
R. Meersman, P. Herrero, and T. Dillon (Eds.): OTM 2009 Workshops, LNCS 5872, pp. 692–703, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Role Calculus for ORM

Matthew Curland, Terry Halpin, and Kurt Stirewalt

LogicBlox, USA
{matt.curland,terry.halpin,kurt.stirewalt}@logicblox.com

Abstract. A conceptual schema of an information system specifies the fact
structures of interest as well as related business rules that are either constraints
or derivation rules. Constraints restrict the possible or permitted states or state
transitions, while derivation rules enable some facts to be derived from others.
Graphical languages are commonly used to specify conceptual schemas, but of-
ten need to be supplemented by more expressive textual languages to capture
additional business rules, as well as conceptual queries that enable conceptual
models to be queried directly. This paper describes research to provide a role
calculus to underpin textual languages for Object-Role Modeling (ORM), to en-
able business rules and queries to be formulated in a language intelligible to
business users. The role-based nature of this calculus, which exploits the attrib-
ute-free nature of ORM, appears to offer significant advantages over other pro-
posed approaches, especially in the area of semantic stability.

1 Introduction

To promote correctness and clarity, an information model should first be specified at
the conceptual level, where it can be more easily validated by the business users most
qualified to act as domain experts, before the model is forward engineered to an im-
plementation. We use the term “model” to include both the schema (structure) as well
as a population (set of instances). A conceptual schema specifies the fact structures of
interest as well as related business rules that are either constraints or derivation rules.
Constraints restrict the possible or permitted states or state transitions, while deriva-
tion rules enable some facts to be derived from others.

Graphical diagrams are convenient for displaying the main features of a conceptual
schema, but these often need to be supplemented by textual formulations in order to
capture business rules for which no graphical notation exists. Textual languages may
also be used to query conceptual models directly.

Although information models are often specified using attribute-based approaches
such Entity Relationship modeling (ER) [5] and the class diagramming technique
within the Unified Modeling Language (UML) [18], fact-oriented approaches seem to
offer some clear advantages for conceptual modeling. For example, the attribute-free
nature of fact-orientation facilitates natural verbalization of models, while promoting
semantic stability (e.g. the restructuring needed in ER or UML when one later decides
to record facts about an attribute is simply avoided). Interest in fact-orientation has
recently been sparked by the adoption by the Object Management Group of the Se-
mantics of Business Vocabulary and Business Rules (SBVR) approach [20].

 A Role Calculus for ORM 693

Object-Role Modeling (ORM) is a prime exemplar of the fact oriented approach,
based on an extended version of Natural Information Analysis method (NIAM) [23].
An introduction to ORM may be found in [9], a thorough treatment in [14], and a
comparison with UML in [12]. An overview of fact-oriented modeling approaches,
including history and research directions, may be found in [11].

This paper describes research efforts to provide a role calculus to underpin textual
languages for ORM, to enable business rules and queries to be formulated in a lan-
guage that is intelligible to business users. The role-based nature of this calculus,
which exploits the attribute-free nature of ORM and related tooling support, appears
to offer significant advantages over other proposed approaches, especially in the area
of semantic stability.

The rest of this paper is structured as follows. Section 2 briefly overviews related
research. Section 3 discusses a metamodel fragment for a role calculus to capture
ORM role paths and derivation rules. Section 4 illustrates the use of the role calculus
with examples of rules for derived subtypes and derived fact types. Section 5 summa-
rizes the main results, outlines future research directions, and lists references.

2 Related Approaches

Currently the most popular textual rule language for information models is the Object
Constraint Language (OCL), which is used to augment UML class models with con-
straints and derivation rules that cannot be expressed graphically in UML [19, 22]. In
spite of its usefulness, OCL has technical drawbacks (e.g. rule contexts are restricted
to classes) as well as pragmatic drawbacks (e.g. OCL expressions are often too tech-
nical for business users to understand and hence validate). While the intelligibility is-
sue could be addressed by a friendlier surface syntax, this has yet to occur. Some tex-
tual languages for ER have been proposed (e.g. see section 16.3 of [14]), but these are
limited in scope, and share with OCL the problem of semantic instability caused by an
underlying attribute-based model.

