
R. Meersman, P. Herrero, and T. Dillon (Eds.): OTM 2009 Workshops, LNCS 5872, pp. 723–734, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Predicate Reference and Navigation in ORM

Terry Halpin

LogicBlox, Australia and INTI Education Group, Malaysia
terry.halpin@logicblox.com

Abstract. A conceptual schema of an information system specifies the fact
structures of interest as well as related business rules that are either constraints
or derivation rules. The sole data structure used in fact-oriented modeling ap-
proaches is the fact type, which may be understood as a set of typed predicates.
In spite of the central role played by predicates in fact-orientation, several is-
sues need to be resolved before their full potential can be fully realized. This
paper identifies a number of these issues relating to predicate reference and
navigation, and proposes some solutions. Specific issues addressed include
predicate disambiguation and formalization, role navigation, and automated
verbalization of predicate paths. While the discussion focuses largely on Ob-
ject-Role Modeling (ORM), many of the issues discussed are also relevant to
other fact-oriented approaches, such as Cognition enhanced Natural Information
Analysis Method (CogNIAM) and the Semantics of Business Vocabulary and
Business Rules approach (SBVR), as well as attribute-based approaches like
Entity Relationship modeling and the Unified Modeling Language.

1 Introduction

With the rise of model-driven engineering, information systems are increasingly
based on high level information models that can be more easily validated with busi-
ness users. Such an information model includes a conceptual schema as well as a
population (set of instances). A conceptual schema specifies the fact structures of in-
terest as well as applicable business rules. Business rules are constraints or derivation
rules that apply to the relevant business domain. Constraints restrict the possible or
permitted states or state transitions of fact populations. Derivation rules enable some
facts to be derived from others.

In fact-oriented approaches, all facts are treated as instances of fact types, which
may be existential (e.g. Patient exists) or elementary (e.g. Patient smokes, Patient is allergic to
Drug). From a logical perspective, a fact type may be treated as a set of typed predi-
cates. For example, the readings “Person is employed by Company” and “Company employs
Person” denote the same fact type, but involve two different predicates that are in-
verses of one another. In attribute-based approaches such as Entity Relationship mod-
eling (ER) [4] and the class diagramming technique within the Unified Modeling
Language (UML) [19], facts may be instances of attributes (e.g. Patient.isSmoker) or re-
lationship types (e.g. Patient is allergic to Drug). Both of these structures may be formal-
ized in terms of logical predicates.

724 T. Halpin

In spite of the central role played by predicates in information modeling, several is-
sues need to be resolved. This paper examines a number of these issues relating to
predicate reference and navigation within Object-Role Modeling (ORM), a prime ex-
emplar of the fact-oriented approach based on an extended version of Natural Infor-
mation Analysis method (NIAM) [24]. An introduction to ORM may be found in
[10], a thorough treatment in [15], and a comparison with UML in [13].

Fact-oriented modeling includes other closely related approaches, such as Cogni-
tion-enhanced NIAM (CogNIAM) [19], Predicator Set Model (PSM) [16, 17], and
Fully-Communication Oriented Information Modeling (FCO-IM) [1]. The Semantics
of Business Vocabulary and Business Rules (SBVR) initiative is also fact-based in its
use of attribute-free constructs [4, 22]. Recently ORM was extended to second gen-
eration ORM (ORM 2) [9], the version used in this paper. An overview of fact-
oriented modeling approaches, including history and research directions, may be
found in [12]. Although the following discussion focuses largely on ORM, as sup-
ported by the Natural ORM Architect (NORMA) tool [6], many of the issues are rele-
vant to other fact-oriented approaches as well as attribute-based approaches like ER
and UML.

The rest of this paper is structured as follows. Section 2 discusses predicate disam-
biguation, including formalization options. Section 3 addresses role navigation, with
special reference to n-ary relationships. Section 4 provides an algorithm for auto-
mated verbalization of predicate paths, and applies this to join constraint verbaliza-
tion. Section 5 summarizes the main results and outlines future research directions.

