
 

R. Meersman, P. Herrero, and T. Dillon (Eds.): OTM 2009 Workshops, LNCS 5872, pp. 391–400, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Software Architecture Evaluation in Global Software 
Development Projects 

Frank Salger 

Capgemini sd&m, Carl-Wery-Straße 42, 81739 Munich, Germany 
frank.salger@capgemini-sdm.com 

Abstract. Due to ever increasing system complexity, comprehensive methods 
for software architecture evaluation become more and more important. This is 
further stressed in global software development (GSD), where the software ar-
chitecture acts as a central knowledge and coordination mechanism. However, 
existing methods for architecture evaluation do not take characteristics of GSD 
into account. In this paper we discuss what aspects are specific for architecture 
evaluations in GSD. Our experiences from GSD projects at Capgemini sd&m 
indicate, that architecture evaluations differ in how rigorously one has to assess 
modularization, architecturally relevant processes, knowledge transfer and 
process alignment. From our project experiences, we derive nine good prac-
tices, the compliance to which should be checked in architecture evaluations in 
GSD. As an example, we discuss how far the standard architecture evaluation 
method used at Capgemini sd&m already considers the GSD-specific good 
practices, and outline what extensions are necessary to achieve a comprehensive 
architecture evaluation framework for GSD.       

1   Introduction 

In software development projects, the software architecture constitutes the “glue” be-
tween requirements, design and, ultimately, the code base. It determines whether the 
nonfunctional requirements will be met, and whether the code base will eventually 
embody a homogenous texture.  

In global software development (GSD), high quality software architectures play an 
even more important role than in co-located development projects: Architectural 
structure determines organizational structure and vice versa [1, 2]. It is more difficult 
to enforce compliance to architectural rules, and to have them “sink in” [3, 4]. Finally, 
unplanned and informal contact between team members where architecturally impor-
tant information is casually exchanged does not take place between remote teams in 
GSD [5]. Hence, some aspects of architecting a software system seem to be different 
in GSD as compared to co-located software development.  

Today, powerful and mature methods to evaluate software architectures are at hand 
(see e.g. [6, 7], and [8] for an overview). Comprehensive guidance on how to conduct 
architecture evaluations is available [9, 10, 11].  

However, despite the fact that architectural work is considerable different in GSD, 
current approaches to architecture evaluation do not answer the important question: 
“How should architecture evaluations differ when applied in the context of GSD?” 



392 F. Salger 

 

With this paper we try to give some first answers to the above question and further 
stimulate the discussion what aspects are specific for architecture evaluations in GSD.  

In the next section, we present experiences from various GSD projects at Cap 
gemini sd&m and compare them to existing research literature. We then derive nine 
architecture good practices, which we believe should be checked in an architecture 
evaluation method used in GSD. In section 3, we describe the standard method to 
evaluate software architectures at Capgemini sd&m. We explain some shortcomings 
of this method when applied in GSD settings, and discuss how it can be improved in 
order to increase its effectiveness for GSD settings. We draw our conclusion in  
section 4 and outline our future research agenda.       

2   Hot Spots for Architecture Evaluation in GSD Practice 

What are the pressing architecture related problems in GSD in the industrial practice? 
To approach this question, we discuss the lessons learned gained at Capgemini sd&m 
from numerous GSD projects for custom development of large scale business infor-
mation systems. We match our experiences to results from the GSD literature, thereby 
confirming both, our experiences as well as the respective research results.  

To structure the rest of the paper, we observe that the word “architecture” is often 
used to describe three aspects of architectural work [6]: the organization of a system 
(the ‘product’), the description of this organization (the ‘documentation’), and finally 
the process of elaborating these descriptions (the ‘process’). We will use these three 
clusters when we subsequently discuss our project experiences and compile a list of 
our architecture good practices for GSD.  