Various templates and guidelines exist to assist users to formulate business rules in
an intelligible way, with RuleSpeak (http://www.rulespeak.com/en/) being a promi-
nent example. However, while helpful, these initiatives do not currently provide a
formal syntax and semantics to support unambiguous, executable rules.

The first textual language for fact-oriented modeling was Reference and IDea Lan-
guage (RIDL), which has a high level syntax for declaring and querying NIAM mod-
els [17]. In the 1980s, the model declaration part was implemented in the RIDL* tool,
but relationships were restricted to binary relationships, and the query part was never
implemented. Later on, other fact-oriented rule languages were developed. The Lan-
guage for Information Structure and Access Descriptions (LISA-D), based on the
Predicator Set Model (PSM) which extended NIAM with collection types (e.g. power
types and sequences types), included support for specifying constraints, updates, and
queries. While expressive and formal, LISA-D has not yet been fully implemented.

Early tool support for ORM introduced two textual languages. Formal ORM
Language (FORML), used mainly for specifying constraints, was supported as an
output verbalization language in the InfoModeler tool and in the ORM solution within
Microsoft Visio for Enterprise Architects. Conceptual Query Language (ConQuer)

694 M. Curland, T. Halpin, and K. Stirewalt

enabled ORM models to be queried, and was implemented in the InfoAssistant and
ActiveQuery tools [3, 4]. The ConQuer language was used only for formulating con-
ceptual queries. Although it could have been extended to capture constraints and deri-
vation rules, this never happened, and tool support for it is no longer available.

Recently, ORM was extended to second generation ORM (ORM 2) [8], with tool
support provided by Natural ORM Architect (NORMA) [6], including improved con-
straint verbalization in FORML [13] as well as further rule options such as
semiderived types [14], deontic rules [10], and deep support for conceptual outer joins
[7, 14]. The role calculus work described in this paper is currently being implemented
in extensions to NORMA. Apart from supporting a richer version of ORM, NORMA
provides more flexible support for role-based model changes, resulting in greater se-
mantic stability. For example, roles may be inserted into, repositioned, or deleted
from existing predicates without impacting rules based on other roles.

The NORMA screenshot in Figure 1 shows a request to insert a role after a
selected role of a ternary fact type. Basing rule structures on roles, which have rigid
internal identifiers, also ensures that rule structures are not impacted by changing
user-supplied role names, preferred predicate readings, or object type names, or even
changing the host language (English, German etc.). NORMA’s automatic verbaliza-
tion facility is designed to generate readings on demand.

Recently, a Fact Calculus with similar objectives to our work was developed based
on extensions to the earlier work with LISA-D [16]. Unlike our approach, this is
based on PSM rather than ORM 2, and requires forward and reverse role names as
well as role-pair connector names to navigate along role paths. While enjoying strong
formal foundations, the fact calculus does not appear to have tooling support, it does
not cater for conceptual outer joins or deontic rules, and its rule formulations are typi-
cally less intelligible than ours. For example, the fact calculus rule “NO Official-paper of A
Car being returned BUT NOT being returned” [16] is verbalized in our approach as “No Car that
is returned has some OfficialPaper that is not returned”.

Fig. 1. NORMA screen shot showing some role options. Some context menu options (e.g. De-
lete Role) are omitted.

 A Role Calculus for ORM 695

PrimaryRolePath

FactTypeDerivationRule

SubtypeDerivationRule

derives / is derived by

FactType
(.id)

derives / is derived by

ObjectType
(.id)

Role
(.id)is in

PathValueNode
(.id)

is projected from
/ projects on

is of / has

is of / has

3 Role Paths

The fundamental notion of role calculus is that all relationships between instances of
one or more object types in an ORM model can be expressed by navigating role paths
between those object types. A structured grouping of Role elements can therefore be
used as the basis of the definition for any relationship. Of the fundamental building
blocks of an ORM metamodel (ObjectType, FactType, Role), Role is the only element
that functionally determines the other two. Therefore, while from a natural language
perspective it is easier to talk about objects and facts, from the metamodel perspective
it is natural to use Role as the pivotal meta element for constraints and paths because
the associated ObjectType and FactType information is readily available.