2 Predicate Disambiguation

Figure 1(a) depicts three fact types in ORM notation: Person runs Barbershop; Person runs
Race; Horse runs Race. Reference schemes for the entity types are omitted for simplicity.
Figure 1(b) shows an equivalent UML class diagram.

http://www.orm.net/People/contact#th
http://www.w4.org/concept#runs

http://www.bus.net/Barbershop/id#55

http://www.abc.net/Horse/name#Pharlap
http://www.u2.org/concept#runs

http://www.abc.net/Race/id#37

Person Barbershop

Horse

Race

(a)

(c)

Person Barbershopruns

Horse

Race

runs

(b)

runs

runs

runs

runs

0..1 0..1

0..1*

* *

http://www.u2.org/concept#runs
http://www.abc.net/Race/id#3http://www.orm.net/People/contact#th

Fig. 1. Multiple “runs” predicates in (a) ORM, (b) UML, and (c) RDF

 Predicate Reference and Navigation in ORM 725

Each of the three fact types involves a binary predicate displayed with the same
verb phrase “runs”. If we use the term “predicate” for the intended semantics of a
verb phrase occurrence, then the “runs” predicate in the fact type Person runs Race may
be considered the same predicate as the “runs” predicate in the fact type Horse runs Race
while differing from the “runs” predicate in the fact type Person runs Barbershop. How-
ever, the correspondence between two of these “runs” occurrences is lost in both
ORM and UML, since neither provides a practical mechanism for indicating such a
correspondence.

Although supertyping could achieve this purpose, this would not always be sensi-
ble. For example, we could introduce Animal as a supertype of Person and Horse, and
replace the two race fact types with the single fact type Animal runs Race. In practice
however, the identification schemes for Person and Horse might differ, and be based
on different data types (e.g. numeric or string), leading to awkward solutions such as
adding artificial identifiers. Moreover, the constraints on the predicate occurrences
might differ (as in this example), thus adding to the complexity of unifying the types.
For another example of this problem based on ownership, see [15, pp. 262-263].

The Resource Description Framework (RDF) does provide a practical mechanism
for predicate identification. In line with the Semantic Web proposal [2], documents
may be enriched with global identifiers and structure, using Uniform Resource Identi-
fier references (URIrefs) and embedded tags, to reveal the semantics of what is to be
shared in a way that is accessible to automated agents. Ontology languages such as
the Web Ontology Language (OWL) are built on top of RDF [25]. Figure 1(c) shows
three RDF statements that instantiate the fact types in the ORM and UML schemas.
The predicates depicted as labeled arrows in the bottom two statements are seen to be
identical in semantics because they have the same URIref.

This raises the following issue. Should modeling approaches such as ORM, ER,
and UML be extended to enable predicate occurrences to be “equated” (in the sense
of having the same meaning), and if so, how? An answer to this question may well
have bearing on procedures for mapping between these approaches and OWL.

When I formalized ORM many years ago [7], I used unsorted predicate calculus,
and treated predicates in different fact types as distinct, even if they had the same
short “display name” (e.g. “runs”, “has”). Display predicate names that appeared in
multiple fact types were internally expanded to distinct, full predicate names. This
expansion may be done by including relevant object type names or by subscripting.
For example, the predicate names in Figure 1 may be unabbreviated to “personRuns-
Barbershop”, “personRunsRace”, and “horseRunsRace”, or to “runs1”, “runs2” and
“runs3”. For this example, the first predicate could have been expanded simply to
“runsBarbershop”, but if we later added another fact type such as Company runs Barber-
shop, at least one of these predicates would need a different full name.

This convention allows fact types to be formalized via simple typing constraints.
For example, the three fact types in our example may be declared thus:

∀xy(x personRunsBarbershop y → Person x & Barbershop y)

∀xy(x personRunsRace y → Person x & Race y)

∀xy(x horseRunsRace y → Horse x & Race y)

726 T. Halpin

Strictly, a fact type corresponds to a set of one or more typed predicates, so alternate
readings (e.g. “Person operates Barbershop”, “Barbershop is run by Person”) may be declared
for the same fact type, using equivalence operations to establish the correspondence.

While use of predicate subscripts leads to shorter formulae, this has the disadvan-
tage for humans of needing to remember which meaning is intended by the subscript.
For example, consider the uniqueness constraint that each person runs at most one
barbershop. If we use “runs1” for the predicate, the constraint is formalized by the first
formula below. Without remembering which of the “runs” predicates is captured by
“runs1”, this is less informative than the longwinded second formula.

