
Automated Test Input Generation for Software

That Consumes ORM Models

Matthew J. McGill1, R.E. Kurt Stirewalt2, and Laura K. Dillon1

1 Dept. of Computer Science and Engineering,
Michigan State University,
East Lansing, MI 48223

{mmcgill,ldillon}@cse.msu.edu
2 LogicBlox, Inc.

kurt.stirewalt@logicblox.com

Abstract. Software tools that analyze and generate code from ORM
conceptual schemas are highly susceptible to feature interaction bugs.
When testing such tools, test suites are needed that cover many combi-
nations of features, including combinations that rarely occur in practice.
Manually creating such a test suite is extremely labor-intensive, and the
tester may fail to cover feasible feature combinations that are counter-
intuitive or that rarely occur. This paper describes ATIG, a prototype
tool for automatically generating test suites that cover diverse combi-
nations of ORM features. ATIG makes use of combinatorial testing to
optimize coverage of select feature combinations within constraints im-
posed by the need to keep the sizes of test suites manageable. We have
applied ATIG to generate test inputs for an industrial strength ORM-to-
Datalog code generator. Initial results suggest that it is useful for finding
feature interaction errors in tools that operate on ORM models.

1 Introduction

Increasingly, tools are being developed to analyze and generate code from con-
ceptual schemas specified in ORM 2.0. Examples include the professional edition
of the Natural ORM Architect (NORMA) [1] and a tool we developed called Vi-
sualBlox, which analyzes ORM models to generate schemas in DatalogLB [2].1 A
key concern in the development of such a tool is the cost-effective design of a test
suite that adequately tests the tool. In this context, a test suite is a large corpus
of ORM models. This paper reports on a tool, called ATIG,2 that automatically
generates ORM test models covering diverse combinations of ORM features to
use for testing purposes.

Automating generation of ORM test inputs presents several difficulties. For
one, it can be difficult to ensure that the generated inputs are valid ORM. For
1 The LogicBlox technology uses DatalogLB to program and query databases built

atop the LB platform. Details on this language and the platform are beyond the
scope of this paper.

2 ATIG stands for Automatic Test Input Generator.

R. Meersman, P. Herrero, and T. Dillon (Eds.): OTM 2009 Workshops, LNCS 5872, pp. 704–713, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Automated Test Input Generation for Software 705

example, a generated model containing a fact type with no internal uniqueness
constraint is not a valid ORM model. ATIG makes use of a specification of the
ORM abstract syntax and semantics to avoid generating invalid test models.3 A
second difficulty for automating generation of ORM input models is producing
reasonable-sized test suites whose inputs combine a wide range of ORM features
in a variety of different ways. ATIG employs combinatorial testing [5] to achieve
this goal.

ATIG takes as input a feature specification, which specifies the ORM features
that the generated test suite should exercise, and a test specification. A feature
specification encodes a subset of the ORM metamodel in a manner that facili-
tates automated analysis. The tool then processes these inputs to automatically
produce a suite of ORM models that exercise the features described in the fea-
ture specification in a variety of combinations, using the test specification to
drive the generation process. For convenience and due to space limits, we depict
feature specifications as ORM metamodels expressed in ORM, even though they
are currently written in Alloy.4

ATIG exploits two tools—the Alloy Analyzer, which automates the instanti-
ation of relational logic specifications [4], and jenny [6], which automates the
generation of combinatorial test plans. Because Alloy provides a host of logi-
cal and relational operators, representing ORM feature specifications in Alloy
is straightforward. Jenny populates a candidate test plan while avoiding an ex-
plicitly specified set of infeasible configurations. A problem with using jenny
for generating test plans is the need to know and explicitly enumerate infeasi-
ble configurations. We use Alloy’s ability to find an instance of a specification,
indicating a configuration is feasible, to iteratively refine candidate test plans,
feeding configurations that Alloy cannot instantiate back to jenny. The process
iteratively determines likely infeasible configurations until jenny is able to pro-
duce a test plan that can be fully instantiated. While this process may cause
some possible feature combinations to be omitted, our experience to date indi-
cates that the test suites it generates cover diverse combinations of ORM features
and are effective in finding subtle interaction errors.