A primary goal with role paths is to reuse the same underlying path notion as the
basis for multiple constructs (constraint join paths, subtype derivation, fact type deri-
vation, and complex constraint definitions). To support this reuse, we need a basic
path metamodel that, given an instance of a starting object type, fully defines a re-
striction over fact and object instances that are part of a path starting at that object
type. The metamodel includes a primary ‘structural’ section for defining connected
role paths, and a smaller ‘binding’ section that uses role paths for capturing derivation
rules. The binding metafragment for subtype and fact type derivations is shown in
Figure 2. The structural metafragment is shown in Figure 3.

Fig. 2. Binding metamodel using subtypes of PrimaryRolePath to define subtype and fact type
derivation rules. Some additional restrictions on the paths apply. For example, the root object
type of the SubtypeDerivationRule must be a direct or indirect supertype of the derived sub-
type. PrimaryRolePath and PathValueNode details are in Figures 3 and 4.

3.1 Path Structure

A role path represents a traversal of related roles, starting with one or more roles con-
nected to a root object type. Each subsequent role in a path either is a role in the same
fact type as the previous role, or involves a join operation to a role with the same role
player. Path splits represent branches along multiple continuations of the path, com-
bined with a logical operator. The structure is easily validated as the model evolves
because adjacent path roles must be related via a shared fact type or role player.

696 M. Curland, T. Halpin, and K. Stirewalt

Fig. 3. Structure metamodel combining Role elements into primary paths and subpaths using
tail-split semantics. Logical modifiers indicating negation and split combinations are shown,
along with correlation capabilities to link elements from different branches, and role usage in-
formation to indicate joins.

Some applications of role paths may be alternately modeled as a series of joins
across object types, where each join has an input and output role. However, this join-
centric approach is less flexible because roles that are not involved in a join are diffi-
cult to talk about. We indirectly incorporated the notion of join in our model by
allowing a role used in the path to be marked as post inner join or post outer join. The
corresponding join-over-object-type notion is trivially derived using the previous role
in the path and the shared role player.

Two important pathing requirements are to split a path and to equate (or correlate)
elements from different parts of the path. With the ability to correlate, there is no need
for an alternate mechanism to rejoin a split path. We propose a simple model using a
tail split mechanism, meaning that a path either ends outright or is split into two or
more subpaths combined with a logical operator. Each subpath is treated as a con-
tinuation of the path it splits from, so role information is not repeated.

Two classes of path information may be implied in a role path. The first relates to
the preferred identification scheme, since inferring identifier information allows
changes to the identification scheme without modification of the role path. For exam-
ple, if we correlate two RoleOccurrenceInPath instances attached to entity types, this
is interpreted as a correlation based on the identification scheme of the entity type
without explicitly including roles from the identifying fact types in the role path. The
second class of implied information is found in subtype graphs. If a join role occurs
after a role with a role player that is a supertype or subtype of the role player for the
joined role, then any subtyping links relating the two types are implied as part of
the path. While the design allows direct use of identification roles or subtyping roles,

 A Role Calculus for ORM 697

allowing these parts of the path to be implied enhances semantic stability by permit-
ting the identification schemes and subtype graphs to be modified without affecting
attached role paths.

Before applying further conditions to a role path, a simple example to demonstrate
a basic subtype definition using a role path is in order. For compact role path repre-
sentations, we use four symbols prepended to object type names in typed predicates to
represent path information. The four lead symbols (>>, >, >+, >?) correspond respec-
tively to the RolePathPurpose values (StartRole, SameFactType, PostInnerJoin, and
PostOuterJoin). An identifier in square brackets follows the lead symbol, and “=” is
used inside the square brackets after the identifier to indicate correlation with another
identifier, so “>+[ro5=ro3]Entity” indicates that the Entity role is used in the path with
identifier ro5 as the right hand role occurrence of an inner join and is remotely corre-
lated with ro3 (correlation is discussed in section 3.2). Subpaths are indicated via in-
dentation with the composition operator. By convention, identifiers use an increasing
numbering scheme to simultaneously indicate path order.

