =
β−1 with a given value of a

Peq(X, a; T ) ≡ e−βU (X,a)
∫

e−βU (X ′,a)d X ′ . (5.10)

We show next that the limit in (5.9) is unique, independent of the protocol ã(s)
between ai and af. Applying the above general formula to Φ(X, a) = ∂U (x, a)/∂a,
we have 〈∂U (x, a)/∂a〉eq in the integrand. This can be rewritten by using the so-
called Ehrenfest formula:9

〈
∂U (x, a)

∂a

〉

eq

≡
∫

∂U (x, a)

∂a
Peq(X, a; T ) d X = ∂F(a, β)

∂a
. (5.11)

By integrating the rightmost of (5.11) with respect to a, we have ΔF .(End.)
In summary, we have shown that the following relation is valid for any individual
realization:

W → ΔF (τop →∞). (5.12)

9 We can verify (5.11) by differentiating the normalization condition of the canonical distribution,∫
eβ(F(a,β)−U (X,a))d X = 1 ⇒ ∫

∂
∂a eβ(F(a,β)−U (X,a))d X = 0.
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5.2.1.3 Discrete Case

The work W due to the change of parameter a(t) on this level of description has
been given:10

W =
∫ τop

0

〈 ∣∣∣∣
dE(a(t))

dt

∣∣∣∣ψt

〉
dt =

∫ a(τop)=af

a(0)=ai

〈 ∣∣∣∣
dE(a(t))

da

∣∣∣∣ψt

〉
da(t). (5.13)

In the limit of slow variation of a(t), we can replace the integrand in the rightmost
of (5.13) by the canonical average, 〈dE(a)/da〉eq, thus

W →
∫ af

ai

〈
dE(a)

da

〉

eq

da (τop →∞). (5.14)

For 〈dE(a)/da〉eq we use the Ehrenfest formula, 〈dE(a)/da〉eq = ∂F(a, β)/∂a.11

In summary, we have the formula for any individual realization:

W −ΔF =
∫ a(τop)=af

a(0)=ai

[〈 ∣∣∣∣
dE(a(t))

da

∣∣∣∣ψt

〉
−
〈

dE(a)

da

〉

eq

∣∣∣∣∣
a=a(t)

]
da(t)

→ 0 (τop →∞). (5.15)

5.2.1.4 Quasistatic Process of Open System

We can immediately apply the result (5.12) to the entire system including the system
and the “environment,” Ω ∪Ωc. Using the expression of the work d ′W , (4.69), we
have

W → ΔFtot (τop →∞), (5.16)

where Ftot is the Helmholtz free energy of the entire system, defined by 12

e−Ftot/kBT = 1

Ntot!

∫
e−Etot/kBT d Ntotx, (5.17)

where Ntot is the number of particles in the entire system, and the integral runs over
the entire system for each particle.

10 See Sects. 3.3.1.3 and 4.1.2.6. We wrote W instead of Δ′W for the consistency of notations
between (5.12) above and (5.15) below.
11 We use

∑
j eβ(F(a,β)−E j (a)) = 1 ⇒ ∑

j
∂
∂a eβ(F(a,β)−E j (a)) = 0.

12 For the facility of calculation we put the factor (Ntot!)−1 and render Ftot extensive. See below.
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T

Ωc Ωc’

Ω

Ωc’’

Fig. 5.2 An open system Ω and several “environments,” Ωc, Ωc′, and Ωc′′

We need to relate ΔFtot to the thermodynamical quantity of open system. For this
purpose we take the volume of the “environment,” ‖Ωc‖, to infinity in Ftot, while
keeping only the part which is relevant to the open system. See in Fig. 5.2. The
result is

lim
‖Ωc‖→∞

ΔFtot = ΔJ. (5.18)

Derivation: First we identify the volume specific free energy f c(T, μ) by

f c(T, μ) = lim
‖Ωc‖→∞

Ftot

‖Ωc‖ .

Then we define J by subtracting from Ftot the (asymptotic) free energy of the envi-
ronment, ‖Ωc‖ f c(T, μ):

J (a, t, μ) ≡ lim
‖Ω∪Ωc‖→∞

[
Ftot − ‖Ωc‖ f c(T, μ)

]
. (5.19)

This J (a, T, μ) is the thermodynamic potential for the open system Ω

(see Sect. 2.1.4). J (a, T, μ) represents the particle environment only through the
temperature T and the chemical potential of the particle in the environment, μ
(or the density of the particles in Ωc). Since f c(T, μ) characterizing the particle
environment should not depend on the external parameter a, we arrive at the result
(5.18). (End.)

In conclusion, the quasistatic work done on the open system for a particular real-
ization of stochastic process is given by the change of the thermodynamic potential
for the open system [4]:

W → ΔJ (τop →∞). (5.20)

In Appendix A.5.1 we recall a statistical mechanical derivation of J in (5.19)
with simplifying assumptions. The result writes

e−J/kBT =
∞∑

n=0

e−(F (n)−μn)/kBT , (5.21)
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where F (n) is the Helmholtz free energy of the open system Ω when it contains n
particles;

e−F (n)/kBT ≡ 1

n!

∫

(Ω)
e−En/kBT dn x . (5.22)

The relations (5.16) and (5.18) are the key steps through which the chemical
potential (in J ) enters the energetics based on the Langevin equation.

5.2.1.5 Remark: Gibbs’ Paradox and Extensivity

At the end of Sects. 3.3.2.4, we noticed that the combinatorial factor NA!, etc., in
the formula (3.53) appeared independently from the particle–wave duality of the
quantum physics. This factor came simply from the fact that we do not distinguish
any A molecule from other A molecules. In fact these combinatorial factors are
independent of whether or not the molecules consist of isotope forms or have inter-
nal parameters of long memory as far as the molecular reaction A + B � AB is
not influenced by this variability. Also in (5.22) above, the factor n! came out from
purely combinatorial reason, not of quantum mechanics.

The so-called Gibbs’ paradox is related to this combinatorial factor. This paradox
says that

(i) In order for the thermodynamic functions to be extensive, we need to divide
the phase integrals like (5.22) by the combinatorial factor corresponding to the
permutation of identical particles.

(ii) Since this operation is not explained by classical mechanics, the factor is
ascribed to the particle–wave duality of quantum mechanics.13

The resolution of the paradox is that

(i) In the study of the thermodynamic processes in the classical regime, increas-
ing all the materials by, for example, twice is not a thermodynamic process. It
contradicts the conservation of mass–energy. Therefore, the absolute value of
the thermodynamic functions are not observable, and its extensivity is merely
a convenient choice. However, the extensivity is imposed on the differences of
the thermodynamic observables.

(ii) In quantum mechanics, the individuality of identical particles is lost upon col-
lision due to the particle–wave duality. But also in classical mechanics, the
individuality is lost when we describe the chemical reactions or the processes
of open systems in terms of the number of each molecular species.

Thus the factor of n! in (5.22) appeared without evoking quantum mechanics.

13 The duality asserts that the permutations among identical particles do not make new quantum
states.
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5.2.2 The Criterion of the Quasistatic Process Refers to the Force
on the External System

We define quasistatic process by the limiting process that realizes the convergence
of (5.12) or (5.15). In such processes, the work W does not depend on the protocol
defined by ã(s) (0 < s < 1), whatever is the number of components of a.14

A quasistatic process is reversible or retractable in the sense that the process
that retraces the same pathway in the parameter space costs no work. The work ΔF
to go is exactly compensated by the work (−ΔF) to return.

If the control process makes a closed loop and returns to the initial point, i.e.,
those ã(s) satisfying ã(0) = ã(1), the quasistatic work is 0.15 Whether or not such
a process leaves any change after closure of the trajectory is a subtle question.
We will discuss it later (5.2.3.4). That the Langevin equation derived by using the
Markov approximation can realize the reversible process emphasizes the importance
of being conscious about the scale of description.

In macroscopic thermodynamics, the quasistatic process is characterized such
that “at each instant of time the system realizes the equilibrium state under a given
constraints.” However, the equilibrium state is defined as “the state which is realized
in the system after infinitely long time under a given constraints.” These two state-
ments are incompatible unless we define the limiting procedures unambiguously.
But macroscopic thermodynamics does not describe the temporal changes.

On the level of Langevin equation, one could consider the closeness to the
quasistatic process by comparing the probability density P(X, a(t), t) obtained
through the Fokker–Planck equation with the canonical equilibrium distribution,
Peq(X, a; T ), by using a suitable measure such as the Kullback–Leibler distance,
D(P||Peq) (see (1.81)). However, the general theory in the previous section gives
natural and operational criterion of the quasistatic process: We note that the differ-
ence W −ΔF in the continuous process is

W −ΔF =
∫ a(τop)=af

a(0)=ai

[
∂U (x(t), a)

∂a

∣∣∣∣
a=a(t)

−
〈
∂U (x, a)

∂a

〉

eq

]
da(t). (5.23)

Thus we measure the approach to the quasistatic process by the effect of the replace-
ment of force by its instantaneous equilibrium expectation value in the integral
(5.23). That is

∂U (x(t), a)

∂a

∣∣∣∣
a=a(t)

�
〈
∂U (x, a)

∂a

〉

eq

∣∣∣∣∣
a=a(t)

(5.24)

14 By “protocol” we distinguish, for example, ã(s) from ã(s2).
15 Precisely speaking, F and the parameter space should be such that the closed loop can be con-
tinuously shrunken to a point passing only the quasistatic processes.
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or

〈 ∣∣∣∣
dE(a)

da

∣∣∣∣ψt

〉∣∣∣∣
a=a(t)

�
〈

dE(a)

da

〉

eq

∣∣∣∣∣
a=a(t)

, (5.25)

in the integral by a(t). This is a much more specific criterion than the comparison

of the probability densities. The quantity ∂U (x(t),a)
∂a

∣∣∣
a=a(t)

−
〈
∂U (x,a)

∂a

〉

eq

∣∣∣∣
a=a(t)

will

appear again in the context of asymptotic estimation of the “error,” W − ΔF for
the nonquasistatic process (Sects. 5.3.1).

5.2.3 Quasistatic Work Reflects Some Aspects of the System’s State,
but Not All

5.2.3.1 Simple Case 1: Deformation of an Ideal Chain

In the aforementioned example (Sects. 4.1.2.3 esp. Fig. 4.3), we can calculate the
quasistatic work to stretch the chain. The Helmholtz free energy of the ideal chain is
F(a, β) = −kBT log Z (a), where Z (a) is proportional to the number of configura-
tions of the chains having the end-to-end distance a. Therefore, the work to displace
the end point a from ai to af is

W = ΔF = kBT log
Z (ai)

Z (af)
(quasistatic).

As Z (a) is decreasing function of |a| (i.e., the chain is less flexible for large |a|), the
external system does a positive work W to stretch the chain. According to the law of
energy balance, d E = d ′W + d ′Q, this work is immediately released to the thermal
environment (−d ′Q = d ′W ), because the energy of the ideal chain is constant.

5.2.3.2 Simple Case 2: Van der Waals Forces

When two molecules are placed at the distance r , the induced and/or permanent
dipoles of these molecules undergo thermal and quantum fluctuations. Because of
long-range electrostatic interactions the fluctuations of the two molecules are corre-
lated and, therefore, depend on the distance r . Interaction is attractive and its free
energy FV dW (r, β) (β = 1/kBT ) writes F(r, β) ∼ −c(T )r−6 at (moderately) large
distance, where c(T ) is a function of temperature and other molecular parameters.

On the level of description of fluctuations, the interaction force between the
molecules fluctuates in time. The free energy F(r, β) is measured by the time-
averaged force on the external system. If we change the distance r from ri to rf

quasistatically in a particular realization, the work needed W is
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W = c(T )

[
1

ri
6
− 1

rf
6

]
(quasistatic).

5.2.3.3 Single Molecule Ideal Gas

We will consider a single (Newtonian) particle confined in a 1D cylinder and piston
at temperature T . A naive question is whether the equation of state of the ideal gas,
PV = kBT , with N = 1 molecule between the pressure P and the 1D volume V
holds. But the primary question is how we can set the problem up and how we can
define the pressure and volume.
System: Let us consider a model schematized in Fig. 5.3. The molecule (filled disc)
moves ballistically and collides elastically with the walls of the cylinder and pis-
ton (the T-shaped tip) and otherwise moves ballistically. The position x and the
momentum p of the molecule obeys the following Newton equation:

dx

dt
= p

m
,

dp

dt
= −∂Upis

∂x
− ∂UT

∂x
, (5.26)

where m is the mass of the molecule, and Upis(x, xpis) stands for the interaction
energy between the molecule and the piston tip. xpis is the position of the piston tip.
We will define UT(x, xT) below.
System–thermal environment interface: We introduce a thermal wall (left vertical
wall of the chamber). This is mechanically coupled to the thermal environment. We
assume the overdamped Langevin equation for the position xT of the thermal wall:

0 = −γ dxT

dt
+ ξT(t) − ∂UT

∂xT
, (5.27)

where ξT(t) is the white Gaussian random noise with zero mean and 〈ξT(t)ξT(t ′)〉 =
2γ kBT δ(t − t ′). UT = UT(x, xT) represents the interaction energy between the

XT XpisX

a

Bath

Fig. 5.3 Schematic setup of piston and cylinder system for a single particle. The particle (thick dot:
position x) is confined within a volume (central rectangle) enclosed by (1) a thermal wall (left ver-
tical wall: position xT) which is linked to the thermal environment (shaded rectangle “bath”) and
is supported by a fixed point (spring to the left of the thermal wall), (2) cylinder walls (upper and
lower horizontal walls), and (3) “piston tip” (right vertical wall: position xpis), which is connected
to the controlled point (open circle: position a) through a coupling potential (spring between xpis

and a)
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molecule and the thermal wall as well as the supporting potential energy of the
thermal wall.
System–external system interface: We assume that the piston is just a microscopic
tip. This tip is connected through a spring to the macroscopic apparatus (the right-
most open circle at a). The position xpis and momentum ppis of the piston tip obey
the Newton equation:

dxpis

dt
= ppis

mpis
,

dppis

dt
= −∂Upis

∂xpis
− ∂Uel

∂xpis
, (5.28)

where mpis is the mass of the piston tip. Uel = Uel(xpis, a) is the internal energy of
the piston and depends only on xpis − a.The energies, UT(x, xT) and Upis(x, xpis),
are expected to behave like sharp repulsive walls, blowing up as x − xT or xpis − x
decrease to 0, respectively.
Balance of energy and quasistatic work: The balance of energy is found to be

d

(
p2

2m
+ p2

pis

2mpis
+UT +Upis +Uel

)
= d ′Q + d ′W, (5.29)

where

d ′Q ≡
(
−γ dxT

dt
+ ξT(t)

)
◦ dxT , d ′W ≡ ∂Uel

∂a
da. (5.30)

According to the general theory of Sects. 5.2.1.2, the quasistatic work for the dis-
placement of the macroscopic apparatus a is the change of the Helmholtz free
energy, F(a, β), where

e−βF(a,β) = C(β)
∫

e−β[UT(x,xT)+Upis(x,xpis)+Uel(xpis,a)]dx dxTdxpis. (5.31)

Here C(β) is a factor independent of the external parameter, a.
Thermodynamic pressure: On the other hand, we can define pressure by an analogy
to macroscopic thermodynamics:

dW ≡ −P(a, β) da (quasistatic process). (5.32)

The pressure P thus defined is the time-averaged force that the macroscopic appara-
tus receives at a. Using the law W = ΔF for the quasistatic process, we can identify
this pressure P with the thermodynamic pressure:

P = −∂F(a, β)

∂a
. (5.33)
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Fig. 5.4 Force apparatus
(position a) binds the protein
motor head through a needle
(position xndl). The motor
interacts with filament
(position xint)

xint

xndl

a

Volume: It is not evident how a can be related to the “volume” of the chamber.
Unless the repulsive walls in UT(x, xT) and Upis(x, xpis) are infinitely steep (i.e.,
the rigid wall), the volume cannot be unambiguously defined. The ambiguity due
to the finite gradient of the potential energies, ∂UT/∂x and ∂Upis/∂x , is important
when the system’s spatial extent, xpis − xT, is small. a − 〈xpis〉 depends on a as well
as temperature. Therefore, we cannot identify da with d〈xpis〉. That is, we cannot
replace dW = Pda by “dW = Pd〈xpis〉.”

In summary, controlling displacement and controlling force for small systems are
not equivalent. In statistical mechanics, the saddle-point method or Darwin–Fowler
method assured that these two are equivalent. (See a related discussion in [5].)

Figure 5.3 was a toy model. But a somehow similar setup is used to measure the
interaction between a single head of myosin (protein motor) and an actin filament,
see Fig. 5.4. The motor–filament interaction occurs at xint while the AFM apparatus
controls the position a. The motor head is bound to the latter by a needle at xndl. If
the position of xndl is optically measured, the result reflects both the motor–filament
interaction and the thermal fluctuations of the motor and of the needle. An optical
technique has been developed to suppress the thermal fluctuation of measuring
devices (down to 5K!) [6]. The energetics of the feed-back-controlled system is
discussed in [7].

5.2.3.4 Work-Free Transport of Heat and Particles

Suppose that the control parameter a has more than one component and that it is
changed along a closed loop, â(0) = â(1).16 If the process is quasistatic, the work
is 0. But the system’s state can undergo a nontrivial change [8].

We consider the cyclic change of potential energy profile, U (x, â), as shown in
Fig. 5.5. We will regard the state point x(t) as the position of a Brownian particle
under the potential energy U . We impose a periodic boundary condition, i.e., the
rightmost end (R) is continued to the leftmost end (L). Or, we assume that the system
is open toward the reservoirs of particles in (L) and (R). In any case this quasistatic
cycle transports particles from the left (L) to the right one (R) on the average. The
calculus is given in Appendix A.5.2.

This transport without costing work indicates subtlety of the quasistatic process:

16 We use the scaled protocol ã(s) introduced in Sects. 5.2.2.
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(L) (R)

(L) (R)

(L) (R)

(R)(L)

Fig. 5.5 Profile of potential U (x, a) vs. x between the left-particle environment (L) to the right
one (R). Thick arrow indicates the progress of the potential profile. (Figure adapted from Fig. 2 of
[8])

(i) Even in the quasistatic process, we cannot always approximate P(x, t) of the
Fokker–Planck equation by the equilibrium density, Peq(x, a; T ). If we did it,
the probability flux J [P] ≡ − 1

γ

[
∂U
∂x P + kBT ∂P

∂x

]
is always 0, and we would

not have transport. 17

(ii) In the quasistatic limit, work has a potential function, i.e., the free energy
F(a, β). However, the probability flux J is not necessary the gradient of a
potential function.

Remarks:

1. It is essential that the potential profile undergoes a cyclic change. If the profile
change is a simple go-and-back along the same pathway, there is no net transport.
The left–right asymmetry of the potential profile is a necessary but not sufficient
condition.

2. Experimental demonstrations of such work-free transport must face the fluctu-
ating part of the transport: in taking the quasistatic limit, the fluctuation in the
number of transported particles per cycle will diverge as

√
tcyc with the time

spent for a cycle, tcyc. The prefactor of
√

tcyc can be decreased by raising the
energy scales of the potential U . However, it then makes the condition for the
quasistatic process more and more stringent, or it requires larger cycle time, tcyc.

More discussion will be given in Chap. 7.
3. The work-free quasistatic transport can be realized also in conventional thermo-

dynamics by, for example, using the (macroscopic) Carnot cycle. In the formula
of the reversible efficiency, ηrev = (Th−Tl)/Th (see Sect. 2.3.3), the case Th = Tl

17 This is general remark when we use linear nonequilibrium thermodynamics. The flux of energy
or mass is caused by their small spatial gradients across the local regions in which the equilibrium
is assumed.



190 5 Work on the Mesoscopic Systems

assures the transport of heat between the two thermal environments of identical
temperature without work ηrev = 0.

4. The work-free transport discussed above does not contradict the second law of
thermodynamics: the heat or particles transported between the environments of
the same temperature or chemical potential cannot be the source of later work.

5.3 Work Under Very Slow Variation of Parameters

We will analyze the processes taking a finite time τop from a(0) = ai to a(τop) = af.
The quantity of interest is the difference between the work W and the increment of
the Helmholtz free energy, ΔF . We call this difference the irreversible work,

Wirr ≡ W −ΔF. (5.34)

See Fig. 5.6. For continuous process described by Langevin equation, it is written
as (see (5.12))

Wirr =
∫ af

ai

[
∂U (x(t), a(t))

∂a
−
〈
∂U (x, a(t))

∂a

〉

eq

]
da(t). (5.35)

For finite τop, the irreversible work Wirr is a random variable, whose value varies
from one realization to the other. In this section and next section we deal with the
average of Wirr over the ensemble of paths, 〈Wirr〉.

5.3.1 The Average Irreversible Work and the Time Spent
for the Work are Complementary

When the interval τop to change the parameter a(t) is large, a general law of 〈Wirr〉
is [9]

(1) The product, 〈Wirr〉 τop, is bounded below for τop →∞.

(2) This lower bound, which we denote by S(ai, af), is positive for ai �= af.

That is,

0 ai af
a

cumulated
work

Fig. 5.6 Cumulated work (solid curves) along the change of parameter, ai → af → ai. The
difference from the quasistatic work (dashed curves) gives the irreversible work, Wirr
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〈Wirr〉 τop ≥ S(ai, af) (τop →∞). (5.36)

5.3.1.1 Origin of the Complementarity Relation

The above result comes out from the following expression of 〈Wirr〉. The details of
calculation is given in Appendix. A.5.3.

〈Wirr〉 =
∫ τop

0

da

dt
Λ(a)

da

dt
dt +O((τop)−2). (5.37)

Here the symmetric matrix18 Λ(a) is defined by

Λ(a) ≡ β

〈〈[
∂U

∂a
−
〈
∂U

∂a

〉

eq

]
• (−g) •

[
∂U

∂a
−
〈
∂U

∂a

〉

eq

]〉〉

eq

, (5.38)

with 〈〈A • (−g) • A〉〉eq, defined by 19

〈〈A • (−g) • A〉〉eq ≡
∫∫

P (eq)(x)A(x)(−g(x, x ′, a))P (eq)(x ′)A(x ′) dx dx ′. (5.39)

The Green function g(x, x ′; a) is defined by

1

γ

∂

∂x
P (eq)(x)

∂

∂x
g(x, x ′; a) = δ(x − x ′). (5.40)

The integral on the right-hand side of (5.37) is always nonnegative.20

To derive the complementarity relation (5.36) we will extract τop from (5.37): we
represent a(t) in (5.37) by the rescaled protocol, ã(s) ≡ a(sτop) with 0 ≤ s ≤ 1
(see, Sects. 5.2.1.1). We then have the following asymptotic relation:

〈Wirr〉 τop =
∫ 1

0

dã

ds
Λ(a)

dã

ds
ds +O((τop)−1). (5.41)

The first term on the right-hand side is positive and a functional of the rescaled
protocol, ã(s). We can, therefore, define the lower bound of this integral as S(ai, af):

18 when a has more than one component.
19 P (eq)(x) ≡ P (eq)(x, a; T ) is the canonical equilibrium density for a given parameter a.
20 The operator on the left-hand side of (5.40) is self-adjoint and, therefore, has real spectra. This
operator is of the form of diffusion operator with an inhomogeneous diffusion constant, D(x) =
1
γ

P (eq)(x, a). Since diffusion is a purely relaxing phenomena, the spectra of the above operator
are all negative except of a single 0, corresponding to the constant eigenfunction. As the inverse
operator of this diffusion operator, the Green function g, is a symmetric function with respect to x
and x ′. Moreover, the spectra of g are the inverse of the diffusion operator and, hence, all real and
negative. From the last fact, Λ(a) is positive definite.
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S(ai, af) ≡ min
ã

[∫ 1

0

dã

ds
Λ(a)

dã

ds
ds

]
, (5.42)

where the minimum is sought for with all the continuous rescaled protocols ã(s)
under the conditions, ã(0) = ai and ã(1) = af. Since S(ai, af) does not depend on
the protocol between these end points, this is what we should have in (5.36).

5.3.1.2 Implication of the Complementarity Relation

1. An interpretation of the complementarity relation (5.36) is that the loss in the
work becomes large if the operation is done in haste (i.e., with small τop). The
total loss is proportional to the average rate of the change of the parameter.

2. Another interpretation is to regard 〈Wirr〉 ≡ 〈W 〉 − ΔF as an error of the mea-
surement of the thermodynamic information, ΔF .21 Then (5.36) is reminiscent
of the complementarity relations of quantum mechanics between the energy and
the time, ΔEΔt ≥ �/2. Unlike the quantum mechanical principle of uncertainty,
the “Planck constant” S(ai, af) depends on the system and the temperature. In
particular, S(ai, af) depends linearly on γ through the Green function, g.

3. The formula (5.38) expresses Λ(a) in terms of the correlation function of the
“deviative force,” ∂U

∂a −
〈
∂U
∂a

〉
eq
. In the next section we will see that Λ(a) plays the

role of (linear) friction coefficient relating the rate of change of the parameter,
da/dt , to its conjugate frictional force.

4. What type of the protocol a(t) realizes the lower bound of the complementarity
relation (5.36)? Given a total time τop, the expression (5.41) implies that we
should avoid the route of a along which the friction coefficient Λ(a) is large.22

If we cannot avoid such region, e.g., when a has only one component, we should
spend more time in that region than elsewhere.

5.3.2 * For the External System the Weak Irreversible Work
is Ascribed to a (Macro) Frictional Force

From the standpoint of the external system (“Ext”), the quasistatic work W is appar-
ently stored in the system as the increment of the potential energy, ΔF (Sect. 2.2).
There is a parallelism: the external system “Ext” does not see the degrees of freedom
of the system on the one hand, and the system (“Sys”) does not see those degrees of
freedom in the thermal environment on the other hand.23

21 cf. The standard deviation of Wirr decreases with τop as O((τop)−1/2). See Sects. 5.2.1.1.
22 If Λ(a) has anisotropy, the orientation of the route as well as its location should be optimized.
23 Below is an example of how the world looks differently from different viewpoints: study of
the fluctuations of cell motility is an “activity measurement” for biologists but “passive measure-
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The study of the irreversible work Wirr now provides a further parallelism: Λ(a)
for the “Ext” corresponds to γ (friction coefficient) for “Sys.” In fact, if we combine
the results of Sects. 5.2 and 5.3, the average work 〈W 〉 done through a slow change
of the parameter a is

〈W 〉 = ΔF +
∫ τop

0

da

dt
Λ(a)

da

dt
dt

=
∫ af

ai

da(t)

[
∂F

∂a
+Λ(a)

da

dt

]
, (5.43)

with an error of O((τop)−1). The second line of (5.43) allows the interpretation
that “Ext” applies the force, ∂F

∂a + Λ(a) da
dt , onto “Sys.” See Fig. 5.7. By the law

of action–reaction, the external system receives the potential force, − ∂F
∂a , and the

friction force, −Λ(a) da
dt . Therefore, Λ(a) is the friction constant for the parameter

a(t).
To take into account the deviation of W from 〈W 〉, we introduce a noise term

Ξ (t) such that

W =
∫ af

ai

da(t)

[
∂F

∂a
+Λ(a)

da

dt
−Ξ (t)

]
, (5.44)

where the noise term behaves as24
∫ af

ai
Ξ (t)da(t) ∼ O((τop)−1/2). We can rewrite

(5.44) as

ΔF =
∫ af

ai

[
−Λ(a)

da

dt
+Ξ (t)

]
da(t) + W, (5.45)

The last expression is similar to the law of energy balance for the Langevin equation,
d E = d ′Q + d ′W . Schematically, the parallelism is

x

U(x,a)

bath

system

a

Fig. 5.7 (Left) A system and its control by an external parameter a. (Right) The system viewed
from the external system as a black box

ment” for rheologists. Study of the response of cell against external perturbations is a “passive
measurement” for biologists and “active measurement” for rheologists.
24 cf. Footnote 21.
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“Sys” ←→ “Ext”
x ←→ a

U (x) ←→ F(a, β)+“?”
γ ←→ Λ(a)

random thermal force: ξ ←→ system noise: Ξ
time resolution ←→ τop

In the above schema, we have not considered the dynamical evolution of the param-
eter a(t). Therefore, “?” in the above is not specified. On the last row, the time
resolution of the Langevin equation should be larger than the bath’s relaxation time
on the one hand, and τop should be larger than the system’s relaxation time on the
other hand. If the “time resolution” τop is too large, there is no noise Ξ . A question
is whether there is a smooth limit from stochastic energetics to macroscopic ther-
modynamics when the size of the system goes to infinity. The parallelism across
different scales can also be found between the system and its subsystem. This issue
is addressed in the next chapter.
Note: Throughout this section we have assumed that the temperature is constant. The
process including the time-dependent temperature, T (t), has been studied in Matsuo
(1999, unpublished paper). The author showed the Clausius’ inequality,

∮
d ′Q/T ≤

0, using stochastic energetics and statistical entropy.

5.4 Work Under the Change of Parameter at Arbitrary Rates

5.4.1 Jarzynski’s Nonequilibrium Work Relation Leads
to the Nonnegativity of the Average Irreversible Work

The Jarzynski’s nonequilibrium work relation [10] is an important equation to assure
the nonnegativity of the average irreversible work, 〈Wirr〉. If a Markov process with
parameter(s) a has an equilibrium state for each value of a, and if the initial state
obeys a canonical distribution, the irreversible work, Wirr, for the process between
t0 and t satisfies

1 = 〈e−βWirr〉eq. (5.46)

First it has been demonstrated for a thermally isolated system to which work is
added mechanically. Later the relation turned out to be valid more generally. We
show a brief demonstration using a form of the Feynman–Kac formula.25 Those
who are not interested in the mathematical details may skip to Sects. 5.4.1.2.

25 The description of this section is based on [11] and the series of lectures by C. Jarzynski at
Institut Henri Poincaré (Oct. 2007).
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5.4.1.1 Jarzynski’s Nonequilibrium Work Relation

Path Probability of Markov Process and Generating Operator

Suppose there is a Markov process, whose transition rate depends on a parameter
at ≡ a(t). We denote by K (x, t |x0, t0) the conditional probability to find x̂t at x
at the time t , given that it started from x0 at the initial time, t0: K (x, t0|x0, t0) =
δ(x − x0). Formally K (x, t |x0, t0) can be written as

K (x, t |x0, t0) =
∫

(x0,t0)
P[X |x0, t0]DX, (5.47)

where P[X |x0, t0] is the probability for the path X over the time interval [t0, t], and∫
(x0,t0) . . .DX denotes the path integral with the initial condition, (x0, t0). We define

the generating operator L(at ) of K (x, t |x0, t0) through

∂K (x, t |x0, t0)

∂t
= L(at )K (x, t |x0, t0). (5.48)

Weighed Path Probability

Now we consider another Markov process whose transition probability,
G(x, t |x0, t0), is

G(x, t |x0, t0) =
∫

(x0,t0)
e
∫ t

0 wt ′dt ′ P[X |x0, t0]DX, (5.49)

where P[X |x0, t0] is always the path probability for the path X governed by L(at ).
wt can depend on x and on a. G(x, t |x0, t0) satisfies G(x, t0|x0, t0) = δ(x − x0).

From (5.49) G(x, t + dt |x ′, t) can be written as

G(x, t + dt |x ′, t) � (1 + wt dt)K (x, t + dt |x ′, t)
� (1 + wt dt)[1 + dtL(at )]δ(x − x ′). (5.50)

To go to the second line (5.48) has been used. This formula will be used later.

Feynman–Kac Formula

A simple version of Feynman and Kac tells26 that G(x, t |x0, t0) obeys

∂G

∂t
= (L(at ) + wt )G. (5.51)

That is, G(x, t |x0, t0) is generated by L(at ) + ωt .

26 In physicists’ language, the general Feynman–Kac formula gives the (Feynman’s) path integral
representation of the solution of an SDE of Itô type. In the path integral, the “action” in the expo-
nential is the sum of the kinetic part ∝ γ ẋ2 and the potential part ∝ U (x, a). To apply to the SDE
of Stratonovich type, the action should be “corrected” by ∝ ∂2U/∂x2.



196 5 Work on the Mesoscopic Systems

The outline of the proof is as follows. As a Markov process G(x, t + dt |x0, 0)
obeys the Chapman–Kolmogorov equation,27 i.e.,

G(x, t + dt |x0, 0) =
∫

G(x, t + dt |x ′, t)G(x ′, t |x0, 0)dx ′. (5.52)

Substituting (5.50) into (5.52) and keeping up to the order of O(dt), we have
G(x, t + dt |x0, t0) � (1 + wt dt + dtL(at ))G(x, t |x0, t0). This means (5.51).28 The
G(x, t |x0, t0) defined above is, therefore, the Green’s function of (5.51).

Evolution of e−βHt

We apply the Feynman–Kac formula to the case where a “Hamiltonian” Ht ≡
H(x, at ) satisfies L(at )e−βHt = 0 for each t . We then define wt by

wt ≡ −β ∂H(x, at )

∂at

dat

dt
. (5.53)

From wt , the work done to the system by an external system during the interval
[t0, t] is given by

βWt,t0 = −
∫ t

t0

wt ′ dt ′. (5.54)

Then e−βHt satisfies ∂
∂t e−βHt = (L(at )+wt )e−βHt . In fact ∂

∂t e−βHt = wt e−βHt is an
identity, and we can add 0 = L(at )e−βHt to each side of this equation.

e−βHt as a solution of ∂
∂t e−βHt = (L(at ) + wt )e−βHt can be expressed using the

Green’s function G(x, t |x0, t0):

e−βHt =
∫

G(x, t |x0, t0)e−βHt0 dx0. (5.55)

Jarzynski Nonequilibrium Work Relation

We divide both sides of (5.55) by e−βFt0 ≡ ∫ e−βHt0 dx0, and there substitute (5.49)
and (5.54) for G(x, t |x0, t0). The result is

27 The Chapman–Kolmogorov equation means the following. The totality of the paths from (x0, t0)
to (x, t) is given as the sum of those paths that pass through a “gate” at xg at a fixed time tg , then
summed over all xg . For the Markov process the probability weight for the paths from (x0, t0) to
(x, t) via (xg, tg) can be factorized into those weights of each segments.
28 If (5.51) is a Fokker–Planck equation, then (5.49) gives its formal explicit solution using
P[X |x0, t0]. If (5.51) is a Schrödinger equation, (5.49) again gives its formal explicit solution
in the same manner [12].
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eβFt0 e−βHt =
∫ [∫

(x0,t0)
P[X |x0, t0]e−βWt,t0DX

]
eβ(Ft0−Ht0 )dx0. (5.56)

Integration of (5.56) over x gives

e−β(Ft−Ft0 ) = 〈e−βWt,t0
〉
eq, (5.57)

where e−βFt ≡ ∫ e−βHt dx , and 〈·〉eq denotes the path average starting from the ini-
tial canonical probability density eβ(Ft0−Ht0 ) at t0. Equation (5.57) is called Jarzynski
nonequilibrium work relation. Note that L(at ) can be either the Liouville operator29

of conserved dynamical process or the Fokker–Planck operator of stochastic pro-
cess.