2 Background and Related Work

This section provides background on testing techniques and analysis tools used
by our tool. In particular, we describe two complimentary testing techniques,
category-partition testing (Sec. 2.1) and combinatorial testing (Sec. 2.2), aspects
of which ATIG automates. We also provide a brief overview of the Alloy Analyzer
(Sec. 2.3) and discuss related work (Sec. 2.4).
3 Determining the satisfiability of an arbitrary ORM model is NP-Hard [3]. However,

the small-scope hypothesis, which argues that most errors can be found by exhaus-
tively testing inputs within a small scope [4], suggests that the small test inputs
generated by ATIG can find subtle interaction errors, and our experience to date
supports this hypothesis.

4 When NORMA supports first-class derivation rules, generating the Alloy specifica-
tions from feature specifications modeled in ORM will be straightforward.

706 M.J. McGill, R.E. Kurt Stirewalt, and L.K. Dillon

2.1 Category-Partition Method

The category-partition method (CPM) [7] is a general method for generating
test inputs for software programs. A tester usually cannot exhaustively test a
non-trivial software program, as the size of the program’s input space is often too
big for exhaustive testing to be practical. In CPM, the tester instead partitions
the input space of a program into equivalence classes and selects at most a single
input from each equivalence class for testing. A key property of this partition is
that all test inputs from the same equivalence class should be sufficiently similar
to be considered “equivalent” for testing purposes. This section briefly elaborate
these ideas, eliding details of CPM not salient to our test generation method.

Before describing CPM, we need to introduce some terminology. To parti-
tion the input space, the tester identifies one or more categories and associated
choices based on a specification of the valid program inputs. Intuitively, a cat-
egory describes “a major property or characteristic” [7] of a program input by
associating with each input a value from some category domain. For example,
for an array-sorting program, a tester might define an array length category,
whose domain is the set of non-negative integers; a has dups category, whose do-
main is bool, indicating whether the array contains any duplicate entries; and a
sort order category, whose domain is {ascend, descend}, as shown in Table 1.

In contrast, a choice for a category designates a subset of the category domain
that contains values a tester considers equivalent for testing purposes. Choices
for the same category are pair-wise disjoint, but they need not be exhaustive.
For example, the choices for array length distinguish arrays of length 0 and 1,
but identify all other small arrays (i.e., arrays containing from 2 to 10 elements)
as equivalent and all very large arrays (i.e., arrays containing more than 10000
elements) as equivalent for testing purposes. Given a category and an associated
choice, an input is said to satisfy, or equivalently, to cover, the choice if the value
that the category associates with the input belongs to the choice. For instance,
an input containing an array of length 5 satisfies (covers) the choice [2–10] for
array length.

A choice combination is a set of choices for which each choice corresponds to
a different category. A choice combination that additionally contains a choice
for each category is also called a test frame. Given the three categories and
corresponding choices in Table 1, for example, {1, false, ascend} is both a choice
combination and a test frame, whereas any proper subset of it is just a choice
combination. An input covers a choice combination if it covers each choice in
the combination. Of course, categories are not necessary orthogonal. Thus, there

Table 1. Example categories and choices for an array-sorting program

Category Domain Choices

array length Non-negative integers 0, 1, [2–10], >10000

has dups bool true, false

sort order {ascend, descend} ascend, descend

Automated Test Input Generation for Software 707

might be no valid input satisfying certain choice combinations. For example,
because arrays of length 1 cannot contain duplicates, the choice combination
{1, true} is infeasible.