A basic example is a subtype definition for GrandParent using the fact type Person is
a parent of Person. In this case, GrandParent may be defined using a role path as:

Starting with: Person
>>[ro1]Person is a parent of >[ro2]Person
>+[ro3]Person is a parent of Person

By applying the simple rule that the path population requires a non-empty population
of all roles before the first outer join (there is no outer join in this case), this three step
path provides the equivalent of the FORML representation of the same rule: Each
GrandParent is a Person who is a parent of some Person who is a parent of some Person. We chose
forward predicate text for clarity, the GrandParent derivation rule may be expressed
using the alternate Person is a child of Person reading. The rule using the reverse reading
is represented as “>[ro2]Person is a child of >>[ro1]Person, Person is a child of >+[ro3]Person” and
the corresponding FORML is the much clumsier “Each GrandParent is a Person where
some Person2 is a child of that Person and some Person3 is a child of Person2”. By formalizing the
derivation rule as a role path, ORM tool implementations can automatically verbalize
the most readable form of the derivation rule for the current state of the model.

3.2 Calculations and Conditions

The usefulness of role paths is severely restricted if we are limited to population-
based sets. Clearly, we require the ability to restrict the path population based on con-
ditions applied to candidate path instances, and we need both value-based operations
(numeric operators and functions) and bag-based operations (aggregation functions)
to support common query scenarios.

The first thing we need to do is define what we mean by a function. In the context
of this discussion, a function takes zero or more inputs and returns a single value. A
function input may be either a single value or a bag. A brief discussion on how we are
not modeling functions provides perspective.

It is common to think of functions simply as special fact types in an ORM model.
These algorithmic fact types take two forms: comparison operators, modeled as bi-
nary fact types with a spanning uniqueness constraint; and functions, modeled with a
uniqueness constraint spanning the input roles and the remaining role representing the

698 M. Curland, T. Halpin, and K. Stirewalt

calculated output. We chose not to model functions this way because the approach
does not properly model bag inputs, it requires special semantics for functions with
single-valued inputs, and it requires meta-relationships between the fact type and a
function implementation specification like the one we’ve defined.

The semantic differences between asserted or derived fact types and algorithmic
fact types occur in the areas of population, role player type, and unary fact type inter-
pretations. Unlike normal fact types, algorithmic fact types are implicitly populated
only: if a role in a derived fact instance is calculated using 5 * 10 = 50, then there is
no requirement for a (5, 10, 50) tuple to be stored or derivable in the model. Algo-
rithmic fact types are also heavily overloaded, with different implementations re-
quired for different role player combinations. Overloading issues can be resolved by
introducing a Thing object type, but this requires special handling by type compatibil-
ity rules, which assume top-level types are disjoint. Finally, a nullary function (with
no input) is not the same as an asserted unary fact type. For example, calling the To-
day nullary function is not the same as recording today’s date and asserting an ‘is to-
day’ unary fact type. Such a fact type needs an external data source to be correctly
populated and updated. The Today function, on the other hand, is valid without ongo-
ing maintenance.

Given these limitations of algorithmic fact types, we chose an alternate approach
for metamodeling calculated values (see Figure 4). This provides for function inputs
of either bags or single values, and single-valued outputs. From the metamodel per-
spective, we treat all comparison operators (=, !=, >, etc.), mathematical operators
(+,−,×,÷), simple functions (sine, cosine, etc.), and aggregation functions (sum, avg,
min, max, count, count distinct, etc.) in the same way, working under the assumption
that these different classes of operations will be verbalized and parsed in their stan-
dard infix or functional notations. Apart from support for Boolean results, we ignored
data types associated with function inputs and outputs, and assumed that calculated
values are implicitly typed. A full discussion on typed function inputs based on the
data types of associated role players and other factors is out of scope for this paper.

The notion of function scope is used to provide a starting point in the path to relate
multiple input roles, or to determine the contents of bag input roles. For a function
with multiple single-value inputs, such as the multiply function that calculates the
LineItem.subTotal shown later in Figure 5, the scope of a LineItem role relates the
price and quantity values for that LineItem and allows a tool to use the ORM unique-
ness constraint patterns to test whether, given any LineItem, there is at most one price
and value to satisfy the single-value input requirements of the function, or whether
multiple derived fact instances are needed to represent the result. For bag functions
(count, sum, etc.), the scope determines the number of instances included in the bag.
For example, given the model in Figure 3, the request count(RoleSubPath) has multiple
interpretations, depending on the path. A scope of a parent RolePath specifies a count
of all child subpaths, and a scope of a PrimaryRolePath indicates all RoleSubPath in-
stances recursively contained within in the path. In the first case, multiple count val-
ues are calculated for each PrimaryRolePath, whereas a single equal or larger count
will be produced for the broader scope. We can also get a global RoleSubPath count
with a path starting at RolePath and participating in the supertype instance role that is
automatically defined for each subtype link.