2.1   Lessons Learned from GSD Projects at Capgemini sd&m 

Capgemini sd&m is the Technology Services unit of the Capgemini Group in Ger-
many and Switzerland and offers its customers end-to-end process and software solu-
tions that have a crucial impact on their competitiveness. The Capgemini Group runs 
captive centers for offshoring software development in several countries, including 
India. We now discuss the some experiences distilled from various GSD projects car-
ried out at Capgemini sd&m. We here solely focus on projects for custom software 
development of business information systems. When we use the acronym ‘GSD’ in 
the following, we always refer to this kind of projects.     

2.1.1   Product  
Issue 1: In one of the biggest GSD projects at Capgemini sd&m (encompassing sev-
eral hundred use cases), the modules where defined too coarse grained: They bundled 
the functionality of several dozen use cases not all of which where closely related to 
each other from a functional point of view. Some modules where too big to be han-
dled by one team. Time pressure forced to assign dislocated teams to work on the 
same modules. These teams experienced a lot of extra communication: They had to 
repeatedly sort out, which team had to develop which functionality. Time pressure 
further decreased communication, which finally let to an increased amount of code 
duplicates. We thus affirm existing results that one of the most challenging product 



 Software Architecture Evaluation in Global Software Development Projects 393 

 

related issues is to find the right modularization supporting the communication of dis-
tributed teams [1, 2, 5, 12]. This is a very intriguing issue to resolve. A naïve ap-
proach would be to minimize all communication between teams that reside at differ-
ent shores. But this increases the risk of isolating the distributed teams thereby 
decreasing mutual awareness of remote team members for each others working status.  

Issue 2: This project also suffered from a mismatch between the use cases and the 
business processes of the customer. This became obvious too late in the project and 
let to considerable rework of the use case model. We experienced that such structural 
changes are more difficult to deal with in GSD than in co-located settings. 

Issue 3: Another recurring problem is the instability of the architecturally significant 
decisions which often result from instable or overlooked non-functional requirements. 
In this project, the technical proof-of-concept was insufficient. As a consequence, some 
of the core frameworks had to be repeatedly adapted after development team ramp up. 
This led to considerable unplanned extra effort to adapt the rest of the code base to these 
structural changes. Starting with a firm technical basis and stable non-functional re-
quirements is mandatory in GSD. This matches the observations in [2, 13].   

2.1.2   Documentation 
Issue 4: One core learning from GSD projects at Capgemini sd&m is the need for 
comprehensive documentation to compensate communication and coordination is-
sues. We observed however, that a GSD project does not necessarily need to docu-
ment more than a co-located project. Often it is necessary to change how to document. 
As one example, not all software architecture documents written by German archi-
tects at Capgemini sd&m adhere to the 4+1 view format for architectures as suggested 
by the Rational Unified Process (RUP). But RUP is usually employed as main process 
model at Capgemini’s captive centers in India. Therefore it is crucial to agree on a 
format for the architecture document which supports all development teams doing 
their work. We also experienced the importance of the right balance between codifica-
tion and personalization of architectural knowledge (see also [14]). In our GSD pro-
jects we complement concise architecture documentation with intensive coaching.  

Issue 5: Another stumbling point we encountered in our GSD projects is the problem 
of translation. Although the software engineers are well educated, it is sometimes 
challenging to write a software specification or an architecture document in a foreign 
language. Programming languages, architectural styles or design pattern constitute to 
some extend a universal language to software engineers. But complex non-functional 
requirements are already hard to capture precisely in the native language, but much 
harder in a foreign one. The same holds for specific terminology of less standardized 
and still evolving business domains. It is difficult to systematically translate a couple 
of thousand pages consistently. We sometimes experienced that terms in figures 
where translated differently to the according terms within the text. Also, short names 
of entities where not translated analogous to the long names of the entities. Usually, it 
was necessary to review the every translation.     

2.1.3   Process  
Issue 6: In one of our early GSD projects, we did not employ tools and processes  
to rigorously manage and control architecture evolution and prohibit architecture  



394 F. Salger 

 

erosion. This ultimately let to many headaches at the integration points: only there it 
became obvious that many architecture violations existed, which entailed laborious 
rework and refactoring phases. These unplanned efforts increased time pressure, 
which in turn further decreased the willingness to control architecture evolution. We 
also experienced that compliance to rules and processes was difficult to enforce. This 
matches the results in [3, 4].     