In CPM, a tester provides a test specification in the form of definitions for
a set of categories and corresponding choices, and a test set is generated from
the test specification. Essentially, the set of all feasible test frames is viewed as
defining a partition on the valid program inputs, where each equivalence class
consists of the inputs satisfying one of the feasible test frames.5 Ideally, therefore,
a test set would cover all feasible test frames. In practice, however, it may not
be practical to achieve this level of coverage. For one, determining feasibility is
difficult (and can be undecidable). Moreover, the number of test frames grows
exponentially with the number of categories, and so can simply be too large.
Thus, the tester must typically select some subset of test frames to be covered.
We refer to a subset of test frames to be covered by a test set as a test plan.

A test set is produced from a test plan by instantiating each of its test
frames. Instantiation of a test frame involves searching for an input that sat-
isfies all choices in the test frame. For example, to instantiate the test frame
{[2–10], false, ascend}, an array of, say, length three might be populated with
three arbitrary, but distinct, integer values, in which case the less-than operator
for integers should be selected to use in comparing array elements. A key dif-
ficulty with instantiation is actually selecting valid inputs that simultaneously
satisfy all the choices. Here again, inputs that are subject to complex syntactic
and static semantic constraints (e.g., ORM models) compound this difficulty [3].
ATIG uses the Alloy Analyzer to automate instantiation of a test frame.

2.2 Combinatorial Testing

As previously noted, a tester must typically narrow the set of test frames in CPM,
both to eliminate infeasible test frames and to obtain a reasonable-sized test plan.
We use combinatorial testing [5] for this purpose. Borrowing terminology from
combinatorial testing, we say a test set achieves t-way coverage if it covers every
feasible choice combination of size t. When t equals the number of categories,
combinatorial testing and CPM produce equivalent test sets. But when t is small,
t-way coverage can often be achieved using smaller test sets. For example, 2-way
coverage of the categories in Table 1 can be achieved by a test set containing
just 8 test inputs. As the number of categories increases, the reduction in test
set size becomes increasingly significant, because a single test frame can cover
more t-way choice combinations.

Tools, such as jenny, automate the generation of t-way test plans, provided
the tester indicates infeasible choice combinations.6 A key contribution of our
5 If the choices for some category domains are non-exhaustive, then there will also be

an equivalence class for all inputs that do not satisfy any test frame. We assume the
tester does not care about covering these inputs and so ignore this equivalence class.

6 The problem of generating minimal t-way test plans is NP-hard. Using a greedy
algorithm, however, jenny quickly generates test plans that are near-minimal on
average.

708 M.J. McGill, R.E. Kurt Stirewalt, and L.K. Dillon

work is to use the Alloy Analyzer in conjunction with jenny to automate the
selection of a “good” test plan.

2.3 Alloy

Our current ATIG prototype works on a feature specification expressed in Alloy,
a modeling language combining first order predicate logic with relational opera-
tors [4]. Additionally, it uses the Alloy Analyzer in instantiating a test frame or
to classify a test frame as “likely infeasible.”

More generally, the Alloy Analyzer generates instances up to some bounded
size, or scope, of specifications expressed in Alloy. Instance generation is essen-
tially a search problem and bounding the scope guarantees the search terminates.
If an instance is found, then the Alloy specification is satisfiable. The Alloy Ana-
lyzer can display an instance graphically. It can also output a textual description
of an instance in XML.

2.4 Related Work

Several existing methods for generating test inputs for code generators produce
the inputs from a description of the source notation [8,9,10]. Those cited use
UML class diagrams as the meta-notation, not ORM. Also, unlike our method,
none attempts to systematically test combinations of source notation features.

Wang [8] and Brottier [9] use only information expressible in UML class di-
agrams, whereas Winkelmann et al. [10] augment UML class diagrams with
limited OCL constraints to allow more precise source notation descriptions. The
extra precision means that fewer invalid test inputs are generated. Neither ORM
nor the OCL subset in [10] is strictly more expressive than the other. For exam-
ple, OCL’s implication operator has no natural representation in ORM, whereas
ORM’s transitivity constraints cannot be expressed in this OCL subset [10].
We expect, however, that a version of NORMA will have formal support for
derivation rules that are at least as expressive as this OCL subset.