∀x ∃0..1y(x runs1 y)
∀x ∃0..1y(x personRunsBarbershop y)

More recently, I’ve often used sorted logic to formalize ORM. This leads to more ele-
gant formalizations of constraints, so long as we treat all predicates displayed with the
same short name as being the same predicate. For example, the uniqueness constraint
now formalizes nicely as:

∀x:Person ∃0..1y:Barbershop(x runs y)

Unfortunately, this complicates our predicate declaration via typing constraints, since
this now leads to disjunctive typing. For example, the three predicate declarations
given earlier are replaced by:

 ∀xy(x runs y → [(Person x & Barbershop y) ∨ (Person x & Race y)

 ∨ (Horse x & Race y)])

This has some advantages, because we can now easily formulate queries such as
“What runs What?” irrespective of the types involved. This is less modular than the
previous approach, because every time a runs predicate is added or deleted the dis-
junction in the type declaration has to be modified accordingly. Nevertheless, the con-
straint declarations are stable because the types are always specified.

Neither of these two approaches reveals which “runs” occurrences mean the same.
If we want to capture this correspondence visually, here is one possible solution. By
default, treat predicates with the same “short name” as distinct (they internally expand
to full predicate names including the object type names) unless they are explicitly
equated by appending the same subscript, or are related by a specialization relation-
ship (see [15, p. 387] for a discussion of association redefinition in UML and ORM).
For our example, this leads to the ORM schema of Figure 3. Because such cases are
rare in modeling, this seems the least intrusive diagrammatic solution. A URIref could
also be assigned (e.g. on a property grid) for any predicate for which this is desired.

Person Barbershop

Horse

Race
runs1

runs

runs1

Fig. 2. Equating predicate semantics

 Predicate Reference and Navigation in ORM 727

The predicate declarations may now be formalized as shown. If a short predicate
name occurs in only one fact type, you could instead simply use that (e.g. use “runs”
instead of “personRunsBarbershop” in the first formula below) so long as you main-
tain distinct predicate names if this situation changes.

∀xy(x personRunsBarbershop y → Person x & Barbershop y)

∀xy(x runs1 y → [(Person x & Race y) ∨ (Horse x & Race y)])

Care is required when referencing predicates within rules. Consider Figure 3(a), for
example. Here the “is licensed” predicate for Doctor means “is licensed to practise
medicine”, while the “is licensed” predicate for Driver means “is licensed to drive an
automobile”. A footnoted, deontic rule [11] is specified in FORML for DrivingDoc-
tor. This rule is ambiguous, because there is no formal way to determine which of the
“is licensed” predicates is intended.

One way to resolve this ambiguity is to require that in such cases the relevant sub-
typing relationship(s) must be included in the rule, with an understanding that predi-
cates have minimum scope. Suppose the intent of the rule is that driving doctors ought
to be licensed to practice medicine. In this case, the FORML rule can be disambigu-
ated by expansion to “Each DrivingDoctor is a Doctor who is licensed”.

A second, and probably preferable, way to resolve the ambiguity is to enforce the
following metarule: if object types overlap, and their grammatical predicates have dif-
ferent semantics, then their grammatical predicates must have different readings.
Grammatical predicates are basically fact types minus the object type role being
predicated. For example, runsRace is Person’s grammatical predicate in Person runs Race.
For unary fact types only, grammatical predicate names are the short, logical predi-
cate names (e.g. is licensed). For the current example, the schema in Figure 3(a) is
then illegal, and the user must rephrase at least one of the “is licensed” predicates to
distinguish them. Figure 3(b) renames both predicates, removing the rule ambiguity.

Person

Doctor Driver

DrivingDoctor1

is licensedis licensed

1 It is obligatory that
 each DrivingDoctor is licensed.

(a) Person

Doctor Driver

DrivingDoctor1

is licensed to
drive an automobile

is licensed to
practise medicine

1 It is obligatory that
 each DrivingDoctor is licensed to practise medicine.

(b)

Fig. 3. An ambiguous rule (a) disambiguated (b)

3 Role Navigation

If an object type plays a given role in a predicate, all other roles in that predicate
are far roles of that object type. Hence, if an object type plays more than one role in
a predicate, then all roles in that predicate are far roles for that object type. ORM

728 T. Halpin

requires far role names (if they exist) to be unique for any object type. If an ORM ob-
ject type A has only one of its far roles played by an object type B, then by default that
far role has B’s name as its role name, with its first letter lowercased. These naming
rules for roles are similar to those in UML, except UML requires each role to have a
name. Unlike ORM, UML does not require predicates to be named, so role names and
class names provide the normal way to navigate around a UML class diagram (e.g.
using OCL [21, 23]).

