
Ensemble: Community-Based Anomaly Detection for
Popular Applications

Feng Qian, Zhiyun Qian, Z. Morley Mao, and Atul Prakash

University of Michigan, Ann Arbor MI 48109, USA
{fengqian,zhiyunq,zmao,aprakash}@umich.edu

Abstract. A major challenge in securing end-user systems is the risk of popu-
lar applications being hijacked at run-time. Traditional measures do not prevent
such threats because the code itself is unmodified and local anomaly detectors are
difficult to tune for correct thresholds due to insufficient training data.

Given that the target of attackers are often popular applications for communi-
cation and social networking, we propose Ensemble, a novel, automated approach
based on a trusted community of users contributing system-call level local behav-
ioral profiles of their applications to a global profile merging engine. The trust can
be assumed in cases such as enterprise environments and can be further policed
by reputation systems, e.g., by exploiting trust relationships inherently associated
with social networks. The generated global profile can be used by all community
users for local anomaly detection or prevention. Evaluation results based on a mal-
ware pool of 57 exploits demonstrate that Ensemble is an effective defense tech-
nique for communities of about 300 or more users as in enterprise environments.

1 Introduction

End-user systems can be difficult to secure for a variety of reasons. They are typically
unmanaged: users download software, browser bugs, etc. In this paper, we focus on de-
fending against a class of attacks in which popular applications are hijacked at run-time.
In the past, this has led to wide-spread attacks such as the Skype worm [14] spread us-
ing Skype and buffer overflows in Outlook email clients to execute arbitrary code [7].
Traditional measures, such as anti-virus scanners [5], do not prevent such threats be-
cause the application code itself is unmodified. Prior work indicates that system-call
level profiling [23,33,37] may help detect such attacks early but a significant barrier is
a lack of sufficient training data to ensure low false positive rates.

In this paper, we present Ensemble, a novel unsupervised anomaly detection ap-
proach based on the idea of a trusted community of users contributing system-call level
local profiles of an application to a common merging engine. The merging engine gen-
erates a global profile that captures the possible space of normal run-time behaviors of
an application. The global profile can be used to detect or prevent anomalies in appli-
cation behavior at each end-host in real time. The promise of this approach is that it
helps overcome the problem of a lack of sufficient training data at each host and can
be largely automated. The challenges are making such a system efficient, overcoming
the differences in profiles due to factors such as variations in installation directories or
hardware, and identifying the appropriate information to collect in profiles.

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 163–184, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

164 F. Qian et al.

The underlying hypothesis of Ensemble is that, as the number of local profiles in-
creases, the aggregate global profile tends to converge, thus revealing the normal be-
havior of the target application. Most applications in our experiments were found to
satisfy this property, though we also identified types of applications that would be ex-
ceptions. This paper makes the following contributions.

Handling diversity in execution environments. Various factors impact community-
based profiling, e.g., the same application at different hosts may be installed in different
directories, run with different amount of memory, and use different number of CPUs.
All these can cause variations in the system call traces with their parameters. We de-
termined the types of data to use for generating behavioral profiles to handle these
variations, while keeping profiles compact and representative of the application.

Analysis of the relationship between the community size and false positive rates.
We first applied community-based anomaly detection to a community of 12 users us-
ing a normal, clean instant messaging application. The detailed system-call level data
were sampled for 50 minutes during 5 hours with each local profile generated based on
one minute of sampled data. We found that high false positive rates to be of significant
concern, just as with single-host profiling using system calls. A testbed of virtual ma-
chines was subsequently used to study the impact of scaling up the system to a larger
user community. We found that the techniques, in general, tend to become much more
effective with larger community size. Significant reduction in false positive rates was
observed after reaching approximately 300 users.

Techniques to reduce data transfer by sharing summary data generated by pro-
filing applications. We show that while each host collects detailed system-call level
data [23,26,36] for local analysis, it only needs to send a modest amount of local profile
data per application (approximately, 4-5 KB/sec) to a common server to create commu-
nity profiles.

A general interface. Our system provides a useful abstraction of a general interface
for any target application to be protected. Multiple applications can subscribe to the
Ensemble service.

Ensemble is currently implemented in user space in Windows. We used Detour li-
brary [27] by Microsoft Research to intercept system calls for target applications. For
improved efficiency, as discussed in §4.2, Ensemble can be implemented as a service in
the OS kernel. The rest of the paper is organized as follows: §2 overviews the related
work; §3 describes the overall model of Ensemble; §4 details our implementation; and
§5 evaluates the system experimentally. Finally, §6 discusses limitations before con-
cluding in §7.

2 Related Work

Our work improves on existing work in the area of anomaly detection by exploring
the applicability of community-based profiling to generate detailed run-time behavior

Ensemble: Community-Based Anomaly Detection for Popular Applications 165

profiles of applications at the system call level. Below we highlight some of the related
approaches in malware detection and containment.

Anomaly Detection. One of the first studies on anomaly detection for applications was
done by Forrest et al. [23,26,36]. They executed an application multiple times with dif-
ferent inputs to collect system call sequences and then used those to form the baseline
behavior of the program. Any significant deviation from the baseline was considered as
an anomaly. Many of the follow-up studies [16,24,21,25,37,33,20] incorporate machine
learning techniques such as hidden-Markov model and neural networks. Later studies
examined the inclusion of system call arguments [13] and call stack information [22].
Generating a common model from different runs is a non-trivial problem. In [16], Bal-
lardie and Crowcroft explore several representative models, including frequency-based
models, a data-mining approach, and a finite state machine approach.

All these above approaches can suffer from high false positive rate. The data col-
lection process is typically manual or may take a long time to cover most normal be-
havior. If the application’s normal behaviors are not adequately captured, unobserved
normal behavior is likely misclassified as abnormal. While better machine learning al-
gorithms [25,33] can help, one fundamental problem in making these schemes practical
is the difficulty in getting sufficient training data to capture comprehensive application
behavior.

Our work builds on the approaches in the above systems. The primary contribution
is to show that if a large user community sharing their training data with an IDS at a
fine-grained level, behavioral profiles can be generated that are much more complete
and accurate than local profiles. One of the challenges we examined in extending the
techniques to a community environment is that not just the inputs, but the operating
environment for the software can be different. In our experiments, we allowed appli-
cations to be installed in random directories on various systems with diverse hardware
configuration and varying workload imposed by other applications. We extend existing
algorithms for combining profiles to handle likely variations.

Community-based Systems. The concept of “application community” [2] has been
proposed to collaboratively diagnose and respond to attacks by generating appropriate
configuration patches and filters. The goal is to generate a community-specific situa-
tion awareness gauge to predict imminent attacks. But it does not focus on anomaly
detection as in our work to help prevent attacks.