The result (5.59) due to Jarzynski [10] is very general since it holds for any
protocol of a(t) with any finite time τop of the process. The Jarzynski nonequilibrium
work relation can be used to measure ΔF from the protocol of a(t) at finite rate of
change:

ΔF = −kBT ln〈e−βW 〉eq. (5.58)

Here the average is taken over the paths starting from canonical equilibrium. This
relation works very well for small systems [13, 14]. With increasing number of
degrees of freedom, this method requires a lot of data for a good statistics. The
reason is that very rare events for W is dominantly important in the average because
of its exponential dependence, 〈e−βW 〉 [15].

The precision of “canonical” initial condition in the above is important: a
counterexample has been demonstrated for the “microcanonical” initial condition
[16]. We come back to the implication of this example later (see, the end of
Sect. 7.1.3).

5.4.1.2 Nonnegativity of 〈Wirr〉
We will show the nonnegativity, 〈Wirr〉 ≥ 0, in condition that the process starts with
the canonical equilibrium state with a given initial parameter, a = a(t0).

In (5.57), Ft − Ft0 is ΔF and Wt,t0 is a work of a particular realization, W . We
can, therefore, identify Wt,t0 − (Ft − Ft0 ) = W −ΔF as the irreversible work, Wirr.
Then (5.57) is

1 = 〈e−βWirr〉eq. (5.59)

We now apply Jensen’s inequality, 〈e−z〉 ≥ e−〈z〉 to (5.59), where 〈 〉 is average
over any normalized probability density of z.30 The result yields the inequality for
〈Wirr〉eq:

29 See the paragraph containing (A.10).
30 Jensen’s inequality is the relation for any concaved function, f (z), the function with f ′′(z) ≥ 0.
On the graph of f (z) vs. z, the center of mass of the points (z1, f (z1)), . . . , (zn, f (zn))
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〈Wirr〉eq ≥ 0. (5.60)

The inequality (5.60) includes the case of quasistatic process, where 〈Wirr〉eq = 0.
Recall that in Sects. 5.2.1.2 we obtained a stronger statement, Wirr = 0, for an
individual quasistatic process.

Remark. There is a different definition of the average irreversible work, which is not
directly related to the work measurement [17]. Using the probability density P(x, t),
we define the statistical entropy, S ≡ − ∫ P ln P dx , and then the quasi-free energy,
F̃ ≡ 〈U 〉 − T S, where 〈U 〉 = ∫ U Pdx . Then the following inequality is proven:

〈d ′W 〉
dt

− d F̃

dt
=
∫

γ
J [P]2

P
dx ≥ 0, (5.61)

where J [P] is the probability current of the Fokker–Planck equation. The formula
(5.61) has essentially the same content as the “H-theorem” (4.38) in Chap. 4.

5.4.2 The Fluctuation Theorem Leads to Jarzynski’s
Nonequilibrium Work Relation for Discrete Process

We consider the stochastic processes characterized by the transition rates such as
wi→ j (a) from a discrete state i to another state j , where a is an external control
parameter (see Sects. 3.3.1.4 and 3.3.1.3). We assume that for each value of a, the
transition probability admits the canonical equilibrium probability Peq

i (a) satisfying
the detailed balance condition:

Peq
i (a)wi→ j (a) = Peq

j (a)w j→i (a). (5.62)

The so-called (a version of) fluctuation theorem (FT) or Crook’s relation for the
irreversible work, Wirr, is [18, 19].

PR(−Wirr)

PR(Wirr)
= e−βWirr , (5.63)

where PR(Wirr) is the probability density for Wirr. Integration of e−Wirr PR(Wirr) gives
the average, 〈e−Wirr〉, while the integration of PR(−Wirr) gives unity. Therefore, the
Jarzynski nonequilibrium work relation for the discrete process is derived:

〈
e−βWirr

〉
eq = 1. (5.64)

Finally the nonnegativity of the average irreversible work, 〈Wirr〉eq ≥ 0, is derived.

(some can be redundant) is always found above this graph. Especially this center of mass,
( 1

n

∑n
i=1 zi ,

1
n

∑n
i=1 f (zi )), is vertically above ( 1

n

∑n
i=1 zi , f ( 1

n

∑n
i=1 zi )).
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In Appendix A.5.4 we sketch the derivation of the fluctuation theorem. Jarzynski
nonequilibrium work relation and the fluctuation theorem have emerged in the same
epoch as the emergence of stochastic energetics. In addition to those papers cited
above, we refer to the other essential papers that initiated the approach described
in this section [20–24, 18, 25]. There are preceding studies such as Bochkov and
Kuzovlev [26–29] (see a commentary by [30]) and Kawasaki and Gunton [31]31

in the 1970’s. Comprehensive textbooks on these subjects are to be written by the
original contributors. In this book we mentioned only briefly the outline of some
demonstrations.

5.5 Discussion

5.5.1 How Fast Can the External Parameter Be Changed?

In Sect. 5.4, no constraints has been put on the maximum rate of the parameter
change, da(t)/dt . There are situations where a very large value of da(t)/dt is con-
sidered.

One case is the optimal control problem. The control protocol with the least cost
can have discontinuities in a(t) at the initial and final times.32 When the inertia is
neglected, the effect of the discontinuity of a(t) on the eliminated momentum should
be carefully analyzed (cf. the Büttiker and Landauer ratchet Sects. 4.2.2.2).

The other case is the numerical discretization. When we simulate a Langevin
equation with time-dependent parameter a(t), we introduce discontinuity in a(t)
through the temporal discretization and the cutoff error of a(t). The actual protocol
a(t) includes very small but very frequent jumps. If the result of stochastic energetics
were to be sensitive to the limit of fine discretization, all the numerical calculations
and the modeling of experiments for fluctuating phenomena would be dubious. For-
tunately, in most cases the energetics is robust against this limit, though we cannot
yet define rigorously the general condition of validity.

Let us take as example a Brownian particle (position: x(t)) moving in a harmonic
potential. The center of the potential is a(t) and the “spring” constant is K . The
Langevin equation is

− γ
dx

dt
+ ξ (t) − K [x − a(t)] = 0. (5.65)

The general solution for 〈x(t)〉 of (5.65) is 〈x(t)〉 = a(t) + e−K t/γ (ai − a(t)) +
(K/γ )

∫ t
0 e−K s/γ (a(t − s) − a(t))ds. We compare the two protocols: (i) a smooth

linear protocol a(t) = ai + Vat with Va constant and (ii) stepwise protocol with the

31 S.I. Sasa brought me this link.
32 The discontinuity is related to the intrinsic nonlocal characteristic of the optimization problem.
See [32, 33]. This discontinuity modifies the minimum of the average irreversibility 〈Wirr〉. But the
effect on the complementarity relation (Sects. 5.3.1) is a higher order correction in (τop)−1.
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t t

ai ai

a(t ) a(t )

Fig. 5.8 (Left) Smooth linear protocol a(t) = ai + Vat and (Right) stepwise protocol a(t) =
ai + δa[Vat/δa]

same average rate, a(t) = ai + δa[Vat/δa], where [z] denotes the integer part of
z(≤ 0). See Fig. 5.8. Using the above solution, the average work per unit time is
(i) γ Va

2 and (ii) W̄ = Va
2(K δt/2) coth(δK t/(2γ )) with δt = δa/Va . The second

W̄ converges smoothly to the first in the limit of the fine steps δt → 0.

5.5.2 Can We Change a Parameter Slowly Enough
for the Quasistatic Process?

The answer is no. We will show in Chap. 7 that (i) there are cases where the qua-
sistatic process is intrinsically impossible and (ii) but such nonquasistatic processes
do not necessarily cause large irreversible work. The more important consequence
of these processes is that the external system loses information and controllability
of the system’s state.
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Chapter 6
Heat Viewed at Different Scales

This short chapter deals with the heat from different levels of description. We shall
call the heat defined by the stochastic energetics mesoscopic heat and the heat
defined by conventional statistical thermodynamics calorimetric heat. The latter
should measured by conventional calorimetric methods. The main question of this
chapter is to understand the connection between these two types. Simple thought
experiments will help clarify the problem. “Work against a viscous medium” can be
defined with the aid of the notion of transformation of the heat from one scale to
another scale.

6.1 * Introduction – What Is Heat?

6.1.1 Each Description Scale Has its Own Definition of Heat

Roughly speaking, heat is the energy exchanged with or among the degrees of free-
dom that do not emerge in explicit observation and description. Once we fix the level
of description, for example, of the Langevin equation or of the master equation, we
retain certain degrees of freedom and eliminate other degrees of freedom from the
evolution equation. Then heat is the work done by the retained degrees of freedom
against the thermal environment that represents the eliminated degrees of freedom.

Mesoscopic heat has its proper significance in the context of irreversibility. Nev-
ertheless, in experimental heat measurement we should be aware of the difference
between mesoscopic heat and calorimetric heat. Depending on the system, meso-
scopic heat can be only a small part of the total energy transfer involved in the
process. Although the method of stochastic energetics has been applied to diverse
fields (Sect. 4.3.2), little has been discussed about the relation between the meso-
scopic heat and the total energy involved in the process. The meaning of the energy
should also be carefully specified, see the next section.

Sekimoto, K.: Heat Viewed at Different Scales. Lect. Notes Phys. 799, 203–220 (2010)
DOI 10.1007/978-3-642-05411-2 6 c© Springer-Verlag Berlin Heidelberg 2010
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6.1.2 Examples of Nonuniqueness of Heat

Example 1. Macroscopically mimicked thermal environment and Langevin equation

In Sect. 1.2.1.2 we have seen that a thermal environment and a Langevin equation
can be mechanically simulated with an effective temperature, which is unrelated
to the (ambient) temperature of the constituting materials [1]. In fact the effective
temperature is enormously higher than the ambient temperature. The mesoscopic
heat defined from this virtual environment is, therefore, different from the heat that
the materials exchange with their true environment.

Example 2. Coarse-grained Langevin equation for a diffusing particle in a mostly
periodic potential

In Sect. 1.3.2.2 the Langevin equation (1.98), i.e.,

γ ẋ = −U ′
m(x) + a0 − V ′(x) + [2γ kBT ]

1
2 ξm(t),

was coarse grained to eliminate the periodic potential, Um(x), which has a small
period, �. The resulting Langevin equation retaining only the slow modulation force,
a0 − V ′(x), could be written as (1.102), that is,

Γ (a0)[ ˙̃x − vs(a0)] = −V ′(x) + [2Γ (a0)kBΘ(a0)]
1
2 ξ (t), (6.1)

where vs(a0) is the coarse-grained steady-state velocity at V ≡ 0. By this coarse
graining a new friction coefficient, Γ (a0), and a new diffusion coefficient, Deff(a0),
appeared.

In the case a0 = 0 the system admits equilibrium state, and see how heat changes
upon coarse graining. The Einstein relation holds for each level of description:

Deff(0)Γ (0) = kBT , Dγ = kBT . (6.2)

The heat for the coarse-grained Langevin equation is

d ′Qeff ≡ {−Γ (0) ˙̃x + [2Γ (0)kBT ]
1
2 ξ (t)} ◦ dx̃(t). (6.3)

Since generally we have the inequalities, Γ (0) �= γ , the heat Qeff thus defined is
different from the heat Q that we define for the original Langevin equation, d ′Q =
{−γ ẋ + [2γ kBT ]

1
2 ξ (t)} ◦ dxm(t).

Example 3. Chain consisting of beads and springs

We shall consider the system consisting of N Brownian particles (“beads”) with
the positions, x1, . . . , xN , and (N + 1) elastic springs (not rigid rods) of the spring
constant K and zero natural length (Fig. 6.1). The springs join the beads linearly
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x 0=
xN+1= a

0

Fig. 6.1 A chain of beads (thick dots except at the ends) and springs (shaded rectangles). Each
spring can be a purely mechanical spring, or it can be a purely entropic ideal chain. [The same
figure as Fig. 4.3.]

except at the ends x0 and xN+1. Each bead is supposed to be a free joint for the
two neighboring springs. We fix one of the end at the origin, x0 ≡ 0, while we
control the other end, xN+1 ≡ a. The overdamped Langevin equations for the i th
bead (1 ≤ i ≤ N ) write as

0 = −γ ẋi + ξ i (t) + K (xi−1 + xi+1 − 2xi ), (6.4)

where the random thermal forces, ξ i (t), are i.i.d. Gaussian white noises with zero
mean and 〈ξ i (t)ξ i (t ′)〉 = 2γ kBT 1δ(t − t ′).1

The mesoscopic heat from the heat bath is

Q =
∫ N∑

i=1

[−γ ẋi + ξ i (t)] ◦ dxi (t). (6.5)

Using the Langevin equation (6.4), the balance of energy, dU = d ′W + d ′Q, holds
with U ({xi }, a) = K/2

∑N
i=0(xi+1 − xi )2 and2 d ′W = K (xN+1 − xN )dxN+1 =

(∂U/∂a)da.
According to the result of Chap. 5, the quasistatic work W to pull the chain from

a = ai to af is ΔF ≡ F(af) − F(ai), where the Helmholtz free energy F(a) is
defined by

e−βF(a,β) =
∫

e
−
βK

2
∑N

i=0(xi+1−xi )2 N∏

i=1

dxi =
(

2π

βK

)3N/2

e
−

βK

2(N + 1)
a2

. (6.6)

1 The symbol 1 is the 3D unit tensor. In (6.4) we adopted the model of Rouse type [2], where the
hydrodynamic effects ([3, 4], see also Sect. A.4.7.2), are ignored for simplicity.
2 In order to avoid confusion with Itô-type product, we suppress the dot “·” for the 3D scalar
product.
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Therefore,

W = ΔF =
[

K

2(N + 1)
a2

]af

ai

(quasistatic process). (6.7)

This result is valid independent of the origin of K . As for calorimetric heat, however,
we need to consider the origin of the spring before comparing d ′Q defined above
with the calorimetric measurement. It is enough to consider the quasistatic process
to show the essential point:

Case 1: If the springs are made of thin stainless steel wire, the spring constant
K can be regarded to be independent of the ambient temperature. Then the
change of the average energy 〈ΔU 〉 can be identical to the prediction from
the average energy 〈Um〉 of equilibrium statistical mechanics:

〈Um〉 = ∂(βF)

∂β
= 3NkBT

2
+ K

2(N + 1)
a2. (6.8)

By comparing the Δ〈Um〉 from this result with (6.7), we find that Δ〈Um〉 =
〈ΔU 〉 = ΔF, which then implies that Q is equal to the calorimetric heat,
Qm, and 〈Qm〉 = 〈Q〉 = 0 for the quasistatic process. This result could be
confirmed by local calorimetric measurements or by numerical calculation.

Case 2: If each spring consists of an ideal polymer chain immersed in a fluid
environment, then the calorimetric results will be different. Each spring is
purely entropic with spring constant, K = kBT

nb2 , where n is the number
of monomers in the chain, and b is the so-called Kuhn length. The second
equality of (6.8) is no more valid since K depends on the temperature. From
(6.6) with βK = const., the product βF is found to be independent of tem-
perature. Then (6.8) yields 〈U 〉 = 0 independent of a. If we denote by Qm

the calorimetric heat expected from the calorimetric energy conservation, we
have 〈Qm〉 = −W = −ΔF .

In summary, we have case-dependent relations:

〈Qm〉 = 0 = 〈Q〉,Δ〈Um〉 = ΔF = 〈ΔU 〉 (steel wire spring),

〈Qm〉 = −ΔF,Δ〈Um〉 = 0 (ideal chain spring).

The relations between the mesoscopic heat and the calorimetric heat, therefore,
depend on whether or not the spring constant K is of entropic origin. The argument,
including the nonquasistatic case, will be developed in the next section.

Example 4. “Stochastic thermodynamics” of chemical reaction networks

For chemical reaction networks an alternative interpretation of work and heat has
recently been proposed [5]. While it shares the basic idea of describing the ener-
getics of individual stochastic process, their interpretation is different from our
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framework in Sect. 4.1.2.6.3 For illustration purpose, we take a very simple situation
as example.

A system is a vesicle which occupies the volume Ω , and Ω is subset of the entire
volume Ω (0). The vesicle is surrounded by the reservoir of particles of species A.
The reservoir, occupying the volume Ω (0) \Ω , is big enough that it is characterized
by a chemical potential, μ(0)

A [6]. The particle A can pass through the vesicle mem-
brane. Using the notations of chemical reaction, A → X means that a particle A
enters the vesicle from the reservoir, while X → A means the reverse process. The
state of the system Ω is specified by the number of X particles, nX(t). We denote by
nA(t) the number of A particles in the reservoir. Therefore, nX(t)

dt + nA(t)
dt = 0. The

energy eX is assigned to each particle inside the vesicle. The change of energy, ΔE ,
during t = 0 and t = Δt is therefore

ΔE =
∫ Δt

0
eX

dnX(t)

dt
dt =

∫ nX(Δt)

nX(0)
eXdnX(t). (6.9)

The work, Wchem, is defined as follows [5]:

Wchem ≡ −
∫ nA(Δt)

nA(0)
μ

(0)
A dnA(t). (6.10)

The heat Qchem is then defined so that the energy balance, ΔE = Wchem + Qchem,
be satisfied4 :

Qchem =
∫ nX(Δt)

nX(0)
eXdnX(t) +

∫ nA(Δt)

nA(0)
μ

(0)
A dnA(t). (6.11)

This framework is utilized to derive several versions of the fluctuation theorems
(FT) and Jarzynski nonequilibrium work relation, either around the equilibrium state
or around a steady state. As for the heat Qchem, however, it is not directly related to
the (molecular) energy exchanged between the system and the thermal environment.
For example, if the particle A has the same energy as that of X, i.e., eA = eX,
the reaction A � X accompanies no calorimetric heat. Even in such case Qchem

is generally nonzero since the chemical potential μ(0)
A depends on the density of A

particles in the particle reservoir. That is, Qchem is not the calorimetric heat.

Problems

Through the previous examples, we have seen different definitions of heat, depend-
ing on the scale of description, the assignment of energy, or identification of the
state variables of the system. One might say that there are different semantic

3 The authors of [5] use the word “stochastic thermodynamics” since they also introduce entropy
for each point on each trajectory.
4 [5] adopted the opposite-sign convention for the heat from the present text.
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interpretations (models) of the syntax of thermodynamic structure (set of axioms).
Conventional equilibrium thermodynamics is among those interpretations, the one
in which heat is interpreted as calorimetric heat. Stochastic energetics also has its
first law, the energy balance, and also the “second law”. One of the basic questions is
then how we can relate calorimetric heat with the mesoscopic heat of the stochastic
energetics. Another, more ambiguous, question is whether the heat of a scale of
description can evolve to become the heat of another description. We will address
these two questions in the following two sections, respectively.

6.2 * Calorimetric Heat vs. the Heat of Stochastic Energetics

The energetics of the stochastic process has shown the balance of energy on the
mesoscopic level. The heat and the energy defined are, however, generally different
from their macroscopic counterparts. In this section we show that this discrepancy
can be removed by adding to these quantities the reversible heat associated with the
mesoscopic free energy.

6.2.1 System Can Have Different Levels of Random Variables

6.2.1.1 Background

Calorimetric heat is defined by its measurement. Usual measurement monitors the
temperature of a probe material (“thermometer”). Calorimetric heat is then deduced
from this temperature data, using various physical principles, such as heat diffusion,
radiation, etc. It is the microscopic degrees of freedom of the probe material that
equilibrate with the sample. Therefore, calorimetric heat is calculated from micro-
scopic theories or simulations based on statistical thermodynamics.

Mesoscopic heat depends on the description level of the stochastic phenomena.
Throughout this section, we use the notations with the tilde (F̃ , f̃ , Q̃, etc.) to mean
those concepts of stochastic energetics.

If the mesoscopic energy comes from interactions with an external field
(e.g., laser tweezers [7]) or with a nonentropic restoring force (e.g., a brass wire
holding a pendulum [8]), then mesoscopic heat can be identified with the calorimet-
ric (i.e., microscopic) heat. Contrastingly, they are different when mesoscopic heat
contains the entropic contribution due to microscopic degrees of freedom which
have been projected out to achieve the mesoscopic description. We have seen some
examples in Sect. 6.1.2. Below we present another thought experiment analogous to
the “jump-and-catch” mechanism in (Sect. 4.1.2.3).

6.2.1.2 A Thought Experiment

Let us suppose that a micron-sized bead in water is leashed at the point x = 0
through a polymer chain and that an optical trap somehow constitutes a static poten-
tial well around x = a �= 0 (see Fig. 6.2(a)). For simplicity we assume that the
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ax0

(a) (b)

(         )

(       )

F x, βa,∼
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(m)

x a−

( )t a0 xx

Fig. 6.2 (a) A bead (position: x, a big gray disk) is leashed by an ideal polymer chain (thin curve)
at the origin 0 (thick dot). A laser tweezer to trap the bead is focused around a distant point a. (b)
The mesoscopic potential energy F̃(x, a, β) in (6.18) [solid curve] and the microscopic potential
energy that accounts for the calorimetric measurement, (6.25) [dashed curve]

polymer is an ideal chain. We further assume that the arrangement is such that the
bead undergoes bistable transitions, either being trapped around x = a when the
polymer chain is stretched to the distance � |a|, or wandering around x = 0 when
the chain is relaxed and fluctuating. We then assume that the stochastic behavior
of the bead is well described by a Langevin equation for the bead position, x(t).
The main question is how much heat is released to or absorbed from the thermal
environment when the bead switches from one of the bistable states to the other.

The bistable states can be represented by a double-well mesoscopic potential
energy F̃(x, a, β) for the bead. See Fig. 6.2(b). However, it is only the optical trap
that realizes a potential hole of microscopic energy; the ideal chain exerts purely
entropic restoring forces. (Recall that the kinetic energy of ideal chain is inde-
pendent of the conformation of the chain.) Microscopic theory should predict that
calorimetric heat depends only on the microscopic potential energy of the optical
trap. The framework of stochastic energetics predicts, however, that mesoscopic
heat is absorbed from the environment whenever the bead climbs up the potential
barrier of F̃(x, a, β) and is released to the environment during the downhill motion.

6.2.2 Equilibrium Statistical Mechanics of Mesoscopic Variables
Can Have Different Level of Free-Energy Functions

Conversion of mesoscopic heat into calorimetric heat is a straightforward general-
ization of what is known in equilibrium statistical mechanics. Therefore, we will
first summarize the result of the latter discipline.

6.2.2.1 Hamiltonian, Landau Free Energy, and Helmholtz Free Energy

Suppose that the total system consists of the system whose Hamiltonian is H (x, y, a)
and a heat bath of the temperature T .5 Here a stands for the external control
parameter(s), and we have split, for the later use, the system’s degrees of freedom
into two groups, x and y. The Helmholtz free energy F(a, β) (β = (kBT )−1) is
defined through the canonical partition function, Z (a, β):

5 We could start from an entirely isolated whole system, except that the argument is more compli-
cated.
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e−βF(a,β) = Z (a, β) = Trx,ye−βH (x,y,a), (6.12)

where the suffices x, y of Trx,y indicate the degrees of freedom over which the
trace should be taken. We also introduce F̃(x, a, β), sometimes called Landau free
energy, by eliminating only the degree(s) of freedom, y:

e−β F̃(x,a,β) = Trye−βH (x,y,a). (6.13)

By definition we have the relation

e−βF(a,β) = Trx e−β F̃(x,a,β). (6.14)

6.2.2.2 Fast and Slow Variables

We suppose that the variables x and y represent, respectively, the slow and fast
variables of the system.6 In such case, F̃(x, a, β) is the mesoscopic potential energy
which appears in the Langevin equation for x as the result of projection of fast
degrees of freedom.

In the context of the example of Fig. 6.2, the slow variable, x , denotes the posi-
tion of the bead, while the fast variables, y, describe the local movements of the
monomers of the polymer chain and possibly the motion of the surrounding water
molecules. Then e−β F̃(x,a,β) gives the relative probability density for the slow vari-
able, x, under the given parameters a and β.

6.2.2.3 The Objectivity of Force and Energy

We will define “objectivity” as the character that satisfies the following two condi-
tions:

(I) It can be defined on the three levels of descriptions, {x, y, a, β}, {x, a, β}, and
{a, β}, corresponding to Eqs. (6.12), (6.13), and (6.14), respectively,
(II) The magnitudes of the quantity for these three descriptions are essentially the
same, except for the fluctuations inherent to the description levels.

The first example is the force conjugate to the parameter a: We define

f̂ (x, y, a) ≡ ∂H (x, y, a)/∂a,

f̃ (x, a, β) ≡ ∂ F̃(x, a, β)/∂a,

f (a, β) ≡ ∂F(a, β)/∂a.

Then, from (6.12), (6.13), and (6.14), we can verify the relations:

6 [9] studied two-component (fast and slow) Brownian system, using the Fokker–Planck equation.
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f̃ (x, a, β) = Try[eβ(F−H ) f̂ ],

f (a, β) = Trx [eβ(F−F̃) f̃ ] = Trx,y[eβ(F−H ) f̂ ]. (6.15)

The second quantity with the objectivity is the energy (not the mesoscopic energy).
In addition to H (x, y, a), we define

Ẽ(x, a, β) ≡ ∂[β F̃(x, a, β)]/∂β,

E(a, β) ≡ ∂[βF(a, β)]/∂β.

Again, from (6.12), (6.13), and (6.14), we can verify

Ẽ(x, a, β) = Try[eβ(F−H ) H ],

E(a, β) = Trx [eβ(F−F̃) Ẽ] = Trx,y[eβ(F−H ) H ]. (6.16)

Symbolically we can write the above relations as f = 〈 f̃ 〉x = 〈 f̂ 〉x,y and E =
〈Ẽ〉x = 〈H〉x,y . The force and the energy of different level of descriptions, therefore,
do not need the correction terms upon averaging.

6.2.2.4 Relation Between Mesoscopic Energy F̃ and (Calorimetric) Energy Ẽ

The above relationships indicate that (i) it is F̃(x, a, β) that governs the probability
weight of x on the mesoscopic level, while (ii) it is Ẽ whose equilibrium average
over x coincides with the thermodynamic energy E . The difference between these
two quantities is nothing but the entropic term, which we obtain by rewriting slightly
the definition of Ẽ mentioned above:

Ẽ − F̃ = −T
∂ F̃

∂T
. (6.17)

6.2.3 Calorimetric Heat Can Be Deduced from Stochastic
Energetics

6.2.3.1 Case of Continuous Langevin Equation

Framework

If the timescale of the slow variable(s) x is well separated from that of fast vari-
able(s) y, and if the temperature of the environment can be regarded as constant, we
can use the Markovian description such as the Langevin equation to simulate the
fluctuations of x . In the overdamped case, the equation is

0 = γ
dx

dt
+ ξ (t) − ∂ F̃(x, a, β)

∂x
, (6.18)
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where γ is the friction constant for x , and ξ (t) is the white Gaussian random force
with zero mean and the correlation, 〈ξ (t)ξ (t ′)〉 = 2γ kBT δ(t − t ′). From the stand-
point of x , the fast fluctuations of the heat and energy due to the change in y are
averaged over the time resolution of (6.18). As in the static case summarized above,
it is the mesoscopic energy, F̃(x, a, β), that gives the bias for the variable x . The
mesoscopic energy balance along a particular realization of the stochastic process is

d F̃ = d ′W̃ + d ′ Q̃, (6.19)

where we use d (not d ′) to mean the total differential at constant temperature, i.e.,

d ≡ dx
∂

∂x
+ da

∂

∂a
, (6.20)

while the work d ′W̃ and the “heat” d ′ Q̃ are defined by7

d ′W̃ ≡ ∂ F̃

∂a
da, (6.21)

d ′ Q̃ ≡
[
−γ dx

dt
+ ξ (t)

]
dx = ∂ F̃

∂x
dx . (6.22)

The core logic is the following: If the Langevin description (6.18) is a good
model of a phenomenon, then the eliminated degree(s) of freedom y are supposed to
follow x and a rapidly enough. From standpoint of y, the process of x is always qua-
sistatic. It means that the heat released can be captured by the change in the pertinent
entropy, −∂ F̃/∂T [10]. (A related argument is also found in [11].) In order to con-
vert the mesoscopic heat d ′ Q̃ into the calorimetric heat, d ′Qm, it is, therefore, suffi-
cient to add to both d ′ Q̃ and dF̃ the differential of the term found in (6.17), that is8

d ′ Q̃ �→ d ′Qm ≡ d ′ Q̃ − T d
∂ F̃

∂T
,

d F̃ �→ d Ẽ ≡ d F̃ − T d
∂ F̃

∂T
. (6.23)

Now the mesoscopic energy balance equation (6.19) is converted to the new equa-
tion that includes only calorimetric heat and the quantities with objectivity:

d Ẽ = d ′W̃ + d′Qm. (6.24)

7 N.B. all the products below should be interpreted as of Stratonovich type.
8 We might call this “correction” term van’t Hoff correction term. This is the reversible heat asso-
ciated with the mesoscopic free energy.
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The last expression holds for a particular realization of the Langevin equation (6.18).
Equation (6.24) could be directly verified experimentally or calculated using the
original Hamiltonian H . By the definition of the total differential (6.20), the term
−T d(∂ F̃/∂T ) in (6.23) has no cumulative effects for cyclic processes.

Application to the Thought Experiment

In the case of the thought experiment in Fig. 6.2, we assigned the variables y to
the degrees of freedoms associated with the monomers of the ideal chain. For the
mesoscopic potential energy, F̃(x, a, β), we can write F̃(x, a, β) = U (m)(x − a)−
T S(p)(x), where U (m)(x − a) represents the potential energy due to the optical trap,
and S(p)(x) is the entropy of the ideal polymer chain. By substituting this form into
(6.24), we find the concrete expression, term by term,

dU (m) = d ′W + d ′Qm

= [−∇U (m)(x − a)da] + [∇U (m)(x − a)dx], (6.25)

where ∇U denotes the gradient of U . The mathematical identity (6.25) is what we
expected in the Introduction (Example 3). Experimentally, we should take account
of the heat exchange with the bead as well as the effect of polymer–solvent interac-
tions.

Further Considerations

The change of F̃(x, a, β) through the change of x is a quasistatic work for the fast
degrees of freedom, y. The ideal chain should, therefore, release heat even though
the displacement of the bead x(t) is spontaneous. This statement looks somewhat
paradoxical. But it does not contradict with the above analysis; it is the thermal
environment that does the work to displace the bead, gathering the energy nearby.9

The released heat −T d S(p) is, therefore, compensated.10 If one can measure the
heat at a very short distance, the local transfer of calorimetric heat around the chain
and the bead should be observed (Fig. 6.3(a)). By contrast, if there is no bead at
x(t), there is no such local transfer of heat (Fig. 6.3(b)). This should be checked
experimentally.

6.2.3.2 Case of Discrete States

In Sect. 4.1.2.6 we have described stochastic energetics on discrete states (discrete
Langevin equation). It is straightforward to generalize the above analysis to the

9 To move a mesoscopic object, there should be the fluctuations, most probably, of the length scale
of the object. See Sect. 6.3.1 below.
10 Another heuristic argument could be to assume thermophoresis of the bead due to local warm-
ing up of solvent around the chain.
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x0 x0

(a) (b)

Fig. 6.3 Ideal chains with a bead and without bead (b). One end of the chains is fixed (0: filled
square). The slow displacement of the bead (gray disc) in (a) accompanies the heat transfer
between the chain and the neighborhood of the bead (thick bidirectional arrow), while the dis-
placement of the free end (x) in (b) does not accompany the heat transfer

discrete stochastic process. We first adapt the notations of Eqs. (4.18), (4.19), (4.20),
and (4.21) as follows to conform with the discrete case:

ΔF̃ = Δ′W +Δ′ Q̃, (6.26)

with

ΔF̃ = F̃in+1 (a(t), β) − F̃i1 (a(0), β), (6.27)

Δ′W =
n+1∑

α=1

[
F̃iα (a(tα), β) − F̃iα (a(tα−1), β)

]
, (6.28)

Δ′ Q̃ =
n∑

α=1

[
F̃iα+1 (a(tα), β) − F̃iα (a(tα), β)

]
. (6.29)

These relations correspond to (6.19) in the continuum case. In order to have the
counterpart of (6.24) for the discrete process, we can again use the correspondence
relations (6.23). As the result, the energy balance relation,

ΔẼ = Δ′W̃ +Δ′Qm, (6.30)

holds with

ΔẼ ≡ ΔF̃ − TΔ
∂ F̃

∂T
, (6.31)

Δ′Qm ≡ Δ′Q − TΔ
∂ F̃

∂T
, (6.32)

where the total difference in the correction term is defined by

TΔ
∂ F̃

∂T
≡ T

[
∂ F̃in+1 (a(t), β)

∂T
− ∂ F̃i1 (a(0), β)

∂T

]
. (6.33)

To conclude this section, we have related mesoscopic heat of stochastic energet-
ics with conventional heat along a single realization of the stochastic process. For
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the moment, mesoscopic potential energy and heat have only begun to be assessed
experimentally [7, 8, 12, 13]. The direct measurement of the fluctuating observ-
able heat, d ′Qm, will be a future experimental challenge. The possibility to measure
directly d ′ Q̃ is an open theoretical problem. We might need to extend our notion of
the measurement so that the approach taken by the above references, i.e., the deduc-
tion of heat from the trajectory data is the mesoscopic measurement of the heat.