ORM allows rules to be formulated in either relational style, using predicate
names, or attribute-style, using role names. Navigation via role names is straightfor-
ward for binary predicates, since the role name is chosen from the perspective of an
instance of an object type for which it is a far role. For example, consider the fact type
Company is owned by Company in Figure 4. To find which companies are owned by IBM,
we might issue the query in relational style as List each Company that is owned by Company
‘IBM’, or in attribute style as Company ‘IBM’.subsidiary.

However, role access is less straightforward with n-ary fact types (n > 2). In nor-
mal practice, roles on n-aries are named with respect to the n-ary relationship itself
rather than with respect to one of its object types. In Figure 4, for example, consider
the ternary fact type Company sold Product to Company. Here, the names of the two com-
pany roles are “seller” and “buyer”, and the product role name is by default “prod-
uct”. These role names are useful for generating column names in a relational table
for the sale fact type, but they are not useful for navigating around the schema. For
example, an expression such as “company.seller” suggests a company’s seller, which
is not at all what the expression means.

Suppose that we want to know which products have been sold by IBM. This can be
specified in relational style easily enough (e.g. List each Product where Company ‘IBM’ sold
that Product to some Company). But this query can’t be formulated in attribute style using
role names on the ternary. It’s no use using “company.product” to navigate from
Company to the product role in the ternary, because this doesn’t tell us whether a
given product was bought by that company or whether it was sold by that company.

To resolve this issue, we introduce derived binary fact types projected from the
ternary, and add relevant role names to them, as shown in Figure 4. The query may
now be formulated in attribute style thus: Company ‘IBM’.productSold.

Company

is owned by

[parent][subsidiary]

… sold … to ...
[seller]

Product

[buyer]bought*

[productBought]

sold*

[productSold]

*Company bought Product [as productBought] iff
 some Company2 sold that Product to Company.
*Company sold Product [as productSold] iff
 that Company sold that Product to some Company2.

Fig. 4. Navigation using role names

 Predicate Reference and Navigation in ORM 729

4 Predicate Path Verbalization

Earlier we saw some basic examples of navigating predicate paths in either relational
or attribute-style. Navigating from one predicate to another involves a conceptual join
on the connecting object type(s) [8, 15]. To automate verbalization of constraints in-
volving join paths (e.g. join subset constraints), a mechanism is needed to specify the
underlying role paths and the joins involved. This section provides patterns for ver-
balizing role paths for the case of inner joins over roles projected from a role path,
and applies the technique to verbalize a join subset constraint.

Figure 5 shows an abstract example, where the external uniqueness constraint is
applied to the role pair (r1, r10), which is projected from the role path (r1, r2, r3, r4,
r9, r10) formed by traversing the predicate sequence R1, R2 and R5 and performing
the inner joins r2 = r3 and r4 = r9. This role path is a multijoin path as it involves
more than one join. Our role path choice is indicated here by shading the joins, but
there are three possible paths between B and C. Instead of traversing the top predicate
R2, we could traverse the middle predicate R3 that implicitly underlies the subtype
connection, performing the joins r2 = r5 and r6 = r9. R3 has the reading “is”, and like
the other predicates, is an instance-level predicate: it relates instances of B to in-
stances of C, and is implied by the type-level metapredicate that relates the type B to
the type C. As a third alternative, we could traverse the bottom predicate R4, perform-
ing the joins r2 = r7 and r8 = r9.

r1
r5 r6

r7 r8

r10r2

r3 r4

r9A B C D
R1

R2

R5

R3

R4

Fig. 5. External Uniqueness Constraint over a multijoin path

Currently NORMA does not graphically highlight the relevant joins (as done here
using shading). In general, shading is not adequate since a path may traverse the same
predicate more than once. A general graphical solution may be provided by number-
ing the roles used to perform the joins. An alternative is to use a textual language to
formulate constraints for such cases, verbalizing the relevant join paths.