Other existing methods [11,12,13] require a formal specification of the code
generator’s mapping from source to target in addition to a description of the
source notation. Formally specifying a code generator’s behavior can provide
many benefits. External constraints and rapidly changing requirements, how-
ever, can make formal specification of behavior impractical or impossible. During
the development of VisualBlox, for example, user feedback motivated frequent
changes to the code generator’s requirements, and the complexities of the target
language frustrated attempts at formality. In contrast, the description of the
source notation remained fairly stable.

3 ATIG Inputs and Outputs

Figure 1 shows the inputs that ATIG uses and the outputs that it creates, as
well as the main processes it performs and the data these processes produce and

Automated Test Input Generation for Software 709

Fig. 1. Overview of ATIG

consume. We describe the inputs and outputs in this section, deferring discussion
of the internals of ATIG to Section 4.

ATIG takes as input a feature specification, which describes the ORM features
of interest, and a test specification, which describes the categories and associated
choices that a test set should exercise. Figure 2 illustrates the type of information
expressed by a feature specification for a subset of the ORM features supported
by VisualBlox. Because we do not have space to describe Alloy in this paper,
we show the the feature specification as an ORM metamodel. Encoding this
metamodel in Alloy is straightforward. The ORM metamodel represents ORM
language elements by entity types a(e.g, EntityType, Role) nd represents po-
tential relationships among language elements by fact types (e.g., EntityType
plays Role). Constraints (e.g., simple mandatory constraints, exclusion con-
straints) capture some of the static semantics. Others are specified as derivation
rules (e.g., rule labeled “*” attached to Role is lone).

For feasibility checking to be tractable, a feature specification can include only
a relatively small subset of features and must encode static semantic constraints
with an eye toward keeping the sizes of instances small. These considerations
affect what to include in the feature specification and how to encode the static

Fig. 2. A simple ORM metamodel of ORM, for testing VisualBlox

710 M.J. McGill, R.E. Kurt Stirewalt, and L.K. Dillon

semantics. For example, an ORM metamodel would typically have a mandatory
many-to-many fact type InternalUC constrains Role. However, encoding the
compliment of this fact type—InternalUC excludes Role, a non-mandatory
one-to-one fact type—produces smaller instances.

A test specification supplied to ATIG comprises a set of cardinality categories
and associated choices. A cardinality category describes the number of times a
particular ORM language element or language element relationship (described
in the feature specification) appears in a test model. The domain of a cardinality
category is the set of non-negative integers. By convention, a cardinality category
is denoted |element name|, where element name stands for the ORM entity or
predicate name from the feature specification (e.g., |EntityType|, |Role is in
FactType|).

ATIG outputs a set of ORM test models in the format used by NORMA. It
can also output these test models as diagrams, which facilitates checking that a
test model is valid ORM.

4 ATIG: Test-Set Generation Algorithm

ATIG takes as input a feature specification and a test specification, and generates
a test set of ORM models using the iterative process depicted in Figure 1. This
process employs jenny to iteratively generate candidate test plans, which achieve
t-way coverage of the choices defined in the test specification. In addition to the
space of choices, jenny takes as input a set of likely infeasible choice combinations
to avoid when generating candidate test plans.7 Initially empty, a set of likely
infeasible choice combinations is gradually populated as a byproduct of attempts
to instantiate the frames of a candidate test plan, as depicted in Figure 1.

ATIG uses the Alloy Analyzer to attempt to instantiate test frames. Based
on the success or failure of these attempts, control passes along different arcs
in Figure 1. Briefly, suppose F denotes an Alloy specification of a portion of
the ORM metamodel and f denotes a test frame comprising a set of choices
{c1, c2, . . . , ck}. ATIG instantiates f by:

1. translating f into an Alloy predicate P with k conjuncts, each of which
encodes some ci ∈ f as a constraint on the cardinality of some signature or
relation declared in F ; and then

2. using the Alloy Analyzer to run P (within some finite scope) to generate an
instance of F that satisfies all of the choices in f .