 A Role Calculus for ORM 699

PrimaryRolePath

PathValueNode
(.id)

RoleOccurrenceInPath PathConstantCalculatedValue

has context-
[scope]

is calculated with

Function
(.name)

is boolean

PathValueNode
provides input for

“FunctionInput”

corresponds to FunctionParameter
(.id)

calculates

satisfies
/is condition of

operates on

Position
(.nr)

Position
(.nr) {1..}occurs at

has

ParameterType
(.name)

{‘value’,
‘bag’}

ConstantValue

has

Fig. 4. PathValueNode encompasses raw instance data, calculated data, and constant data. All
values can be input to function evaluations, projected as outputs for queries and derived fact
types, or used as Boolean conditions to be satisfied by instances in the populated role path.

Fortunately, the role path provides a natural scoping mechanism for function
evaluation. The context for a calculation must be a role occurrence on a direct or cor-
related role path that is directly linked to all role occurrences used as inputs to the
function. In a role path, correlated role occurrences correspond to variable names in
FORML and other text-based representations. The rules for variable generation
are based on the RolePathPurpose values: all StartRole nodes correspond to one vari-
able, each SameFactType node gets its own variable and each Post*Join node gets the
same variable as the node before it. The RoleOccurrenceInPath is remotely correlated with
RoleOccurrenceInPath fact type is used for explicit correlation across splits in the path.
See Figure 7 later for an example using remote correlation to combine naturally dis-
joint variables.

4 Capturing Business Rules

We now consider some examples using role paths to define derived fact types. Func-
tions and fact type derivation require two additional constructs to our textual shorthand:
calculated values are represented using FunctionName[calculationId of scopeId](input1, input2,…),
and binding of derived roles with Derivation: RolePlayer1=PathValueNodeId predicate text Role-
Player2=PathValueNodeId2. If function scope is omitted, then the initial instance of the root
object type is used as the default scope. We demonstrate calculations in derived fact
types with Figure 5, stability of a role path over model changes in Figure 6, and a re-
mote correlation case in Figure 7.

700 M. Curland, T. Halpin, and K. Stirewalt

Fig. 5. Sample model with derived fact types containing calculated roles

The first task is to derive LineItem has subtotal- Price. The default scope is sufficient to
multiply Quantity and UnitPrice, each of which occurs once for each LineItem.

Starting with: LineItem
and
 >>[ro1]LineItem has >[ro2]UnitPrice; (; means end of sub path)
 >>[ro3]LineItem has >[ro4]Quantity
multiply[f1](ro2, ro4)
Derivation: LineItem=ro1 has subtotal- Price=f1

The total price calculation needs a scope with a multi-valued path step between the
scope and input role occurrence. Multiplicity of start or join role occurrences is deter-
mined with the FactType’s uniqueness pattern. Multiplicity within the same FactType is
one because ORM facts have single-value role players. The transition from Invoice into
ro1 is the only multi-valued step; therefore sum uses the default scope.

Starting with: Invoice
>[ro2]LineItem is on >>[ro1]Invoice
>+[ro3]LineItem has subtotal- >[ro4]Price
sum[f1](ro4)
Derivation: Invoice=ro1 has total- Price=f1

To demonstrate nested function calls, we also show derivation of the total price with-
out using a subtotal. In this case, the scope of the multiply operation produces a bag of
results (one for each LineItem), which are then input to the sum function.

Starting with: Invoice
>[ro2]LineItem is on >>[ro1]Invoice
and
 >+[ro3]LineItem has >[ro4]UnitPrice;
 >+[ro5]LineItem has >[ro6]Quantity
multiply[f1 of ro2](ro4,ro6)
sum[f2](f1)
Derivation: Invoice=ro1 has total- Price=f2

The next example (see Figure 6) illustrates the semantic stability of our role-based
approach. The initial ORM schema models student results using a ternary fact type,
which is used as the basis for a subtype definition (shown in FORML). Later on, the
decision is made to allow students to repeat courses and to maintain full history of
their results. Using NORMA, a temporal role (r4) is inserted into the ternary and the
predicate renamed as shown. Since the roles r1..r3 are unimpacted by this change, the
underlying role path for the derivation rule remains the same, and the FORML
verbalization is automatically updated.