A similar concept of “collaborative learning for security” [19] is applied to auto-
matically generate a patch to the problematic software without affecting application
functionality. However, the detectors used are static detectors without training, and the
ways in which the community is utilized are limited to gathering detailed execution con-
straints in the binary, distributing the generated patch, and letting the user community
evaluate them.

Companies, such as Symantec [12], Microsoft, and Google also leverage the notion
of a community to help identify malware programs or spam emails [4] from user based
feedback. Vigilante [17] and Sweeper [34] try to contain Internet worms by automat-
ically detecting exploits. Both enable a user community to share their antibodies to
prevent and stop future attacks from Internet worms.

166 F. Qian et al.

In other application contexts, the concept of community has also been explored. Peer-
Pressure [35] utilizes it to automatically detect and troubleshoot misconfigurations by
assuming that most users in the community have the correct configuration. The Gamma
System [32] was proposed to split the monitoring task among community users, en-
abling minimally intrusive program analysis and software evolution. Similarly, Cooper-
ative Bug Isolation [31,30] leverages the community to do “statistical debugging” based
on the feedback data automatically generated by community users.

In contrast to the above body of work, our work examines the effectiveness of apply-
ing the notion of community at a much finer-grained level. Instead of just combining
binary feedback or signatures of worms, we integrate run-time behavioral profiles, con-
sisting of system calls and associated parameters, of applications across a community of
heterogeneous users. This allows us to extend anomaly detection to additional classes
of software applications.

Signature based anti-virus (AV) software. In this approach, a user typically uses a
signature database of known attacks, resulting in the advantage of negligible false posi-
tives. Unfortunately, it is difficult to maintain signatures covering new attacks. A study
by Oberheide et al. [28] found that commercial AV software has a detection rate ranging
from only 54.9% to 86.6% for attacks that occurred in the previous year. More impor-
tantly, the AV software had significantly poorer detection rates for more recent malware
samples. This implies that anomaly based detection is still indispensable.

Behavior-based intrusion detection systems (IDS). These systems rely on pre-defined
rules to detect anomalies in the run-time system behavior. They can better detect zero-
day attacks that attempt to evade code-based signatures. But, getting the rules right can
be difficult and therefore the rules tend to be relatively coarse-grained. For example, by
default, McAfee VirusScan Enterprise 8.5i [5] Access Protection rule blocks outbound
port 25 to filter malicious email programs. However, to get normal email applications to
work, 42 popular email clients, such asoutlook.exe andthunderbird.exe [11],
are exempt. Note these applications are often the ones exploited.

3 Methodology

In this section, first we present high-level methodologies used in Ensemble, then explain
them in detail in §3.1 to §3.3.

The goal of Ensemble is to detect application misbehavior, particularly caused by
zero-day attacks. As the start point of our approach, we generate a local profile for each
application instance. A profile is a summary of target application’s inter-process com-
munications and its behavior that can result in persistent changes (changes that survive
across reboots) to the file system, the registry, network, and other system settings. They
are abstracted from system call traces. Statistically, it can be seen as representative data
points in the sample space containing all possible state changing behavior of the target
application.

We envision that a large number of community users feed local profiles of an ap-
plication to a central server, which periodically aggregates them into a global profile,
depicting the application’s normal behavior as a baseline. The global profile serves as a
classifier that identifies anomalies using collected local profiles as training data.

Ensemble: Community-Based Anomaly Detection for Popular Applications 167

To detect and prevent intrusion, we monitor the application behavior and compared it
with the global profile continuously. An alarm is triggered when the application is about
to perform an operation that does not match the global profile. The user can be alerted
or the system can be configured to directly block the operation. Next we investigate
several important challenges of our methodology.

3.1 Profile Generation

Local profiles. A local profile is generated from raw system call traces [26]. In Win-
dows, system calls are undocumented, thus we use Windows API calls in our prototype.
For simplicity we ignore a set of APIs that do not modify host file system or network
state such as graphics and user interface API that are unlikely abused or even if abused
will likely be visible through other APIs we monitor. Also, we only focus on operations
executed by the target application given the profile is for a particular application, with
the exception of the process dependency, as discussed below.

Global profiles. A global profile is distilled from multiple local profiles. We develop a
taxonomy for APIs in terms of functionality (process dependency, file access, network
access, etc.). For each category, corresponding records in local profiles are aggregated
by key attributes (Table 1). An example of aggregating File Access category is shown
in Table 2.

Table 1. Key attributes for primary categories in global profiles

Category Key Attributes

Process Src Process Name/Image Hash,
Dependency Dst Process Name/Image Hash,

Type ∈ {Fork, Hook, File...}
File Access Filename, Type ∈ {Read, Write}

Registry Access Registry key, Type ∈ {Read, Write}
Network Remote IP, Remote Port,

Connection Protocol ∈ {TCP, UDP, other}

Table 2. Example: aggregate records in local profile (a) into global profile (b)

(a) Local profiles

Profile ID Filename Bytes accessed Type
1 a.dat 10 read
1 a.dat 15 read
1 b.dat 10 read
2 b.dat 10 read

(b) Global profiles

Filename Type Count by profiles
a.dat read 1
b.dat read 2

Among all the categories, the process dependency [29] depicts the interaction among
processes of the target application and other processes. A local profile contains two
types of dependencies: indirect and direct dependency. Indirect dependency, such as a
file dependency (Process A writes file F, which is then read by Process B), requires an

168 F. Qian et al.

object (e.g., a file or an IP address) as an intermediary. It is synthesized by correlating
multiple API calls. Direct dependency, such as a fork dependency, takes place without
an intermediary. It can be inferred from a single API call.

3.2 The Environment Diversity Challenge

For categories other than process dependency, the simplified methodology illustrated in
Table 2 has limitations. For example, for a text processor, different users edit different
files, thus the file access category is not aggregatable if naively using the filename as the
key attribute. Similarly, a P2P client may talk to random IP addresses, leading the aggre-
gation in the global profile to be a set of IP addresses each with very few occurrences.
We apply two methods to address this challenge.

First, we use predefined rules to normalize the path and file names. For example,
c:\Documents and Settings\Alice\a.dat is normalized to USER-DOC\
a.dat. This also helps protect the privacy of community users.

Second, our main solution is Stack Signature, which describes the stack history of the
calling thread for each API call. The key idea is that the “random” events of the same
functionality of a program such as sending a message or making a VoIP call in Skype,
should be associated with a fixed set of execution paths that can be represented by call
stacks. Based on this assumption, we introduce Stack Signature, a compact version of
call stack. A Stack Signature is calculated by iterating all stack frames of the current
thread and XORing their return addresses. In the case of recursive calls, return addresses
occurring multiple times are counted once.