6.3 Change in the Scale of Heat

In the last section we established the relation between mesoscopic heat and calori-
metric heat. The premise was clear separation of the timescales between the fast
degrees of freedom (y) and the slow ones (x). Under this condition, the quasistatic
treatment for the former degrees of freedom was justified. In the rest of this chapter,
we will discuss the situations where this premise is not satisfied because the typical
scale of thermal fluctuations changes in time. In such a case the most complete
approach would be to go back to the microscopic mechanics and start everything
from scratch. It is, however, not practical if the space-timescale of the slow degrees
of freedom is far larger than the microscopic one. Our approach is to go back just
one step: we remain in the mesoscopic description, but discuss the fate of the micro-
scopic fluctuations whose space-time scale attain that of the slow variables.

6.3.1 Fluid Fluctuations Causing Brownian Motion Have Memory

The random force on a Brownian particle in a fluid reflects the temporarily coher-
ent momentum transfer from the fluid molecules. Such spontaneous movements of
fluid can be approximately modeled by the Langevin equation for the fluid, or, fluc-
tuating hydrodynamics [14] (see also Appendix A.4.7.1). The evolution equation
of fluctuating hydrodynamics is the Navier–Stokes equation complemented by the
random dipolar source of momentum. The thermal motion of a Brownian particle is
the passive reaction to the fluctuations in the fluid [15].11 Although the fluctuating
dipolar force (i.e., stress) in the fluid is assumed to be a white Gaussian process, the
velocity of the Brownian particle has a long-term memory.

What causes memory in the velocity of Brownian particle? 12 Two mechanics
coexist. The first factor is the inertia of the Brownian particle (and the fluid which is
directly entrained by this particle). This effect is effectively included in the Langevin
equation as the inertia term. The decay time13 is characterized by τp ≡ m/γ, where
m is the mass of the particle and γ = 6πRη is the Stokes’ friction constant with R
and η being the radius of the particle and the viscosity of the fluid, respectively. If

11 The result of [14] has been also found before [24] cf. [25].
12 See also Sect. 1.1.3.1 Remark about the inertia effect.
13 By solving mv̇ = −γ v+ξ (t), the evolution of the particle velocity v(t) contains the convolution
of the random force ξ (t) with the “memory kernel”, θ(t)e−t/τp .
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the mass density of the particle is ρp, the time τp is 2R2ρp/(9η). The second factor is
the inertial motion of fluid around the Brownian particle. The momentum carried by
a locally coherent motion of fluid can decay only by diffusion, since the momentum
conservation law prohibits its individual decay. The diffusion coefficient of the fluid
momentum is the kinetic viscosity, ν ≡ η/ρf, where ρf is the mass density of the
fluid. The decay of the average velocity in this region is then characterized by the
time, τf = R2/ν = R2ρf/η.14 If the mass density of the Brownian particle ρp is
comparable to that of the fluid, ρf, we have τp ∼ τf.

Moreover, the fluid’s coherent momentum decays slowly (algebraic). This slow
decay reflects the fact that the spatial range of this coherent motion changes in time:
suppose that the fluid had an initial momentum P0 around the Brownian particle.
After the time t , this momentum spreads by diffusion over the range ∼ (νt)1/2. The
mean local velocity v̄ of the fluid is inversely proportional to the mass of the fluid
within this range, i.e., v̄ ∼ P0/(ρf(νt)d/2), where d is the spatial dimensionality.
This algebraic decay ∼ t−d/2 is called the (hydrodynamic) longtime tail [16, 17].15

This memory effect, which is neglected by the Langevin equation, is important over
the timescales of τf ∼ 102τf.16 Recent experiments to trace the Brownian particle
[18, 19] used a bead, for example, with R ∼ 0.5 μm. In that case τf = 0.25 μs.
They have verified theoretical predictions [20] with the time resolution of ∼ μs.
However, if we used a protein of R ∼ 10 nm, τf would be � 10−4 μs. This is too
small to resolve experimentally at present.17 An evidence of the longtime tail is seen
in the mean square displacement (MSD) 〈[x(t)−x(0)]2〉 of the particle position x(t).
See Fig. 6.4 for the schematic behavior of the MSD. Due to the longtime tail effect,
the ideal diffusion behavior 〈[x(t) − x(0)]2〉 = 2Dt 18 has an algebraic correction
[21–23, 15]:

x( )t
dDt2

<[ − x(0)]2 >

t0

1

Fig. 6.4 Schematic representation of MSD, 〈[x(t)−x(0)]2〉, normalized by its diffusion form, 2Dt ,
is plotted against time t . Due to the (hydrodynamic) longtime tail, the approach of the MSD toward
the latter value is algebraic, much slower than exponential

14 If we replaced the fluid with a gas in the Knudsen limit, there is no such memory [26, 27].
15 Rahman [16] found an anormaly in the fluctuation spectra in his molecular dynamic simulation.
Then Alder and Wainwright [17] showed the power low decay of velocity correlation function.
16 Even at 102τf coherent momentum is spread over only ∼ 10R.
17 If a protein motor of several nanometer size wishes to make use of the fluctuations that last for
∼ μs, one strategy would be to link itself with a bigger object of ∼ μm size. cf. Sect. 1.3.1.3.
18 We project on the x-axis.
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〈[x(t) − x(0)]2〉
2Dt

= 1 − 2

√
τf

π t
+ ε (t > τf), (6.34)

where D = kBT /γ is the asymptotic diffusion coefficient and ε denotes the less
dominant terms [15].

6.3.2 * Decay Cascade of Mesoscopic Fluctuations Resolves
the Controversy on the Generalized Efficiency of Molecular
Motor

A question has been raised about the efficiency of the molecular motor protein.
When the motor protein hydrolyses an ATP molecule and swings a long fila-
ment, should we count the dissipated heat due to the filament motion as a part
of work done by the motor? If yes, how can one estimate the performance of
this work? This problem is relevant for scale-dependent description of fluctuations
and heat.

F1ATPase is a protein complex that synthesizes ATP from ADP and Pi (inorganic
phosphate) using the rotation of its central axial rod (γ -subunit) as the source of
work [28]. F1ATPase can also work inversely, that is, as a rotary motor consuming
the free energy of ATP hydrolysis [29]. To demonstrate this motor function, fluores-
cent actin filament was attached to the γ -subunit [30] (Fig. 6.5). In the presence
of ATP (of concentration < μM), the filament was observed to rotate stepwise
against the viscous friction of the solvent. Each ATP hydrolysis amounts to the 2π/3
rotation of the filament. An efficiency of (free) energy conversion, Θ , was defined
as the ratio of the dissipation, ζ 〈ω〉2τst, to the corresponding free-energy cost of
ATP hydrolysis, ΔGhyd � 20kBT . Here ζ is a friction coefficient of the filament,
τst is the stepping time of the 2π/3-rotation of γ -subunit, and 〈ω〉 = 2π/(3τst) is
the mean angular velocity. The result [30] showed that the efficiency Θ is fairly
close to unity, suggesting indirectly that the motor may well work inversely as the
synthesizer.

Although apparently sound and useful, the above definition of efficiency requires
justification on a physical basis. In general, the square of an average quantity, like

Fig. 6.5 Schematic setup of the F1ATPase (central cluster of oval modules) as rotary motor, which
swings a long actin filament (long bar). The rotation of the actin filament is driven by the rotat-
ing axe (“γ -subunit”: short vertical bar) of the F1ATPase. The spatial scale of the actin rotation
(dashed loop) is of several microns and is intermediate between the mesoscopic scale of the rotary
motor and the macroscopic scale
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〈ω〉2 above, cannot immediately correspond to the average of a physical observable.
Moreover, the instantaneous angular velocity ω is a resolution-dependent quantity.
A constructive argument was proposed from the engineering viewpoint [31]: In
order to perform a 2π/3-step within a given time τst, it incorporates inevitably a
certain minimum dissipation. Such a dissipation is claimed to be taken as a part
of necessary work in addition to the ordinary work against a conserved potential
energy. This minimum dissipation is realized under the constant angular velocity
(ω = const.), i.e., when 〈ω2〉 = 〈ω〉2 [31, 32]. Efficiency is thus calculated as men-
tioned above: Θ = ζ 〈ω〉2τst/ΔGhyd. More generally, “generalized efficiency” Θ

was defined as [31]

Θ = {Minimum energy input required to accomplish a task as engine}
{Actual energy input for the task} , (6.35)

where the task is required to finish within a given time. The above definition explains
why the square of the average velocity 〈ω〉2 appears and can be useful for designing
an optimum engine under a given task.

Still, a question remains: If we regard ω as fluctuating variable of mesoscopic
scale, the least dissipating process, ω = const., is by no means realizable in the pres-
ence of thermal noise. Should we use such an idealized limit to define the efficiency?
Is there an alternative, hopefully scale conscious, interpretation for the 〈ω〉2?

There is an insightful analysis on this issue [33]. The argument was done in the
context of a thermal ratchet model (Sect. 1.3.4). This model is described by the
Langevin equation with inertia,

ṗ = − ∂

∂x
(U0(x, t) − Lx) − γ

p

m
+ ξ (t), ẋ = p

m
, (6.36)

or its corresponding S.D.E.,

dp = − ∂

∂x
(U0(x, t) − Lx)dt − γ

p

m
dt + dwt , dx = p

m
dt, (6.37)

where U0(x, t) is periodic in both x and t , and nonsymmetric with respect to the
inversion, x ↔ (−x),19 L is a constant load, and dwt ≡ √

2γ kBT d Bt . The
energy balance equation d E = d ′Q + d ′W is written with the energy, E =
m

2
ẋ2 +U0(x, t) − Lx , and

d ′W = ∂U0(x, t)

∂t
dt, d ′Q = − 1

τS

p2

2m
dt + p

m
◦ dwt , (6.38)

19 After its sawtooth shape, this type of potential energy is named ratchet potential.
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where τS ≡ m
2γ . When the potential U0(x, t) is externally changed in time, the model

can transport the particle x(t) against the load L . The crucial step is that the heat
d ′Q is split into the “large-scale” part, d ′QL and the “small-scale” part, d ′QS [33],
so that d ′Q = d ′QL + d ′QS, with

d ′QL = −γ v2dt,

d ′QS = −
{

m

2
[δv(t)]2 − kBT

2

}
dt

τS
+ p

m
· dwt , (6.39)

where v = const. is the longtime average of ẋ , and δv(t) ≡ ẋ − v is the deviation
of the instantaneous velocity from v. The Itô-type product, (p/m) · dwt vanishes
if we take the average of d ′QS. The last decomposition (6.39) is of interest from
the viewpoint of the scale of fluctuations: although a very crude approximation, the
decomposition, ẋ = v+δv(t), extracts the large-scale disturbances of thermal envi-
ronment as separated from the other fluctuations. The overall displacement of the
particle with the mean velocity v should cause systematic disturbances in the thermal
environment. Contrastingly, the velocity fluctuations δv(t) will be immediately dis-
persed in a short time∼ τS. The energy (−d ′QL) transmitted to the environment is in
the form of large-scale disturbances and, therefore, is not immediately deteriorated
as the heat of microscopic scale. Systematic disturbances can remain mesoscopic for
some longtime τL( τS) before they are thermalized by, for example, the cascade of
vortices. Therefore, we can in principle devise a machinery to harness a part of this
energy, (−d ′QL), as a systematic work. As long as the systematic disturbances break
the detailed balance, the work extracted from the large-scale component of heat
d ′QL does not contradict with the second law of thermodynamics. The performance
of such a machinery should depend crucially on the lifetime of those systematic
disturbances.20

Coming back to the case of F1ATPase with a rotating actin filament, the idea of
the generalized efficiency can be justified because this efficiency counts (−d ′QL) =
ζ 〈ω〉2 as a part of potentially systematic work done by the motor. The rotation
of actin filament injects work d ′W as systematic disturbances in the environment
over the length of the actin filament. If the lifetime of such disturbances in the

thermal
environment

macroscopicmesoscopicmicroscopic

log(scale)

*

system (x) external
system (a)

Fig. 6.6 Schematic representation of the spatio-temporal scales of fluctuations. The “L”-shaped
symbol connecting the system (x) and “*” indicates the actin filament attached to F1ATPase motor.
The disturbances made by the rotation of actin in the thermal environment decay from the scale *
to microscopic scale along the thick shaded arrow

20 We might recall that the eolian generator of electricity can operate under the winds even if the
weeklong average velocity of wind is 0.
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environment is mesoscopic, i.e., comparable or superior to the fluctuation timescale
of motors motion, then the self-contained stochastic model should incorporate this
large-scale disturbances among the slow variables of the model. If we put another
actin filament alongside the rotating actin filament, the latter will be able to receive
work through such slow variable. Figure 6.6 summarizes the notion of how the
large-scale disturbances in the thermal environment decay in dimension, starting
from the size of actin filament ( motor size) down to the molecular scale.
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Part III
Applications of Stochastic Energetics



Chapter 7
Control and Energetics

For a system external agents act as a main source of free energy, on one hand, and
also as agents that control the processes, on the other hand. For example, when
one drives a car, the car (system) needs two kinds of external agents; fuels (oil and
oxygen) and a driver. From the viewpoint of energetics, the work for controlling the
processes of a macroscopic system is usually negligible as compared with the main
work, such as the combustion of fuel to keep a car going. It is, therefore, reasonable
that standard textbooks of thermodynamics describe the Carnot heat engine without
mentioning the work of attaching or detaching the engine with the heat baths.

In fluctuating mesoscopic systems, however, the situation is different. The work
to control a fluctuating system can be an important part of the total work exchanged
between the system and its external agents. Ignorance of this type of work would
easily lead to paradoxes. If one were to invent a perpetual machine, and if one would
check the consistency of this machine with the second law of thermodynamics, it
would be better to make a mesoscopic model, because the energetics of control
appears naturally in the mesoscopic description.

There have been many studies on the work related to control:

• Paradox of Maxwell’s demon [1]: the “demon” which makes use of thermal fluc-
tuations to realize a perpetual machine of the second kind (see Sect. 4.2.1.2).

• Thermodynamics of computation [2, 3]: theories revealing the minimal irreversi-
ble work to operate a binary digit memory (Sect. 7.1.2 below).

• Feynman ratchet and pawl [4]: a model of autonomous heat engine (see Sect.
1.3.4.2).

• Motor proteins [5]: autonomous chemical engines of molecular scale, such as
linear or rotatory molecular motors or ion pumps. (See Chap. 8).

• Signal transducing proteins [6]: G-proteins, etc., which share a universal molec-
ular architecture with the motor proteins [7].

One of the main questions about the energetics of control is “Can any type of
operations to a system be done quasistatically?” (Sect. 7.1), because we know that
quasistatic work is recoverable. Among the processes of control, there are certain
important cases where the process can never be done quasistatically by construc-
tion. We will call such processes essentially nonquasistatic processes. There are two

Sekimoto, K.: Control and Energetics. Lect. Notes Phys. 799, 223–253 (2010)
DOI 10.1007/978-3-642-05411-2 7 c© Springer-Verlag Berlin Heidelberg 2010
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distinct mechanisms that disable a quasistatic process, and these two mechanisms
come into play often together:

(Case 1) The operation of external system imposes the crossover of timescales
between the system’s relaxation time and the time taken for the operation
(Sect. 7.1.1). Irreversible work directly associated with such operations can,
however, be reduced as small as we want.

(Case 2) A system loses the information about its past history when a sys-
tem becomes equilibrated with a new environment (Sect. 7.1.3). This type
of nonquasistatic process costs certain irreversible work irrespective of the
time of operation. Or, at least up to now we do not know how to reduce the
irreversible work.

In 1960s Landauer [2], Bennett [3], and others have elucidated the minimal irre-
versible work required for a cycle of operations on a single-bit memory. While the
operation of a single-bit memory includes essentially nonquasistatic processes of
(Case 1), this minimal irreducible work and the above mentioned reducible irre-
versible work should be distinguished (Sect. 7.1.2).

The control of free-energy transducers will be discussed separately in Chap. 8.
Another important question of control concerns detection under fluctuations

(Sect. 7.2). How can a mesoscopic system detect external signal particles with max-
imum certainty and minimum cost? While a “gate” correlates actively the objects
of control with the subject system, the “sensor” or detector correlates passively the
system with its surroundings. The two principles for avoiding the thermal noises
from the detection use, respectively, (i) the steric repulsion or (ii) the compensation
of interaction energies.

7.1 Limitations of Quasistatic Operations

7.1.1 * Essentially Nonquasistatic Process is Generally Caused
by Crossover of Timescales τop and τsys

7.1.1.1 Two Timescales, τop and τsys

We will use the term operations to mean generically control and observation.
The timescale of operations has an upper limit, as well as a lower limit (i.e.,
the time resolution). The upper limit is often the maximal time of tolerance, or
the timescales beyond which the constituting elements of the system become unsta-
ble (see Sects. 1.3.3.1 and 3.1.1). We denote by τop this upper limit timescale.1 The
effect of operation on a system depends on the relaxation time of the system. We

1 The “op” is for operation.
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denote by τsys this time. The ratio between these two timescales is sometimes called
the Deborah number, De ≡ τsys/τop.

7.1.1.2 Crossover of Timescales

The crossover of timescales is the phenomenon that the relative magnitudes of τsys

and τop change between τsys  τop and τsys � τop (see Fig. 7.1) during an operation.
More precisely,

(i) The relaxation time of the system, τsys(a), depends on the system parameter, a.
(ii) During a characteristic time of operation, τop, an external system changes the

value of a.
(iii) The change in a is such that the relaxation time τsys(a) changes from the full

relaxation regime, τsys(a) � τop, to the regime of “freezing”, τsys(a)  τop, or
the inverse. (Fig. 7.1 right)

This operation is, by definition, nonquasistatic. Especially, if τsys(af) = ∞ at the
end of the operation (Fig. 7.1 left), whatever large τop cannot satisfy the quasistatic
condition τsys(a) � τop throughout the operation.

τsys(a) τsys(a)

τsys(a)

τopaac

log(time)

log(time)

Fig. 7.1 (Left) τsys(a) vs. a. The figure shows the case where τsys(a) diverges for a ↑ ac. (Right)
Change of τsys(a) across the operation time τop through the change of parameter a. The time axes
should be regarded as logarithmic scale

7.1.1.3 Barrier Height and Relaxation Time

Let us look at a simple example of the crossover of timescales. The system is a single
Brownian particle in the force potential U (x, a) (see Fig. 7.2) and confined in a finite
zone Ωtot with −L/2 ≤ x ≤ L/2. Inside Ωtot the potential energy U (x, a) depends
on the parameter a only in a small zone Ω of the width |Ω| = δ(< L). Outside this
zone, we assume that U (x, a) =const. for any value of a. For simplicity we assume
the symmetry, U (−x, a) = U (x, a), with the maximum being located at x = 0.

The Brownian particle obeys the Langevin equation,

0 = −∂U (x, a)

∂x
− γ

dx

dt
+ ξ (t) (x ∈ Ωtot). (7.1)
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(0,  )

  /2δ− /2δ

L/2− L/2

U a

U a’(0,   )

Ω

Ω tot

x

x

Fig. 7.2 A Brownian particle (thick black dot) in a zone Ωtot ≡ {x | − L/2 ≤ x ≤ L/2} along the
x-axis. The curves show the profiles of the potential energy U (x, a) with ai ≤ a < a∗ (top) and
U (x, a′) with a∗ < a′ ≤ af (bottom) vs. x . The maximum value of the potential is U (0, a) ∼ kBT
and U (0, a′)  kBT , respectively. The profile of the potential U (x, a) changes only in the zone,
Ω ≡ {x | − δ/2 ≤ x ≤ δ/2}

If the height of the potential barrier, U (0, a), is small, i.e., U (0, a)/kBT ∼ 1, the
time τsys is approximately the diffusion time, τ0 ≡ L2/(2D) (D = kBT /γ ), for a
Brownian particle to visit almost entire zone Ωtot. By contrast, if U (0, a)/kBT  1
the relaxation time of the system, τsys(a), is essentially the inverse rate of ther-
mally activated transition across the potential barrier. According to (3.40) the rate is
roughly given by

1

τsys(a)
≡ 1

τ0
e
−U (0,a)

kBT , (7.2)

where we have ignored the corrections in the prefactor due, for example, to the
details of the potential profile.

Now suppose that U (0, ai) ∼ kBT for the initial value ai and U (0, af)  kBT for
the final value af. Then τsys(a) increases from τsys(ai)/τ0 ∼ 1 to τsys(af)/τ0  1
during the operation time τop. For example, if τ0 = 10−9s and τop = 1 h, the
crossover point τsys(a) ∼ τop is attained for U (0, a) ∼ 30kBT . In the regime of
τsys(a)  τop the particle is practically localized within either side of the poten-
tial barrier. Through the crossover of the timescales, the accessible phase space of
the system shrinks almost discontinuously. Moreover, we cannot precisely predict
which subspace the particle will be confined to. The probabilities that the parti-
cle is confined to the left (x < 0) and that to the right (x > 0) of the barrier
are 1/2:1/2.

7.1.1.4 Work to Raise the Potential Barrier

Essentially nonquasistatic process does not necessarily imply a large irreversible
work. We will show that the irreversible part of the work associated with raising
the potential barrier of Fig. 7.2 can be made very small if we carefully choose a
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protocol of raising the potential barrier.2 We will denote by a∗ (ai < a∗ < af) the
value of the parameter a at the crossover of timescales, i.e., τsys(a∗) � τop.3 For ai ≤
a(t) < a∗ the almost quasistatic operation is realizable while for a∗ < a(t) ≤ af it
is impossible in any case because τsys(a(t))  τop.

The optimal strategy to minimize the irreversible work is that we spend most
of the operation time in raising the potential barrier up to U (0, a∗) so that the
associated work is almost recoverable when the barrier will be lowered. During
this stage, the probability density P(x, t) for the particle position x is close to the
canonical distribution over the entire zone Ωtot, Peq(x, a; T ) = e[F(a,T )−U (x,a)]/kBT ,

where e−F(a,T )/kBT ≡ ∫
Ωtot

e−U (x,a)/kBT dx . The associated (almost quasistatic) work
W[ai,a∗] is (see (4.6))

W[ai,a∗] � F(a∗, T ) − F(ai, T ). (7.3)

The error in (7.3), i.e., the irreversible work associated with this slow process, is
approximately proportional to the inverse of the time spent, i.e., ∼ τop

−1, as dis-
cussed in Sect. 5.3.1.

After this almost quasistatic work, we will raise the barrier height from U (0, a∗)
to U (0, af) in a short time. The average work 〈W 〉[a∗,af] associated with this step
during a∗ < a(t) ≤ af is estimated to be

〈W 〉[a∗,af]

kBT
≤ (const.)δ

L
e−U (0,a∗)/kBT U (x, af) −U (x, a∗)

kBT
, (7.4)

Leaving the derivation to Appendix A.7.1, the result (7.4) can be qualitatively
explained: Since the height of the potential barrier U (0, a∗) is already very large
with respect to kBT , the particle almost surely escapes from the region Ω where the
barrier is rising. Therefore, in most cases virtually no work is needed to raise the
barrier. However, in rare cases, with the probability of ∼ (δ/L) e−U (0,a∗)/kBT , a par-
ticle happens to remain within the zone Ω and is “lifted up.” The last process costs
the work of the order of U (0, af)−U (0, a∗). Therefore, we have (7.4). The last work
is not recoverable because in the reverse operation from af to a∗, the probability to
find the particle within Ω at a = af is extremely less than Peq(x, a∗; T ).

Equation (7.4) tells that 〈W 〉[a∗,af]/kBT can be made very small due to the expo-
nential factor, e−U (0,a∗)/kBT . If we take τ0 = 10−13 s and U (0, af)/kBT � 103, then
τop = 1 ms is sufficient to satisfy 〈W 〉[a∗,af]/kBT < 10−7. That is, we need the
irreversible work of less than 10−5% of kBT and the time of 1 ms to establish the
barrier which a particle will not pass before τ0eU (0,a∗)/kBT > 10400 days. Moreover,

2 We discuss here about the irreversible work being directly related to a single action of raising the
barrier: This work should be distinguished from the irreversible work associated with the cyclic
operation to erase a single-bit memory. See Sect. 7.1.2.
3 Practically, it is better to include a “safety factor” to define τsys(a∗)/τop � 10 − 102 rather than
τsys(a∗)/τop � 1. We, however, ignore this point for the simplicity of the argument.
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this 10−7kBT of work is not typical work: for the most realizations, W is practically
0 (� 10−7), while for one realization out of e103 ∼ 10430 the work is W ∼ 103kBT .

The access of particles to an open system from particle environments (reservoirs)
can be controlled by the gates which consist of variable potential barriers between
the system and the reservoirs.4 The crossover of timescales of the type (1), therefore,
occurs inevitably whenever the open system is attached or detached with particle
environments.

7.1.1.5 Attachment/Detachment with a Thermal Environment

Attaching or detaching a (closed) system with a thermal environment also causes the
crossover of timescales. When a system is in contact with a thermal environment of
temperature T , the system’s energy undergoes temporal fluctuations. From the view-
point of energetics, the relaxation time of a system, τsys, is the time over which the
temporal history of the system’s energy approaches the canonical distribution. If the
system is completely detached from its thermal environment, the system’s energy
becomes fixed. The relaxation time, τsys, is then infinite. Therefore, the operation
of detaching a system from its thermal environment inevitably causes crossover of
timescales.

Can we calculate the work associated with attachment/detachment with a thermal
environment? In the Langevin equation (7.1) only the parameter γ characterizes the
interaction between the system and its thermal environment.5 One might regard γ as
an externally controlled parameter. But the framework of stochastic energetics has
excluded the control of the interface between a system and thermal environments
(Sect. 4.1.1.1). A way to go around this constraint is schematically shown in Fig 7.3.
We will call this device the “clutch mechanism.” We introduce an auxiliary degree
of freedom, say y, which always stays in contact with a thermal environment, and
whose fluctuating motion is described by a Langevin equation. The variable of the
main system, say x , does not interact any more with thermal environments, but it
interacts with this auxiliary degree of freedom, y, through an interaction potential
energy, say φ(x, y, χ ), where χ is the control parameter of operation.6 One may
interpret that the auxiliary variable y stands for those fluctuation modes of the
thermal environment which is coupled to the system variable x .7 The system of
Langevin equations is

dx

dt
= p

m
,

dp

dt
= −∂U (x, a)

∂x
− ∂φ(x, y, χ )

∂x
, (7.5)

4 Sect. 7.2.2 below.
5 Remember that the random force ξ (t) is also characterized by γ kBT .
6 We reserve a for the control parameter of the main system.
7 See the discussion at the end of Sect. 6.3.2.
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Fig. 7.3 A clutch mechanism
to attach/detach a system
with a thermal environment
using an auxiliary variable y
and an interaction potential
φ(x, y, χ)

χx,y,(        )φ

m

,

U x,a (     )

γ

x

T

y

0 = −γ dy

dt
+ ξ (t) − ∂φ(x, y, χ )

∂y
. (7.6)

In (7.6) and in Fig 7.3 we assumed that y is a rotational degree of freedom (i.e.,
angle) so that its Brownian motion is confined within a periodic domain of period
2π . We assume φ(x, y, χ ) such that (see Fig 7.4) for χ = 0 there is no energetic
coupling between x and y, i.e., φ(x, y, 0) = 0, and for χ = 1 the variation of y is
highly correlated with that of x . For 0 < χ < 1, change of φ(x, y, χ ) is supposed
to be monotonous with χ .

When the parameter χ is decreased down to the decoupling limit χ = 0, the
crossover of timescales is unavoidable with whatever large τop.8 We will use the
clutch mechanism to model the Carnot heat engine (Sect. 8.1.1) and the total work
to operate χ parameters will be calculated in Sect. 8.1.1.2.

φ

0 2

k TB>>

k TB~

k TB<<

4 6π π π
x−y

Fig. 7.4 Potential function used for the clutch mechanism, φ(x, y, χ) vs. x− y, is shown for χ � 0
(bottom curve), 0 < χ < 1 (middle curve), and χ = 1 (top curve)

8 There is a secondary crossover of timescales in the opposite limit, χ → 1 if φ(x, y, 1)  kBT .
For high barriers, the slippage between the variations of x and y is blocked.
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7.1.1.6 Remarks

Generality of the Crossover of Timescales and Spatial Scales

Figure 7.2 represents a naı̈ve oversimplified picture of the glass transition, where
lowering temperature or changing other fields splits the equilibrium states into more
than one (meta) stable states.

The crossover of timescales has long been known in quantum chemistry. The
Born–Oppenheimer approximation assumes that the electrons’ state follows quickly
enough the movement of atoms or ions [8]. But when the two atoms are grad-
ually separated, the rate of the electronic transition between the atoms becomes
smaller and smaller with the increase of the interatomic distance. Therefore, the
timescale of the electronic transition diverges during this process. Eventually the
Born–Oppenheimer approximation becomes invalid.

The crossover of spatial scales has been studied in quantum mechanics. The
Wentzel–Kramers–Brillouin (WKB) approximation [9] assumes that the de Broglie
wavelength of the particle, 2π/k, is much shorter than the length scale over which
this wavelength varies. The de Broglie wavelength depends on the total energy
E and the potential energy U (x) through �k = √

2m(E −U (x)), where � is the
Planck constant/2π and m is the mass of the particle. The turning point x∗ is
defined by E = U (x∗). At this point the de Broglie wavelength diverges. The WKB
approximation becomes, therefore, inevitably invalid as x approaches the turning
point.

Auto-Adjusting Timescales

In the above examples the timescales are controlled by external operations. When
the system’s relaxation time τsys depends on the system’s state, τsys can be adjusted
by itself in the vicinity of the timescale of operation τop. A very simple model of
aging and plastic flow show that τsys approaches to τop from below and from above,
respectively. The models are described in Appendix A.7.2.

Consequences of the Discontinuous Change of Accessible Phase Space

As shown in Sect. 7.1.1.4, the irreversible work related to the crossover of timescales
can be made small by suitably choosing the protocol of operation. Then what is the
major outcome of this type of essentially nonquasistatic process?

The answer concerns the change of accessible phase spaces for the system.
The final state of the system is confined to a subset of phase space which has
been entirely available before. The reduction of accessible phase space contains
the memory of either the external operation or the fluctuations in the environ-
ment when the crossover of the timescale took place. This memory can have an
influence on the subsequent response of the system. In the following Sect. 7.1.2
we describe the irreversible work to operate a single-bit memory as a typical
example.
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7.1.2 Minimal Cost of the Operation of Single-Bit Memory
is Related to the Second Law

Operation of a single-bit (binary digit) memory uses the crossover of timescales.
The objects of the present section are:

I. To give a physical expression of the memory: A bit memory is a physical state
of the system. This information can be changed as a physical process, either
through the operations by the external system or through the fluctuations due to
the interaction with the environment.

II. To relate the irreversible loss of information with the irreversible work: For a
bit memory, the cyclic operation of overwriting is a basic physical process. Its
energetics is described.

III. To describe “to know” in physics’ language (Sect. 7.1.2.3): The process of
copying the information is analyzed, including its minimal cost.

The basis of this subject was founded by Landauer [2] and Bennett [3] (see a survey
[1]). They have shown that the work of overwriting a memory is no less than the
work which “Maxwell’s demon” can extract. Therefore, no perpetual machine of
the second kind can be constructed on the basis of memory operations. Stochastic
energetics provides an explicit formulation of the minimal irreversible work along a
single realization of memory operation.

7.1.2.1 A Model of Bit Memory Operations

A single-bit memory is realized by a state point (“particle”), x, within a double-well
potential, U (x, a, b). See Fig. 7.5.

A

B C

D

A D

B C

Asymmetry

B
ar

ri
er

Fig. 7.5 A cycle of operation of overwriting, which consists of the erasure, E : A → B, and the
subsequent writing, W : B → C → D → A
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The particle is in contact with a thermal environment at temperature T . Neglect-
ing the inertia effect, x obeys the following Langevin equation:

γ
dx

dt
= −∂U (x, a, b)

∂x
+ ξ (t), (7.7)

where γ is the friction coefficient, ξ (t) is the white Gaussian process of zero mean
with 〈ξ (t)ξ (t ′)〉 = 2γ kBT δ(t − t ′). The operation requires two parameters, a and b
[2]. The parameter a controls the asymmetry of the potential to bias the memory to
take a desired state, while the parameter b controls the barrier height of the potential.
U (x, a, b) = −ax + b(x2 − 1)2 is an example.

We split the x-axis into the left half Ω0 = (−∞, 0) and the right half Ω1 =
(0,∞). Then the states σ = 0 [σ = 1] of the memory are assigned to x ∈ Ω0

[x ∈ Ω1], respectively.
By the dashed horizontal line and the shaded zone in Fig. 7.5 A–D, we denote the

zone of (free) energy which the particle practically never attains within τop if it starts
from the minimum of the potential. For example, in Fig 7.5A, the particle remains
within one of the valleys, that is, the state of the memory σ is stable. Likewise, in
Fig 7.5D the memory is in σ = 1 state. By contrast, in Fig 7.5B, C, the system’s
relaxation time τsys is less than τop. The memory σ can flip between 0 and 1.

The counterclockwise cycle in Fig. 7.5, A→B→C→D→A, is the operation of
overwriting. This operation is decomposed into the process of erasing memory, E ,
and the process of writing memory, W:

Erasing, E : A → B,

Writing,W : B → C → D → A. (7.8)

Suppose that the system has retained a memory state, σ, in A. Through the process
E, this memory is lost. Then by the process W, the memory is forcedly reset to the
state σ = 1. In order to reset to the state σ = 0, the profiles of C and D should be
replaced by their mirror images C* and D*, respectively.

The Timescales and Branching of Protocol

In Fig. 7.5 the operations A ↔ B and A ↔ D are the essentially nonquasistatic
processes, as discussed in Sects. 7.1.1.2. Through these transitions, the accessible
phase space for x(t) changes discontinuously.

To look at the timescales more systematically, let us introduce two relaxation
times: τ (0→1)

sys associated with the transition of σ from 0 to 1, and τ (1→0)
sys from 1 to 0.