Step 1 is trivial because we use only cardinality categories and the names of
these categories correspond to the names of signatures in F . Step 2 may have
one of two outcomes: Either the Alloy Analyzer fails to find an instance within
the specified scope, in which case we deem f is a likely infeasible frame, or it
finds an instance, which ATIG then translates into an ORM model according

7 Jenny treats each choice as an opaque identifier and thus may generate a host of
infeasible choice combinations.

Automated Test Input Generation for Software 711

to the schema of the XML representation used by NORMA. Rather than add a
likely infeasible frame to the set of likely infeasible choice combinations, ATIG
attempts to find a minimal subset of the frame that cannot be instantiated in
the given scope.8

To summarize, ATIG generates a test plan comprising only test frames that
are consistent with the feature specification, while attempting to optimize cov-
erage of t-way choice combinations. It identifies likely infeasible choice combina-
tions using an iterative process, incrementally building up a list of combinations
for jenny to avoid until jenny produces a test plan that ATIG can instantiate
(within some particular scope).

5 Discussion and Future Work

A small study with ATIG suggests the tool can generate moderate-sized test
suites capable of exposing unexpected interaction bugs. In this study, we used a
feature specification that extends the metamodel in Figure 2 with objectification
and with integer and boolean value types. The extended metamodel contains 8
object types and 8 fact types, 2 of which are derived. For a test specification,
we introduced a cardinality category for each non-derived fact type in the meta-
model, and associated 5 choices—namely, 0, 1, 2, [3,5], and [6–8]—with 3 of the
categories and 4 choices—namely, 1, 2, [3,5], [6-8]—with the other 3 categories.

We ran ATIG on these feature and test specifications to generate a 2-way test
set of ORM models. The test specification produces a total of 8, 000 distinct test
frames. ATIG generated a test plan containing just 37 test frames, classifying
51 choice combinations as likely infeasible in the process. It took just under 19
minutes (wall time) on a desktop computer containing an Intel Core 2 Duo 3 ghz
processor and 2 gigabytes of RAM. The majority of this time is spent in checking
choice combinations for feasibility when a test frame cannot be instantiated
within the scope used.

The 37 models in the generated test set cover a diverse range of ORM feature
combinations and exposed a number of previously unknown errors in the current
version of VisualBlox. Figure 3 shows four ORM models from the generated test
set. Collectively, the models in Figure 3 cover value types used in combination
with every other ORM language element in the feature specification, namely
entity types, simple mandatory and internal uniqueness constraints, fact types
of different arities, and objectification. By covering many feature combinations
not present in our manually produced test set, the generated test set uncovered
multiple, previously unknown errors. Specifically, 15 of the 37 test models, each
a valid ORM model, exercise ORM features in combinations that caused Visual-
Blox to produce Datalog code that was not accepted by the DatalogLB compiler.
Thus, roughly 40% of the automatically generated test inputs were valid models
that the VisualBlox development team had not considered supporting.

8 Providing smaller choice combinations will prevent jenny from using these combi-
nations in any generated test plan, speeding convergence of the iterative process.

712 M.J. McGill, R.E. Kurt Stirewalt, and L.K. Dillon

(a) with unary fact type (b) with mandatory and
uniqueness constraints

(c) with entity types (d) with objectification

Fig. 3. ATIG-generated models combining value types with other ORM modeling fea-
tures

Our preliminary results suggest several areas for future work. First, we plan
studies to more formally assess the quality of test sets generated with ATIG.
Our first study will include more ORM features in the feature specification,
and compare the cost-effectiveness of 2-way, 3-way and higher, and manually
constructed test sets. Later studies will evaluate various heuristics used in our
current prototype. For example, how does using smaller scopes when instan-
tiating test frames affect the size of the generated test plan, the diversity of
the choice combinations covered by this plan, the errors exposed by a test set,
and the time to generate test sets? Another question deserving more attention
in light of the time spent finding minimal-sized likely-infeasible choice combi-
nations is the cost-effectiveness of this step. Would equally diverse test sets be
produced if we collected test frames instead of minimal choice combinations, and
how would doing so affect the time for the iterative process to converge? In other
future studies, we plan to evaluate whether ATIG can provide similar benefits if
used to generate test sets for programs that consume other types of inputs with
complex structural constraints (e.g., UML models).