In a global profile, the relationship between stack signatures and objects (e.g., file-
names and IP addresses) can be characterized by a weighted bipartite graph, whose
vertices are divided into two disjoint sets X and Y , where X is the set of stack sig-
natures and Y is the set of objects. There is an edge e : x → y ∈ E where x ∈ X
and y ∈ Y , if and only if an event accessing object y has stack signature x in at least
one local profile. Each element in X , Y and E has a weight, indicating its occurrence
frequency in terms of the number of local profiles. Except for the process dependency
which is fairly stable, we introduce stack signatures and use bipartite graphs as the data
abstraction for all other categories.

We observe many such cases in our experiments. For example, at stack signature
0x61AE46F8, QQ [8] – an instant messaging application may receive data from at
least 64 different servers such as 121.14.*.*, 219.133.*.*, 58.61.*.*, via port 8000. All
servers are found at Guangdong, China, where the headquarter of QQ is located. The
size of received data is always a multiple of 10240 bytes.

3.3 Anomaly Detection

As described at the beginning of this section, Ensemble clients periodically pull the
global profile from the server. The anomaly detection and prevention are performed
continuously. Before each operation monitored by Ensemble is executed, the API call
is intercepted and compared with the global profile using the following comparison
algorithm.

Ensemble: Community-Based Anomaly Detection for Popular Applications 169

1. Threshold-based process dependency anomaly detection. If a process dependency
D is detected (e.g., a fork or file dependency), we locate its frequency f(D) =
of local profiles containing D

of local profiles in the global profile, if f(D) < thPD, where thPD is a thresh-
old, then D is regarded as abnormal.

2. Stack signature analysis. If the operation to be executed by the target application
falls into other categories in Table 1, then its stack signature x is calculated, its object y
is identified, and e : x → y is matched against the bipartite graph BG = {XG, YG} in
the global profile. Let the frequency of e and x in BG be f(e) and f(x), respectively.
(i.e., f(e) = # of local profiles containing e

of local profiles). Let the degree of x in BG be d(x). We also in-
troduce thresholds the, thx and degx. We determine whether e is an abnormal action
by several tests searching for the predictable relation of the objects accessed by stack
signatures.

Test 1. Does a fixed stack signature always access a fixed object? (e.g., The program
reads a constant configuration file) Formally, if f(e) > the, then e passes the test and
no further tests are needed.

Test 2. Does a fixed stack signature always access different objects? (e.g., A file editor
may open different files) Formally, if f(x) > thx and d(x) > degx, then e passes
the test and no further tests are needed. This handles the “the Environment Diversity
Challenge.”

Some challenges arise, as we observe that in multiple executions of the same ap-
plication, a single object may be accessed by different stack signatures forming one
or more clusters. Figure 1 is an example of reading file ServUCert.key in 1,305
executions by Serv-U 5.0.0.0 (a commercial FTP server). The stack signatures form a
cluster ranging from 0x1019A500 to 0x1019A5FF. We conjecture two reasons: (1)
The locality of object access. The same object is often accessed at close-by instruction
addresses. For example, the code in Figure 2 is common in C programs. The consecu-
tive calls of fread satisfy the locality principle. (2) The accumulation of varieties. A

0x1019A500 0x1019A5FF
0

4

8

12

Stack signatures

A
pp

ea
re

d
tim

es

Fig. 1. Frequency of accessing ServUCert.key from different stack signatures in 1305 local
profiles

Fig. 2. Sample code of reading a file

170 F. Qian et al.

signature is calculated by XORing return addresses of n stack frames with each frame
having a variety of ki, the total variety can be as large as

∏n
i=1 ki.

Motivated by the above observation, we add two additional tests to reduce false
positives.

Test 3. Does a cluster of stack signatures access a fixed object? We define a cluster
by a window centering at x: Xwin =

{
z ∈ XG

∣
∣|z − x| ≤ winSize

}
. Formally, if∑

z∈Xwin
f(e′ : z → y) > the, then e : x → y passes this test.

Test 4. Does a cluster of stack signatures access different objects? Formally, if∑
z∈Xwin

f(z) > thx and
∑

z∈Xwin
d(z) > degx, then e passes this test. It is a further

generalization of Test 3.
Test 3 and 4 may introduce false negatives; however, they are expedient alternatives

in the situation where the number of samples is limited. Ideally, when the global profile
contains a large enough sample space, Test 3 and 4 can be replaced by Test 1 and
2, respectively, since the range of stack signatures is finite. Figure 3 illustrates four
patterns in the global profile, corresponding to the above four tests.

Fig. 3. Four API invocation patterns

4 Implementation

The architecture of our Ensemble prototype is illustrated in Figure 4. It is designed
to perform online anomaly detection using continuously updated global profiles and
generated local profiles. Existing work is mostly evaluated in Linux environments while
our system is implemented on Microsoft Windows XP, which is a more common attack
target. Our prototype is implemented using about 10,000 lines of C++ code.

In our design, we initially tried to implement Ensemble by using system call se-
quences (N-gram previously proposed [23,26,36]) as the representation of local profiles,
due to its claimed effectiveness and simplicity. However, we found that N-gram has sur-
prisingly low convergence speed for Windows API sequences in terms of obtaining the
model of application’s normal behaviors, likely due to a much larger sample space than
in Linux (the number of Windows APIs is 6 times the number of Linux syscalls). We
estimate two reasons for such big discrepancy: first, there are distinct difference be-
tween Unix/Linux system calls and Windows APIs; second, modern applications are
becoming more and more complicated. System calls may be a too find-grained charac-
terization of program behavior. Note that a lot of researchers apply N-gram algorithm
on virus or malwares, whose binary sizes are much less than legitimate applications.
Therefore, instead we resort to the simpler frequency-based model as described in §3.1
that has a faster convergence behavior.

Ensemble: Community-Based Anomaly Detection for Popular Applications 171

Fig. 4. The Ensemble Architecture

4.1 Generating Profiles and Anomaly Detection

We used the Detour Library [27] to monitor and log 106 APIs calls related to file system
(26), registry (8), file mapping (6), messages (8), thread (4), process (8), network (13),
pipe (6), hook (3), clipboard (3), system time (6), DNS (2), handle management (2) and
user accounts management (11), most of which are Windows specific. To the best of
our knowledge, they cover most APIs that can cause inter-process communications, or
result in persistent changes to the file system, the registry, the network, and other system
settings. Note that it is fairly easy to include new APIs to the framework. We generate
stack signatures using the StackWalk64 function in Windows Debugging Library.