There are two natural ways to verbalize conceptual inner joins in English, one us-
ing “that” (or “who” if the join object type is declared personal) and one using “and”.
The first way may be used if we have a predicate reading that ends with the join’s
entry role followed by a predicate reading starting at the join’s exit role (i.e. one
predicate is directed towards, and one predicate reading is directed away from, the
join object type). This is illustrated in Figure 6(a), where the join is left-to-right.

The second way may be used if we have a predicate reading that starts at the entry
role and another predicate reading that starts at the exit role (i.e. both predicates are
directed away from the join object type). This is illustrated in Figure 6(b), where the
join is top-to-bottom.

730 T. Halpin

A
R1 R2

… R1 … A that R2 ...
A

R1

R2

A R1 …
 and R2 …

(b)(a) entry role exit role

exit role

entry role

Fig. 6. Two verbalization patterns for inner joins

In the abstract example cited earlier, we have predicate readings R1, R2, R3 all in
the same direction as the role path. The joins may then be specified using “that”. The
underlying role path which forms the context for the role projection may then be ver-
balized as: A R1 some B that R2 some C that R5 some B. The external uniqueness con-
straint may then be verbalized as shown below. Front text may be accommodated in
the usual way, and if an object type plays additional roles on the join path, add sub-
scripts to distinguish its occurrences.

Join Path Context: A R1 some B that R2 some C that R5 some B.
In this context, each A, C combination is unique.

Figure 7 shows a model based on an example from [15] in which the external unique-
ness constraint used to provide the preferred identifier for City applies to roles
projected from a multijoin path. In this case we do not have a linear sequence of
predicate readings for the whole path (we would have if we added the reading Area-
Code is of City). The join on City is specified using “and” since we have readings from
its join roles. The joins on State and Country are specified using “that” since we have
continuous readings over that path. This uniqueness constraint may be verbalized
thus:

Join Path Context: City has AreaCode
 and is in State that is in Country that has RegionCode.

In this context, each AreaCode, RegionCode combination is unique.

City
is in

State

City
Name

has

is in

Country
(name)

has

StateName

AreaCode

has

RegionCode

has

has *

* City has RegionCode iff
 City is in some State that is in some Country

that has RegionCode.

Fig. 7. A complex example of constraints over join paths

 Predicate Reference and Navigation in ORM 731

The additional information regarding preferred identifier is verbalized as for ordinary
cases, as shown below. The three other external uniqueness constraints in the example
may be verbalized in the usual way [15].

The unique AreaCode, RegionCode combination provides the preferred identifier for City.

If we replace the reading “City is in State” by the inverse reading “State includes City” as in
Figure 8(a). The join path may now be declared starting with State, since it begins two
continuous paths. Thus:

 State includes City that has AreaCode
 and is in Country that has RegionCode.

City State
is in

Country
(name)

AreaCode

has

RegionCode

has

includes

(b)(a)

City State
is in

Country
(name)

AreaCode

has

RegionCode

includes

is of

Fig. 8. Join path verbalization depends on predicate direction

But if we also reverse the AreaCode fact type reading, as in Figure 8(b), the City join
cannot be verbalized using the two patterns given earlier, since City neither starts nor
continues its join predicate readings. To cater for such cases where the join predicate
readings end at the entry and exit roles (i.e. both predicates are directed towards the
join object type), we introduce the third verbalization pattern shown in Figure 9. If A
plays additional roles in the path, add subscripts to distinguish its occurrences.

A
R1 R2

… R1 … A
and … R2 … that A

entry role exit role

Fig. 9. A third pattern for verbalizing inner joins

Using this third pattern, the join path in Figure 8(b) above may be verbalized as:

State includes City
 and is in Country that has RegionCode

and AreaCode is of that City.

or as: AreaCode includes City
and State includes that City

 and is in Country that has RegionCode.

Heuristics may be added to provide a deterministic choice of the verbalization. Note
that the second verbalization above relies on a minimum backward scope rule for
grammatical predicates to ensure that the subject of “is in Country” is State rather

732 T. Halpin

than AreaCode. If desired, parentheses could be added to explicate the expression for
those unfamiliar with this scoping rule, e.g.