To facilitate conducting such studies, we also plan to automate the transla-
tion of an ORM metamodel into an Alloy feature specification. Translating the
graphical ORM language features to Alloy is straightforward. At present, tex-
tual constraints on derivation rules pose the primary obstacle to automating the
translation to Alloy because there is no formal textual syntax for constraints in
NORMA. We anticipate that a future version of NORMA, however, will support
textual derivation rules for derived fact types and textual constraints.

Another promising area for future work is adding support to ATIG for parallel
invocations of Alloy on separate processors or computers to take advantage of
the embarrasingly parallel nature of instantiating test frames and searching for
likely infeasible choice combinations.

Automated Test Input Generation for Software 713

References

1. Curland, M., Halpin, T.: Model driven development with NORMA. In: Proc. of
the 40th Int’l. Conf. on Sys. Sci (2007)

2. Zook, D., Pasalic, E., Sarna-Starosta, B.: Typed datalog. In: Proc. of the 11th
International Symposium on Practical Aspects of Declarative Languages (2009)

3. Smaragdakis, Y., Csallner, C., Subramanian, R.: Scalable automatic test data gen-
eration from modeling diagrams. In: Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering, pp. 4–13. ACM, New
York (2007)

4. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

5. Cohen, D., Dalal, S., Parelius, J., Patton, G., Bellcore, N.: The combinatorial design
approach to automatic test generation. IEEE software 13(5), 83–88 (1996)

6. http://burtleburtle.net/bob/math/jenny.html: jenny (June 2006)
7. Ostrand, T.J., Balcer, M.J.: The Category-Partition Method for Specifying and

Generating Functional Tests. Communications of the ACM 31(6) (1988)
8. Wang, J., Kim, S., Carrington, D.: Automatic Generation of Test Models for Model

Transformations. In: 19th Australian Conference on Software Engineering, 2008.
ASWEC 2008, pp. 432–440 (2008)

9. Brottier, E., Fleurey, F., Steel, J., Baudry, B., Le Traon, Y.: Metamodel-based
test generation for model transformations: an algorithm and a tool. In: 17th Inter-
national Symposium on Software Reliability Engineering, 2006. ISSRE 2006, pp.
85–94 (2006)

10. Winkelmann, J., Taentzer, G., Ehrig, K., Küster, J.M.: Translation of restricted ocl
constraints into graph constraints for generating meta model instances by graph
grammars. Electronic Notes in Theoretical Computer Science 211, 159–170 (2008)

11. Sturmer, I., Conrad, M., Doerr, H., Pepper, P.: Systematic Testing of Model-
Based Code Generators. IEEE Transactions on Software Engineering 33(9), 622–
634 (2007)

12. Baldan, P., Konig, B., Sturmer, I.: Generating test cases for code generators by
unfolding graph transformation systems. LNCS, pp. 194–209 (2004)

13. Lamari, M.: Towards an automated test generation for the verification of model
transformations. In: Proceedings of the 2007 ACM symposium on Applied com-
puting, pp. 998–1005. ACM, New York (2007)

http://burtleburtle.net/bob/math/jenny.html

	Automated Test Input Generation for Software That Consumes ORM Models
	Introduction
	Background and Related Work
	Category-Partition Method
	Combinatorial Testing
	Alloy
	Related Work

	ATIG Inputs and Outputs
	ATIG: Test-Set Generation Algorithm
	Discussion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