Given the raw API traces and their stack signatures, the local profiles are gener-
ated as described in §3.1 (for process dependency) and §3.2 (for other categories). We
implemented seven categories for profiles. (1) process dependency, (2) file access, (3)
directory access, (4) registry access, (5) network connection, (6) DNS, and (7) IP prefix
access. For (1), we handle 4 types of direct process dependencies: send message, set
hook, create/terminate/suspend process (thread) and write/read/alloc/dealloc process
memory, and 8 types of indirect dependencies: files, registry, file mapping, network,
named pipes, anonymous pipes, system time and clipboard. The transformation from
API traces to other categories (e.g., file access, network access) is trivially done by
translating API parameters.

The global profile is generated by grouping various local profiles. Except for the
process dependency, which is represented by a table like Table 2(b), other categories
are represented using bipartite graphs (stack signature → object names).

Our anomaly detection algorithm described in §3.3 is very efficient. For process de-
pendency, the dependency inference and frequency look up is O(1) in run time using
hash tables. For other categories using bipartite graphs, the computational complexity
for Tests 1 and 2 is O(1); while Test 3 and 4 are also O(1) given that the window size
is a small constant.

4.2 Operational Model

Finally, we present an overview of Ensemble’s operational model. At each client, En-
semble is running as a system service and is transparent to the target application.
CAPTCHA is used when subscribing or unsubscribing Ensemble services to prevent
tampering from bots.

172 F. Qian et al.

When the application is running, the Ensemble sampling module periodically logs its
API calls with stack signatures1 and generates the local profile (e.g., every 3 hours, one
local profile is generated from 1-min sampling of API call traces). The Ensemble com-
munication module periodically submits the local profile to the server, and also fetches
the global profile from it. The Ensemble Anomaly Detection Module keeps monitoring
target application’s API calls and matching them with the global profile. If an alarm is
triggered, the requested operation is denied, or the decision is left to the user.

Initially our anomaly detection is sampled: a local profile is generated periodically
and compared with the global profile. Then we found that even if the anomaly detection
is performed continuously, the extra overhead is acceptable (less than 2%), given that
in most cases, the applications’ API calls are not invoked in a “bursty” manner.

The Ensemble server can be maintained either on a large scale (e.g., by the applica-
tion vendor), or on a small scale (e.g., within an enterprise network). Its tasks include
collecting local profiles, generating the global profile and other management function-
alities. Ideally, each version of the application should have its own global profile. De-
pending on the specific application, one global profile may also characterize several
versions with minor differences.

4.3 Limitations of the Prototype

Our current prototype has the following limitations which are not fundamental to our
design. At the client side, the sampling module is implemented at the user level, using
a third-party library. For future work we plan to move the entire system into Windows
kernel. At the server side, in order to prevent pollution of global profiles, we plan to
investigate the use of reputation systems that establish trust among community users.
Currently, we envision our system to be mainly deployed in enterprise environments
where trust can be assumed.

The latest Windows Vista adopts Address Space Load Randomization (ASLR) tech-
nique [1], which hampers the functionality of Stack Signatures. We can address this
problem by using the relative offset of the return address from the module’s start ad-
dress, together with the module signature. We plan to explore this as future work.

5 Evaluation and Experiments

In this section, we systematically evaluate Ensemble. First we describe a small-scale
deployment for a community of 12 users (§5.1). Based on the negative results due to
the limited size of the community, we introduce our testbed and target applications used
for experiments (§5.2), then analyze the generated local profiles (§5.3) and the result-
ing global profiles (§5.4). Next, we measure false positives (§5.5) and estimate false
negatives using a recent malware collection (§5.6). Finally we present the performance
evaluation of our system (§5.7).

5.1 Small Scale Real Deployment

We deployed Ensemble among 12 real users, using Windows Live Messenger (MSN)
as the target application. All users were using Win XP SP2 but with different software

1 To capture process dependency, some APIs called by other processes also need to be logged.

Ensemble: Community-Based Anomaly Detection for Popular Applications 173

and hardware configurations. Before the experiment, we manually upgraded their MSN
to the same version (2008 Build 8.5.1302.1018) and ensured the systems are virus-free.
Users were not familiar with technical details of Ensemble, and were told to use MSN
as usual. For each user, we collected 50 API call traces, each lasting 1 minute, during a
5-hour period. We used this dataset to evaluate false positives.

We used 5-fold cross validation on 600 traces to evaluate false positives. For each
trace in the test group, if any API call triggered a false alarm, then the local profile
was counted as one false positive. For the parameters in §3.3, we empirically set the =
1%, thx = 1%, degx = 10, winSize = 4KB (We tried different parameters such that
the < 2%, thx < 2%, degx < 20, and obtained similar results). We found that the
false positive rates were too high to be accepted (greater than 30% for file access and
registry access). The reason is that 12 users are not sufficient to form a community to
cover diverse application behavior.

5.2 Experimental Infrastructure

To test the impact of a larger community, we created an automated testbed to simulate a
community environment. The idea is simple: to execute the target application multiple
times on the testbed. In each execution, a local profile is created and fed to the global
profile generator, as if it was submitted by a real community user. Then we use the
global profile to test against normal and abnormal behaviors and evaluate false positives
and negatives. We have two design goals for the testbed.

– Diverse User Behaviors. Random user actions are injected during each trial. The
distribution of the randomness should roughly conform to that of a real community.

– Diverse System Environment. During each trial, the system environment should
also vary to simulate hardware and software variations in a real community. For
example, a VoIP client may adjust its voice encoding strategy according to available
network bandwidth, leading to different local profiles.

We manually created a Finite State Machine (FSM) for each target application to de-
scribe most of its main functionalities from an end user’s perspective. FSM can be
generated in a more automated fashion by combining user traces and adding some per-
turbation to include additional usage behavior. Despite the manual effort, FSM based
representation for understanding application usage, even approximate, can aid in gener-
ating more diverse usage scenarios for a given application. Figure 5 is a simplified FSM
for MSN. In each automated execution, the testbed partially iterates the FSM based on a
Markov chain model, which characterizes the popularity of application’s different func-
tionalities. Each state transition Sx → Sy in the FSM represents a user action. A weight
is assigned to e indicating the probability that the next state is Sy given the current state
is Sx. For example, in Figure 5, “Login” is the initial state where the user starts the
application. The probability that the user successfully logs in (10

1+2+10 = 77%) is much
higher than the probability that the user enters an invalid ID or password (8%).

The testbed not only randomly chooses the action, but also executes some actions
with randomness. For instance, it is able to operate an instant messenger by selecting a
random user and chatting with him/her via random text messages, emotion icons, hand-
writings or Flash winks. In another example, the “make phone call” action in Skype is
carried out by dialing a number from 3000 toll-free numbers we collected.

174 F. Qian et al.

Fig. 5. A simplified finite state machine of MSN. Labels on edges indicate state transition
probability.