Therefore, four situations are possible with respect to the timescales:
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Fig. 7.6 The cycles of
overwriting process viewed
from the timescales. See the
text (   )lh

a

b

A

B

D* (hl)
hh

D
(   )

(   )ll

(hh) : τ (0→1)
sys /τop  1 and τ

(1→0)
sys /τop  1

(h�) : τ (0→1)
sys /τop  1 and τ

(1→0)
sys /τop � 1

(�h) : τ (0→1)
sys /τop � 1 and τ

(1→0)
sys /τop  1

(��) : τ (0→1)
sys /τop � 1 and τ

(1→0)
sys /τop � 1. (7.9)

Now the two control parameters (a, b) are essentially reflected in ln[τ (0→1)
sys /τ (1→0)

sys ]
and ln[τ (0→1)

sys τ (1→0)
sys /τ 2

op], respectively. Therefore, the operations of overwriting and
the timescales can be related as shown in Fig. 7.6. In this schema, the important
part of the cycle is the vertical process, A→B. While the external system does the
same operation along a = 0 line, the memory state at A depends on the previous
operation, either from D or from D*. Therefore, it is often said that this erasure
process E is the origin of irreversibility.

7.1.2.2 Energetics of the Writing and Erasure of a Bit Memory

Hereafter we consider only slow operations to change a and b.9 Then we ignore
the irreversible work of almost quasistatic process. Also, we ignore the irreversible
work directly associated to the essentially nonquasistatic operations based on the
argument in Sect. 7.1.1.4.

Irreversibility of the Operation of Overwriting

If we do the erasing process E and immediately retrace it, i.e., A→B→A, there is
practically no irreversible work. The same is true if we do the writing process W
and immediately retrace it, i.e., B→C→D→A→D→C→B, because the state
is definitely σ = 1 at the turning stage A. Furthermore, if we do the sequential
processes, E → W , and immediately retrace them in the reverse order, i.e., A→
B→C→D→A→D→C→B→A, there is no irreversible work. One might then
expect that any process along this circle is reversible. In fact it is not the case. For
example, along the path B→C→D→A→B→A→D →C→B, the external

9 cf. Sect. 5.3.1.
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system loses control of the state σ after the process, A→B, as discussed in the
above. If upon the operation of B→A the memory comes back to σ = 0, then the
subsequent operations, A→D→C→B, will cost a work much more than kBT . This
is an example of the consequence of the discontinuous change of accessible phase
space (Sect. 7.1.1.6).

Furthermore, we will see below that the total work for the overwriting, A→B→
C→D→A, is nonzero, bounded below by kBT ln 2 per cycle.

Estimation of the Work of Writing: W
The operation B→C→D can be done quasistatically. Also the operation D→A
costs no work since, after the process B→C→D, the state is surely σ = 1. In the
last process, D→A, the potential energy U (x, a, b) can, therefore, be replaced by
an effective potential U eff,1(x, a, b), where U eff,σ (x, a, b) (σ = 0 or 1) is defined by

U eff,σ (x, a, b) =
{

U (x, a, b) (x ∈ Ωσ )
∞ (x ∈ Ω1−σ )

. (7.10)

The work for the writing process, WBCDA, can therefore be given as the quasistatic
work: Let us introduce the configurational free energies, F(a, b;Ω0 ∪ Ω1) and
F(a, b;Ωσ ), corresponding to U (x, a, b) and U eff,σ (x, a, b), respectively, by

e−F(a,b;Ω0∪Ω1)/kBT ≡
∫

Ω0∪Ω1

e−U (x,a,b)/kBT dx, (7.11)

e−F(a,b;Ωσ )/kBT ≡
∫

Ω0∪Ω1

e−U eff,σ (x,a,b)/kBT dx (7.12)

=
∫

Ωσ

e−U (x,a,b)/kBT dx .

Then the work of writing is expressed as follows with probability 1:10

WBCDA = F(aA, bA;Ω1) − F(aB, bB;Ω0 ∪Ω1), (7.13)

Estimation of the Work of Erasure: E
Let us calculate the work for the reverse operation of erasure, WBA, because it is
intuitively simpler than the erasure process WAB, and because we know that these
two works cancel with each other: WAB = −WBA. WBA writes

10 Hereafter aA, etc., denotes the value of parameter a at the stage A, etc.
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WBA =
∫ bA

bB

∂U (x(t), aA, b(t))

∂b
db(t), (7.14)

where we used aA = aB. By an analogy to Sect. 7.1.1.4, we raise quasistatically the
barrier from b = bB up to b∗ such that τsys � τop for b = b∗. The corresponding
work is

WB∗ =
∫ b∗

bB

[∫

Ω0∪Ω1

∂U (X, aA, b)

∂b
Peq(X, aA, b)d X

]
db. (7.15)

Then for b∗ < b ≤ bA, we have τsys  τop. Suppose that x stays in a domain Ωσ

during this regime. The work of this part can be calculated as a quasistatic work with
the effective potential energy, U eff,σ (x, a, b). The point is that twice the canonical
distribution function (Peq(X, a, b) = e−U (X,a,b)/kBT /Z ) should be used because the
state is confined in Ωσ :

W∗A =
∫ bA

b∗

[∫

Ω0∪Ω1

∂U eff,σ (X, aA, b)

∂b
2Peq(X, aA, b)d X

]
db

=
∫ bA

b∗

[∫

Ω0∪Ω1

∂U (X, aA, b)

∂b
Peq(X, aA, b)d X

]
db. (7.16)

To go to the second line, we have used the symmetry of U (X, aA, b) and of
Peq(X, aA, b). Adding WB∗ and W∗A, we obtain the total work WBA

WBA = F(aA, bA;Ω0 ∪Ω1) − F(aB, bB;Ω0 ∪Ω1)

= −WAB. (7.17)

Total Work of the Overwriting Cycle, E+W
By adding WAB and WBCDA, we have

WAB + WBCDA = F(aA, bA;Ω1) − F(aA, bA;Ω0 ∪Ω1)

= kBT ln 2, (7.18)

because (7.11) and (7.12) give e−F(a,b;Ω0∪Ω1)/kBT = 2 e−F(a,b;Ωσ )/kBT . This is the
main result of [2, 3]: Every operation of overwriting costs at least kBT ln 2 of
irreversible work. By the stochastic energetics the result holds for an individual
process with the probability of one in the limit of slow operation.

The heat associated with this cycle has been analyzed using the stochastic ener-
getics [10].11 In the language of information, the memory σ specified through the

11 [10] used the Bennett’s definition of “copying” of memory. Since this definition does not com-
plete a cycle, their results differ apparently from those in the text. However, these formulations are
mathematically equivalent.
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preceding writing process is lost irreversibly during the erasure process. The statisti-
cal entropy associated with the variable σ has been increased by ln 2. The ensemble
averaged irreversible work has been given in [11]. More recently [12] incorporated
mechanical approach of the type of Jarzynski nonequilibrium work relation, and
confirmed both analytically and numerically kBT ln 2 as the lower bound of the aver-
age irreversible work. [12] also analyzed the case where U (0, a)/kBT is moderately
large.

7.1.2.3 Copying a Memory

What Does “To Know” Mean?

The “memory” is the state of a system (“bit memory”). The subject who “knows” the
memory is, therefore, this system, not the external agent that controls the parameters
a and b. For such ignorant external agent, the cycle of overwriting operation in
Fig. 7.5 is optimal with the least average dissipation. Now we define “to know” (to
acquire a knowledge) as the process by which a fixed memory of a system, called
data bit [3], is correlated to the state of another system, called movable bit. In
the ideal process “to know” the memory of a movable bit is rendered equal to the
memory of the data bit with probability 1. We will say that the (memory of) data
bit is copied to the (memory of) movable bit.

Cost-Free Copying Would Constitute a Perpetual Machine

A simple thought experiment shows that the external agent must pay a certain irre-
versible work to copy the data bit to the movable bit. Otherwise, the second law of
thermodynamics would be violated.

Suppose that an external agent can copy the memory of a given data bit onto n
( 1) movable bits without cost. At this point, the external agent does not know
the value σ of the copied bit. As the next step the external agent applies the reverse
cycle of Fig. 7.5, i.e., A → D→ C→ B→ A, to one of those movable bits. If
σ = 1, the external agent will gain the work � kBT ln 2 from the reverse cycle. If
σ = 0, the work by the external agent is positive and much larger than kBT ln 2.
The external agent thus knows the value of σ .12 Then as the third step, the external
agent applies to the remaining (n − 1) copies the “correct” reverse cycle, either
A → D→ C→ B→ A of Fig. 7.5 if σ = 1, or its mirror image (a →−a) if σ = 0,
so that the external system gains work of � kBT ln 2 from the (n − 1) copies. This
is possible because the external agent knows what σ is. In this way, the external
agent could obtain a positive net work which increases with n. The whole operation
would, therefore, constitute a perpetual machine of the second kind, which extracts
a work from an isothermal environment.

12 This operation need not be very efficient as long as n  1.
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The Cost of Copying is No Less Than kBT ln 2 Per Movable Bit

The operation of copying is a cycle: Every time a new data bit of unknown state
σ is given, the external agent must erase the previous memory of a movable bit σ ′

to replace it with the value of σ . See Fig. 7.7. Therefore, the work of copying is
derived in the same way as that of overwriting. We will show this below.

We will denote by x0 and x the degrees of freedom of the data bit and the mov-
able bit, respectively. To simplify the analysis, we will ignore the thermal fluctuation
of x0 (the left column in Fig. 7.7), although thermal fluctuations of x0 within the
domain Ωσ will not change the conclusion. The potential energy for the movable
bit, U (x, a, b; σ ), has two control parameters, a and b. The parameter b controls the
barrier height of the double-well potential for x , and the parameter a controls the
distance between this bit and the data bit.

Initially the two-bit memories are well isolated from each other, so that there
is no interaction between the memories x0 (or σ ) and x . U (x, a, b; σ ) then takes a
symmetric form (A in Fig. 7.7). At this position, the potential barrier for x is low-
ered through the parameter b (A→B in Fig. 7.7). Then the movable bit is brought
into interaction with the data bit. U (x, a, b; σ ) then becomes asymmetric in a
σ -dependent manner (B→C in Fig. 7.7).13 At this position, the potential barrier
for x is raised (C→D in Fig. 7.7). Finally the movable bit is brought apart from the
data bit (D→A in Fig. 7.7).

Movable bitData bit

C

D A

A

B

Fig. 7.7 The data bit (left column), and the energy involving movable bit and the interaction
energy between the two bits, U (x, a, b, σ ) (right)

13 We assume that the profile of U (x, a, b; σ ) and that of U (x, a, b; 1−σ ) are of the mirror images
along the x-axis.
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We realize that the complete cycle is essentially the same as the cycle of overwrit-
ing a bit memory shown in Fig. 7.5. The minimum cost of making copy of the data
bit is, therefore, kBT ln 2. The only difference is that the asymmetry of the potential
energy in the copying process is not determined by the control parameter a but is
determined by the memory (σ ) of the data bit. To conclude, we need the work to
be no less than kBT ln 2 per movable bit. Therefore, we cannot make a perpetual
machine.

7.1.3 * Essentially Nonquasistatic Process Can Take Place upon
the Relaxation from Non-Gibbs Ensembles of Fluctuations

The second type of essentially nonquasistatic processes is related to the erasure
process E in Sect. 7.1.2: The nonequilibrium state of the system is irreversibly equi-
librated by an equilibrium environment.

7.1.3.1 Setup of the Problem and the Result

Let us consider the following cyclic operation of a system with two thermal envi-
ronments. See Fig. 7.8(a) [13]. In (i) the system is thermalized with the thermal
environment of temperature T1. Then (ii) the system is slowly detached from the
environment. (iii) Under complete isolation, the control parameter is slowly changed
from a1 to a2. Then (iv) the system is slowly attached to the second thermal envi-
ronment of temperature T2. After the thermalization, the operations are retraced
slowly back to the state (i). The value of a2 is chosen so that, upon attachment to
the environment of temperature T2, no energy is exchanged on the average between
the system and the new environment. The quantity of interest is the work needed to
change the parameter a:

W =
∫ a2

a1:(i i)→(i i i)

∂H (x(t), p(t); a(t))

∂a
◦da(t)+

∫ a1

a2:(i i i)→(i i)

∂H (x(t), p(t); a(t))

∂a
◦da(t),

where H (x, p; a) is the system’s energy as a function of position x and the momen-
tum p. We ignore the work of detachment and attachment with the thermal environ-
ments, since they were shown to be reducible as small as needed.

If the system is macroscopic, the choice of a2 amounts to equalizing the system’s
temperature to T2 before the contact with the second heat bath. Under this condition,
the process is reversible in the limit of quasistatic adiabatic operation, and the work
W is 0.14

For the mesoscopic system, several aspects are different from the macroscopic
case:

1. The work W fluctuates from one realization to the other, however, slowly the
operations are done.

14 Unlike the Carnot cycle, the parameter a is not changed under isothermal condition.
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Fig. 7.8 A protocol including the detachment and attachment with heat baths (a) or with a particle
reservoirs (b). The numbers, (i), etc., refer to those in the text. The system’s parameter a is changed
in the processes (ii)�(iii), where the system is isolated from these environments. (The figure is
modified from Fig. 1 of [13])

2. The ensemble average of W is nonnegative even in the limit of slow operations.15

Only for special class of systems (see below) the average work 〈W 〉 can tend to
0 in the limit of slow operations.

A similar problem can be set up for the open system. See Fig. 7.8(b). Here the
operations of detachment–attachment are done with the particle environments of
different chemical potentialsμ1 andμ2. And the operation of (ii)�(iii) is quasistatic
isothermal process without particle exchange. The value of a2 is chosen so that, upon
the making contact with the environment of chemical potential μ2, no particles is
exchanged on the average between the system and the new environment. Again the
average work 〈W 〉 is positive, except for the special systems where 〈W 〉 tends to 0.

7.1.3.2 Analysis of the Operations

Below we will analyze the elementary physical processes included in this intrigu-
ing cycle. As for the proof of the above statements, interested readers may consult
[13, 14]. The paper uses the Kullback–Leibler distance defined for the ensemble of
processes.

Slow Detachment from an Environment

This is essentially a nonquasistatic process. Although the associated work can be
made negligibly small, the system’s state becomes constrained after this operation:

15 Roughly speaking, the system’s energy at the end of return operation, (iii)→(ii), is on average
higher than the initial thermalized state. Therefore, during the operation (ii)→(i) the heat 〈(−Q)〉 =
〈W 〉 is dissipated to the thermal environment.
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in Fig. 7.8(a) the system’s energy E is constrained to obey dE = dW because the
heat exchange is blocked, and in Fig. 7.8(b) the number of particles n is fixed. The
work to change the parameter a depends on these fixed values. Therefore, W fluc-
tuates from one realization to the other, however, slowly the operations are done.

Just after the detachment the distributions of E in Fig. 7.8(a) or n in Fig. 7.8(b)
obey, respectively, the canonical or grand canonical distributions if the detachment is
slow enough. In fact, the end of the detaching process (either (i)→(ii) or (iv)→(iii))
is very unpredictable for the external system. Therefore, the values of E or n at this
last moment will be found with the probability proportional to their residence–time
distribution. If the detaching process from an environment is quasistatic except at the
last moment, then this distribution is the Gibbs statistical weight at the temperature
or chemical potential of the (detaching) environment.

Adiabatic Process or Process Without Particle Exchange

The operations between (ii) and (iii) are deterministic in the energy E for Fig. 7.8(a)
and in the particle number n for Fig. 7.8(b). For (a) the so-called adiabatic invariant
remains constant during this process, while for (b) it is n that is invariant. In the
course of this process, the probability distributions of these quantities are trans-
formed accordingly from the initial Gibbs statistical weight to another distributions
which depend on a.

At the end of these operations, distributions of E or n are generally different
from the Gibbs statistical weight for the system at any T or μ, respectively. The
exceptions are those systems in which (i) E or n take only two quantized values
or (ii) the potential energy U (x, a) takes the form of k(a)|x |α with α a constant.16

Generally, the system’s E or n are brought to non-Gibbs distribution.

Attachment with a New Equilibrium Environment

This operation renders the above mentioned non-Gibbs distributions of energy E
or number of particles n to the Gibbs statistical weight appropriate for the new
environment. This process is irreversible.

We could avoid this irreversibility if there is a macroscopic and reversible oper-
ation that transforms the non-Gibbs distribution to a Gibbs distribution before the
operation of attachment. Except for the special systems [15] there is no such pro-
tocol. The key issue is that it seems impossible to select reversibly those systems
which have a prescribed energy.17 Let us call such hypothetical reversible cycle
selecting operation.

16 For quantum system, this condition leads to the relations among the energy levels, Eν (a′) −
E0(a′) = φ(a, a′)[Eν (a) − E0(a)], where φ(a, a′) is a given function. For the open system the list
of exceptional cases is not exhaustive.
17 A similar argument should be made for the open system.
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The argument against this operation is as follows [16]. There is a concrete
reversible operation to extract positive work from an initially microcanonical ensem-
ble (i.e., the systems having the same energy).18 Let us call this operation the
work-extracting operation. Now this operation is incompatible with the existence
of the selecting operation. In fact, if the both operations could be done reversibly,
we could (i) detach a system from a thermal environment, (ii) use the selecting
operation to check if the system has a prescribed energy, then (iii) if yes, apply the
work-extracting operation to extract a work, or if otherwise, do nothing, and finally
(iv) reattach the system to the original thermal environment. In this way we could
constitute a perpetual machine of the second kind.

In conclusion, at least to our present understanding, the cyclic process in Fig. 7.8
is generally unavoidably irreversible because of an essentially nonquasistatic pro-
cess of attachment to the environment.

7.2 Detection and Control Under Fluctuations

7.2.1 * Two Types of Error-Free and Unbiased Detection
Under Fluctuation are Possible

Detection is a process that correlates the exterior of a system to the system’s state.
We focus on the detection of a particle coming randomly from outside to the system.
Signal particles undergo random motion in the environment. When one of them
happens to arrive at the detection site of a sensor, and if the sensor establishes a
correlation with this event, the sensor acquires a signal as information.

Examples of signal detection are found everywhere. In biology, some motor pro-
teins work at very good efficiency of free-energy conversion.19 Those motor proteins
must not spend a lot of energy source in the detection of the fuel particle (e.g.,
ATP) or of the object of work (e.g., actin filament). Some gene regulations are very
precise, while they use highly irreversible reactions with kinase or phosphatase, etc.
In optics, a CCD camera uses photoelectric transitions to detect light signals, and its
signal-to-noise ratio depends on the temperature.

Now, questions are

(1) Is it possible to realize a mesoscopic single-particle sensor which works cor-
rectly without bias or errors under thermal fluctuations?

(2) If it is possible, what aspects of the usual sensors in the macroscopic world
should be abandoned?

These are the main themes of this section.

18 For the canonical ensemble, the similar operation immediately contradicts the second law of
thermodynamics. But it is possible for microcanonical ensemble.
19 Some claims that the motor proteins like F1ATPase are working at about 100% efficiency.
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7.2.1.1 Half-Sensors

Let us distinguish the two notions about the detection, which we call IN/OUT and
ON/OFF. A signal particle is said to be IN if it is present at the “detection site”
of the sensor, and otherwise it is OUT. The sensor is assumed to take two internal
states ON and OFF. The ON [OFF] states of the sensor are designed to be positively
correlated to the signal particle’s state, IN [OUT], respectively. IN and OUT are the
objective fact about the presence or absence of the particle, while ON and OFF are
the perception by the sensor about the particle.

Figure 7.9(a) shows those correlations in the ordinary sensor. The two shaded
zones are prohibited to occur and these constraints allow one-to-one correspondence
between the sensor’s states and the arrival of signal particles.

In the mesoscopic scale, the unbiased and error-free detection is still possible
if we sacrifice one of these two prohibition zones. We define two types of half-
sensors by the tables Fig. 7.9b, c. In response to the particle’s state IN/OUT, these
sensors are multivalued functions in the range ON/OFF. The “half-absence sensor”
can have the state OFF only when the particle is OUT. Thus if the sensor thinks
that the particle is OFF, the signal particle is surely OUT without bias or errors.
But this “absence” sensor can miss the particle’s absence OUT by thinking it be
IN. The “half-presence sensor” works completely complementary manner to the
“half-absence sensor.”

The half-sensors can be designed to work reversibly (see below).20 The pos-
sibility of the usual sensor (Fig. 7.9a) on the mesoscopic scale is not known. A
usual sensor can be made as the composite of Fig. 7.9b, c. This corresponds to the
product of two Boolean variables. Since the product of two Boolean variables is
an irreversible operation, the function of such composite sensor might need some
free-energy resource (see [17]).

The utilities of the two types of half-sensors are different. For example, if the
signal particle is “toxic” for a system, the system can use the OFF sign of the
half-absence sensor. This OFF signal is analogous to the regulation of gene tran-
scription by a repressor protein [18], since the transcription is surely prohibited
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Fig. 7.9 The functions of the usual sensor (a) and the two kinds of half-sensors (b) and (c). The
black squares indicate the forbidden situations

20 Therefore, the half-sensors are different from “to know,” which is irreversible and essentially
nonquasistatic process.
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by the repressor protein bound to the operator site on the DNA. By contrast, if the
particle is the “food” for a system, it can use the ON sign of the half-presence sensor.
This is analogous to the activation of the repressor protein, since the activation of
the repressor surely requires the signal particle. Also the uptake of ATP molecule
by a molecular motor will be analogous to the half-presence sensor.

7.2.1.2 Construction Principles of the Half-Sensors

On the scale of thermal fluctuations, the only way to avoid the errors of detection
due to thermal noises is to use the high (free) energies of interaction with respect
to kBT . At the same time, the total free energy of the sensor plus the signal particle
should be unbiased upon detection. In order to meet these two conditions at the same
time, there are two principal ways. The half-absence sensor uses the short-range
steric (repulsive) interaction, while the half-presence sensor uses the compensation
between strong attraction and strong restoring force. Below we use a 1D represen-
tation for the particle’s position x and use a sensor’s state variable a as the second
coordinate.

Interaction Potential of the Half-Absence Sensor

Steric interaction between two bodies excludes the coexistence of these two at the
same position. For example, if a coffee cup and a coffee pot cannot be put on a
saucer at the same time, the coffee cup on the tray implies the absence of the coffee
pot. The half-absence sensor uses this principle.

We assume that the position of a signal particle, x , can move in a half space
0 ≤ x <∞ and that x = 0 corresponds to the detection site (Fig. 7.10 Left). The
state variable of the sensor, a, represents the leftmost point of a movable object
(thick bars in Fig. 7.10 Left). a is allowed to move in the region of −1≤ a ≤ 0. A
steric interaction is assumed between this object and the particle (thick dot). Then
the signal particle is surely in the OUT state whenever the movable object is in the
OFF state.21 By construction, the total energy of the sensor plus the signal particle
is constant over the allowed region on the reaction plane (shaded in Fig. 7.10 Right).
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Fig. 7.10 Left: Schematic representation of the half-absence sensor. The thick bar (a: the leftmost
position) and the thick dot (x) repel with each other by steric repulsive interaction. Right: On the
(x, a)-plane the shadowed region is accessible without bias

21 The total energy of the ligand–sensor system, U (x, a), is written as U (x, a) = U0 for x≥ a+1
and U (x, a) = ∞ otherwise. The sensor’s states are assigned as OFF for a≥−1+δ and as ON for
−1≤a<−1+δ, respectively, with a small δ>0.
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Fig. 7.11 The notion of
induced fit. As the signal
ligand is bound progressively
by the protein, the protein
deforms accordingly

Interaction Potential of the Half-Presence Sensor

The notion of the compensation of energies has long been discussed in biology
[19]. Suppose that a signal ligand (particle) can gradually make strong attractive
interactions with the sensor protein. Suppose also that this interaction causes the
sensor to deform with a large free-energy cost. 22 See Fig. 7.11. Koshland called
this deformation induced fit [19]. Now if the gain of the attractive interaction energy
is almost compensated by the cost of sensor’s deformation up to ∼ kBT , the defor-
mation of the sensor surely indicates the presence of the ligand particle without bias.
In this case the induced fit realizes the half-presence sensor with a being the sensor’s
deformation.

Figure 7.12 Left shows schematically the relation between the signal particle x
and the sensor’s state a. If the signal particle is present (x ∼ 0), the short-range
attraction between x and a comes into action while the displacement of a from
the resting position a = −1 costs deformation energy. As a result of the energy
compensation, there appears an unbiased corridor of total free energy (shadowed
region in Fig. 7.12 Right ).23 More precisely, the sensor’s state is ON for a ≥ −1+δ

OFF

OFF
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OUT

IN

0−1 a x
−1

0

a
x

(  ,  ) = const.x  aU

Fig. 7.12 Left: Schematic representation of the half-presence sensor. The filled square (a: sensor
“tip”) and the thick dot (x) attract each other for |x −a| ≤ 1, while the displacement in the a > −1
region provokes a restoring force. Right: On the (x, a)-plane the shadowed region is accessible
without bias

22 The cost may be either energetic such as of mechanical deformations or entropic such as of
folding. The detail of the process may contain the aforementioned jump-and-catch process.
23 The total energy of the ligand–sensor system, U (x, a), is the sum of short-range strong attractive
interaction energy, −Mφ(a − x) (MkBT ), between the ligand particle and the sensor “tip” and
also strong restoring potential Mφ(a). Here φ(z) (−∞ < z ≤ 0) is φ(z) = 0 for z ≤ −1 and
monotonically increasing from φ(−1) = 0 to φ(0) = 1.
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and OFF for −1 ≤ a < −1+ δ, respectively, where δ is determined as the position
where the deformation energy exceeds some kBT .24

Remarks

Discretization of state and the half-presence sensor: In looking at Fig. 7.12, one
might wonder if the sensor is actually bijective, like Fig. 7.9a. However,
the discretization of the sensor’s state and the particle’s position requires
the gray zone of (IN, OFF), because the judgement of OFF→ON requires
the presence of particle (IN) so that an energy more than kBT is exchanged
between the attracting potential and the restoring potential.

Timescale of sensing: The diffusion of small signal particles can be too rapid for
the sensor to follow adiabatically.25 This is also the reason to distinguish the
particle’s position and the sensor’s state.

Relation between the half-absence sensor and half-presence sensor: The half-pre-
sence sensor is, in some sense, on the basis of the half-absence sensor. In
fact, for the latter sensor, the object that interacts sterically with the signal
particle (the thick bars in Fig. 7.10 Left) must be sensed elsewhere.

Signal sensing must have a consequence: An isolated sensor serves nothing. The
state of the sensor must be coupled to its “downstream” mechanisms, e.g., by
accelerating an enzyme reaction, modifying the access of another molecule
to the system, etc. Through this coupling, the sensing process can become
biased and irreversible.26

Technical Remarks

Reaction coordinate of the presence sensor: In Fig. 7.12 right, the detection of the
particle occurs through an unbiased corridor corresponding to the unbiased
valley of the total potential energy. Therefore, a single reaction coordinate

x̃ ≡ x − a (0 ≤ x̃ <∞) (7.19)

can parametrize this pathway. The inversion to the values of x and a is
given by

x(x̃) = max(x̃ − 1, 0), a(x̃) = −min(x̃, 1). (7.20)

By definition U (x(x̃), a(x̃)) is constant.

24 i.e., Mφ(−1 + δ) ∼ kBT . The consistency of these assignments with the above definition can
be verified by scrutinizing the graphs of M{φ(a) − φ(a − x)} vs. a for various values of x .
25 Biological sensor may be designed to avoid this.
26 Sect. 7.2.1.4 is an example.
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Fig. 7.13 Left: the (x, a) pathway between the right environment (x > 0) and the left environment
(x < 0) through the detection site x = 0. Right: extended reaction coordinate x̃ , where the a
coordinate is duplicated to −1 ≤ x̃ ≤ 1

Extension of the reaction coordinate: If a half-presence sensor is accessible from
two-particle reservoirs, the two access routes can be distinguished as x > 0
and x < 0. See Fig. 7.13 Left. In that case the reaction coordinate x̃ (−∞ <

x̃ <∞) may represent x and a by

x = x̃

|x̃ | max(|x̃ | − 1, 0), a = −min(|x̃ |, 1). (7.21)

See Fig. 7.13 Right. For |x̃ | ≤ 1, the pair of points {+x̃,−x̃} should be iden-
tified as a single physical state, (x(x̃), a(x̃)). This technical trick is convenient
for discussing the coupled transport in Chap. 8.

7.2.1.3 Balance of Forces in the Half-Presence Sensor

Apart from the energetic compensation, the mechanical force balance should hold
when a half-presence sensor detects a particle. Figure 7.14 illustrates how the forces
act among different elements while the sensor undergoes the transition, OFF→ON.

In this figure, the signal particle at the detection site (x = 0) feels the attractive
force from the sensor tip (“movable portion of the sensor”). The particle cannot enter
into the x < 0 region because the “main body of the sensor” pushes back the particle
through the steric repulsion. The sensor tip feels both the attractive force from the
particle and the restoring force from the main body. These two forces should be

Fig. 7.14 The balance of
forces among the three
constituents of the
half-presence sensor
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balanced in an unbiased sensor. The main body of the sensor is pushed to the left by
the particle, while it is pushed to the right by the restoring force of the sensor tip.

In terms of the flux of momentum in the x direction, Fig. 7.14 represents a per-
manent circulation of the momentum [20].27 A similar mechanical analysis can be
done for the induced fit in Fig. 7.11.

7.2.1.4 Functions of Coupled Sensors

If two half-sensors are energetically coupled, their individual functions as sensors
are modified, on the one hand, but they can acquire various functions as a composite
system. Two examples are discussed below.

Suppose that a composite system has two half-presence sensors, sensor 1 and
sensor 2 with (x1, a1) and (x2, a2) being the pairs of signal particle position and state
variable. As the coupling energy between these half-sensors, we take two examples
of the quadratic form, Λ(a1 − a2)2 or Λ(a1 + a2 + 1)2, where Λ > 0 is a constant.
In the biophysics of proteins, the coupling among different degrees of freedom in
a protein is called allosteric coupling, and the effects due to this coupling is called
allosteric effects. See, for example [21].

Case of Λ(a1 − a2)2: allosteric transition [22, 23]

The coupling energy favors a synchronized response of the two sensors with a1 �
a2. See Fig. 7.15 Top. If the signal particles in the environment visit at random the
detection sites, x1 = 0 and x2 = 0, the cooperative transition of the states (a1, a2)
from (OFF1,OFF2) to (ON1,ON2) is likely to occur when the signal particles for
both sensors are in the ON positions, x1 � x2 � 0. Especially when the two half-
sensors detect the same species of particles, the probability of cooperative transition
depends quadratically on the density of signal particles. Such nonlinear transitions
are called allosteric transition Fig. 7.16 Left represents the process of allosteric
transition on the plane of reaction coordinates, (x̃1, x̃2). [22, 23]. 28

Case of Λ(a1 + a2 + 1)2: exchange of binding[5]

The coupling energy Λ(a1+a2+1)2 takes the minimum value 0 when a1+a2 = −1.
If Λ  kBT , this system is, therefore, no longer unbiased sensor, but it rather likes
to fill particles in at least one of the half-sensors. As we will see below, this system
functions as the exchange of binding between two allosteric sites.

Suppose that, at present, the system binds only one particle. The state of the
composite system is, therefore, (OFF1,ON2) or (OFF1,ON2). This state will remain

27 The +x-oriented momentum flows toward +x along the attractive force and toward −x along
the repulsive (restoring) force.
28 A similar phenomenon has been observed for the binding of ATP-activated kinesin molecules
to a microtubule, called the cooperative binding, [24].
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Fig. 7.15 Top: Allosteric
transition by the coupling
Λ(a1 − a2)2. Bottom:
Exchange of binding by the
coupling Λ(a1 + a2 + 1)2.
For the symbols, see the
caption of Fig. 7.12
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Fig. 7.16 Left: Allosteric transition by the coupling, Λ(a1 − a2)2. Right: Exchange of binding by
the coupling, Λ(a1+a2+1)2. (x̃1, x̃2) are the reaction coordinates (7.19) for the two half-presence
sensors. The shaded region is the region of a constant energy
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stable until the second particle arrives at the half-sensor in the unoccupied (OFF)
state. Once the two half-sensors bind their signal particles, the state variables (a1, a2)
can diffuse along the line of a1 + a2 = −1. When (a1, a2) arrive either at a1 = −1
or a2 = −1, it is possible that one of the particles leaves the detection site. See
Fig. 7.15 Bottom.29 As a result, the switch between (OFF1,ON2) and (OFF1,ON2)
can be realized without passing the (OFF1,OFF2) state. Figure 7.16 Right represents
the process of exchange of binding on the plane of reaction coordinates, (x̃1, x̃2). If
there is a bias between (a1, a2) = (−1, 0) and (0,−1), the arrival of the particle with
higher “affinity” can expel the previously bound particle by the allosteric effect.

7.2.2 * The Gates to Control Particle’s Access Can be Made Using
Adjustable Potential Barriers

Definition of Gate

Suppose that a detection site of a half-presence sensor is accessible both from the
left-particle environment (x < 0) and from the right-particle environment (x >

0). The gate for these environments is a mechanism such that the signal particles
can get access to the detection site exclusively from one of these environments. In
the extended reaction coordinate, x̃ (see Fig. 7.13 and (7.21)), the gate implies a
blockade either between (−∞,−1) and [−1, 1] or between [−1, 1] and (1,∞).

Gate Made by the Potential Energy Barriers

We introduce potential barriers localized around x = ±ε with a small width 2ε > 0.
In the extended reaction coordinate, the barriers are made around x̃ = ±(1+ ε), see
Fig. 7.17. When only the left barrier is established with the height of M  kBT
(Fig. 7.17 Top), the access of the particles from the left environment is blocked. The
situation is inverted when only the right barrier is established (Fig. 7.17 Bottom).
The gate is realized by adjusting the heights of these two barriers so that at any time
at least one of the barriers is high enough compared with kBT . The irreversible work
to raise or lower the potential barriers is negligible for small ε (see Sect. 7.1.1.4).
The reaction force from the particles against the operation of the barriers is negligi-
ble because of the steep gradient of the barrier profile.

Margins of Operation

A small positive number ε has been introduced to represent the fact that the poten-
tial barriers should be located outside but close to the detection sites. Although the
irreversible work of operating the gate can be made negligible, this ε, as well as

29 This is the first passage time (FPT) problem. See Sects. 1.3.3.3.
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Fig. 7.17 Potential energy
barriers of the gate for
particles. x̃ is the extended
reaction coordinate for the
particle. (Top) Particles are
accessible only from the
right-particle environment.
(Bottom) Particles are
accessible only from the
left-particle environment
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the small δ introduced in the model of sensors (Sect. 7.2.1), constitute the source of
small “leakage” when we construct free-energy transducers.