Issue 7: These problems were further intensified by an inappropriate integration strat-
egy: Formal code integration was done only on a monthly basis. This repeatedly lead 
to the undesirable big bang effect, where it became obvious that large extends of the 
code did not fit to each other. We thus confirm existing literature which stresses the 
importance of regularly and often integrating the whole code base [13, 15]. 

Issue 8: At the beginning, this project was planned as pure onsite, co-located devel-
opment project. Offshore development had been “planned in” only after the project 
was well underway. The project then suffered from the fact that both, the business 
analyst and the technical architect joined the team much too late. It was very hard for 
the offshore team to catch up the same level of technical and business knowledge as 
the onsite team. We learned that collocating the onsite and offshore architects during 
the high-level architecture phase is crucial. The offshore architects can than act as ‘ar-
chitecture evangelists’ when they are back in their home office. These experiences co-
incide with known good practices for architectural knowledge management [14].                  

2.2   Architecture Good Practices 

From the discussion above, we can now derive our architecture good practices for 
GSD. These serve as an input for the subsequent discussion, what aspects should be 
assessed in architecture evaluations in GSD.  

2.2.1   Product 
GP1: Ensure that the architecture fits to the organizational structure. Establish a 
product architecture that minimizes communication of distributed teams but at the 
same time avoids communication breakdown. This addresses issue 1. 

GP2: Ensure that the architecture is aligned to business drivers. Make sure that the 
architecturally significant decisions satisfy the architecturally significant requirements 
(ASR). Ensure that the alignment of the ASR to the relevant business drivers has been 
verified by the business analyst. This avoids potentially disastrous additional effort to 
adapt the architecture which becomes necessary if core ASR are changed. This good 
practice helps to mitigate issue 2. 

GP3: Ensure that the architecture is stable. Assess the maturity and stability of the 
high-level architecture before programming starts to avoid that structural problems 
surface after lots of low level code has been written. This mitigates issue 3. 

2.2.2   Documentation 
GP4: Consider the developers point of view. Write the architecture document such 
that the offshore development team understands it and control that the team can actu-
ally work with it. Take the differing architectural approaches, methods, terminology 
and background of distributed teams into account. This alleviates issue 4. 



 Software Architecture Evaluation in Global Software Development Projects 395 

 

GP5: Check all translations. Ensure that translations of the architecture are correct to 
avoid ambiguities and repeated rounds of clarification. This helps to avoid issue 5. 

2.2.3   Process 
GP6: Co-locate architects during high-level architecture activity. Co-locate offshore 
and onsite architects during the high-level architecture phase to efficiently dissemi-
nate core architectural knowledge and foster a common view on the system under 
construction. This good practice helps to avoid issue 8. 

GP7: Implement ongoing architecture management. Make sure that architecture man-
agement processes are in place (and in use), to avoid architecture erosion. Make use 
of automatic tools to check for architecture compliance. This mitigates issues 6, 7. 

GP8: Invest in architecture knowledge transfer and control it. Knowledge transfer is 
more difficult in GSD that in co-located development [3]. For example it is known, 
that in Eastern countries, power distance is higher than in Western countries [15]. 
This can, for example, lead to situations, where the offshore developer does not pin-
point a flaw in the architecture to avoid that the onsite architect ‘looses his face’. We 
experienced however, that such effects quickly fade out, as soon as the ‘one-team-
spirit’ kicks in. This avoids issue 8.    

GP9: Enforce clearly defined configuration management policies. Invest in clear poli-
cies for configuration-, build- and integration-management. Keep the knowledge 
about all involved processes up to date and control strict adherence to processes and 
policies. This mitigates issue 7. 