AreaCode includes City
and (State includes that City

 and is in Country that has RegionCode).

Note that the three patterns discussed cover all possible cases for an inner join over
two roles: (a) one predicate enters the join and one leaves; (b) both predicates start at
the join; (c) both predicates end at the join.

We conclude this section by applying the patterns to verbalize a join subset con-
straint. In general, a subset constraint is directed from one sequence of roles (the
source role sequence) to another compatible sequence of roles (the target role se-
quence). For a join to be involved in the subset constraint, each role sequence must
include at least two roles, and at least one of these role sequences must involve at
least one join. We consider the common case, where each constrained role sequence is
a role pair played by the same object type pair and projected from the ends of a role
path of binary predicates with continuous predicate readings in the same direction.

The pattern is shown in Figure 10. The source role pair comprises the roles at the
ends of the predicate sequence S1 .. Sm (m ≥ 1), and the target role pair comprises the
roles at the ends of the predicate sequence R1 .. Rn (n ≥ 1). The object types are not
necessarily distinct. If A or B are identical to each other or to some of the C or D
types, distinguish their occurrences by subscripts. If front text exists, insert it before
the relevant “some” occurrences and after the relevant “that” occurrences (the latter
placement is not ideal but will typically suffice; fortunately front text is likely to be
rare for this case). If the constraint is deontic, prepend “It is obligatory that”.

A

C1

B

R1 R2 Rn

D1
S1 S2 Sm

...

...

+ve: If some A R1 some C1 that R2 some … that Rn some B
 then that A S1 some D1 that S2 some … that Sm that B.

-ve: None provided

Fig. 10. A pattern for verbalizing a join subset constraint

Applying this pattern to the simple join subset constraint shown in Figure 11 leads
to the following verbalization.

Person
(.nr)

PersonTitle

Gender
(.code)

{‘M’, ‘F’}has

is restricted to

is of

Fig. 11. Example of a join subset constraint

 Predicate Reference and Navigation in ORM 733

If some Person has some PersonTitle that is restricted to some Gender
then that Person is of that Gender.

5 Conclusion

This paper discussed three issues concerning predicate reference and navigation. Al-
though the context for the discussion focused on ORM as supported by NORMA, the
issues are relevant to other information modeling approaches. Different options for
formalizing and distinguishing predicates were considered. The expanded predicate
name option has been implemented as a NORMA extension for generating typed
datalog [26]. Empirical research is needed to determine just how useful it would be
for modelers to have tool support to indicate when short predicate names are being
used with the same underlying semantics.

Two different perspectives for role names were distinguished, depending on fact
type arity, and a technique using role names on derived binaries was proposed to en-
able attribute-style rules to cater for n-ary fact types. This technique seems attractive
because it does not require any additional ORM constructs to be introduced.

A comprehensive specification was provided for automatically verbalizing role
paths involving inner joins, together with an example to illustrate use of the patterns
for verbalizing join constraints. This specification is part of a much larger specifica-
tion that has been completed for automated verbalization of all role paths and join
constraints (join subset, join exclusion, join equality, join uniqueness etc.). It is an-
ticipated that this will be implemented in the NORMA tool before the end of 2009.

References

1. Bakema, G., Zwart, J., van der Lek, H.: Fully Communication Oriented Information Mod-
elling. Ten Hagen Stam (2000)

2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (May
2001)

3. Bloesch, A., Halpin, T.: Conceptual queries using ConQuer-II. In: Embley, D.W. (ed.) ER
1997. LNCS, vol. 1331, pp. 113–126. Springer, Heidelberg (1997)

4. Bollen, P.: SBVR: A fact-oriented OMG standard. In: Meersman, R., Tari, Z., Herrero, P.
(eds.) OTM-WS 2008. LNCS, vol. 5333, pp. 718–727. Springer, Heidelberg (2008)

5. Chen, P.P.: The entity-relationship model—towards a unified view of data. ACM Transac-
tions on Database Systems 1(1), 9–36 (1976)

6. Curland, M., Halpin, T.: ‘Model Driven Development with NORMA. In: Proc. 40th Int.
Conf. on System Sciences (HICSS-40). IEEE Computer Society, Los Alamitos (2007)