When we discretize the model in the form of the reaction networks, neglecting
this marginal effect can sometimes lead to unphysical results. Especially caution
must be maintained when one claims a strictly tight coupling or a 100% efficiency
for a model of autonomous free-energy transducer.

7.3 Discussion

7.3.1 Control of Open System Has Both Common
and Distinguished Features with Respect
to the Control of Closed System

7.3.1.1 Parallelism with the Control of Closed System

The following list summarizes how the results of closed system can be generalized
for the open system.

Quasistatic process: Quasistatic work under a fixed chemical potential μ of par-
ticle environment obeys the law, W = ΔJ , for each realization of process
(Sect. 5.2.1.4).

Nonnegativity of the average irreversible work: When the external parameter is
changed from ai to af nonquasistatically, the average irreversible work 〈Wirr.〉
≡ 〈W〉 − ΔJ is nonnegative. The nonequilibrium work relation applied to
the entire system (see (5.59)[25]), 〈e−W+ΔFtot〉 = 1, can be reduced to the
equality for the open system,

〈e−W+ΔJ 〉 = 1, (7.22)

where (5.18) is used.30 By the Jensen inequality, 〈e−x 〉 ≥ e−〈x〉, we have

〈W〉 ≥ ΔJ. (7.23)

30 The average 〈·〉 is taken over all realizations starting from a pertinent equilibrium ensemble.
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Complementarity relation: The average irreversible work 〈Wirr.〉 and the time spent
for the process, Δt , satisfy the relation parallel to (5.36) [26]:

〈Wirr.〉Δt ≥ S(ai, af) (Δt →∞), (7.24)

where S(ai, af) is independent of the (rescaled) protocol ã(s) between ai

and af.

Attachment/detachment with/from particle environment: The adiabatic process of
the closed system corresponds to the closed isothermal process. The attach-
ment with and detachment from the particle environment are realized by the
raising and the lowering of the potential barrier (see Sect. 7.1.1.3). These
processes are inevitably nonquasistatic (see Sect. 7.1.1.2).

Irreversible relaxation of probability distribution: See Fig. 7.8b.
“Carnot cycle”: “Carnot cycle” for open systems extract work from the trans-

port of particles between the particle environments of different chemical
potentials μH and μL. See Fig. 7.18 below. In the next chapter we will
present a concrete model of this cycle. The maximum available work is
(μH − μL) × 〈n〉, where 〈n〉 is the number of transfered particles.

7.3.1.2 Distinguishing Features of Open System

Basic facts are

(i) Unlike absolute temperature, chemical potential has a no absolute zero and
admits indefinitely negative values.

(ii) Unlike a heat engine, the transferred particles of a particle engine do not neces-
sarily carry energy.

Fig. 7.18 A “Carnot cycle”
to extract work. The particle
(thick dot) enters from a
dense particle environment of
the chemical potential μH

(a). The piston is pulled
while the system is closed
(b). The particle exits to the
dilute particle environment of
the chemical potential μH

(c). The piston is pushed
while the system is closed
(d). If the dilute environment
is vacuum (μL = −∞), the
infinite work can be extracted
in principle

μLμ

a

H

(d)(a)

(b) (c)
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In regard to (i) a vacuum environment has the chemical potential of μ = −∞.
Then thermodynamics implies that the maximum available work is positive infinity.
By the fact (ii), the energy for this infinite work should be provided by the thermal
environment, not by the transferred particles. See Fig. 7.18 for illustration. In this
figure the open system consists of a cylinder furnished with a door and a movable
piston. The starting point is a cylinder with the door being open to the particle envi-
ronment of chemical potential μH. After a while the door is closed and the cylinder
volume V is dilated indefinitely. At this point the cylinder contains particle(s) with a
finite probability. The extracted work (−W ) can, therefore, be arbitrarily large by a
large dilatation.31 The flow of energy is from the thermal environment to the piston
via the kinetic energy of the particles. After this dilation, the door is again opened,
but now to the second particle environment of chemical potential μL, which has no
particle (μL = −∞). We wait patiently at this stage: Since the particles can only
go out from the cylinder but cannot enter nor reenter, the cylinder becomes empty.32

After closing the door, the next cycle restarts.
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Chapter 8
Free-Energy Transducers

Free-energy transduction on the mesoscopic scales is a theoretical and experimen-
tal challenge. Biological systems have machineries such as molecular motors, ion
pumps, or polymerases which work through free-energy transduction. Small-scale
technologies such as microfluidics, nanomachines, or biomimetic sciences have
developed various artificial free-energy transducers.

There are two main categories of free-energy transduction: externally controlled
transduction and autonomous transduction.

Miniaturized Carnot cycles [1] and their analog in the open system belong to
the first category in the mesoscopic scale. Certain models of this type can attain
the maximum efficiency of free-energy transduction (i.e., ideal Carnot efficiency)
although finite (positive or negative) work of control intervenes along the cycle of
process.

Feynman’s pawl and ratchet wheel [2] and the Büttiker–Landauer ratchet
[3, 4] (Sects. 1.3.4 and 4.2.2) belong to the second category in the mesoscopic
scale. All biological machineries are basically autonomous transducers. One can
design a mesoscopic pump which converts purely entropic free energy into another
type of purely entropic free energy. Autonomous free-energy transducers do not
attain the ideal efficiency limited by the second law of thermodynamics because
of the intrinsic “leakage” associated with autonomous control. Understanding the
structure–function relationship of the protein motors is among the future goals of
mesoscopic sciences.

8.1 Externally Controlled Free-Energy Transducers

8.1.1 Mesoscopic Carnot Cycle Can Be Ideal Despite Finite
Works of Control

Macroscopic thermodynamics is based on fundamental experimental facts. Carnot’s
experiment1 and his analysis is among them. The study of Carnot cycle as a

1 Sadi Carnot (1796–1832).

Sekimoto, K.: Free-Energy Transducers. Lect. Notes Phys. 799, 255–279 (2010)
DOI 10.1007/978-3-642-05411-2 8 c© Springer-Verlag Berlin Heidelberg 2010



256 8 Free-Energy Transducers

macroscopic thermodynamic system would be, therefore, a kind of tautology or
self-reference. As for stochastic energetics, the framework is based on the dynami-
cal model (the Langevin equation, etc.) and the detailed balance condition (Einstein
relation). The study of Carnot cycle on the mesoscopic scale is, therefore, not a
trivial job. The objects of this subsection are:

1. to understand that the works of control are finite but in principle recoverable,
2. to see that Carnot’s maximal efficiency (Sect. 2.3.3), i.e., ηrev = (Th − T�)/Th, is

attainable for an externally controlled mesoscopic heat engine, and
3. to notice that the efficiency of individual cycle fluctuates even above, ηrev.2

8.1.1.1 * Composition and Control of the System

System Setup

A model of mesoscopic Carnot engine is schematically given in Fig. 8.1 [1]. The
main system is a harmonic oscillator of mass m and spring constant k. It is an analog
of the ideal gas in the sense that the average energy is kBT independent of the
“volume,” k−1/2. The energy of the main system is written as

H (x, p; k) = p2/(2m) + kx2/2,

where x and p are, respectively, the position and momentum of the oscillator. In this
thought experiment we will not talk about how to isolate the main system. We will
verify below that the usage of the harmonic potential avoids irreversible work upon
relaxation from non-Gibbs ensembles of fluctuations (Sect. 7.1.3).

We use the two “clutches” which have been introduced in Sect. 7.1.1.5
(cf. Fig.7.4). The clutch φH(x−yH, χH) controls the contact with the high-temperature
heat bath TH, and the other clutch φL(x − yL, χL) controls the contact with the
low-temperature heat bath TL. We denote by yH and yL the auxiliary variables

Fig. 8.1 Schematic
composition of a mesoscopic
Carnot engine. (Adapted
from Fig. 1 of [1])

φH (x−yH, χH) φL (x−yL, χL)k

yL

TH, γH TL, γL

xm

yH

2 About this fact, people sometimes say that the second law of thermodynamics is locally broken.
If is so, it applies also to the free Brownian motion, whose local unidirectional motion takes place
against the viscous force.
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corresponding to the two clutches.3 The system of stochastic equation of motion
is written as follows:

dx

dt
= p

m
,

dp

dt
= −kx − ∂φH

∂x
− ∂φL

∂x
, (8.1)

γH
dyH

dt
= −∂φH

∂yH
+ ξH(t), γL

dyL

dt
= −∂φL

∂yL
+ ξL(t), (8.2)

where the thermal random forces ξH(t) and ξL(t) are white Gaussian processes with
zero mean and correlation (α, β = H or L):

〈ξα(t)ξβ(t ′)〉 = 2γαTαδαβδ(t − t ′).

The parameters χH and χL are introduced as in Sect. 7.1.1.5, so that χα = 0 (α = H
or L) implies that the system is isolated from the heat bath of the temperature Tα .
The Carnot cycle is controlled by the three external parameters (k, χH, χL).

Protocol of Control

A cycle of the operation for the parameters is depicted in Fig. 8.2. As the macro-
scopic Carnot cycle, two isothermal processes and two adiabatic processes (along
the k-axis) alternate. However, at every instance, there intervenes an explicit control

Fig. 8.2 Protocol of control
for the mesoscopic Carnot
cycle (arrowed loop).
Horizontal paths (k =const.)
correspond to the attachment
and detachment with thermal
environments. (Adapted from
Fig. 2 of [1])

χL

χH

D0

AL

DL

BH

C0

CH

A0

B0

k

0

1

1

3 Unlike Sect. 7.1.1.5, we explicitly assumed that the clutches depend on the differences of the
variables, x − yH or x − yL.
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process of attachment/detachment with the thermal environments (the processes
with k =const.).

8.1.1.2 * Energetics and Efficiency per Cycle

Attachment/Detachment with Thermal Environments

Hereafter we ignore the irreversible work associated with the essentially nonqua-
sistatic character of the attachment and detachment with the thermal environments
(Sect. 7.1.1.5). The reversible works for the quasistatic change of the clutches are
summarized as follows:

W (AL → A0) = FL(TL, kA, 0) − FL(TL, kA, 1),

W (D0 → DL) = FL(TL, kD, 1) − FL(TL, kD, 0),

W (B0 → BH) = FH(TH, kD, 1) − FH(TH, kD, 0),

W (CH → C0) = FH(TH, kD, 0) − FH(TH, kD, 1), (8.3)

where the Helmholtz free energy Fα(Tα, k, χα) is defined by (β ≡ (kBT α)−1):

e−Fα/kBT =
∫

dx
∫

dp
∫

dyαe−βα (H (x,p;k)+φα (x−yα,χα))

=
∫

dx
∫

dpe−βα H (x,p;k)
∫

dze−βαφα(z,χα ). (8.4)

In order to go to the second line, we have replaced yα by x − z. The results (8.3)
hold with probability 1 for each realization. Substituting (8.4) for Fα(Tα, k, χα) in
(8.3), we find that the reversible works to control the clutches cancel after a cycle:

W (AL → A0) + W (D0 → DL) = 0,

W (B0 → BH) + W (CH → C0) = 0. (8.5)

Adiabatic Processes

In the limit of slow control of the external parameters, the only source of stochastic-
ity is the detachment from the thermal environment. Upon detachment from the heat
bath of temperature T , the energy of the main system is chosen randomly according
to the canonical equilibrium distribution of this temperature. The probability density
of the energy, Peq,e(E ; T ), is obtained as

Peq,e(E ; T ) = const.
∫

dx
∫

dp e−H (x,p;k)/kBT δ(E − H (x, p; k))

= 1

kBT
e−E/kBT . (8.6)



8.1 Externally Controlled Free-Energy Transducers 259

After the detachment, the oscillator’s energy E changes with the quasistatic
change of parameter k. Classical mechanics says [5] that the so-called the action
integral, I (E, k) remains constant (adiabatic invariant) during this process. Here
I (E, k) is defined by

I (E, k) ≡
∫

H (x,p;k)≤E
dqdp = E

2π

√
m

k
. (8.7)

Therefore, the energy of the main system E should change as

E → E ′ =
√

k ′/k E (8.8)

when the spring constant k is changed quasistatically, k → k ′. Then the work done
to the oscillator during an adiabatic process k → k ′ is

Wad ≡ E ′ − E =
[√

k ′/k − 1
]

E . (8.9)

The average of the adiabatic works, Wad(A0 → B0) and Wad(C0 → D0), is, there-
fore, given by (8.9) and (8.6):

〈Wad(A0 → B0)〉=TL

[√
kB

kA
− 1

]
, 〈Wad(C0 → D0)〉=TH

[√
kD

kC
− 1

]
. (8.10)

As for the energy distribution (8.6), the quasistatic adiabatic process (8.8) pre-
serves the initial form of Gibbs equilibrium distribution with only a shift in temper-
ature4:

Peq,e(E ; T ) → Peq,e(E ′;

√
k ′

k
T ). (8.11)

This result shows that the irreversible work of attachment to the new thermal envi-
ronment (Sect. 7.1.3) can be completely avoided by a proper choice of the ratio
k ′/k. Such a choice corresponds, naturally, to the adjustment of the temperature
parameters:

√
kB

kA
TL = TH (A0 → B0),

√
kD

kC
TH = TL (C0 → D0). (8.12)

4 The energy distribution after the adiabatic process, P ′(E ′), should satisfy, Peq,e(E ; T )dE =
P ′(E ′)d E ′. Substituting E ′ = √

k/k ′ E into this equation, we obtain (8.11).
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By these choices, there is no net energy transfer upon reattachment with heat baths.
Also, (8.12) leads to the cancellation of the average of the total adiabatic works
(see (8.10):

〈Wad(A0 → B0)〉 + 〈Wad(C0 → D0)〉 = 0. (8.13)

Isothermal Process

The quasistatic isothermal work to change k is given as the change in the Helmholtz
free energy, Fα(Tα, k, χα) (Sect. 5.2.1.1). From the form of (8.4), we have

WH(BH → CH) = TH

2
log

(
kC

kB

)
, WL(DL → AL) = TL

2
log

(
kA

kD

)
, (8.14)

with probability 1. Using the relations (8.12) we have

WH(BH → CH) + WL(DL → AL) = TH − TL

2
log

(
kC

kB

)
(< 0). (8.15)

The result is negative since the engine does work to the external system.

* Efficiency per Cycle

The average Carnot efficiency ηav is defined by the ratio of the extracted work per
cycle (i.e., the work with minus sign) to the heat transmitted to the system from the
high-temperature heat bath, QH(BH → CH). This heat is also a random variable
because of the essentially nonquasistatic character of the detachment process. The
law of energy balance (Sect. 4.1.2) for the isothermal process BH → CH is

ΔE(BH → CH) = QH(BH → CH) + WH(BH → CH).

The average energy 〈E(BH → CH)〉 = ∂(βFH)
∂β

does not depend on k (see (8.4)), and
therefore, 〈ΔE(BH → CH)〉 = 0. Then

〈QH(BH → CH)〉 = −WH(BH → CH) = TH

2
log

(
kB

kC

)
(> 0). (8.16)

We, therefore, have the efficiency:

ηav = |WH(BH → CH) + WL(DL → AL)|
〈QH(BH → CH)〉 = TH − TL

TH
(8.17)

in the limit of slow operation of mesoscopic Carnot cycle. In conclusion, the meso-
scopic Carnot cycle can attain Carnot’s maximal efficiency. The works of the control
are nonzero but they cancel after an entire cycle.
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8.1.1.3 Fluctuation of the Efficiency of Individual Cycle

On mesoscopic scales the Carnot efficiency of an individual cycle can exceed the
ideal limit, (TH − TL)/TH. Let us introduce the “gain” of work, Δ̂, of an individual
cycle:

Δ̂ ≡ −[Wad(A0 → B0) + WH(BH → CH) + Wad(C0 → D0) + WL(DL → AL)]

−QH(BH → CH)
TH − TL

TH
. (8.18)

The first line on the right-hand side is the net work extracted from the cycle, and the
second line is the average extractable work in the ideal case. Therefore, 〈Δ̂〉 = 0,
but in general 〈(Δ̂)2〉 ≥ 0. The question is whether the fluctuations in Δ̂ can break
the second law of thermodynamics. To find the answer, we introduce the cumulative
gain over n consecutive cycles, R̂n ≡ ∑n

i=1 Δ̂i , where Δ̂i is the gain of the i th
cycle. The theory of unbiased random walk5 tells that for some n the value of R̂n

will become positive with probability 1. Can we stop at that moment (R̂n > 0)
and repeat the same operation again and again? If we could have R̂n > 0 for an
extensive number of times with respect to the total time of experiment, then the
mesoscopic Carnot cycle constitutes a perpetual machine of the second kind, which
is impossible. Again the theory of unbiased random walk (discrete step size = ±1
with probability 1/2 for each sign) tells that the probability of having R̂n ≥ 1 for the
first time at n = (2m − 1) is f2m ≡ (2m−2)!

2m[2m−1(m−1)!]2 ∼ m−3/2. This f2m has a long tail
such that the mean number of (2m − 1) is infinite,

∑∞
m=1(2m − 1) f2m = ∞. That

is, there is no chance to accumulate the gains (R̂n > 0) for extensive times.

8.1.2 Mesoscopic Open “Carnot Cycle” Can Transform Heat
into Work Without Stockage of Energy

Here we consider the isothermal open “Carnot cycle”6 that works between two
solute particle reservoirs. In Sect. 7.3.1.2 we have already presented a model (see
Fig. 7.18). There the principle was directly analogous to the mesoscopic Carnot
engine (Fig. 8.1). In both cases heat is absorbed while it does the work, being
mediated by the kinetic energy of gas particle. This mechanism using the kinetic
energy is, however, not likely to be a prototype of molecular machine, notably for
biological motors. Another principle using the binding energy is presented below.
In this mechanism the heat is supplied after the work is done.

The objects of this section are:

1. to understand that the machinery uses the “rareness” of the particles to extract
heat from the thermal environment,

5 For example, see [6].
6 Hereafter we call it simply open Carnot cycle.
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2. to see that the machinery can work with the maximal efficiency allowed by the
second law of thermodynamics.

3. to verify that there is no need to stock the energy in the system.

8.1.2.1 Composition and Control of the System

System Setup

Figure 8.3 illustrates the setup of the open “Carnot cycle.” The main system is sim-
ilar to the half-presence sensor (Sect. 7.2.1.1) and binds at most one particle.7 Work
is extracted by the “T”-shaped thick rod, which is similar to the sensor “tip” (see
Fig. 7.12) of the half-presence sensor. We assume a large binding energy when this
tip is close to the particle-binding site, as in Fig. 8.3C. The (negative) binding energy
is parameterized by a (see below).

The particles can access the main system from the dense particle reservoir
(left box) of chemical potential μH

8 and the dilute particle reservoir (left box) of
chemical potential μL. This access is controlled by two parameters, χH and χL, as
in the mesoscopic Carnot cycle. For χα = 1 the particle can access the main system
from the α-environment (α = H or L), while for χα = 0 access is blocked. For
χH = χL = 0 the main system is, therefore, closed. The entire system is at the
temperature T .

Fig. 8.3 Setup and typical
process of an open Carnot
cycle. A particle (thick dot)
migrates from the dense
reservoir (left box) to the
dilute reservoir (right box).
The system’s binding strength
(affinity) to the particle is
controlled by a. The
particle’s access is controlled
by χH and χL. (A) and (C)
are open isothermal processes
and (B) and (D) are closed
isothermal processes

χ χ

μH μL

H L

a

(A)

(B) (C)

(D)

7 Steric repulsion between particles is assumed.
8 In this section we omit the upper suffix “ res,” which we used in Sect. 3.3.3.
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χLχH

μH μL

a

A

D

B
C

1 0 1
Fig. 8.4 The protocol of the control parameters (arrowed loop). A–D correspond to those in
Fig. 8.3. Horizontal arrows (a =const.) correspond to the attachment and detachment with particle
environments

Protocol of Control

Three parameters (a, χH, χL) are changed through the protocol of Fig. 8.4, which
is essentially the same as Fig. 8.2 of (closed) Carnot cycle. We assume that all the
changes are done slowly enough.

The main work is extracted during the stage of binding ((A) and (B) in Fig. 8.4),
while heat is supplied later for the unbinding ((C) and (D) in Fig. 8.4). The dense
reservoir “pushes” the particles into the main system despite the low binding energy
(A), while the dilute reservoir favors the particles diffusing out despite the large
binding energy (C).

8.1.2.2 Energetics and Efficiency per Cycle

Work for Detachment/Attachment with Particle Environments

We will not describe explicitly the work associated with the attachment/detachment
with the particle environments. It is because we have seen (Sect. 8.1.1.2) that the
reversible part of this work sums up to 0 after a cycle of operation, and because the
irreversible part of this work, due to the essentially nonquasistatic process, can be
made negligibly small by using the slow operations (Sect. 7.1.1.5).

With this understanding, we take the discrete description. The system’s state is
distinguished by the presence (n = 1) or absence (n = 0) of particle in the main
system.
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Definition of the Parameter a and Related Formulas

We define the control parameter a by the negative of the binding free energy of the
particle,

a ≡ F (1) − F (0) (< 0), (8.19)

where F (n) is the free energy of the system (5.22) when it contains n particles.
This definition should reflect the position of the sensor “tip” in Fig. 8.3.9 For the
later usage, we summarize several equilibrium properties of the system. When the
system is open to the α-reservoir (α = H or L), the equilibrium probability to find a
particle in the system, P (1)

α , is10

P (1)
α (a) = e(μα−a)/kBT

1 + e(μα−a)/kBT
= 1 − P (0)

α (a). (8.20)

Also the corresponding complete thermodynamic function of this open system,
Jα(a, T, μα) (see (2.10)), is,

e−β Jα = e−F (0)/kBT + e−(F (1)−μα )/kBT (8.21)

or11

Jα = F (0)(a) + kBT log
(

1 + e
μα−a
kBT

)

= F (0)(a) − kBT log
(
1 − P (1)

α (a)
)
. (8.22)

Isothermal Process as Closed System

By the general result, W = ΔF, for the quasistatic work of closed isothermal
process (see (5.12)), the work W (B → C) is either F (0)(aC) − F (0)(aB) (n = 0
case) or F (1)(aC) − F (1)(aB) (n = 1 case). According to the previous analysis of
(Sect. 7.1.3.2 Slow detachment from an environment), the probabilities for n = 0
and n = 1 is the equilibrium probabilities immediately before the isolation, i.e.,
P (0)

H (aB) and P (1)
H (aB), respectively. The same arguments apply for W (D → A). The

statistical average of the works is, therefore,

〈W (B → C)〉 = P (0)
H (aB)(F (0)(aC) − F (0)(aB)) + P (1)

H (aB)(F (1)(aC) − F (1)(aB))

= F (0)(aC) − F (0)(aB) − P (1)
H (aB)(aC − aB),

〈W (D → A)〉 = F (0)(aA) − F (0)(aD) − P (1)
L (aD)(aA − aD). (8.23)

9 aA and aD in Fig. 8.3 correspond, respectively, to a = −1 and a = 0 of the sensor “tip” of
Fig. 7.12.
10 P (n)

α is defined by (A.78).
11 Once a is defined, F (0) and F (1) are also functions of a
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Isothermal Processes as Open System

By the general result, W = ΔJ , for the quasistatic work of open isothermal process
(5.20), the works are

W (A → B) = F (0)(aB) − F (0)(aA) − T log

(
1 − P (1)

H (aB)

1 − P (1)
H (aA)

)
,

W (C → D) = F (0)(aD) − F (0)(aC) − T log

(
1 − P (1)

L (aD)

1 − P (1)
L (aC)

)
, (8.24)

where we have used (8.22). These works are definite in the quasistatic limit, despite
the fact that they are represented in terms of P (1)

α (a).

Matching of Chemical Potentials and Efficiency per Cycle

The present system takes only two states, n = 0 and n = 1. This corresponds to
the exceptional case that can avoid “relaxation from non-Gibbs ensembles of fluc-
tuations” (Sect. 7.1.3). Therefore, we choose the values of a so that no irreversible
work appears in the limit of slow operation. This is achieved by P (1)

L (aD) = P (1)
H (aA)

and P (1)
L (aC) = P (1)

H (aB). Intuitively, these conditions assure that, upon attachment
to a particle reservoir, the system behaves as if it were already in equilibrium with
the environment. These equations are equivalent to the following:

aA − aD = −(aC − aB) = μH − μL. (8.25)

Equation (8.25) leaves aA−aB(= aD−aC) arbitrary.12 That is, a need not to change
while the system is opened to one of the particle reservoirs.13

Substituting (8.25) into (8.24) and (8.23), the average of the total extracted work
per cycle, (−Wcyc), reads

〈−Wcyc〉 = [P (1)
H (aB) − P (1)

L (aD)](μH − μL).

This result shows that this open Carnot cycle extracts the maximal work defined by
(2.25), where the coefficient of (μH −μL) is the number of transported particles per
cycle.14 As the process is reversible, the inverse operation can work as a particle
pump at maximal efficiency.

12 Also the value of aA is arbitrary. See below.
13 As an afterthought it seems reasonable. But the analysis shows that aA − aD(= aB − aC) need
not be 0.
14 The system carries P (1)

H (aB) particle from H-reservoir to L-reservoir and carries back P (1)
L (aD)

particle per cycle.
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Conclusion

The open Carnot cycle could extract energy from the thermal environment of a
unique temperature. This energy was used to unbind the particle. Since the work has
already been extracted upon binding the particle, the thermal energy is effectively
converted into work. With whatever large binding energy, the thermal energy can
release a bound particle if only we wait for sufficiently long time. The rareness of
particle in the dilute particle reservoir assures that the particle once unbound has
little probability to return. One may say that open Carnot cycle synthesizes the first
and second laws of thermodynamics.

Thanks to this mechanism, the main system need not stock high energies. In
principle the constraint (8.25) does not exclude the possibility of a > 0 (energy
stockage) [7, 8]. But molecular architectures to stock high energy seem less feasible
than that to bind at low energies. The 3D X-ray structural data of protein motors
show no magic structures to temporarily stock the energy.15 Stochastic energetics
will help decrypt the structure–function relationship of the protein motors.

8.2 Autonomous Free-Energy Transducers

Introduction

Autonomous systems are the systems which control themselves. In biology auto-
nomous systems are found from proteins to societies. As a module the autonomous
system works more or less independently of the others for a range of space–time.
The collaboration among autonomous modules can create higher order functions
and also protect themselves on the one hand, but it can impose constraints on the
constituting modules on the other hand. The organisms consisting of modular struc-
ture are robust against growth and accidental injury.16

In the rest of this chapter we focus on mesoscopic autonomous systems that
convert a form of free energy into another form in the presence of thermal fluc-
tuations. The Feynman ratchet wheel and pawl [2] and the Büttiker–Landauer
ratchet [3, 4] are classical examples (Sects. 1.3.4 and 4.2.2). Symmetry and the
Curie principle capture a physical basis of autonomous free-energy transducers
(Sect. 1.3.4.4). Protein motors, ion pumps, signal-processing proteins, etc., are bio-
logical autonomous free-energy transducers [9]. Many studies have been done to
understand the structure–function relationship of specific biological free-energy
transducers, such as myosin and kinesin. But, at present, only tentative studies
have been made to explain the functions of these motors on the common structural
basis [10].

15 Inside the nucleotide pocket of a motor protein, the cleavage of the “high-energy bond” between
β-Pi and γ -Pi of an ATP molecule occurs almost at equal free energy.
16 The object-oriented architecture of information systems uses these properties.
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The approach in this section is to construct an open autonomous system that
transports a species of noninteracting particles against their density gradient using
the diffusion of another species of noninteracting particles along their density gra-
dient. Building blocks of the model (submodules) are the half-presence sensors and
gates, whose structures were discussed in Sect. 7.2. The level of description distin-
guishes individual realizations, where the chemical potentials enter only through the
probabilities.

8.2.1 Autonomous Free-Energy Transducer Functions
Among Different Equilibrium Environments

In this section we discuss free-energy transducer as a black box from the functional
point of view.

8.2.1.1 Definition of Autonomous Free-Energy Transducer

We define the autonomous free-energy transducer as a system working in contact
with several equilibrium environments. Therefore, any external operating systems
should not help the operation of this system, and Maxwell’s demon (Sect. 4.2.1.2)
is excluded.

As an example, ATPase-driven Ca2+ ion pump (e.g., [11]) works in contact
with the particle environments of ATP, ADP and Pi (inorganic phosphate), water,
Ca2+ ion inside a vesicle/cell, and Ca2+ ion outside the vesicle/cell. The first four
substances, which participate in the hydrolysis reaction, can occupy the same 3D
space because practically none of the spontaneous hydrolysis reactions (ATP+water
�ADP+Pi) occur without catalysts.17

8.2.1.2 A Simple Scheme of Free-Energy Transduction

As a prototype of the free-energy transducer, we shall adopt again the scheme
Fig. 8.5, which has been introduced for the thermodynamic description of chemical
coupling (Sect. 2.3.2). The autonomous transducer is in contact with two equilib-
rium particle environments of fuel (F) and also with two equilibrium particle envi-
ronments of load (L), all being under a uniform temperature, T . Within each pair of
environments, (Fh ,F�) or (Lh ,L�), the suffixes h [�] indicate, respectively, the higher
[lower] chemical potential of the particle species.

This scheme is similar to the cotransporter ion channels [12], by either symport
or antiport (e.g., lactose/proton symport [13]). Those ion channels carry two species
of ions across a membrane along or against their density gradient. This schema also
resembles the Ca2+ ion pump [11] mentioned above, or redox reaction (e.g., proton

17 Rigorously speaking ATP-hydrolyzing protein motors are catalysts only when it does not work
against macroscopic external forces.
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Fig. 8.5 The autonomous
transducer (the hexagon at the
center) is in contact with the
particle environments of the
fuel, (Fh ,F�), and with
particle environments of the
load, (Lh ,L�). The transducer
couples the transport between
the pair (Fh ,F�) with that
between the pair (Lh ,L�).
(The same figure as Fig. 2.7)

FUEL

LOAD

lF

L l

F

Lh

h

pumping [14]). In the latter case the substrates {ATP, water} and the products {ADP,
Pi} are, respectively, identified as the h-side and on the �-side of the fuel particles.18

Mechanotrasduction by motor proteins, such as myosin or kinesin, is also simi-
lar to the above schema: The displacement dx along the filament can be regarded
as the transport of the filament monomers (G-actin monomers for myosin, tubulin
dimers for kinesin, etc.) between an “anterior monomer reservoir” and a “posterior
monomer reservoir”, see Fig. 8.6. If a mechanical load L is applied between the
myosin molecule and the actin filament, the two reservoirs have different “chemical
potentials” corresponding to the work done by a single-step displacement under the
load.

The thermodynamic constraint on the function of this transducer is the decrease
of the total Gibbs free energy,

ΔG tot ≡ ΔGF +ΔGL < 0,

with ΔGF ≡ (μFh−μF�)(−nF)(< 0) and ΔGL ≡ (μLh−μL�)nL(> 0) (see Fig. 2.8).
Here μFh , etc., are the chemical potentials of the particle environments, and nL of
the L particles are transported upward (L� → Lh) at the expense of the transport of
nF of the F particles downward (Fh → F�).

Fig. 8.6 Interpretation of the
filament’s monomers as
particle reservoirs. A motor
protein moves actively
toward the right (open
arrow), binding the monomer
in the front (bright unit) and
unbinding the monomer in
the back (dark unit)

LILh

18 The correspondence is not exact because of the four species of particles in place of two. How-
ever, the stoichiometry relation of the reaction allows us a simplified representation of Fig. 8.5.
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8.2.1.3 Chemical Kinetics

The process of free-energy transduction can be described as a chemical kinetics.
Figure 8.7 is an example. We assumed that at most one L particle and one F particle
are admitted at a time and that the migration of these particles alternates between F
and L.19 The state of occupancy is denoted by (0F 1L), etc., where 0 and 1, respec-
tively, denote the presence and absence of the particle on the transducer. The trans-
ducer works as a pump of L particles, if the chemical potentials of the environments
satisfy μF,h − μF,� ≥ μL,h − μL,�.

The rate constants of the state transitions are defined in the figure. We assume that
the pair of rate constants associated to a migration event, e.g., kFh and k ′Fh between
(0F 1L) and (1F 1L), is related through the detailed-balance (DB) relationships when
this pair of states is hypothetically isolated from the other states.[15–17]20:

k�L
′ = k�L exp[β(μ�

L + ε
0F

0L
− ε

0F

1L
)], kh

F
′ = kh

F exp[β(μh
F + ε

0F

1L
− ε

1F

1L
)],

kh
L
′ = kh

L exp[β(μh
L + ε

1F

0L
− ε

1F

1L
)], k�F

′ = k�F exp[β(μ�
F + ε

0F

0L
− ε

1F

0L
)],

where ε1F

0L
, etc., are the free-energy levels of the transducer in each state.

The master equation for the schema Fig. 8.7 yields the steady-state rate of the
counterclockwise reaction cycle, ν:

ν = A(e(μF,h−μF,�)/kBT − e(μL,h−μL,�)/kBT ) (A > 0).

The chemical kinetics approach has recently been put forward to describe single-
molecule experiments, taking into account applied forces [18] and intermediate

Fig. 8.7 Chemical kinetic
diagram specifying a
mesoscopic free-energy
transducer. The rectangles
branching from the arrows by
solid curves indicate the
export or import of particles
between the transducer and
the particle environment,
which are indicated by their
chemical potential, e.g., μFh

for the (F, h) environment,
etc. k’s denote the rate
constant of the state
transitions

kLl 

kLh 

kFl kFh 

kFh 

0F
0F

0L1L

1F 1F

1L
0LμLh

μLl

μFlμFh

’

kLh 
’

kFl 
’

kLl 
’

19 Other sequence of migration is also possible. In an ion pump [13], for example, the in-and-out
of a proton occurs in between the in-and-out of a lactose molecule.
20 Section 3.3.1.5 Nonequilibrium settings II.
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steps [19, 20]. How well this phenomenology works depends on the choice of repre-
sentative chemical states and of allowed transitions among them, and also depends
on the identification of basic parameters from separate but consistent experiments.
It is beyond the scope of the chemical kinetics approach to study what structural
basis constitutes the representative chemical states and what mechanisms support
state transitions.21

8.2.2 Pairs of Sensors and Gates are Enough to Constitute
an Autonomous Free-Energy Transducer

8.2.2.1 From Function to Structure

There are several facts that motivate to construct autonomous transducers based on
the elementary sensors and gates discussed in the previous chapter (Sect. 7.2).