From these nine good practices, GP 4, 5, 6 (and to some extend 8) are specific for 
GSD. The importance of the others however is usually strongly amplified in GSD, as 
the literature exemplifies [13]. We believe that assessing compliance to the above 
listed good practices is important and should be done in any architecture evaluation 
method applied at GSD of business information systems. These issues might not be 
the only ones which must be assessed. But we think that they lead the focus on issues 
with a potentially disastrous impact on project success, if they are not carefully ad-
dressed. In the next section, we describe the ‘architecture quality gate’. We discuss 
which architecture related problems of GSD are not yet addressed by this method. 

3   The Architecture Quality Gate Used at Capgemini sd&m 

One of the business areas of Capgemini sd&m is the development of information sys-
tems for business-critical processes of our customers. Soundness, appropriateness and 
maintainability of our software architectures are major success factor of such projects. 
We thus devised a comprehensive architecture evaluation method which is used 
throughout Capgemini sd&m, the so called ‘architecture quality gate’ (QG-Arch) 
[17]. Figure 1 depicts the embedding of the quality gates within the overall quality as-
surance framework of Capgemini sd&m. It shows how the quality gates are comple-
mented with ongoing quality assurance processes, like testing. 



396 F. Salger 

 

Tender Specification

Design

Implementation

Integration test Production

Q
G

 Specification
Q

G
: A

rchitecture

Q
G

 Integration

Continuous integration

Component acceptance procedure

Test of functional requirements

Test of non-functional requirements

Gathering and control of maturity level metricsGathering and control of maturity level metrics

Q
G

 Tender

  

Fig. 1. Quality gates in context [17] 

The high-level objectives of the QG-Arch are:  

• To evaluate, whether the customer needs are met by the software architecture.  
• To determine, whether the architecture is an appropriate solution for the problem.  
• To secure, that the architecture is viable for the following development activities.  
• To enforce the defined fundament for the following development activities. 

 

The QG-Arch consists of six evaluation steps. In the first step, the software require-
ments specification is checked whether (1) functional requirements be understood by 
the developers, and (2) the specification was continued in the way, it was approved by 
our ‘specification quality gate’ (see [18] for details on this gate). In the second step, 
we apply a multi-level checklist in order to get an overview on the overall architec-
ture. This serves as an input for the third step, where we apply ‘lightweight-ATAM’, 
an adaptation of the ‘Architecture Tradeoff Analysis Method’ [6] specifically tailored 
to our purposes. There, we verify the architecturally significant decisions against the 
quality model of the relevant stakeholders. In the fourth step we check, whether the 
evolutionary prototype is sufficiently mature to serve as a template (for example, 
compliance to coding style, robustness). Further, we check whether the behaviour of 
the system to be built can really be inferred from the exploratory prototypes. The fifth 
step serves to generate an explicit list of the main architectural problems together with 
a detailed investigation of these problems. In the last step, we assess the employed 
project management and the quality management with respect to architectural con-
cerns. All these steps are supported by comprehensive usage concepts, guidelines, 
checklists and templates. The effectiveness of these steps has been proved in several 
large scale projects [17]. 

In the following, we describe how the QG-Arch addresses the core issues as listed 
in the last section, as well as the weaknesses of the QG-Arch with respect to GSD. 
We state in brackets which good practices are addressed by the QG-Arch, and which 
are not. 



 Software Architecture Evaluation in Global Software Development Projects 397 

 

3.1   Product-Related Evaluation 

Current practice in QG-Arch: Capgemini sd&m established a life-cycle encompass-
ing method framework for crafting highly cohesive, loosely coupled architectures, 
which at the same time helps to avoid over-engineering. The framework consists of 
constructive and analytical methods which keep the business drivers of the customer 
aligned with the resulting system architectures throughout the development process: 
Starting at the enterprise level, we use Quasar Enterprise to build true service oriented 
architectures which support the customers’ business processes and keep the applica-
tion landscape architecture flexible [19]. At the “one-system”-level, we apply Quasar 
[20] to create flexible systems composed out of cohesive and loosely coupled mod-
ules. We check compliance to Quasar in the QG-Arch (GP1 partly covered). Align-
ment of the architecturally significant decisions to the architecturally significant re-
quirements is checked with the ‘lightweight-ATAM’ [17] (GP2 covered). We also 
check, that the architecture is reasonable stable which the project usually proves by 
developing a proof of concept or prototype (GP3 covered).   