 A Role Calculus for ORM 701

Fig. 6. A starting version of a model with a subtype derivation based on a fact type that is later
extended by inserting a role for Date. Although the verbalization of the rule is different, the in-
ternal role path form of the subtype derivation rule does not change.

This is a population-based subtype derivation rule that requires an ORMgraduate
student to participate in the ternary fact type with both conditions satisfied.

Starting with: Student
>>[ro1]Student for >[ro2]Course begun on Date got >[ro3]Grade
Satisfies:
equals[f1](ro2,'ORM')
greaterThan[f2](ro3,3)

Figure 7 shows a final example involving remote correlation and multiple uses of the
same role in a path. In the role-based formulation, {ro1,ro3,ro5} represent the same em-
ployee instance because start roles are implicitly correlated. Similarly, {ro6,ro7,ro9}
represent a second employee instance because the join operations also imply correlation.
However, by default, ro2/ro8 may be different City instances and ro4/ro10 different
Country instances. The explicit remote correlation (ro8=ro2) equates the City instances,
and the inequality operator ensures different Country instances. With scope unspecified
for the inequality function, the root object type is the default scope, which results in po-
tentially many ro10 values for each ro4. The single-valued input on the inequality func-
tion forces a separate evaluation for each occurrence of a supervised Employee.

Fig. 7. A unary fact type derivation using explicit remote correlation. The definition for the
unary fact type corresponds to the user-friendly query ‘Who supervises an employee who lives
in the same city as the supervisor but was born in a different country from the supervisor’.

702 M. Curland, T. Halpin, and K. Stirewalt

Starting with: Employee
and
 >>[ro1]Employee lives in >[ro2]City;
 >>[ro3]Employee was born in >[ro4]Country;
 >>[ro5]Employee supervises >[ro6]Employee
 and
 >+[ro7]Employee lives in >[ro8=ro2]City;
 >+[ro9]Employee was born in >[ro10]Country
Satisfies:
inequality[f1](ro4,ro10)
Derivation: Employee=ro1 supervises local foreigner

5 Conclusion

Role paths provide a highly stable, low-level representation of navigation through
ORM space that can be used as a basis for specifying multiple advanced ORM con-
structs. This paper discussed role paths as a foundation for both subtype and fact type
derivation rules. The metamodel described here is currently being implemented as the
basis for formal derivation rules in the NORMA tool. Users will formulate derivation
rules via high level graphical and textual views that are automatically transformed
into the low level role path structures. Intelligible verbalizations of the rules will be
generated on demand using the optimal available predicate text, role names, and other
elements in the model. Users will also be able to specify different verbalization pref-
erences such as of, dot, or relational styles [14 p. 98].

The same basic path construct may also be used as the basis for dynamic queries
specified against a complete ORM model, join path specification for constraints, and
complex rules that have generally been loosely classified as “textual constraints”. Fu-
ture research will investigate combinations of paths and normal constraints, where
one or more paths act to define restricted subsets which are subject to additional stan-
dard constraints. Research into verbalization and parsing of textual representations of
role paths in various languages will also be conducted, along with approaches for
guided entry to assist with designating role paths.

References

1. Balsters, H., Carver, A., Halpin, T., Morgan, T.: Modeling Dynamic Rules in ORM. In:
Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4278, pp.
1201–1210. Springer, Heidelberg (2006)

2. Balsters, H., Halpin, T.: Formal Semantics of Dynamic Rules in ORM. In: Meersman, R.,
Tari, Z., Herrero, P. (eds.) OTM-WS 2008. LNCS, vol. 5333, pp. 699–708. Springer, Hei-
delberg (2008)

3. Bloesch, A., Halpin, T.: ConQuer: a conceptual query language. In: Thalheim, B. (ed.) ER
1996. LNCS, vol. 1157, pp. 121–133. Springer, Heidelberg (1996)