1. In the nonautonomous free-energy transducers (mesoscopic Carnot cycle or open
Carnot cycle), the detection of the point where a process is switched into another
process is implicitly assumed. Attachment/detachment with the environments
must also be done by the external system.

2. The chemical state diagram such as Fig. 8.7 implies that the release of an L
particle to its dense reservoir (Lh) happens after the arrival of an F particle. Also
the figure implies that the L particle is admitted only from its dilute reservoir (L�)
when the F particle is absent.

3. The structure of the half-presence sensor (Fig. 7.12 Left) is very similar to the
core module of the open Carnot cycle (Fig. 8.3).

4. The X-ray structural data of molecular motors are often described using the
notions of sensors and/or of gates.

With these observations, we will discuss the possible structures that realize auto-
nomous free-energy transducers.

8.2.2.2 Number of Internal Degrees of Freedom of Autonomous Transducers

There must be at least one internal degree of freedom (i.e., allosteric coupling) in
order to correlate the fuel (F) side and the load side (L) of the autonomous free-
energy transducer. There must also be a cyclic process that breaks the equilibrium
detailed balance. A cycle needs at least two open coordinates to realize. The pres-
ence of cycle, however, does not necessitate the presence of a second internal degree
of freedom. What is required is to realize cyclic process at the interfaces between the
transducer and the particle reservoirs.22 With only one internal degree of freedom

21 One insightful paper has addressed this issue [11].
22 cf. Fig. 8.3 for externally controlled case.
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it is possible to realize such cycle.23 Some people think that a class of biological
transmembrane transporters function with a single principal degree of freedom. This
hypothesis is called the alternative access model [21, 13].

However, the transducer with a single allosteric coupling may not be the simplest
case, because a single degree of freedom must play double roles of detector and
gate.24

Contrastingly, recent structural analyses of a single head of myosin suggests two
independent internal degrees of freedom [22, 23]. Conceptually the transducer with
two allosteric degrees of freedom is simpler than that with a single allosteric degree
of freedom. The actions of sensor and detector at an interface of F particles can
be directly communicated to those at the interface of L particles and vice versa if
there are two allosteric degrees of freedom. We, therefore, focus on the free-energy
transducer with two allosteric couplings.

8.2.2.3 * Bidirectional Control

We will consider a simple setup: (i) The particles are noninteracting, i.e., ideal gases,
except for the steric repulsion. At most one F particle and one L particle can occupy
the transducer. (ii) We use only the half-presence sensors and the gates. Hereafter,
the “detection of a particle” implies the ON state of these half-sensors. (iii) No
thermal activation process will intervene. It was the strategy of constructing the
half-sensors and gates (Sect. 7.2).

It is then necessary to assign one sensor and one gate to the interface between the
transducer and the F particle reservoir, and also assign one sensor and one gate to
the interface between the transducer and the L particle reservoir.

As the allosteric coupling, the only choice is to connect the sensor of one inter-
face with the gate the other interface. See Fig. 8.8. This symmetric rule is called
bidirectional control [24, 10].

In bidirectional control, the detection of a particle (ON) can be associated with
either one of the configurations of the gate, i.e., (Top) or (Bottom) of Fig. 7.17.
Therefore, there are four possible combinations to design bidirectional control.
Figure 8.9 shows one of these possibilities. In this option, the detection of a particle
is associated with the accessibility of another species of particles from their dense
reservoir.

Figure 8.10 graphically shows the consequence of these rules on the plane of
the extended reaction coordinates25 of L and F particles. On this plane it turns out
that the process is constrained to a channel (gray zone), which couples the diffusion
of F particles (downward) and the pumping up of L particles (rightward). During

23 E. Muneyuki and K. Sekimoto, preprint.
24 As a result the allosteric degree of freedom has a rate-limiting step.
25 See Fig. 7.13.
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Fig. 8.8 Notion of the
bidirectional control. The
gate at the detection site of F
particle is controlled by the
half-sensor at the detection
site of L particle (upward
arrow), and vice versa
(downward arrow)

(L,l)

(F,h) (F,l)

(L,h)

sensor gate

gate sensor

Fuel

Load

(F,h)  

(L,h)  (L,l)  

(F,l)  

(A) (B)

Fig. 8.9 A coupling rule between the sensor and the gate. The symbols for the gate are the same
as Fig. 8.3. (A) The detection of F particle (thick dot) allows the access of L particles from their
dense reservoir (L,h), and nondetection of F particle (open dashed circle) allows the access of L
particles from their dilute reservoir (L,�). (B) The completely symmetric rule applies for the socond
allosteric coupling
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1F

(L,h)(L,l)

(F
,h

)
(F

,l)

0F

0F

0L 1L 0L

Fig. 8.10 Schematic representation of the function of bidirectional control by the rules of Fig. 8.9.
The horizontal axis is the extended reaction coordinate for L particles, where the left [right] of the
detection site correspond to the dilute [dense] environment, respectively. The vertical axis is the
extended reaction coordinate for L particles, where the zone above [below] the detection site cor-
respond to the dense [dilute] environment, respectively. Thick vertical [horizontal] borders of the
gray region represent the blockade by the gate by the coupling rule Fig. 8.9(A) [(B)], respectively

a particular realization such as a dashed curve in Fig. 8.10, the occupancies of the
particles complete a clockwise cycle along the schema of Fig. 8.7, that is,

(0F, 0L) → (0F, 1L) → (1F, 1L) → (1F, 0L) → (0F, 0L). (8.26)

Throughout this cycle the potential energy is constant, and this free-energy trans-
ducer is, therefore, purely entropic.

8.2.2.4 Properties of Bidirectional Control

Invertibility

The rules of allosteric coupling realized in Fig. 8.10 are symmetric with respect to L
and F particles. Therefore, if the relative magnitude between the chemical potential
differences, μF,h −μF,� and μL,h −μL,�, is inverted, the F particles can be pumped
up by the passive diffusion of the L particles, so that the total Gibbs free energy
decreases: ΔGF +ΔGL < O.
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Fig. 8.11 Refinement of
Fig. 8.10 incorporating the
margins of operation

Viewpoint of a Load Particle

From the viewpoint of L particles, the process of Fig. 8.10 would look as if
the transducer itself had an intelligence to pump up them: for the L particles in
the dilute reservoir (L, �), the transducer is often accessible. They, therefore, fre-
quent the detection site. When an L particle is IN, it is from time to time bound
(by the transition 0L → 1L). During such period it often happens that the gate
from which the L particle has entered is closed and the exit opens toward the dense
reservoir (by the transition, 0L → 1L invisible by the L particle). After the L particle
diffuses out, the gate for the dense reservoir (L, h) will close quickly, before another
L particle enters from this reservoir. The transducer then becomes accessible for the
dilute reservoir (L, �) again.

Unattainability of Tight Coupling

Up to this point we have ignored the small margins of operation, δ and ε in the
sensors and gates, respectively.26 With these margins being taken into account, the
blockade by the gate shown in Fig. 8.10 is modified as Fig. 8.11, where δ and ε are
made large for visibility. The widths of detection are a little narrowed while the gaps
between the gates are widened a little.

In this figure, the three gaps along a border of the channel constitute an intrinsic
loss mechanism of this transducer. This leakage does not allow the free-energy trans-
ducer to attain the tight coupling of transport between L and F particles. Especially

26 Section 7.2.2, Margins of operation. The δ was defined in Sect. 7.2.1.2, Interaction potential of
the half-presence sensor, and the ε was defined in Sect. 7.2.2, Gate made by the potential energy
barriers.
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at the “stalled” condition, μF,h − μF,� = μL,h − μL,�, the efficiency of free-energy
conversion drops to 0.

Prediction About “Mutants”

If one of the allosteric couplings is immobilized by some reason, the coupled trans-
port does not function. See Fig. 8.12. In the figure, the gate of L particle is fixed
independent of the detection of F particle. However, this “mutant” still controls the
passive diffusion of L particle (L, h) → (L, �) through the density of F particles in
the reservoir (F, h) [24].27

Bidirectional Control with Other Coupling Rules

We mentioned four different ways to design the bidirectional control (Sect. 8.2.2.3),
of which one is denoted in Fig. 8.9. The diagrammatic representation like Fig. 8.10
allows us to find how each design works. It turns out that two out of the four designs
couple the passive diffusion of F particles to that of L particles. We therefore ignore
these two. The fourth rule is complementary to Fig. 8.9 in that the detection of
particles of one species is linked to the accessibility of particles of the other species
from its dilute reservoir. The resulting diagram is an inverted image of Fig. 8.10
with the inversion center being at the origin. The process of particles’ migration is
then [24]

(1F, 0L) → (1F, 1L) → (0F, 1L) → (0F, 0L) → (1F, 0L). (8.27)

This design, therefore, works also as free-energy transducer to pump up the L
particles.28

In Fig. 8.13 the original rule (A) and the above rule (B) are compared from the
viewpoint of the timing of the particles’ migration. In (A) the reservoirs (F, h) and

Fig. 8.12 A “mutant” of
Fig. 8.10, where one of the
allosteric couplings is
immobilized

xF
~

xL
~

xL
~

xF
~

“Mutant” “Wilde−type”

27 L particle cannot go through the mutant transducer from the right (L, h) reservoir to the left
(L, �) reservoir without the assistance of the to-and-fro transitions of F particle: 0F → 1F → 0F.
28 This dichotomy is invariant under the exchange of the roles of Fuel and Load: the diagram of
Fig. 8.10 is symmetric with respect to the two axes.
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time

(F,h) (F,l)

(L,h)(L,l)

(A) time (B)

Fig. 8.13 (A) Typical process of particles’ migration under the rules of Fig. 8.9. (B) The case
under the complementary rules

(L, h) exchange occupancy, like the exchange of binding (see Sect. 7.2.1.4) but with
delay. In (B) it is the reservoirs (L, �) and (F, �) that do a similar exchange. Biolog-
ical motors seem to prefer type (A) (see the next section).

Bidirectional Control in Other Systems

Putting aside the energetic aspect, the logical structure of bidirectional control of
autonomous systems is found also in other domains. For example, in some class of
thermal ratchet models the position of a particle is detected and the potential profile
is switched accordingly [25]. In Fig. 8.14 the potential energy is switched between
the two profiles U1(x) and U2(x) when x(t) enters the proximity of the bottom of the
valleys (e.g., x1 and x2 in the figure). Ratchet models from the viewpoint of control
have not been studied thoroughly [26–29]. As another example, the public payphone
operates with two directions of control: the first control checks the credit (sensor)
and admits the conversations (gate), and the other control detects the communication
(sensor) and debits the credit (gate).

Information-Theoretic Approach

The above model of free-energy transducer uses two agents of communication. If
the gate of an F particle is directly correlated to the sensor of this particle, for exam-
ple, the system realizes feedback loop for an L particle, that is, the detection of
this particle influences the accessibility of this particle. For feedback control, the
information-theoretic analysis has been done [30, 31]. The generalization to the
bidirectional control might be done.

U2(x)

U1(x)
x1 x2

Fig. 8.14 Ratchet model driven by position-dependent switching of potentials. When x(t) is
detected within the zones of thick lines (around x1, x2, etc.) it is more probable for the actual
potential function to be switched to the other potential function
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8.2.3 Structure–Function Relationship of Molecular Machines
Is in the Research Domain of Stochastic Energetics

The study of biomolecular machines started from the macroscopic level in physiol-
ogy and then in biochemistry. More recently, the atomic structure of those molecular
machines has been largely uncovered by X-ray crystallography on by NMR. Also,
single-molecule experiments have been developed since the late twentieth century.
Full molecular dynamic studies including quantum aspects are also developing.

The more the spatiotemporal resolution is improved, the more complex charac-
teristics of the molecular machines are found. Through these discoveries, simple
models made of spring and binding block, or of combustion engine and lever arm,
etc., are obliged to be refined, modified, or sometimes abandoned. A single protein
may accept different coarse-grained models according to different working condi-
tions and regulations.

But at the same time, structural analysis has revealed that some local atomic
structures are highly universal among a superfamily of biomolecules. For exam-
ple, the notion of the “common ancestor” [32] of myosin, kinesin, and G-proteins
(see [9]) stemmed from such observations.

A gap of our understanding is between this local structural universality and the
global functional diversity among the members of a superfamily. For example, the
nucleotide pocket of these molecular motors resembles each other very closely.
Nevertheless, the relative timing between the ATP hydrolysis cycle and the fila-
ment binding/unbinding cycle is known to be very different between a conventional
myosin head [33, 34] and kinesin [9].29

Another question is how these biomolecular machines can work under strong
thermal fluctuations. Recent single-molecule experiments have started to uncover
how individual molecular machines behave in nanometer and microsecond ranges.
On the scales of thermal fluctuations many notions used in macroscopic world need
to be reconsidered like the laws of motion, force, stability, chemical potential, heat,
etc. For example, structural biology papers use the notions of gate, sensor, switch,
etc., to consider the causal sequence of molecular events. However, the bidirectional
control described above distinguishes between two types of causalities: one is the
(quasi) instantaneous linkage of events through the allosteric coupling between a
sensor and a gate, and the other involves the event-waiting states whose subsequent
transition depends on the thermal fluctuations.

In summary, the study of intramolecular processes of biomolecular machines
should clarify the structure–function relations of the machines based on the physi-
cal concepts adapted for the fluctuating world. One goal is to establish a common

29 The myosin head detaches from the actin filament upon binding with an ATP molecule, while
kinesin head with ATP binds to microtubule filament rather strongly. The isomerization – confor-
mational changes associated with intramolecular hydrolysis reaction – takes place when the myosin
head interacts with an actin filament only weakly, while the isomerization of a kinesin head occurs
when the head is ready to detach from the microtubule.
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language to describe the dynamics of different biomolecular structures. This will
serve to compare, design, and predict the varieties of biomolecular functions.

As a trial in this direction the structures and functions of myosin and kinesin
have been compared [10]. The structural data and single-molecule experimental
data of these motor molecules are projected onto the above mentioned model of
bidirectional control. At least for myosin, this analogy works well, and different
modules in the single head of conventional myosin molecule are attributed to either
one of the two allosteric degrees of freedom. This is consistent with the recent
claim [35] that the structural data of the myosin with different nucleotide analogues
require at least two independent degrees of freedom. At the active site where the
ATP hydrolysis takes place, it is the chemical bond between β- and γ -phosphates
(βγ –Pi bond) that is detected as an F particle in both myosin and kinesin. A surprise
is that, despite the large differences in the timing of the ATP hydrolysis cycle and
the filament binding/unbinding cycle (cf. footnote 29), the internal cycle of these
molecules seems to be the same and approximately adapted to the schema (8.26)
with an appropriate assignments of the sensors and gates for individual molecules.30

Despite the symmetry between (8.26) and (8.27) as logical constructions, Fig. 8.13
shows that these motors, or their “common ancestor,” have chosen to release the L
particle after the binding of ATP (cf. Sect. 7.2.1.4). An interpretation for this broken
symmetry is that, for the schema (8.26), it is easy to stay in strong binding with
filaments when the ATP concentration is very low.

The approach of stochastic energetics will help us to understand how the consti-
tuting elements in the fluctuating world organize various functions as well as mutual
constraints.
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Appendix A

A.1 Appendix to Chap. 1

A.1.1 Examples of Probability Distribution: Appendix
to Sect. 1.1.2.1

Example 1: Binomial distribution. Suppose we have the total of N balls, of which
M balls are red. We choose n balls among them at random. We assume that a ball,
once chosen, will not be returned to the original ensemble. The random variable k̂
here is the number of the red balls among the n chosen balls. We can show that

Prob[k̂ = k] ≡ P(k, n|M, N ) = M Ck N−M Cn−k

N Cn
,

where nCk ≡ n!/(k!(n − k)!) is the binomial coefficient. (If both 0 ≤ n ≤ N and
0 ≤ k ≤ M are not satisfied, we can define P(k, n|M, N ) ≡ 0. )

If we take the limits of N →∞ and M →∞ in the way that limN→∞(N/M) =
p, we have P(k, n|M, N ) → f (k; n, p),1 where

f (k; n, p) ≡ nCk pk(1 − p)n−k, (0 ≤ k ≤ n : integer, p > 0: real),

is called the binomial distribution. The parameter p is the probability of finding a
red ball upon each choice. The combinatorial factor nCk pk comes from the possible
different ways of picking up red balls among n consecutive choices.

Example 2: Poisson distribution. Now we take a different type of limits, N → ∞,
M →∞, and n →∞ in the way that M/N → 0 and n/N → 0 but (nM/N ) → λ.
Then we have P(k, n|M, N ) → f (k; λ),2 where

1 A useful asymptotic formula is N !/(N − n)! � N n for N/n →∞.
2 We will use Stirling’s formula of n!, i.e., n! � nne−n

√
2πn (valid up to 1% relative error for

n ≥ 8), and also use the expansion, log(1 + ε) � ε − ε2/2, valid for small ε.

Sekimoto, K.: Appendix. Lect. Notes Phys. 799, 281–320 (2010)
DOI 10.1007/978-3-642-05411-2 c© Springer-Verlag Berlin Heidelberg 2010
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f (k; λ) ≡ e−λ
λk

k!
, (0 ≤ k <∞ : integer, λ > 0: real),

is called the Poisson distribution. The parameter λ is the average number of red
balls (〈k̂〉) found among a vast number (n) of chosen balls. The probability f (k; λ)
is maximum at around k = λ but has tails above and below this average number.

A.1.2 A Particular Aspect of Gaussian Distribution:
Fluctuation–Response: Appendix to Sect. 1.1.2.1

The Gaussian distribution is particular first because it contains only two parameters,
e.g., the average and the variance, and second it has a quadratic form in the exponen-
tial. The second property gives rise to a general relation between the fluctuation of a
random variable and the response of its average against the change in the parameters
of the Gaussian distribution [1]. The similar relation has been well-known for gen-
eral probability distribution related to thermal equilibrium, but the quadratic expo-
nential nature of the Gaussian distribution provides this relationship irrespective of
the origin of the Gaussian distribution, either equilibrium or nonequilibrium.

Suppose that a random variable x̂ obeys the Gaussian distribution, with the prob-
ability density, P(x ;α) ≡ 〈δ(x − x̂)〉α, where α is a parameter and 〈O(x̂)〉α =∫
O(x)P(x ;α)dx . The average 〈x̂〉α and the variance σ 2

a ≡ 〈[x̂ −〈x̂〉α]2〉α are, there-
fore, functions of α.

Because of the quadratic exponential character of Gaussian distribution, the
effect of the change of parameter, α → α+Δα, on the probability distribution must
take the form, P(x ;α + Δα) = P(x ;α) euy+vy2

/〈euy+vy2〉α, where y ≡ x − 〈x̂〉α
and the coefficients u and v depend generally on α and Δα.3 [1] showed that the
effect of small change of Δα on the average, 〈x̂〉α , has a simple relationship with the
variance or the fluctuation, 〈[x̂ − 〈x̂〉α]2〉α . In fact

〈x̂〉α+Δα = 〈x̂euy+vy2〉α
〈euy+vy2〉α

= 〈x̂〉α + 〈y + u(1) y2Δα + v(1) y3Δα +O((Δα)2)〉α
〈1 + u(1) yΔα + v(1) y2Δα +O((Δα)2)〉α

= 〈x̂〉α + u(1)〈y2〉αΔα +O((Δa)2), (A.1)

where u(1) ≡ ∂u/∂(Δα)|Δα=0 and v(1) ≡ ∂v/∂(Δα)|Δα=0. Therefore, the linear
response coefficient of 〈x̂〉α with respect to Δα writes

3 In 〈 〉α we should write ŷ ≡ x̂ − 〈x̂〉α rather than y, but we abuse the latter for simplicity of
notation.
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lim
Δα→0

〈x̂〉a+Δα − 〈x̂〉α
Δα

= u(1) 〈[x̂ − 〈x̂〉α]2〉α. (A.2)

If u depends approximately linearly on Δα (e.g., u ∝ Δα), then u(1) is approx-
imately constant. Then the linear response obeys approximately the conventional
fluctuation–response relation. This conclusion holds whether or not the steady Gaus-
sian distribution P(x, a) corresponds to an equilibrium state.

The equilibrium fluctuation–response relation is immediately derived using the
canonical distribution. If α is a small external force and x is a small deviation from
the force-free equilibrium value, the distribution is

Peq(x ;α) ∝ exp

[
− x2

2〈x2〉α=0
+ αx

kBT

]
∝ exp

[
− (x − 〈x2〉α=0α/kBT )2

2〈x2〉α=0

]
.

Therefore, we have

∂〈x〉α
∂α

= 〈x2〉α=0

kBT
. (A.3)

The comparison of (A.2) with (A.3) shows that the inverse of u(1) plays the role
of an “effective temperature.” This fictitious temperature can be measured as a true
temperature if we attach to the system a small monitoring system (“thermometer”)
isolated from the thermal environment [2].

A.1.3 Sketch of Derivation of (1.10), (1.11), and (1.12): Appendix
to Sect. 1.1.2.3

Let PN (AN ) be the probability distribution function of ÂN , or PN (AN ) = 〈δ(AN −
ÂN ).〉 We introduce the characteristic function for ÂN , i.e., ΦAN (φ) ≡ 〈

eiφAN
〉 =∫∞

−∞ ei ANφ PN (AN )d AN . The independence of âi yields ΦAN (φ) = [Φa (φ/N )]N ,
where Φa(φ) is the characteristic function of p(a), i.e., Φa(φ) ≡ ∫∞

−∞ eiaφ

p(a)da. By the definition of Φa(φ), we have Φa(0) = 1 (normalization), p̃′(0) =
i〈a〉 = ia∗ (a∗: mean value), p̃′′(0) = −〈a2

〉
(minus second moment), if these

quantities exist for the distribution p(a).4 We then have

[
Φa

(
φ

N

)]N

�
[
Φa(0) + p̃′(0)

φ

N
+O

(
φ2

N 2

)]N

→ eia∗φ, (N →∞). (A.4)

4 cf. It is not always the case; for the Lorenzian distribution, p(a) = (σ/π )(a2 +σ 2)−1, the second
moment is divergent.
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Since eia∗φ is the Fourier transform of δ(AN −a∗), the last limiting property implies
that PN (AN ) → δ(AN − a∗) is the distribution.5 This is called the (weak) law of
large numbers. A stronger law has also been studied, but we will not discuss it here.

In order to study convergence more precisely, we focus on the narrowing peak
of PN (AN ). In this purpose we introduce, instead of the empirical average, ÂN , the
following “standardized deviation”:

Ŵ ≡ ÂN − a∗
σ√
N

=
∑N

i=1 âi − Na∗√
Nσ 2

, (A.5)

where σ 2 = 〈(a − a∗)2
〉

is the variance of âi . We introduce the characteristic func-

tion for Ŵ as Q̃N (ψ) =
〈
eiψŴ

〉
. By the independence of âi , we have Q̃N (ψ) =

[〈
e

iψ(ai−a∗)√
Nσ2

〉]N

. By developing the exponential function in terms of ψ ,6 we have

Q̃N (ψ) �
[
1 − ψ2

2N +O
(
ψ2

N 2

)]N
→ e−

ψ2

2 for N → ∞. As e−
ψ2

2 is the Fourier

transformation of the standard normal distribution, ew
2/2/

√
2π , the above result

implies the following detailed but universal behavior of the sharp peak (de Moivre–
Laplace theorem):

lim
N→∞

Prob

[
c1

√
σ 2

N
< ÂN − a∗ < c2

√
σ 2

N

]
=
∫ c2

c1

e−
w2

2√
2π

dw. (A.6)

Here c1 and c2 (c1 ≤ c2) should be of order of N 0(= 1). Therefore, within the

peak region, the probability distribution for ŵ approaches
e−

w2

2√
2π

.7 This is called the

central limit theorem.
The deviations ÂN−a∗ beyond O(N− 1

2 ), where we cannot apply the central limit
theorem, belong to the subject of the large deviation theory. The Cramér’s theorem
tells how the probability of the large deviations behaves: (i) the probability Pd(x) of
the large deviation, x = ÂN − a∗, obeys the law, 8

Pd(x) ∼ e−N I (x), (N →∞), (A.7)

5 It is called the convergence in law.
6 We assume that

〈
a3
〉

exists.
7 In the statistical inference theory, this result is also used to assess the reliability
of the empirical estimate of the mean value from ÂN . We expect, for large N ,

Prob

[
ÂN + c1

√
σ 2

N < a∗ < ÂN + c2

√
σ 2

N

]
� ∫ c2

c1

e−
W 2

2√
2π

dW .

8 X (N ) ∼ Y (N ) means limN→∞(X (N )/Y (N )) =const.
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with I (0) = 0, and (ii) I (x) = supt∈R
[x t − Λ(t)]. Here Λ(t) is the cumulant gen-

erating function for ÂN , defined by eΛ(t) ≡ 〈et AN
〉 = ΦAN (−i t), and we assume that

Λ(t) remains finite for all t ∈ R finite. (i) tells that except for the macroscopically
expected value ÂN = a∗, the probability to realize any value of ÂN is exponentially
small for large N . The properties (i) and (ii) of ÂN together are known as the large
deviation principle (LDP).

A.1.4 Derivation of (1.23): Appendix to Sect. 1.1.3.2

Using (1.19), the probability density of the displacement, P(X, t) = 〈δX−[x̂(t) −
x̂(0)]〉, is

P(X, t) =
〈
δ

(
X −

∫ t

0
ξ̂ (s)ds

)〉
. (A.8)

By (A.8) the characteristic function for X̂ is given as

∫ ∞

−∞
eiq X

〈
δ

(
X −

∫ t

0
ξ̂ (s)ds

)〉
d X =

〈
exp

[
iq
∫ t

0
ξ̂ (s)ds

]〉
. (A.9)

From (1.8), (1.9), and (1.18) together with (1.22), we find that the right-hand side
of (A.9) is e−Dq2t . On the other hand, by (1.23) the characteristic function for X̂
also yields e−Dq2t . Since the characteristic function contains (almost) the same
informations as the probability density, we find the equality between P(X, t) =
〈δ(X − [x̂(t) − x̂(0)])〉 and (1.23).

A.1.5 Langevin Equation Obtained by the Method of Projection
Operators: Appendix to Sect. 1.2.1.5

The method of projection operators is summarized without going into details, and
the description is rather formal.

The gross variables (i.e., slowly varying physical observables of our interest),
A(x, p), are functions of the phase space point, {x, p}.9 From classical Hamiltonian
mechanics, we know that the time evolution of A(x, p) is governed by the Liouville
equation, which is linear in A(x, p):10

9 Except for very simple cases like the one studied in the previous section Sect. 1.2.1.4, the observ-
able quantities of fluctuating system in general depend on many degrees of freedom. For example,
the density of gas particles found in a specified small but macroscopic volume could be defined in
terms of all the particles’ coordinates.
10 When we study directly the evolution of A(x, p), the arguments {x, p} denote the phase space
point at the initial time t = 0, that is, {x(0), p(0)} = {x, p}. The function A(x, p) at time t



286 Appendix A

Ȧ = iLA. (A.10)

Here the linear operator, called the Liouville operator, L, is defined using the Pois-
son bracket11 { , } and the Hamiltonian H as LA ≡ {A, H}.

We will denote H the functional space, in which the projection operators act.
The essence of the method of projection operator is to represent the evolution

of the observable A, after having (linearly) projected it into a subspace, H‖(⊂ H),
spanned by a set of “slow variables” at the initial time, which are represented by an
orthogonal set of the unitary vectors {e j } in H [3]. The action of the projection oper-
ator, P , can be represented as PX =∑ j e j (e j , X) under the properly defined scalar
product, (X,Y ), in the functional space H. The temperature of the environment
composed of the nonslow variables appears in the definition of the scalar product
or, more precisely, in its “weighing function.”12 The formal procedure to obtain the
projected evolution equation of A starts by decomposing the Liouville equation,
Ȧ = iLA, into the two equations for P A and (1 − P)A:

∂

∂t
P A = iPL[P A+ (1 − P)A],

∂

∂t
(1 − P)A = i(1 − P)L[P A+ (1 − P)A].

Then we solve formally the second equation for (1 − P)A while treating P A as
given function of time. This procedure is analogous to (1.37). We substitute the
expression for (1 − P)A thus obtained again into the above equations, where we
also use the fact that A = eiLt A|t=0 is the formal solution of the Liouville equation
Ȧ = iLA at time t (the observable at the initial time, t = 0, is denoted by A|t=0).
The result of the substitution is summarized as the following operator identity [4]:

d

dt
eitL = eitLiPL+

∫ t

0
dsei(t−s)LiPLeis(1−P)Li(1 − P)L+ eit(1−P)Li(1 − P)L.

(A.11)
So-called Mori formula [3] is readily obtained by applying each side of the above
equation to A|t=0. For the details of the methods of projection operator, the readers
should consult a good pedagogical review [5].

A difficulty met at this point was that the resulting equation of motion is always
linear in the slow variable, A. The Mori formula [3] is thus reminiscent of the linear

connects this phase point to the value of A at that time. This viewpoint is parallel to the Lagrange
picture in hydrodynamics or the Heisenberg picture in quantum mechanics. (As a complementary
picture, if we defined A(x, p) as a fixed function of {x, p}, the temporal change of the value of A
would be represented as A(x(t), p(t)).)
11 {A, B} ≡∑i

[
∂A
∂xi

∂B
∂pi

− ∂A
∂pi

∂B
∂xi

]
, where i is the index of all the microscopic degrees of freedom.

12 The scalar product of A and B in H is defined by (A, B) ≡ kBT
∫ (kBT )−1

0

Tr
[
ρeqeλH A†e−λH B

]
dλ, where ρeq = Z−1e−H/kBT is the equilibrium distribution or the density

operator at temperature T .
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Langevin equations in which the potential U is harmonic in A. In order to derive
Langevin equations having nonquadratic potential U with respect to A, we must
notice the fact that any function of A is a slow variable if A does. For example,
A3 is totally dependent on A as a function of physical quantities, and the value of
A3 is completely determined if that of A is known. However, as a vector in the
functional space on {x, p}, the two functions A(x, p) and A(x, p)3 are indepen-
dent.13 Therefore, when we define a functional subspace of slow variables, we must
include all functions of A as slow variables. A convenient and complete choice of
such functions is to adopt the parameter family, {δ(A − a)}, with a running over
a pertinent parameter space. For example, an arbitrarily chosen function of A, say
f (A), is expressed as a form of linear combination: f (A) = ∫ f (a)δ(A− a)da.

In 1973 Kawasaki finally derived a general form of the Langevin equation from
microscopic Newtonian mechanics [4].14 He essentially applied the above iden-
tity (A.11) to δ(A − a). The result is (1.42) in the text, that is, d

dt Ai = vi (A) −
∑

j
L0

i j

T
∂Ueq(A)
∂A∗

j
+ fi (t), where the three terms on the right-hand side correspond to,

respectively, the three terms on the right-hand side of (A.11).

A.1.6 The Distinction Between Different Types of Calculus:
Appendix to Sect. 1.2.2.2

Sometimes we encounter in the literatures the expressions where the distinction
between the Itô and the Stratonovich-type calculus is not explicit:

Example 1. Let us consider ηn

√
Δt, where the (discrete) Gaussian stochastic

process ηn is characterized by 〈ηn〉 = 0 and 〈ηnηm〉 = b(x(tn))δnm , with some
nonnegative-valued function b(x). It implies that x(tn) in b() does not depend on the
history of ηn′ (n′ = 1, . . . , n), that is, nonanticipating with respect to ηn. Therefore,
the limitΔt → 0 of the above process should be interpreted as Itô type,

√
b(xt )·d Bt .

Example 2. If a Langevin equation describes the dynamics in d-dimensional
space or manifold,15 the multiplicative noise term is often written as dWμ

t (μ =
1, . . . , d) such that 〈dWμ

t 〉 = 0 and 〈dWμ
t dW ν

t 〉 = gμν(xt )dt , where 〈·〉 denotes
the average about the process between the time t and the t + dt , and gμν(x)
is the (μ, ν)-component of the metric tensor g(x) at the point x . We can repre-
sent dWμ

t in the form of b(xt ) · d Bt if we use the orthogonal matrix O(x) which
diagonalizes the metric tensor, O(x)g(x)Ot(x) = Λ(x). In fact the transformation

13 It means that we need a = b = 0 if ax + bx3 = 0 as a function of x . We note also that, if ŷ is
a random variable of zero average, the correlation coefficient between ŷ and ŷ2 is not identically
equal to 1: 〈ŷ ŷ3〉/

√
〈ŷ〉2 〈ŷ3〉2 �≡ 1.

14 It was Zwanzig who first proposed the equation with memory effect. [6].
15 In Appendix to Chap. 4, we describe the energetics of the Langevin equation on a manifold
(Sect. A.4.7.3).
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dW̃ α
t ≡ ∑d

μ=1 Oα
μ(xt ) · dWμ

t (in Itô’s sense) eliminates the cross-correlation, and
we may write dW̃ α

t = √
Λα(xt )·d Bα

t , whereΛα(x) is the αth diagonal component of
the positive diagonal matrix Λ(x) and Bα

t is the αth component, in this local frame,
of d-dimensional Wiener process. Since the principal directions of the symmetric
matrix g(x) depend on x , the suffix α at different points of x has no simple relations.

A.1.7 Conversion of Itô’s Lemma (1.58) into Stratonovich Form:
Appendix to Sect. 1.2.2.3

The sum of the second and third terms on the right-hand side of (1.59) yields
up to ∼ dt16

(
f ′(xt ) + f ′′(xt )

dxt

2

)
dxt = f ′(xt + dxt

2
)dxt

= f ′(xt+dt ) + f ′(xt )

2
dxt

= f ′(xt ) ◦ dxt . (A.12)

Therefore, (1.59) simply leads to

d f (xt ) = f ′(xt ) ◦ dxt . (A.13)

Therefore, the Stratonovich-type expression for (1.58) becomes

d f (xt ) = a(xt , t) f ′(xt )dt + [b(xt , t) f ′(xt )] ◦ d Bt .