Loose ends of QG-Arch with respect to GSD: In GSD, the right approach is to mini-
mize the kind of ‘unwanted’ communication induced by highly dependent compo-
nents by carefully crafting highly cohesive and loosely coupled components. But at 
the same time we seek to intensify the ‘precious’ communication about the overall 
system goals and context in order to repeatedly align the common view on the system 
under construction. Literature exists on distribution models (see e.g. [21]), but little is 
known about measuring how well the organisation fits the architecture [12]. Though 
Quasar helps us to build cohesive and loosely coupled architectures and QG-Arch 
checks compliance to Quasar, we believe that GP1 is not yet fully addressed. 

3.2   Documentation-Related Check 

Current practice in QG-Arch: The lightweight-ATAM checks whether architecturally 
significant requirements are explicitly documented (see [17]).            

Loose ends of QG-Arch with respect to GSD: Assessing the architecture documenta-
tion as such is only insufficiently captured in the current version of the QG-Arch. The 
focus clearly lies on checking the appropriateness of the architecturally relevant deci-
sions with respect to the architecturally relevant requirements. The QG-Arch does not 
explicitly assess readability and usability of the architecture document from the view-
point of the developer. This however would be especially important in GSD, due to 
differing terminologies between the onsite and the offshore team. As the QG-Arch 
was mainly designed for the assessment of pure onsite projects, potential translation 
issues where also not taken into account. (GP 4, 5 not covered)          

3.3   Process-Related Check 

Current practice in QG-Arch: Here, we check whether precise quality objectives are 
defined for architecture artifacts, and how they will be monitored. How requirements 
will be traced back, how configuration and change management is implemented, how  
 



398 F. Salger 

 

architecturally related risks are determined and tracked, and how architecture man-
agement is implemented in order to cope with an evolving architecture. We also 
check that architecturally related milestones are defined, progress for architecture de-
velopment is controlled and that all key roles are staffed with the right persons.    
Loose ends of QG-Arch with respect to GSD: In co-located projects, it is common that 
the architects have a weekly meeting together with the business analyst and the pro-
ject manager. We do not check explicitly in the QG-Arch that such meetings are car-
ried out. (GP 6 not covered) 

Although the use of automatic architecture management tools is by now commod-
ity at Capgemini sd&m projects [17], we still have to investigate in which way  
configurations of these tools could be different for GSD as opposed to pure onsite 
projects. There are indicators, that hampered coordination and communication might 
mandate the use of smaller modules than usual. For the same reason it might be nec-
essary to use stricter configurations for automatic tools, like code duplicate checkers. 
(GP 7 covered) 

Knowledge transfer is not explicitly checked in the QG-Arch, since all Capgemini 
sd&m employees are repeatedly trained in the Capgemini sd&m methodologies like 
Quasar Enterprise [19], Quasar [20], or the Specification Methodology [18]. Although 
we carry out intensive trainings for our offshore colleagues, this cannot provide an 
equally strong common ground. We thus have to augment the QG-Arch by checks as-
suring an ongoing knowledge transfer as needed in GSD (GP 8 not covered).  

Although we have standard policies for configuration, version, build and integra-
tion management, we do currently not comprehensively check compliance to them in 
the QG-Arch (GP 9 partly covered).      

In summary, we found that the QG-Arch is already provides a good fundament which 
can be extended to an architecture evaluation method for GSD, although it does not 
yet cover the good practices GP 4, 5, 6 and 8. This is not surprising since it was origi-
nally devised for the use in multi-site onshore projects. However, moving to global 
multi-site software development introduces new challenges like communication and 
coordination problems, language problems and cultural differences [3].  