4. Bloesch, A., Halpin, T.: Conceptual queries using ConQuer-II. In: Embley, D.W. (ed.) ER
1997. LNCS, vol. 1331, pp. 113–126. Springer, Heidelberg (1997)

5. Chen, P.P.: The entity-relationship model—towards a unified view of data. ACM Transac-
tions on Database Systems 1(1), 9–36 (1976)

 A Role Calculus for ORM 703

6. Curland, M., Halpin, T.: Model Driven Development with NORMA. In: Proc. 40th Int.
Conf. on System Sciences (HICSS 40). IEEE Computer Society Press, Los Alamitos
(2007)

7. Halpin, T.: Constraints on Conceptual Join Paths. In: Krogstie, J., Halpin, T., Siau, K.
(eds.) Information Modeling Methods and Methodologies, pp. 258–277. Idea Publishing
Group, Hershey (2005)

8. Halpin, T.: ORM 2. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2005. LNCS,
vol. 3762, pp. 676–687. Springer, Heidelberg (2005)

9. Halpin, T.: ORM/NIAM Object-Role Modeling. In: Bernus, P., Mertins, K., Schmidt, G.
(eds.) Handbook on Information Systems Architectures, 2nd edn., pp. 81–103. Springer,
Heidelberg (2006)

10. Halpin, T.: Modality of Business Rules. In: Siau, K. (ed.) Research Issues in Systems
Analysis and Design, Databases and Software Development, pp. 206–226. IGI Publishing,
Hershey (2007)

11. Halpin, T.: Fact-Oriented Modeling: Past, Present and Future. In: Krogstie, J., Opdahl, A.,
Brinkkemper, S. (eds.) Conceptual Modelling in Information Systems Engineering, pp.
19–38. Springer, Berlin (2007)

12. Halpin, T.: A Comparison of Data Modeling in UML and ORM’. In: Khosrow-Pour, M.
(ed.) Encyclopedia of Information Science and Technology, 2nd edn., Information Science
Reference, Hershey PA, USA, vol. II, pp. 613–618. (2008)

13. Halpin, T., Curland, M.: Automated Verbalization for ORM 2. In: Meersman, R., Tari, Z.,
Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4278, pp. 1181–1190. Springer,
Heidelberg (2006)

14. Halpin, T., Morgan, T.: Information Modeling and Relational Databases, 2nd edn. Morgan
Kaufmann, San Francisco (2008)

15. ter Hofstede, A., Proper, H., van der Weide, T.: Formal definition of a conceptual language
for the description and manipulation of information models. Information Systems 18(7),
489–523 (1993)

16. Hoppenbrouwers, S.J.B.A., Proper, H.A(E.), van der Weide, T.P.: Fact calculus: Using
ORM and lisa-D to reason about domains. In: Meersman, R., Tari, Z., Herrero, P. (eds.)
OTM-WS 2005. LNCS, vol. 3762, pp. 720–729. Springer, Heidelberg (2005)

17. Meersman, R.: The RIDL Conceptual Language, Int. Centre for Information Analysis Ser-
vices, Control Data Belgium, Brussels (1982)

18. Object Management Group, UML 2.0 Superstructure Specification (2003),
http://www.omg.org/uml

19. Object Management Group (2005), UML OCL 2.0 Specification,
http://www.omg.org/docs/ptc/05-06-06.pdf

20. Object Management Group, Semantics of Business Vocabulary and Business Rules
(SBVR) (2008), http://www.omg.org/spec/SBVR/1.0/

21. van Bommel, P., Hoppenbrouwers, S., Proper, H., van der Weide, T.: Giving Meaning to
Enterprise Architecture Principles with ORM and ORC. In: Meersman, R., Tari, Z.,
Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4278, pp. 1138–1147. Springer,
Heidelberg (2006)

22. Warmer, J., Kleppe, A.: The Object Constraint Language, 2nd edn. Addison-Wesley,
Reading (2003)

23. Wintraecken, J.: The NIAM Information Analysis Method: Theory and Practice. Kluwer,
Deventer (1990)

	A Role Calculus for ORM
	Introduction
	Related Approaches
	Role Paths
	Path Structure
	Calculations and Conditions

	Capturing Business Rules
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