As is seen from (A.13), formulas of the calculus of Stratonovich type take apparently
the form of real analysis (integration by parts, integration by substitution, etc.). This
is a merit of the calculus of Stratonovich type as compared with the Itô type.

These two types of calculus are, however, a matter of choice. The conversion
from one type to the other is always possible and is given by

f (xt ) ◦ d Bt = f (xt ) · d Bt + b(xt , t)

2
f ′(xt )dt. (A.14)

To understand this, we can rewrite the left-hand side as

f (xt ) ◦ d Bt = (1/2)( f (xt+dt ) + f (xt ))d Bt

= [ f (xt ) + 1

2
( f (xt+dt ) − f (xt ))]d Bt (A.15)

16 Since dxt ∼
√

dt , we keep only up to the ∼ (dxt )2 terms in accordance with (1.52).
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and substitute into f (xt+dt ) − f (xt ) (= d f (xt )) the formula (1.58). For f (xt ) =
b(xt , t), the formula (A.14) can be easily generalized to give b(xt , t) ◦ d Bt =
b(xt , t) · d Bt + b(xt ,t)

2
∂b(xt ,t)
∂xt

dt . Then we arrive at (1.60).

A.1.8 Derivation of Fokker–Planck Equation (1.73) and Kramers
Equation (1.74): Appendix to Sect. 1.2.3.1

We apply the Itô’s lemma, (1.58), to δ(X − xt ). We obtain17

dδ(X − xt )

=
{
−a(xt )δ

′(X − xt ) + b(xt )2

2
δ′′(X − xt )

}
dt − b(xt )δ

′(X − xt ) · d Bt

=
{

[−a(X )δ(X − xt )]
′ + 1

2
[b(X )2δ(X − xt )]

′′
}

dt − b(xt )δ
′(X − xt ) · d Bt .

Taking the path average 〈 〉 of each term, the terms including d Bt vanish by the rule
of the Itô-type calculus. We then have

dP(X, t) =
{

[−a(X )P(X, t)]′ + 1

2
[b(X )2P(X, t)]′′

}
dt.

With this result and (1.72), we arrive at (1.73) in the text.

In the case with inertia, we apply the Itô’s lemma to δ(X − xt )δ(P − pt ). We find

d[δ(X − xt )δ(P − pt )]

= δ′(X − xt )δ(P − pt )
(
− pt

m

)
dt

+δ(X − xt )δ
′(P − pt )

[(
γ

pt

m
+ ∂U

∂x

∣∣∣∣
x=xt

)
dt +

√
2γ kBT · d Bt

]

+1

2
δ(X − xt )δ

′′(P − pt )(2γ kBT )dt. (A.16)

By taking the path average 〈 〉 of each term, we arrive at (1.74) in the text. As noted
in the footnote below (1.61), we need not to distinguish between ◦d Bt and ·d Bt in
this case even if γ and/or T depend on xt .

17 Note that dn

dyn [φ(y)δ(y − x)] = dn

dyn [φ(x)δ(y − x)] = φ(x) dn

dyn δ(y − x).
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A.1.9 Jacobian to Transform ξ ( ) into x( ):
Appendix to Sect. 1.3.1.1

Below is a heuristic explanation for the term ∂2U/∂x2 in (1.84). We discretize the
Langevin equation in time up to O(xn+1 − xn): γ (xn+1 − xn) = − 1

2 [U ′(xn+1 +
U ′(xn)]Δt +√

2γ kBT (Bn+1 − Bn), where Bn stands for the Wiener process at time
t = nΔt and xn = x(nΔt). This trapezoidal rule, reminiscent of the Stratonovich
interpretation, assures the correct limit Δt → 0 in P[x] of (1.84). (It is not
the case with the other choices like the simple Euler scheme where U ′(xn) is
used instead of 1

2 [U ′(xn+1 + U ′(xn)], see the later Sect. 4.1.2.5.) Then the above
discretized form can be rewritten as follows: γ (xn+1 − xn)[1 + Δt

2γ U ′′(xn)] =√
2γ kBT (Bn+1 − Bn) − U ′(xn)Δt. This relation gives a linear transformation of

{(Bn+1 − Bn)} into {(xn+1 − xn)} of O(
√
Δt). The Jacobian then consists of the

multiplication of ∂(Bn+1−Bn)/∂(xn+1−xn) = c
[
1 + Δt

2γ U ′′(xn)
]
, with c being con-

stant through all the time-steps. (U ′(xn)Δt is nonanticipating and does not depend
on xn+1 − xn .) Thus in the limit of Δt → 0 we have

∏(t/Δt)
n=0 [1 + Δt

2γ U ′′(xn)] →
exp( 1

2γ

∫ t
0 U ′′(x)ds).

A.1.10 Derivation of Fluctuation–Dissipation (FD) Relation:
Appendix to Sect. 1.3.1.2

Let X be the set of variables which evolves as a Markov process,

d X
dt

= V(X (t), ξ (t)).

This can be a Langevin equation, where X = (x, p) or x ; a Hamiltonian equation,
where X represents all the positions and momenta and we ignore ξ (t); or any other
Markovian evolution equation. We adjust the additive constants in X such that its
equilibrium average without external force vanishes.

The above equation (without external force) can be formally solved as an initial
value problem. We denote the solution as follows:

X(t) = X (ξ (); X0) (t ≤ t0), (A.17)

where X0 ≡ X(t0) is the initial value of X at the time t0.
We denote by CX,X (t−t0) ≡ 〈X(t)X(t0)〉eq the canonical equilibrium correlation

function of X(t) with the initial variable X(t0). This correlation function is given by
the average of the above equation over the stochasticity of the process ξ ( ) and also
over the initial equilibrium distribution, Peq(X0; T )

〈X(t)X(t0)〉eq =
∫
〈X (ξ (); X0)〉ξ () X0 Peq(X0; T ) d X0, (A.18)
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where 〈 〉ξ () in the integrand denotes the average taken over the random thermal noise
ξ () but at a fixed initial value of X .

In the linear response theory, the relaxation function of X(t) against a force on
this variable is defined through the evolution of 〈X(t)〉 given that a weak constant
external force h on X has been applied until t = t0 and is switched off at t = t0.
Because of the exponential Boltzmann factor form of the canonical distribution, the
equilibrium density in the presence of the weak force takes the form

e
X 0 ·h

kBT Peq(X0; T ) �
(

1 + X0 · h
kBT

)
Peq(X0; T )

up to the first order of h. Therefore, the average of X(t) is given by

〈X(t)〉 =
∫
〈X (ξ (); X0)〉ξ ()

(
1 + X0 · h

kBT

)
Peq(X0; T ) d X0 h

= 1

kBT
CX,X (t − t0) · h. (A.19)

On the right-hand side, the coefficient of h is called the (linear) relaxation function,
RX,X (t − t0).

In conclusion, we have the following formula, which is essentially the fluctuation–
dissipation relation:

CX,X (t − t0) = kBT [RX,X (t − t0) + RX,X (t0 − t)],

where we took into account the causality RX,X (t) = 0 if t < 0. The generalization
to the quantum case requires the noncommutativity of X(t) and X0. The general-
ization to the fluctuations of “currents” needs some derivation and integration [7],
but we do not go into those details for simplicity’s sake. From the above derivation,
it is clear why this relation does not depend on the particular evolution model. We
notice that neither the concrete form of Peq(X0; T ) nor the detailed balance con-
ditions have been used except for the fact that the force perturbs Peq(X0; T ) by a

factor
(

1 + X 0·h
kBT

)
. This suggests the generalizability of the above relationship to

the nonequilibrium steady states.

A.1.11 Derivation of (1.93) and (1.94): Appendix to Sect. 1.3.2.1

The global strategy is to (1) integrate the starting SDE (1.31) for the time step Δt
( m/γ ), (2) eliminate the less dominant terms in Δt , and finally (3) take the
formal limit of Δt → 0. In this way the final SDE does not explicitly include the
time resolution, Δt .

Step (1): We integrate formally the first equation of (1.31) between t and t +Δt ,
regarding x(t) and a(t) therein as known functions of time:
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p(t ′)=
∫ t ′

0
e−

t ′−s
τp

[√
2γ kBT (x(s))ξ (s) − ∂U (x(s), a(s))

∂x

]
ds + e−

t ′
τp p(0).

We substitute this expression for the p(t ′) in the time integral of the second equation
in (1.31) over [t, t +Δt],

γ [x(t +Δt) − x(t)] = (γ /m)
∫ t+Δt

t
p(t ′)dt ′. (A.20)

Step (2): The estimation of the resulting double integral requires some care: we
use the following identity:

∫ t+Δt

t
dt ′
∫ t ′

0
ds f (s, t ′) =

∫ t

0
ds
∫ t+Δt

t
dt ′ f (s, t ′)+

∫ t+Δt

t
ds
∫ t+Δt

s
dt ′ f (s, t ′). (A.21)

Also we use the development of the functions of x(s) in powers of [x(s)− x(t)], like

√
T (x(s)) =

√
T (x(t)) + d

√
T (x)

dx

∣∣∣∣
x=x(t)

[x(s) − x(t)] + · · · . (A.22)

For [x(s) − x(t)] in (A.22) we substitute (A.20) iteratively, replacing t + Δt by s,
so that the result is correct up to the order O(Δt).18 Bringing all these techniques
together and using the formulas such as (1.55), we arrive at the following result:19

γ [x(t +Δt) − x(t)] =
√

2γ kBT (x(t))[Bt+Δt − Bt ]

+kBT ′(x(t)){[Bt+Δt − Bt ]
2 −Δt} − ∂U (x(t), a(t))

∂x
Δt

+o(Δt). (A.23)

The first and the second lines on the right-hand side of (A.23) are, respectively,
of the order O((Δt)1/2) and O(Δt). [Bt+Δt − Bt ]2 is known to obey the so-called
χ2-distribution of one degree of freedom. Those Bt ’s in the first and the second line
of (A.23) represent the same realization (path).

Step (3): In the limit of Δt → 0, the term {[Bt+Δt − Bt ]2−Δt} vanishes because
of the law d B2

t = dt (see (1.52)). We then arrive at (1.93) and (1.94). When we solve
numerically these equations, the formula (A.23) is useful.

This form is essentially identical to so-called Milstein scheme [8] to solve the
SDE of the form (1.93). It means that the coarse-grained form (A.23) is not a result
peculiar to the elimination of the inertia effect.

18 Note that a(s) − a(t) is treated as O(Δt).
19 o(Δt) denotes the terms higher order than Δt , i.e., limΔt→0[o(Δt)/Δt] = 0.
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A.1.12 Derivation of (1.108): Appendix to Sect. 1.3.3.2

The reasoning is based on the previous result (1.104): As τop is the duration time of
the protocol, this time can be arbitrarily larger than τerg. On the other hand, if τop is
large enough, there is a time scale Δt such that Δt  τerg but at the same time the
functions Φ( , a(t)) and Peq( , a(t); T ) remain almost constant in the time domain
[t, t + Δt]. Then we can regard the time integral on the right-hand side of (1.107)
as the sum of integrals over [nΔt, (n + 1)Δt]. In each of the integrals,

În ≡
∫ (n+1)Δt

nΔt
Φ(x̂(t), a)

da

dt
dt,

a(t) is effectively constant (by definition of Δt) while Φ(x̂(t), a) can be rewritten
as
∫ +∞
−∞ Φ(X, a)δ(X − x̂(t))d X . Therefore

In �
∫ +∞

−∞
Φ(X, a)

[
1

Δt

∫ (n+1)Δt

nΔt
δ(X − x̂(t))dt

]
d X ã′

(
nΔt

τop

)
Δt

τop

� 〈Φ(·, a)〉eq[a((n + 1)Δt) − a(nΔt)]. (A.24)

Adding up these integral of segments, we find the result (1.108) in the text. If a has
n(> 1) components, the product Φ da is understood as the scalar product.

A.1.13 Derivation of the Mean First Passage Time: Appendix
to Sect. 1.3.3.3 20

A.1.13.1 The Fokker–Planck Equation with Absorbing Boundary Condition

When a Brownian particle obeys the Langevin equation, 0 = − ∂U (x,a)
∂x −γ dx

dt +ξ (t),
and if we follow the particle only up to its first passage of the boundary of Ω , we
can suppose that the particle is absorbed perfectly by the boundary.

In the language of the associated Fokker–Planck equation,

∂P

∂t
= LP, (A.25)

this absorbing boundary imposes the Dirichlet boundary condition on the probability
density, P(x, t) ≡ 〈δ(x − x̂(t))〉 :

P(x, t) = 0, x ∈ ∂Ω, (A.26)

where ∂Ω denotes the boundary of Ω.

20 The text follows the derivation in [9].
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If (A.25) is solved under this boundary condition and the concentrated initial
condition, P(x, 0) = δ(x − x0), (x0 ∈ Ω), the total probability to find the particle
in Ω, i.e.,

∫
Ω

P(x, t)dx , decreases in time for t > 0.

A.1.13.2 Green’s Function of the Problem

Using the above solution P(x, t), we define

G(x |x0) = −
∫ +∞

0
P(x, t)dt. (A.27)

G(x |x0) satisfies LG(x |x0) = δ(x − x0) (x, x0 ∈ Ω) and the Dirichlet condition
on x , i.e., G(x |x0) = 0, x ∈ ∂Ω. This can be verified by directly operating L to
the right-hand side and using the Fokker–Planck equation. The function G(x |x0) is
called Green’s function of the operator L.

A.1.13.3 Integral of ψ(x̂) up to the First Passage Time

Let us regard the FPT τ̂Ω as random variable. Each realization of x̂( ) gives a value
of τ̂Ω . For any function ψ(x) defined on Ω , the following equality holds:

∫ τ̂Ω

0
ψ(x̂t )dt =

∫ +∞

0

[∫

Ω

ψ(x)δ(x − x̂t )dx

]
dt, (A.28)

because the integral in [ ] isψ(x̂) while x̂ ∈ Ω but is 0 after the absorption at t = τ̂Ω .

Next we take the path average of (A.28) with a fixed initial condition, x̂(0) = x0.
Using (A.27) and P(x, t) = 〈δ(x − x̂(t)), the result is as follows:

〈∫ τ̂Ω

0
ψ(x̂t )dt

〉
= −

∫

Ω

ψ(x)G(x |x0)dx . (A.29)

A.1.13.4 A Form of the Feynman–Kac Formula and MFPT

We define φ(x) as the solution of ψ(x) = L∗φ(x) with the Dirichlet boundary
condition, φ(x) = 0 for x ∈ ∂Ω . Then we have

∫

Ω

[L∗φ(x)]G(x |x0)dx =
∫

Ω

φ(x)[LG(x |x0)]dx = φ(x0), (A.30)

where the definition of adjoint operator and the property LG(x |x0) = δ(x − x0)
were used. This result is called (a version of) Feynman–Kac formula. Finally putting
ψ(x) = −1 in (A.29), we obtain

〈τ̂Ω〉 = φ(x0). (A.31)
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A.1.13.5 Addenda: Potential Theory

Equation (A.27) suggests a way to calculate G(x |x0). We solve the above Langevin
equation with the initial condition x(0) = x0 and measure the residence time in
every element dx inΩ . The path average of such residence time is dx

∫ +∞
0 P(x, t)dt.

If U (x, a) = 0, the equation LG = δ(x − x0) is the Laplace equation, ΔG =
δ(x − x0) with a point source. Then the above method gives the solution of Laplace
equation with a Dirichlet boundary condition from the observation of free Brownian
motion. This type of analysis is called potential theory.

A.2 Appendix to Chap. 2

A.2.1 Maxwell Relation in the Fundamental Relation Assures
the Existence of Thermodynamic Function: Appendix
to Sect. 2.1.3.2

We show that, if the Maxwell-type relation, ∂a
∂y = ∂b

∂x , is satisfied in the equation of
differentials, dz = a(x, y)dx + b(x, y)dy, then we can reconstitute a monovalent
function z = z(x, y).

It is sufficient to show this fact on a small segment, �ABC D, with A = (0, 0),
B = (Δx, 0), C = (Δx,Δy), and D = (0,Δy). We show that the integral of
dz = a(x, y)dx + b(x, y)dy along the path A → B → C , denoted by Δz(ABC),
and the integral along the path A → D → C , denoted by Δz(ADC), give the same
value up to O(ΔxΔy). Using the illustration in Fig. A.1, we find

z

y

B x

C

D

A

Fig. A.1 Integrals of dz = a(x, y)dx + b(x, y)dy along the path A → B → C and along the path
A → D → C
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Δz(ADC) −Δz(ABC)

= [Δz(DC) −Δz(AB)] − [Δz(BC) −Δz(AD)]

� [a(
1

2
Δx,Δy) − a(

1

2
Δx, 0)]Δx − [b(Δx,

1

2
Δy) − b(0,

1

2
Δy)]Δy

� [
∂a

∂y
Δy]Δx − [

∂b

∂x
Δx]Δy. (A.32)

Then the relation
∂a

∂y
= ∂b

∂x
assures the existence of a function z(x, y).

A.2.2 Invariance of Thermodynamic Relations and the Choice
of Reference Energy and Entropy: Appendix to Sect. 2.1.3.4

In Newtonian mechanics, the choice of a nonaccelerating frame (inertial frame) of
reference is arbitrary, that is, the form of Newton equation of motion is invari-
ant under change of the frame (the principle of relativity of Galilee). In classical
(vs. quantum) macroscopic thermodynamics, the choice of zero points of energy
and entropy is arbitrary (to be stated more precisely below). We expect, therefore,
that the thermodynamic relations discussed in the text are invariant under the change
of these zero points.

Zero volume, V = 0, and zero particles, N = 0, have direct physical meanings.
However, the zero point of the energy or the entropy per particle is a matter of
choice in the classical (not quantum) thermodynamics. The following redefinitions
of the energy and entropy of a system with N particles should, therefore, have no
physical consequences [10]:

E �→ Ẽ = E + e∗N , S �→ S̃ = S + s∗N , (A.33)

where e∗ and s∗ are arbitrary constants. Evidently the transformations of (A.33) are
consistent with (2.4).

The less evident consequences of the above transformations (A.33) are the
changes in other complete thermodynamic functions derived through the Legendre
transformation 21:

F ≡ E − T S �→ F̃ = F + (e∗ − T s∗)N

G ≡ E − T S + pV �→ G̃ = G + (e∗ − T s∗)N . (A.34)

The last formula defines how the chemical potential, μ, should transform: With the
relation G = μN , we have

μ �→ μ̃ = μ+ (e∗ − T s∗). (A.35)

21 From here up to the end of this section we will take the example of a single-component gas
system: The generalization of the proofs is not difficult.
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The following two examples demonstrate the invariance of the basic
thermodynamic relations (cf. Sect. 2.1.3.1).

(i) Fundamental relation:

d E = T d S − pdV + μd N . (A.36)

We rewrite this relation in terms of Ẽ , S̃, and μ̃, using (A.33) and (A.35). The
result is d Ẽ = T d S̃− pdV + μ̃d N , which is identical form to the original one.

(ii) Thermodynamic derivative:

μ

T
= ∂S(E, V, N )

∂N
. (A.37)

We notice the change of the arguments of the entropy: S̃(Ẽ, V, N ) = S(E, V, N )
+ s∗N = S(Ẽ − e∗N , V, N ) + s∗N . The partial derivative of this expression
with respect to N then yields

∂ S̃

∂N
= ∂

∂N
[S(Ẽ − e∗N , V, N ) + s∗N ] = (−e∗)

∂S

∂E
+ μ

T
+ s∗. (A.38)

In using ∂S/∂E = 1/T and (A.35), the right-hand side becomes (−e∗)/T +
μ/T + s∗ = μ̃/T .

Remark: When we deal with the multicomponent systems with chemical reac-
tions, we must respect the constraints among the e∗’s and s∗’s. Where the quantum
effects appear, the arbitrariness of the additive constants is more restricted. When
several chemical substances participate in a chemical reaction, the third law of ther-
modynamics (Sect. 2.1.2) about the uniqueness of the ground state at T = 0 induces
the relations among the specific quantities of those substances. See, for example,
Chap. 9 of [11].

A.3 Appendix to Chap. 3

A.3.1 Derivation of (3.27): Appendix to Sect. 3.3.1.4

The inequality (3.27), that is, D(P ‖ Q) ≥ D(KP ‖ K Q), is a special case of
the “log sum inequality,” (A.40) below.22 The starting point is Jensen’s inequality,

22 The demonstration below follows [12]. Y. Oono pointed this out to me.
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which holds for any strictly convex function f (t),23

n∑

i=1

αi f (ti ) ≥ f

(
n∑

i=1

αi ti

)
, (A.39)

where αi ≥ 0,
∑n

i=1 αi = 1. By substituting f (t) = t ln t, αi = bi/
∑n

j=1 b j , and
ti = ai/bi in (A.39) with ai > 0 and bi > 0, we have the log sum inequality:

n∑

j=1

a j ln
a j

b j
≥
⎛

⎝
n∑

j=1

a j

⎞

⎠ ln

∑n
k=1 ak∑n
l=1 bl

. (A.40)

We then further substitute a j = a(i)
j ≡ Ki j Pj and b j = b(i)

j ≡ Ki j Q j in (A.40) and
take the sum over i of each side of the inequality. The result is

n∑

i=1

n∑

j=1

Ki j Pj ln
Pj

Q j
≥

n∑

i=1

⎛

⎝
n∑

j=1

Ki j Pj

⎞

⎠ ln

∑n
k=1 Kik Pk∑n
l=1 Kil Ql

. (A.41)

Using
∑n

i=1 Ki j = 1 on the left-hand side, we arrive at (3.27).

A.3.2 Derivation of (3.72) and (3.73): Appendix to Sect. 3.3.3.4

The simplifying approximations we use are:

(1) That the formation of the complex ES is a Markov process, so that the proba-
bility Pv(tv) that the enzyme remains vacant, E, for the period up to tv is24

Pv(tv) = e−tv/Tv .

We then have the average and the variance: 〈tv〉 = Tv , and 〈tv2〉 − 〈tv〉2 = Tv
2.

(2) The transition rate Tv
−1 is proportional to the concentration of the substrate

(around the active site of the enzyme). It is, therefore, Tv−1 = κ[S] as written
above.

(3) That the termination of the complex ES is a Markov process and is independent
of its fate, either E+S or E+P. The probability Pr (tr ) that the complex ES exists
for the period tr is

Pr (tr ) = e−tr /Tr .

We then have the average and the variance: 〈tr 〉 = Tr , and 〈tr 2〉 − 〈tr 〉2 = Tr
2.

23 The strictly convex function is defined such that 1
2 ( f (x) + f (y)) ≥ f ( x+y

2 ).
24 To obtain this, one should solve d Pv(tv) = −Tv−1dtv with the initial condition, Pv(0) = 1.
Similar argument applies to Pr (tr ) below.
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(4) That the probability by which the complex ES dissociates into E+P, rather than
into E+S, is independent of the past history, so that the probability PP (n) that
the product P is formed in the nth formation of the complex ES is

PP (n) = (1 − q)qn .

We then have the average and the variance: 〈n〉 = (1 − q)−1 and 〈n2〉 − 〈n〉2 =
(1 − q)−2q.

With the assumption made above, the sum in (3.71), that is,
∑n

k=1(t (k)
r + t (k)

v )
consists of independent random numbers, t (k)

r , t (k)
v , and n. Therefore, we have the

mean value of tP and that of tP
2 as

〈tP〉 =
n∑

k=1

PP (n)

〈
n∑

k=1

(t (k)
r + t (k)

v )

〉
= 〈n〉[〈tv〉 + 〈tr 〉], (A.42)

〈tP
2〉 =

n∑

k=1

PP (n)

〈[
n∑

k=1

(t (k)
r + t (k)

v )

]2〉

= 〈n2〉[〈tv〉 + 〈tr 〉]2 + 〈n〉[〈tv2〉 − 〈tv〉2 + 〈tr 2〉 − 〈tr 〉2]. (A.43)

By substituting the averages and variances of tv , tr , and n, into (A.42) and (A.43),
we finally obtain the two concise equations (3.72) and (3.73) in the text.

A.4 Appendix to Chap. 4

A.4.1 Derivation of (4.13): Appendix to Sect. 4.1.2.2

We prepare an SDE of Stratonovich type which corresponds to (4.1):

dp = −γ p

m
dt − ∂U

∂x
dt +

√
2γ kBT d Bt .

We multiply each term of this equation by (p/m). Here the product of Stratonovich
type with pt and that of Itô type are related via ◦pt ⇔ ·(pt + dpt/2). In the dpt/2
we can reiterate the above SDE. Finally, using (d Bt )2 = dt, we arrive at (4.13), i.e.,

d E = −2γ

m

(
p2

2m
− kBT

2

)
dt + d ′W +

√
2γ kBT

p

m
· d Bt .

In order to recover the energy balance equation (4.7) from (4.13), we apply the
identity, d(p2/2m) = (p/m) ◦ dp in (4.13). Then we rewrite dp using the SDE
(1.61). Finally we rewrite p ◦ d Bt using (A.14), where x should be reread as p, and
b(pt , t) should be reread as

√
2γ kBT .
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A.4.2 Error in the Euler Scheme: Appendix to Sect. 4.1.2.5

When we integrate (4.14) from t to t + h, the result may differ from (4.15) only due
to the error in the term dU (x̃t )/dx . If we expand this in term in powers of (θ − 1

2 ),
we have

dU (x̃t )

dx
= dU (x̃t )

dx

∣∣∣∣
θ= 1

2

+
(
θ − 1

2

)
d2U (x̃t )

dx2

∣∣∣∣
θ= 1

2

(xt+h − xt ) + · · · . (A.44)

This is also the expansion in powers of (xt+h − xt ) = O(h0.5).25 Therefore, the error
in (4.14) is O(h1.5). The approximate solution x(t) is basically the sum of (4.14),
and the cumulated error in x(t) is, therefore, O(h1.5) × N = O(h0.5).

About the energetics, we calculateΔr = ΔU−ΔQ defined in the main text. With
the discretization of the solution (4.14), the heat (4.16) is ΔQ = dU (x̃t )

dx (xt+h − xt ).
We expand U (xt ) and U (xt+h) in ΔU , as well as U (x̃t ), around x̄t ≡ (xt + xt+h)/2
up to second order. We then have

Δr =
(
θ − 1

2

)
d2U (x̄t )

dx2

∣∣∣∣
θ= 1

2

(xt+h − xt )
2 + o(h)

�
(
θ − 1

2

)
d2U (x̄t )

dx2

2kBT

γ
h + o(h), (A.45)

where we have used (xt+h − xt )2 ∼ h to go to the second line, and o(h) is such that
limh→0 o(h)/h = 0. Therefore, the cumulated error should become NO(h) = O(1)
unless we choose θ = 1

2 .

A.4.3 Derivation of (4.27): Appendix to Sect. 4.1.3.2

Substitution of (4.2) into d ′Q = (−γ dx/dt + ξ (t)) ◦ dx gives d ′Q = (∂U/∂x)
◦ /dx . We then substitute for dx the SDE corresponding to (4.2), i.e., dx = −
γ−1(∂U/∂x)dt +√

2kBT /γ d Bt . The product (∂U/∂x) ◦d Bt can be converted into
the Itô-type representation using the Itô’s lemma:26

∂U

∂x
◦ d Bt = ∂U

∂x
· d Bt + 1

2

∂2U

∂x2

√
2kBT /γ dt . (A.46)

25 In a very short time, xt undergoes free Brownian motion, and therefore, (xt+h−xt ) � 1
γ
wt,t+h =

O(h0.5).
26 cf. (1.65).
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Taking everything together, we find a less obvious formula for d ′Q as compared
with (4.25):

d ′Q = − 1

γ

[(
∂U

∂x

)2

− kBT
∂2U

∂x2

]
dt + ∂U

∂x
·
√

2kBT /γ d Bt . (A.47)

Because
∂U

∂x
in the rightmost term is nonanticipating with respect to d Bt , we obtain

the result (4.27) in the text.

A.4.4 Derivation of (4.36): Appendix to Sect. 4.2.1.1

Following exactly the same procedure as in Sect. 4.1.3.1 for a single thermal envi-
ronment, we can show the following expression for d ′Qi :

d ′Qi = −2γi

mi

(
p2

i

2mi
− kBT i

2

)
dt +

√
2γ kBT i

pi

mi
· d Bi,t , (A.48)

where the Wiener processes {Bi,t } are mutually independent and satisfy (d Bi,t )2 =
dt .

If the effect of inertia is negligible, we will use, instead of (4.32), the following
Langevin equation:

0 = −γi
dxi

dt
− ∂U

∂xi
+
√

2γi kBT i θi (t), (A.49)

and the energy balance (4.35) holds as before except that the energy E should
be read as U. For the i th heat, d ′Qi = (−γ dxi

dt + ξi (t)
) ◦ dxi , we can rewrite

as follows:

d ′Qi = − 1

γi

[(
∂U

∂xi

)2

− kBT i
∂2U

∂x2
i

]
dt + ∂U

∂xi
·
√

2kBT i/γi d Bi,t . (A.50)

Given these formula of d ′Qi , we rewrite the terms ∝ dt , the terms which are not
nonanticipating, using probability fluxes and probability density. We introduce the
following identities:

∂E

∂Xi
Ji,x + ∂E

∂Pi
Ji,p = −2γi

mi

[
P2

i

2mi
− kBT i

2

]
P − ∂

∂Pi

[
γi kBT i

Pi

mi
P
]
, (A.51)

∂U

∂Xi
Ji,x = − 1

γi

[(
∂U

∂xi

)2

− kBT i
∂2U

∂x2
i

]
P − kBT i

γi

∂

∂Xi

[
∂U

∂Xi
P
]
, (A.52)
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Combining (A.48) with (A.51) and also (A.50) with (A.52), we arrive at (4.36) in
the text.

A.4.5 Derivation of (4.55): Appendix to Sect. 4.2.1.2

Hereafter we use the unit of K = kB = 1. The calculation of D is somewhat lengthy.
We use the relations

μ ◦ (μ− ξ ) = (μ− T ) − μ · ξ, μ ◦ (μ+ ξ ′) = (μ− T ′) + μ · ξ ′,

which yield

γ d ′Q = −(μ2−T )dt+μ·
√

2γ T d Bt , γ ′d ′Q′ = −(μ2−T ′)dt−μ·
√

2γ ′T ′d B ′
t .

If we ignore the initial term, the explicit solution of μ(t) is

μ(t) =
∫ t

0
e−a(t−s)(

√
2Dd Bs −

√
2D′d B ′

s).

In the double integral to calculate the left-hand side of (4.54), we can replace
d Bu1 d Bu2 by δ(u1 − u2)du1du2. We also use the formula about the average of the
product of four Gaussian variables:

〈ABC D〉 = 〈AB〉〈C D〉 + 〈AC〉〈B D〉 + 〈AD〉〈BC〉.

We then have the following formulas:

〈μ(u1)μ(u2)〉 = (γ ′T + γ T ′)/(γ + γ ′) e−a|u1−u2|,

〈μ(u1) ·
√

2γ T d Bu1〉 = 2T θ (u1 − u2)e−a(u1−u2)du2,

where a ≡ 1/γ + 1/γ ′. Putting everything together in the double integral of (4.54),
we arrive at (4.55).

A.4.6 Definition of the Energy of Open System: Appendix
to Sect. 4.2.3.3

1. In the presence of interparticle interactions, the single-particle energy U1(x1, a)
for a particle at x1 is defined as the energy of this particle when it is well isolated
from all the other N − 1 particles.

2. The two-particle interaction energy, U2(x1, x2), between one particle at x1 and
the other one at x2 is defined so that the energy of these particles is U1(x1, a)+
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U1(x2, a)+ U2(x1, x2) when these two particles are well isolated from all the
other N − 2 particles.

3. In the same manner the p-particle interaction energy Up(x1, . . . , x p) (p ≥ 3) for
a cluster of p particles is defined as the energy to be added to all the contribution
of U1, . . . ,Up−1, when this cluster of p particles is well isolated from the (N−p)
other particles. By definition, Up(x1, . . . , x p) (p ≥ 2) vanishes unless all these
positions are close to each other.

4. The characteristic function for the p-particle cluster, θ (p)
Ω (x1, . . . , x p), (p ≥ 1),

can be written in terms of θΩ (x) as follows:

θ
(p)
Ω (x1, . . . , x p) ≡ 1 −Π

p
j=1[1 − θΩ (x j )]. (A.53)

5. Using Up(x1, . . . , x p) and θ (p)
Ω (x1, . . . , x p), the energy of the open system, E, is

written as (4.65) in the text.

A.4.7 Application of Energy Balance to Other Forms of Langevin
Equation: Appendix to Sect. 4.3

A.4.7.1 Fluctuating Hydrodynamics

Summary of the Framework of Fluctuating Hydrodynamics

The dynamics of the fluctuating hydrodynamics is given by a Langevin equation for
the velocity field [13]. The evolution of the mass density ρ and the velocity field v

is

∂ρ

∂t
+∇ · (ρv) = 0, (A.54)

ρ

(
∂v

∂t
+ v · ∇v

)
= ρ f ext − ∇(p1 − σ ′

)
, (A.55)

where p is the hydrostatic pressure and f ext is the distant force per mass exerted
by an external system. The symmetric tensor σ ′ represents the deviatoric (traceless)
stress, with (−p1+ σ ′) being the stress.27 This σ ′ is [13] (α and β are the Cartesian
indexes)

σ ′αβ = 2η

(
∂vα

∂xβ
+ ∂vβ

∂xα
− 2

3
δαβ
∑

λ

∂vλ

∂xλ

)
+ sαβ, (A.56)

where η is the shear viscosity of the fluid. For simplicity of demonstration we
have ignored the second viscosity against dilatation/contraction. The last term sαβ

27 That is, (p1 − σ ′) is the conductive momentum flux.
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is the deviatric thermal random stress, obeying white Gaussian statistics with the
following moments:

〈sαβ(x, t)〉 = 0. (A.57)

〈sαβ(x, t)sμν(x ′, t ′)〉 = 2ηkBT δ(x − x ′)δ(t − t ′)
[
δαμδβν + δανδβμ − 2

3
δαβδμν

]
.