We admit that our approach contains subjective elements and thus may not perfectly
simulate a community environment. However, a community itself is a set of subjective
users and has a tendency to change from time to time. Also, we will show in §5.3 the
heavy-tailed distribution of simulated users’ behaviors, which are usually the case in a
real community.

To tackle the system environment randomness, the testbed automatically changes
the hardware/software configurations for each trial. All experiments were conducted
on virtual machines (VMware 6.0.2) for ease of management. The varied configuration
includes memory, number of processors, installed software, existing running processes,
system workload, firewall settings, system time, network bandwidth, DNS server, etc.

The testbed includes a FSM script parser, an action executor that maintains the state
synchronization and sends mouse/keyboard input to the target application, a configura-
tion manipulator that changes the system environment and a communicator that com-
municates with the Ensemble kernel. The testbed is built using about 3,000 lines of C++
code.

We chose four applications running on Microsoft Windows XP SP2 as our ini-
tial target applications: Skype 3.5.0.239; Windows Live Messenger (MSN) 2008 Build
8.5.1302.1018; Tecnet QQ [8] (2007 Beta 4, 7.0.374.204), an ICQ client with typically
more than 30 million daily online users in China; Serv-U [9] (5.0.0.0), a commercial
FTP server. These applications were selected due to their popularity and past history of
attacks targeting them.

5.3 Local Profiles

Table 3 shows the number of local profiles, sampling times and API log sizes of local
profiles of each target application. The sampling time was set to conform to a Gaussian

Ensemble: Community-Based Anomaly Detection for Popular Applications 175

Table 3. Statistics of local profiles

Target # of Sample Sample API Trace LP
App local Time Time Size Size

profiles (Mean) (Std Dev) (Mean) (Mean)

Skype 550 60 secs 5 secs 3.40MB 0.20MB
MSN 1298 75 secs 5 secs 1.17MB 0.09MB
QQ 1118 60 secs 5 secs 1.18MB 0.09MB

Serv-U 1305 45 secs 5 secs 0.23MB 0.03MB

Table 4. Statistics of global profiles

Target Process File File Dir Dir Reg Reg Connections IP DNS
App Dependency Read Write Read Write Read Write Prefixes Query

Skype 8 209 237 178 208 4,587 328 135,844 115,864 0
MSN 10 2,884 244 795 90 54,506 2,749 6,417 554 0
QQ 4 6,549 8,029 6,541 8,021 59,491 229 11,867 9823 10,691

Serv-U 1 2,609 835 305 7 146 0 23,295 2 1

distribution. The sampling process started either at or after the application starts, and
stopped either at or before the application terminates. The entire collection of local
profiles lasted for one week.

As mentioned, we created randomness during each trial to simulate different user
behavior in the community. Thus each “user” may explore a different subset of the
application functionalities. Figure 6 illustrates the distribution of FSM patterns for
Skype, MSN and QQ. A pattern defines the states iterated by the testbed in a single
trial. If there are n possible states in FSM, then there exists 2n − 1 possible patterns
(0, 0, ..., 0, 1), ..., (1, 1, ..., 1, 1). For pattern (a1, a2, ..., an), ai = 1 iff the i-th state is
visited at least once in a trial. The heavy-tailed distributions in Figure 6 demonstrate
the diversity of user behaviors generated by our testbed, as well as the similarity of
most users’ behaviors. Although this may not exactly match the actual user behavior,
we believe our method adds sufficient randomness to closely approximate general user
activities.

10
0

10
1

10
2

0

10

20

30

40

50

60

70

Skype FSM Patterns

F
re

qu
en

cy

10
0

10
2

0

2

4

6

8

10

12

MSN FSM Patterns

F
re

qu
en

cy

10
0

10
2

0

20

40

60

80

QQ FSM Patterns

F
re

qu
en

cy

Fig. 6. FSM Pattern distribution for Skype (474 patterns), MSN (1137 patterns) and QQ (584
patterns). The X-axis is log-scaled.

176 F. Qian et al.

5.4 Global Profiles

Table 4 presents statistics of global profiles. The numbers in the table are the numbers
of process dependencies and, for other categories, the number of edges in the bipartite
graphs.

The process dependency categories of QQ, MSN and Skype are shown in Figures 9(a),
10, and 11(a), respectively. Only parts with solid line represent the observed depen-
dencies; while the dotted lines indicate detected misbehavior (§5.6). The percentage on
the edge denotes its occurrence frequency. The size of bipartite graphs is usually much
larger.

Figure 7 shows examples of the bipartite graphs. For each subfigure, the upper part
X is the set of stack signatures; the lower part Y is the set of objects (registry keys,
directory names, etc.), which are represented by a number (object ID). The numbers in
square brackets are the frequencies.

– Subfigure (a) is a common case where a fixed stack signature accesses a fixed ob-
ject. For example, stack signature 0x7BF74721 always reads 3 registry keys:
\REGISTRY\MACHINE\SOFTWARE\Classes\QQCPHelper...
\REGISTRY\MACHINE\SOFTWARE\Classes\CLSID\23752AA7...
\REGISTRY\MACHINE\SOFTWARE\Classes\CLSID\23752AA7...

– Subfigure (b) illustrates a random event problem. For each trial, Stack signature
1814742014 (0x6C2AC3FE) writes different registry keys under
\REGISTRY\MACHINE\SOFTWARE\Classes\CLSID\ and
\REGISTRY\MACHINE\SOFTWARE\Classes\TypeLib\.

– Subfigure (c) illustrates the slight variation of stack signatures, as explained in
§3.3. We can observe two clusters of stack signatures in subfigure (c): 4582218??,
1819194???. Both clusters access the user cookie directoryUSER-DOC\cookies.

Fig. 7. Examples of bipartite graphs. From top to bottom: (a) Registry write category of QQ (b)
Registry write category of Skype (c) Directory write category of MSN.

Ensemble: Community-Based Anomaly Detection for Popular Applications 177

5.5 False Positives

We used the same methodology (5-fold cross-validation) and the parameters as in the
real deployment (§5.1) to evaluate the false positives for the testbed. In Table 5, the col-
umn “LPs” indicates the number of local profiles in the test group; the columns “Worst”
and “Best” indicate the highest and lowest number of false positives (traces that con-
tain at least one API call that triggers the false alarm), respectively, in 10 independent
experiments (each experiment has 5 passes).