7. Halpin, T.: A Logical Analysis of Information Systems: static aspects of the data-oriented
perspective, doctoral dissertation, University of Queensland (1989), Online as an 18 MB
file at http://www.orm.net/Halpin_PhDthesis.pdf

8. Halpin, T.: Constraints on Conceptual Join Paths. In: Krogstie, J., Halpin, T., Siau, K.
(eds.) Information Modeling Methods and Methodologies, pp. 258–277. Idea Publishing
Group, Hershey (2005)

9. Halpin, T.: ORM 2. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2005. LNCS,
vol. 3762, pp. 676–687. Springer, Heidelberg (2005)

734 T. Halpin

10. Halpin, T.: ORM/NIAM Object-Role Modeling. In: Bernus, P., Mertins, K., Schmidt, G.
(eds.) Handbook on Information Systems Architectures, 2nd edn., pp. 81–103. Springer,
Heidelberg (2006)

11. Halpin, T.: Modality of Business Rules. In: Siau, K. (ed.) Research Issues in Systems
Analysis and Design, Databases and Software Development, pp. 206–226. IGI Publishing,
Hershey (2007)

12. Halpin, T.: Fact-Oriented Modeling: Past, Present and Future. In: Krogstie, J., Opdahl, A.,
Brinkkemper, S. (eds.) Conceptual Modelling in Information Systems Engineering, pp.
19–38. Springer, Berlin (2007)

13. Halpin, T.: A Comparison of Data Modeling in UML and ORM. In: Khosrow-Pour, M.
(ed.) Encyclopedia of Information Science and Technology, 2nd edn., Information Science
Reference, Hershey PA, US, vol. II, pp. 613–618 (2008)

14. Halpin, T., Curland, M.: Automated Verbalization for ORM 2. In: Meersman, R., Tari, Z.,
Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4278, pp. 1181–1190. Springer,
Heidelberg (2006)

15. Halpin, T., Morgan, T.: Information Modeling and Relational Databases, 2nd edn. Morgan
Kaufmann, San Francisco (2008)

16. ter Hofstede, A., Proper, H., van der Weide, T.: Formal definition of a conceptual language
for the description and manipulation of information models. Information Systems 18(7),
489–523 (1993)

17. Hoppenbrouwers, S.J.B.A., Proper, H.A(E.), van der Weide, T.P.: Fact Calculus: Using
ORM and Lisa-D to Reason about Domains. In: Meersman, R., Tari, Z., Herrero, P. (eds.)
OTM-WS 2005. LNCS, vol. 3762, pp. 720–729. Springer, Heidelberg (2005)

18. Meersman, R.: The RIDL Conceptual Language, Int. Centre for Information Analysis Ser-
vices, Control Data Belgium, Brussels (1982)

19. Nijssen, M., Lemmens, I.M.C.: Verbalization for Business rules and Two Flavors of Ver-
balization for Fact Examples. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS
2008. LNCS, vol. 5333, pp. 760–769. Springer, Heidelberg (2008)

20. Object Management Group, UML 2.0 Superstructure Specificatio (2003),
http://www.omg.org/uml

21. Object Management Group, UML OCL 2.0 Specification (2005),
http://www.omg.org/docs/ptc/05-06-06.pdf

22. Object Management Group, Semantics of Business Vocabulary and Business Rules, SBVR
(2008), http://www.omg.org/spec/SBVR/1.0/

23. Warmer, J., Kleppe, A.: The Object Constraint Language, 2nd edn. Addison-Wesley,
Reading (2003)

24. Wintraecken, J.: The NIAM Information Analysis Method: Theory and Practice. Kluwer,
Deventer (1990)

25. World Wide Web Consortium, OWL 2 Web Ontology Language, W3C Working Draft
(2009), http://www.w3.org/TR/2009/WD-owl2-overview-20090611/

26. Zook, D., Pasalic, E., Sarna-Starosta, B.: Typed Datalog. In: Gill, A., Swift, T. (eds.)
PADL 2009. LNCS, vol. 5418, pp. 168–182. Springer, Heidelberg (2009)

	Predicate Reference and Navigation in ORM
	Introduction
	Predicate Disambiguation
	Role Navigation
	Predicate Path Verbalization
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