(A.58)

We denote by V (t) a connected volume which moves with the mass of the fluid.
The equation of continuity (A.54) is, simply,28

d

dt

∫

V (t)
ρ dV = 0. (A.59)

(A.55) is29

d

dt

∫

V (t)
ρv dV =

∫

V (t)
ρ f ext dV −

∮

∂V (t)
(p1 − σ ′) · n̂ d S. (A.60)

The surface integral on the right-hand side cancels with its neighbors because the
outward unit normal vector n̂ of the neighboring volume is oriented opposite to that
of V (t).

We introduce further simplifying assumptions that the heat capacity and the ther-
mal conductivity of the environment are large enough that the temperature T is

kept constant. We define ũ by dũ = −p d
(

1
ρ

)
. This represents the change of the

Helmholtz free energy in the isothermal process. By taking the scalar product of
each term of (A.55) with the velocity v in the Stratonovich sense and also using
(A.54), the balance of the total energy of the fluid is 30

∂

∂t
ρ

(
v2

2
+ ũ

)
+∇·

[
ρ

(
v2

2
+ ũ

)
v + (p1 − σ ′)·v

]
= −σ ′ : (∇v)+ρ f ext·v. (A.61)

28 The derivation uses the kinematical identity, d
dt

∫
V (t) AdV = ∫V (t)

∂A
∂t dV +∮

∂V (t) A v · n̂ d S, and
the integral theorem of Gauss,

∮
∂V B n̂ d S = ∫V ∇B dV . ∂V (t), is the surface of the volume V (t),

and n̂ is the unit outward normal vector on this surface.
29 The derivation uses the kinematic identity mentioned before with (A.54), and also rewriting,
v∇ · (ρv) = −∇ · (ρvv) + ρv · ∇v.
30 S.I. Sasa pointed out an early mistake of the author about the treatment of the terms including
σ ′. The symbol “·” hereafter is not for Itô calculus, but for the scalar product. The symbol “:” of
A : B for symmetric any rank-2 tensors A and B means

∑
α

∑
β AαβBαβ . The above derivation

uses (v∇) : σ ′ = ∇v : σ ′ − σ ′ : ∇v.
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Hereafter, all the ∇v in σ ′ : (∇v) can be replaced by its symmetric deviatric part31

due to the deviatric and symmetric property of σ ′. The integral form of (A.61) is

d

dt

∫

V (t)
ρ

(
v2

2
+ ũ

)
dV = −

∫

V (t)
σ ′ : (∇v)dV +

∫

V (t)
ρ f ext · vdV

−
∮

∂V (t)
(p1 − σ ′) : (vn̂)d A. (A.62)

As in (A.60) the surface integral in the second line on the right-hand side cancels
with its neighbors.

Stochastic Energetics

The object is to rewrite (A.62) so that the structure of the energy balance, d E =
d ′Q + d ′W , is visible.

For the fluctuating fluid system, the system is “fluid particle,” or macroscopically
small connected element of mass that contains a large number of fluid molecules.
The local state of this system is characterized by the density field ρ and the velocity
field v. The (local) thermal environment of the system consists, therefore, of the
degrees of freedom in the fluid less the fields ρ and v.

When there is no mechanical support within the fluid, the momentum conserva-
tion, or the Galilee invariance, prohibits an isolated spontaneous force as a vector.
The random thermal force, therefore, takes the form of the force dipole (a sym-
metric tensor). This is the entity of sαβ . The sαβ arises as a result of coincidental
spatiotemporal local coherence in the molecular motions.

σ ′ of (A.56) is the force dipole on the system from the environment. The two
terms on the right-hand side of (A.56), therefore, play the roles of (−γ dx

dt ) and ξ (t)
of the Brownian motion.

Let us regard V (t) as the volume occupied by a system, i.e., a fluid particle.
Equation (A.62) then describes the energy balance for the system. As mentioned
above, the surface integral in the second line on the right-hand side cancels with
its neighbors. The remaining terms look similar to the form of the energy balance,
d E = d ′Q + d ′W.

We should, however, remember the second remark about the work (Sect. 4.1.2.2):
If f ext is constant, for example, the work by the external system is 0, while f ext ·v
in (A.62) does not vanish. We will then rewrite (A.62) in the case that the external
force has a potential, i.e.,

f ext = −∇Φext(x, a), (A.63)

with a being the control parameter. Concomitantly we define the new energy that

includes Φext: u ≡ ũ +Φext = − ∫ p d
(

1
ρ

)
+Φext. We rewrite the force term using

the following identity:32

31 1
2 [∇v + (∇v)t − 2

3 (∇ · v)1].
32 The derivation uses the aforementioned kinetic identity and (A.54).
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∫

V (t)
ρ f ext · v dV = − d

dt

∫

V (t)
ρ Φext dV +

∫

V (t)
ρ
∂ Φext

∂a

da

dt
dV .

We finally have

d

[∫

V (t)
ρ

(
v2

2
+ u

)
dV

]
= −dt

∫

V (t)
σ ′ : (∇v)dV + da

∫

V (t)
ρ
∂u

∂a
dV

−dt
∮

∂V (t)
(p1 − σ ′) : (vn̂)d A

= dt
∫

V (t)
(∇ · σ ′) · vdV + da

∫

V (t)
ρ
∂u

∂a
dV

−dt
∮

∂V (t)
pv · n̂d A. (A.64)

This formula shows the balance of energy: d E = d ′Q + d ′W + (surface term).
In the second equality, the surface term transmits only the mechanical force, not
the force due to the thermal environment. Note that ∇ · σ ′ is the force on the fluid
element.

In case a part of the boundary ∂V (t) is the surface of a “bead,” the equation is
more convenient, because its surface term is the work by the total force on the bead.
The isotropic form of the stress (A.56) may be modified on the surface of the bead,
but its importance on the total force on the bead is not yet clear.33

A.4.7.2 Suspension of Hard Spheres

The fluctuating motion of suspended particle has been studied since long time
[14, 15]. Recently, a systematic derivation of the Langevin equation of the sus-
pended particles was carried out [16, 17]. It is done by noting that the spatiotem-
poral scales of movement of suspended particles are much bigger than those of
solvent molecules. For monodisperse suspension particles of mass m and radius a,
their positions {xi (t)} (i , j ,. . . distinguish the particles) obey the following equation
[16, 17]:

m
d2xi

dt2 = −∂U ({x j }, a)

∂xi
+ Mi (t), (A.65)

Mi (t) = −ζ0
dxi

dt
−
∑

j(�=i)

G(xi − x j ) · M j + Ri (t), (A.66)

where ζ0 = 6πηa with η being the viscosity of the solvent and G represents the
hydrodynamic interaction (of Oseen and dipole types):

33 Discussion with M. Schindler at ESPCI on this issue is acknowledged.
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G(x) = 3

4

a

‖x‖
[

1 + x

‖x‖
x

‖x‖
]
+ 1

2

(
a

‖x‖
)3[

1 − 3
x

‖x‖
x

‖x‖
]
. (A.67)

Ri is the Gaussian Markov random force on the i th particle, with zero mean and

〈Ri (t)R j (t
′)〉 =

{
2ζ0kBT δ(t − t ′)1 (i = j)
2ζ0kBT δ(t − t ′)G(xi − x j ) (i �= j)

. (A.68)

In stochastic energetics, we regard the solvent as the thermal environment. Since
the forces Mi are exerted by the solvent, the heat can be defined. Let us denote by
dxi the true displacement of i th sphere obeying (A.65) and (A.66). By multiplying,
in the Stratonovich sense, each term of (A.66) by dxi (t) and summing over the
particles (the index i), we have d E = d ′Q + d ′W , where

E =
∑

i

m

2

(
dx

dt

)2

+U ({x j }, a),

d ′Q =
∑

i

Mi · dxi ,

d ′W = ∂U ({x j }, a)

∂a
da. (A.69)

Here all the kinetic energy of the solvent is ignored.

A.4.7.3 Langevin Equation on Manifolds

It often occurs that the stochastic variable, x̂(t), is of more than one component
and is defined on a curved space. For example, x̂(t) can represent the position of a
membrane protein on a spherical lipid bilayer membrane. Or, x̂(t) can represent a
unit vector that undergoes the 3D rotational Brownian motion. Also x̂(t) can be the
variable parameterizing complicated conformations of the protein. One way to rep-
resent the fluctuating motion in a curved space is to regard it as the motion within an
Euclid space of higher dimensionality, subjected under constraining/penalty poten-
tial energy. A formulation using the Lagrange multiplier is found in [18]. Another
way is to use the covariant, or coordinate-independent, formulation of Langevin
equation [19]. The latter is also useful for flat space with curved coordinate system.
Below we discuss the latter way of description.

When we study stochastic processes in a curved space and/or by using non-
Cartesian coordinates, we need to use the Riemannian metric tensor, g. This tensor
gives the infinitesimal distance ds through the formula, ds2 =∑μ,ν gμνdxμdxν .34

34 A concise and clear introduction to the metric geometry is found in a book of Dirac [20]. Below,
we will also use g as the determinant of gμν and gμν as the inverse matrix of gμν .



308 Appendix A

The covariant Langevin equation is [19] 35

γ (xμm+1 − xμm) =
[
−gμν

∂U (xm, a)

∂xν
+ kBT√

g(xm)

∂(
√

ggμν)

∂xν

]
Δt + ημm

√
Δt, (A.70)

〈ημm〉 = 0, 〈ημmηνn〉 = 2γ kBT gμν(xn)δmn, (A.71)

where time is discretized and represented by the indices m and n, etc. As for the
multiplicative noise ηn , the limit of Δt → 0 should be interpreted as of the Itô type.
That is, the random force ηn takes place between tn and tn+1 while xn is the value
at tn . (See, Examples 1 and 2 of Appendix Sect. A.1.6).

The above SDE is equivalent to the following Fokker–Planck equation for the
scalar density ρ = √

g P with P being the probability density:

∂ρ

∂t
= 1

γ

∂

∂xμ
√

ggμν
{
∂U

∂xν
ρ√
g
+ kBT

∂

∂xν

(
ρ√
g

)}
. (A.72)

For a being fixed, the canonical equilibrium distribution P ∝ e−U/kBT is the station-
ary solution of the above Fokker–Planck equation.

We can obtain the energy balance, ΔU = Δ′W +Δ′Q, by operating (Δt)−1gμσ
(xσm+1 − xσm) on each term of (A.70)36:

ΔU = U (xm+1, am+1) −U (xm, am)

Δ′W = 1

2

[
∂U (xm+1, am+1)

∂a
+ ∂U (xm, am)

∂a

]
[am+1 − am]

Δ′Q =
[
−γ xμm+1 − xμm

Δt
+ kBT√

g(xm)

∂(
√

ggμν)

∂xν
+ η

μ
m√
Δt

]
gμσ (xσm+1 − xσm)

= 1

2

[
∂U (xm+1, am+1)

∂xμ
+ ∂U (xm, am)

∂xμ

]
(xμm+1 − xμm). (A.73)

By direct expansion around (x̄, ā) ≡ ( 1
2 (xm + xm+1), 1

2 (am + am+1)), we can ver-
ify that error in the energy balance, ΔU = Δ′W + Δ′Q, is O(Δt3/2). Recall that
the error must be at most O(Δt3/2) to assure the correct energetics (Sect. 4.1.2.5).

35 Hereafter we use Einstein summation convention for the Greek indices appearing pairwise;
AμBμ implies

∑
μ AμBμ.

36 On the curved space (Riemannian manifold), the first-order scheme for Brownian motion is
given in [21, 22], but we will need the order of Δt1.5 accuracy. [cf. A.B. Cruzeiro, C. Alves,
Monte-Carlo simulation of stochastic differential systems — a geometrical approach (preprint).]
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Therefore, the above result assures the convergence with Δt → 0 to the correct
energy balance over a finite time interval.

A.4.8 General Growth Process: Insertion of Functions as well as
Variables: Appendix to Sect. 4.3

For illustration purpose, let us introduce a toy model that imitates (very roughly) the
growth of actin gel. See Fig. A.2:

1. The system consists of Hookean springs (wiggly lines) on the substrates (base
line), which are vertically joined by beads (open circles).

2. The external force a(t) is applied on the uppermost end of the system (filled
circle).

3. The insertion and removal of the springs occur only at the substrate (x = 0).
4. The positions of the beads are denoted by {x1, . . . , xn} from top to bottom, where

n is also a stochastic variable. When there are n springs, xn+1 ≡ 0.
5. The natural length �i and the elastic stiffness ki of a Hookean spring are deter-

mined when the spring is inserted. They depend on the force on the lowermost
spring before the insertion (state-to-function information).

While {xi } specify the state of the gel, {�i } and {ki } are the parameters of the
gel’s function as an elastic body. Upon the creation of (n + 1)th spring, the state
variable xn+1, and other positions, are determined after the functional parameters,
(kn+1, �n+1), are specified (function-to-state information).

Through the loop of (state-to-function information) and (function-to-state infor-
mation), the growth of an open system carries the memory of its past state.37

x1
k1

x

x
1

2
k

k
1

2

−1n
−1n

x

x

x
x

1

2

nk
k

k1

n

Fig. A.2 A simplified model of gel growth from the substrate. From the left to the right, there are
n = 1, 2, and n springs incorporated into the gel. When the (n + 1)th spring is inserted, not only
the variable xn+1 for a new joint appears, but also a new energy function, (kn+1/2)(xn+1 − �n+1)2,
with new parameters kn+1 and �n+1 appear

37 The usage of the words “state” and “function” may not be proper since the state influences the
function also. Lambda calculus [23] describes object/subject duality.
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A.5 Appendix to Chap. 5

A.5.1 Statistical Mechanical Derivation of (5.19): Appendix
to Sect. 5.2.1.4

A.5.1.1 Super-Entire System

We first imagine a closed super-entire system of the volume Ωsup and the number of
particles Nsup. We define its Helmholtz free energy Fsup through

e−Fsup/kBT =
∫

Ωsup

e−Esup/kBT d Nsupx . (A.74)

Since there is no thermodynamic operation to change the parameters Ωsup and Nsup,
we can arbitrarily choose the additive constant in its free energy,

A.5.1.2 Open Entire System

Then we separate from the super-entire system an “entire system” of the macro-
scopic volume Ωtot(� Ωsup). Assuming a weak coupling between Ωtot and (Ωsup\
Ωtot), we have the following relation between Fsup and Ftot:

e−Fsup/kBT =
Nsup∑

Ntot=0

Nsup! e−Ftot/kBT

(Nsup − Ntot)!

∫

(Ωsup\Ωtot)
e−Ec

Nsup−Ntot
/kBT d Nsup−Ntot x, (A.75)

where Ftot is the Helmholtz free energy of the entire system, defined by

e−Ftot/kBT = 1

Ntot!

∫

Ωtot

e−Etot/kBT d Ntotx, (A.76)

We approximate the integral (A.75) assuming ideal gas∫
(Ωsup\Ωtot)

e−ENsup−Ntot /kBT d Nsup−Ntot x = (‖Ωsup\Ωtot‖A)Nsup−Ntot , where A does not
depend on ‖Ωsup\Ωtot‖ or the number of particles. Using the approximation, Nsup!/
(Nsup − Ntot)! � Nsup

Ntot , we have

e−Fsup/kBT �
Nsup∑

Ntot=0

e−Ftot/kBT

(
Nsup

‖Ωsup\Ωtot‖A

)Ntot

× (‖Ωsup\Ωtot‖A)Nsup .

Identifying
(

Ntot
‖Ωsup\Ωtot‖A

)
= eμ/kBT , we obtain

e−Fsup/kBT �
⎡

⎣
Nsup∑

Ntot=0

e−[Ftot−μNtot]/kBT

⎤

⎦× e(indep. Ntot).
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Although the last exponent is not extensive with respect to Nsup or to Ωsup, there
is no causality because our operations will not change these parameters. We thus
justified (Ntot!)−1 in the definition (A.76).

A.5.1.3 Open (Small) System

We suppose that Ωtot consists of a system Ω and its “environment” Ωc. Again we
assume that the interaction between the “environment” and the system is negligible.
Equation (A.76) can then be rewritten as

e−Ftot/kBT =
Ntot∑

n=0

1

(Ntot − n)!
e−F (n)/kBT

∫

(Ωc)
e−Ec

Ntot−n/kBT d Ntot−n x,

where F (n) has been defined in (5.22) in the main text. Repeating the same calcula-
tion as above, we obtain

e−Ftot/kBT � e−μNtot/kBT
Ntot∑

n=0

e−(F (n)−μn)/kBT .

By transferring the global factor on the right-hand side to the left-hand side, we
finally obtain

exp

[
− Ftot − μNtot

kBT

]
�

Ntot∑

n=0

e−(F (n)−μn)/kBT . (A.77)

From this expression, (5.19) with the definition (5.21) is derived by taking the limit
of Ntot ∝ ‖Ωtot‖ → ∞. The equilibrium probability Pn to find n particles in the
open system is found from (5.21), i.e.,

Pn = e(J−F (n)+μn)/kBT . (A.78)

A.5.2 Quasistatic Transport of Particle: Appendix to Sect. 5.2.3

The analysis of the transport is in some aspect analogous to that of the “Berry phase”
[24] in quantum physics. Since J [P (eq)] = 0 as mentioned in the text, we need
to take into account the first-order correction in the time derivative, ȧ(t), to this
probability:

P(x, t) = P (eq)(x, a(t)) +
∑

α

ϕα(x, a(t)) ȧα(t) +O(|ȧ|2), (A.79)



312 Appendix A

where ȧ = da/dt , and ϕ(x, a) = {ϕα} is a function having the same number of
components as a ≡ {aα}. The sum is taken for all the components of these quanti-
ties. The probability current J [P], which is a linear functional of P , is then written
as

J [P] =
∑

α

J [ϕα(x, a(t))]ȧα(t) +O(|ȧ|2). (A.80)

The average number of particles, N , that cross a fixed spatial point (e.g., at x0) to the
right per cycle of operation is given by the time integral of J [P]x=x0 . From (A.80)
this time integral can be written as an integral over ã along the closed trajectory on
the parameter space [25]:38

N =
∮ ∑

α

J [ϕα(x0, ã)] dãα (quasistatic limit). (A.81)

{J [ϕα(x0, â)]} is not of the gradient form with respect to the parameter.39 Its line
integral along a closed loop generally, therefore, does not vanish. The result for
N is, therefore, generally nonzero. Although the integral of (A.81) looks purely
static, with no dependence on ȧ, this effect is kinetic: J [P] includes the kinetic
coefficient γ .

A.5.3 Derivation of (5.37): Appendix to Sect. 5.3.1

We will show (5.37) in several steps.

A.5.3.1 Perturbative Treatment of Fokker–Planck Equation
and Irreversible Work

For slow variation of a(t), the probability distribution P(x, t) obeying the Fokker–
Planck equation40 is almost the canonical equilibrium probability, P (eq)(x, a(t)) =
eβ(F(a,β)−U (x,a)) (β = 1/kBT ), with a small correction proportional to da(t)/dt =
O((τop)−1).41 (See, (A.79) of Sect. 5.2.3.4.) If we write this correction as
P1 (= O((τop)−1)), the first-order perturbation of the Fokker–Planck equation,
∂P
∂t = L(a(t))P, with P(x, t) = P (eq)(x, a(t)) + P1(x, t) is as follows:

38 We use ȧ(t)dt = dã(s)/ds · ds = dã.
39 That is, the sum called the 1-form,

∑
α J [ϕα(x0, â)]daα, cannot be written as dΦ(a) with some

function Φ, called exact 1-form.
40 Equation (1.73) with γ and T being constants.
41 With s ≡ t/τop, we have da(t)/dt = (τop)−1dã(s)/ds.
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∂P (eq)

∂t
= LP1. (A.82)

The left-hand side of (A.82) is O((τop)−1). From the explicit form of P (eq), this term
satisfies

∂P (eq)(x, a(t))

∂t
= −β da

dt
P (eq)(x, a(t))

(
∂U

∂a
−
〈
∂U

∂a

〉)
. (A.83)

P1 then depends on the time only through a(t) and its time derivative.
The average work W up to O((τop)−1) is given as 〈W 〉=∫ [∫ ∂U

∂a (P (eq)+P1)dx
]
da.

The average irreversible work 〈Wirr〉 is then

〈Wirr〉 =
∫ t=τop

t=0

[∫
∂U

∂a
P1dx

]
da(t) +O((τop)−2). (A.84)

A.5.3.2 Green Function, g(x, x′; a)

We define the function g(x, x ′; a) by the following equation:

L(a)[P (eq)(x, a)g(x, x ′; a)] = δ(x − x ′), (A.85)

where L(a) operates on the x variable to the right. g depends on β and a through
this equation. We require that g vanishes at the infinite boundaries.

Using the explicit form of the Gibbs distribution, and also the explicit form of
the Fokker–Planck operator, L(a), we can rewrite (A.85) as (5.40) in the text.

A.5.3.3 Solution for P1

The equation for P1, (A.82), can be solved using the Green function g: letting
P1(x, t) = P (eq)(x, a(t))π (x, a(t)), then π is given as the superposition of g(x, x ′, a)
the weight ∂P (eq)(x ′, a)/∂t up to an additive constant. That is,

P1 = P (eq)

{
g∗
∂P (eq)

∂t
+ χ

}
, (A.86)

where we have introduced the symbol ∗ to denote g∗ f (x) ≡ ∫
g(x, x ′) f (x ′)dx ′.

The additive constant, χ , is determined by recalling the normalization condition of
the probability,

∫
Pdx = 1. To O((τop)−1), this condition imposes

∫
P1dx = 0.

With (A.86) the last condition yields

χ = −
∫

P (eq)

(
g∗
∂P (eq)

∂t

)
dx ≡ −

〈
g∗
∂P (eq)

∂t

〉

eq

. (A.87)
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A.5.3.4 The Average Irreversible Work

Substituting P1 thus obtained into (A.84) the average irreversible work 〈Wirr〉 up to
O((τop)−1) is given as follows:

〈W 〉irr =
∫ τop

0

[∫
∂U

∂a
P (eq)

{
g∗
∂P (eq)

∂t
−
〈
g∗
∂P (eq)

∂t

〉

eq

}]
da

dt
dt

=
∫ τop

0

[〈
∂U

∂a

(
g∗
∂P (eq)

∂t

)〉

eq

−
〈
∂U

∂a

〉

eq

〈
g∗
∂P (eq)

∂t

〉

eq

]
da

dt
dt

+O((τop)−2). (A.88)

Substituting the expression (A.83) for ∂P (eq)/∂t, we have, after some rearrange-
ment, the symmetric form (5.37) in the text.

A.5.4 Derivation of the Fluctuation Theorem (FT): Appendix
to Sect. 5.4.2

The derivation below is adapted from [26].

A.5.4.1 Transition Rate and Path Probability

The probability that the system does not undergo any transition from a particular
state i through the period t ′ < s < t ′′ is given as [27]

M(i)
[t ′,t ′′] ≡ exp

⎡

⎣−
∫ t ′′

t ′

∑

j(�=i)

wi→ j (a(s))ds

⎤

⎦. (A.89)

We will consider a particular realization of the process, which starts from the state
i0 at time τ = 0 and jumps at time tα from the state iα−1 to the state iα (1 ≤ α ≤ n)
until τ = t , where tα < tα+1.42 We denote by Prob[i(τ ), a(τ )] the path probability
for the realization of such history i(τ ), with the condition that the process starts
with the canonical equilibrium state corresponding to the given initial parameter,
Peq

i0
(a(0)). The path probability is constructed as follows:

Prob[i(τ ), a(τ )] = Peq
i0

(a(0))M(i0)
[0,t1]wi0→i1 (a(t1))M(i1)

[t1,t2]wi1→i2 (a(t2)) ×

· · · × win−1→in (a(tn))M(in )
[tn ,t]. (A.90)

42 Hereafter in this section, the τ in i(τ ) and a(τ ) implies being a generic time and i(τ ) means a
particular realization or a history.
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A.5.4.2 Time-Reversed Protocol and Time-Reversed Process

Under the time-reversed protocol ã(τ ) ≡ a(t − τ ) for 0 < τ < t, we consider the
time-reversed process, ĩ(τ ) ≡ i(t − τ ). What corresponds to M(i)

[t ′,t ′′] for ã(τ ), which

we denote by M̃(i)
[t ′,t ′′], satisfies the identity

M̃(i)
[t ′,t ′′] = M(i)

[t−t ′′,t−t ′]. (A.91)

The path probability for the realization of the time-reversed process ĩ(τ ) under the
time reversed protocol ã(τ ), in condition that the process starts with the canonical
equilibrium state corresponding to the given (reversed) initial parameter, Peq

in
(a(t)),

is then given by

Prob[ĩ(τ ), ã(τ )] = Peq
in

(a(t))M(in)
[tn ,t]win→in−1 (a(tn))M(in−1)

[tn−1,tn ] ×
. . .× wi2→i1 (a(t2))M(i1)

[t1,t2]wi1→i0 (a(t1)))M(i0)
[0,t1]. (A.92)

A.5.4.3 Ratio of Path Probabilities of a Trajectory and its Time Reversal

If we take the ratio, Prob[ĩ(τ ), ã(τ )]/Prob[i(τ ), a(τ )], we find that all the factors
M(i)

τ ′,τ ′′ cancel out. The result is

Prob[ĩ(τ ), ã(τ )]

Prob[i(τ ), a(τ )]
= wi1→i0 (a(t1))wi2→i1 (a(t2)) · · ·win→in−1 (a(tn))Peq(in ; a(t))

Peq
i0

(a(0))wi0→i1 (a(t1))wi1→i2 (a(t2)) · · ·win−1→in (a(tn))
. (A.93)

Then we can use the detailed balance condition (5.62) to eliminate all the transition
rates:

Prob[ĩ(τ ), ã(τ )]

Prob[i(τ ), a(τ )]
= Peq

i0
(a(t1))Peq

i1
(a(t2)) · · · Peq

in−1
(a(tn))Peq

in
(a(t))

Peq
i0

(a(0))Peq
i1

(a(t1))Peq
i2

(a(t2)) · · · Peq
in

(a(tn))
. (A.94)

A.5.4.4 A lemma

We introduce R[i(τ ), a(τ )] through the definition,43

e−R[i(τ ),a(τ )] ≡ Prob[ĩ(τ ), ã(τ )]

Prob[i(τ ), a(τ )]
. (A.95)

This quantity is a functional of the history, i(τ ), under a given protocol of the exter-
nal parameter, a(τ ), if we know how the right-hand side depends on i(τ ) and a(τ ).
At least we know the property,

R[ĩ(τ ), ã(τ )] = −R[i(τ ), a(τ )], (A.96)

43 [31]. See also [30].
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which holds immediately from the definition (A.95). The probability distribution
of R[i(τ ), a(τ )] can be deduced through the average using the path probability,
Prob[i(τ ), a(τ )]:

PR(r ) ≡ 〈δ(r − R[i(τ ), a(τ )])〉, (A.97)

where the average of O[i(τ )] over the ensemble of processes is defined by

〈O[i(τ )]〉 ≡
∑

{i(τ )}
O[i(τ )]Prob[i(τ ), a(τ )]. (A.98)

The following equality holds [28, 29] (see also [30]):

e−r PR(r ) = 〈e−R[i(τ ),a(τ )]δ(r − R[i(τ ), a(τ )])〉
=
〈

Prob[ĩ(τ ), ã(τ )]

Prob[i(τ ), a(τ )]
δ(r − R[i(τ ), a(τ )])

〉

=
∑

{i(τ )}
Prob[ĩ(τ ), ã(τ )]δ(r − R[i(τ ), a(τ )])

=
∑

{i(τ )}
Prob[ĩ(τ ), ã(τ )]δ(r + R[ĩ(τ ), ã(τ )])

= PR(−r ), (A.99)

where (A.96) is used for the second last equality.
Using Peq

i (a) = exp[β(F(a, β) − Ei (a, β))], the right-hand side of (A.94) is
equal to exp[β(ΔF−W )], where ΔF = F(a(t), β)−F(a(0), β), and W is given by
(4.20). Therefore, R[i(τ ), a(τ )] = β(W −ΔF) ≡ βWirr is (β times) the irreversible
work. Then the Lemma e−r PR(r ) = PR(−r ) gives a law of the probability density
of the irreversible work (5.63) in the text.

A.6 Appendix to Chap. 6

(There is no appendix to Chap. 6)

A.7 Appendix to Chap. 7

A.7.1 Derivation of (7.4): Appendix to Sect. 7.1.1.4

The average work 〈W 〉[a∗,af] after the crossover of timescales, i.e., during a∗ <

a(t) ≤ af, is
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〈W 〉[a∗,af] =
∫ af

a∗

{∫

x∈Ω
P(x, t)

∂U (x, a)

∂a
dx

}
da. (A.100)

Since the potential barrier is raised beyond U (0, a∗), we can expect that P(x, t)
inside the barrier region Ω is smaller than Peq(x, a∗; T ).44 Then we can have an
upper bound of 〈W 〉[a∗,af]:

〈W 〉[a∗,af] ≤
∫ af

a∗

{∫

x∈Ω
Peq(x, a∗; T )

∂U (x, a)

∂a
dx

}
da

≤ [U (0, af) −U (0, a∗)]
∫

x∈Ω
Peq(x, a∗; T )dx, (A.101)

where we have used the inequality, U (0, af)−U (0, a∗) ≥ U (x, af)−U (x, a∗). We
can then roughly estimate the integral above, i.e., the probability to find the particle
within Ω , to be� c(δ/L) e−U (0,a∗)/kBT with c being a numerical constant. Therefore,
we find the result (7.4) in the text.

A.7.2 Simple Model of Aging and Plastic Flow: Appendix
to Sect. 7.1.1.6

There are very interesting cases where τsys adjusts itself to approach and remains in
the proximity of τop. Such cases are observed when a system contains the internal
feedback mechanism from the fluctuating variables (like x in (7.7)) to the control
parameters (like a or b, ibid). The case where τsys approaches τop from below,

τsys � τop −→ τsys � τop, (A.102)

will be referred as aging,45 while the case where τsys approaches τop from above,

τsys  τop −→ τsys � τop, (A.103)

will be referred as plastic flow.

A.7.2.1 Aging

Figure A.3 shows a typical situation of what we call aging. For each double well,
a “particle” (a black dot) is attached to a spring under tension. The tension favors
the thermally assisted transition from the left well to the right well. If the distance

44 We admit that it is not rigorous: The exception will occur if the tail of the barrier is too much
extended, and the particle excluded from the barrier top becomes stagnant in that tail region.
45 Aging can be defined in different ways depending on the context. Here we adopt the version of
P. G. de Gennes (Lecture at the Collège de France, 2002).
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(a)

(b)

(c)

Fig. A.3 A schematic model of aging: Both the masses (black dots) and the double-well potential
are mobile. The time proceeds from (a) to (c). The relaxation time τsys increases with the (obser-
vation) time t

between the two walls is fixed, the transition in one of the double wells leads to
the diminution of the tension on the springs. Thus the system remains in (b) for a
time longer than in (a) until the further transition to, for example, the state (c). In
this manner, as τop proceeds with the time of observation, the transition is observed
when τsys � τop is attained. We, therefore, have τsys = t. As consequence, the ten-
sion of the spring, to which τsys is exponentially related, decreases logarithmically
in time.

A.7.2.2 Plastic Flow

Figure A.4 shows a typical situation of what we call plastic flow. Unlike aging, the
distance between the walls is increased slowly in time. The increase in the tension
on the springs causes the diminution of the relaxation time, τsys. Once the transition
occurs after a time ∼ τsys, the tension on the springs is relaxed partially, leading to
the transient increase of τsys.

In the standard view, aging is the nonequilibrium state in which an “age” evolves
as state parameter, while plastic flow is the nonequilibrium state in which the elastic
displacements are continually updated. Here we view the latter phenomenon from
the same viewpoint as the former. The dynamics of timescales gives us a common
viewpoint to discuss phenomena of slow dynamics. The dynamics of heteroge-
neously distributed relaxation times exhibits another aspects, such as the internal
stresses and memory effect [32–34].
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(a)

(b)

(c)

(d)

Fig. A.4 A schematic model of plastic flow: The time proceeds from (a) to (d)

A.8 Appendix to Chap. 8

(There is no appendix to Chap. 8)
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Induced fit, 244
Intensive variables, 71
Itô type, 37
Itô’s lemma, 4, 39

J
Jarzynski’s non-equilibrium work relation,

194, 195

K
Kramers equation, 44
Kramers-Moyal expansion, 117
Kullback-Leibler distance, 46, 108, 239

L
Lagrange multiplier, 99
Landauer and Bennett, 231
Landauer’s blow torch, 52
Langevin equation, 3, 26, 109
Large deviation property, 13
Law of large numbers, 12, 20, 179
Legendre transformation, 72
Linear non-equilibrium thermodynamics, 81
Log-normal, 41
Long-time tail, 19, 216
Lyapnov, 46

M
Margins of operation, 249, 274
Markov approximation, 3, 31, 106
Markovian process, 31, 146
Markovian property, 31
Master equation, 107
Maxwell relation, 74
Maxwell’s demon, 61, 69, 156
Mesoscopic heat, 203
Michaelis-Menten, 102
Milstein scheme, 292
Momentum conservation, 216

N
Non-anticipating, 38, 111
Numerical error, 42

O
Objectivity, 210
Onsager coefficient, 161
Open system, 76, 82, 124, 126, 165, 181, 239,

251, 261

P
Poisson distribution, 281
Poisson noise, 109
Potential theory, 295
Probability density, 7
Probability flux, 45, 107
Projection operators, 26
Protein friction, 23

Q
Quasi-static, 57, 70, 177, 184

R
Random variable, 6
Ratchet models, 58, 61, 276
Rate constant, 96, 120

S
Second law, 71, 175, 261
Self-averaging, 70, 179
Stein’s lemma, 109
Steric interaction, 243
Stochastic calculus, 4
Stochastic differential equation (SDE), 4, 38
Stochastic process, 4, 10
Stratonovich type, 37, 138
Structure-function relationship, 277
System, 67, 137, 165, 266

T
Thermal environment, 14
Thermal random force, 3, 13
Thermodynamic function, 70
Thermodynamic variable, 70
Thermophoresis, 51
Third law, 71
To know, 236
Transition rate, 106

V
Van’t Hoff correction term, 212
Van’t Hoff equation, 80
Viscous friction coefficient, 16, 126

W
Wentzel-Kramers-Brillouin (WKB)

approximation, 230
Wiener process, 35
Work, 69, 140, 143, 179

Z
Zero-th law, 70
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