Table 5. Coarse-grained false positives (counting the number of local profiles)

Target App Skype MSN QQ ServU
Category LPs Worst Best LPs Worst Best LPs Worst Best LPs Worst Best

Process Dependency 110 0 0 262 0 0 226 1 0 196 0 0
File Read 110 0 0 262 0 0 226 0 0 261 0 0
File Write 110 0 0 262 0 0 226 0 0 261 0 0

Directory Read 110 0 0 262 0 0 226 0 0 261 0 0
Directory Write 110 0 0 262 0 0 226 0 0 261 0 0
Registry Read 110 0 0 262 4 2 226 1 0 261 0 0
Registry Write 110 0 0 262 1 0 226 0 0 0 0 0
Connections N/A 262 4 2 226 1 0 261 0 0
IP Prefixes N/A 262 0 0 226 0 0 261 0 0
DNS Query 0 0 0 0 0 0 226 0 0 261 0 0

Table 6 presents a fine-grained false positive measurement. Similar as above, we
employed 5-fold cross-validation and the experiment was repeated for 10 times using
the same parameters. In Table 6, the column “Avg E” denotes the average number of
API calls2 in the test group, which were fed into Ensemble Anomaly Detection Module;
the columns “Worst” and “Best” indicate the highest and lowest numbers of API calls
that are mistakenly detected as abnormal, respectively.

For Skype and ServU, no false positives were observed. For MSN and QQ, although
their fine-grained false positives of Registry Read and Connections categories were
slightly higher even when the false positive rate converges (shown in Figure 8), the
mistakenly detected API calls concentrated in a few local profiles (Upon manual in-
spection of the logs, it was highly possible that during the generation of these local
profiles, the application terminated unexpectedly.). Ideally, if they were indeed appli-
cation’s natural behaviors, then as the pool of training data becomes larger, the initial
“strange” behaviors will become normal, and the large size of training data is exactly
the advantage of a community.

When we were testing Skype, it produced unacceptable false positive rates for
network-related behavior (two categories whose false positives labeled as “N/A” in
Table 5 and Table 6). Upon manual inspection, we found that the stack signatures from
network related APIs were almost uniformly distributed in the entire address space, and

2 To be precise, “Avg E” is the number of process dependencies or the number of edges in the
bipartite graph.

178 F. Qian et al.

Table 6. Fine-grained false positives. (counting the number of edges in PDGs or bipartite graphs)

Target App Skype MSN QQ ServU
Category Avg E Worst Best Avg E Worst Best Avg E Worst Best Avg E Worst Best

Proc. Dep. 498 0 0 2203 0 0 844 1 0 196 0 0
File Read 13271 0 0 31650 0 0 40578 0 0 6290 0 0
File Write 1938 0 0 3623 0 0 40138 0 0 3473 0 0
Dir Read 10214 0 0 22292 0 0 39903 0 0 2758 0 0
Dir Write 1650 0 0 2711 0 0 40114 0 0 1810 0 0
Reg Read 43398 0 0 611294 55 37 415532 1 0 23943 0 0
Reg Write 33639 0 0 25441 1 0 23805 0 0 0 0 0

Connections N/A 23398 12 4 18074 11 0 7194 0 0
IP Prefixes N/A 17974 0 0 16385 0 0 516 0 0
DNS Query 0 0 0 0 0 0 17085 0 0 258 0 0

0 50 100 150 200 250 300 350 400 450
0

20

40

60

80

100

120

Number of local profiles as training data

N
um

be
r

of
 fa

ls
e

po
si

tiv
es

File Read
File Write
Registry Read
Registry Write

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

Number of local profiles as training data

N
um

be
r

of
 fa

ls
e

po
si

tiv
es

File Read
File Write
Registry Read
Registry Write
Network Connection

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

Number of local profiles as training data

N
um

be
r

of
 fa

ls
e

po
si

tiv
es

File Read
File Write
Registry Read
Registry Write
Network Connection

Fig. 8. Convergence of fine-grained FP as local profiles increase. (Top: Skype; Middle: MSN;
Bottom: QQ)

the dumped stack frames were also abnormal. Based on our estimation, Skype may em-
ploy some obfuscation techniques to protect their code against reverse engineering [10].
In summary, we believe that the false positives of Ensemble are acceptable.

Ensemble: Community-Based Anomaly Detection for Popular Applications 179

Furthermore, we used 600 API call traces obtained in real deployment to test against
the global profile generated by 1,298 MSN local profiles from the testbed. We obtained
false positive rates of 0% (process dependency), 6% (file read), 4% (file write), 2% (di-
rectory read), 1% (directory write), 11% (registry read), 6% (registry write), 9% (con-
nections) and 3% (IP prefixes), using the metric in Table 5. Upon manual inspection,
the main cause of false positives was the incompleteness of our FSM model, in which
some use cases such as video chat were not covered.

We also measured the relationship between the community size and the false positive
rate using a 5-fold cross-validation, and presents the results using the worst case (the
highest number of false positives in 10 independent experiments). As shown in Figure 8
for three applications, it is clear that the fine-grained false positive rate significantly
decreases with increasing number of local profiles, and converges to a stable value (We
discussed the high false positives of QQ and MSN earlier in this section). A real active
community is believed to have orders of magnitude of more local profiles submitted by
users, thus ensuring a low false positive rate.

5.6 False Negatives

We evaluate false negatives on a total of 57 known malware programs and exploits
for each target application by performing online comparison between the application
behavior monitored in real time and the global profile, which was generated from local
profiles described in Table 3. We used the same parameters as in the false positive
evaluation.

Table 7 summarizes our selected malwares and exploits against target applications.
They were selected from a malware collection obtained from honeypots, Web page
crawling, and spam traps. It seems that these 57 malwares and exploits have some-
what common exploit techniques. However, we argue that the core merit of anomaly
detection system is that, no matter how sophisticated an attack will be, as long as the
application’s behavior deviates from the baseline, the anomaly can be detected without
prior knowledge.

For QQ, we tested 27 password stealer trojans, all of which were detected by En-
semble. Figure 9 shows a representative case. The trojan process (1180.EXE) sets a
keyboard hook to QQ.EXE and tries to log users’ keystrokes. The trojan also caused ab-
normal file accesses: KERNEL32.DLL and ISIGNUP.SYS. The latter was extracted
by the trojan.