Apart from extending the QG-Arch such that it also covers the missing good prac-
tices, we have discovered another topic for future work: The main goal we want to 
achieve with the QG-Arch is to avoid major problems with the software architecture 
[17]. As such, the QG-Arch was not designed to assess the lower level design within 
modules which however is important, since modules are often used as ‘work pack-
ages’ which can be handed over between distributed development teams. It is well 
known that such ‘handover checkpoints’ are an important means to manage the dis-
tributed development process [16]. We will thus devise a handover checkpoint, where 
the completeness of work packages and their compliance to previously agreed quality 
objectives is assessed jointly by the onsite and offshore team. 

Within the QG-Arch, we also carefully assess architecturally relevant processes. 
This can be seen as an advantage over existing architecture evaluation methods like 
ATAM or SAAM [6], which purely concentrate on assessing the ‘product’- and 
‘documentation’-aspects of software architectures. It is well known that assessing ar-
chitecture-relevant processes is especially important in GSD [3, 4].    



 Software Architecture Evaluation in Global Software Development Projects 399 

 

4   Conclusion          

In this paper, we investigated how architecture evaluation methods should be adapted 
in order to take the characteristics of global software development (GSD) into ac-
count. To this end, we first discussed typical problems which we encountered in large 
scale commercial GSD projects at Capgemini sd&m. From this discussion, we dis-
tilled a list of good practices for GSD of large business information systems. 

Product: 
o Ensure that the architecture fits to the organizational structure  
o Ensure that architecture is aligned to the business drivers  
o Ensure that the architecture is stable  

Documentation: 

o Consider the developers point of view  
o Check all translations  

Process: 

o Co-locate architects during high-level architecture activity  
o Implement in ongoing architecture management  
o Invest in architecture knowledge transfer and control it  
o Enforce clearly defined configuration management policies 

 

We argued that a software architecture evaluation method for GSD should check 
compliance to these good practices.  

We then investigated to what extend the standard architecture evaluation method of 
Capgemini sd&m (the ‘architecture quality gate’, QG-Arch for short) already takes 
these results into account. We identified some shortcomings of the QG-Arch with re-
spect to its effectiveness in GSD. Finally we discussed how to fill these loopholes of 
the QG-Arch. We also motivated that the QG-Arch should be complemented by 
handover checkpoints, where the internal design of modules is assessed, and which 
are jointly applied by the offshore and onsite architects.  

Our main conclusions are that architecture evaluations which where devised for co-
located project settings must be extended in two ways: 1) Architecture documentation 
must be carefully evaluated from an offshore developer point of view, and 2) the ef-
fectiveness of processes like architecture knowledge transfer must be assessed.            

References 

1. Conway, M.: How Do Committees Invent? Datamation 14(4), 28–31 (1968) 
2. Herbsleb, J.D., Grinter, R.E.: Architectures, Coordination, and Distance: Conway’s Law 

and Beyond. IEEE Software 16(5), 63–70 (1999) 
3. Clerc, V., Lago, P., van Vliet, H.: Global Software Development: Are Architectural Rules 

the Answer? In: Proc. of the 2nd International Conference on Global Software Engineer-
ing, pp. 225–234. IEEE Computer Society Press, Los Alamitos (2007) 

4. Clerc, V., Lago, P., van Vliet, H.: Assessing a Multi-Site Development Organization for 
Architectural Compliance. In: Proc. of 6th Working IEEE/IFIP Conference on Software 
Architecture (WICSA 2007), p. 10. IEEE Computer Society Press, Los Alamitos (2007) 



400 F. Salger 

 

5. Herbsleb, J.D., Grinter, R.E.: Splitting the Organisation and Integrating the Code: Con-
way’s Law Revisited. In: Proc. of the 21st International Conference on Software Engineer-
ing, pp. 85–95. IEEE Computer Society Press, Los Alamitos (1999) 

6. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures Methods and 
Case Studies. Addison-Wesley, Reading (2002) 

7. Choi, H., Yeom, K.: An Approach to Software Architecture Evaluation with the 4+1 View 
Model of Architecture. In: Proc. of the 9th Asian-Pacific Software Engineering Confer-
ence, pp. 286–293. IEEE Computer Society Press, Los Alamitos (2002) 