We attempted two buffer overflow exploits using the Metasploit framework [6] against
Serv-U. Both exploits were detected by Ensemble. One exploit caused ServU to spawn a
command line shell, which could be remotely controlled by the attacker. Another exploit

Table 7. Our malware/exploit collection used in false negative evaluation

Target App # of Malwares/Exploits Descriptions

Skype 3 Worm
MSN 25 Worm, password trojan
QQ 27 Password trojan

Serv-U 2 Buffer overflow exploits

180 F. Qian et al.

(a) process dependency

Stack Address File Pathname

0x157C278F PROGRAM FILES\Internet Explorer\
Connection Wizard\isignup.sys

0x157C2746 Kernel32.DLL
(b) file read category

Fig. 9. Anomaly detection results of the QQ trojan

Table 8. Anomaly detection results of the Serv-U buffer overflow exploit (unusual file and net-
work access)

Stack Signature(s) Object Type Object Name

6607A2DC 6606A17F File Read IE TEMP\Content.IE5\H0SBCDN6\putty.exe
112CF1F2 660AC700 660AC7D1 File Write IE TEMP\Content.IE5\H0SBCDN6\putty.exe
11201534 11211697 File Write SYSTEM32\a.exe
6606A17F 6607A2DC Dir Read IE TEMP\Content.IE5\H0SBCDN6\
11211697 11201534 Dir Write SYSTEM32\
660AC7D1 660AC700 112CF1F2 Dir Write IE TEMP\Content.IE5\H0SBCDN6\
60814BDC 17A77DFF Connection 193.201.200.66:80 TCP
1B772B23 1B7729D0 IP Prefix 193.201.200.0/23

(Omitted: 106 registry read edges and 26 registry write edges)

made ServU to download a file and execute it. The exploit was constructed in Metasploit
by providing a URL pointing to an executable file (in our experiment, the downloaded
executable was putty.exe, which was then renamed to a.exe and executed). In
Table 8, a series of events before the execution ofa.exewere clearly revealed by failing
to match abnormal edges with bipartite graphs in the global profile.

For MSN, we tested 25 worms that hijack MSN to send out malicious contents to the
user’s contacts. In one example shown in Figure 10, the malware process with a long
file name tried to modify registry keys and files that MSN read later.

Skype consists of Skype.exe and SkypePM.exe. We tested three worms that
abused the Skype API to send malicious links to deceive receivers to click them. Since
the Skype API on Windows is implemented using the message mechanism, Ensemble
detected the worm named StWinsDat.exe that sent messages to Skype.exe, as
shown in Figure 11. Ensemble also detected that Skype read the file StWinsDat.exe
from two stack addresses that never appeared in the global profile.

As part of the real-deployment in §5.1, we manually executed 25 MSN worms on
3 real machines with different configurations. All abnormal behaviors were detected
by Ensemble. Furthermore, it seems that all above anomalies can be covered by the
process dependency category. However, we argue that other categories are necessary.
For one reason, it is possible that some attacks can happen without process depen-
dency (e.g., anomalies caused by network packets such as Apache-Knacker exploit [3]).

Ensemble: Community-Based Anomaly Detection for Popular Applications 181

Fig. 10. Anomaly detection results of the MSN worm (process dependency)

(a) process dependency

Stack Address File Pathname

0x6C37D084 SYSTEM32\stwinsdat.exe
0x6C37EFFD SYSTEM32\stwinsdat.exe

(b) file read category

Fig. 11. Anomaly detection results of the Skype worm

Furthermore, as shown in Figure 9(b), Figure 11(b) and Table 8, other categories pro-
vide more detailed information about the anomaly.

5.7 Performance Evaluation

Using four target applications mentioned above, we measured the overhead of our pro-
totype in terms of time and space. The evaluation was done on a commodity Dell In-
spiron 530 PC (2.33G Core2 Duo CPU, 2GB memory, with WinXP SP2 installed).
We believe that the overall overhead is acceptable. Extra delay incurred by local pro-
file collection is less than 15%. Note that this happens infrequently (e.g., 1 minute
per 3 hours), and Ensemble does not collect local profiles for two applications si-
multaneously. Extra overhead caused by anomaly detection is less than 2%. The log-
ging size of API traces is less than 0.25 MB/min per application. The global profile
size is less than 10MB per application. Like software update, the Ensemble server
can transfer a “patch” of the new version of the global profile, with a much smaller
size.

182 F. Qian et al.

6 Limitations of Ensemble

While we found Ensemble’s approach to be a promising direction for addressing a diffi-
cult problem of using run-time profiles for detecting code injections and other run-time
anomalies, we also noted limitations that would need to be addressed in the future.

We expect that some applications to be too complex for profiles to converge using
limited system-call sampling. Our experiments indicate that this is the case for com-
plex plug-in enabled applications such as IE and MS Word since plug-ins may behave
differently from the original applications. Additional sampling and larger communities
may help in such cases.

We plan to evaluate Ensemble in a real community with hundreds of users. Privacy
concerns must be addressed, even though only summary data about system calls is
exchanged with a server.

If a significant fraction of community of users mounted a coordinated attack to pol-
lute the global profile, it is conceivable that the global profile can be corrupted. This
is more likely in open communities, where sybil attacks [18] are possible. In closed
communities as in enterprise environments, such attacks are much less likely.

Different applications may require different types of profiling. For example, if an
application purposely randomizes addresses at function or instruction level (e.g., the
network access module of Skype mentioned in §5.5 to obfuscate its behavior), then
stack signatures are ineffective. Alternative methods, such as path profiling [15], can be
added to handle such applications.

In our design, the stack signature is generated by XORing unique return addresses
of stack frames. The probability of collision is non-negligible in 32-bit OS, but very
unlikely in 64-bit systems which are becoming increasingly popular.

6.1 Over-Generalization

Each application has a set of “normal behaviors” (true baseline). False negative may
happen when the detector-defined normal behaviors go beyond the true baseline (i.e.,
over-generalized) because the features or methods are not well-chosen or the model is
not precise enough (i.e., an imperfect detector). For almost all practical IDS, the detector-
defined normal behaviors are broader than the true baseline, thus allowing mimicry at-
tacks. This is a problem with any detectors not just ours. The aggregation process should
not introduce much additional over-generalization. Consider the aggregation of local
profiles whose diversities are caused by: (i) User randomness. Different users can gen-
erate different profiles but they mostly fall within true baseline assuming profiles are
trusted (User randomness can be regarded as exercising different normal execution paths
in the application). (ii) System environment randomness. We admit that different system
environment may have different set of “normal behaviors”. However, this should intro-
duce limited over-generalization, if any at all. In the worst case, we can have separate
aggregations/pools for different OSes and software versions as mentioned in §4.2.

6.2 Mimicry Attacks

A perfect detector should leave no opportunity for mimicry attacks which are due to
over-generalization. Note that the aggregation process is independent of what features

Ensemble: Community-Based Anomaly Detection for Popular Applications 183

or approaches are used for anomaly detection. The existence of mimicry attack is mainly
due to limitations in feature selection and detection techniques, not in profile aggrega-
tion. Our focus is to show that with a reasonable detector, how we can reduce false
positives rather than making the features rich enough to eliminate the possibility for
mimicry attacks.

7 Conclusions

We have described the design of Ensemble, an unsupervised anomaly detection and
prevention system relying on a user community to detect or prevent anomalies in pop-
ular applications. Local behavioral profiles are combined into a global profile, which
can be used to detect or prevent code-injection or behavior-modifying exploits. Hosts
participating in Ensemble only need to contribute summary run-time profile data (about
0.5 MB) periodically. Ensemble addresses the problem of merging profiles from hosts
that may have different operating environments. From evaluation based on 57 test ex-
ploits for four candidate applications, we found that the quality of global profiles, and
the resulting false positive rate, significantly improves as the community size grows to
approximately 300 users, demonstrating that the use of communities is a practical way
to automatically generate behavioral profiles without much manual training, and the re-
sulting behavioral profiles are effective for run-time anomaly detection and prevention.

References

1. Address space layout randomization, http://blogs.msdn.com/
2. Application Community, http://www.darpa.mil/
3. C. CAN-2003-0245. Apache apr-psprintf memory corruption vulnerability,

http://web.nvd.nist.gov/
4. Gmail: We’re working as a community, give your support!,

http://news.softpedia.com/
5. McAfee Anti-virus software, http://mcafee.com/
6. Metasploit framework, http://www.metasploit.com
7. Microsoft Outlook Buffer Overflow in Processing TNEF Messages Lets Remote Users Exe-

cute Arbitrary Code, http://securitytracker.com/
8. QQ Instant Messenger, http://im.qq.com
9. Serv-U FTP Server, http://www.serv-u.com/

10. Should we be afraid of Skype, http://www.ossir.org/
11. VirusScan Enterprise 8.5i Access Protection rule blocks outbound SMTP mail on Port 25,

https://knowledge.mcafee.com/
12. Malware flood driving new AV (December 2007), http://www.infoworld.com/
13. Kruegel, C., Mutz, D., Valeur, F., Vigna, G.: On the Detection of Anomalous System Call

Arguments (2003)
14. Arak, V.: On the worm that affects Skype for Windows users (September 2007),

http://share.skype.com/
15. Ball, T., Larus, J.: Efficient Path Profiling. In: 29th Annual IEEE/ACM International Sym-

posium on Microarchitecture (1996)
16. Ballardie, T., Crowcroft, J.: Multicast-specific Security Threats and Counter-measures. In:

Proc. of the IEEE Symposium on Security and Privacy (1999)

http://blogs.msdn.com/
http://www.darpa.mil/
http://web.nvd.nist.gov/
http://news.softpedia.com/
http://mcafee.com/
http://www.metasploit.com
http://securitytracker.com/
http://im.qq.com
http://www.serv-u.com/
http://www.ossir.org/
https://knowledge.mcafee.com/
http://www.infoworld.com/
http://share.skype.com/

184 F. Qian et al.

17. Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham, P.: Vigi-
lante: end-to-end containment of internet worms. In: SOSP (2005)

18. Douceur, J.R.: The Sybil Attack. In: Peer-To-Peer Systems: First International Workshop
(2002)

19. Ernst, M.: Self-defending software: Collaborative learning for security,
http://norfolk.cs.washington.edu/

20. Eskin, E.: Anomarly Detection over Noisy Data using Learned Probability Distributions. In:
International Conference on Machine Learning (2000)

21. Eskin, E., Lee, W., Stolfo, S.J.: Modeling system calls for intrusion detection with dynamic
window sizes. In: Proceedings of DARPA Information Survivability Conference and Expo-
sition II (DISCEX II) (2001)

22. Feng, H.H., Kolesnikov, O.M., Fogla, P., Lee, W., Gong, W.: Anomaly Detection Using Call
Stack Information (2003)

23. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A Sense of Self for Unix Pro-
cesses. In: IEEE Symposium on Security and Privacy (1996)

24. Ghosh, A., Wanken, J., Charron, F.: Detecting anomalous and unknown intrusions against
programs. In: Proc. of the 1998 Annual Computer Security Applications Conference, AC-
SAC 1998 (1998)

25. Ghosh, A.K., Schwartzbard, A., Schatz, M.: Learning program behavior profiles for intrusion
detection. In: Proceedings of the 1st conference on Workshop on Intrusion Detection and
Network Monitoring, vol. 1 (1999)

26. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of system calls.
Journal of Computer Security (1998)

27. Hunt, G., Brubacher, D.: Detours: Binary Interception of Win32 Functions. In: Proceedings
of the 3rd USENIX Windows NT Symposium (1999)

28. Jon Oberheide, E.C., Jahanian, F.: CloudAV: N-Version Antivirus in the Network Cloud. In:
Proceedings of 17th Usenix Security Symposium (2008)

29. King, S.T., Chen, P.M.: Backtracking intrusions. In: SOSP (2003)
30. Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.I.: Public deployment of cooperative

bug isolation. In: Proceedings of the Second International Workshop on Remote Analysis
and Measurement of Software Systems, RAMSS (2004)

31. Liblit, B.R.: Cooperative bug isolation. PhD thesis, Berkeley, CA, USA, Chair-Alexander
Aiken (2004)

32. Orso, A., Liang, D., Harrold, M.J., Lipton, R.: Gamma system: continuous evolution of soft-
ware after deployment. SIGSOFT Softw. Eng. Notes 27(4) (2002)

33. Sekar, R., Dhurjati, M.D., Bollineni, P.: A Fast Automation-Based Method for Detecting
Anomalous Program Behaviors. In: IEEE Symposium on Security and Privacy (2001)

34. Tucek, J., Newsome, J., Lu, S., Huang, C., Xanthos, S., Brumley, D., Zhou, Y., Song, D.:
Sweeper: a lightweight end-to-end system for defending against fast worms. In: EuroSys.
(March 2007)

35. Wang, H.J., Platt, J.C., Chen, Y., Zhang, R., Wang, Y.-M.: Automatic misconfiguration trou-
bleshooting with peerpressure. In: OSDI (2004)

36. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting Intrusions using System Calls: Alter-
native Data Models. In: IEEE Symposium on Security and Privacy (1999)

37. Yeung, D.-Y., Ding, Y.: Host-based intrusion detection using dynamic and static behavioral
models. Pattern Recognition 36 (2003)

http://norfolk.cs.washington.edu/

	Ensemble: Community-Based Anomaly Detection for Popular Applications
	Introduction
	Related Work
	Methodology
	Profile Generation
	The Environment Diversity Challenge
	Anomaly Detection

	Implementation
	Generating Profiles and Anomaly Detection
	Operational Model
	Limitations of the Prototype

	Evaluation and Experiments
	Small Scale Real Deployment
	Experimental Infrastructure
	Local Profiles
	Global Profiles
	False Positives
	False Negatives
	Performance Evaluation

	Limitations of Ensemble
	Over-Generalization
	Mimicry Attacks

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