8. Dobrica, L., Niemelä, E.: A survey on software architecture analysis methods. IEEE 
Transactions on Software Engineering 28(7), 638–653 (2002) 

9. Maranzano, J.F., Rozsypal, S.A., Zimmerman, G.H., Warnken, G.W., Wirth, P.E., Weiss, 
D.M.: Architecture Reviews: Practice and Experience. IEEE Software 22(2), 34–43 (2005) 

10. Bass, L., Nord, R., Wood, W., Zubrow, D.: Risk Themes Discovered Trough Architecture 
Evaluations. In: Proc. of 6th Working IEEE/IFIP Conference on Software Architecture 
(WICSA 2007). IEEE Computer Society Press, Los Alamitos (2007) 

11. Kazman, R., Bass, L.: Making Architecture Reviews Work in the Real World. IEEE Soft-
ware 19(1), 67–73 (2002) 

12. Herbsleb, J.D.: Global Software Engineering: The Future of Socio-technical Coordination. 
In: Proc. of Future of Software Engineering, pp. 188–198. IEEE Computer Society Press, 
Los Alamitos (2007) 

13. Sangwan, R., Bass, M., Mullik, N., Paulish, D.J., Kazmeier, J.: Global Software Develop-
ment Handbook. Auerbach Publications (2006) 

14. Clerc, V.: Towards Architectural Knowledge Management Practices for Global Software 
Development. In: Proc. of the 8th International Workshop on Sharing and Reusing Archi-
tectural Knowledge, pp. 23–28. ACM, New York (2008) 

15. Carl, D., Gupta, V., Javidan, M.: Power Distance. In: House, R.J., Hanges, P.J., Javidan, 
M., Dorfman, P.W., Gupta, V. (eds.) Culture, Leadership, and Organizations. The GLOBE 
Study of 62 Societies. Sage, Thousand Oaks (2004) 

16. Cusumano, M.A.: Managing Software Development in Globally Distributed Teams. 
Communications of the ACM 51(2), 15–17 (2008) 

17. Salger, F., Bennicke, M., Engels, G., Lewerentz, C.: Comprehensive Architecture Evalua-
tion and Management in Large Software-Systems. In: Becker, S., Plasil, F., Reussner, R. 
(eds.) QoSA 2008. LNCS, vol. 5281, pp. 205–219. Springer, Heidelberg (2008) 

18. Salger, F., Sauer, S., Engels, G.: An Integrated Quality Assurance Framework for Specify-
ing Business Information Systems. In: Proc. of the Forum at the 21st International Confer-
ence on Advanced Information Systems, pp. 25–30. CEUR (2009) 

19. Engels, G., Hess, A., Humm, B., Juwig, O., Lohman, M., Richter, J.P., Voß, M., 
Willkomm, J.: A Method for Engineering a True Service-Oriented Architecture. In: Proc. 
of the 10h International Conference on Enterprise Information Systems, vol. 2, pp. 272–
281 (2008) 

20. Haft, M., Humm, B., Siedersleben, J.: The Architect’s Dilemma – Will Reference Archi-
tectures Help? In: Reussner, R., Mayer, J., Stafford, J.A., Overhage, S., Becker, S., 
Schroeder, P.J. (eds.) QoSA 2005 and SOQUA 2005. LNCS, vol. 3712, pp. 106–122. 
Springer, Heidelberg (2005) 

21. Carmel, E.: Global Software Teams. Prentice Hall PTR, Englewood Cliffs (1999) 
22. Sangwan, R., Ros, J.: Architecture Leadership and Management in Globally Distributed 

Software Development. In: Proc. of the 1st International Workshop on Leadership and 
Management in Software Architecture, pp. 17–22. ACM, New York (2008) 

 


	Software Architecture Evaluation in Global Software Development Projects
	Introduction
	Hot Spots for Architecture Evaluation in GSD Practice
	Lessons Learned from GSD Projects at Capgemini sd&m
	Architecture Good Practices

	The Architecture Quality Gate Used at Capgemini sd&m
	Product-Related Evaluation
	Documentation-Related Check
	Process-Related Check

	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




